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Abstract

The majority of research efforts in the automotive community is currently focused on
alternative fuel vehicles and highly automated driving. The development of highly
automated vehicles is not only promoted by Original Equipment Manufacturers
(OEMs) and automotive suppliers, but especially by well-known IT companies (e.g.,
Google and NVIDIA). That alone is an indicator for the potential of this direction
of research. Despite these combined efforts, highly automated driving will not be
available on arbitrary roads in the foreseeable future. This would require an actual
understanding of complex driving situations at a level that is currently not possible
to implement on computers. Typically, very detailed maps are used in order to still
allow for highly automated driving. These maps provide plenty of information about
the stationary vehicular environment that could not be detected with equivalent
accuracy relying on sensors only. Furthermore, using detailed maps instead of trying
to calculate everything online significantly reduces computational cost. However,
the exact pose of the vehicle relative to such a map is a mandatory prerequisite in
order to facilitate a sensible usage of this source of information.
This thesis presents a localization method for highly automated vehicles that are
equipped with close-to-market sensors. This localization method is based on the well
known Monte Carlo Localization (MCL) algorithm, i.e., in this case the feature-based
estimation of the vehicle’s pose using a particle filter. When using MCL, two aspects
are of major importance for reaching good performance: The features and the
function that is used to determine the particle weights. Features that are especially
suitable for the localization of a highly automated vehicle are described within this
thesis. These features are provided by different sensors in order to reach a certain
degree of redundancy which is definitely needed for safety relevant systems such as
highly automated vehicles. The function that is used for determining the particle
weights is inspired by Random Finite Set (RFS) Theory which has also been the
cornerstone of recent progress in multi-object tracking. Using RFSs to represent the
set of measurements and the set of mapped landmarks allows for a mathematically
sound method to describe the similarity between those sets, thereby also considering
measurement statistics (detection probability, false alarm rate).
The proposed localization approach has been utilized successfully during public
demonstrations of the highly automated vehicle of the Institute of Measurement,
Control and Microtechnology at Ulm University, Germany.
The second part of this thesis presents a novel approach to Simultaneous Localization



And Mapping (SLAM). SLAM algorithms have the potential to facilitate generating
and updating landmark maps with any vehicle that is capable of detecting the
respective landmarks. Currently, only vehicles that are equipped with expensive
reference systems can be used for this purpose. The proposed SLAM approach is
based on RFS theory as well: Each particle of a Rao-Blackwellized particle filter
uses an Labeled Multi-Bernoulli filter to estimate the map of landmarks (RB-LMB-
SLAM). It is demonstrated by means of simulation that – in cases of high clutter
rates – the RB-LMB-SLAM approach outperforms the RB-PHD-SLAM which is
well known for its performance in this kind of scenario.



Kurzfassung

Ein sehr großer Teil der aktuellen Automobilentwicklung konzentriert sich auf zwei
Bereiche: Die Abkehr von fossilen Brennstoffen und das hochautomatisierte Fahren.
Die Entwicklung hin zu hochautomatisierten Fahrzeugen wird dabei nicht nur von
den großen OEMs und Zulieferern der Automobilbranche intensiv vorangetrieben,
sondern insbesondere auch von namhaften IT-Unternehmen wie Google und NVIDIA.
Allein daran schon lässt sich das Potenzial dieses Forschungsbereichs ermessen. Hoch-
automatisierte Fahrzeuge werden jedoch auf absehbare Zeit noch nicht in der Lage
sein beliebige Strecken zu fahren. Dies würde ein tatsächliches Verständnis für
komplexe Fahrsituationen voraussetzen, wie es bisher noch nicht von Algorithmen
abgebildet werden kann. Um dennoch hochautomatisiertes Fahren zu ermöglichen,
werden typischerweise sehr detaillierte Karten verwendet. Diese Karten stellen sehr
viele Informationen über das stationäre Fahrzeugumfeld zur Verfügung, welche zum
Teil von Sensoren nicht zuverlässig genug erfasst werden können. Zudem kann durch
Karteninformationen ein Großteil der ansonsten nötigen Berechnungen eingespart
werden. Damit eine Karte jedoch sinnvoll genutzt werden kann, ist es notwendig die
exakte Pose des Fahrzeugs relativ zu dieser zu kennen.
Diese Arbeit präsentiert eine Methode zur Lokalisierung für hochautomatisierte
Fahrzeuge, die mit seriennaher Sensor-Technik ausgestattet sind. Dabei wird auf das
bekannte Monte-Carlo-Lokalisierungsverfahren – in diesem Fall also die merkmals-
basierte Schätzung der Fahrzeugpose mit Hilfe eines Partikelfilters – zurückgegriffen.
Für den Erfolg des Verfahrens sind im wesentlichen zwei Faktoren entscheidend: Die
verwendeten Merkmale bzw. Landmarken sowie die Funktion zur Bestimmung der
Partikelgewichte. In dieser Arbeit werden Landmarken beschrieben, die besonders zur
Lokalisierung von hochautomatisierten Fahrzeugen geeignet sind. Dabei wird auch
die notwendige Redundanz beachtet, indem Landmarken, die von unterschiedliche
Sensoren detektiert werden können, genutzt werden. Die entwickelte Funktion zur
Berechnung der Partikelgewichte beruht auf der Random-Finite-Set-Theorie, welche
auch die Grundlage für große Fortschritte im Multi-Objekt-Tracking der vergangenen
Jahre ist. Durch eine entsprechende Modellierung kann die Ähnlichkeit der Menge
der gemessenen Merkmale und der Menge der in der Karte verzeichneten Landmar-
ken theoretisch fundiert bewertet werden, wobei Falschalarme und Fehldetektionen
implizit berücksichtigt werden.
Das im Rahmen dieser Arbeit entwickelte Verfahren wurde erfolgreich für die Lo-
kalisierung des hochautomatisierten Fahrzeugs des Instituts für Mess-, Regel- und



Mikrotechnik der Universität Ulm eingesetzt – auch bei öffentlichen Präsentationen.
Der zweite Teil dieser Arbeit befasst sich mit einer neuartigen Methode zur simul-
tanen Lokalisierung und Kartenerstellung – engl. Simultaneous Localization And
Mapping (SLAM). SLAM-Verfahren könnten das Erstellen und Aktualisieren von
Karten mit jedem Fahrzeug ermöglichen, das in der Lage ist die entsprechenden
Landmarken zu detektieren. Bislang wird dazu teure Referenzmesstechnik benötigt,
um die wahre Fahrzeugpose zu bestimmen. Das hier präsentierte SLAM-Verfahren
beruht ebenfalls auf der Random-Finite-Set-Theorie. Konkret wird für jedes Partikel
eines Rao-Blackwellized Partikelfilter ein Labeled Multi-Bernoulli Filter verwendet
(RB-LMB-SLAM), um die Positionen der Landmarken zu schätzen. Anhand simulier-
ter Daten wird gezeigt, dass der RB-LMB-SLAM Ansatz mit hohen Falschalarmraten
besser zurecht kommt als das RB-PHD-SLAM-Filter, welches bislang als das beste
Verfahren bei hohen Falschalarmraten gilt.
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Chapter 1

Introduction

Highly automated driving has been a dream ever since the car has been available
to a broad public. Although the first ideas were pure science fiction at that time,
the advantages of having automated vehicles were already clear (cf. Figure 1.1):
more safety, less traffic jams, relaxed traveling and saving time. The ideas towards
autonomous driving presented in the fifties and sixties focused primarily on making
roads smarter, instead of the vehicles. It was not before the mid to late eighties that
the first research projects, lead by the pioneering work of Ernst Dickmanns, actually
produced cars that reached a certain degree of automation [DMC90]. Building up on
these advances, the pan-European Eureka PROMETHEUS Project (PROgraMme
for a European Traffic of Highest Efficiency and Unprecedented Safety) from 1987
to 1995 lead to an autonomous drive from Munich, Germany, to Odense in Denmark
in 1995. In the first decade of the 21st century, especially the Defense Advanced
Research Projects Agency (DARPA) pushed the development of highly automated
vehicles forward by organizing its Grand Challenges [GLM+12; TMD+06]. In recent
years autonomous driving has become one of the hottest research topics. Several
research teams have publicly demonstrated their highly automated vehicles, e.g., by
a drive through downtown Parma [BBD+13] or by an autonomous drive in Germany
on the Bertha Benz memorial route by Mercedes-Benz [ZBS+14].
At least in the foreseeable future, highly automated vehicles will not be able to actually
understand arbitrary traffic scenarios as humans do by intuition. Hence, these systems
need a reliable source of information that supports them in understanding the scene.
Typically, detailed maps are used for this purpose. A map contains information
about the possible locations of relevant traffic participants and in which direction
these may be moving. Further, a road map limits the space in which the vehicle may
operate. This significantly narrows down the space of possible solutions that has to
be checked by the trajectory planner. Furthermore, also other modules benefit highly
from map data: For example, the decision making progress may use the information
about the right-of-way at an intersection of a map, instead of interpreting traffic
signs and trying to figure out the layout of the intersection from sensor data. Thus,
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Figure 1.1: “ELECTRICITY MAY BE THE DRIVER. One day your car
may speed along an electric super-highway, its speed and steering
automatically controlled by electronic devices embedded in the
road. Highways will be made safe – by electricity! No traffic
jam.. no collisions... no driver fatigue.” – Driverless Car of the
Future advertisement for “America’s Electric Light and Power
Companies”, 1950s, Image courtesy of The Advertising Archives.

vast amounts of computational power can be saved and the complexity of many
modules can be reduced extremely, by simply providing as much information as
possible with a map. However, a map is relatively useless, as long as no knowledge
about the pose of the vehicle relative to that map is available. Localization aims at
finding that exact pose. Hence, it facilitates a significant reduction in the complexity
of driving autonomously by making maps actually usable. Thus, it is one prerequisite
for highly automated vehicles. Although Global Navigation Satellite System (GNSS)
solutions, such as Global Positioning System (GPS), are already used in every modern
car, they do not yield the accuracy that is required for highly automated driving.
Further, GNSS is also not always available (e.g., in tunnels or in adverse satellite
constellations).
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One major contribution of this thesis is a feature-based Monte Carlo Localization
(MCL) algorithm that uses multiple sensors to estimate the vehicle’s pose robustly.
The function that was developed to evaluate the likelihood of the pose hypotheses
originates from Random Finite Set (RFS) theory and is hence mathematically
motivated. This localization algorithm yields an accuracy that facilitates highly
automated driving on rural roads and in inner city scenarios. Further, the design of
the features being used as landmarks allows for an entirely unsupervised mapping
process without the need for post-processing: The vehicle just has to be driven
along the route to be mapped while using a reference system for localization and
the landmarks are detected and inserted into the database online.
Based on such a localization approach, the next step towards even more autonomy
for highly automated vehicles could be taken by utilizing Simultaneous Localization
And Mapping (SLAM). Enabling vehicles to create their own maps with SLAM could
open up new prospects: While driving the vehicle along a certain route, the vehicle
could create a map of the environment and improve this map through multiple
journeys on that route by using a SLAM algorithm. At some point, the vehicle
would reach a certain confidence in the map and then it could be able to drive
autonomously on that route.
Thus, the second major contribution of this thesis is a novel approach to SLAM. This
approach has been inspired by recent advances in multi-object tracking using RFSs.
The Rao-Blackwellized Labeled Multi-Bernoulli Simultaneous Localization And
Mapping (RB-LMB-SLAM) filter utilizes multiple instances of the recently developed
Labeled Multi-Bernoulli (LMB) filter [Reu14]. In contrast to most conventional
SLAM algorithms, it facilitates an integrated handling of measurement statistics
(i.e., false alarm rates and detection probabilities). The only other popular algorithm
with this qualities which is also based on RFSs theory is the Rao-Blackwellized
Probability Hypothesis Density Simultaneous Localization And Mapping (RB-PHD-
SLAM) algorithm. However, the exact update of the LMB filter is superior to
that of the Probability Hypothesis Density (PHD) filter. Further, in RB-LMB-
SLAM, no additional approximations are required to determine the weights for the
Rao-Blackwellized particle filter. It is shown, that the RB-LMB-SLAM approach
performs very promising in the presence of high clutter levels – even better than the
RB-PHD-SLAM.

This thesis is organized as follows: The next chapter outlines the theoretical founda-
tions that are required for the understanding of the algorithms developed in this
work (i.e., for the Chapters 4 and 5). It comprises a description of the particle filter
algorithm as well as a short introduction to Finite Set Statistics (FISST) and to state
estimation using RFSs. Thereafter, in Chapter 3, the technical preliminaries for
this work are described: the highly automated vehicle, its sensors and the software
framework running on the vehicle’s computers are presented. Further, the required
coordinate systems are defined. The chapter concludes with an overview of the
database system and its interface which has been developed to facilitate an easy
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handling of all relevant geospatial data required by all algorithms running on the
highly automated test vehicle. Based on these theoretical and technical foundations,
Chapter 4 introduces the feature-based localization algorithm that was designed
to facilitate autonomous driving with the test vehicle. The features that are used
for localization, the mapping procedure and the localization algorithm itself are
described in detail. A possible next step towards full autonomy is outlined in Chapter
5: A novel approach to SLAM using LMB filters is described. This could render
the predefined map required for the previously presented localization algorithm
expendable, since it could enable the vehicle to create its own map while localizing
itself. Finally, a conclusion of this thesis is given.



Chapter 2

Theoretical Foundations

This chapter introduces the theoretical preliminaries that form the basis of the
algorithms presented within this thesis. First of all, the notation used throughout
this thesis is presented. Then, the particle filter, as a general concept for state
estimation, is outlined. Finally, a short introduction to Finite Set Statistics (FISST)
is given, laying the ground for the Rao-Blackwellized Random Finite Set based
Simultaneous Localization And Mapping (RB-RFS-SLAM) algorithms introduced in
Chapter 5.

2.1 Notation and Abbreviations

Throughout this work, state vectors are denoted by bold face lower-case characters
and state spaces are denoted using blackboard bold letters (e.g., x is a state vector
of the state space X). Random Finite Sets are denoted by capital letters (see Section
2.3.1): A RFS X = {x(1), ...,x(n)} may represent multiple objects (i.e., n ≥ 0), each
with its respective state x(i). Further, labeled RFSs are denoted by bold face capital
letters, e.g., X.
In the following, the letter π(·) is used to discern multi-object probability densities
of random finite sets from other probability densities which are typically denoted as
p(·). Further, labeled multi-object probability densities are printed in bold letters,
e.g., π(·). For some explanations, the index k is used to describe the time step
at which the entity at hand is referred to, e.g. Zk denotes the RFS describing the
measurements of time step k. Nevertheless, whenever possible the time step index
is omitted for the sake of readability. Moreover, to distinguish predicted entities
from other quantities, the index + is used, for example p+(·) describes a predicted
probability density.
Further, a set in general, but not in particular an RFS, is printed in calligraphic font,
e.g., Z may describe a set of measurements z(j) originating from the measurement
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space Z, which again is represented by a blackboard bold letter, as all spaces are.
The finite subsets of the space Z are denoted by F(Z), while the finite subsets of Z
containing exactly n elements are denoted by Fn(Z).
Moreover, as proposed in [VV13], the multi-object exponential notation hX is used in
order to express that the real-valued function h(x) is evaluated for all state vectors
x contained in the RFS X, i.e.,

hX ,
∏
x∈X

h(x), (2.1)

with hX = 1 if X = ∅, by definition. Further, the well-known Kronecker delta
function is generalized to be applicable for arbitrary arguments, such as e.g., sets:

δY(X) ,
{

1, if X = Y
0, otherwise.

(2.2)

Additionally, in order to evaluate whether or not a set X is a subset of Y, the
inclusion function is used within this thesis:

1Y(X) ,
{

1, if X ⊆ Y
0, otherwise.

(2.3)

Finally, the inner product of the continuous functions f(x) and g(x) is abbreviated
by:

〈f, g〉 ,
∫
f(x)g(x)dx. (2.4)

2.2 Particle Filtering

The particle filter, or Sequential Monte Carlo (SMC) method, is a non-parametric
recursive Bayes filter. The first true implementation of this filtering approach was
presented by Gordon et al. in 1993 [GSS93]. In the last decade it has continuously
gained attention which is not only due to the elegance of the algorithm – predom-
inantly, it is due to the fact that the constant increase in computing power made
the use of this algorithm for sensible applications feasible. The great benefit of this
filter is that, in contrast to other filters (e.g., the Kalman filter [Kal60]), it does
not make any assumptions about the distribution in the state-space and does not
rely on any local linearization technique [TBF05]. Instead of representing the filter
posterior by some defined distribution (e.g., a Gaussian distribution), νP random
samples which may originate from an unknown arbitrary distribution are used as
an assumption free posterior representation. These samples are called particles and
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{x(i)
k−1 → x

(i)
k }i=1,...,νP

Measurements

Resampling

Prediction

Weight Update

Initialization

P0 = {x(i)
0 , ω

(i)
0 }i=1,...,νP

P̃k

Pk{ω(i)
k−1 → ω

(i)
k }i=1,...,νP

Figure 2.1: The particle filter algorithm.

each of them is a hypothesis about what the true system state may be. Ideally, the
denser a sub-region of the state space is populated by particles, the more likely the
true system state is found in this sub-region [TBF05].
At time step k, each of the i = 1, ..., νP particles represents a possible system
state x(i)

k along with its associated importance factor, which is also referred to
as the particle’s weight ω(i)

k . The entirety of these particles forms the particle
set Pk = {x(i)

k , ω
(i)
k }i=1:νP . Obviously, the more particles are used, the better the

approximation of the true system state distribution will get. The general idea is to
assess those particles based on the measurements that are made. The better the
state represented by a particle explains the measurements, the higher the weight
associated with this sample becomes. Finally, in order to avoid degeneration of
the filter, i.e., all but one particle having a negligible weight, a mechanism called
resampling is applied. During resampling particles are drawn (possibly multiple
times) with a probability corresponding to their weight. Those drawn particles then
form the set of particles for the next time step. Hence, resampling in the particle
filter represents a kind of “survival of the fittest” technique.
The particle filter algorithm is depicted in Figure 2.1 and one possible implemen-
tation is described by the pseudo-code in Algorithm 1 (cf. [AMGC02; TBF05]).
Furthermore, the individual steps are presented in more detail in the following
paragraphs.
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Algorithm 1 Particle filter algorithm
1: procedure ParticleFilter(Z1:Kmax , u1:Kmax , νP )
2: P0 ← {x(i)

0 , ω
(i)
0 }i=1:νP ∼ p0(·)

3: k ← 1
4: while k < Kmax do
5: Pk ←FilteringStep(Zk, uk, Pk−1)
6: k ← k + 1
7: end while
8: return P1:Kmax
9: end procedure
10: procedure FilteringStep(Zk, uk, Pk−1)
11: for i = 1 : νP do
12: x

(i)
k ∼ f+(x(i)

k |x
(i)
k−1,uk)

13: ω
(i)
k ← ω

(i)
k−1 · g(Zk|x(i)

k )
14: end for
15: ωSum ←

νP∑
i=1

ω
(i)
k

16: for i = 1 : νP do
17: ω

(i)
k ← ω

(i)
k /ωSum

18: end for
19: ν̃EffP ← 1/

(∑νP
i=1(ω(i)

k )2
)

20: if ν̃EffP < νminP then
21: Pk ←Resample(Pk)
22: end if
23: return Pk
24: end procedure
25: procedure Resample(Pk)
26: P̂k ← ∅
27: r ←Random(0, 1/νP )
28: c← ω

(1)
k

29: j ← 1
30: for i = 1 : νP do
31: u = r + (i− 1) · ν−1

P

32: while u > c do
33: j ← j + 1
34: c← c+ ω

(j)
k

35: end while
36: P̂k ← P̂k ∪ {x(j)

k , 1/νP }
37: end for
38: return P̂k
39: end procedure
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Initialization During initialization, the particle set P0 is constructed by drawing
νP samples from the prior distribution p0 (line 2 in Algorithm 1). The initial weight
ω

(i)
0 of the particles is usually set to 1/νP . For many applications an initial guess

about the true system is available, so that it is reasonable to draw the samples
from a distribution that corresponds to this initial knowledge. To this end e.g.,
a (multivariate) Gaussian is often utilized. If no a-priori information about the
true system state is available, the samples are commonly drawn from a uniform
distribution.
Although, the necessary number of particles νP heavily depends on the estimation
task, it is typically relatively large, e.g., in the order of 1000.

Prediction The prediction stage generates the new hypotheses about the system
state by incorporating the previous particles’ states and the optional control input
uk (line 12 in Algorithm 1). That is, the new states are drawn from the transition
density

x
(i)
k ∼ f+(x(i)

k |x
(i)
k−1,uk). (2.5)

In many use cases, this corresponds to the prediction of the particles’ states based
on a motion model, thereby respecting the given uncertainties by adding system
noise.

Weight Update This step uses the measurements to evaluate the particle states,
by calculating their importance factors. Hence, it incorporates the information gain
that is made through the measurements into the particle set Pk. A typical method
to update the particle weight is to combine the previous weight with the likelihood
of the new measurement given the particle’s state:

ω
(i)
k = ω

(i)
k−1 · g(Zk|x(i)

k ). (2.6)

The choice of a sensible likelihood function g(Zk|x(i)
k ) is of crucial importance to

the filtering process. Given this measurement update, the weighted particles then
again represent an approximation of the Bayes filter posterior.

Resampling The resampling of the particles is an important step in order to
overcome the degeneracy phenomenon: That is, after a few filter iterations, only
very few (or even only one) particles would posses a significant weight, since the
variance in the importance weights can only increase over time (see [DGA00] for
details). Hence, a lot of computational power would be wasted for the calculations
required to predict and update particles with negligible weights, if measures to avoid
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the degeneracy were omitted. Nevertheless, it is not expedient to resample after each
and every update, since this would lead to an immediate loss of diversity. In order to
determine if resampling should be executed, the effective number of particles νEffP is
typically used (cf. line 19 of Algorithm 1). The actual effective number of particles,
as described in [KLW94], cannot be obtained but may very well be approximated
through this rather simple equation:

ν̃EffP = 1
νP∑
i=1

(ω(i)
k )2

. (2.7)

As long as this number is above a certain fixed threshold (e.g., 10% of νP ), it is not
necessary to resample.
The resampling procedure described in Algorithm 1 is one possible implementation
of the ‘low-variance sampling’ [TBF05] – other approaches to resampling can be
found in [DC05] for example. After this algorithm is executed on the particle set,
the distribution of the particles changes: On the one hand, particles with relatively
low weights which were contained in the set before the resampling, are no longer
existent. On the other hand particles with relatively high weights are represented by
multiple copies in the new particle set. Thus, the resampling forces the distribution
of the particles back to the posterior (cf. [TBF05]).

2.3 Finite Set Statistics

This section briefly outlines the fundamentals of Finite Set Statistics (FISST) that
are required for the methods presented in Chapter 5. FISST enables the application
of random finite set theory to the multi-object tracking problem. Within this context,
especially the comprehensive work of Mahler [Mah07] is notable. This section first
introduces the general idea of RFSs and then presents the types of RFSs that are
relevant for this work. Thereafter, the concept of estimating a multi-object state
within this framework is described.

2.3.1 General Introduction to Random Finite Sets

In general, an RFS is a set with random cardinality of finite size containing values
– or objects – that are also random variables. That is, to be more specific, for a
random number nM ≥ 0, the RFS of a map of landmarks

M = {m(1), ...,m(nM )} (2.8)
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comprises nM unordered landmarks, each of them exhibiting a random state m(i).
Hence, this map representation directly encapsulates the uncertainty in the number
of landmarks being present in the map. Further, an RFS can also be used to represent
the measurements:

Z = {z(1), ...,z(m)}. (2.9)

Employing an RFS as well to describe the measurements makes perfect sense: This
way, it is possible to directly consider missed detections and false alarms, which will
be very useful for the algorithms presented in the subsequent chapters of this thesis.
The multi-object probability density of the RFS X is given by

π(X) =


π(∅) if X = ∅
π({x(1)}) if X = {x(1)}
π({x(1),x(2)}) if X = {x(1),x(2)}
...

...

(2.10)

This Probability Density Function (PDF) reflects the uncertainty in the number of
objects as well as the uncertainty in the individual states of those objects. Integrating
over such a PDF requires the calculation of a set integral, cf. [Mah07]:∫

π(X)δX =
∞∑
i=0

1
i!

∫
Xi

π({x(1), ...,x(i)})dx(1) · · · dx(i), (2.11)

with π({x(1), ...,x(i)}) = 0 if |{x(1), ...,x(i)}| 6= i. This calculation is in general
computationally intractable.

Poisson Random Finite Set

Poisson RFSs are used to model false alarm processes throughout this work. Therefore
they are described here shortly. The Poisson distribution is a discrete probability
distribution. If the number of objects follows a Poisson distribution with an expected
number of objects λ, the probability of obtaining exactly n objects (i.e., the cardinality
distribution) is:

ρ(n) = e−λ · λ
n

n! . (2.12)

A multi-object Poisson RFS is an RFS, where the cardinality distribution is a
Poisson distribution and the objects are assumed to be independent and identically
distributed. Therefore, such a multi-object Poisson RFS is given by:

π({x(1), ...,x(n)}) = e−λ · λn · p(x(1)) · · · p(x(n)), (2.13)
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with p(x(i)) being the probability density function that represents the spatial distri-
bution of object i.

Multi-Bernoulli Random Finite Set

The Bernoulli RFS facilitates the direct representation of the uncertainty regarding
the existence of an object. That is, the Bernoulli RFS X contains exactly one element
with the probability r and is empty with the probability 1− r. Hence, r is called
the existence probability. The spatial distribution of this object is again given by
p(x). The probability density of the Bernoulli RFS X is:

π(X) =
{

1− r, if X = ∅
r · p(x), if X = {x}. (2.14)

Based on this Bernoulli RFS, which is able to represent a singleton, the extension to
the Multi-Bernoulli RFS, representing multiple objects, is straightforward. Under
the assumption that the objects are independent from each other, the Multi-Bernoulli
RFS is given by the union of the nO single Bernoulli RFSs X(i): X =

⋃nO
i=1 X(i). Since

one Bernoulli RFS is completely described by its parameters r and p(x), the Multi-
Bernoulli RFS is defined by the respective parameter set {r(i), p(i)}nOi=1. Determining
the probability density of such a multi-Bernoulli RFS involves summing over all
possible permutations (with n ≤ nO) of the nO state vectors x(i) (cf. [Mah07]):

π({x(1), ...,x(n)}) =
nO∏
j=1

(
1− r(j)

)
×

∑
1≤i1 6=... 6=in≤nO

n∏
j=1

r(ij)p(ij)(x(j))
1− r(ij)

. (2.15)

The first product accounts for the non-existence of all objects. The sum then basically
runs over all permutations of the objects. For each of these realizations, the spatial
distributions of the respective objects along with their existence probabilities are
considered in the nominator. Further, the denominator cancels out the non-existence
of these existing objects that has been assumed by first product.
Such multi-object probability densities of multi-Bernoulli RFSs are abbreviated by
their parameters in the following: π = {r(i), p(i)}nOi=1.

Labeled Multi-Bernoulli Random Finite Set

If the component indices i of the multi-Bernoulli RFS π = {r(i), p(i)}nOi=1 are inter-
preted as object labels ` ∈ L the corresponding Labeled Multi-Bernoulli (LMB) RFS
is obtained. This LMB RFS is a finite set on the space X× L (cf. [VV13]) and can
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be described by:
π(X) = {r(`), p(`)}`∈L. (2.16)

The respective multi-object probability of such an LMB RFS is determined by:

π
(
{(x(1), `1), ..., (x(n), `n)}

)
= δn(|{`1, ..., `n}|)

∏
i∈L

(
1− r(i)

) n∏
`=1

1L(`)r(`)p(`)(x)
1− r(`)

(2.17)
using the inclusion function 1L(`) (cf. equation (2.3)). The Kronecker delta function
is used to ensure the validity of the labeled RFS: In general, all components of
a labeled RFS, and therefore also those of an LMB RFS, are required to have a
distinct label, since the idea behind labeling the components is that it facilitates an
unambiguous identification of the tracks. If this is not the case, the labeled RFSs
have to be marked as invalid. This can also be achieved by using the distinct label
indicator [VV13]:

∆(X) = δ|X|(|L (X)|), (2.18)

with L (X) being the function that extracts the set of track labels from the multi-
object state X. Using the distinct label indicator, the LMB RFS can be represented
more compactly by (cf. [Reu14; VV13]):

π(X) = ∆(X)w(L (X))pX, (2.19)

with the weight

w(L) =
∏
i∈L

(1− r(i))
∏
`∈L

1L(`)r(`)

1− r(`) , (2.20)

and by using the multi-object exponential notation (cf. equation (2.1))

pX ,
∏

(x,`)∈X

p(`)(x). (2.21)

The LMB RFS is the most important type of RFS within the context of this thesis,
as it is extensively used in the RB-LMB-SLAM filter.

Generalized Labeled Multi-Bernoulli Random Finite Set

The Generalized Labeled Multi-Bernoulli (GLMB) RFS is, as its name implies, a
generalization of the LMB RFS [VV13]. In the GLMB RFS the tracks are no longer
assumed to be independent as it is the case with the LMB RFS. While in the LMB
RFS, the weights of all realizations X depend on the tracks’ existence probabilities
r(`) (cf. equation 2.20), the GLMB RFS enables the usage of arbitrary weights
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and cardinality distributions. For a discrete index set C which allows for multiple
realizations of a set of track labels, the GLMB is given by:

π(X) = ∆(X)
∑
c∈C

w(c)(L (X))
[
p(c)
]X

, (2.22)

with the weights being normalized and the spatial distributions being valid PDFs.
In contrast to the LMB RFS, which can only represent a single hypothesis (or
component) c, the GLMB RFS facilitates propagating multiple hypothesis c ∈ C.
Therefore it can consistently account for the data association uncertainty during the
Bayes multi-object filter update (cf. [Reu14] and Section 2.3.2).

δ-Generalized Labeled Multi-Bernoulli Random Finite Set

The Delta-Generalized Labeled Multi-Bernoulli (δ-GLMB) RFS is a special case
of the GLMB RFS. Given an arbitrary discrete space Ξ and the collection of all
finite subsets of the space L, F(L), the following substitutions are made within the
aforementioned GLMB RFS (cf. [Reu14; VV13]):

C = F(L)× Ξ, (2.23)
w(c)(L) = w(I,ξ)δI(L), (2.24)

p(c) = p(I,ξ), (2.25)

where I denotes a set of track labels and each ξ is a realization of Ξ. Using these
parameters the distribution given by equation (2.22) becomes:

π(X) = ∆(X)
∑

(I,ξ)∈C

w(I,ξ)δI(L (X))
[
p(I,ξ)

]X
. (2.26)

Although this equation is still equivalent to (2.22) in the general case, the δ-GLMB
RFS representation has the advantage that the computational complexity can be
reduced significantly: If Ξ is chosen to represent the history of the associations
between track labels and measurements, then the number of spatial distributions is
reduced to |Ξ| (in comparison to |F(L)× Ξ|) as each association history ξ already
encapsulates the track labels [Reu14; VV13].
The δ-GLMB RFS is essential for the LMB filter that is used in Chapter 5, because
it requires the δ-GLMB representation of the multi-object state during the update
step.
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2.3.2 State Estimation with Random Finite Sets

The basis for estimating a multi-object state using RFS is the multi-object Bayes filter,
which is described below. Since it is computationally intractable, approximations
are usually made to obtain filtering algorithms that only require limited computing
power. One such algorithm is introduced below – the PHD filter. Another RFS
filtering algorithm which is also essential for this thesis, is the LMB filter. It is
described in detail in Section 5.4.

Bayesian Multi-Object Filtering

The Bayes filter is a recursive approach to estimate the state of a system, or more
precisely a PDF representing that state, based on a process model and observations
of the system. In order to apply Bayesian filtering, the system is assumed to be
Markovian, i.e., the probability of the system state at time k only depends on the
system state at time step k − 1 and no earlier states. Recursive Bayesian filtering
methods have been widely used for single object tracking algorithms. However, the
extension to the multi-object case, which is facilitated by the use of RFS, has only
become a major field of research within the last decade.
An RFS naturally models the uncertainty in the number of objects as well as the
uncertainty in the states of the individual objects. As with Baysian single object
filtering, the predicted density of such an RFS is obtained by the usage of the
Chapman-Kolmogorov equation [Mah07]:

π+(X+) =
∫
f+(X+|X)π(X)δX (2.27)

Although, at first sight this equation looks very similar to the well-known equation
for single object filtering, the usage of RFSs has severe effects: First of all, the
integral in equation 2.27 is a set integral (cf. 2.11) which has great impact on
computability, since it not only sums over all possible object states but also over all
possible numbers of objects [Mah04]. Further, f+(X+|X) is a multi-object Markov
transition density which is more complex than a single-object transition density,
since it not only regards the change in the objects’ states (e.g., due to the objects’
motions) but also has to consider birth and death of objects.
The multi-object transition density that considers all possible object associations θ
between the n′ tracks at time step k − 1 and the n tracks at time step k is [Mah07]:

f+(X+|X) = πB(X+)π+(∅|X)
∑
θ

∏
i:θ(i)>0

pS(x(i)) · f+(x(θ(i))
+ |x(i))

(1− pS(x(i))) · λBpB(x(θ(i))
+ )

, (2.28)
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where pS is the state dependent survival probability and λB is the expected number
of new objects which are spatially distributed according to pB(x(θ(i))

+ ). Furthermore,
f+(x(θ(i))

+ |x(i)) denotes the single-object Markov transition density. Aside from that,
it is assumed that the objects’ motions are independent and that object appearance
follows the Poisson distributed birth density πB (which is statistically independent
from existing objects). The respective probabilities that all objects are new born
and that none of the objects survive (i.e., θ(i) = 0 ∀i) are obtained through:

πB(X+) = e−λB
n∏
i=1

λBpB(x(i)
+ ), (2.29)

π+(∅|X) =
n′∏
i=1

(1− pS(x(i))). (2.30)

Then, the multi-object posterior density using the Bayes filter update is given by:

π(X|Z) =
g(Z|X+)π+(X+)∫
g(Z|X+)π+(X+)δX , (2.31)

where the multi-object likelihood g(Z|X+) has to consider the sensor’s Field Of View
(FOV), the state dependent detection probability pD and false alarms. Hence, using
the single-object spatial likelihood function g(zθ(i)|x(i)

+ ), the appropriate standard
multi-object likelihood function according to [Mah07] is:

g(Z|X+) = πC(Z)π(∅|X+)
∑
θ

∏
i:θ(i)>0

pD(x(i)
+ ) · g(zθ(i)|x(i)

+ )
(1− pD(x(i)

+ )) · λcc(zθ(i))
, (2.32)

where the false alarm process follows a Poisson distribution with an expected number
of clutter measurements λc that are spatially distributed according to c(z). In many
cases, the false alarms are assumed to be distributed uniformly in the FOV. The
probability that all measurements originate from clutter is

πC(Z) = e−λc
∏
z∈Z

λcc(z). (2.33)

Further, the probability that no object is detected is given by

π(∅|X+) =
n∏
i=1

(1− pD(x(i)
+ )). (2.34)

The multi-object likelihood (2.32) function averages over all association hypotheses
θ : {1, ..., n} → {0, 1, ..., nZ} between the n objects and the nZ measurements. For
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each hypothesis, measurements have to be assigned uniquely to the tracks (i.e.,
θ(i) = θ(j) > 0 =⇒ i = j) and missed detections are taken into account by the
association θ(i) = 0.

The Probability Hypothesis Density Filter

As the multi-object Bayes filter is computationally challenging in general, it is usually
necessary to resort to principled approximative solutions instead. In 2003, Mahler
introduced the Probability Hypothesis Density (PHD) filter [Mah03], which still is
one of the most popular approximations of the multi-object Bayes filter.
The filter propagates the first-order statistical moment of the multi-object posterior
π(X), its PHD. Hence, it somehow represents the multi-object analog to the constant-
gain Kalman filter [MVAV11b]. The value of the PHD v(x) at any point x gives the
number of expected features at that exact point. Thus, the total number of objects
in any given region can be calculated by the integral of the PHD over that region S:

n̂ =
∫
S

v(x)dx. (2.35)

Since the PHD filter approximates the multi-object Bayes filter, it also follows
the predictor-corrector cycle. Given the single-object Markov transition density
f+(x+|x), the predicted PHD is determined by (cf. [Mah03; Reu14]):

v+(x) =
∫
pS(ξ)f+(x|ξ)v(ξ)dξ + b(x), (2.36)

where the birth of new objects is described by b(x), the PHD of the birth RFS
(again, the integral of b(x) over a region S would yield the expected number of
new objects that emerging from within that region). Further, the state-dependent
survival probability is given by pS(·).
Under the assumption that the predicted PHD approximately follows a multi-
object Poisson distribution [Mah03], the corrector equation using the measurement
likelihood function g(z|x), is given by:

v(x) = (1− pD(x))v+(x) +
∑
z∈Z

pD(x)g(z|x)v+(x)
λcc(z) +

∫
pD(ξ)g(z|ξ)v+(ξ)dξ , (2.37)

where the probability of detection is pD(x). Further, the false alarm process follows
a Poisson distribution, thereby creating an average of λc false alarms which are
spatially distributed according to c(z). As it can be seen from the equations (2.36)
and (2.37), this approximation, in contrast to the full multi-object Bayes filter, does
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not require any calculations of set integrals and therefore is much more applicable
due to the reduced computational complexity. This advantage comes at a price: The
PHD filter approximation results in an unstable estimate of the number of objects
[EWB05]. Further, the set representation is lost due to this approximation.
In order to actually implement a PHD filter, either sequential Monte Carlo methods
[Sid03] or the Gaussian mixture version, proposed by Vo and Ma in 2006 [VM06],
can be employed. The latter is used in all PHD filters utilized in this work. The
Gaussian Mixture (GM) implementation approximates the PHD by:

v(x) =
J∑
i=1

w(i)N
(
x; x̂(i),P(i)

)
, (2.38)

where the Gaussian components are described by their mean x̂(i) and their respective
covariance P(i). Using this GM implementation, the PHD is a powerful tool for
many state estimation tasks.



Chapter 3

Technical Preliminaries

This chapter presents all relevant technical aspects that play an important role
for the localization algorithm presented in Chapter 4. These aspects range from a
description of the used hardware, i.e., the actual vehicle along with its sensors, over
the definition of the coordinate systems to software technical issues.

3.1 Test Vehicle and Sensory Setup

This section describes the overall hardware setup. It comprises the vehicle itself,
the relevant sensory equipment installed by the manufacturer, the computing hard-
ware, as well as the sensors that have been installed additionally. Further, the
synchronization concept for the sensors and the software framework are presented.

3.1.1 Vehicle

The vehicle that was used for the evaluation of the localization algorithm presented in
this thesis is a V8-powered Mercedes Benz E 500 station wagon (S 212) built in 2009,
see Figure 3.1. Although the vehicle has been modified to meet the requirements
of a wide range of research projects at the Institute of Measurement, Control and
Microtechnology at Ulm University, it is entirely road legal. Therefore, it has been
possible to conduct all the relevant experiments on German public roads under
realistic traffic conditions.
The vehicle’s default on-board sensory equipment comprises a wide range of different
sensors: five radars, two cameras and many more smaller sensors of various kinds.
The data of some of these sensors is used within the algorithms presented in this
work. These sensors and their respective data, which is provided via Controller Area
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Figure 3.1: The highly automated vehicle of the Institute of Measurement,
Control and Microtechnology at Ulm University [Ebe12].

Network (CAN) bus, is described in Section 3.1.2. Nevertheless, several additional
sensors have been installed to enhance the vehicle’s sensing capabilities.
Three types of sensors that are of great importance for the work presented in this
thesis have been added to the vehicle: First of all, three laser scanners were integrated
into the front bumper as described in Section 3.1.3. Further, three additional cameras
were installed, see Section 3.1.4. And finally, three rearward facing radars (3.1.5)
were added.
Another important source of measurement data is the Real Time Kinematic (System)
(RTK) which has an integrated module that facilitates using Differential Global
Positioning System (DGPS) (see 3.1.6). This system was used to generate ground
truth localization data.
All the sensor data has to be processed and evaluated. Therefore, three computing
units are installed in the vehicle’s trunk. The specifications of these computers are
given in Section 3.1.7. Further, handling the triggering and synchronization of the
sensors is essential. Details on these mechanisms are presented in Section 3.1.8.

3.1.2 Data Provided via CAN Bus

In its original state, the vehicle is already equipped with a wide range of sensors.
Most of these sensors provide their data on the vehicle’s CAN bus. The computers
in the trunk of the vehicle, which were additionally installed, are connected to the
vehicle’s CAN bus and can hence access the data available on the bus. Within the
context of this thesis, especially the data measured by the wheel speed sensors is of
great interest. The wheel speed sensors integrated into the Mercedes-Benz E-Class
measure the rotations per second of each of the four wheels with a rate of 50 Hz. As
these wheel speed sensors provide the crucial input data for safety relevant assistance
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systems, e.g., the Anti-lock Blocking System (ABS) and the Electronic Stability
Control (ESC), the data of these sensors has to be of high precision. Thus, these
sensors can be used very well to estimate the vehicle speed with sufficient accuracy
for the purposes of this thesis. A typical, modern active wheel speed sensor is either
based on the Anisotropic Magneto Resistive (AMR) effect or on the Hall effect to
measure the rotational speed of the wheel [WHW12].
The second important sensor within the context of this work is the vehicle’s yaw
rate sensor. It measures the angular velocity around the vehicle’s vertical axis and
provides this data with a rate of 50 Hz on the CAN bus. Again, this sensor provides
crucial input data for the safety relevant ESC system, which is why the quality of
this data is ensured to be relatively high. Typically, a Micro-Electro-Mechanical
System (MEMS) is used for such a gyroscope. If the vehicle rotates around its
vertical axis, a Coriolis acceleration acts on an oscillating mass contained in this
system. The resulting Coriolis force is measured by capacitive sense fingers that are
placed along the mass housing. The yaw rate can then be determined based on these
measurements.

3.1.3 Laser Scanners

A LIght Detection And Ranging (LIDAR) sensor, or laser range finder, is a device
which is used to measure distances. These sensors typically emit light beams in
the infrared spectrum which are reflected by the environment. These reflections are
then again detected by the sensor. LIDARs measure the distance to objects using
the Time of Flight (ToF) principle: Given the speed of light c and the time span t
between sending and receiving the laser pulse, the distance to the measured object is
given by d = 1

2 ·c ·t. Theoretically, it would be possible to also measure the velocity of

Figure 3.2: An Ibeo Lux laser scanner [Lof14]
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objects by using the Doppler effect as it is done in radars. However, in reality this is
not done as it would require even more precise, and hence more expensive, technology
in order to measure the Doppler frequency with sufficient accuracy [WHW12]. Thus,
the velocity of objects is determined by simple differentiation using two or more
successive measurements.
Fixed beam LIDAR sensors as e.g., the three channel Continental SRL 1, have
already been on the mass market for a few years now and are typically used in low
cost emergency brake assistance systems. Actively scanning LIDAR sensors have
been gaining attention of the OEMs recently due to their wide range of possible
applications. However, they come at a significantly higher price. These laser scanners
use a rotating mirror to deflect the laser beam, thereby scanning a 2D slice of the
environment. Multilayer 2D laser scanners extend that principle by using multiple
beams to scan multiple of these 2D planes (typically 4 or 8). Further, 3D laser
scanners, as e.g., the Velodyne HDL-64E, have already been successfully used in
highly automated research test vehicles [PPO+12; Urm+08]. These sensors produce
an entire 3D point cloud of the surroundings. However, they are even more expensive
and much harder to seamlessly integrate into a normal car.
The test vehicle is equipped with three 4-layer IBEO Lux laser scanners. These
three LIDARs were integrated into the front bumper, to provide a total FOV of
approximately 210 deg, see Figure 3.1. Each of the three scanners has a horizontal
FOV of 85 deg, which is covered by all four layers. Further this FOV is extended
to 110 deg, where the outer angular ranges are only covered by two layers. The
maximum detection range is 200m and a distance independent measurement accuracy
of 0.1m is reached. The distance resolution is 0.04m, while the horizontal angular
resolution is 0.125 deg. The sensors can be operated with an update rate of 50.0,
25.0 or 12.5 Hz. In the test vehicle they are always running at 12.5 Hz. The laser
scanners communicate with the vehicle’s computers using Ethernet. Further, the
laser scanners are time triggered and synchronized.

3.1.4 Cameras

In the Advanced Driver Assistance System (ADAS) context, both – monochrome
cameras and color cameras – are very popular sensors. They are already in use for
systems such as lane-keeping assist, forward collision warning or traffic sign assist.
There are many reasons for their popularity: First of all, they provide huge volumes
of data at high frame rates and thereby consume relatively little energy. Thus, they
are suitable for a wide range of applications. Further, images can be handled more
intuitively for humans than the data of other sensors, which – depending on the
problem at hand – may make it easier to develop algorithms using this kind of data.
One major drawback comes with the high data rate – this amount of data has to
be processed and hence requires much more computing power than other sensors
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Figure 3.3: A Baumer TXG14f camera (image based on [Lof14]; identifier
was pixelized)

do. Also, (mono) cameras do not provide any depth information and are strongly
influenced by the lighting conditions. However, since cameras are already present in
modern day vehicles, it makes sense to further broaden their area of application.
The test vehicle is equipped with three cameras, all of them are monochrome Charge-
Coupled Device (CCD) cameras [WHW12] produced by Baumer: There is one
forward facing Baumer TXG14f, which has a resolution of 1392 × 1040 px and a
horizontal FOV of about 56 deg. It is mounted behind the windshield, next to
the rear-view mirror. This camera is the only one used within the context of this
work – specifically it is used for localization (see Chapter 4). Although the two
rearward facing cameras (another Baumer TXG14f and a Baumer TXG06) which are
mounted on the inside of the rear window are not used for this purpose, they could
nevertheless be integrated easily if it was necessary. All cameras are synchronized
and time triggered capturing exactly 15 frames per second.

3.1.5 Radars

With the introduction of Autonomous Cruise Control (ACC) the radar has become
one of the standard sensors for ADAS. In modern cars they are, among others, also
used for pedestrian collision warning systems and blind spot assists. The radar has
three major advantages over the other sensors for environment perception: First of all,
it is not sensitive towards adverse environmental conditions, i.e., it is indifferent with
respect to lighting and only heavy rainfall or snow impair the sensor performance.
Secondly, it is able to measure the distance and radial velocity of objects, by using
the Doppler effect. Finally, radars offer a larger detection range than other sensors
(more than 200m).
As implied by its name, which originally is an acronym “RAdio Detection And
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Ranging”, radar sensors send out electro-magnetic waves in the radio spectrum
and detect the respective echoes. For some types of radars, the distance towards
objects can be determined by using the ToF principle. For others, as the Frequency-
Modulated Continuous-Wave (FMCW) radars [WHW12], the distance is determined
by measuring the difference in the frequency of the emitted and the received signal.
The test vehicle is equipped with multiple radars. Its standard equipment comprises a
Continental ARS 310 that is used for ACC and several smaller radars for emergency
braking and blind spot assist. Further, three additional rearward facing radars
were added (one Bosch LRR 3 and two Bosch MRR rear), to allow for tracking
traffic participants behind the vehicle. The two Bosch MRR rear are also used for
localization, as described in Chapter 4. They are mounted in the two corners of the
rear bumper, rotated ±45 deg with respect to the longitudinal axis. They offer a
wide FOV of 150 deg for a range of up to 80m.
All the radars are of the FMCW type and operate in the 76 − 77 GHz frequency
band which is the standard for automotive radar applications in almost all countries
worldwide. They provide their data with a frequency of 15 Hz only via CAN bus,
except for the ARS 310, which is also connected via Universal Serial Bus (USB) to
the computers.

3.1.6 Reference System – ADMA

In order to facilitate a sensible analysis of the localization algorithm presented in
this thesis, a reference system is inevitable. The test vehicle is equipped with such a
system: The GeneSys Automotive Dynamic Motion Analyzer (ADMA). The ADMA
is an Inertial Measurement Unit (IMU) system that measures and tracks all dynamic
movements of the vehicle (e.g., accelerations, velocities, position, angular rates,
angles) with high precision.
Under ideal conditions, the system is able to provide the global position of the vehicle
with an accuracy of 0.02m. The global position of the vehicle is determined by an
integrated GNSS solution, which uses satellites of two major global systems: the
Russian GLObalnaja NAwigazionnaja Sputnikowaja Sistema (GLONASS) and the
American GPS. Using the satellites of both systems, it is much more likely that data
from enough satellites is received. To increase not only the availability of the system
but also its precision, the receiver is much more complex than a standard GPS
receiver. It does not only evaluate the messages received from the satellites, but it also
evaluates the carrier waves. Furthermore, RTK-DGPS is utilized: That is, a network
of reference stations, which are operated by the “Satellitenpositionierungsdienst
der deutschen Landesvermessung” (SAPOS), is used to significantly alleviate the
influence of atmospheric effects. Whenever possible, one of the reference stations
transmits correction data to the vehicle using the mobile communications network.
This service is obviously not for free and hence it makes sense to use it in a reference
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Figure 3.4: A GeneSys ADMA-G with a Novatel GPS receiver [Lof14]

system, but not in an actual localization algorithm. In order to measure rotational
motion, the ADMA possesses three fiber optic gyroscopes. Such a fiber optic
gyroscope is much more precise than the vehicle’s standard gyroscope. Further,
three servo accelerometers are used to determine accelerations. With these precise
sensors, it is possible to accurately calculate the vehicle’s global pose by using dead
reckoning. Thus, it is possible to bridge short DGPS drop outs without losing too
much accuracy. If, however, a precise global position is available, it can be used by
the system to compensate offsets of the other sensors. The ADMA is connected to
the computers via CAN bus and operates at 50 Hz.

3.1.7 Computers

The test vehicle is equipped with three additional computers. Two of these are
standard computers running the Automotive Data and Time-Triggered Framework
(ADTF) application on an Ubuntu 12.04 64-bit operating system. The first one,
which disposes of an Intel Core i7-970 3.2 GHz CPU and 12 GB of RAM, handles
the incoming sensor data. It processes the raw sensor inputs and compresses this
raw information to object representations of all kinds: It runs – beneath others –
the vehicle detection algorithm [GLW+13], the feature extraction algorithms for the
localization (see Section 4.2.1) and the clustering algorithm for the laser scanner
reflections [MMD09]. These object representations are transferred to the second
computer via Ethernet, which then executes the high-level tasks based on this
preprocessed data, e.g, object tracking [RVVD14], localization (cf. Chapter 4),
environmental modeling [NSD14] or trajectory planning. This computer obviously
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has to process many tasks in parallel, hence it disposes of two Intel Xenon E5-2640
2.5 GHz Hexa-Core-CPUs and 32 GB RAM.
The third computer is an actual real-time system – a dSPACE MicroAutoBox. It
is used for all critical or safety relevant tasks such as controlling the actuators
and handling system faults. Further, the timing pulses to trigger the sensors are
generated by this MicroAutoBox.

3.1.8 Time Triggering and Synchronization

Timing is a very crucial subject when it comes to sensor fusion. In a dynamic
environment, there is no way of fusing measurements if no information about the
time at which these measurements were made is available. Furthermore, with fast
moving vehicles the timing has to be very precise. This becomes obvious by a simple
example: If the vehicle drives on a rural road with a typical speed of 70 km/h and
a stationary object in front of the vehicle is measured, a timing error of as little
10 ms leads to a longitudinal position error of 0.194m (which is in the region of the
required localization accuracy).
In order to facilitate sensible communication between the computers, their clocks
have to be synchronized. The two high-level computers run a program (“chrony”)
which maintains the accuracy of the system clocks using Network Time Protocol
(NTP) servers. Their time is then communicated to the MicroAutoBox. The
MicroAutoBox additionally uses the time of the GPS Pulse Per Second (PPS) signal
to then generate an exact time reference and trigger signals for the sensors. The laser
scanners and the camera generate new measurements whenever they receive their
respective trigger signal. This trigger signal is also sent to the two computers. This
is necessary since the measurements are received at the computers’ Ethernet ports
with a significant delay, which is not constant. Thus, the computers have to associate
the measurements with their respective trigger signals. That way, it is ensured that
the exact time stamp of each measurement is available to the subsequent processing
chain.
Unfortunately, this method can only be applied for triggerable sensors. However, not
all of the vehicle’s sensors are triggerable (e.g., the radars are not). These sensors
provide their measurements via CAN bus or USB with a more or less constant
frequency. The only timing information that is available, is the time at which they
are received by the computer. The latency between the reception of the data and the
actual time at which a measurement was made, had to be evaluated in experiments
for each of the radars. This latency then has to be subtracted from the time at which
radar measurements are received on the computer. Such an approach is obviously
significantly less precise than triggering sensors at exact points in time.
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Figure 3.5: Screenshot of the ADTF software framework. The filter graph
(top right window) shows an example of a vehicle detection
process: The raw image data is fed from a recording to the
“Vehicle Detection Filter”, whose output is then drawn using an
OpenGL Display (bottom right corner).

3.1.9 Software Framework

EB Assist ADTF is a software framework that has been designed to facilitate the
development of ADAS. This framework provides many useful tools to simplify the
process of creating complex driver assistance systems. Within the framework, a
filter graph structure (see Figure 3.5) is used to design and thereby visualize the
information flow. Any filter of this graph can be configured by setting the respective
parameters in the GUI. The filters’ processing methods are executed either whenever
new data arrives at an input port, or whenever a certain trigger condition is fulfilled
(e.g., after a defined time interval or whenever all input pins have received new data).
Each filter may contain arbitrarily complex algorithms which are implemented in
C++ or Python. However, for the design process of an entire ADAS function, only
the inputs and outputs of the required components are relevant. Thus, for developing
the software architecture of an highly automated vehicle, it is possible to reuse
multiple filters that implement one functionality each (e.g., a vehicle detector or a
tracking algorithm) and connect them all together in one filter graph. This flexibility
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allows for a relatively fast development of complex functions, given the required
sub-components already exist. Further, ADTF also enables the implementation of
services. These services can be accessed by any filter without the need of making a
connection in the filter graph. This feature is valuable for tasks that are constantly
running in the background and may be related to multiple functions. One example
for this concept is a database service, which continuously provides the currently
required map data to the environmental model filter but also to the trajectory
planning filter and several other components.
Another key feature of ADTF is that it provides a “Harddisk Recorder”, which is
used to record the data streams that are connected to its input ports. This way, it
is possible to record the raw data as provided by the sensors. Then that data can
be replayed any time later using the “Harddisk Player” within an arbitrary filter
graph. Hence, one recording can be used for testing multiple functionalities. This
feature has been used extensively during the development and for the evaluation of
the localization algorithm presented in this thesis.
Nevertheless, the real challenge is to process the entire functionality required for
an highly automated vehicle online. ADTF also facilitates this. Ideally this can
be achieved by simply replacing the “Harddisk Player” of a filter graph by the
respective filters that capture the raw sensor data. However, managing such a
complex functionality in reality requires a little more effort, due to e.g., timing issues
that only arise when real sensors are used.

3.2 Coordinate Systems

Whenever multiple sensors are used, the measurements have to be transformed
into a common coordinate frame in order to allow for a sensible fusion. Further,
when localizing the vehicle, the relations between the vehicle’s coordinate systems
and objects defined in a global coordinate system have to be considered as well.
The required coordinate systems and transformations are described in the following
sections.

3.2.1 Vehicle Coordinate Systems

The definition of the vehicle’s main coordinate frame ζveh is depicted in Figure 3.6.
This Cartesian coordinate system’s origin is pinned to the ground below the center
of the vehicle’s rear axle. The x-axis points towards the front of the vehicle, i.e., in
the main direction of motion. The positive y-axis is oriented towards the left side of
the vehicle and the z-axis points upwards.
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Figure 3.6: Definition of the vehicle coordinate system (depiction based on
[Wal13]; axes were modified)

The measurements of all laser scanners and radars are transformed from their
respective coordinate systems ζlsi, ζrj to the vehicle coordinate system ζveh, before
they are being processed any further. These transformations are executed using
homogeneous coordinates [BSH+03]. To facilitate the transformation, the exact
knowledge of the sensors 3D-mounting poses with respect to the vehicle coordinate
system is required. This pose has been ascertained by measuring the position of
multiple special objects with the respective sensors. The exact position of these
objects with respect to the vehicle coordinate frame had been determined beforehand
by using a Leica 3D Disto, i.e., a device specifically designed to precisely measure
the position of points in three dimensions [Lei14]. Thus, it was possible to determine
the necessary translations and rotations using an adequate optimization algorithm.
Since the measurement data produced by cameras is very different from the range-
and bearing-measurements of the other two sensors, it is also handled differently. The
image that is created by a camera does not convey absolute depth information, hence
it is not possible to directly assign a 3D position to any pixel of the image. Thus,
it makes sense to first detect objects of interest for which also another assumption
about their true 3D position can be safely made. Such an assumption could for
example be that they can only be found on the ground plane. With such a valid
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assumption, the objects may be transformed from the 2D image coordinate system
to the 3D camera coordinate system. This transformation has to respect the intrinsic
parameters of the camera (focal length, image sensor format, and principal point) as
well as the distortion of the lens. The latter parameter describes a nonlinear property
and hence the transformation cannot be described directly by a linear transformation
matrix. Thus, typically the image is first undistorted and then the linear camera
transformation is used, as e.g., described in [HS97]. Finally, the transformation from
camera coordinates ζcam to the vehicle coordinate system ζveh is the same as with
the other sensors.

3.2.2 Global Coordinate Systems

In the context of localization, global coordinate systems are of central importance.
Absolute localization aims at finding the pose of the vehicle within a global coordinate
system rather than only determining its pose relative to some arbitrary starting
point. This is especially necessary for road vehicles. Thus, a common standard to
describe the vehicle’s pose on the terrestrial globe is required. The World Geodetic
System 1984 (WGS84) standard defines this coordinate system and is hence used
as the reference system of GPS. WGS84 describes the earth’s shape by a spheroid
with an equatorial radius of 6 378 137.0000m and a radius of 6 356 752.3142m at the
poles. The origin of the spheroid coincides with the center of the earth. Commonly,
global positions described in this system are given in geographic coordinates, i.e.,

Figure 3.7: Global UTM grid [Kry07]
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longitude, latitude and elevation above the reference spheroid. However, in order to
facilitate simple calculations when relating globally defined objects (e.g, landmarks
for localization) and measurements relative to the vehicle, a Cartesian coordinate
system is much more adequate to use. The metric-based Universal Transverse
Mercator (UTM)-system is therefore a good choice for this kind of task. This system
divides the Earth into longitude bands of six-degree width (60 in total) and utilizes
a secant transverse Mercartor projection in each zone (a special kind of cylinder
projection). These zones are enumerated from 1 to 60. Further, these zones are
separated in north-south-direction in a similar manner: Each zone is divided into
20 eight-degree high lateral bands, each labeled by a letter. Figure 3.7 shows the
resulting grid of UTM zones. In order to describe a position on the Earth using the
UTM system, a zone number and letter and the easting and northing coordinate
pair in that zone are necessary. More details on global coordinate systems and the
respective transformations can be found in [Sny87] for example.

3.3 Data Storage Concept

The landmarks that are used for the feature-based localization approach presented in
Chapter 4 have to be stored in a sensible manner. That is, the data storage concept
has to fulfill several requirements: First of all, the storing system has to provide the
requested landmarks to the localization algorithm as fast as possible, in order to
facilitate a high update rate of the pose estimate. Thus, it makes sense to use a
system that facilitates geospatial queries as this reduces the complexity to find the
requested landmarks. A typical query could be: “Fetch all landmarks that are found
along the next 500m of the route the vehicle is currently driving on.”
Secondly, the data storage system has to be flexible so that it can handle different
types of landmarks found on entirely different routes. Further, it should be relatively
easy to update the landmarks in order to be able to quickly react to changes in
the environment or route layout. Another requirement is that the system is not
limited to storing landmarks, instead it has to be usable by other modules as well,
e.g., by the trajectory planning algorithm, which needs a globally defined route to
plan the trajectory of the vehicle. Object relational database management systems
with geospatial extensions fulfill all these requirements and in addition, they usually
provide a wide range of tools that simplify handling of the data.
This section presents the database management system that was selected to handle
the landmarks for the localization algorithm proposed in this thesis. Further, the
database schema specifically designed for managing these landmarks along with
their respective uncertainties is outlined. Finally, also an ADTF service that was
developed within the context of this thesis is described. It allows for a seamless
integration of the database within the software framework.
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Figure 3.8: Screenshot of QGIS showing a section of the Berliner Ring along
with the landmarks on that part of the route (white dots depict
landmarks from images and red dots depict landmarks extracted
from laser scans)1

3.3.1 Geospatial Data in PostgreSQL

The free PostgreSQL Object Relational DataBase Management Systems (ORDBMS)
is a very versatile database management system that implements almost all features
of the Structured Query Language (SQL) standard. Its origins date back to the early
1980s. It offers standard database functionalities such as storing large amounts of
data and retrieving the data which the users demand by queries. Further, it is relative
easy to extend since it facilitates the creation of new data types. Therefore, relatively
many extensions to PostgreSQL do exist. One very important extension is PostGIS
[HO11] which adds support for geospatial data to PostgreSQL. It implements the
standard “Simple Features for SQL” defined by the Open Geospatial Consortium
(OGC). However, PostGIS implements not only the new data types for the “geometry
objects” as defined by the standard (e.g., POINT or POLYGON), but also provides
numerous functions to interact with these geometries. These functions include

1Depiction based on: “Orthophoto der Stadt Ulm aus Befliegung März 2010” c© Stadt Ulm,
Abteilung Vermessung [Ulm15]
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beneath others: intersecting geometries, determining the area of objects or calculating
the distance between geometries. The latter is particularly useful to the localization
algorithm: It can be used to query for all the landmarks that are within the FOV of
the vehicle’s sensors. Further, the execution times for geospatial queries are very low
thanks to the possibility to define a geospatial index [HO11]. Furthermore, updating
data, i.e., in this case landmarks, is a standard database functionality of PostgreSQL
and hence can be done easily. Thus, the combination of PostgreSQL and PostGIS
provides everything that is required for a flexible handling of the landmarks for
localization. Furthermore, several tools do exist that make the handling of geospatial
data with PostGIS easier. One such tool is QGIS which can be used to edit and
visualize the geospatial data stored in the database (see Figure 3.8).

3.3.2 Database Schema

Several functionalities of the highly automated vehicle use the database as an
important source of information. Hence, this database does not only contain the
landmarks for the localization algorithm described in Chapter 4, but also global
definitions of lanes and other significant information. This paragraph gives a short
overview of the most important aspects of the database schema which was designed
to meet the requirements of all the functionalities of the highly automated vehicle
interacting with the database.
The relevant tables of the database and their connections are depicted in Figure
3.9. All existing relations between the three major tables (landmarks, lanes, lane
markings) are described by a “many-to-many relationship” which requires additional
tables to represent the relation. That is, for example a lane may be connected to
multiple landmarks (i.e., those landmarks can be seen when driving on that lane),
but also a landmark may be connected to multiple lanes (i.e., this landmark can
be detected when driving on any of the respective lanes). The same holds for the
relations between lanes and lane markings. Further, lanes are interconnected with
each other: For example, the vehicle has to change from one lane to another while
making a turn at an intersection. This information about the links between lanes,
which is modeled by the respective relations table, is very important to the trajectory

ID geometry uncertainty type data tags pex
0 POINT(..) POINTZ(..) IMG_MSER NULL {} 0.94
1 POINT(..) POINTZ(..) TRAFFICSIGN NULL {vmax,70} 0.89
... ... ... ... ... ... ...

Table 3.1: An exemplary landmarks table
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rel_lanes_landmarks rel_lanes_lane_markings

lane_markings
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rel_lanes_lanes

Figure 3.9: The tables of the map database. The three central tables are
depicted in blue.

planner of the highly automated vehicle. However, within the context of this work,
the storage of landmarks is of more central importance. The layout of the landmarks
table is described in Table 3.1. As it is common for data stored in a database,
each landmark has a unique identifier, its ID. Further, the global position of any
landmark in the UTM coordinate frame is stored in the geometry column. The data
is stored as PostGIS geometry type. In most cases it is a POINT but it may also
be of any other geometry type, e.g., a POLYGON. A spatial index (cf. [HO11])
is created for this column of the database in order to speed up geospatial queries.
The uncertainty about the position of a landmark is described by a 3-tuple which
comprises the entries of the uncertainty matrix. This column is also of a geometry
data type which simplifies the handling of the landmark’s uncertainty during the
processing in the ADTF filter. Further, the actual type of each landmark is explicitly
stored in another column. The reason for this is that the table contains – besides
the landmarks used for localization – several important infrastructural elements
whose exact type is of great importance (e.g., traffic lights or roundabouts). The
data column and the tags column can be used to provide additional information
about a landmark. While the first one basically serves as storage for arbitrary binary
data (i.e., complex serialized C++ objects), the latter contains multiple strings that
describe the landmarks in more detail. Finally, the pex column stores the probability
of existence of each landmark which could be used to consider its importance.
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3.3.3 Integration in the Software Framework

An ADTF service is used to communicate with the PostgreSQL database. This
custom-built service was particularly developed to match the needs of the map-based
functions of the highly automated vehicle and especially those of the localization
algorithm presented in this thesis. The service can be invoked by any filter that
requires access to the database. Multiple filters of the ADTF filter graph could
possibly request data with a high frequency. Further, some filters may actually
require the exact same data. That is why the service implements a spatial caching
mechanism which reduces the number of queries to be executed by the database.
Using this caching mechanism, all filters may ask the service for new data each time
they are triggered (e.g., with a frequency of 50 Hz) while the database is only queried
when new data is actually required. This significantly decreases the workload for
the database server.
Since all services for ADTF are implemented in C++, interaction with the PostGIS
database is facilitated by using the libpqxx C++ library [Ver15]. This library
provides a clean interface for executing database queries and thus also for retrieving
data from it. Further, the data retrieved from the database can be directly mapped
to C++ objects by using the Boost Geometry library [GLL+15]. The reason for this
is that both – PostGIS and Boost Geometry – implement the same OGC geometry
standard. This greatly simplifies the handling of the geospatial data and facilitates
fast processing.
Using the PostgreSQL database in combination with the ADTF service concept,
the spatial data can be processed on the vehicle’s computers in real-time. Further,
feature maps can be created or updated in two ways: either by directly updating
the database while driving or by making a recording with ADTF and updating the
database later by replaying the recording (or only parts of it).
Finally, a central database server can be used to store the map. Then, all users can
work on the same map database, which facilitates parallel development of additional
functionalities. This database is always synchronized with the vehicle’s database,
such that new functions can be tested on the vehicle using the same data as on the
workstations.





Chapter 4

Localization for Highly Automated
Vehicles

Localization describes the process of determining the position or pose of a vehicle:
In most current vehicles, a GPS device is installed to solve this problem. Although a
GPS device is able to provide the vehicle’s location with sufficient accuracy for todays
requirements, this will not be the case for many future driver assistance systems –
especially not for highly automated driving. At least within the foreseeable future,
highly automated driving will only be possible using precise maps of the environment.
Thus, it is not only necessary to reliably determine the vehicle’s position on such a
map with an accuracy within the decimeter range [LMT07], but to also have precise
knowledge of its orientation (accuracy below 1 deg [Sch13]).
This chapter presents an approach to the localization problem, tailored to the
requirements of highly automated driving. Albeit other researchers already have
published MCL methods for road vehicles, the work presented in the following
features novel aspects that may enable the use of highly automated vehicles in more
realistic scenarios. First of all, the weighting strategy utilized in the update step is
generic and can be used with data from various, entirely different sensors. This is
crucial since a highly automated vehicle should not rely solely on one sensor. It has
to be able to still function, although with reduced performance, even if one sensor
fails – at least to allow for a safe stopping of the vehicle. Further, data of sensors of
different suppliers can be fused without having to know too much about the internal
processing – basically, even if the sensors only provide object positions they can be
integrated. Based on this generic approach, a localization performance is achieved,
that truly allows for highly automated driving, using sensors that can be integrated
into a road vehicle inconspicuously. Although, this approach would function with
various kinds of input data, this work also presents features that have proven to
be very helpful to localize a highly automated vehicle on rural roads and in urban
scenarios.
This chapter is organized as follows: First, a review of recently published localization
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methods is given, before the landmarks used for localizing the vehicle in its “natural
environment” (i.e., on roads) are defined. Then, a method to generate adequately
accurate maps is described. Thereafter, the localization algorithm is presented.
Finally, the developed algorithm is evaluated in different scenarios and a conclusion
is drawn.

4.1 State of the Art

Since localization is not only a cutting-edge research topic within the automotive
community, but has also been investigated within the robotics community for a
significantly longer time, a large amount of publications does exist. In the following,
only a small excerpt of these publications is summarized without making a claim to
completeness, i.e., only publications being very recent and/or relevant to this work
are described.
Most definitely, the development of the so called MCL method by Dellaert et al.
[DFBT99] is the fundamental prerequisite for the localization scheme for highly
automated vehicles presented in this work. The authors were the first to use a
particle filter to tackle the self-localization problem. To be more specific, they
described a localization algorithm for an indoor navigating robot equipped with laser
range finders, that was able (amongst others) to precisely localize the robot within
Smithsonian’s National Museum of American History. Their seminal paper lay the
ground for many publications on the topic of localization for robots or road vehicles
to come.
One of these publications within the context of automotive localization is the work
of Miller et al. from 2008 [MC08]. The authors propose a MCL algorithm that
fuses GPS data with detections of lane markings and a map of these markings. The
publication of Mattern et al. [MSW10] goes into a similar direction. The authors
use MCL to find a car’s position based on GPS, mapped data and coherency images
with a strong focus on the image processing. Other recent approaches also utilize
camera data and MCL to determine a vehicle position or pose: For example Schindler
[Sch13] focuses on the representation of the map contents (e.g., lane markings) as
arc splines to allow for fast computation and reduced storage space. Nevertheless,
the actual localization is conducted using the MCL method.
In [KND12] localization is carried out differently. A map match between a digital
map of the road course and data extracted from three different types of grid maps is
calculated. The optimization problem of finding the best match is solved using one
out of those two approaches: either a Levenberg-Marquardt [MNT04] algorithm is
executed or a particle filter is employed which uses the error function of the map
match to calculate the particle weights. The three grid maps used for the match
are defined as follows: a so called feature grid map, where each grid cell represents
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the likelihood of the corresponding area containing lane markings, a video grid map
created by using inverse perspective mapping and an occupancy grid map based on
the range bearing measurements from a laser scanner.
A computationally more challenging approach was introduced by Badino et al. in
2011. In [BHK11] the authors propose a visual topometric localization method using
a discrete Bayes filter and a great deal of image features (one gigabyte of Speeded Up
Robust Features (SURF) for an 8.8 km long route). The image features are stored
in a database and are then matched in every time step to the features extracted
from the current camera frame. The discrete Bayes filter uses the probability of the
feature matches in the update process and thus gives a smoother and more reliable
estimation of the vehicle position than individual frame matches would.
The work of Lategahn et al. goes into the same direction [Lat13; LSZS13]. Here, also
huge amounts of features are extracted from a rearward facing camera which together
with an IMU is used to estimate the vehicle’s pose in six degrees of freedom. However,
they use an optimization algorithm to find a so called “single shot” estimate. Then,
during a second step called “pose adjustment”, the past few single shot matches are
fused with the measurements from an IMU to create the final pose estimate. Thus,
a rather special method of temporal filtering is used.
Another approach, presented by Pink et al. [PMB09; PS10], also relies heavily on
image processing. Instead of creating a map from images recorded by a camera
mounted in a road vehicle, the authors (automatically) construct their map of lane
markings from aerial images. They solely rely on an on-board camera to localize
the vehicle on this map. In contrast to standard ego motion estimation procedures,
which typically use measurements from wheel rate sensors or an IMU, their system
uses visual odometry for this part of the localization. The vehicle pose in this purely
visual navigation system is estimated by a Kalman filter structure that combines
the information from the map match and the visual odometry.
Schreiber et al. also propose to execute localization based on lane markings [SKF13].
In contrast to Pink, they use a vehicle equipped with a Velodyne laser scanner,
stereo cameras and a very precise GNSS to create maps that comprise all types of
lane markings as well as curbs. In their online localization system, they use a stereo
camera to detect these features, thereby practically extending the use cases of this
localization system to roads without lane markings.
An approach that uses the Velodyne laser scanner mounted on the top of the vehicle
not only for mapping but also for localization is described in [LT10]. The authors
use a grid map containing infrared reflectivity information of the environment and
then estimate the vehicle’s 2D position within that grid map with a histogram filter.
The histogram filter avoids some issues that might arise when using a particle filter
(e.g., it cannot happen that the correct position is not found just because that
particular area of the state space is not perfectly covered with particles), however
this comes at a cost – in this case it means that only the position is estimated but
not the orientation. Nevertheless, this approach leads to an accurate (i.e., close to
the resolution of the grid map) position estimation.
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An earlier approaches using less salient laser scanners in the context of localization
for road vehicles, that is – at least regarding the sensory equipment – closer to the
approach presented here, is the one presented by Weiss in [Wei11; WKD05]. The
author uses a forward facing IBEO ALASCA laser scanner mounted to the vehicle’s
front bumper to generate an occupancy grid map. Then features extracted from
this map are used to find the correct vehicle pose with the help of a special triangle
association scheme.
Finally, the survey published by Skog and Händel [SH09] gives an in-depth insight
into localization methods up to the year 2009, with a focus on the state-of-the-art
methods at that time. That is, GNSS and ego motion estimation based on on-board
sensors are described in detail. Nevertheless, they also describe map matching and
information fusion methods.

4.2 Landmarks in the Vehicular Environment

The environment in which a normal road vehicle navigates is usually well structured.
This is especially true when thinking about highly automated driving: The scenarios
in which most drivers would be willing to hand over control to the vehicle are either
scenarios which are boring due to their repetitive nature (e.g., the daily way to work
and back home), or are scenarios that are exhausting (of capital importance: traffic
jams). These scenarios, at least in Germany, typically arise on well structured roads:
on the autobahn, inner city roads or major rural roads. In general these roads are
paved and hence well separable from the surroundings. Further, most – but not all –
of these roads have painted lane markings. Premised on the assumption that the
world around the vehicle is flat, lane markings are well detectable and measurable
using a (low cost) mono camera, which is already present in many modern vehicles.
Hence, lane markings provide valuable information for finding the vehicles position.
Also, in contrast to (arbitrary) image features, lane markings convey a meaning, i.e.,
they describe the area which can be occupied by the vehicle and therefore have to
be heeded by any (highly automated) vehicle. Nevertheless, they usually cannot be
used as sole source of information, since lane markings are in general not uniquely
identifiable but instead their shape is well defined and they occur with a defined
frequency. One way to compensate for that ambiguity would be to integrate further
camera detectable and uniquely identifiable features in the localization algorithm
such as traffic lights or traffic signs. This approach would require more complex
image processing techniques and also – at least – a reliable estimation of the height
of these objects, or even a stereo camera. Besides, it would not extend the use
cases for such a system but rather it would further limit the situations in which the
localization system would work as expected.
Complementing the camera-based localization with data from other sensors is a
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better way to improve the reliability. One obvious choice here would be to utilize
a radar, since many modern cars have such a sensor because of the ACC system.
The radar is able to detect arbitrary objects, that reflect radio waves at least to
a certain degree (e.g., light posts, traffic signs,...). The relative velocity of these
objects can be directly measured as well by using the Doppler effect. Thus, it is
relatively easy to find out which objects are stationary and which ones are not.
This is definitely beneficial since a localization algorithm relies on the objects in the
map being stationary. The major disadvantage of such an approach is the limited
aperture angle and resolution of such radar sensors. These radars are built to make
the vehicle follow another car in front of it and hence finding landmarks along the
road has not been a focus when these systems were developed. This might change in
the near future when radars will also be used for tasks that require a wider FOV as
for instance pedestrian detection and cross traffic assists.
Another sensor that currently gains attention in the automotive industry is the laser
scanner – not the big types mounted to the top of the vehicle as, e.g., built by
Velodyne – but the smaller 4- to 8-layer laser scanners, that can be integrated in
the vehicle design in a less conspicuous way. Although these sensors are still quite
expensive, some OEMs already plan on integrating them in their upcoming vehicle
generation. Laser scanners can be used for a wide range of applications due to their
high resolution and precise measurements. In general they can be used to detect
arbitrary objects as long as these objects do not absorb the laser beams.

4.2.1 Maximally Stable Extremal Regions

The Maximally Stable Extremal Regions algorithm was introduced by Matas et al.
in 2002 [MCUP02]. Originally the intended use of this algorithm was to establish
correspondences in image pairs for wide-baseline stereo matching. Good correspon-
dences in image pairs share some qualities with good landmarks for localization:
First of all, they should be reliably detectable – no matter what the illumination
conditions are like. Secondly, they should be detectable from different viewpoints, at
least to a certain degree. Further, it would also be desirable if they were independent
of the hardware, i.e., of the camera being used. Maximally Stable Extremal Regions
(MSER) posses properties that facilitate these qualities [MCUP02]: They are closed
under continuous transformations of image coordinates and they are closed under
monotonic transformation of image intensities. The MSER algorithm performs well
in detecting affine regions (according to [MTS+05] superior to all other evaluated
algorithms). Hence, it is also likely to be a good candidate to find robust landmarks
for localization. Further, it has already proven to be useful for detecting lane mark-
ings [SWE11] and as an intermediate step in landmark extraction [RIW13].
In a publication especially about the localization accuracy of affine region detectors
[LY12] (i.e., not localization as in the context of this work, but localization in terms
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of how precisely the position of the centroid of a region is found under varying
conditions), the authors also claim that the MSER algorithm performs best.
On the basis of these studies and several experiments the MSER algorithm was
selected as landmark extraction algorithm for the purpose of localizing a highly
automated vehicle. In the following, the algorithm itself is described. Thereafter,
it is demonstrated how it can be applied to laser scanner grid maps and gray-scale
images.

MSER Definition and Algorithm

The definitions of the MSER and the related entities below follow closely the
definitions as described in the original publication by Matas et al. [MCUP02].

• An image I describes a mapping I : D ⊂ N2
0 → S with S ∈ {0, 1, ..., 255}, in

case of a gray-scale image. Extremal regions on that image are well defined if
an adjacency relation A ⊂ D ×D is defined and if S is totally ordered (which
obviously is the case for the gray-scale image). The adjacency relation may be
chosen to describe a 4-connected neighborhood: p, q ∈ D are adjacent (pAq) if
and only if

∑2
i=1 | pi − qi |≤ 1.

• A region R is a contiguous subset of D. This implies ∀p, q ∈ R there exists a
set of elements ai ∈ R connecting p and q: pAa1, ..., aiAai+1, ..., anAq.

• The (outer) boundary ∂R of a region R is given by the set of elements not
belonging to the region, but being adjacent to at least one element of R:
∂R := {q ∈ D \ R : ∃p ∈ R : qAp}.

• A region R is called an extremal region if ∀p ∈ R and ∀q ∈ ∂R : I (p) > I (q)
(maximum intensity region) or equivalently I (p) < I (q) (minimum intensity
region).

• A sequence R0, ...,Rn is called a sequence of nested extremal regions if Ri is
an extremal region ∀i = 0, ..., n and if ∀i = 0, .., n− 1 Ri ⊂ Ri+1.

Given these definitions, a maximally stable extremal region Ri∗ is found if and only
if for a sequence of nested extremal regions Ri−∆, ...,Ri+∆,

r(i) = | Ri+∆ \ Ri−∆ |
| Ri |

(4.1)



4.2 Landmarks in the Vehicular Environment 43

has a local minimum at i∗. Here, | · | describes the cardinality of the set and ∆ ∈ S
is the so called stability parameter.
A more intuitively accessible explanation, as similarly also provided in [MCUP02],
goes as follows: If one created binary images It for all thresholds t ∈ S of the
gray-scale image I . Then I0 would be completely white, but with increasing t
black spots (i.e., local intensity minima) would appear. These spots would form
regions and these regions would grow further with increasing t and also new black
spots would appear in white areas until the entire image would be black. The set of
all connected components of all these images is the set of maximal regions of the
original image (the set of minimal regions could be visualized the same way, but by
inverting the image beforehand). Of particular interest are those extremal regions
that are stable over many binarization thresholds (i.e., those regions that deform
the least) – they are the MSER.
The original algorithm to determine these MSER possesses quasi-linear complexity
with respect to the number of image pixels and therefore scales relatively well to
higher resolution images. As described in [MCUP02], the process is as follows: First
of all the pixels in the image are sorted by intensity using bucket sort [CSRL01]
which is especially suitable due to the fact that the maximum range of intensities
is known exactly a priori and is relatively small (i.e., 256 values). Then, according
to this ordering, they are placed in the image. While placing the pixels in the
image, a list of connected components along with their respective area is kept using
a “union find algorithm” [Sed83]. Hereby, merging two components basically means
terminating the smaller component and appending its members to the larger one.
This process generates a data structure which contains the area of each connected
component as a function of the intensity. In the final step those intensity levels being
local minima of the rate of change of the area function are selected as thresholds
producing maximally stable extremal regions. These MSER are then represented by
the position of the local intensity minimum along with the threshold.
In 2008, Nister et al. published an improved version of the MSER algorithm which
reduces the computation complexity of MSERs to true worst-case linear complexity
[NS08]. Further, the MSERs were also extended to color images by Forssén in 2007
[For07]. This extension was not applied in the algorithm used in this thesis because
of the grayscale camera that was utilized. Nevertheless, it is worth mentioning
since it establishes a possible extension of the proposed localization algorithm to be
investigated in the future.

MSER Features and Laser Scanner Grid Maps

This section describes the extraction of MSER features from laser scanner data. First,
the concept of generating occupancy grid maps using laser scanners is described,
then the application of the MSER algorithm on these grid maps is elucidated.
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Figure 4.1: Generation of the input for the MSER feature detector: The
detections of the laser scanner (left) are used to update the
occupancy grid map (middle). Finally, only grid cells that are
likely to be occupied are considered for the generation of a grid
map image (right) (cf. depiction in [WDN+14]).

Occupancy Grid Maps with Laser Scanners Originally presented by Elfes
in 1989 [Elf89], occupancy grid maps have become a powerful and important tool
in environment modeling as well as for robot localization since then [TBF05]. The
basic idea is to represent the surroundings of a robot (or any vehicle equipped with
adequate sensors) as a – usually two-dimensional – grid, where each cell γi of this
grid commonly holds at least one value p(γi) ∈ [0, 1] which describes the probability
of the area of the grid cell being occupied by some sort of object. An occupancy grid
map can either be defined globally, where the center of each grid cell represents one
specific UTM coordinate, or it can also be defined locally, e.g., relative to the starting
pose of the vehicle. Furthermore, as demonstrated in [LT10], other information, such
as for example infrared reflectivity, can be represented in a more general grid map
in a sensible manner. Further, a more advanced grid map using Dempster Shafer
evidence theory is presented in [NWW+13]. In general, generating occupancy grid
maps with a sensor that measures range and bearing, as laser scanners do, is not
very complex. Basically, the path of each laser beam is followed and the probability
of occupancy for all grid cells through which this beam passes is reduced. This is
done until either the sensing range is reached or until the beam actually hits an
object: The probability of occupancy of the corresponding cell is then increased.
Obviously, measurement uncertainties have to be considered. In more detail, an
algorithm for generating an occupancy grid map works as follows:

1. Initialization: The grid map is initialized with a fixed number of grid cells
nG such that the vehicle is positioned in a defined grid cell γorigin(e.g., in the
center of the central grid cell). The value p(γi) = 0.5 is assigned to all grid
cells γi, i = 1, .., nG to express, that no knowledge of the real occupancy state
of any of the cells is available.
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2. Pose Estimation: In order to integrate new measurements into the grid map,
the pose of the vehicle has to be estimated (provided the vehicle is moving).
Depending on the type of grid map, i.e., whether it is a global or local map,
different input data is required to estimate the pose. In the case of a global
grid map, obviously a global pose estimate is required, which can be obtained
from, e.g., a RTK system with DGPS such as the ADMA. In contrast, to
generate a local grid map, only the relative motion is necessary. In order to
obtain the relative motion between two sensor measurements, dead reckoning
(cf. Section 4.4.2) is applied using data from standard on-board sensors (i.e.,
the data from the four wheel rate sensors and a yaw rate sensor are fed into
an Extended Kalman Filter (EKF) which estimates the speed and turn rate
using a constant velocity and constant turn rate model). Then, the new pose
estimate is used to modify the grid layout. This means that new grid cells are
created and other grid cells are deleted on the borders of the grid so that the
relative position of γorigin within the grid stays constant (i.e., the number of
grid cells left, right, behind and in front of γorigin stays the same as during
initialization) and the vehicle is always located in γorigin.

3. Occupancy Calculation: Each detection of the laser scanner (i.e., a range
and bearing measurement) at time step k is transformed into the grid map
coordinate system. The measurements of the laser scanner as well as the
pose estimation have a spatial uncertainty, thus the transformation of the
measurements into the grid has to respect these combined uncertainties [WD08].
This is done by determining the occupancy probabilities of all cells within a
certain Mahalanobis Distance (MHD) of the transformed laser point’s spatial
uncertainty. The absolute value of the occupancy probability of a cell also
depends on its MHD. These novel occupancy probabilities p̃k(γi) are later used
to update the affected cells of the grid map.

4. Free Space Detection: Not only information about where objects do exist is
valuable, but at least as valuable is information about where no objects exist
(especially for other functions required for a highly automated vehicle such as
trajectory planning). Therefore, the calculation of the free space is also crucial
to the occupancy grid map. If a laser beam is not reflected, it is very likely
that the path along this beam is free space. Furthermore, if a laser beam is
reflected at some point, it is also very likely that the path of the laser beam up
unto that point is also free space. A very simple approach would be to set the
occupancy probability of all affected cells to pfree = 0. Here, a more advanced
function that also considers the actual range and bearing of the measurement
is used to determine the occupancy probability of those grid cells. More details
about this function can be found in [KSD10]. Again, these newly determined
occupancy probabilities p̃k(γi) are used to update the occupancy probabilities
of the affected grid cells stored in the map.
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5. Updating the Grid Map: The occupancy values determined through obstacle
detections and free space calculations are used to update the grid map using
the binary Bayes filter approach: As described in [TBF05] each cell is updated
independently assuming a static environment. The new occupancy values in
time step k for all updated grid cells of the grid map are given by [WSD07]:

pk(γi) = S

1 + S
with

S = p̃k(γi)
1− p̃k(γi)

· pk−1(γi)
1− pk−1(γi)

.

This updated grid map then represents the occupancy probability of the area
surrounding the vehicle and can be used for feature extraction.

MSER Extraction from Occupancy Grid Maps In general, the occupancy
grid map can be interpreted as a grayscale image just by interpreting the occupancy
probabilities as gray levels, i.e., for an 8 bit grayscale image, the probabilities
p ∈ [0, 1] have to be scaled to correspond to the integers s ∈ [0, 255] (cf. Figure
4.1). Although relevant features in the grid map are only found in occupied areas of
the grid map, the free space calculation is still necessary for two reasons: First, it
helps in suppressing false positive measurements. Secondly, it helps to estimate the
contours of the occupied areas. However, before the MSER detection algorithm is
executed on a grid map, all cells having an occupancy probability p(γi) < 0.5 (i.e.,
those that are arithmetically more likely to be unoccupied than to be occupied) are
set to p(γi) = 0.0 to avoid detecting unreliable features. Furthermore, the image
is inverted so that maximum intensity regions correspond to occupied areas. An
example of the MSER feature detection algorithm on a grid map image is given in
Figure 4.2: As can be seen from this example, detections are only present on isolated,
relatively small objects. The reasons for this are for one, the design of the algorithm
– it is designed to find closed stable regions – and secondly the optional feature of the
algorithm to limit the size of the extracted regions. This proves to be very useful
here, since it allows for finding only objects that are usually stationary and can be
repeatedly detected such as traffic signs or trunks of trees (the detections in the
example are all on tree trunks and poles). Objects that are not as reliable and hence
should not be detected, as e.g., parked cars (the two thick L-shaped objects below
region R4) or bushes (the dots left of R3 and the larger object right of R8 and R9),
are ignored. Thus, this example demonstrates how the MSER detector is able to
find objects in grid maps that can be used for localization.
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Figure 4.2: An example of MSER detections (R1−R9) on a grid map image.
The detected MSER’ contours are depicted in turquoise and
their respective centroids are colored red (depiction based on
[DWR+14]; added region labels).

MSER Features from Camera Images

The MSER algorithm can be used on camera images in a much more direct manner
than on the laser scanner data, since the algorithm is intended to be used with
that kind of data. Nevertheless, one preprocessing step is required before it actually
can be used to find sensible landmarks for the purpose of localization. Maximum
intensity regions in the vehicular environment are usually found on lane markings of
any kind, since they are significantly brighter than the tarmac surrounding them. In
order to only detect these features, a Region of Interest (ROI) has to be defined,
such that the algorithm is only executed on that part of the image that actually
represents the area in which the road is usually found. This ROI is defined assuming
a flat world. Only features that are entirely contained in that ROI are used for
localization. In order to limit the error that is made due to the flat world assumption,
the range in which features are sought has to be restricted. This has a similar effect
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Figure 4.3: An example of MSER detections (R1−R7) on a grayscale camera
image. The contours of the detected MSER are depicted in
turquoise color and their respective centroids are colored red.
The lane marking below region R5 is not detected because it
intersects the ROI and only regions that are fully contained in
the ROI are extracted.

on the maximum operating range as the resolution of the camera – both limit the
maximum distance for reliably detecting features (e.g., the limit for the camera
described in Section 3.1.4 is approximately 40m along the vehicle x-axis). Figure 4.3
shows an example of the MSER detections on an inner city road. It can be seen that
the contours of all the different types of lane markings are found perfectly. Thus,
features that are very useful for the localization of a vehicle are very well detectable
using this approach. Furthermore, even if lane markings are not as new and ideally
shaped as those in the example, the algorithm is able to detect them. The reason for
that is that it does not make any assumptions about the shape of the landmarks.
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Figure 4.4: The top view on the left shows an example of the tracked radar
detections. The tracks of the left radar are depicted in red and
the tracks of the right radar are colored orange. As can be
seen by comparison with the camera image taken from the same
scene, tracks only exist on well reflecting stationary objects, for
example the bus stop or the traffic lights.1

4.2.2 Radar Targets

The features for localization using radar data are based on the raw radar detections
provided by the two rearward facing radar sensors of the vehicle (see Section 3.1.5). In
contrast to the two MSER-based features presented previously, the features provided
by the utilized radars do not require any special feature extraction algorithm. While
the radar provides a velocity estimation and therefore a direct method to only select
stationary objects, the detections themselves do not provide too much information
about the actual objects (at least in comparison with a camera). The most valuable
information provided by the detection is the radar cross section which is basically
a measure for the reflectivity of the objects. Thus, all detections that originate
from stationary objects possessing a reflectivity within a certain range are used as
landmark candidates. Typical examples for those kind of objects within the vehicular
environment are: traffic lights, lamp posts, traffic signs and other metallic objects.
This restriction obviously limits the radar-based localization to environments that
contain many of those objects, which basically implies that it can only be used
on urban roads. Nevertheless, this restriction on the reflectivity is necessary in
order to solely interpret objects as landmarks that are very likely to be reliably

1Depiction based on: “Orthophoto der Stadt Ulm aus Befliegung März 2010” c© Stadt Ulm,
Abteilung Vermessung [Ulm15]
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detectable. However, even these relatively reliable detections cannot be used directly,
since the position estimates provided by the raw detections of the objects are not
very stable. Hence, a tracking algorithm is used to stabilize and improve these
position estimates. A sophisticated filtering algorithm has to be used in order to
cope with the false positive rate of the raw radar measurements, the relatively
high measurement uncertainty and the non-trivial association between landmark
candidates and measurements. Therefore, a PHD filter, as presented in Section
2.3.2 and originally proposed in [Mah03], is used for this multi-object tracking task.
As would seem natural, a constant position model is used as state model for the
landmark positions to be estimated. These tracked object detections form a valuable
input to the localization algorithm.

4.3 Mapping with Known Vehicle Pose

Although this chapter focuses on the localization of a highly automated vehicle,
generating a map prior to localizing is inevitable – as long as approaches such as
SLAM do not yield the necessary accuracy (cf. Chapter 5). Generating a map that
contains the types of landmarks presented before is a relatively easy process. The
whole map can be generated by simply driving the route to be mapped once while
localizing the vehicle with a precise DGPS. The vehicle that has been used to test
and to evaluate the proposed localization algorithm possesses such a system, the
ADMA (cf. Section 3.1.6). Thus the ADMA was used to localize the vehicle during
map generation.
The exact mapping procedure is depicted in Figure 4.5. The processing of the camera
data works as follows: The images are fed to the MSER algorithm as described
in the previous section. Then, the detections of each time step k are transformed
into the global UTM coordinate frame by first using the transformation from image
coordinates to the vehicle coordinate frame (cf. Section 3.2.1) and then transforming
these positions to the UTM coordinates using an interpolated pose estimate of the
vehicle. The interpolation of the pose estimates is necessary because the camera and
the ADMA run on different frequencies. Hence, simply using the pose measurement
with the timestamp closest to the image’s timestamp would induce a significantly
greater error than interpolating between the pose measurements that are made
before and after the exact point in time at which the image was shut (which is always
possible due to the significantly lower latency of the ADMA). After the MSER
detections have been transformed to the global coordinate frame, they are fed into a
filter. This simplistic filter basically averages the positions of the landmark candidates
over time using a nearest neighbor association between landmark candidates and
measurements. As soon as a landmark candidate leaves the camera’s FOV it is
checked if the landmark candidate has at least been tracked for a number of frames
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Figure 4.5: The process chain for generating landmark maps

nt(vveh) that depends on the speed of the vehicle. If this is the case, the landmark
candidate is inserted into the database. Otherwise the image MSER is dropped.
In comparison to this, the radar measurements are processed quiet differently. In
each measurement cycle, all measurements that could possibly originate from a
useful landmark, i.e., they posses a negligible velocity and a reasonable reflectivity,
are fed into a PHD filter. Then, the output of this filter is analyzed and landmark
candidates that have left the radar’s FOV and have again been tracked successfully
for a certain amount of time are transformed to the UTM coordinate frame. This
is done by using the pose measurement from the ADMA. Then these transformed
landmarks inserted into the map database.
Finally, the laser scanner data is handled as follows: The measurements are integrated
into a globally defined grid map. In order to generate that global grid map, the DGPS
measurements are used. Then, the MSER algorithm is executed on an image of the
grid map as described in Section 4.2.1. The regions that are found in that process
are already globally defined since they are extracted from the globally referenced
image of the grid map. Therefore, they can be inserted directly into the database
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after a simple filtering step which only ensures that the landmarks candidates have
been detected often enough.
The measurement data of the three types of sensors is handled independently and the
processing can be executed in parallel very efficiently. Further, the map generation
is an entirely unsupervised online process. That means, no interaction with any
kind of supervisor is necessary as long as the vehicle’s pose is continuously measured
precisely by the ADMA. The algorithm inserts the detected landmarks into the map
database immediately after they have left the FOV of the vehicle’s sensors as long as
the ADMA confirms that the vehicle’s pose is measured with sufficient accuracy. If,
however, the pose cannot be measured with accurately enough, no new landmarks
are inserted into the database. In this case, either the respective sections of the route
have to be driven once more, or the complete measurement data has to be recorded
and a post-processing algorithm, as e.g., presented in [DNK+13], has to be used.
Such a post processing algorithm can improve the pose estimations on route sections
in which the signal quality of the ADMA is degraded. This is achieved by taking
into consideration the measurements of the vehicle’s velocity, the measurements of
its yaw rate, the last precisely known poses before such a section and the first few
precisely known poses after such a section. Based on this data, improved estimates
can be calculated for the respective poses. Using these improved pose estimates, the
global positions of the detected landmarks can be determined and then they are
again ready to be inserted into the database.
Overall, the presented mapping procedure is an uncomplicated approach which
nevertheless generates a map that can be relied on during localization (cf. Section
4.5.3).

4.4 Localization Using Particle Filters

The basic concept of particle filtering has already been described in Section 2.2. In
this section, the theoretic filtering principle is applied to the problem of localizing a
highly automated road vehicle.
While the paragraphs below describe the concrete implementation of the generic
particle filtering steps, the overall processing chain from raw sensor input to pose
estimate is depicted in Figure 4.6 and elucidated in the following.
First of all, a reliable ego motion estimation is needed to enable good localization
performance. Since the raw measurements of wheel rates and yaw rate as provided
by the vehicle’s standard sensors via CAN bus tend to be noisy, an EKF is used to
filter this data [BP99]. Using a Constant Turn Rate and Velocity (CTRV) model, the
EKF is able to provide a relatively smooth estimate of the vehicle’s velocity and its
yaw rate. This ego motion estimate is needed for multiple subsequent calculations:
First and foremost it is the control input for the prediction step of the particle filter
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Figure 4.6: The process chain for estimating the vehicle pose

(cf. Section 4.4.2). Additionally, it is also a prerequisite for the processing of two of
the feature detectors: The stationary radar targets are tracked by a PHD filter (cf.
Section 4.2.2) which obviously needs an ego motion estimate in order to compensate
for the vehicle movement. Secondly, the laser scanner data is accumulated in an
occupancy grid map (cf. Section 4.2.1) which likewise has to compensate for the ego
motion. This grid map is an input to the MSER detector which then provides the
detected features as an input to the particle filter’s weight update process. Besides
these features and the detections of the radar, also the MSER features that are
obtained directly from the camera images, are fed into the update process (cf. Section
4.2.1).
Obviously, the filtering algorithm not only needs the current feature detections but
also requires a map of landmarks in order to asses the hypotheses about the vehicle’s
pose represented by the particles. This map is provided by the database component
(cf. Section 3.3). Given all these inputs, the particle filter is able to produce a high
quality pose estimate of the vehicle by using the functions described in the following.
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4.4.1 Initialization

During initialization an initial pose estimate is assigned to each of the νP par-
ticles. Each pose estimate comprises an UTM easting coordinate, an UTM nor-
thing coordinate and an orientation towards the east axis of the UTM cell, i.e.,
x

(i)
0 = [e(i)

0 ,n(i)
0 , ψ

(i)
0 ] for i = 1, ..., νP . The devices that provide these poses

are disregarded in Figure 4.6 for reasons of clarity. The actual initial positions
{e(i),n(i)}i=1,...,νP are drawn from the assumed normal distribution which is given
by the position provided by the GPS receiver along with its uncertainty. More
precisely, they are drawn from this distribution which however results in latitude-
longitude-coordinates of the WGS84 coordinate system. Thus, all these samples
have to be transformed to the UTM coordinate frame subsequently. The initial
orientations {ψ(i)}i=1,...,νP are also drawn from a distribution which is described by
a measurement from a compass along with its uncertainty. If no compass is available,
the initial orientations may also be obtained by determining the global direction of
movement of the vehicle from two or more GPS position measurements.
No matter how the initial poses are obtained, some effort should be put into a valid
initialization of the particles, since a bad initialization can have severe effects upon
the localization performance, i.e., the particle filter does not converge to the correct
pose in reasonable time (see Section 4.5). Thus, if the uncertainty of the GPS is
very high, it makes sense to initialize the particle filter with considerably more than
νP particles and then reduce the number of particles over time.

4.4.2 Prediction

The prediction process determines the state vector of a particle at time step k,
x

(i)
k = [e(i)

k , n(i)
k , ψ

(i)
k ], given its previous state vector x(i)

k−1, and the control input uk.
Thus, it basically incorporates the current vehicle motion into the last pose hypothesis
to form an up-to-date hypothesis about the pose of the vehicle. Probabilistically
speaking, the prediction corresponds to sampling from the state transition density
x

(i)
k ∼ f+(x(i)

k | x
(i)
k−1,uk). In the case of a car, this state transition is commonly

described using a single-track vehicle model or dead reckoning. Although, using
dead reckoning is clearly a drastic simplification, it still results in a sufficiently
precise approximation of the vehicle’s motion in most normal driving situations and
it furthermore simplifies calculations significantly.
The actual calculation of the prediction goes as follows: The vehicle’s inertial
and odometry sensors provide measurements of the four wheel rates as well as a
measurement of the yaw rate. An extended Kalman filter then produces a smooth
estimate of the vehicle speed vk and the yaw rate ψ̇k based on this data. These values
describe the motion of the vehicle, assuming constant velocity and turn rate between
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time step k − 1 and time step k. Further, in order to account for the uncertainty of
this control input, noise is added to it – for each particle individually – resulting in
ṽk and ˜̇ψk. The noise is obtained by drawing samples from normal distributions with
zero mean and standard deviations that correspond to the expected uncertainties of
the respective sensors. According to the dead reckoning formulation, the states are
predicted for a time span ∆t between the two consecutive time steps k− 1 and k by:

∆ψk = ˜̇ψk ·∆t, (4.2)

ek = ek−1 + ṽk˜̇ψk · [sin (ψk−1 + ∆ψk)− sin (ψk−1)], (4.3)

nk = nk−1 + ṽk˜̇ψk · [cos (ψk−1)− cos (ψk−1 + ∆ψk)], (4.4)

ψk = ψk−1 + ∆ψk. (4.5)

To avoid the singularity, the model is approximated as follows for yaw rates close to
zero:

ek = ek−1 + ṽk ·∆t · cos(ψk−1), (4.6)
nk = nk−1 + ṽk ·∆t · sin(ψk−1). (4.7)

Given this prediction, noise is added to the predicted states in order to also com-
pensate for the approximations of the simplified model to finally obtain the particle
states x(i)

k . Again, the noise values are drawn from unbiased normal distributions.2

4.4.3 Weight Update

The weight update basically assesses the particle states based on the obtained
measurements. Thus, the main objective is to find a sensible implementation of the
measurement likelihood function: g(Zk | x(i)

k ), i.e., the likelihood of obtaining the
set of measurements Zk given the state x(i)

k .
If one takes a closer look at the concrete case of MCL that means: The goal is
to find the likelihood of having measured a set of landmarks given the hypothesis
of the vehicle pose that is represented by the particle state. This pose directly
translates to a set of landmarks of the a-priori constructed mapM (cf. Section 4.3)

2Empirical analysis has shown that assuming a standard deviation – per second – of 0.3m
for easting and northing coordinates, 2 m

s for velocity, 1 deg for the orientation angle and
respectively 2.3 deg

s for the yaw rate is necessary in order to obtain reasonable pose estimates
during all evaluated driving maneuvers.
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which contains all landmarks that were in the FOV of the vehicle’s sensors, if the
vehicle’s pose actually matched the pose described by the particle’s state. This set
of landmarks is then transformed from the global UTM coordinate frame ζutmto the
local coordinate frame of the vehicle ζveh(cf. Section 3.2.2):

M∩ FOV (x(i)
k ) ζveh−−→ M̄FoV(x(i)

k ) (4.8)

Given this set of transformed landmarks within the FOV of the respective parti-
cle, assessing the particle’s weight essentially boils down to finding a multi-object
likelihood:

ω(i) ∼ g(Zk | M̄FoV(x(i)
k )) (4.9)

When using this multi-object likelihood description, the similarities to the approaches
discussed in Section 2.3 become obvious. Basically, the predicted multi-object state
X+ of equation (2.32) is replaced by an expected map state given the vehicle’s pose.
Since the set of transformed landmarks M̄FoV(x(i)

k ) and the set of measurements
Zk again may very well be explicitly interpreted as RFSs (expressed by using the
symbols M̄FoV(x(i)

k ) and Z), it makes total sense to use the same approach to find
this likelihood:

g(Zk | M̄FoV(x(i)
k )) =

πC(Zk)π(∅ | M̄FoV(x(i)
k ))

∑
θ

∏
j:θ(j)>0

pD(m̄(j)) · g(zθ(j) | m̄(j))
(1− pD(m̄(j))) · λcc(zθ(j))

, (4.10)

where the state of the transformed landmark m̄(j)(x(i)
k ) is abbreviated by m̄(j).

As already described in Section 2.3.2, the probability that all measurements orig-
inate from clutter is πC(Zk) and the probability that no object is detected is
π(∅ | M̄FoV(x(i)

k )). Further, the probability of detecting the transformed landmark
m̄(j) is given by pD(m̄(j)) and the expected number of clutter measurements, which
are spatially distributed according to c(zθ(j)), is λc. Finally, θ describes the associa-
tion hypotheses.
Since the likelihood (4.10) has to be evaluated for all particles several times in one
second (depending on the measurement rate of the sensors e.g., 15 times per second
for image features) some approximations have to be made to still allow for real-time
performance. First of all, the probability that all measurements are false positives,
πC(Zk), is dropped since it is identical for all particles and thus is only a scaling
factor. Further, the detection probability pD is assumed to be state independent
and the distribution of the clutter measurements is assumed to be uniform within
the FOV (denoted as U(Z)). These assumptions make parts of equation (4.10) a
constant expression:

c0 = pD
(1− pD) · λcU(Z) . (4.11)
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Finally, the number of association hypotheses θ that are evaluated is limited to the
nθ most likely association hypotheses Θ∗. The actual value of nθ may even be set to
as little as 1, depending on the number of particles and the available computational
power.
All associations have to be unique, since each and every landmark generates at
most one measurement and all measurements may originate from at most one of the
landmarks. Further, more than one landmark may be assigned to the measurement
“0”, which represents a missed detection. The Munkres algorithm [Mun57] is used
to find those nθ most optimal assignments. In order to find these assignments,
the likelihoods for all possible measurement to landmark associations have to be
calculated and also the missed detections have to be considered. Since the Munkres
algorithm works on costs rather than likelihoods, the costs corresponding to the
likelihoods have to be determined. The cost β for assigning landmark (l) to the
missed detection (0) is:

β(z(0) | m̄(l)) = − log (1) = 0. (4.12)

The cost for assigning landmark (l) to the measurement (j) is given by (using
equation (4.11)):

β(z(j) | m̄(l)) = − log (c0 · g(z(j) | m̄(l))), (4.13)

with g(z(j) | m̄(l)) describing the likelihood of an assignment between the landmark
m̄(l) and the measurement z(j). This likelihood can – at least for all types of
landmarks presented above – safely be chosen to only reflect the spatial distance
between the landmark and the measurement:

g(z(j) | m̄(l)) = e
−0.5·

[(
d

(j,l)
lat
σlat

)2

+

(
d

(j,l)
lon
σlon

)2]
, (4.14)

where the lateral and longitudinal distance between landmark and measurement is
denoted as dlat and dlon respectively. The standard deviations that are expected
when measuring the given kind of landmark are σlat and σlon. These standard devi-
ations are obviously different for the lateral and the longitudinal direction, especially
when a camera is used.
Although, it was not necessary for the localization tasks presented in the evaluation
section, the likelihood may very well be expanded to not only evaluate the spatial
likelihood, but to also consider other quantities such as e.g., the sizes of the MSER
areas. This can be achieved by simply adding the squared difference between the
measured value and the respective value of the landmark divided by the assumed
variance to the exponent of equation 4.14, as long as a normal distribution of the
values can be assumed.
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Given the described assumptions, the total approximated multi-object likelihood is:

g̃(Zk | M̄FoV(x(i)
k )) = (1− pD)|M̄

FoV(x(i)
k

)|
∑
θ∈Θ∗

∏
j:θ(j)>0

c0 · g(zθ(j) | m̄(j))

≈ g(Zk | M̄FoV(x(i)
k )) (4.15)

The weight of particle i at timestamp k is then given by this multi-object likelihood
multiplied by the previous weight:

ω
(i)
k = ω

(i)
k−1 · g̃(Zk | M̄FoV(x(i)

k )). (4.16)

As long as out-of-sequence measurements do not occur, this update procedure may
be executed sequentially based on different measurements (potentially originating
from different sensors) along with their associated landmark maps. If out-of-sequence
measurements do only occur rarely, the easiest approach is to simply skip those
measurements. If, however, they do occur more often, another option is to apply
retrodiction techniques. That would require to store the states of all particles,
their weights and the measurements for a certain time span that corresponds to the
maximum possible delay. With all this cached data it is possible to easily integrate
out-of-sequence measurements and then re-apply the cached updates. If the cost for
this is too high, algorithms that alleviate that cost (e.g., [LOC10]) may be considered.

4.4.4 Resampling

The resampling is the most generic part of the particle filter algorithm, since it
only operates on the particle weights: The standard low variance sampler method
described in Section 2.2 does neither care for the actual state vector nor for how the
weights were obtained, as long as each and every particle has a valid weight. Thus,
the concrete application does not make any difference to this resampling procedure.
Resampling is executed whenever the number of effective particles (cf. listing 1) is
below the threshold νminP . For the evaluation it was set to νminP = 0.1 · νP .

4.5 Evaluation

The proposed localization scheme was evaluated on three different scenarios: on an
urban road, on a rural road and on a route that combines both kinds of roads. The
latter was also driven by a highly automated vehicle, without any driver intervention
using the proposed localization algorithm. The evaluation was conducted using
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νP = 1500 particles. All results were obtained by running each of the respective
recordings of a scenario 50 times in order to account for the non-deterministic
behavior of the particle filter. Different recordings were always used for creating the
landmark map and for assessing the performance of the localization algorithm.
All scenarios were evaluated with respect to the overall achieved pose accuracy. This
accuracy is described by the mean error averaged over the whole route and the
respective standard deviation. The ground truth pose was provided by the ADMA
(see Section 3.1.6). Further, all runs that exhibited a position error above terr = 5m
at any time were marked as “failed” and were excluded from the calculation of the
mean error. The reason for this is that in those test runs in which the error exceeded
this threshold, the localization algorithm typically was not able to find a pose close
to the correct pose again thereafter. Therefore, such a test run would totally bias
the mean errors and also severely affect the respective standard deviations. Hence,
excluding those test runs from the error calculation – but nevertheless highlighting
those failures occurred – actually leads to much more conclusive results.
For the evaluations, measurement updates were only executed if the speed of the
vehicle was above a certain threshold. This measure avoids updating the filter with
more or less the same measurements over and over again when having stopped at
a traffic light. This could especially have undesirable effects when having stopped
directly behind another vehicle that occludes most of the sensors’ FOV: If then
false positive measurements occur in unfavorable positions, this could have negative
effects on the filtering performance. If the updates were executed uninterruptedly,
these false positive measurements would become overly important and all particles
could possibly converge to a very small region of the state space in order to ideally
match those measurements. If the true pose was not contained in that region (which
is not unlikely), it would take quite some time until the particles would represent the
pose of the vehicle in a sensible manner after the vehicle started accelerating again.
Further, only the central laser scanner (cf. Section 3.1.3), the forward facing camera
(cf. Section 3.1.4), and the two rearward facing mid-range radars (cf. Section 3.1.3)
were used.

4.5.1 Urban Road

The proposed localization scheme has been evaluated on a section of a typical inner
city road. The major difference of this scenario, in comparison with the other two
scenarios described below, is that it facilitates a radar-only localization using the
proposed landmarks. The reason for this is that, in contrast to the more rural
roads of the other scenarios, the urban road is hemmed with infrastructure elements
that reflect the radio waves very well. Hence, it is the only scenario for which the
radar based localization is evaluated. More details on the scenario are given in the
following paragraph before the reached localization accuracy is presented.
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Figure 4.7: This route follows Blaubeurer Str., which is a road with two to
three lanes per direction in the city of Ulm. Many infrastructure
elements that reflect radio waves very well can be found alongside
the road. This fact facilitates radar-only localization.3

Scenario Description The route basically follows the Blaubeurer Straße in Ulm
for a little less than 1.4 km, as depicted in Figure 4.7. This urban road is one major
gateway to the city of Ulm. It consists of multiple lanes in each direction. At the
time the recordings were made, the lane markings on this street were relatively new
and well detectable. Further, a lot of lamp posts, traffic signs and traffic lights can be
found along that road which are, on the one hand, very likely to produce good radar
detections and, on the other hand, generate almost ideal MSER in the grid map.
Since the route is also relatively straight and contains only two very slight bends,
this scenario more or less offers ideal conditions for the proposed localization scheme.
There is only one aspect that is not ideal on this route: Other traffic participants
which, for one, do occlude landmarks and which also incessantly require the vehicle
to decelerate and to accelerate. This is obviously not ideally modeled by the CTRV
motion model that is used in the prediction of the particles.
The map that was used for the evaluation contained 531 image MSER landmarks,
401 laser scanner grid map MSER landmarks, 218 radar landmarks for the left radar
and 347 landmarks for the right radar.

3Source: maps.google.com, c©2015 Google-Map data c©2015 GeoBasis-DE/BKG ( c©2009), Google
Imagery c©2015, DigitalGlobe, GeoBasis-DE/BKG, GeoContent.
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Results The evaluation for each of the three types of landmarks was carried out
separately. Further, any combination of those landmarks was evaluated. The overall
performance for the different configurations is shown in Table 4.1. As can be seen,
localization using the camera or the laser scanner based approach (or the combination
of both) yields very good performance with standard deviations below 0.12m and
0.14 deg. Further, also the combination of any of those two sensors with the radar
results in a useful performance.
The course of the pose estimation error when using the laser scanner and the camera
is depicted in Figure 4.8. It can be seen, that the algorithm estimates the pose very
accurately in this admittedly not very challenging scenario. Further, the standard
deviation that is obtained from the combined results of the 50 Monte-Carlo runs is
also very small indicating that a high localization accuracy can always be expected.
The camera-only approach leads to some inaccuracies in the longitudinal domain.
These can be explained by the repeated accelerating and decelerating in this scenario
that entails a varying pitch angle of the vehicle. This change in the pitch angle is
not compensated for. Consequently, this leads to relatively large errors in estimating
the longitudinal position.
When the image MSERs were complemented with radar detections, the effect of
the pitch angle vanished. When the radar data had been combined with the grid
map MSERs a very good performance was reached as well, although the localization
failed once due to a very unfortunate initialization of the particles.
Using the radar alone led to a valid pose estimation in only less than half of the runs.
In the successful runs the performance was a lot worse than with the data from the
other sensors. However, it has to be stated that the MSER features were exactly
tailored to the localization task and to the respective sensor data. In contrast to
that, the radar detections were originally designed to find vehicles. If raw radar
signals were used instead of these detections, it should be possible to yield much
better performance. Nevertheless, even with these simple detections a relatively
good localization accuracy can be reached in this scenario.

Sensors laterr in m lonerr in m ψerr in deg Failed
Radar −0.168± 0.796 0.122± 0.250 0.230± 0.662 29
Camera 0.016± 0.043 −0.021± 0.361 0.065± 0.107 0
Laser −0.066± 0.119 −0.053± 0.037 0.067± 0.124 0
Radar, Camera 0.016± 0.050 0.052± 0.175 0.067± 0.321 0
Radar, Laser −0.070± 0.132 −0.067± 0.097 0.066± 0.295 1
Camera, Laser −0.034± 0.085 −0.052± 0.041 0.022± 0.137 0
All −0.039± 0.094 −0.066± 0.087 0.033± 0.228 0

Table 4.1: Average localization accuracy (i.e., mean and standard deviation
of the errors) obtained using three different sensors and all possible
combinations of those sensors.
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Figure 4.8: Mean pose errors along with the standard deviation (depicted
in gray) of the localization algorithm on the Blaubeurer Straße
in Ulm using the image MSER and grid map MSER as features.
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Figure 4.9: The route from Langenau to the Kuhbergring in Ulm for which
the accuracy of the localization algorithm was evaluated.4

4.5.2 Rural Road

The localization algorithm’s performance has also been evaluated on a German rural
road. Out of the three evaluated scenarios, this is the most challenging one since it
contains several demanding aspects, as described below. Further, this route is much
longer than the other two routes.

Scenario Description This route starts at the city limits of Langenau and follows
the rural road to Ulm. The allowed maximum speed on that route ranges from
50 km/h to 100 km/h. During the course of that route, several driving situations
occur that do not match the assumptions that are made by the measurement model
and the motion model: First of all, several roundabouts and traffic lights have to be
passed. Obviously, the actual motion of the vehicle is only described insufficiently

4Source: maps.google.com, c©2015 Google-Map data c©2015 GeoBasis-DE/BKG ( c©2009), Google
Imagery c©2015, DigitalGlobe, GeoBasis-DE/BKG, GeoContent, Landsat.
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by the constant velocity and constant yaw rate assumption, while passing through a
roundabout or when stopping at a red traffic light. Furthermore, the route contains
multiple steep roads which do not match the flat world assumption that is made
in the feature extraction stage. Finally, there is also one segment of the road
(approximately from km 8.2 to km 8.6) where almost no landmarks are to be found,
since the laser scanner’s sight is blocked by a guarding rail and also almost all
existing lane markings are continuous, and hence not used as features.
The landmark map created for this route contained 2125 image MSER landmarks
and 3486 laser scanner grid map MSER landmarks. This corresponds to as little
as one camera landmark every 6.1m and one laser scanner landmark every 3.7m,
respectively.

Results The localization algorithm was evaluated for two different settings: Using
the grid map MSER alone and using both types of MSER features. No evaluation for
the camera-only approach was made since the image features were not continuously
available along the route. The overall performance is depicted in Table 4.2.
The first noticeable fact is that the localization never failed when the features from
the laser scanner grid map were used along with the features from the camera
images. In contrast to that, localizing the vehicle was not done successfully in
approximately one third of the trials when the grid map MSERs were used alone.
The failures occurred always near the roundabout at approximately km 8.6. At that
point of the route, almost no features had been available for several hundred meters
(starting at km 8.2). In addition, when the vehicle passed through the roundabout
its actual motion violated the model assumptions severely which led to an erroneous
motion prediction. Due to the missing updates these errors could not be corrected.
However, in two thirds of the test runs enough particles still existed close to the real
position in order to not exceed the maximum error threshold terr. As soon as new
landmarks entered the sensor’s FOV after the roundabout had been passed, the pose
estimate also almost immediately shifted back to the correct pose. Thus, the overall
performance of the laser scanner only approach is still relatively good, when only
the successful runs are considered.
Nevertheless, the pose estimation accuracy is significantly higher when the data from
both sensors is fused. Especially the standard deviation of the lateral error and the

Sensors laterr in m lonerr in m ψerr in deg Failed
Laser −0.099± 0.262 −0.136± 0.154 −0.003± 0.268 17
Camera, Laser −0.061± 0.118 −0.144± 0.132 −0.023± 0.174 0

Table 4.2: Average performance of the presented localization algorithm for
each of the two sensor setups (i.e., mean and standard deviation
of the errors), evaluated on a route of 13 km length.
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Figure 4.10: Average pose errors of the localization algorithm on the route
from Langenau to Kuhbergring, Ulm, using the image MSER
and grid map MSER as features. The standard deviation is
shaded in gray.
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orientation error – which are both much more crucial than the longitudinal error – are
significantly smaller. Figure 4.10 reveals that, in this case, the lateral error is almost
always below 0.25m. The few critical situations at which the mean error reaches or
exceeds approximately 0.5m do correspond to the positions of the roundabouts.
One aspect of these results that might seem conspicuous, is the offset of the estimated
position, especially in the longitudinal direction. A major part of the offset may be
explained by the fact that the local grid map used for localization was not aligned
to the global grid map that had been used to create the landmark map. Thus,
features extracted from the local grid map may exhibit a shift of several centimeters
in longitudinal and lateral direction when compared to the global landmarks (the
grid cell size had been set to 0.15m) which then may result in an offset of the
position estimation. Further, the image MSER features are very strong lateral and
orientational features. This can also be seen from the significantly smaller standard
deviations. However, due to their uncertain longitudinal distance information, they
are not very useful for eliminating an offset in the longitudinal direction.
Overall, it can be stated that, when only regarding the demonstrated localization
accuracy, a vehicle could possibly drive this route autonomously. The only critical
error margins are reached at roundabouts, where the road is usually a bit wider and
no oncoming traffic exists.

4.5.3 Autonomous Drive on the Berliner Ring

The localization algorithm was originally designed with the aim in mind to drive a
certain public route autonomously without having to rely on DGPS. This route and
the respective localization results are presented in the following.

Scenario Description The route starts at the Institute of Measurement, Control
and Microtechnology at Ulm University and then follows the Albert-Einstein-Allee
westwards. In this section, the Albert-Einstein-Allee does not have any lane markings
at all and thus only very few image MSER features can be found (e.g., on gully
covers). However, the roadside is hemmed with wooden posts, trees and other
cylindrical infrastructure elements. Therefore, a lot of grid map MSER features can
be detected. At the end of the Albert-Einstein-Allee the route follows the Berliner
Ring northwards. This part of the Berliner Ring is similar to a rural road with
a maximum allowed speed of 70 km/h. The lane markings on that road generate
reliably detectable MSER features. Further, alongside the road many trees and the
compulsory reflector posts make good grid map MSER landmarks. Then, at the
intersection which is covered by lane markings, the route continues westwards on
the Albert-Einstein-Allee. Parts of this segment of the road do have lane markings.
Further, even multiple crosswalks which make very good landmarks, do exist. In



4.5 Evaluation 67

Figure 4.11: The round-trip that has been selected for the first autonomous
drive at Ulm University.5

addition to that, again a lot of infrastructure (e.g., traffic signs, rocks, lamp posts)
are to be found alongside the road – except for a short piece (from km 3.5 to km 3.7).
The landmark map of this route was constructed using two different recordings, each
offering ideal conditions for the respective sensor. This map contained 685 image
MSER landmarks and 1345 laser scanner grid map MSER landmarks in total.
The fact that one longer section of the Albert-Einstein-Allee does not have any lane
markings renders an image MSER only localization impossible. Therefore, only the
laser scanner-only approach and the fusion of both sensors were evaluated.

Results The performance of the localization algorithm on the route selected for
the autonomous drive has been evaluated under different environmental conditions.
It obviously had to be ensured that the localization accuracy was always high enough
to allow for driving the route autonomously (see Figure 4.12). Localization accuracy
may be impaired whenever the mapped landmarks cannot be detected anymore.
One reason for not detecting one or more landmarks any longer is for example that
the map is outdated (i.e., objects that have been used as landmarks were removed

5Source: maps.google.com, c©2015 Google-Map data c©2015 GeoBasis-DE/BKG ( c©2009), Google
Imagery c©2015, DigitalGlobe, GeoBasis-DE/BKG, GeoContent.
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(a) Bright sunshine leads to blooming and creates strong shadows. Both may change
the MSER. Further, medium height grass blurs the contours in the grid map.

(b) High grass obscures almost all potential grid map MSER landmarks.

(c) Ideal conditions for localizing the vehicle with the proposed approach.

Figure 4.12: Example of the effects of environmental conditions on the input
data of the feature extraction algorithms.
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or are occluded by other objects that did not exist when the map was created).
Another typical reason is that adverse weather conditions lead to reduced sensor
performance. The following two environmental conditions were evaluated in order to
investigate these phenomena:

• Bright sunshine: The MSER algorithm cannot detect the features precisely in
the image due to blooming effects. Further, in the presence of bright sunshine
shadows enclose bright MSER-like regions on the tarmac which then may lead
to false positive detections.

• High grass: Vegetation may reflect the laser beams, thereby blocking the line
of sight between the vehicle’s laser scanner and potential landmarks completely.
Therefore, many landmarks cannot be detected anymore in the laser scanner
grid map.

The recordings used for evaluating the performance on this route were made over a
time span of four months. Thus, ample of change in the vegetation (and also some
in the infrastructure) alongside the route did happen, as can also be seen in Figure
4.12. As expected, these environmental changes did have effects on the localization
accuracy, see Table 4.3.
When comparing the performance under ideal conditions with the performance in
the presence of bright sunlight and grass of medium height, one can see that the
position estimation does not change very much. However, the standard deviation
of the orientation error is significantly lower under ideal conditions. The reason
for this is that the image MSER features are not detected very precisely under the
bright sunlight, and hence are not very helpful in estimating the orientation exactly.
Further, the medium height grass does have a blurring effect on the contours in the
grid map which also leads to a much worse orientation estimation.

Sensors (Cond.) laterr in m lonerr in m ψerr in deg Failed
Laser (1) 0.076± 0.231 −0.095± 0.191 −0.135± 0.516 0
Camera, Laser (1) 0.049± 0.196 −0.111± 0.209 −0.159± 0.617 0
Laser (2) 0.058± 0.412 0.044± 0.366 −0.024± 0.458 11
Camera, Laser (2) 0.077± 0.199 0.013± 0.320 −0.064± 0.373 0
Laser (3) 0.013± 0.234 0.150± 0.213 0.093± 0.328 0
Camera, Laser (3) 0.010± 0.199 0.122± 0.169 0.046± 0.341 0

Table 4.3: Reached localization accuracy (i.e., mean and standard deviation
of the errors) under three different environmental conditions: high
grass occludes most gird map features (1), bright sunlight and
medium hight grass (2), ideal conditions (3).
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Figure 4.13: Average pose errors of the localization algorithm on the round-
trip Albert-Einstein-Allee/Berliner-Ring using the image MSER
and grid map MSER as features.
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The mean pose error and the respective standard deviations for those evaluations in
which the vegetation alongside the road had been really high reveal the expected
result: The laser scanner only approach evidently performed much worse than in
the other two cases. The standard deviation of the lateral error was above 0.4m
which renders maneuvering the autonomous vehicle safely on its own lane infeasible.
Furthermore, in more than one-fifth of the test runs the localization failed entirely,
i.e., the position error exceeded terr = 5m. Thus, it becomes obvious again that
relying on one sensor alone does entail the risk of a total system failure, which
obviously has to be avoided when driving autonomously on a publicly accessible
road. In combination with the image MSERs, the error margins of all three domains
became much smaller and none of the runs failed entirely. In all test cases where
the camera and the laser scanner were used in combination, the standard deviation
of the lateral error was below 0.2m and the standard deviation of the longitudinal
error was 0.32m or significantly less.
Figure 4.13 shows the courses of the error of the estimated lateral and longitudinal
position along with the course of the error of the estimated orientation exemplary for
the ideal conditions test case. The offsets of up to 0.15m may again predominantly
be due to the misalignment of the global grid map used for mapping and the local grid
map used for localization. With this overall quality of the position estimation, driving
autonomously on this route is possible. Further, given the very good orientation
estimation it is possible to assign other traffic participants to their respective lanes.
This facilitates a sensible trajectory planning for the autonomous vehicle (e.g., when
deciding whether the trajectory should follow another object or if this object should
be passed).

4.5.4 Conclusions

The presented MCL algorithm reliably estimates the vehicle’s 2D pose using MSER
features detected in camera images and MSER features extracted from an occupancy
grid map which is created using laser scanner data. The pose estimation error
is small enough to allow for autonomous driving on a public route with a highly
automated vehicle. This has been proven under different environmental conditions
and, more importantly, during several public presentations.
Further, also the localization performance on other routes has been evaluated: It has
been proven that, even though the features were designed to match the conditions of
the route of the autonomous drive perfectly, the localization accuracy on a normal
rural road is not worse – it actually is better. Hence, driving autonomously on a
rural road should be possible – at least from a localization perspective.
In addition to this, the presented approach allows for an easy exchange or extension
of the features that are utilized, as demonstrated by the evaluation in Section 4.5.1,
where additional radar detections are used.
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Another great benefit of the presented localization algorithm or, more precisely, the
associated mapping scheme, is that it allows for generating new landmark maps on
the fly: Simply driving the route and localizing the vehicle with a reference system
(ADMA) is enough to obtain a completely new map of landmarks. Further, it is
also possible to only replace the landmarks of a certain type, e.g. only the image
MSER landmarks. Thanks to this flexibility, a new map of landmarks can be created
almost immediately. This quality of the proposed mapping procedure has already
proven to be very valuable, when roadworks changed the road layout over several
hundred meters entirely. These roadworks had begun just shortly before the first
public presentation of the autonomous vehicle was scheduled at Ulm University.
Nevertheless, there is still some room for improvements: First of all, allowing
continuous lines to be used as features would certainly boost the performance in
those cases where only the data from the camera is used. Further, this would
significantly increase the scenarios in which the localization algorithm reaches a
satisfactory accuracy. Another aspect that could be improved are the features that
are created from the laser scanner data. They are well tailored to the roadsides of
rural roads and inner city courses, but cannot be used on highways. The reason for
this is that the guarding rails on highways do almost entirely reflect the laser beams
and therefore no other objects can be detected. Again, allowing continuous features
(i.e., the guarding rails) also in the grid map would be a sensible improvement.
Nevertheless, another strong longitudinal feature would be required to facilitate the
use on highways.
Finally, a pitch angle estimator would clearly improve the overall performance, since
the pitching contradicts the flat world assumption that is made in both feature
extraction algorithms.



Chapter 5

Simultaneous Localization and
Mapping with RFS

The Simultaneous Localization And Mapping (SLAM) problem has been a popular
research topic in the robotics domain for decades, starting in 1986 [BD06; DB06;
SC86]. Its ultimate goal is to localize a moving robot precisely on an – a priori
entirely unknown – map while consistently generating this particular map. This
obviously is a non-trivial task since:

• Localization, i.e., finding the robot’s pose by estimating its relative pose to
known stationary landmarks, requires a map of these landmarks.

• Mapping, i.e., perceiving new stationary landmarks and storing their (global)
position, requires an exact knowledge of the robot’s pose.

When taking into account that real sensor data is always non-perfect, i.e., it is subject
to noise and drift, this problem constitutes a classical “chicken or the egg” causality
dilemma (cf. e.g., [MT07]): The errors in the sensor data used to estimate the ego
motion of the vehicle (e.g., odometry data or data from inertial measurement units),
lead to an erroneous estimation of the vehicle’s pose. Then again, measurements
of the landmark locations are distorted by two factors: The measurement noise of
the sensor used to perceive the landmark (e.g., cameras, laser scanners or radar)
and the corrupted pose estimate. Due to this correlation, as discovered by Smith
et al. in 1986 [SC86], the correct path of the vehicle has to be estimated in order
to be able to estimate the correct map (i.e., both has to be done simultaneously).
Although, in theory, SLAM is a solved problem [DB06], it still remains one of the
greatest challenges when it comes to a practical realization.
In recent years, this direction of research has become more relevant to the driver
assistance research community. The reason for this is that many currently developed
ADAS aim at achieving a higher degree of vehicle automation. Thus, the borders
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between highly automated vehicles and robots begin to fade and the problems that
have to be solved are very similar: autonomously navigating service robots and highly
automated cars have much in common. SLAM is exactly one of these problems that
have to be solved in order to build truly autonomous systems.
First of all, this chapter presents the mathematical formulation of the SLAM problem.
After that, a short review of the state of the art in vector-based SLAM is given.
Then, a more recent approach is described, the so called Random Finite Set (RFS)
SLAM. RFS-SLAM has, up until now, usually been implemented using Probability
Hypothesis Density (PHD) filters, as e.g., in [AMV13]. Thereafter, a novel Labeled
Multi-Bernoulli (LMB) filter [RVVD14] based implementation is introduced and
adapted to the problem of doing SLAM. Both of the RFS-based approaches are
compared and evaluated. Finally, the integration of a database (see Section 5.6) into
the SLAM framework as some sort of “long-term learning map storage facility”, is
proposed.

5.1 Formulation of the SLAM Problem for a Road
Vehicle

The core of the SLAM problem is to infer the trajectory or pose of a vehicle on a map
while creating this map. For a mathematically sensible description of the problem,
first of all the necessary definitions have to be given. Thereafter, the mathematical
formulation of the problem is described.

5.1.1 Definitions

Since a road vehicle usually moves only on the road surface, the 2D pose of the
vehicle is a sufficient representation of its location for most applications. Thus, its
state xk at time step k could be described by using a global UTM position and
an orientation angle between the vehicle heading and the UTM east axis as in the
previous chapter (cf. Chapter 4 and Section 3.2.2). However, this would require an
initial pose estimate in the global UTM coordinate frame. In order to keep things a
bit clearer a pose in the xy-plane is used instead in this chapter:

xk =
[
xk yk ψk

]T
. (5.1)

Hence, the pose of the vehicle is always relative to its initial pose x0 =
[
0 0 0

]T .
Constraining the state space X to valid poses in the xy-plane is sensible for the
purpose of doing SLAM for a road vehicle – nevertheless, the equations presented in
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the remainder of this chapter also hold true for entirely different state spaces.
A control input uk that, in conjunction with a motion model, describes the motion of
the vehicle between time step k − 1 and time step k is required. Again, this control
input is given by a velocity in x-direction vk (i.e., the velocity in direction of the
vehicle heading) and a yaw rate (cf. Section 4.4.2):

uk =
[
vk ψ̇k

]T
. (5.2)

Further, the set of measurements at time step k, Zk, consists of all the observations
z

(j)
k with j = 1, ..., nZk at time step k (nZk = |Zk|). These observations can either

be defined by their respective 2D coordinates in the vehicle coordinate frame

z
(j)
k =

[
x

(j)
k y

(j)
k

]T
(5.3)

or as range and bearing measurements comprising the distance r and the angle φ

z
(j)
k =

[
r

(j)
k φ

(j)
k

]T
. (5.4)

For the sake of completeness, sets on the history from time step 0 up to time step k
of the respective items are also defined:

• x0:k = [x0,x1, ...,xk] contains all vehicle poses and thus represents the com-
plete trajectory of the vehicle.

• u1:k = [u1,u2, ...,uk] comprises all the control inputs.

• Z0:k = [Z0,Z1, ...,Zk] covers all the observations that have been made.

Finally, the mapMk = {m1, ...,mnMk } is a set comprising all the landmarks m(i),
that could have been observed up until time step k (i.e., those landmarks that have
passed through the FOV of the sensors). Each of the landmarks is assumed time
invariant and is uniquely described by its state, i.e., a position in the xy-plane:

m(i) =
[
x(i) y(i)]T ∈ M, (5.5)

where M is the space of feasible coordinates.
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Figure 5.1: In each time step the vehicle is in a state x and makes an
observation z of a landmark m.1 The state transition of the
vehicle is governed by the control input u (cf. depiction in
[MT07]).

5.1.2 Probabilistic Formulation of SLAM

The aim of simultaneous localization and mapping is to optimally estimate the map
M alongside with the vehicle’s trajectory x0:k up to time step k (or respectively its
pose xk as in EKF-SLAM). In general, this can be expressed probabilistically (cf.
eg., [DB06]) by the probability distribution

p(x0:k,M | Z0:k,u1:k,x0). (5.6)

An abstract SLAM scenario is depicted in Figure 5.1: A vehicle moves along a path
(blue circles) and makes observations (red boxes) of landmarks (red circles). Thereby,
the vehicle state in each time step, may be calculated by a probabilistic function
of the previous time step and the control input (gray circles). The motion model
describes exactly that relation between the previous state xk−1, the control input
uk and the new state xk. Thus, the transition density for the application of the
motion model to the vehicle can be expressed as

f+(xk | xk−1,uk). (5.7)

1For reasons of clarity and comprehensibility only one measurement and one landmark are used
in each time step in this description. Obviously, measurements of multiple objects are possible
and desirable in each time step, given an appropriate sensor.
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If the vehicle used for SLAM is the same as the one used for the localization, the
same dead reckoning principle (see Section 4.4.2) may be applied for the prediction
of the vehicle state, given its control input.
Further, the measurement model that basically describes how landmarks are perceived
by the vehicle’s sensor can also be regarded as a probabilistic function. In this case,
measuring a feature depends on the current state of the vehicle xk and the actual
landmark mapMk. Therefore, the measurement likelihood function is denoted as

g(Zk | xk,Mk). (5.8)

Then, one can derive a recursive update rule for the posterior, i.e., a Bayes filter for
SLAM where the landmark map is assumed to be static (cf. e.g., [MVAW08]):

p+(x0:k,Mk | Z0:k−1,u1:k,x0) =∫
f+(xk | xk−1,uk)p(x0:k−1,Mk−1 | Z0:k−1,u1:k−1,x0)dxk−1, (5.9)

p(x0:k,Mk | Z0:k,u1:k,x0) =
g(Zk | xk,Mk)p+(x0:k,Mk | Z0:k−1,u1:k,x0)∫ ∫

g(Zk | xk,Mk)p+(x0:k,Mk | Z0:k−1,u1:k,x0)dxkδMk
. (5.10)

The denominator of equation (5.10) involves integration over the map which in case
of a set representation implies calculating a set integral (denoted by δMk). If a
vector representation is utilized, it is replaced by a “normal” integral.
However, this Bayes filter is in general computational intractable and can only be
solved with the help of several assumptions and approximations [LIA14].

5.2 State of the Art

Since SLAM research has been going on for many years now, a wide range of
publications exists. In the following, only a very small excerpt, i.e., some very
significant approaches or approaches that are particularly relevant for this work, are
summarized and compared. A more thorough overview of SLAM research can be
found in e.g., [DB06] and [BD06].

5.2.1 Vector-Based SLAM

The state of the map that is estimated during SLAM has to be represented in a
sensible way. The standard way to do this is to stack the states of all landmarks in
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some sort of vector. Further, also the measurements have to be somehow pooled,
which is again usually done by relying on a vector representation. Most of the
approaches aiming to solve the SLAM problem are therefore so-called vector-based
approaches. Two of these approaches are outlined in the following: EKF-SLAM
and the Factored solution to SLAM (FastSLAM). While the first one is one of the
earliest SLAM algorithms and nevertheless still very popular, the latter is a more
recent – and thus a more advanced – representative of the SLAM algorithms.
As a consequence of the vector-based representation, the set of measurements at time
step k, Zk, is replaced by the vector Υk within this section. The set of landmarks
Mk is replaced by the vector Ωk, assuming that all landmarks have a probability of
existence equal to 1.0.

EKF-SLAM

The idea to use an Extended Kalman filter to tackle the SLAM problem under
Gaussian assumptions originates from the pioneering work of Smith and Cheeseman
in 1986 [SC86]. Since then many researchers have developed more advanced versions
of the EKF-SLAM algorithm (cf. [TBF05]). Nevertheless, all of these algorithms do
have the same foundation: An EKF is used to estimate the SLAM posterior (5.6),
which is represented by a multivariate Gaussian:

p(xk,Ωk | Υ0:k,u1:k,A0:k) =N (sk;µk,Σk) (5.11)
sk ={xk,m1, ...,mnMk } (5.12)

Note that EKF-SLAM requires an explicit association between landmarks and
measurements (denoted as association matrix Ak) and that it estimates the vehicle
pose xk instead of its path x0:k (in contrast to the other approaches presented in
this chapter).
In EKF-SLAM, the state sk comprises the pose of the vehicle and the positions
of the landmarks. Thus, the mean µk describes the most likely state of the map
as well as the state of the vehicle (i.e., all landmark positions and the 2D pose of
the vehicle). The covariance matrix Σk holds all correlations between each pair of
state variables (i.e., its size is 2nMk

+ 3 by 2nMk
+ 3) which already constitutes one

major disadvantage of this algorithm. The quadratic complexity in the number of
landmarks makes the evaluation of (5.19) inefficient for large numbers of landmarks.
Since the EKF [SSM62] linearizes the motion model and the measurement model at
the most-likely state of the system, it handles the underlying non-linearities in an
approximative fashion which works best if the models are only “slightly” non-linear.
As e.g., described in [MT07], given the non-linear motion model f(µk−1,uk) and
the non-linear measurement model g(sk,Ak) (which again incorporates the data
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association Ak), the update equations for the EKF are as follows:

µ̃k = f(µk−1,uk), (5.13)
Σ̃k = Σk−1 + Q

k
, (5.14)

Gk = ∇skg(sk,Ak) |sk=µ̃k;Ak=Ak , (5.15)
Sk = GkΣ̃kGT

k + Rk, Υ̃A
k

= g(µ̃k,Ak), (5.16)
Kk = Σ̃kGT

k S−1
k , (5.17)

µk = µ̃k + Kk(Υk − Υ̃A
k
), (5.18)

Σk = (I−KkGk)Σ̃k. (5.19)
(5.20)

Here, the predicted quantities are indicated by a tilde over the respective symbols
(i.e., the predicted measurements Υ̃Ak , the predicted mean µ̃k and the associated
covariance Σ̃k). Further, Q

k
is the linearized noise covariance of the motion model

and Rk the respective linearized noise covariance of the measurement model. Finally,
Gk denotes the Jacobian of the measurement function, Sk is the innovation covariance
and Kk describes the Kalman gain.
The association between measurements and landmarks, Ak, is usually found using
some sort of maximum likelihood heuristic, which can be problematic in some cases.
Since the EKF-SLAM formulation only tracks one association hypothesis it is prone
to fail if this hypothesis is incorrect [MT07]. Other than that it is still a good
approach to solving SLAM problems.

FastSLAM

The FastSLAM algorithm by Montemerlo et al. [Mon03; MTKW02] can be recognized
as one of the major breakthroughs in SLAM research. The great insight has been that
“the SLAM problem can be factored into a set of independent landmark estimation
problems conditioned on an estimate of the robot’s path” [MT07, p. 28]. This
observation enabled the use of particle filters to solve the SLAM problem. In a naive
approach the particle state would consist of 2nMk

+ 3 state variables, rendering it
impracticable. In contrast, in FastSLAM the one huge estimation problem is split in
many low dimensional estimation problems: A particle filter is used to estimate the
path posterior p(x0:k | Υ0:k,u1:k,Ak,x0). Hence, the particles’ states are hypotheses
for the vehicles’ poses. Further, each of the particles holds nMk

EKFs – each of them
tracking exactly one landmark, i.e., estimating the landmark posterior conditioned
on the path p(m(j) | x0:k,Υ0:k,u1:k,Ak). The FastSLAM algorithm is an example
of a “Rao-Blackwellized” particle filter, which, as a general concept, has already
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been presented earlier e.g., by Doucet et al. [DFMR00; DGA00].
In contrast to EKF-SLAM, FastSLAM estimates the posterior over the maps and
the vehicle paths, not the posterior over the maps and the vehicle pose [MT07].
However, since the only pose explicitly required by the update equations is the pose
from the previous time step, the rest of the previous path can be discarded. The full
SLAM posterior in FastSLAM is given by (cf. [MT07]):

p(x0:k,Ωk |Υ0:k,u1:k,A0:k,x0) =

p(x0:k | Υ0:k,u1:k,A0:k,x0)
nMk∏
j=1

p(m(j) | x0:k,Υ0:k.u1:k,A0:k), (5.21)

The filtering process that generates this posterior follows the standard particle
filtering algorithm (cf. Section 2.2), with the exception of the additional update of
the landmark EKFs within the particle filter’s update process. Obviously, the crucial
part of this algorithm is to determine the particle weights. They are calculated by
multiplying the weights of each of the observations j:

ω
(j)
k = 1√

| 2πS(j)
Ak,k

|
exp {−1

2(z(j)
k − z̃

(j)
k )T [S(j)

Ak,k
]−1(z(j)

k − z̃
(j)
k )} (5.22)

with z̃(j)
k being the predicted measurement and S(j)

Ak,k
being the innovation covariance

matrix (cf. [MT07]). This step inevitably requires some sort of feature management
component in order to find the associations between predicted measurements and
actual measurements.
Since FastSLAM scales logarithmically with the number of landmarks, it is much
better suited for larger environments than EKF-SLAM. Further it is also superior in
handling situations in which data association is ambiguous [MT03]. Getting rid of
the explicit correlation of landmarks of course also has its drawbacks. The primary
disadvantage of FastSLAM, when compared to EKF-SLAM, is that loop closing
gets much more difficult [TBF05]. In SLAM, loop closing refers to the process of
detecting that the vehicle has previously already been near the current position
and then using that knowledge to correct the current state estimate. In contrast to
EKF-SLAM, FastSLAM does not maintain direct correlations in the map anymore
but only considers them through the diversity in the particle sets. Therefore, loop
closing performance depends on the number of particles which again has an impact
on the computational effort.
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5.2.2 RFS-Based SLAM

Within the last decade Finite Set Statistics (FISST) has become a popular and
powerful tool in the multi object tracking domain. Based on the work of Mahler
[GMN97; Mah07], several implementations of the multi-object Bayes filter where the
multi-object state is represented by a random finite set, have been realized. Mullane
et al. [MVAW08] were the first to apply this approach to the SLAM problem. Since
then, primarily variations of the PHD filter have been implemented in FISST-based
SLAM publications [AMV13; AVMM14; ILA14; LCS12; LIA14; LNP+14; MVAV11b;
MWR+14].
In contrast to the previously presented SLAM approaches, random finite set-based
SLAM does not rely on vectors to represent the map and the measurements. Instead,
as the name already implies, random finite sets are used. This obviously leads
to entirely different filtering approaches, as described in Section 5.3. When doing
SLAM, the number of detections in each time step is in fact a random variable and
also the value of each of the measurements is random. Thus, a random finite set
of measurements at time step k, Zk, is defined. This RFS encapsulates all possible
combinations of feature detections z(j)

k , i.e., from detecting nothing Zk = ∅ up to
making nZk detections Zk = {z(1)

k , ...,z
(nZk )
k }. Finally, the map Mk is also modeled

as an RFS comprising all the landmarks m(j), j = 1, ..., nMk
that could have been

observed up unto time step k (i.e., those landmarks that have passed through the
field of view of the sensor). This representation directly facilitates a consideration of
the existence or non-existence of landmarks.

5.2.3 Advantages of RFS-Based SLAM

As already illustrated in, e.g., [AMV13], representing measurements and landmarks
as RFSs is more appropriate than using vectors. Using vectors would imply an order
of the represented elements, which obviously does not really exist. So, if two vehicles
pass through the same environment but along different routes, they would produce
different maps (see Figure 5.2), although the landmarks are actually the same. In
contrast, as the RFS naturally encapsulates all possible permutations of its elements,
the feature association problem is entirely circumvented. This is not only beneficial
when comparing maps of two different routes through the same area, but also in
each time step when measurements and features are associated, cf. [MVAV11b] and
Figure 5.3. Thus, one of the major problems of vector-based SLAM simply does not
exist in RFS-SLAM.
Additionally, in a vector representation the dimension of the measurement vector
in each time step is fixed, which neglects the possibility of false alarms and missed
detections. The concept of measurement statistics, i.e., a false alarm rate and
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Figure 5.2: The order in which landmarks are measured should not matter,
since landmarks do not posses an inherent ordering. Nevertheless,
when using vector-based approaches the landmarks are stacked
in a vector which constitutes an order. Thus, when two vehicles
pass through the same environment along different paths, the
results are two different maps (blue vs. gray indices indicate
order of landmarks in the picture; cf. depiction in [AMV13]).

the probability of detecting a feature given the robot’s pose, is usually ignored in
vector-based formulations. On the contrary, the RFS representation enables the
integrated, joint handling of the spatial uncertainty along with the uncertainty in
feature existence. That is, the number of existing features is directly estimated
throughout the filtering process respecting the false alarm rate and the probability
of detection [AVMM14]. These are obviously great benefits, regarding the facts that
when real sensors are used:

• measurements are noisy

• clutter measurements / false alarms do exist

• missed detections do occur

As opposed to this, in vector-based implementations, some sort of (usually heuristic)
data association and map management component is inevitably necessary to be able
to cope with these challenges. These components are not integrated in the Bayesian
estimator which renders such an approach much more fragile.
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Figure 5.3: Feature to measurement association problem: The indices of the
measurements that correspond to one feature (red boxes) may
vary between time steps. This is due to the vehicle movement
(i.e., the FOV changes) and the occurrence of missed detections
and false measurements (red stars). Therefore, the association
problem has to be solved when vector-based approaches are used
(cf. depiction in [AMV13]).

5.3 Rao-Blackwellized-RFS-SLAM

This section describes the Rao-Blackwellized SLAM formulation for random finite
sets, i.e., RB-RFS-SLAM. First of all, the foundations of RFS-based SLAM are
described. Then, an approach using a PHD filter, which was presented by Mullane
et al. [MVAV11b], is outlined in Section 5.3.2.

5.3.1 RFS-SLAM Foundations

The RFS-SLAM algorithms described in the following make use of Rao-Blackwellized
particle filters, as it is also done in FastSLAM. Similarly to FastSLAM the PDF on
the vehicle’s trajectory is estimated by a particle filter. However, map estimation,
and hence also the weighting of the particles, is carried out very differently than in
FastSLAM.



84 Simultaneous Localization and Mapping with RFS

The major concern of the following sections is the estimation of the map conditioned
on the trajectory. The map and the trajectory may obviously be different for every
particle. However, the explicit display of the index of the particle is omitted in
the following whenever possible for the sake of clarity. Further, the respective
probability densities that are used extensively are abbreviated as follows: The
posterior probability density of the map, π(Mk | Z0:k,x0:k), is abbreviated by
πM whenever possible. Further, the predicted probability density of the map,
π+(Mk | Z0:k−1,x0:k) is abbreviated by πM+.

Map State Transition

As already mentioned, the map state is modeled as an RFS in RB-RFS-SLAM. Since
the vehicle moves permanently, the known map is evidently subject to change while
the landmarks themselves are assumed to be stationary. Thus, the map is said to be
pseudo-stationary and the real feature map evolves according to the equation:

Mk = Mk−1 ∪ Bk. (5.23)

This modeling explicitly considers the creation of new landmarks within the sen-
sor’s field of view through the “Birth-RFS” Bk. This “Birth-RFS” models the
landmarks being in the sensor’s FOV at time step k that have not been in Mk−1
(i.e., (M \Mk−1) ∩ FOV(xk), where M is the RFS representing the entire map and
FOV(xk) is the sensor’s FOV given the vehicle’s pose). The map state transition
density is then given by [AMV13]:

fM(Mk | Mk−1,xk) =
∑

W⊆Mk

fM(W | Mk−1)fB(Mk \W | xk), (5.24)

with fM(W | Mk−1) being the transition density of the features having been in
the FOV up until time step k − 1 and fB(Mk \W | xk) being the density of the
“Birth-RFS” Bk. Thus, it is basically an abstract adaption of the general multi-object
transition density described in equation (2.28).

Measurement Modeling

First of all, measurements are not considered to be always true positive measurements,
as it is the case with most other SLAM approaches. As already presented in [AMV13;
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MVAV11b], this becomes obvious in the modeling of the measurement RFS:

Zk =
⋃

m∈Mk

Dk(m,xk) ∪ Ck(xk), (5.25)

where the RFS of clutter measurements is denoted as Ck(xk) and the RFS of a
feature measurement is Dk(m,xk). It is modeled as a Bernoulli-RFS (cf. Section
2.3.1 and [MVAV11b]) and describes a feature measurement being generated by a
landmark m. Hence, Dk(m,xk) may either represent a single measurement or may
be empty. That is, with a probability of 1−pD(m,xk) the RFS Dk(m,xk) is empty:

Dk(m,xk) = ∅, (5.26)

where pD(m,xk) is the probability of detecting landmark m when being positioned
as described through the pose xk. Moreover, for each m ∈ Mk and z ∈ Zk, the RFS
Dk(m,xk) is a singleton:

Dk(m,xk) = {z}, (5.27)

with the probability density pD(m,xk)g(z | m,xk). Thereby, the likelihood that
the vehicle’s sensor measures z based on m and xk is given by g(z |m,xk). The
feature measurement RFS therefore directly incorporates the handling of spatial
uncertainty (through g(z |m,xk)) and the uncertainty of detection [AMV13]. Thus,
in combination with the consideration of clutter measurements (by Ck(xk)) this
approach obviously enables the integrated handling of all kinds of measurement
uncertainties.
Then, the probability density that the measurement RFS Zk is produced (cf.
[MVAV11b]), given the map and the pose is defined by:

g(Zk | Mk,xk) =
∑

W⊆Zk

gD(W | Mk,xk)gC(Zk \W). (5.28)

Again, this multi-object likelihood is an abstract reformulation of the general multi-
object likelihood described by equation (2.32), where summing over the hypotheses
now corresponds to summing over all subsets of Zk. Spurious measurements of the
sensor are considered for each subset W by the probability density gC(Zk \W), which
is then the density of the clutter RFS Ck (cf. [MVAV11b]). Further, the density
of the RFS of observations Dk, is denoted as gD(W |Mk,xk), which describes the
likelihood that a set of measurements W is actually received from the elements of
the landmark map also considering the respective uncertainties as mentioned above
(cf. [MVAV11b]).
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RFS Bayes Recursion Formulation

Similar to FastSLAM, the full SLAM posterior is factored into the density of the
map conditioned on the trajectory and the density of the trajectory:

π(x1:k,Mk | Z0:k,u1:k,x0) = p(x1:k | Z0:k,u1:k,x0) π(Mk | x0:k,Z0:k). (5.29)

The Bayes recursion can then be equivalently executed by jointly propagating the
posterior density of the map conditioned on the trajectory and the posterior density
of the trajectory [MVAV11b]. Based on this, a Rao-Blackwellized (RB) particle filter
implementation can be executed by using the following equations. The posterior
density of the vehicle’s trajectory is (cf. [MVAV11a]):

p(x1:k | Z0:k,u1:k,x0) = g(Zk | Z0:k−1,x0:k)×
fx(xk | xk−1,uk)p(x1:k−1 | Z0:k−1,u1:k−1,x0)

g(Zk | Z0:k−1) , (5.30)

using the measurement likelihood function

g(Zk | Z0:k−1,x0:k−1) =
∫
π(Zk,Mk | Z0:k−1,x0:k)δMk. (5.31)

Further, the map posterior density is given by (cf. [MVAV11a]):

πM =
g(Zk | Mk,xk)πM+
g(Zk | Z0:k−1,x0:k) , (5.32)

with the predicted probability density of the map being

πM+ =
∫
fM(Mk | Mk−1,xk)π(Mk−1 | Z0:k−1,x0:k−1)δMk−1. (5.33)

As this full recursion includes the calculation of set integrals, it is computationally
intractable. Therefore, some approximations have to be made. They are described
in the following sections for RB-PHD-SLAM, and RB-LMB-SLAM respectively.

5.3.2 RB-PHD-SLAM

As the name RB-PHD-SLAM already implies, an RB formulation is employed again.
The consequence of this is that the filter estimates multiple independent map PHDs,
each conditioned on the vehicle trajectory represented by the respective particle and
its according weight. Thus, the PHD filter is solely used to estimate these maps.



5.3 Rao-Blackwellized-RFS-SLAM 87

The PHD Filter for SLAM

The estimated map of each particle at time step k is approximated by its respective
PHD, v, and represented as Gaussian mixture [MVAV11b]:

vk(m | Z0:kx0:k) =
Jk∑
j

w
(j)
k N

(
m;µ(j)

k ,P(j)
k

)
, (5.34)

with the Gaussians being defined by their weights w(j)
k , mean values µ(j)

k and
covariances P(j)

k .
If it is assumed that the map (and the clutter measurements) follows a multi-object
Poisson distribution [LIA14; MVAV11a] (implying that the features of the map
are assumed to be Independent and Identically Distributed (i.i.d.) and that their
cardinality follows a Poisson distribution), then it is possible to recover the probability
density of the map from the PHD intensity function [AMV13]. Thus, with these
assumptions a computationally tractable implementation of the map estimation
process is possible: The predicted and posterior maps are approximated by Poisson
RFSs (cf. Section 2.3.1) utilizing the first order moments of the respective RFSs
(i.e., their PHDs v+(m | Z0:k−1,x0:k) and v(m | Z0:k,x0:k), cf. [MVAV11b]):

πM+ ≈

∏
m∈Mk

v+(m | Z0:k−1,x0:k)

exp(
∫
v+(m | Z0:k−1,x0:k)dm) (5.35)

and

πM ≈

∏
m∈Mk

v(m | Z0:k,x0:k)

exp(
∫
v(m | Z0:k,x0:k)dm) . (5.36)

Given these approximations, the essence of the PHD filter, i.e., its predictor- corrector-
equations (cf. Section 2.3.2) adapted for estimating the SLAM-state can be used and
are described in the following. First of all, the predicted map in RB-PHD-SLAM is
calculated by expressing the map state transition equation (5.24) in terms of the
PHDs of the RFSs, i.e.:

v+(m | Z0:k−1,x0:k) = vk−1(m | Z0:k−1x0:k−1) + b(m | Z0:k−1x0:k), (5.37)

with the b(m | Z0:k−1x0:k) being the PHD of the “Birth-RFS” [MVAV11b].
Using the measurement likelihood g(z |m,xk), the probability of detection pD(m,xk)
and the PHD of the clutter RFS Ck(xk), denoted as κk(z | xk), the PHD-corrector
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is then given by [MVAV11b]:

v(m | x0:k) = v+(m | x0:k)
[

1− pD(m,xk)+

∑
z∈Zk

pD(m,xk)g(z |m,xk)
κk(z | xk) +

∫
pD(ξ,xk)g(z | ξ,xk)v+(ξ | x0:k)dξ

]
. (5.38)

Despite the approximations introduced along with the PHD filter, the calculation
of the SLAM posterior (5.29) still requires set integration, which is numerically
intractable. Particularly, the computation of equation (5.30) is numerically in-
tractable, since it involves the computation of the set integral of equation (5.31) (cf.
[MVAV11b]).
However, solving equation (5.32) for g(Zk | Z0:k−1,x0:k−1) results in

g(Zk | Z0:k−1,x0:k−1) =
g(Zk | Mk,xk)π+(Mk | Z0:k,x0:k)

π(Mk | Z0:k,x0:k) , (5.39)

and it can be seen, that the map Mk does not occur on the left hand side, but in the
nominator and denominator of the right hand side. This, according to [MVAV11b],
leads to the conclusion, that the map is only a dummy variable. Thus, as the left
hand side is independent of Mk, equation (5.39) can be evaluated for any arbitrary
choice of Mk. Based on this finding, it is possible to calculate the measurement
likelihood conditioned only on the trajectory in closed form.

Particle Weighting

As with FastSLAM, the vehicle transition density is chosen as the proposal density
in RB-PHD-SLAM [MVAV11b]. Therefore, the weight of particle i can similarly be
calculated by:

ω
(i)
k = g(Zk | Z0:k−1,x

(i)
0:k)ω(i)

k−1. (5.40)

The actual calculation of the particle weights nevertheless differs severely from
the weight calculation in FastSLAM since it is not possible to approximate the
measurement likelihood under an EKF-Framework when using random finite sets.
However, the finding that the likelihood of equation (5.39) can be evaluated for any
arbitrary choice of Mk allows for different strategies to determine the likelihood
g(Zk | Z0:k−1,x

(i)
0:k). The following three strategies are the most common and have

been published in [MVAV11b] and [LIA13] respectively:
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• The empty map strategy: All features are considered Poisson distributed
clutter, i.e., Mk = ∅.

• The single-feature strategy: All but one single feature are considered to be
clutter for the calculation of the particle weights, i.e., Mk = {m∗}. This
feature could be chosen by selecting the one with the highest measurement
likelihood or the lowest uncertainty.

• The multi-feature strategy: Mk is chosen such that it includes all estimated
landmarks (up to an upper bound) being in the FOV of the vehicle. This is
much more computationally demanding than the other two approaches. Details
on the necessary approximations for keeping the algorithm computationally
tractable can be found in [LIA13].

Although equation (5.39) may be evaluated for an arbitrary map, the different strate-
gies do not lead to the same exact results. The reason for this is that the actual map
is approximated and not exactly represented (cf. equations (5.35), (5.36)) [LIA13;
MVAV11b]. Thus, the difference in the quality of the approximations that are
made by the different approaches may lead significantly different filter performances.
According to Leung et al. [LIA13] the last option, as one might intuitively expect,
outperforms the other approaches. Therefore, also multiple features have been used
for the evaluation presented in Section 5.5.

Finally, all the weighted particles of RB-PHD-SLAM together directly constitute
a representation of the estimated path and map: In RB-PHD-SLAM it is possible
to determine the posterior of the map by averaging over all feature maps. That is,
as explained in [MVAV11b], the expectation of the trajectory-conditioned PHDs
already delivers the posterior PHD of the landmark map:

vk(m) = E[vk(m | x0:k)]. (5.41)

This is a natural result of the PHD formulation, and is therefore entirely math-
ematically motivated. In contrast to that, in FastSLAM either the particle with
the highest weight is selected to represent the estimated path and the respective
landmark map or some kind of heuristic is used to determine an average feature
map.
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5.4 RB-LMB-SLAM

This section details the novelty presented in this thesis: The Rao-Blackwellized
Labeled Multi-Bernoulli SLAM. In the following it will be shown how LMB filters
can be used to estimate the feature map conditioned on the vehicle’s trajectory. The
factorization of the SLAM posterior (equation (5.29)), requires the estimation of the
multi-object probability density π(Mk | x0:k,Z0:k,u1:k), which can be done by using
an LMB filter. Hence, this chapter focuses exactly on this part of the estimation
problem. Similar to FastSLAM and RB-PHD-SLAM a Rao-Blackwellized particle
filter is used. Thus, this part of the algorithm will not be described again (see
Sections 2.2, 4.4, 5.2.1 and 5.3.2). Nevertheless, the weighting of the particles, which
obviously has a severe effect on the performance of the algorithm, and which again is
highly dependent on the underlying map estimation, is also described in this section
(see Section 5.4.2). Further, it is shown that the LMB filter, in contrast to the PHD
approach, directly provides an exact solution for determining the particle weights.

5.4.1 The Labeled Multi-Bernoulli Filter for SLAM

The adaption of the LMB filter to be used in RB-LMB-SLAM is described below.
The particular steps of the filtering process, as depicted in Figure 5.4, are outlined
one by one. The subsequent description and also the presented equations of this
specialized LMB filter are closely along the lines of the work of Reuter, who originally
presented the LMB filter for multi-object tracking [Reu14; RVVD14]. The derivations
of the general LMB filter prediction and update steps can be found in [Reu14].

LMB Representation

In the LMB filter for SLAM, the predicted and posterior multi-object densities are
represented by LMB RFSs which are described by their respective parameter set:

π+(Mk | x0:k,Z0:k−1) = {(r(`)
+ , p

(`)
+ )}`∈L+

(5.42)

π(Mk | x0:k,Z0:k) = {(r(`), p(`))}`∈L , (5.43)

where the labeled multi-object state Mk is a finite set on the space M × L, which
is spanned by the state space of the landmarks M and the discrete space of labels
L. Further, r(`) denotes the existence probability of an object and p(`) its spatial
distribution. For the sake of compactness, either the parameter set representations
or the abbreviations πM+ and πM are used in the following. The explicit display
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Figure 5.4: The LMB filtering process (cf. depiction in [RVVD14]).

of the conditioning on the states x0:k and the measurements Z0:k is omitted (but
nevertheless valid) whenever possible. For the same reason, the time index k is
omitted as well whenever it is not inevitably necessary. Similar to RB-PHD-SLAM,
a GM implementation is used to model the spatial distribution p(`)(·). Thus, the
posterior probability density of any of the labeled Bernoulli tracks, with label ` ∈ L,
is given by:

p(`)(m) =
J(`)∑
j=1

w(`,j)N
(
m;µ(`,j)

k−1 ,P
(`,j)
k−1

)
. (5.44)

The mean value of the jth Gaussian component is denoted by µ(`,j)
k−1 and its respective

estimation error covariance is P(`,j)
k−1 .
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Prediction

As described earlier, the predicted map follows the map state transition as described
by equation (5.24). Thus, the predicted LMB distribution is composed of the set of
surviving landmarks and the newly created landmarks (cf. [Reu14]):

πM+ =
{(
r

(`)
+,S , p

(`)
+,S

)}
`∈L
∪
{(
r

(`)
B , p

(`)
B

)}
`∈B

, (5.45)

where B is the label space of the new born tracks and B ∩ L = ∅.
Within the context of landmark map estimation, the general case of of the LMB predic-
tion can be simplified. In the original formulation, when using a GM implementation,
the state transition is required to follow a linear Gaussian process model with state
transition matrix F and process noise covariance Q, i.e., f+(m|ξ) = N

(
m; Fξ,Q

)
(cf. [Reu14]). However, since the landmarks are assumed to be stationary, the state
transition matrix equals the identity matrix F = 1. Using the survival probability
pS , the predicted existence probability and the predicted spatial distribution of the
surviving track ` are given by

r
(`)
+,S = r(`) · pS , (5.46)

p
(`)
+,S(m) = p(`)(m). (5.47)

The survival probability pS < 1 is constant for the tracks which are definitely within
the sensor’s FOV. For those in the border area of the FOV this probability may
be chosen to increase towards pS = 1, which then holds for all tracks outside of
the FOV. Although, the predicted spatial distribution is defined to be the same
as the prior distribution, adding a small additive Gaussian noise to all landmarks
being in the FOV of the sensor during the prediction step might be beneficial for
the robustness of the algorithm. This is similarly done in the implementation of the
RB-PHD-SLAM [LI14].
Further, the second part of equation (5.45) has to be taken into consideration as
well: the new born tracks. An adaptive approach that uses the measurements of the
previous time step Zk−1 to create the birth distribution of the current time step k,
is employed here (cf. [Reu14]):

πB(Bk | x0:k,Z0:k−1) =
{
r

(αi)
B (m|zi), p(αi)

B (m|zi)
}|Zk−1|

i=1
.

The labels αi originate from the label space of new tracks B ={αi : i ∈ {1, ..., |Zk−1|}}.
In one possible implementation, these labels could be obtained by creating a unique
identifier from the combination of the measurement’s timestamp and the measured
relative position. This way, it would also be ensured that each and every particle’s
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LMB filter uses the same labels for the same landmark.
When creating the birth distribution using the measurements of the previous time
step, those measurements that have not contributed in any hypotheses during the
update in the previous time step (cf. the paragraph about the update below) should
obviously be more likely to create a birth component than those that have been
used in all hypotheses with a high weight. To achieve this, the probability that a
measurement z ∈ Z(i), (Z(i) contains the measurements being in group i, cf. the
paragraph about grouping below), has been assigned to an existing track is calculated
by (cf. [Reu14]):

rU,k−1(z) =
∑

(I+,θ)∈F(L(i)
+,k−1)×Θ(i)

I+

1θ(z)w(I+,θ)
k−1 (Z(i)

k−1). (5.48)

As described by the equation, in order to obtain such a probability all hypothesis
weights w(I+,θ)

k−1 (Z(i)
k−1) in which the measurement z is assigned to an existing track

(ensured by the inclusion function 1θ(z)) are simply summed up. Thus, the sum runs
over (I+, θ), i.e., the hypotheses θ and their associated sets of predicted labels I+

that are within F(L(i)
+,k−1)×Θ(i)

I+
, which again describes the space that is spanned

by all finite subsets of the predicted labels within group i at the previous time step
F(L(i)

+,k−1) and the space of all possible association hypotheses for the tracks and
measurements within that group, Θ(i)

I+
. More details on the respective quantities,

e.g., how the hypothesis weights are calculated (cf. equation (5.66)), are described
in the following sections.
Equation (5.48) only considers measurements that have been assigned to a group.
Those measurements that have not been assigned to any group have definitely not
been used during the update process and consequently have zero probability of
having been associated to any track, i.e., rU,k−1(z) = 0. Based on this finding and
equation (5.48), the birth existence probability r(`)

B (with ` ∈ B) can be determined
by (cf. [Reu14])

r
(`)
B (z) = min

rmax
B ,

1− rU,k−1(z)∑
ξ∈Zk−1

1− rU,k−1(ξ)
· λB

 , (5.49)

where the expected number of new born objects is λB. The minimum operator
ensures that a maximum birth existence probability rmax

B ∈ [0, 1] is not exceeded.
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Finally, the spatial distribution of the new born tracks is given by

p
(`)
B =

JB∑
j=1

w
(`,j)
B N

(
m; m̂(`,j)

B ,P(`,j)
B

)
, (5.50)

where the number of Gaussians JB is a parameter of the birth model and the states
m̂

(`,j)
B as well as the according estimation error covariances P(`,j)

B are determined by
a transformation of the corresponding measurement z to the state space (e.g. from
the polar coordinate system of a sensor to Euclidean xy-coordinates).

Update

The update of the LMB filter requires several steps, since the LMB RFS is not closed
with respect to the measurement update [RVVD14]. This is because an LMB RFS
is defined as union of independent Bernoulli components. However, updating the
tracks cannot be done independently for these components if it is assumed that one
measurement is generated by not more than one object: This assumption implies that
if a measurement j is associated to one track `i∗ (i.e., θ(`i∗) = j, with θ being the
association map) it may not be associated to another track (i.e. θ(`i) 6= j ∀ i 6= i∗).
Hence all tracks and measurements have to be taken into consideration at the same
time during the update which renders an independent update impossible. Therefore,
the definition of the LMB RFS would be contradicted.
Thus, for executing the measurement update, the predicted LMB RFS is replaced by
its δ-GLMB representation first (cf. Section 2.3.1). Then, the full δ-GLMB update
is performed, before the updated δ-GLMB RFS is finally approximated by an LMB
RFS. Although it is possible to perform the full δ-GLMB update at once, it makes
sense to first group the landmarks and measurements with respect to their position
in space. The grouping has a very significant performance impact if the landmarks
and measurements can be separated into distinct groups, since the updates of the
different groups can be run parallel. The grouping again, requires the likelihoods of
all track to measurement associations, which are also a prerequisite when calculating
the respective updated posterior distributions. Hence, it makes sense to calculate
them as a very first step and to store them until they are used again during the
actual update. In the following paragraphs, all required steps are described in more
detail within the following order: calculation of the association likelihoods, gating
and grouping, determination of the δ-GLMB representation of the predicted LMB
densities, δ-GLMB-update, LMB approximation of the updated δ-GLMB densities
and finally unification of the groups and track extraction.
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Association Likelihoods For an association map θ, the likelihood of the track
(label) to measurement association is given by the inner product of the predicted
spatial distribution and the generalized measurement likelihood (cf. [Reu14]):

η
(θ)
Z,x(`) =

〈
p+(·, `), φZ,x(·, `; θ)

〉
. (5.51)

The generalized measurement likelihood φZ,x(m, `; θ) which incorporates the possi-
bility of a missed detection (i.e., θ(`) = 0 ) as well as an update with a measurement
zθ(`) (i.e., θ(`) > 0), is defined as

φZ,x(m, `; θ) = δ0(θ(`))qD(m, ` | x0:k) + (1− δ0(θ(`)))
pD(m, `)g(zθ(`)|m, `,x0:k)

κ(zθ(`))
.

(5.52)

In this equation, the probability of a missed detection is denoted as qD(m, `) =
1− pD(m, ` | x0:k) and, similar to Section 5.3.1, the spatial likelihood of the mea-
surement zθ(`) and the landmark track labeled ` is described by g(zθ(`)|m, `,x0:k).
Moreover, the clutter process is again assumed to follow a Poisson distribution and
accounted for by κ(zθ(`)) = λcc(zθ(`)) which represents the intensity function of
such a process with a mean number of λc clutter measurements. In the following,
the detection probability and the probability for a missed detection are assumed to
be state independent [UEW07]. Based on this, the likelihood of the association of
measurement zθ(`) to track ` expressed in terms of the GM implementation becomes
(cf. [Reu14])

η
(θ)
Z,x(`) = pD

κ(zθ(`))

J
(`)
+∑
j=1

w
(`,j)
+ N

(
zθ(`); z

(`,j)
+ ,S(`,j)

)
. (5.53)

The predicted measurement z(`,j)
+ and the innovation covariance S(`,j) are determined

through the standard EKF (or Kalman filter) equations using the measurement noise
R and the (nonlinear) measurement function h(·)

z
(`,j)
+ = h(µ(`,j)

+ ,x+), (5.54)

H = ∂h

∂m

∣∣∣∣
µ

(`,j)
+

, (5.55)

S(`,j) = HP(`,j)
+ HT + R. (5.56)
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Further, the likelihood of associating the track ` to the missed detection is given by

η
(θ)
Z,x(`) = qD. (5.57)

These association likelihoods η(θ)
Z,x(`) can be used directly for the grouping described

below as well as during the subsequent δ-GLMB update, and should hence be stored
temporarily.

Gating and Grouping In order to reduce computation times, the measurements
and tracks are grouped according to their position. The updates for the distinct
groups then can be run in parallel which is a great benefit when processor architectures
with a highly-parallel structure are used (e.g., Graphics Processing Units (GPU)).
The partitioning of the predicted LMB RFS π+ into mutually exclusive subsets
makes use of the gating of the measurements as presented in [Reu14]. Gating
aims at finding a reasonable set of measurements Z(`) for each track `, i.e., those
measurements that exhibit a spatial likelihood significantly above zero for the given
track. In the GM implementation of the RB-LMB-SLAM filter, the decision whether
or not a measurement zθ(`) is within the gate of track `, is made based on the
minimum of the Mahalanobis Distance (MHD) between all of the j GM components
of the track and the measurement:

d2
MHD(`) , min

j∈J(`)

[(
zθ(`) − z

(`,j)
+

)T (
S(`,j)

)−1 (
zθ(`) − z

(`,j)
+

)]
. (5.58)

Here, the previously determined predicted measurements (cf. equation (5.54)) and
innovation covariances (cf. equation (5.56)) are used. Whether a measurement is
within the gate of the landmark track or not, is determined by using an application
dependent threshold ϑ, i.e., the equation d2

MHD(`) < ϑ is evaluated. Now, by
enumerating the measurements in Z by Z = {1, ..., |Z|}, the measurements being
within the gate of track ` can be represented by the set Z(`) ⊆ Z. Taking the gating
of the measurements as a premise, the groups L(n)

+ of the predicted track labels can
be determined, such that the union of all groups contains all the predicted track
labels L+ and that every label only occurs in one group, i.e., L+ =

⋃N
n=1 L(n)

+ and
n 6= m =⇒ L(n)

+ ∩ L(m)
+ = ∅ (cf. [Reu14]). Consequently, the measurements have to

be partitioned accordingly into disjoint sets as well. In that process also the set of
measurements not associated to any track, Z0, has to be taken into consideration:

Z = Z0 ∪
N⋃
n=1

Z(n).
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A grouping is then given by

G(n) =
(

L(n)
+ ,Z(n)

)
. (5.59)

These groupings are found by starting off with |L+| groupings, one for each track `:

G(`) =
(
{`} ,Z(`)

)
. (5.60)

Then, all groupings i, j sharing at least one measurement, i.e. Z(i) ∩ Z(j) 6= ∅ have
to be merged according to

G(i) ∪ G(j) =
(

L(i)
+ ∪ L(j)

+ ,Z(i) ∪ Z(j)
)
. (5.61)

This procedure, as originally described in [Reu14], then results in N groups which
also constitutes a partitioning of the predicted LMB distribution

πM+ =
N⋃
i=1

{(
r

(`)
+,i, p

(`)
+,i

)}
`∈L(i)

+

. (5.62)

For the purpose of doing SLAM, where stationary landmarks are tracked, a sensible
gating is usually possible. Thus, the grouping procedure leads to good results.

δ-GLMB Representation In order to execute the update, the δ-GLMB repre-
sentations of the groups of predicted LMB distributions described in equation (5.62)
are required. For the grouping G(i) which contains the track labels L(i)

+ the predicted
δ-GLMB density which is equivalent to the respective predicted LMB density is
given by (cf. [Reu14]):

π
(i)
M̃+

= ∆(M̃(i)
+ )

∑
I+∈F(L(i)

+ )

w
(I+)
+,i δI+(L (M̃(i)

+ ))
[
p+
]M̃(i)

+ , (5.63)

where the discrete index set Ξ of the general δ-GLMB formulation (cf. equation 2.26)
is omitted as it is an empty set. While the LMB representation only describes one
hypothesis for the predicted landmark map, this δ-GLMB representation now features
multiple hypotheses as can be deduced from the sum over all subsets I+ ∈ F(L(i)

+ ).
Each of these hypotheses is only validated for one concrete realization of the RFS
M̃(i)

+ . This is done by the generalized Kronecker delta function which only evaluates
to 1 for the case where the set of labels I+ exactly matches the set of labels that are
extracted from the predicted map state of the group M̃(i)

+ by the projection L (·).
The respective weight for each set of track labels I+ used in equation (5.63) is
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determined by:

w
(I+)
+,i =

∏
j∈L(i)

+

(
1− r(j)

+

) ∏
`∈I+

1
L(i)

+
(`)r(`)

+

1− r(`)
+

, (5.64)

where the second product basically considers the existence of landmarks and the
first product considers the non-existence of landmarks (i.e., it cancels out with the
denominator of the second product for those labels being in the subset I+ and only
multiplies the probabilities of non-existence for those labels being in L(i)

+ but not in
I+). Finally, the respective multi-object state of the map M̃(i)

+ is described through

M̃(i)
+ =

{
m : L (m) ∈ L(i)

+ ∀ m ∈M
}
.

For groups with relatively few elements – as it should be the case when doing SLAM
with a limited set of meaningful features – all the hypotheses for all cardinalities
n = 0, 1, ..., |L(i)

+ | of the δ-GLMB distributions can be generated in a brute-force way.
However, if the number of tracks in the groups |L(i)

+ | gets higher one may resort to
hypotheses sampling [Reu14], since the number of hypotheses per grouping is 2|L

(i)
+ |.

δ-GLMB Update For a given grouping G(i), a track to measurement association
hypothesis within that group is described by the unique mapping between track
labels and measurements θ : L(i)

+ → {0} ∪ Z(i) (with θ(i) = θ(j) > 0 =⇒ i = j, i.e.,
one measurement originates from at most one landmark). Using these association
hypotheses, the posterior δ-GLMB distribution of the grouping according to the
δ-GLMB update is given by (cf. [Reu14]):

π
(i)
M̃

= ∆(M̃(i))
∑

(I+,θ)∈F(L(i)
+ )×Θ(i)

I+

w(I+,θ)(Z(i))δI+(L (M̃(i)))
[
p(θ)(·|Z(i),x0:k)

]M̃(i)

,

(5.65)
where ΘI+ denotes the space that comprises all unique mappings between any
possible subset I+ of the set of track labels L(i)

+ and the set of measurements:
θ : I+ → {0} ∪ Z(i) (again θ(i) = θ(j) > 0 =⇒ i = j).
The posterior hypothesis weight for any given set of track labels I+ within this
posterior δ-GLMB distribution is calculated by

w(I+,θ)(Z(i)) =
δθ−1({0∪Z(i)})(I+)w(I+)

+,i [η(θ)
Z(i),x

]I+∑
(I+,θ)∈F(L(i)

+ )×Θ(i)
I+

δθ−1({0∪Z(i)})(I+)w(I+)
+,i [η(θ)

Z(i),x
]I+

, (5.66)
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taking into account the predicted weights w(I+)
+,i as calculated by using equation

(5.64). Once again, the generalized Kronecker delta function is used such that this
weight is only non-zero for the concrete realization where the set of track labels I+
matches those labels used in the association hypothesis (in this case obtained through
the inverted association map of the measurements θ−1({0 ∪ Z(i)})). Further, the
association likelihoods η(θ)

Z(i),x
that have been calculated in the first step of the update

process (cf. equation 5.53) are considered. Although, the association likelihoods
have originally been calculated without the groupings (i.e., η(θ)

Z,x) they may now be
used again, as they are equivalent:

η
(θ)
Z(i),x

(`) = η
(θ)
Z,x(`)

Finally, the denominator in equation 5.66 simply normalizes the weights.
For groups with a large number of elements, an enormous amount of hypotheses
weights w(I+,θ)(Z(i)) have to be calculated. In this case, a truncation of the distri-
bution (5.65) may be required in order to not violate computing time restrictions
of the algorithm. As already proposed by Vo and Vo [VV13], a ranked assignment
algorithm (e.g., Murty’s algorithm [Mur68]) which only evaluates the most significant
hypotheses, can be used to achieve this.
Another integral part of updating the N predicted δ-GLMB distributions, is deter-
mining the measurement updated posterior spatial distributions of the landmark
tracks p(θ)(·|Z(i),x0:k) used in equation (5.65). In general they are given by (cf.
[Reu14]):

p(θ)(m, ` | Z0:k,x0:k) =
p+(m, ` | Z0:k−1,x0:k)φZ,x(m, `; θ)

η
(θ)
Z,x(`)

, (5.67)

where the generalized measurement likelihood φZ,x(m, `; θ) of equation (5.52) is
used again. Further, the normalization constant η(θ)

Z,x(`) is the association likelihood
that has already been determined earlier and has also been used for determining the
hypotheses weights (cf. equations (5.53) and (5.66)).
Within the Gaussian Mixture implementation, the posterior spatial distributions are
given by

p(θ)(m, `|Z0:k,x0:k) =
J

(`)
+∑
j=1

w(`,j,θ)(Zk)N
(
m;µ(`,j,θ)

k ,P(`,j)
k

)
, (5.68)



100 Simultaneous Localization and Mapping with RFS

with the weights of each of the respective j ∈ J
(`)
+ Gaussian components being

calculated by

w(`,j,θ)(Zk) =
1

κ(z
θ(`))pDw

(`,j)
+ N

(
zθ(`); z

(`,j)
+ ,S(`,j)

)
η

(θ)
Z,x(`)

. (5.69)

Further, the necessary posterior mean values µ(`,j,θ)
k and the covariances of the esti-

mation error P(`,j)
k are obtained using the Kalman filter equations (EKF respectively,

cf. equations (5.54)-(5.56)):

µ
(`,j,θ)
k (Z) = µ

(`,j)
+ + K(`,j)

(
zθ(`) − z(`,j)

+

)
, (5.70)

K(`,j) = P(`,j)
+ HT

[
S(`,j)

]−1
, (5.71)

P(`,j)
k = P(`,j)

+ −K(`,j)S(`,j)
[
K(`,j)

]T
. (5.72)

LMB Approximation Based on the updated δ-GLMB distribution, the respective
updated LMB distribution has to be determined. To obtain the LMB representation
of the tracks, the i = 1, ..., N updated δ-GLMB distributions π(i)

M̃
have to be

approximated according to

π
(i)
M̃
≈ π̃(i)

M =
{(
r(`), p(`)

)}
`∈L(i)

+

,

such that the LMB RFS matches the δ-GLMB RFS with respect to its unlabeled
PHD (cf. [Reu14]). To achieve this, the existence probability r(`) has to be equal
to the sum of the weights w(I+,θ)(Z) of all those hypotheses in which the landmark
track with the label ` exists, i.e.:

r(`) =
∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(`) (5.73)

Further, the spatial distribution p(`) of the track labeled ` is consequently given by

p(`)(m) = 1
r(`)

∑
(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(`)p(θ)(m, ` | Z0:k,x0:k), (5.74)

using the posterior spatial distributions p(θ)(m, ` | Z0:k,x0:k) that have previously
been calculated (cf. equations 5.67 or respectively 5.68).
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Unification and Track Extraction To approximate the full multi-object poste-
rior by one LMB RFS, the N approximations π̃(i) are unified:

πM ≈ π̃M =
N⋃
i=1

{(
r(`), p(`)

)}
`∈L(i)

+

. (5.75)

This LMB RFS finally constitutes the posterior distribution of the estimated landmark
map conditioned on the trajectory of one particle.
However, whenever a filtering process is used, one does not always want to output
each and every track, especially not those which have not been reliably validated by
multiple update steps. This also holds true when doing SLAM: if the particle with
the highest weight is used to represent the filter output, one does not usually want
to have all newly created – and therefore possibly false positive – tracks displayed.
The fact that the LMB directly facilitates an intuitive track extraction scheme comes
in very handy. Since all tracks provide an existence probability r(`), one can simply
apply a thresholding mechanism on that value, so that the set of extracted tracks is
described by

M̂ = {(m̂, `)|r(`) > ϑ},

given the threshold ϑ. Further, also a hysteresis can be used in order to enable a
continuous output of tracks that already have been confirmed earlier but have then
been missed during the last few consecutive updates. To this end, the maximum
existence probability r(`)

max of any track is stored as well. If the current probability
of existence r(`) is above a lower threshold ϑl and the existence probability has
previously exceeded an upper threshold ϑu, the track will be part of the set of tracks
that constitute the output of the filtering algorithm:

M̂ = {(m̂, `)|r(`)
max > ϑu ∧ r(`) > ϑl}. (5.76)

Consequently, such a threshold can not only be used to prevent tracks from con-
tributing to the output, but also to enable a pruning scheme, which deletes all tracks
that have an existence probability below a further threshold ϑd.

5.4.2 Particle Weighting

As already mentioned before, the weight of a particle in an RB-RFS-SLAM filter
can be determined by evaluating the likelihood g(Zk | Z0:k−1,x0:k), i.e., the particle
weight is given by ωk = g(Zk | Z0:k−1,x0:k) · ωk−1. As can be seen from the Bayes
recursion of the map (5.32), this likelihood is the normalizing constant with respect
to the map estimation. In contrast to the RB-PHD-SLAM filter, the RB-LMB-SLAM
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filter offers a straightforward way to calculate the particle weights, due to the fact
that “the update equation of the δ-GLMB filter provides an analytic solution for
the normalization constant of the multi-object Bayes filter” [Reu14, p. 123]. The
normalizing constant for each of the group updates following equation (5.65) is given
by the denominator of the hypotheses weights (5.66):

d(i)(Z(i)) =
∑

(I+,θ)∈F(L(i)
+ )×Θ(i)

I+

δθ−1({0∪Z(i)})(I+)w(i)
+ (I+)[η(θ)

Z(i),x
]I+ . (5.77)

These denominators are missing the clutter factor πC(Z(i)) since it has been canceled
out, due to its appearance in the nominator and denominator (see [VV13] for the
derivation the δ-GLMB-update). Nevertheless, the clutter factor has to be considered
in order to obtain the actual normalization constant. The full normalization constant
of the LMB filter is therefore given by the product of these N group-normalization
constants and the clutter factor πC(Z)

d(Z) = πC(Z) · d(1)(Z(1)) · · · d(N)(Z(N)), (5.78)

where the clutter term is calculated using

πC(Z) = e−λc
|Z|∏
j=1

κ(z). (5.79)

Thus, the particle weights in RB-LMB-SLAM originate from a principled, analytical
solution to the required likelihood and hence this approach is superior to the
approximations that are used for finding the particle weights in RB-PHD-SLAM.
Finally, in RB-LMB-SLAM the estimated map and trajectory of the vehicle can also
be determined by averaging over the maps and trajectories of the single particles. If
the labels of the individual tracks are generated in such a way that each particle’s
LMB filter uses the same label for the same measurement (and therefore landmark)
as all the other particles do (cf. Section 5.4.1), it is possible to calculate the mean
map over all particles using the respective average existence probability and spatial
distribution for each and every labeled track.
Another approach to calculate the average map, would be to approximate the LMB
RFSs of the particles by their first order moments, i.e., their PHDs. Then, the
average map can be calculated as already described in Section 5.3.2.
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5.5 Evaluation

The simulation environment used for the evaluation of the RB-LMB-SLAM has been
designed to allow for a comparison between the RB-LMB-SLAM and the reference
implementation of the RB-PHD-SLAM published by Leung and Inostroza (version
1.0, publicly available at [LI14]). Hence, all required parameters (measurement
model, measurement statistics, motion model,...) match those of the reference
implementation as closely as possible. The details of the simulation environment
are described in the following subsection, prior to the presentation of the simulation
results. In [LIA14], the authors already demonstrated that RB-PHD-SLAM is
superior to FastSLAM – in particular in the presence of a lot of clutter measurements.
Hence, this evaluation suffices in comparing the proposed RB-LMB-SLAM to the
RB-PHD-SLAM.

5.5.1 Setup

For this evaluation, an omni-directional vehicle with a sensor that produces range-
bearing-measurements is simulated. The trajectory of the vehicle begins at (0, 0)
(cf. Figure 5.5 or Figure 5.6). The vehicle starts its journey in the direction of the
positive x-axis and the positive y-axis. The winding path towards the end point near
(10.38, 0.74) comprises 3000 simulation steps and includes several bends. The course
of the vehicle allows for revisiting mapped features. The ground truth map consists
of a total of 36 landmarks spread randomly around the ground truth path of the
vehicle.

Motion Model

The omni-directional vehicle used for this simulation moves in the xy-plane, thus its
pose at time k is described by

xk =

xy
ψ


k

.

The predicted pose of the vehicle can be calculated on the basis of its pose at time
k − 1 using

xk = f(xk−1,uk) + δ = f

xy
ψ


k−1

,

∆x
∆y
∆ψ


k

+ δ,
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with the additive white noise vector δ, the control input uk and the function f
which implements the translational and rotational displacements. Using the rotation
matrix

C =
[
cos(ψk−1) − sin(ψk−1)
sin(ψk−1) cos(ψk−1)

]
,

the predicted position is thus given by[
x
y

]
k

=
[
x
y

]
k−1

+ C
[
∆x
∆y

]
k

+
[
δx
δy

]
.

Finally, the predicted orientation is determined using

ψk = ψk−1 + ∆ψk + δψ.

Given this motion model, it would be possible that the vehicle moved in arbitrary
ways. Nevertheless, the main direction of motion was set up to be towards the
vehicle’s positive x-axis for this simulation, i.e., the major contribution of the control
input was chosen to be a forward motion.

Measurement Model

The simulated vehicle is equipped with a sensor which has a field of view of 360 deg
and is able to measure objects within the range from 0.5m to 2.5m. The detection
z(j) of landmark m(i) =

[
xm(i) ym(i)

]T at time step k is given by:

z
(j)
k =

[
r(j)

φ(j)

]
= h(xk,m(i)) + e =

[√
(xm(i) − xk)2 + (ym(i) − yk)2)

arctan
(
y
m(i)−yk
x
m(i)−xk

)
− ψk

]
+ e

using the polar coordinates r(j), φ(j) and the measurement noise e with zero mean
and covariance R.

5.5.2 Simulation Parameters

For the evaluation of the two RFS-SLAM approaches, a simulation over 3000 time
steps which corresponds to 240 seconds at an update rate of 12.5 Hz, was conducted.
Since the particle filter in general is a non-deterministic approach, 50 Monte-Carlo
runs for each of the approaches were made. During these runs the number of particles
was set to 200 and the resampling mechanism of the particle filter was triggered,
whenever the effective number of particles fell below a threshold of 20 particles. The
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simulated vehicle moved with an average speed of 0.11± 0.05 m
s in x-direction and

0.00± 0.018 m
s in y-direction through the map. The rotational rate of this randomly

generated trajectory was on average −0.1719± 8.02 deg
s . The noisy odometry based

on this trajectory was created with a rate matching the measurement rate (i.e.,
12.5 Hz) and assuming a standard deviation of 0.0022m for the lateral as well as
the longitudinal displacement and a standard deviation of 0.573 deg for the change
in orientation.
The simulated measurements were created with a detection probability of pD = 0.7
and a standard deviation of 0.07m for the range measurements together with 2.86 deg
for the bearing measurements, respectively. Further, clutter measurements were
added. These false measurements were distributed uniformly over the measurement
space. Their cardinality was Poisson distributed with an intensity of 0.8 m−2. Given
the area of the sensor’s FOV, this resulted in an expected number of approximately
15 clutter measurements per scan.

5.5.3 Comparison of RB-PHD-SLAM and RB-LMB-SLAM

Two aspects are of great interest, when evaluating SLAM algorithms: First of all, as
in the previous chapter, the accuracy of the estimated pose (or path), is of major
importance. Secondly, the quality of the estimated map is at least as relevant –
especially, when thinking about using SLAM to generate maps for highly automated
vehicles.

Pose Estimation

The simulation reveals that both RB-RFS-SLAM approaches yield a very good
localization accuracy (see Table 5.1 and Figures 5.5 and 5.6). However, the RB-LMB-
SLAM outperforms the RB-PHD-SLAM in the estimation of the position. The mean
values of the lateral and longitudinal errors are almost zero for the RB-LMB-SLAM.
For the RB-PHD-SLAM they are also close to zero but approximately three times as
much as with the RB-LMB-SLAM. Further, also the respective standard deviations
are nearly twice as much as in the RB-LMB-SLAM runs. Thus, the RB-LMB-SLAM
not only exhibits a reduced offset, but it also produces a more precise position
estimation. The results for the orientation estimation are not as unambiguous.
Again, when the LMB approach is used, the offset in the estimated orientation is
low in comparison to the offset of the PHD approach (less than a quarter of that
value). However, the standard deviation is higher when the RB-LMB-SLAM is used,
i.e., the estimated orientation of the RB-LMB-SLAM deviates on average more from
its mean value but this mean value is still closer to the true orientation.
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Figure 5.5: Result of one exemplary run of the RB-LMB-SLAM. The esti-
mated trajectory and landmark positions are depicted by the
blue curve and the blue ellipses respectively (only components
with a existence probability r > 0.5 are shown). The ground
truth path and landmark positions are colored in dark green.
The pose estimate in the final time step is depicted in pink
color. The gray lines which originate from the final ground truth
position (turquoise dot) illustrate the simulated measurements
at the final time step. The trajectory is estimated very precisely
and the feature positions almost exactly match the ground truth
landmarks except for those two landmarks that are not detected
at all (near (4.6, 1.5) and (2.9, 6.2)) Further, only one landmark
is detected twice (near (2.7, 4.9)) and besides that zero false
positives exist.
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Figure 5.6: Result of one exemplary run of the RB-PHD-SLAM. The esti-
mated trajectory and landmark positions are depicted by the
red curve and the red ellipses respectively (only components of
the GM with a weight above 0.5 are shown). The ground truth
path and landmark positions are colored in dark green. The pose
estimate in the final time step is depicted in pink color. The gray
lines originating from the final ground truth position (turquoise
dot) illustrate the simulated measurements at the final time step.
The trajectory is estimated very exactly. The feature positions
of those features originating from an actual landmark are very
close to those ground truth positions, but many features actually
originate from false measurements. Further, for two landmarks
multiple features do exist (near (−0.9, 2.5) and (4.3, 2.2)). Only
one landmark was not detected at all (near (10.5, 2.8)).
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Algorithm laterr in m lonerr in m ψerr in deg
RB-LMB-SLAM −0.0064± 0.0398 0.0084± 0.0436 −0.1585± 1.1258
RB-PHD-SLAM 0.0225± 0.0670 −0.0250± 0.0790 0.6941± 0.8024

Table 5.1: Average pose estimation error with standard deviation of the
LMB- and PHD-SLAM

These results already give an indication of the high quality of the map estimate
produced by the LMB filters, since the weights of the particles which are used to
represent the trajectory, are calculated based on the map estimation. Hence, a good
localization accuracy requires a good underlying map estimation.

Map Estimation

In order to asses the quality of the map estimation, the Optimal Sub-Pattern Assign-
ment (OSPA) distance is used. The OSPA metric was introduced by Schumacher
et al. in 2008, see [SVV08], and has since then become a standard tool to evaluate
the performance of multi-object tracking algorithms. The OSPA metric does not
only take the errors in state estimation (i.e., the estimated landmark positions)
into consideration but also assesses the cardinality (i.e., the number of estimated
landmarks). Therefore, it is the ideal choice to evaluate the quality of the map
estimation. Further, the OSPA distance can be interpreted as per object error – per
object means per estimated object if the number of estimated objects is higher than
the number of existing objects and per true object otherwise (cf. [SVV08]).
The resulting OSPA distances of the RB-LMB-SLAM (blue) and the RB-PHD-SLAM
(red) based on 50 Monte Carlo (MC) runs are depicted in Figure 5.7. It can clearly
be seen that the OSPA distance of the RB-LMB-SLAM is almost always lower
than the OSPA distance produced by the RB-PHD-SLAM. Furthermore, Figure
5.8 presents the two components contributing to the overall OSPA: the localization
error (top) and the cardinality error (bottom). The results of the RB-PHD-SLAM
jitter significantly – especially in the cardinality component. This is due to the
filter constantly creating new tracks based on false measurements and then again
discarding them. In comparison, the curve representing the RB-LMB-SLAM is
clearly smoother, although it also oscillates around a mean value, which nevertheless
is lower than the mean value of the RB-PHD-SLAM. In the localization component,
the RB-LMB-SLAM clearly outperforms the RB-PHD-SLAM. The reason for this is,
that the RB-PHD-SLAM often discards tracks of the real landmark and creates new
tracks based on false measurements which are close enough to the true landmark
position to be taken into consideration when calculating the OSPA distance.
However, the difference in the OSPA distance is not as big as one might expect
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Figure 5.7: Average Optimal Sub-Pattern Assignment (OSPA) distance over
50 runs of RB-PHD-SLAM and RB-LMB-SLAM (cut-off c = 0.5,
order p = 2).

considering the Figures 5.5 and 5.6. The reason for this is that only the landmarks
and tracks that are actually in the FOV of the vehicle at any given time step are
assessed.
The OSPA distances for all tracks and landmarks that have passed through the
vehicle’s FOV up until the last time step are given in Table 5.2. The respective OSPA
distances clearly indicate that the RB-LMB-SLAM outperforms the RB-PHD-SLAM.
Further, when considering the results at the last timestamp it becomes obvious that
the RB-PHD-SLAM struggles with the high false measurement rate and produces
many false positive features. The average total number of the estimated landmarks

Algorithm OSPA in m Cardinality
RB-LMB-SLAM 0.0901 33.02
RB-PHD-SLAM 0.3138 76.48

Table 5.2: Average OSPA-metric and estimated cardinality at the last time
step calculated over the 50 Monte-Carlo runs (all tracks were con-
sidered, not only those in the FOV). The ground truth cardinality
is 36.
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Figure 5.8: Average OSPA components over 50 runs of RB-PHD-SLAM and
RB-LMB-SLAM (cut-off c = 0.5, order p = 2): in the localiza-
tion component the error of the RB-LMB-SLAM is significantly
lower (top); in the cardinality component the RB-LMB-SLAM
produces a relatively smooth estimate in comparison to the
RB-PHD-SLAM which jitters significantly.
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is more than double the amount of the actual count when using RB-PHD-SLAM.
The RB-LMB-SLAM is able to estimate the number of landmarks almost correctly,
i.e., it only slightly underestimates the number of landmarks. This can also be seen
in the exemplary runs presented in Figures 5.5 and 5.6.
The reason for the superior performance of RB-LMB-SLAM in this challenging sce-
nario (high clutter rate, moderate probability of detection) lies in the exact update
procedure of the LMB filter which is superior to the strong approximations made by
the PHD filter. Further, the LMB representation (i.e., the explicit representation of
the track existence and the track labels), is obviously more eligible than the first
statistical moment approximation of the PHD filter which completely disregards
cardinality. Therefore, the LMB filter is able to track the landmarks continuously
opposed to constantly discarding the tracks and creating new tracks over and over
again, as the PHD filter does in this scenario.
Overall, it can be stated, that the RB-LMB-SLAM is able to handle this challenging
scenario very well and that it yields superior performance in comparison to RB-PHD-
SLAM. Further, state of the art algorithms such as FastSLAM would not be able
to yield a performance close to this, since they already struggle with lower clutter
rates, cf. [LIA14].

5.6 Extension to Long-Term Map Storage

One possible future direction of research using the presented RB-LMB-SLAM algo-
rithm is to facilitate its application in highly automated vehicles. However, if the
presented RB-LMB-SLAM algorithm is to be used as a map creation (or map verifi-
cation and updating) tool for highly automated vehicles, e.g., by using landmarks as
presented in Chapter 4, it is no longer possible to keep all tracks in the main memory.
Further, as a road vehicle usually moves relatively fast and on a particular route, it
makes no sense to keep the tracks in the computer’s main memory after they have
left the FOV of the vehicle’s sensors, since it most likely will take a long time until
the vehicle again passes that same location. Hence, the question has to be answered
how RB-LMB-SLAM and a map database can be interconnected. A possible answer
is outlined in this section. In general, the problem has two sides: On the one hand,
the landmarks estimated by the SLAM algorithm have to be integrated into the map
database. On the other hand, the map data has also to be integrated as input to the
SLAM algorithm. Figure 5.9 depicts the interactions between the SLAM component
and a map database: The map database provides the landmarks that are currently in
the FOV of the vehicle’s sensors. This is done based on a geospatial query that uses
the pose estimate produced by the SLAM algorithm. The SLAM algorithm again
uses the mapped landmarks to improve its own landmark estimation performance.
Further, the tracks of landmarks that have left the FOV (in the figure referred to as
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“Completed Track”) are fed back into the map database, i.e., an update is performed.
To be able to detect situations in which landmarks that exist in the map database
were not tracked by the SLAM algorithm, although they should have passed through
the FOV, the map database update component also keeps track of the landmarks
that were passed to the RB-LMB-SLAM and compares them to the produced tracks.
This can be used to decrease the existence probability of such landmarks in the
database.
As already discussed in Section 3.3, a database scheme that supports storing geospa-
tial data along with a measure for the confidence in that data, can be used to
represent a map of landmarks. Hence it also comprises everything necessary for the
use with RB-LMB-SLAM. Although the confidence value is not absolutely necessary
when using the map for localization only, it is crucial when such a map is used in
combination with RB-LMB-SLAM.

Landmark Map RB-LMB-SLAM Map Update

Estimated Vehicle Pose

Landmarks in
the FOV

Completed
Tracks

Figure 5.9: The interaction between the SLAM component and a database
containing a map of landmarks.

5.6.1 The Map as Input to RB-LMB-SLAM

In the context of using SLAM for creating landmark maps for highly automated
vehicles, one can imagine that such vehicles would be equipped with a basic predefined
map which they then could augment with new landmark detections. Even if the
vehicle started off with an empty map, at some point it would possess a map that is
not empty. No matter what the source, this map should obviously be used as an
input to the SLAM algorithm, to improve its performance. This can be done in
RB-LMB-SLAM as follows. The algorithm uses a birth model to create new tracks
during prediction, see Section 5.4.1. This birth model incorporates the measurements
from the last time step, especially those that have not contributed significantly in
updating existing tracks, to create a birth distribution πB . This birth distribution
can be modified by also considering the landmarks from the map (i.e., the database)
that should be in the sensor’s FOV and that do not correspond to existing tracks.
These landmarks should not add components to the birth distribution, i.e., they
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should not create tracks without a supporting measurement. Instead, the existence
probability of the tracks rB and the spatial distribution pB of components of the
birth distribution should be modified according to their association likelihoods with
the landmarks from the database. For example, if a landmark with a high probability
of existence and a very low spatial uncertainty existed in the map and a measurement
was made very close to that location, one could create a new track with a high initial
probability of existence rB and the spatial distribution pB could be shifted towards
the position of the landmark in the map. Using the described procedure, one can
decrease the necessary number of detections to create new tracks, if they are likely
to originate from a landmark that already exists in the map. Further, one can allow
for more missed detections (especially during the first frames after track creation)
since these tracks posses a higher initial existence probability. Finally, the position
estimate of tracks which are created using landmarks from the map is also usually
better, since it is supported by information that has been gathered through multiple
passings of the respective objects.

5.6.2 Updating Maps with RB-LMB-SLAM

Obviously, in order to keep the map in the database up to date, the output of the
SLAM algorithm has to be somehow fused with the data already present in the
database. Basically, there are three possibilities of how the map has to be updated:

• A track does not correspond to any landmark, i.e., a new landmark has to be
created in the database.

• A track possesses a significant likelihood of corresponding to one or more
landmarks that have also been passed to the SLAM algorithm, i.e., these
landmarks have to be updated.

• A landmark that had been passed to the SLAM algorithm has not been verified
by the output of the SLAM algorithm, i.e., the existence probability of that
landmark in the database has to be reduced.

The realization of the first case is straightforward – if no corresponding landmark
is present in the database, a new one has to be created. The position and spatial
uncertainty of this new landmark can be extracted from the spatial distribution p(`)

of the track labeled `. On the other hand, the existence probability in the database
pex should not be a copy of the existence probability of the track r(`), although
all tracks posses one, as they are represented by an LMB-RFS, cf. Section 5.4.1.
The reason for this is that the information stored in the database should represent
“long-term knowledge” and the output of the RB-LMB-SLAM can only represent
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“short-term knowledge”. Thus, setting or updating existence probabilities in the
database should resemble a low-pass filter behavior.
For example, a landmark that was found by the SLAM algorithm with a high exis-
tence probability will not necessarily be there the next time the vehicle passes, which
again a high pex would imply. Hence, the initial pex should be set to a relatively low
value (which still may depend on the tracks existence probability).
The second case, where existing landmarks have to be updated by the output of the
SLAM algorithm can be processed as follows: First, those landmarks which have
been passed to the SLAM component (cf. Figure 5.9) and which have a significant
spatial likelihood of corresponding to the track labeled ` are selected. Then their
positions and existence probabilities are updated using the data from the track (p(`)

and r(`)) and the learning rate η. This learning rate is a function of the likelihood of
the track corresponding to the landmark being updated and of the number of times
this landmark has already been updated, i.e., the more likely a track corresponds to
the landmark, the higher the learning rate and the older the landmark (high number
of updates) the lower the learning rate. A minimum value for the learning rate is
also necessary to always have the ability to react to changes in the environment.
Furthermore, when the positions of landmarks are updated in the database, it is
necessary to also check if a merge of landmarks is required.
Finally, the last case, which is the main reason why the map update component has to
have knowledge about the landmarks that have been passed to the RB-LMB-SLAM
(as depicted in Figure 5.9): Landmarks have been passed to the SLAM algorithm,
but no corresponding track has been created. In this case the existence probabilities
of those landmarks have to be updated with a track existence probability r = 0.0,
again using the learning rate (neglecting the spatial likelihood). After this update,
it has to be checked if the existence probability of the landmarks in the database
still is above a certain threshold. If it has fallen below the threshold, the respective
landmarks have to be deleted from the database.

Using an approach like the one described above could make it possible to generate
and update large maps of frequently driven routes with a standard road vehicle
based on RB-LMB-SLAM. Further, if a central database was used, multiple vehicles
could contribute to this database whenever they were connected to the Internet.
This would facilitate having reliable, up to date landmark maps of wide areas of the
road network.



Chapter 6

Conclusions and Future Directions

The central contributions of this work are: A particle filter based localization
algorithm for highly automated vehicles and a novel approach to SLAM. The
localization algorithm predominantly uses MSER features extracted from the data
of two entirely different sensors that complement each other: The first source are
camera images in which the MSER algorithm typically detects lane markings as valid
features. The second source are occupancy grid maps created using measurements
from a laser scanner. The features that are extracted from the grid maps are
arbitrary stationary objects that satisfy certain size constraints. The particle filter
uses both data sources whenever they are available, but it does not necessarily
require data from both sensors. This facilitates a good pose estimation even when
one of the sensors does not provide sensible measurements for a certain amount
of time. Moreover, the weight function that is used to assess the pose hypotheses
represented by the particles makes use of Finite Set Statistics. Hence, the presented
method constitutes a novel, mathematically sound approach to implementing this
crucial part of Monte Carlo Localization.
Furthermore, the simplicity and reliability of the features allows for fast and efficient
mapping – this can be done by simply driving the to-be-mapped-route once and
localizing the vehicle with a reference system.
The evaluations presented in Section 4.5 reveal that the proposed approach makes it
possible to estimate the pose of the vehicle with high accuracy on rural and urban
roads. Furthermore, the localization algorithm has been applied successfully while
driving autonomously during multiple public presentations.
However, there are still a few desirable modifications that could be integrated to
increase the performance and broaden the range of applications of the localization
algorithm in the future. First of all, integrating an estimate of the vehicle’s pitch
angle would improve the accuracy of the grid map and would further allow for a
more precise localization of the image features. Secondly, in order to be able to
localize the vehicle on highways, additional features are required. On highways,
the laser beams are reflected by other traffic participants and guarding rails almost
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exclusively. Hence, no MSER features can be detected in the respective occupancy
grid maps which implicates that the algorithm has to rely solely on the camera.
Another possible modification of the localization scheme would be to replace the
laser scanner with a latest generation high-resolution automotive radar. This would
improve the localization performance in adverse weather conditions significantly if
the resolution of these new radars was high enough.
The second major contribution of this thesis is the Rao-Blackwellized Labeled Multi-
Bernoulli Simultaneous Localization And Mapping algorithm. It represents a novel
approach to solving the simultaneous localization and mapping problem which is
motivated by recent advances in multi-object tracking. Like other SLAM approaches
(e.g., FastSLAM) it is based upon a particle filter where each particle estimates
its own map. However, it is the first SLAM algorithm to use the novel LMB filter
for that purpose. As the RB-PHD-SLAM approach it also relies on RFS theory.
Therefore, it also directly facilitates an integrated handling of measurement statistics,
i.e., false alarm rates and detection probability. Nevertheless, it is superior to RB-
PHD-SLAM since it does not require any further approximations to determine the
particle weights.
With the simulation based evaluation described in Section 5.5, it is demonstrated
that, in scenarios with high clutter rates, the RB-LMB-SLAM outperforms the
RB-PHD-SLAM, which is especially well known for its good performance in this kind
of scenario. Admittedly, as the algorithm has only been evaluated in simulations,
it would be interesting to evaluate it with real data. To bring the algorithm to
its real purpose, i.e., localizing a road vehicle and creating a map of landmarks
online while driving, a real-time capable implementation would be required. As
the algorithm is very well suited to be executed in parallel, a GPU implementation
would be desirable.
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〈b, c〉 inner product of the functions b and c
hA multi-object exponential

Subscripts
B variable or function referring to new born objects
C variable or function referring to clutter
k time step k
M variable or function referring to the map
Z variable or function referring to the measurements
+ variable or function referring to a prediction
0 : k all elements up to time step k
x variable or function referring to the pose

Vectors and Scalars of Particular Importance
e a UTM easting coordinate
` a track label



126 List of Symbols

λ expected value of the Poisson distribution
m an element of the map (i.e., a landmark)
m̄ an element of the map transformed to the vehicle coordinate

system
Ω vector of landmarks
n a UTM northing coordinate
n number of elements in a set or vector (referring to the entity

described by its index)
νP number of particles
ν̃EffP approximate number of effective particles
s the state vector in EKF-SLAM
u the control input
v velocity of the vehicle
w a weight in general (e.g., of a hypothesis or a mixture component)
ω the weight of a particle specifically
x∗ the initial pose of the vehicle used for SLAM
x the (2D) pose of the vehicle
ψ orientation of the vehicle
ψ̇ yaw rate of the vehicle
z a measurement
Υ vector of measurements

Spaces
C an index space
F(X) finite subsets of the space X

Fn(X) finite subsets of the space X with cardinality n
M the space of landmark states
L label space of existing objects
L projection from X × L to L

Θ space of association hypotheses
Ξ a discrete space
X the state space
Z the measurement space

Specific Probabilities
pD detection probability
qD probability of a missed detection



List of Symbols 127

pS survival (or persistence) probability
r existence probability

Densities
b(·) probability hypothesis density of the birth RFS
κ(·) a probability hypothesis density of the clutter process
f(·) single-object or multi-object Markov transition density (referring

to the entity described by its index)
π(·) labeled multi-object probability density
π(·) multi-object probability density
p(·) a probability density
v(·) probability hypothesis density

Sets
B the birth RFS
C the RFS of clutter measurements
D(m,x) the Bernoulli-RFS of a feature measurement generated by a

landmark
M the RFS of landmarks
Z the RFS of measurements
I a set of track labels (within a hypothesis)
L a set of track labels
M the set of landmarks
M̄FoV(x(i)

k ) the set of landmarks being in the FOV of the vehicle transformed
to the vehicle’s coordinate system

P the set of particles
Z the set of measurements
∆(X) distinct label indicator

Likelihoods
η

(θ)
Z,x(`) likelihood for the assignment of track label ` to measurement

θ(`)
φZ,x(m, `; θ) the generalized measurement likelihood
g(z |m,x) the measurement likelihood given the landmarks position and

the vehicle pose
g̃(Zk | M̄FoV(x(i)

k )) the approximated likelihood for the set of measurements and
the transformed set of landmarks in the vehicle’s FOV



128 List of Symbols

g(Zk|x(i)
k ) the likelihood for the measurements Zk given the state x(i)

k

Other Symbols
A the association matrix for vector-based SLAM
β(z |m) cost for the association of a landmark and a measurement
ζcam the coordinate system of a camera
ζimg the image coordinate system
ζls the coordinate system of a laser scanner
ζr the coordinate system of a radar
ζutm the UTM coordinate system
ζveh the coordinate system of the vehicle
γi a grid cell
G a group for the LMB update
N (·;µ,P) Normal distribution with mean µ and covariance P
S the innovation covariance matrix
θ an association hypothesis
Θ∗ the most likely association hypotheses
U(·) uniform distribution



Bibliography

[AMGC02] Arulampalam, M.S.; Maskell, S.; Gordon, N.; and Clapp, T.: A Tuto-
rial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. In: IEEE Transactions on Signal Processing, volume 50,
no. 2, pages 174–188, 2002.

[AMV13] Adams, Martin; Mullane, John; and Vo, Ba-Ngu: Circumventing the
Feature Association Problem in SLAM. In: IEEE Intelligent Trans-
portation Systems Magazine, volume 5, no. 3, pages 40–58, 2013.

[AVMM14] Adams, M.; Vo, B.; Mahler, R.; and Mullane, J.: SLAM Gets a PHD:
New Concepts in Map Estimation. In: IEEE Robotics Automation
Magazine, volume 21, no. 2, pages 26–37, 2014.

[BBD+13] Broggi, Alberto; Buzzoni, Michele; Debattisti, Stefano; et al.: Extensive
Tests of Autonomous Driving Technologies. In: IEEE Transactions on
Intelligent Transportation Systems, volume 14, no. 3, pages 1403–1415,
2013.

[BD06] Bailey, Tim and Durrant-Whyte, Hugh: Simultaneous localization and
mapping (SLAM): Part II. In: IEEE Robotics & Automation Magazine,
volume 13, no. 3, pages 108–117, 2006.

[BHK11] Badino, H.; Huber, D.; and Kanade, T.: Visual topometric localization.
In: Proceedings of the IEEE Intelligent Vehicles Symposium, pages 794–
799, 2011.

[BP99] Blackman, S. and Popoli, R.: Design and Analysis of Modern Tracking
Systems. Artech House Publishers, 1999.

[BSH+03] Bronstein, I.N.; Semendjajew, K.A.; Hackbusch, W.; Schwarz, H.R.;
and Zeidler, E.: Teubner-Taschenbuch der Mathematik. Ed. by Zeidler,
Prof. Dr. E. 2nd Edition, Teubner, 2003.

[CSRL01] Cormen, Thomas H.; Stein, Clifford; Rivest, Ronald L.; and Leiserson,
Charles E.: Introduction to Algorithms. 2nd Edition, McGraw-Hill
Higher Education, 2001.

[DB06] Durrant-Whyte, Hugh and Bailey, Tim: Simultaneous localization
and mapping: part I. In: IEEE Robotics & Automation Magazine,
volume 13, no. 2, pages 99–110, 2006.



130 Bibliography

[DC05] Douc, R. and Cappe, O.: Comparison of resampling schemes for
particle filtering. In: Proceedings of the 4th International Symposium
on Image and Signal Processing and Analysis, pages 64–69, 2005.

[DFBT99] Dellaert, F.; Fox, D.; Burgard, W.; and Thrun, S.: Monte Carlo
localization for mobile robots. In: Proceedings of the IEEE International
Conference on Robotics and Automation. Volume 2, pages 1322–1328,
1999.

[DFMR00] Doucet, Arnaud; Freitas, Nando de; Murphy, Kevin P.; and Russell,
Stuart J.: Rao-Blackwellised Particle Filtering for Dynamic Bayesian
Networks. In: Proceedings of the 16th Conference on Uncertainty in
Artificial Intelligence, pages 176–183, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2000.

[DGA00] Doucet, Arnaud; Godsill, Simon; and Andrieu, Christophe: On se-
quential Monte Carlo sampling methods for Bayesian filtering. In:
Statistics and Computing, volume 10, no. 3, pages 197–208, 2000.

[DMC90] Dickmanns, E.D.; Mysliwetz, B.; and Christians, T.: An integrated
spatio-temporal approach to automatic visual guidance of autonomous
vehicles. In: IEEE Transactions on Systems, Man and Cybernetics,
volume 20, no. 6, pages 1273–1284, 1990.

[DNK+13] Deusch, Hendrik; Nuss, Dominik; Konrad, Paul; et al.: Improving
Localization in Digital Maps with Grid Maps. In: Proceedings of the
16th International IEEE Conference on Intelligent Transportation
Systems, pages 1522–1527, 2013.

[DWR+14] Deusch, Hendrik; Wiest, Jürgen; Reuter, Stephan; et al.: Multi-Sensor
Self-Localization Based on Maximally Stable Extremal Regions. In:
Proceedings of the IEEE Intelligent Vehicles Symposium, pages 555–
560, 2014.

[Ebe12] Eberhardt, Elvira: Photograph of the Test Vehicle. Institute of Measure-
ment, Control and Microtechnology, Ulm University, Ulm, Germany,
2012.

[Elf89] Elfes, A.: Using occupancy grids for mobile robot perception and navi-
gation. In: Computer, volume 22, no. 6, pages 46–57, 1989.

[EWB05] Erdinc, O.; Willett, P.; and Bar-Shalom, Y.: Probability hypothesis
density filter for multitarget multisensor tracking. In: Proceedings of
the 8th International Conference on Information Fusion, pages 1–8,
2005.

[For07] Forssen, P.-E.: Maximally Stable Colour Regions for Recognition and
Matching. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8, 2007.



Bibliography 131

[GLL+15] Gehrels, Barend; Lalande, Bruno; Loskot, Mateusz; Wulkiewicz, Adam;
and Karavelas, Menelaos: Boost Geometry. Visited March 14th 2015.
2015. url: www.boost.org/doc/libs/1_57_0/libs/geometry.

[GLM+12] Geiger, A.; Lauer, M.; Moosmann, F.; et al.: Team AnnieWAY’s
Entry to the 2011 Grand Cooperative Driving Challenge. In: IEEE
Transactions on Intelligent Transportation Systems, volume 13, no. 3,
pages 1008–1017, 2012.

[GLW+13] Gabb, Michael; Löhlein, Otto; Wagner, Raimar; et al.: High-Performance
On-Road Vehicle Detection in Monocular Images. In: Proceedings of
the 16th International IEEE Conference on Intelligent Transportation
Systems, pages 336–341, 2013.

[GMN97] Goodman, I.R.; Mahler, R.P.; and Nguyen, H.T.: Mathematics of
Data Fusion. From the series Theory and decision library: Series B :
Mathematical and Statistical Methods. Springer, 1997.

[GSS93] Gordon, N.J.; Salmond, D.J.; and Smith, A. F M: Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. In: IEE Proceed-
ings F (Radar and Signal Processing), volume 140, no. 2, pages 107–
113, 1993.

[HO11] Hsu, L. and Obe, R.: PostGIS in Action. From the series Manning
Pubs Co Series. 1st editon, Manning Publications, 2011.

[HS97] Heikkilä, Janne and Silven, Olli: A Four-step Camera Calibration
Procedure with Implicit Image Correction. In: Proceedings of the Con-
ference on Computer Vision and Pattern Recognition, pages 1106–
1112, IEEE Computer Society, Washington, DC, USA, 1997.

[ILA14] Inostroza, Felipe; Leung, Keith Y. K; and Adams, Martin: Semantic
Feature Detection Statistics in Set Based Simultaneous Localization
and Mapping. In: Proceedings of the 17th International Conference on
Information Fusion, 2014.

[Kal60] Kalman, Rudolph Emil: A New Approach to Linear Filtering and
Prediction Problems. In: Transactions of the ASME - Journal of Basic
Engineering, volume 82, no. Series D, pages 35–45, 1960.

[KLW94] Kong, Augustine; Liu, Jun S.; and Wong, Wing H.: Sequential Im-
putations and Bayesian Missing Data Problems. In: Journal of the
American Statistical Association, volume 89, no. 425, pages 278–288,
1994.

[KND12] Konrad, Marcus; Nuss, Dominik; and Dietmayer, Klaus: Localization
in Digital Maps for Road Course Estimation using Grid Maps. In:
Proceedings of the IEEE Intelligent Vehicles Symposium, pages 87–92,
2012.

www.boost.org/doc/libs/1_57_0/libs/geometry


132 Bibliography

[Kry07] Krymmel, Jan: The UTM zones. 2007. url: http://upload.wikimedia.
org/wikipedia/commons/e/ed/Utm-zones.jpg.

[KSD10] Konrad, Marcus; Szczot, Magdalena; and Dietmayer, Klaus: Road
Course Estimation in Occupancy Grids. In: Proceedings of the IEEE
Intelligent Vehicles Symposium, pages 412–417, 2010.

[Lat13] Lategahn, Henning: Mapping and Localization in Urban Environments
Using Cameras. PhD thesis, Institut für Mess- und Regelungstechnik,
Karlsruher Institut für Technologie (KIT), 2013.

[LCS12] Lee, Chee Sing; Clark, D.E.; and Salvi, J.: SLAM with single cluster
PHD filters. In: Proceedings of the IEEE International Conference on
Robotics and Automation, pages 2096–2101, 2012.

[Lei14] Leica: Leica 3D Disto User Manual. 3.0. Leica Geosystems AG, 2014.
url: http : / / www . leica - geosystems . de / downloads123 / cp /
disto/3DDisto/manuals/Leica_3D_Disto_UserManual_en.pdf.

[LI14] Leung, Keith and Inostroza, Felipe: A C++ Library for Simultaneous
Localization and Mapping using Random Finite Sets. Visited July
07th 2014. 2014. url: https://github.com/kykleung/RFS-SLAM.

[LIA13] Leung, Keith Y. K.; Inostroza, Felipe; and Adams, Martin: An im-
proved weighting strategy for Rao-Blackwellized Probability Hypothesis
Density simultaneous localization and mapping. In: Proceedings of the
International Conference on Control, Automation and Information
Sciences, pages 103–110, 2013.

[LIA14] Leung, Keith Y. K.; Inostroza, Felipe; and Adams, Martin: Evaluating
Set Measurement Likelihoods in Random-Finite-Set SLAM. In: Pro-
ceedings of the 17th International Conference on Information Fusion,
2014.

[LMT07] Levinson, J.; Montemerlo, M.; and Thrun, S.:Map-Based Precision Ve-
hicle Localization in Urban Environments. In: Proceedings of Robotics:
Science and Systems, Atlanta, GA, USA, 2007.

[LNP+14] Lee, C.; Nagappa, S.; Palomeras, N.; Clark, D.; and Salvi, J.: SLAM
with SC-PHD Filters: An Underwater Vehicle Application. In: IEEE
Robotics Automation Magazine, volume 21, no. 2, pages 38–45, 2014.

[LOC10] Liu, X.; Oreshkin, B. N.; and Coates, M. J.: Efficient delay-tolerant
particle filtering through selective processing of out-of-sequence mea-
surements. In: Proceedings of the 13th Conference on Information
Fusion, pages 1–8, 2010.

[Lof14] Löffler, Thomas: Photographs of the Vehicle’s Sensors. Institute of
Measurement, Control and Microtechnology, Ulm University, Ulm,
Germany, 2014.

http://upload.wikimedia.org/wikipedia/commons/e/ed/Utm-zones.jpg
http://upload.wikimedia.org/wikipedia/commons/e/ed/Utm-zones.jpg
http://www.leica-geosystems.de/downloads123/cp/disto/3DDisto/manuals/Leica_3D_Disto_UserManual_en.pdf
http://www.leica-geosystems.de/downloads123/cp/disto/3DDisto/manuals/Leica_3D_Disto_UserManual_en.pdf
https://github.com/kykleung/RFS-SLAM


Bibliography 133

[LSZS13] Lategahn, Henning; Schreiber, Markus; Ziegler, Julius; and Stiller.,
Christoph: Urban Localization with Camera and Inertial Measurement
Unit. In: Proceedings of the IEEE Intelligent Vehicles Symposium,
pages 719–724, 2013.

[LT10] Levinson, Jesse and Thrun, Sebastian: Robust vehicle localization in ur-
ban environments using probabilistic maps. In: Proceedings of the IEEE
International Conference on Robotics and Automation, pages 4372–
4378, 2010.

[LY12] Li, Xiaoming and Yang, Yunying: An experimental comparison of
localization accuracy of affine region detectors. In: Proceedings of the
5th International Congress on Image and Signal Processing, pages 411–
414, 2012.

[Mah03] Mahler, Ronald: Multitarget Bayes filtering via first-order multitarget
moments. In: IEEE Transactions on Aerospace and Electronic Systems,
volume 39, no. 4, pages 1152–1178, 2003.

[Mah04] Mahler, Ronald: Random sets: Unification and Computation for In-
formation Fusion - a Retrospective Assessment. In: Proceedings of
the 7th International Conference on Information Fusion, Stockholm,
Sweden, 2004.

[Mah07] Mahler, Ronald: Statistical Multisource-Multitarget Information Fu-
sion. Artech House Inc., Norwood, 2007.

[MC08] Miller, Isaac and Campbell, Mark E.: Particle filtering for map-aided
localization in sparse GPS environments. In: Proceedings of the IEEE
International Conference on Robotics and Automation, pages 1834–
1841, 2008.

[MCUP02] Matas, J.; Chum, O.; Urban, M.; and Pajdla, T.: Robust Wide Baseline
Stereo from Maximally Stable Extremal Regions. In: Proceedings of
the British Machine Vision Conference, pages 384–393, 2002.

[MMD09] Munz, Michael; Mählisch, Mirko; and Dietmayer, Klaus: Probabilis-
tische Sensorfusion und integrierte Existenzschätzung für zukünftige
Fahrerassistenzsysteme. In: Stiller, Christoph and Maurer, Markus
(editors): 6. Workshop Fahrerassistenzsysteme (FAS2009), pages 166–
176, 2009.

[MNT04] Madsen, K.; Nielsen, H. B.; and Tingleff, O.: Methods for Non-Linear
Least Squares Problems (2nd ed.) 2004.

[Mon03] Montemerlo, Michael: FastSLAM: A Factored Solution to the Simul-
taneous Localization and Mapping Problem with Unknown Data Asso-
ciation. PhD thesis, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, 2003.



134 Bibliography

[MSW10] Mattern, Norman; Schubert, Robin; and Wanielik, Gerd: High-accurate
vehicle localization using digital maps and coherency images. In: Pro-
ceedings of the IEEE Intelligent Vehicles Symposium, pages 462–469,
2010.

[MT03] Montemerlo, M. and Thrun, S.: Simultaneous localization and mapping
with unknown data association using FastSLAM. In: IEEE Interna-
tional Conference on Robotics and Automation. Volume 2, pages 1985–
1991, 2003.

[MT07] Montemerlo, Michael and Thrun, Sebastian: FastSLAM: A Scalable
Method for the Simultaneous Localization and Mapping Problem in
Robotics (Springer Tracts in Advanced Robotics). Springer-Verlag
Berlin and Heidelberg GmbH & Co. K, 2007.

[MTKW02] Montemerlo, Michael; Thrun, Sebastian; Koller, Daphne; and Weg-
breit, Ben: FastSLAM: A Factored Solution to the Simultaneous Local-
ization and Mapping Problem. In: Proceedings of the AAAI National
Conference on Artificial Intelligence, pages 593–598, AAAI, 2002.

[MTS+05] Mikolajczyk, K.; Tuytelaars, T.; Schmid, C.; et al.: A Comparison
of Affine Region Detectors. In: International Journal of Computer
Vision, volume 65, no. 1-2, pages 43–72, 2005.

[Mun57] Munkres, James: Algorithms for the Assignment and Transportation
Problems. In: Journal of the Society for Industrial and Applied Math-
ematics, volume 5, no. 1, pages 32–38, 1957.

[Mur68] Murty, K.G.: An Algorithm for Ranking all the Assignments in Order
of Increasing Cost. In: Operations Research, volume 16, pages 682–687,
1968.

[MVAV11a] Mullane, J.; Vo, Ba-Ngu; Adams, M.D.; and Vo, Ba-Tuong: A Random-
Finite-Set Approach to Bayesian SLAM. In: IEEE Transactions on
Robotics, volume 27, no. 2, pages 268–282, 2011.

[MVAV11b] Mullane, John; Vo, Ba-Ngu; Adams, Martin; and Vo, Ba-Tuong: Ran-
dom Finite Sets for Robot Mapping and SLAM - New Concepts in
Autonomous Robotic Map Representations. From the series Springer
Tracts in Advanced Robotics. Springer, 2011.

[MVAW08] Mullane, J.; Vo, Ba-Ngu; Adams, M.D.; and Wijesoma, W.S.: A
Random Set Formulation for Bayesian SLAM. In: Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1043–1049, 2008.

[MWR+14] Moratuwage, D.; Wang, D.; Rao, A.; Senarathne, N.; and Wang,
H.: RFS Collaborative Multivehicle SLAM: SLAM in Dynamic High-
Clutter Environments. In: IEEE Robotics & Automation Magazine,
volume 21, no. 2, pages 53–59, 2014.



Bibliography 135

[NS08] Nistér, David and Stewénius, Henrik: Linear Time Maximally Stable
Extremal Regions. In: Forsyth, David; Torr, Philip; and Zisserman,
Andrew (editors): Computer Vision – ECCV 2008, volume 5303. From
the series Lecture Notes in Computer Science, pages 183–196, Springer
Berlin Heidelberg, 2008.

[NSD14] Nuss, Dominik; Stuebler, Manuel; and Dietmayer, Klaus: Consistent
Environmental Modeling by Use of Occupancy Grid Maps, Digital
Road Maps, and Multi-Object Tracking. In: Proceedings of the IEEE
Intelligent Vehicles Symposium, pages 1371–1377, 2014.

[NWW+13] Nuss, Dominik; Wilking, Benjamin; Wiest, Jürgen; et al.: Decision-Free
True Positive Estimation with Grid Maps for Multi-Object Tracking. In:
Proceedings of the 16th International IEEE Conference on Intelligent
Transportation Systems, pages 28–34, The Hague, Netherlands, 2013.

[PMB09] Pink, O.; Moosmann, F.; and Bachmann, A.: Visual features for vehicle
localization and ego-motion estimation. In: Proceedings of the IEEE
Intelligent Vehicles Symposium, pages 254–260, 2009.

[PPO+12] Petrovskaya, Anna; Perrollaz, Mathias; Oliveira, Luciano; et al.:
Awareness of Road Scene Participants for Autonomous Driving. In: Es-
kandarian, Azim (editor): Handbook of Intelligent Vehicles, pages 1383–
1432, Springer London, 2012.

[PS10] Pink, Oliver and Stiller, Christoph: Automated map generation from
aerial images for precise vehicle localization. In: Proceedings of the
13th International IEEE Conference on Intelligent Transportation
Systems, pages 1517–1522, 2010.

[Reu14] Reuter, Stephan: Multi-Object Tracking Using Random Finite Sets.
PhD thesis, Ulm University, 2014.

[RIW13] Ranganathan, Ananth; Ilstrup, David; and Wu, Tao: Light-weight
localization for vehicles using road markings. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 921–927, 2013.

[RVVD14] Reuter, Stephan; Vo, Ba-Tuong; Vo, Ba-Ngu; and Dietmayer, Klaus:
The Labeled Multi-Bernoulli Filter. In: IEEE Transactions on Signal
Processing, volume 62, no. 12, pages 3246–3260, 2014.

[SC86] Smith, Randall C. and Cheeseman, Peter: On the Representation
and Estimation of Spatial Uncertainly. In: International Journal of
Robotics Research, volume 5, no. 4, pages 56–68, 1986.

[Sch13] Schindler, Andreas: Vehicle self-localization with high-precision digital
maps. In: IEEE Intelligent Vehicles Symposium Workshops, pages 134–
139, 2013.



136 Bibliography

[Sed83] Sedgewick, Robert: Algorithms. Addison-Wesley Publishing Company,
1983.

[SH09] Skog, I. and Handel, P.: In-Car Positioning and Navigation Technolo-
gies: A Survey. In: IEEE Transactions on Intelligent Transportation
Systems, volume 10, no. 1, pages 4–21, 2009.

[Sid03] Sidenbladh, H.: Multi-target particle filtering for the probability hy-
pothesis density. In: Proceedings of the 6th International Conference
on Information Fusion. Volume 2, pages 800–806, 2003.

[SKF13] Schreiber, Markus; Knöppel, Carsten; and Franke, Uwe: LaneLoc: Lane
marking based localization using highly accurate maps. In: Proceedings
of the IEEE Intelligent Vehicles Symposium, pages 449–454, 2013.

[Sny87] Snyder, John: Map Projections - A Working Manual. In: U.S. Geolig-
ical Survey Professional Paper 1395, 1987.

[SSM62] Smith, Gerald L.; Schmidt, Stanley F.; and Mc Gee, Leonard A.:
Application of Statistical Filter Theory to the Optimal Estimation
of Position and Velocity on Board a Circumlunar Vehicle. Tech. rep.
NASA Ames Research Center, Tech. Rep. TR R-135, 1962.

[SVV08] Schuhmacher, D.; Vo, B.-T.; and Vo, B.-N.: A Consistent Metric for
Performance Evaluation of Multi-Object Filters. In: IEEE Transactions
on Signal Processing, volume 56, no. 8, pages 3447–3457, 2008.

[SWE11] Sun, Hao; Wang, Cheng; and El-Sheimy, Naser: Automatic Traffic Lane
Detection for Mobile Mapping Systems. In: International Workshop on
Multi-Platform/Multi-Sensor Remote Sensing and Mapping, pages 1–5,
2011.

[TBF05] Thrun, Sebastian; Burgard, Wolfram; and Fox, Dieter: Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents). The MIT
Press, 2005.

[TMD+06] Thrun, S.; Montemerlo, M.; Dahlkamp, H.; et al.: Stanley: The Robot
that Won the DARPA Grand Challenge. In: Journal of Field Robotics,
2006.

[UEW07] Ulmke, M.; Erdinc, O.; and Willett, P.: Gaussian mixture cardinalized
PHD filter for ground moving target tracking. In: Proceedings of the
10th International Conference on Information Fusion, pages 1–8, 2007.

[Ulm15] Ulm, Stadt: Official website of the city of Ulm. 2015. url: http:
//www.ulm.de/ulm/.

[Urm+08] Urmson, Christopher et al.: Autonomous driving in urban environ-
ments: Boss and the Urban Challenge. In: Journal of Field Robotics
Special Issue on the 2007 DARPA Urban Challenge, Part I, vol-
ume 25, no. 8, Martin Buehler Karl Lagnemma, Sanjiv Singh (editor),
pages 425–466, 2008.

http://www.ulm.de/ulm/
http://www.ulm.de/ulm/


Bibliography 137

[Ver15] Vermeulen, Jeroen T.: libpqxx. 2015. url: http://pqxx.org.
[VM06] Vo, Ba-Ngu and Ma, Wing-Kin: The Gaussian Mixture Probability

Hypothesis Density Filter. In: IEEE Transactions on Signal Processing,
volume 54, no. 11, pages 4091–4104, 2006.

[VV13] Vo, Ba-Tuong and Vo, Ba-Ngu: Labeled Random Finite Sets and Multi-
Object Conjugate Priors. In: IEEE Transactions on Signal Processing,
volume 61, no. 13, pages 3460–3475, 2013.

[Wal13] Wallner, Paul: Multi-Sensor Fahrstreifentracking unter Verwendung
von Random Finite Sets. Diplomarbeit, Universität Ulm, 2013.

[WD08] Weiss, Thorsten and Dietmayer, Klaus: Applications for Driver Assis-
tant Systems Using Online Maps. In: Proceedings of the International
Workshop on Intelligent Transportation, 2008.

[WDN+14] Wiest, Jürgen; Deusch, Hendrik; Nuss, Dominik; et al.: Localization
Based on Region Descriptors in Grid Maps. In: Proceedings of the
IEEE Intelligent Vehicles Symposium, pages 793–799, 2014.

[Wei11] Weiss, Thorsten: Hochgenaue Positionierung und Kartographie mit
Laserscannern für Fahrerassistenzsysteme. PhD thesis, University of
Ulm, 2011.

[WHW12] Winner, Hermann; Hakuli, Stephan; and Wolf, Gabriele (editors):
Handbuch Fahrerassistenzsysteme. 2nd Edition, Vieweg+Teubner Ver-
lag, 2012.

[WKD05] Weiss, Thorsten; Kämpchen, Nico; and Dietmayer, Klaus: Precise
ego-localization in urban areas using Laserscanner and high accu-
racy feature maps. In: Proceedings of the IEEE Intelligent Vehicles
Symposium, pages 284–289, 2005.

[WSD07] Weiss, Thorsten; Schiele, Bruno; and Dietmayer, Klaus: Robust Driving
Path Detection in Urban and Highway Scenarios Using a Laser Scanner
and Online Occupancy Grids. In: Proceedings of the IEEE Intelligent
Vehicles Symposium, pages 184–189, 2007.

[ZBS+14] Ziegler, J.; Bender, P.; Schreiber, M.; et al.: Making Bertha Drive—
An Autonomous Journey on a Historic Route. In: IEEE Intelligent
Transportation Systems Magazine, volume 6, no. 2, pages 8–20, 2014.

http://pqxx.org






ISBN  978-3-941543-22-5     e-ISBN  978-3-941543-23-2


	Introduction
	Theoretical Foundations
	Notation and Abbreviations
	Particle Filtering
	Finite Set Statistics
	General Introduction to Random Finite Sets
	State Estimation with Random Finite Sets


	Technical Preliminaries
	Test Vehicle and Sensory Setup
	Vehicle
	Data Provided via CAN Bus
	Laser Scanners
	Cameras
	Radars
	Reference System – ADMA
	Computers
	Time Triggering and Synchronization
	Software Framework

	Coordinate Systems
	Vehicle Coordinate Systems
	Global Coordinate Systems

	Data Storage Concept
	Geospatial Data in PostgreSQL
	Database Schema
	Integration in the Software Framework


	Localization for Highly Automated Vehicles
	State of the Art
	Landmarks in the Vehicular Environment
	Maximally Stable Extremal Regions
	Radar Targets

	Mapping with Known Vehicle Pose
	Localization Using Particle Filters
	Initialization
	Prediction
	Weight Update
	Resampling

	Evaluation
	Urban Road
	Rural Road
	Autonomous Drive on the Berliner Ring
	Conclusions


	Simultaneous Localization and Mapping with RFS
	Formulation of the SLAM Problem for a Road Vehicle
	Definitions
	Probabilistic Formulation of SLAM

	State of the Art
	Vector-Based SLAM
	RFS-Based SLAM
	Advantages of RFS-Based SLAM

	Rao-Blackwellized-RFS-SLAM
	RFS-SLAM Foundations
	RB-PHD-SLAM

	RB-LMB-SLAM
	The Labeled Multi-Bernoulli Filter for SLAM
	Particle Weighting

	Evaluation
	Setup
	Simulation Parameters
	Comparison of RB-PHD-SLAM and RB-LMB-SLAM

	Extension to Long-Term Map Storage
	The Map as Input to RB-LMB-SLAM
	Updating Maps with RB-LMB-SLAM


	Conclusions and Future Directions
	Supervised Theses
	Publications
	Acronyms
	List of Symbols
	Bibliography

