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Abstract

This thesis deals with different topics in probability theory. We are interested in infinitely
divisible distributions and their densities, the class of quasi-infinitely divisible distribu-
tions and Lévy driven stochastic partial differential equations.

In Chapter 2 we deal with infinitely divisible distributions and their densities. We obtain
bounds of the integral modulus of continuity in terms of the characteristic triplet. We
then apply our results to stochastic integrals.

In Chapter 3 we study the class of probability measures µ(dx) = µld(dx) + µac(dx),
where µld is a discrete lattice distribution and µac is absolutely continuous. We prove
that if µ̂ld(z) 6= 0 for all z ∈ R then µ is quasi-infinitely divisible if and only if µ̂(z) 6= 0
for all z ∈ R. As an application of this result we study certain variance mixtures and
prove that they are quasi-infinitely divisible.

In Chapter 4 we give sufficient conditions for the existence of a generalized solution s in
the space of distributions of the stochastic partial differential equation p(D)s = q(D)L̇,
where p and q are polynomials in Cd and L̇ is a so called Lévy white noise. Furthermore,
we give sufficient conditions for the existence of a mild solution and provide a sufficient
condition when the mild solution can be identified with a generalized solution.

Chapter 5 deals with linear and semilinear Lévy driven stochastic partial differential
equations. In the linear case we work with different distributional spaces and show ex-
istence and uniqueness results under different assumptions. As a next step we analyze
a semilinear partial differential equation driven by Lévy white noise in weighted Besov
spaces.

In Chapter 6 we prove central limit theorems for the sample mean and autocovariance
of a moving average random field. We use a sampling scheme on a grid, which can be
deterministic or random.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit verschiedenen Themen in der Wahrscheinlichkeitstheo-
rie. Wir sind interessiert an unendlich teilbaren Verteilungen und deren Dichten, quasi-
unendlich teilbaren Verteilungen und Lévy getriebenen stochastisch partiellen Differen-
tialgleichungen.

In Kapitel 2 beschäftigen wir uns mit unendlich teilbaren Verteilungen und deren Dichten.
Wir finden Schranken für den Integralmodulus der Stetigkeit in Abhängigkeit vom charak-
teristischen Triplet. Wir wenden diese Resultate auf stochastische Integrale an.

In Kapitel 3 untersuchen wir die Menge aller Wahrscheinlichkeitsmaße gegeben durch
µ(dx) = µld(dx) + µac(dx), wo µlc ein Maß auf einem diskreten Gitter ist und µac absolut
stetig ist. Wir zeigen, dass, falls µ̂ld(z) 6= 0 für alle z ∈ R, µ genau dann quasi-unendlich
teilbar ist, wenn µ̂(z) 6= 0 für alle z ∈ R. Als Anwendung davon untersuchen wir bes-
timmte Varianzmischungen und zeigen, dass diese quasi-unendlich teilbar sind.

In Kapitel 4 geben wir hinreichende Bedingungen für die Existenz generalisierter Lö-
sungen s im Raum der Distributionen der stochastisch partiellen Differentialgleichungen
p(D)s = q(D)L̇, wobei p und q Polynome in Cd und L̇ ein Lévy weißes Rauschen sind.
Weiterhin finden wir hinreichende Bedingungen für die Existenz milder Lösungen und
zeigen hinreichende Bedingungen, dass die milde Lösung identifiziert werden kann mit
der generalisierten Lösung.

Kapitel 5 beschäftigt sich mit linearen und semilinearen Lévy getriebenen stochastisch
partiellen Differentialgleichungen. Im linearen Fall arbeiten wir mit unterschiedlichen Dis-
tributionsräumen und zeigen Existenz- und Eindeutigkeitsresultate. Als nächsten Schritt
analysieren wir eine von Lévy weißem Rauschen getriebene semilineare partielle Differen-
tialgleichung in gewichteten Besovräumen.

In Kapitel 6 beweisen wir zentrale Grenzwertsätze für das Stichprobenmittel und die
Stichprobenautokovarianz für Moving Average Zufallsfelder. Wir benutzen Stichproben
auf einem Gitter, wobei die Stichprobe deterministisch oder zufällig sein kann.
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1 Introduction

Infinitely divisible distributions are well-studied probability measures and can be used in
different applications, see [58] for a detailed introduction. An infinitely divisible distri-
bution µ on (R,B(R)) is a probability measure on (R,B(R)) such that its characteristic
function µ̂ is given by

µ̂(z) :=
∫
R
eixzµ(dx) = exp(ψ(z)), (1.1)

where ψ : Rd → C is given by

ψ(z) = iγz − 1
2az

2 +
∫
R
(eiyz − 1− iyz1|y|≤1)ν(dy), (1.2)

where γ ∈ R, a ≥ 0 and ν is a Lévy measure, i.e. a measure such that ν({0}) = 0
and

∫
R min(1, y2)ν(dy) < ∞. We call (a, γ, ν) the characteristic triplet of the infinitely

divisible distribution µ.
One defining property of an infinitely divisible distribuiton µ is that µ̂t defines the char-
acteristic function for some probability measure µt for every t ∈ [0,∞). This is equivalent
to the fact that for every n ∈ N there exists a probability measure µn on (R,B(R)) such
that

µ∗nn = µ, (1.3)

where µ∗nn is the n-fold convolution of µn with itself.
Therefore, it is also possible to define an infinitely divisible distribution µ by (1.3).
In this thesis it is more suitable to define an infinitely divisible distribution by (1.1) and
(1.2), as the characteristic triplet (a, γ, ν) plays a central role in all following chapters.
The thesis can be divided into two parts. The first part deals with infinitely divisible and
related distributions, namely in Chapter 2 we study the integral modulus of continuity
of a density of an infinitely divisible distribution and in Chapter 3 we deal with quasi-
infinitely divisible distributions, an extension of the infinitely divisible distributions.
The second part deals with stochastic partial differential equations driven by Lévy white
noise and random fields. Chapter 4 deals with linear stochastic partial differential equa-
tions in the space of infinitely differentiable functions with compact support. In the
next chapter we use different function spaces, e.g. the space of tempered distributions
and the space of Fourier hyperfunctions, to obtain existence and uniqueness of certain
linear and seminlinear stochastic partial differential equations. In the last chapter we
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obtain for moving average random fields central limit theorems for the sample mean and
autocovariance.

1.1 Infinitely divisible distributions and the integral
modulus of continuity (Chapter 2)

Chapter 2 deals with densities of infinitely divisible distributions and their integral mod-
ulus of continuity.
Every probability measure µ can be decomposed into µd+µac+µcs, where µd is a discrete,
µac is an absolutely continuous and µcs is a continuous singular measure, where the con-
tinuity is with respect to the Lebesgue measure. It is interesting to know that there exist
probability measures µ1, µ2 and µ3 which are infinitely divisible and µ1 is discrete, µ2 is
absolutely continuous and µ3 is continuous singular. For each class (discrete, absolutely
continuous and continuous singular) there are sufficient conditions in terms of the charac-
teristic triplet. In this section, we are mainly interested in the absolutely continuous case.
Let therefore µ be an infinitely divisible distribution which is absolutely continuous with
respect to the Lebesgue measure λ, i.e. there exists a function fµ ∈ L1(R, [0,∞)) such
that µ(dx) = fµ(x)λ(dx). Until now there exists no complete characterization, in terms of
the characteristic triplet, when an infinitely divisible probability measure µ is absolutely
continuous, but at least sufficient conditions are known. Even more, several properties
of the density can be proven by the characteristic triplet, e.g. (Hölder)-continuity, dif-
ferentiability, integrability and many other properties. We are interested in the integral
modulus of continuity. The integral modulus of continuity of a function g : R → R is
defined by

I(g) : R→ R+, z 7→
∫
R
|g(z + x)− g(x)|λ(dx),

and we are interested in estimates of the form

I(g)(z) ≤ C|z|α for all z ∈ R (1.4)

for some fixed α ∈ (0, 1] and C > 0. In the special case that α = 1, (1.4) implies that
g is of bounded variation. So we are looking for an α ∈ (0, 1] such that I(fµ) satisfies
an estimate of the form (1.4). We give sufficient conditions in terms of the Lévy measure
ν by assuming that it has a Lebesgue density around 0 and obtain in Theorem 2.2 the
following results:

Let µ be an infinitely divisible distribution with characteristic triplet (a, γ, ν)
where a ≥ 0, γ ∈ R and ν a Lévy measure such that |x|ν(dx) has a Lebesgue
density k in a neighbourhood around zero with lim infx→0+ k(x)+lim infx→0− k(x) =:
cinf .
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i) If cinf > 1/p for 1 < p ≤ 2, then µ has a Lebesgue density
fµ ∈ L1(R,R+) ∩ Lp/(p−1)(R,R+) and there exists a constant C > 0 such that∫

R

|fµ(x− z)− fµ(x)|λ(dx) ≤ C|z|
1
p

for every z ∈ R.
ii) If cinf > 1, then fµ is continuous on R and there exists a constant C > 0
such that ∫

R

|fµ(x− z)− fµ(x)|λ(dx) ≤ C|z|

for every z ∈ R.
iii) Now let csup := lim supx→0+ k(x) + lim supx→0− k(x) < 1

p
with p ∈ (0,∞)

and let a = 0. Then, if µ has a Lebesgue density fµ, it satisfies

sup
0≤h≤|z|

∫
R

|fµ(x− h)− fµ(x)|λ(dx) ≥ C|z|
1
p (1.5)

for some constant C > 0 and z ∈ (−1, 1).
As an application of the above result we will analyze the density of the stochastic integral∫

[0,t) g(x)dL(x), where t ∈ [0,∞], g : [0, t) → R is a deterministic function and L is a
non-deterministic Lévy process with characteristic triplet (a, γ, ν). The existence of the
integrals

∫ t
0 g(s)dL(s) or

∫∞
0 g(s)dL(s) can be completely characterized by the character-

istic triplet (a, γ, ν) of L and g, see [56, Theorem 2.7, p. 461]. Moreover, the integrals are
infinitely divisible with characteristic triplet (ag, γg, νg) where

γg =
∫

[0,t)

γg(s) +
∫
R

g(s)r(1[−1,1](g(s)r)− 1[−1,1](r)) ν(dr)
λ(ds),

ag =
∫

[0,t)

ag(s)2 λ(ds) and

νg(B) =
∫

[0,t)

∫
R

1B\{0}(g(s)r) ν(dr)λ(ds), B ∈ B

with t ∈ [0,∞]. In the case that t is finite, we will obtain the following lemma, see Lemma
2.5:

Let g : [0, t]→ R be a C1-Diffeomorphism onto its range.
i) Then |x|νg(dx) is absolutely continuous with Lebesgue density k given by

k(x) =
∫
R

1g([0,t])(x/r)
|x|
|r|

∣∣∣(g−1)′(x/r)
∣∣∣ ν(dr) <∞

3



for all x ∈ R \ {0}.
ii) Let g > 0 in [0, t]. If lim infx→0+ ν( x

g([0,t])) = λ1 > 0, then lim infx→0+ k(x) ≥
infy∈g([0,t]) |y||(g−1)′(y)|λ1 and if lim supx→0+ ν( x

g([0,t])) = λ2 <∞, then
lim supx→0+ k(x) ≤ supy∈g([0,t]) |y||(g−1)′(y)|λ2.

In the case that t = ∞ we only cite some special cases, the more general result can be
found in Chapter 2. We assume that g is a strictly positive, continuous function which
attains its maximum

c := max
t∈[0,∞)

g(t)

and that there exists a decomposition (ti)i∈N0 with 0 = t0 < t1 < . . . and ti → ∞ for
i→∞ such that g restricted to (ti, ti+1) is a C1−diffeomorphism onto its range for every
i ∈ N0. In Corollary 2.14 we will prove:

Let g : [0,∞) → (0,∞) have the same properties as above, denote T :=
{ti : i ∈ N} and assume that

lim inf
x→∞,x/∈T

∣∣∣∣∣ g(x)
g′(x)

∣∣∣∣∣ = α

for some α ∈ (0,∞]. Then
∫

[0,∞) g(t) dL(t) has a density of bounded variation,
if ν(R) > 1

α
.

For g(x) = e−x
2 we cannot use Corollary 2.14 to find a sufficient condition when the

density is of bounded variation. Therefore, we obain by a similar technique Corollary
2.17:

Let g(x) = e−ψ(x) with ψ : [0,∞) → R continuous such that ψ : (0,∞) →
(0,∞) is a strictly increasing C1-diffeomorphism and such that ψ(0) = 0
and (ψ−1)′ is decreasing. Then the Lebesgue density of

∫
[0,∞) g(t)dL(t) is

of bounded variation if

lim inf
x→0+

ν((x, 1))
ψ′(ψ−1(− log(x))) + lim inf

x→0−

ν((−1, x))
ψ′(ψ−1(− log |x|)) > 1.

1.2 Quasi-infinitely divisible distributions (Chapter 3)

An infinitely divisible distribution µ on (R,B(R)) is characterized by its characteristic
triplet (a, γ, ν), where a ≥ 0, γ ∈ R and ν is a Lévy measure. A natural extension of
this concept would be to allow more complex characteristic triplets, like a ∈ R and ν a
"signed" Lévy measure. It is clear that not for every "signed" Lévy measure the function

exp
(
iγz − 1

2az
2 +

∫
R
(eiyz − 1− iyz1|y|≤1)ν(dy)

)

4



is a characteristic function of a probability measure. Therefore, we need to differentiate
between "good" and "bad" "signed" Lévy measures. The formal definition is then given by
(see Definition 3.1):

i) Let Br := {B ∈ B|B ∩ (−r, r) = ∅} for r > 0 and B0 := ∪r>0Br be the
class of all Borel sets that are bounded away from zero. Let ν : B0 → R be a
function such that ν|Br is a finite signed measure for each r > 0 and denote
the total variation, positive and negative part of ν|BR by |ν|Br |, ν+

|Br and ν−|Br ,
respectively. Then the total variation |ν|, the positive part ν+ and the negative
part ν− of ν are defined to be the unique measures on (R,B) satisfying

|ν|({0}) = ν+({0}) = ν−({0}) = 0

and

|ν|(A) = |ν|Br |(A), ν+(A) = ν+
|Br(A), ν−(A) = ν−|Br(A)

when A ∈ Br for some r > 0.
ii) A quasi-Lévy type measure is a function satisfying the condition of a) such
that its total variation |ν| satisfies

∫
R(1 ∧ x2)|ν|(dx) <∞.

iii) Let µ be a probability distribution on R. We say that µ is quasi-infinitely
divisible if its characteristic function has a representation

µ̂(z) = exp
−1

2az
2 + iγz +

∫
R

(eixz − 1− ixz1[−1,1](x))ν(dx)
 ,

where a, γ ∈ R and ν is a quasi-Lévy-type measure. The characteristic triplet
(a, γ, ν) of µ is unique (see [58, Exercise 12.2]), and a is called the Gaussian
variance of µ.
iv) A quasi-Lévy type measure ν is called quasi-Lévy measure, if additionally
there exist a quasi-infinitely divisible distribution µ and some a, γ ∈ R such
that (a, γ, ν) is the characteristic triplet of µ. We call ν the quasi-Lévy measure
of µ.
v) Let µ be quasi-infinitely divisible with characteristic triplet (a, γ, ν). If∫

[−1,1] |z| |ν|(dx) < ∞, then we call γ0 := γ −
∫

[−1,1] z ν(dz) the drift of µ. In
that case, the characteristic function of µ allows the representation

µ̂(z) = exp
−1

2az
2 + iγ0z +

∫
R

(eixz − 1)ν(dx)
 .

[51] started with a detailed study of this subject and obtained a complete characterization
of quasi-infinitely divisible distributions on every affine lattice, i.e. a probability measure
µ on a lattice r+ hZ, r ∈ R and h > 0, is quasi-infinitely divisible if and only if µ̂(z) 6= 0

5



for all z ∈ R. This result has several consequences, and we discuss some of them here.
At first, the quasi-infinitely divisible distributions are dense in the space of probability
measures, which implies that the quasi-infinitely divisible distributions are not closed
in the topology of the weak convergence. An easy example can be constructed by the
Bernoulli probability measures (µp)p∈[0,1] defined by

µp(dx) = pδ0(dx) + (1− p)δ1(dx)

for p ∈ [0, 1]. We see from above that µp is quasi-infinitely divisible if and only if p 6=
1
2 . As for every sequence (pn)n∈N ⊂ [0, 1] \ {1

2} converging to 1
2 the sequence (µpn)n∈N

converges weakly to µ 1
2
as n → ∞, we see that the space of quasi-infinitely divisible

distributions is not closed in the topology generated by the weak convergence. Moreover,
the counterexample shows even that the quasi-infinitely divisible distribution intersected
with the probability measures with existing q-moment, q ≥ 1, is not closed in the topology
generated by the q-Wasserstein metric.
In this chapter we characterize the quasi-infinitely divisible distributions of the form

µ(dx) = pδ0(dx) + (1− p)f(x)λ(dx), (1.6)

with

µ̂(z) = p+ (1− p)
∫
R
eixzf(x)λ(dx), (1.7)

where f(x)λ(dx) is an absolutely continuous probability measure on (R,B(R)) and p ∈
(0, 1].
A keytool of proving that every lattice distribution without vanishing characteristic func-
tion is quasi-infinitely divisible was the so called Wiener-Lévy Lemma. The Wiener-Lévy
Lemma basically gives at first sight a complex quasi-Lévy measure, i.e. the real and
imaginary part are quasi-Lévy type measures, and it was shown that in this case the
quasi-Lévy measure is indeed a real (signed) measure. So it is only natural to ask if there
exists a probability measure such that its characteristic function has a Lévy-Khintchine-
type representation with a complex quasi-Lévy measure. We prove that in this case, the
complex quasi-Lévy measure must indeed be signed, implying that the measare µ is infact
quasi-infinitely divisible, see Theorem 3.5.

Let µ be a distribution on R whose characteristic function allows a repre-
sentation of the form

µ̂(z) = exp
iγz − 1

2az
2 +

∫
R

(eixz − 1− izx1[−1,1](x))ν(dx)
 (1.8)

where γ ∈ C, a ∈ C and ν is a complex quasi-Lévy-type measure. Then
a, γ ∈ R, a ≥ 0 and Im ν = 0, i.e. ν is a quasi-Lévy measure and µ is
quasi-infinitely divisible.

6



By using a Wiener-Lévy Lemma for functions like in (1.7) and the above theorem, we
give a similar characterization of quasi-infinitely divisible distributions of type (1.6) as in
the case of lattice distributions. But first we need the definition of the index of µ̂ given
in (1.7):

Let F (x) = p+
∫
R e

ixzf(z)λ(dz) 6= 0 for every x ∈ R and p ∈ C \ {0}. Then
we can interpret F as a closed curve in C. By the property of the distinguished
logarithm, there exists a continuous function g : R→ R such that

F (x)
|F (x)| = exp (ig(x)) for all x ∈ R.

Then the index ind(F ) of F is defined as

ind(F ) := 1
2π ( lim

z→+∞
g(z)− lim

z→−∞
g(z)) =: 1

2π (g(∞)− g(−∞)).

We obtain the following result, see Theorem 3.11:

Let µ be a probability distribution of the form (1.6). Then µ is quasi-
infinitely divisible if and only if µ̂(z) 6= 0 for every z ∈ R. In that case, the
quasi-Lévy measure ν of µ is given by(

g(x) + me−|x|

|x|
(1(0,∞)(x)− 1(−∞,0)(x))

)
λ(dx),

where g ∈ L1(R,R) and m is the index of µ̂. Furthermore,
∫ 1
−1 |x||ν|(dx) <∞,

µ has drift 0 and Gaussian variance 0. Finally, |ν| is finite if and only if m = 0,
and if m 6= 0, then ν−(R) = ν+(R) =∞.

Using the above result, in Example 3.12 we construct a non-continuous quasi-infinitely
divisible distribution with infinite quasi-Lévy measure, thus answering an open question
posed in [51, Open Question 7.2, p. 8510] in the negative. The theorem above can be
used to find sufficient conditions such that a distribution

µ(dx) = pµd(dx) + (1− p)µac,

where µd is a lattice distribution and µac an absolutely continuous probability measure,
is quasi-infinitely divisible. Namely, if µ̂d(z) 6= 0 6= µ̂(z) for all z ∈ R, then µ is quasi-
infinitely divisible.
Furthermore, we obtain some topological properties of the space of the quasi-infinitely
divisible distributions (QID). We prove that QID is not open, but path-connected, and
therefore even connected, see Propositions 3.21 and 3.22.

7



1.3 Lévy driven CARMA SPDEs on D′(Rd) (Chapter 4)

In this chapter we will deal with a stochastic partial differential equation of the form

p(D)s = q(D)L̇, (1.9)

where p(z) = ∑
|α|≤m

pαz
α, q(z) = ∑

|β|≤n
qβz

β, n,m ∈ N0, are real polynomials in d variables,

p(D) = ∑
|α|≤m

pα∂
α1
1 · · · ∂αdd and L̇ is a Lévy white noise on a suitable function space. We

will later give the definitions and results, but at first we give a small introduction to
(C)ARMA processes and multidimensional extensions.
A CARMA(p, q) process (Xt)t∈R, where p > q, is given by

Xt = b′Yt, t ∈ R, (1.10)

where Y = (Yt)t∈R is a Cp-valued process satisfying the stochastic differential equation

dYt = AYtdt+ epdLt (1.11)

with

A =



0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1
−ap −ap−1 −ap−2 . . . −a1

 , ep =



0
0
...
0
1

 ∈ Cp and b =



b0
b1
...

bp−2
bp−1

 ,

where a1, . . . , ap, b0, . . . , bp−1 ∈ C are determinstic coefficients such that bq 6= 0 and bj = 0
for every j > q, b′ denotes the transpose of b and L = (Lt)t∈R is a two-sided Lévy process.
The equations (1.10) and (1.11) are the so called state-space representation of the formal
stochastic differential equation

a(D)Yt = b(D)DLt, (1.12)

with D the differential operator and a(z) = zp + a1z
p−1 + . . . + ap and b(z) = b0 + b1z +

. . . + bqz
q are polynomials. It is easy to see that the CARMA process is a continuous

extension of the so called ARMA processes, i.e. an ARMA process (Xk)k∈Z, p, q ∈ N0, is
the stationary solution of the difference equation

Xk −
p∑
i=1

aiXk−i = Wk +
q∑
j=1

bjWk−j,

where a1, . . . , ap, b1, . . . , bq ∈ C are deterministic coefficients and (Wk)k∈Z is white noise
or even an independent and identically distributed (iid) sequence of random variables. In
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short form we can also write

a(B)Xk = b(B)Wk,

where a(z) = 1−
p∑
i=1

aiz
k, b(z) = 1 +

q∑
j=1

bjz
j are polynomials and B is the shift operator

defined by BlYk = Yk−l for l ∈ N. ARMA and CARMA processes have many applications
in different areas, e.g. in finance, astrophysics, engineering and traffic data, see [35], [29],
[67] and [46]. In [15] necessary and sufficient conditions on L and A were given such that
there exists a strictly stationary solution of (1.10) and (1.11), namely it was shown that
it is sufficient and necessary that E log+(|L1|) <∞.
The interpretation of the stochastic differential equation (1.12) through the state space
representation (1.10), (1.11) makes only sense when the degree of a is greater than the
degree of b. [14] studied generalized solutions of (1.12) under the assumption that the
degree of b is greater than the degree of a, and introduced for Wiener white noise the
CARMA(a, b) generalized processes.
The goal of this chapter is to find a mulitdimensional extension of (1.10) and (1.11). Until
now there exist at least two other definitions of a multidimensional CARMA random field,
here we recall the definition of Brockwell and Matsuda [16] and Pham [55].
In [16] the new CARMA random field was given by

Sd(t) :=
∫
Rd

p∑
r=1

b(λr)
a′(λr)

eλr‖t−u‖dL(u), (1.13)

where dL denotes the integration over a Lévy bases, a and b are polynomials such that
a(z) = ∏p

i=1(z2 − λ2
i ) and some further restrictions.

Pham [55] defines a CARMA random field Y as a mild solution of the system of SPDEs
given by

Y (t) = b′X(t), t ∈ Rd, (1.14)
(Ip∂d − Ad) · · · (Ip∂1 − A1)X(t) = cL̇(t), t ∈ Rd, (1.15)

where L̇ is a Lévy basis, A1, . . . , Ad ∈ Rp×p are matrices and Ip is the identity matrix.
Both models have their advantages, for example the models have a well understood second
order behaviour, can be used for statistical estimation and the solution of the system (1.14)
depends only on the past in the sense that the solution at point x depends solely on the
behaviour of L̇ on (−∞, x1] × · · · × (−∞, xd] (therefore in [55] he speaks about causal
CARMA random fields).
Our definition of a CARMA "random field" (more generalized stochastic process, see the
later definitions) is motivated by (1.12), as both models give not a complete picture in
terms of (1.12). In order to give a clear definition of our concept of a CARMA random
field, we need the definition of a generalized process. We denote by D(Rd) the space
of infinitely differentiable functions with compact support and equip it with its usual
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topology. Here, D′(Rd) denotes the space of distributions on Rd, i.e. the topological dual
of D(Rd).

A generalized random process is a linear and continuous function s : D(Rd)→
L0(Ω). The linearity means that, for every ϕ1, ϕ2 ∈ D(Rd) and γ ∈ R,

s(ϕ1 + γϕ2) = s(ϕ1) + γs(ϕ2) almost surely.

The continuity means that if ϕn → ϕ in D(Rd), then s(ϕn)→ s(ϕ) in L0(Ω).

As shown in [65, Corollary 4.2], there exists a measurable version from (Ω,F) to (D′(Rd), C)
with respect to the cylindrical σ-field C generated by the sets

{u ∈ D′(Rd)| (〈u, ϕ1〉, . . . , 〈u, ϕN〉) ∈ B}

with N ∈ N, ϕ1, . . . , ϕN ∈ D(Rd) and B ∈ B(RN).
The probability law of a generalized random process s is given by

Ps(B) := P(s ∈ B)

for B ∈ C. The characteristic functional P̂s is then defined by

P̂s(ϕ) =
∫

D′(Rd)

exp(i〈u, ϕ〉)dPs(u), ϕ ∈ D(Rd).

We will work with Lévy white noise, which is a generalized random process where the
characteristic functional satisfies a Lévy-Khintchine representation.

A Lévy white noise L̇ is a generalized random process, where the character-
istic functional is given by

P̂L̇(ϕ) = exp

 ∫
Rd

ψ(ϕ(x))λd(dx)


for every ϕ ∈ D(Rd), where ψ : R→ C is given by

ψ(z) = iγz − 1
2az

2 +
∫
R

(eixz − 1− ixz1|x|≤1)ν(dx)

where a ∈ R+, γ ∈ R and ν is a Lévy measure, i.e. a measure such that
ν({0}) = 0 and ∫

R

min(1, x2)ν(dx) <∞.

We say that L̇ has the characteristic triplet (a, γ, ν).
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The existence of the Lévy-white noise was proven in [34]. The domain of the Lévy white
noise can also be extended to indicator functions 1A for Borel sets A with finite Lebesgue
measure by using the construction in [32, Proposition 3.4]. For a more general function f
we say that f is in the domain of L̇ if there exists a sequence of elementary functions fn
converging almost everywhere to f such that 〈L̇, fn1A〉 converges in probability for n→∞
for every Borel set A and set 〈L̇, f〉 as the limit in probability of 〈L̇, fn〉 for n→∞, where
for an elementary function f := ∑m

j=1 aj1Aj , 〈L̇, f〉 is defined by ∑m
j=1 aj〈L̇,1Aj〉, see also

[32, Definition 3.6]. For the maximal domain of the Lévy white noise L̇ we write L(L̇).
By setting L(A) := 〈L̇,1A〉 for bounded Borel sets A, the extention of a Lévy white noise
L̇ can be identified with a Lévy basis L in the sense of Rajput and Rosinski [56], see [32,
Theorem 3.5 and Theorem 3.7]. As a Lévy basis can be identified with a Lévy white noise
in a canonical way, i.e. 〈L̇, ϕ〉 :=

∫
Rd
ϕ(x)dL(x) for ϕ ∈ D(Rd), we do not differ between a

Lévy basis and Lévy-white noise. In particular, a Borel-measurable function f : Rd → R
is in L(L̇) if and only if f is integrable with respect to the Lévy basis L in the sense of
Rajput and Rosinski [56], see [32, Def. 3.6].
The Lévy white noise is stationary in the following sense.

A generalized process s is called stationary if for every t ∈ Rd, s(· + t) has
the same law as s. Here, s(·+ t) is defined by

〈s(·+ t), ϕ〉 := 〈s, ϕ(· − t)〉 for every ϕ ∈ D(Rd).

Now we can state our definition, see Definition 4.12, of our CARMA generalized process:

Let L̇ be a Lévy white noise, n,m ∈ N0 and p, q : Rd → R be polynomials
of the form

p(x) =
∑
|α|≤n

pαx
α

and

q(x) =
∑
|α|≤m

qαx
α.

A generalized process s : D(Rd)→ L0(Ω) is called a CARMA(p, q) generalized
process if s solves the equation

p(D)s = q(D)L̇,

which means that

〈s, p(D)∗ϕ〉 = 〈L̇, q(D)∗ϕ〉 a.s. for every ϕ ∈ D(Rd). (1.16)

Here p(D)∗ and q(D)∗ are the formal adjoint operators of p(D) and q(D), given by p(D)∗ =
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p(−D) and q(D)∗ = q(−D), respectively. In order to prove the existence of s for suitable
polynomials p and q, we prove a more general theorem, see Theorem 4.5:

Let L̇ be a Lévy white noise with characteristic triplet (a, γ, ν) and G :
Rd → R be a measurable function such that G ∈ L1(Rd). Define

GR(x) :=
∫

BR(x)

|G(y)|λd(dy)

for every x ∈ Rd and R > 0 and

hR(x) = x

1/x∫
0

λd({x ∈ Rd : GR(x) > α})λ1(dα) for x > 0.

Assume that ∫
R

1|r|>1hR(|r|)ν(dr) <∞

for every R > 0. Then

s(ϕ) := 〈L̇, G ∗ ϕ〉, ϕ ∈ D(Rd)

defines a stationary generalized random process.
Our main theorem states the following (see Theorem 4.16):

Let p, q be real polynomials in d variables and assume that the rational
function q(i·)/p(i·) has a holomorphic extension in a strip {z ∈ Cd : ‖=z‖ < ε}
for some ε > 0. Furthermore, let L̇ be a Lévy white noise with characteristic
triplet (a, γ, ν) such that ∫

R

1|r|>1 log(|r|)dν(dr).

Then there exists a stationary CARMA(p, q) generalized process.
Furthermore, we provide in this chapter sufficient conditions for an existing mild solution
of (1.9) and show that under some conditions this mild solution defines by a suitable
identification a CARMA(p, q) generalized process.
Independent of this discussion before we give also a similar result to Theorem 1.3 for
functions G ∈ L1

loc(Rd) such that ‖G ∗ ϕn‖L2(Rd) → 0 for n → ∞ for every sequence
(ϕn)n∈N ⊂ D(Rd) converging to 0. Therefore, we will prove the existence of solutions of
homogeneous elliptic partial differential equations driven by Lévy white, namely we show
(see Proposition 4.13):

Let p(D) = ∑
|α|=m aαD

α, m ∈ N, be an elliptic homogeneous partial dif-
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ferential operator. If d > 2m and the Lévy white noise L̇ with characteristic
triplet (a, γ, ν) satisfies ∫

R

1|r|>1|r|
d

d−m+εν(dr) <∞

for some ε > 0 and the first moment of L̇ vanishes, then there exists a gener-
alized process s which solves the SPDE

p(D)s = L̇.

1.4 CARMA SPDEs in the spaces of tempered
(ultra-)distributions and Fourier hyperfunctions and
semilinear SPDEs (Chapter 5)

Until now we only considered the existence of the solution of (1.9) but did not show
uniqueness of this solution in the space D(Rd) (more precisely in its dual). In order to
give some uniqueness results we prove the existence and uniqueness in different function
spaces. At first, we assume a Lévy white noise in the space S ′, the space of tempered
distributions. The space of tempered distributions is the topological dual of the Schwartz
space with its usual topology. It is known that a Lévy white noise L̇ with characteristic
triplet (a, γ, ν) exists on S ′ if and only if

∫
|r|>1 |r|εν(dr) < ∞, see [21, Theorem 3.13,

p. 4412]. We obtain on the space of tempered distributions the following result, see
Proposition 5.5:

Let L̇ be a Lévy white noise on the space of tempered distributions S ′. Let
p and q be two polynomials such that there exists two polynomials h and l
such that q(i·)

p(i·) = h(i·)
l(i·) on Rd and l has no zeroes on iRd. Then there exists a

generalized process s on the space of tempered distributions solving (1.9), i.e.
it holds that

〈s, p(D)∗ϕ〉 = 〈L̇, q(D)∗ϕ〉 (1.17)

for all ϕ ∈ S(Rd), which is stationary. If p(iz) 6= 0 for all z ∈ Rd, then the
solution s is unique.

In the next step we will look at the space S ′ω, the space of tempered ultradistributions.
We give here the definition, which can be also founded in Definition 5.6:

Let ω : Rd → R be a real-valued function such that ω(x) = σ(‖x‖), where
σ(t) is an increasing continuous concave function on [0,∞) with

σ(0) = 0,
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∞∫
0

σ(t)
1 + t2

λ1(dt) <∞,

σ(t) ≥ c+m log(1 + t) if t ≥ 0

for some c ∈ R and m > 0. Then the space Sω is the set of all infinitely
differentiable functions ϕ : Rd → C such that

pα,η(ϕ) := sup
x∈Rd

eηω(x)‖Dαϕ(x)‖ <∞,

πα,η(ϕ) := sup
x∈Rd

eηω(x)‖Dα(Fϕ)(x)‖ <∞,

for every multi-index α and every η > 0. The space is equipped with its semi-
norms given above and its topological dual S ′ω is called the space of tempered
ultradistributions.

At first we need to construct under sufficient conditions the existence of the Lévy white
noise on S ′ω, see Theorem 5.7:

Let (a, γ, ν) be a characteristic triplet and ω be a suitable weight function.
If

∫
|r|>1

|r|
1/|r|∫
0

ω→(c log(|α|−1))dλ1(dα)ν(dr) <∞

for some c ∈ (0,∞), where ω→(α) := sup{x ∈ [0,∞) : σ(x) < α} for α ∈
(0,∞), then there exists a Lévy white noise L̇ : (Ω,F) → (S ′ω, C(S ′ω)) with
characteristic triplet (a, γ, ν).

The existence and uniqueness of a solution s of (1.9) driven by a Lévy white noise on S ′ω
follows by a similar condition as in Theorem 5.10:

Let p, q be two real polynomials and assume that the rational function
q(i·)/p(i·) has a holomorphic extension in a strip {z ∈ Cd : ‖=z‖ < ε} for
some ε > 0. Furthermore, let ω be a suitable weight function and L̇ be a Lévy
white noise on the space of tempered ultradistribution S ′ω under the condi-
tions above. Then there exists a generalized stationary process s in the space
of tempered ultradistributions S ′ω such that

p(D)s = q(D)L̇.

Moreover, if p(i·) has no zeroes in the strip, then the solution is unique.

In the next step we want to find a distributional space such that there exists a Lévy white
noise with characteristic triplet (a, γ, ν) on this space under the very weak assumption
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that ∫
|r|>1

log(|r|)dν(dr) <∞,

as this was the assumption that guaranteed the existence of a solution to the CARMA
SPDE on the space D′(Rd) of distributions. The suitable space is the space of Fourier
Hyperfunctions:

The space P∗ consists of all functions ϕ ∈ C∞(Rd,C) which have an analytic
continuation on a strip

Aδ := {z ∈ Cd : ‖=z‖ < δ}

for some δ > 0 and it holds that

sup
z∈Al
| exp((δ − ε)‖z‖)ϕ(z)| <∞ (1.18)

for every 0, ε, l < δ. The space P∗ is nuclear with its inductive topology, i.e. a
sequence (ϕn)n∈N ⊂ P∗ converges to 0 if and only if there exists a δ > 0 such
that ϕn has an analytic continuation in Aδ for every n ∈ N and

sup
z∈Aδ/2

| exp(δ/2‖z‖)ϕn(z)| → 0 for n→∞,

see [43, p. 408]. We denote by Q its topological dual and call it the space of
Fourier hyperfunctions.

We obtain the following corresponding results, see Proposition 5.12:

Let (a, γ, ν) be a characteristic triplet such that∫
|r|>1

log(|r|)dν(dr) <∞.

Then there exists a Lévy white noise on (Q, C(Q)).

Using this we therefore obtain the following result for CARMA(p, q) generalized processes,
see Theorem 5.13:

Let L̇ be a Lévy white noise on Q. Let p, q be two real polynomials such
that the rational function q(i·)/p(i·) has a holomorphic extension in a strip
{z ∈ Cd : ‖=z‖ < ε} for some ε > 0. Then there exists a generalized stationary
process s in Q such that

p(D)s = q(D)L̇.

Moreover, if p has no zeroes in the strip, than the solution is unique.
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When we want to solve more sophisticated equations like

p(D)s = g(·, s) + L̇, (1.19)

where g : Rd × C → R satisfies some Lipschitz condition, we need to work on a more
regular distributional space. The weighted Besov spaces Bl

r,r(Rd, ρ), where r ≥ 2, l ∈ R
and ρ < 0, defined for example in Section 5.2, seem to be the right context to study
equation (1.19). We obtain the following result, see Proposition 5.16:

Let r ∈ [2,∞], ρ < − d
min{2,ε} , κ > d(1− 1/r) + β for some β > 0 and p(D)

be a partial differential operator satisfying∣∣∣∣∣Dγ 1
p(iξ)

∣∣∣∣∣ ≤ cγ(1 + ‖ξ‖2)(−κ−|γ|)/2 (1.20)

for every γ ∈ Nd
0, where cγ ≥ 0. Furthermore, let g : Rd × C → R be a

Lipschitz function such that

|g(x, y)| ≤ C(1 + |y|)

for some constant C > 0 for all x ∈ Rd and y ∈ C and assume that

‖g‖Lip := sup
x∈Rd

sup
z,y∈C

|g(x, y)− g(x, z)|
|y − z|

<(‖p(D)−1‖Lr(Rd,ρ)→Bβr,r(Rd,ρ)‖id‖Bβr,r(Rd,ρ)→Lr(Rd,ρ))
−1 <∞.

(1.21)

Let L̇ be a Lévy white noise on S ′ with characteristic triplet (a, γ, ν) such that∫
|r|>1 |r|εν(dr) <∞. Let l = β − κ + d

(
1
2 −

1
r

)
< −d

2 and choose a version of
L̇ in the Sobolev space Bl

2,2(Rd, ρ).
Then there exists a unique measurable mapping s : (Ω,F)→ (Bβ

r,r(Rd, ρ),B(Bβ
r,r(Rd, ρ))),

which solves the equation (1.19). Especially, it holds that s ∈ Lr(Ω, Bβ
r,r(Rd, ρ))

if ε > r ≥ 2.

We see from the proof of this theorem that s can be even identified with a random field,
as the Besov regularity of the solution is positive. Using the mapping from the Besov
space to a certain weighted Lr space gives us the identification of s with a random field.

1.5 Central limit theorems for moving average random
fields (Chapter 6)

In the last chapter of this thesis we deal with central limit theorems for a moving average
random field, i.e. a random field (Xt)t∈Rd such that there exists a function f : Rd → R
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with

Xt :=
∫
Rd
f(t− x)dL(x),

where dL denotes a Lévy basis with characteristic triplet (a, γ, ν). For example, the mild
solution of (1.9) can be written as a moving average random field.
In [18] the authors studied central limit theorems with deterministic sampling for moving
average processes driven by a Lévy process. In this sense our results are a generalization
to random fields and even more, we also allow that we have a random sampling method.
We start with central limit theorem for the sample mean, see Theorem 6.2

Let L be a Lévy basis with E(L([0, 1]d)2 < ∞ and f ∈ L1(Rd) ∩ L2(Rd),
and let

Xt :=
∫
Rd

f(t− u)dL(u), t ∈ Rd.

Let ∆ > 0, A ∈ O(d), and (Γn)n∈N be a sequence of finite subsets of ∆AZd
such that
a) Γn ⊂ Γn+1 for every n ∈ N,
b) |Γn| → ∞ as n→∞, and
c) anl := |{(t,s)∈Γn×Γn:t−s=l}|

|Γn| converges as n → ∞ to some al for each l ∈
∆AZd.

Assume that ∑
t∈∆AZd

sup
n∈N

ant

∫
Rd

|f(−u)f(t− u)|λd(du) <∞. (1.22)

Then ∑
t∈∆AZd

at|cov (Xt, X0)| <∞,

and

1√
|Γn|

∑
t∈Γn

Xt − EL([0, 1]d)
∫
Rd

f(u)λd(du)

 d→ N

0,
∑

t∈∆AZd
atcov (Xt, X0)

 .
Under some stricter moment assumptions on the random field, we find also central limit
theorems when assuming that our sampling is in some sense random, see Theorem 6.7:

Let (Yt)t∈∆AZd be a {0, 1}−valued α−mixing random field with mixing co-
efficients αY (k;u, v), which is independent of the Lévy basis L and satisfies
P (Y0 = 1) > 0. Moreover, assume there exists a δ > 0 such that Y satisfies
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i) for every u, v ∈ N it holds αY (k;u, v)kd → 0 for k →∞,

ii) for every u, v ∈ N such that u + v ≤ 4 it holds
∞∑
k=0

kd−1αY (k;u, v) < ∞

and especially
∞∑
k=0

kd−1αY (k; 1, 1)δ/(2+δ) <∞.

Let Γn be as above and X = (Xt)t∈Rd be a moving average random field with
Xt =

∫
Rd f(t−u) dL(u) with E|L([0, 1]d)|2+δ <∞ and f ∈ L1(Rd)∩L2+δ(Rd).

If ∑
t∈∆AZd

EY0Yt

∫
Rd

|f(−u)| |f(t− u)|λd(du) <∞,

then we have that

1√
|Γn|

∑
t∈Γn

Xt − EL([0, 1]d)
∫
Rd

f(u)λd(du)

 d→ N

0,
∑

t∈∆AZd

1
EY0

cov (YtXt, Y0X0)
 .

In the special case that Y is h−dependent for some finite h > 0, it is enough
to assume that E|L([0, 1]d)|2 <∞ and f ∈ L1(Rd) ∩ L2(Rd).

We set

EL([0, 1]d)4 <∞, EL([0, 1]d) = 0, σ2 := EL([0, 1]d)2 > 0 (1.23)

We obtain also central limit theorems for the sample autocovariance, see Theorem 6.9:

Let m ∈ N and ∆1, . . . ,∆m ∈ ∆AZd, Γn as in Theorem 1.5, and let
(Xt)t∈Rd = (

∫
Rd f(t− s)dL(s))t∈Rd be a moving average random field such

that it satisfying some assumptions, f ∈ L2(Rd) ∩ L4(Rd) and
∑

l∈∆AZd

∫
Rd

sup
n∈N

anl |f(u)f(u+ l)f(u+ ∆p)f(u+ l + ∆d)|λd(du) <∞

for every p, d ∈ {1, . . . ,m} and∑
l∈∆AZd

sup
n∈N

anl γX(l)2 <∞.

Then√
|Γn|(γ∗n(∆1)− γX(∆1), . . . , γ∗n(∆m)− γX(∆m)) d→ N(0, V ), (1.24)

the multivariate normal distribution with mean 0 and covariance matrix V =
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(vpq)p,q∈{1,... ,m} given by

vpq =
∑

l∈∆AZd
al

(
(η − 3)σ4

∫
Rd

f(u)f(u+ ∆p)f(u+ l)f(u+ l + ∆q)λd(du)

+ γX(l)γX(l + ∆q −∆p) + γX(l + ∆q)γX(l −∆p)
)
.

In the case of the random sampling we obtain in Theorem 6.10 the following result:

Let (Yt)t∈∆AZd be a {0, 1}-valued α−mixing random field with mixing rates
as in Theorem 1.5 (δ > 0), which is independent of the Lévy basis L. Let
X = (Xt)t∈Rd be a moving average random field with Xt =

∫
Rd f(t− u) dL(u)

such that (1.23) holds with E|L([0, 1]d)|4+δ < ∞ and f ∈ L2(Rd) ∩ L4+δ(Rd).
Let ∆1, . . . ,∆m ∈ ∆AZd and for every p, d ∈ {1, . . . ,m} assume that

∑
t∈∆AZd

EY0Yt

∫
Rd

|f(u)f(u+ t)f(u+ ∆p)f(u+ t+ ∆d)|λd(du) <∞

and ∑
l∈∆AZd

EY0YlγX(l)2 <∞.

Then for Γn := {t ∈ ∆A[−n, n)d ∩∆AZd : Yt = 1} we have√
|Γn|(γ∗n(∆1)− γX(∆1), . . . , γ∗n(∆m)− γX(∆m)) d→ N(0, V ), (1.25)

with covariance matrix V = (vpq)p,q∈{1,... ,m} given by

vpq =
∑

l∈∆AZd

EY0Yl
EY0

(
(η − 3)σ4

∫
Rd

f(u)f(u+ ∆p)f(u+ l)f(u+ l + ∆q)λd(du)

+ γX(l)γX(l + ∆p −∆q) + γX(l + ∆p)γX(l + ∆q)
)
. (1.26)

1.6 Structure of the thesis

Apart from this introduction, the thesis consists of 5 chapters, which in turn are all based
on published or submitted research articles. In detail:

• Chapter 2 is based on the submitted article:
D. Berger, On the integral modulus of infinitely divisible distributions, Arxiv 1805.01641.

• Chapter 3 is based on the published article:
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D. Berger, On quasi-infinitely divisible distributions with a point mass, Math.
Nachrichten, Published online on 23 April 2019, DOI: 10.1002/mana.201800073.
• Chapter 4 is based on the submitted article:

D. Berger, Lévy driven CARMA generalized processes and stochastic partial differ-
ential equations, Arxiv 1904.02928.
• Chapter 5 is based on the submitted article:

D. Berger, Lévy driven linear and semilinear stochastic partial differential equations,
Arxiv 1907.01926.
• Chapter 6 is based on the submitted article:

D. Berger, Central Limit Theorems for Moving Average Random Fields with Non-
Random and Random Sampling On Lattices, Arxiv 1902.01255.

We have decided to follow the structure of the corresponding articles closely, so that the
chapters can be read individually. In particular, each chapter contains an introduction of
its own and also clarifies the notation used therein.
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2 On the integral modulus of continuity
of infinitely divisible distributions,
especially of stochastic integrals

We derive estimates for the integral modulus of continuity of probability densities of
infinitely divisible distributions. The chapter is splitted into two parts. The first part
deals with general infinitely divisible distributions. The second part is concerned with
densities of random integrals with respect to a Lévy process. We will see major differences
between integrals over compact and non-compact intervals.

2.1 Introduction

The modulus of continuity ||f(z−·)−f(·)||Lp(R) of a function f : R→ R, for z ∈ R, has a
deep connection to Fourier series and also to the Fourier transform. The decaying rate of
the Fourier transform (or weighted versions, see [10] and cited articles) can be estimated
by the modulus of continuity and vice versa. For 1 ≤ p ≤ 2 it is hard to obtain estimates
for the modulus of continuity in terms of the Fourier transform, but especially the case
p = 1 is very interesting as

∫
R |f(x− z)− f(x)| dx ≤ C|z| for all z is equivalent to the fact

that f is of bounded variation (see [1, Exercise 3.3, p. 208]).
In statistics it is also interesting to know if a probability density is of bounded variation
if one wants to estimate the density, see [23, Theorem 3]. Moreover, if one has a linear
process X = (Xt)t∈Z with Xt = ∑∞

i=0 aiZt−i with ai ∈ R and (Zi)i∈Z are iid random
variables with Lebesgue density f , the strong mixing rate of the process X depends on
the L1-modulus of continuity ||f(z − ·)− f(·)||L1(R), see [36, Theorem and proof].
In this chapter we are mostly interested in special classes of infinitely divisible distributions
and the L1-modulus of continuity of their densities, if existent. The chapter is separated
into two parts. The first part is interested in general infinitely divisible distributions and
their densities. A probability measure µ on R is infinitely divisible, if there exist constants
γ ∈ R, a ≥ 0 and a Lévy measure ν on R (i.e. a measure ν satisfying ν({0}) = 0 and∫
R min{1, x2}ν(dx) <∞) such that the Fourier transform µ̂ satisfies

µ̂(z) = exp
−1

2az
2 + iγz +

∫
R

(eixz − 1− ixz1[−1,1](x))ν(dx)
 (2.1)
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for every z ∈ R. It can be shown that the triplet (a, γ, ν) is unique, and that for every such
triplet (a, γ, ν) the right-hand side of (2.1) defines the Fourier transform of an infinitely
divisible distribution, see [58, Theorem 8.1, p. 37].
The question whether an infinitely divisible distribution is absolutely continuous or not is
a difficult one, and although many sufficient and many necessary conditions are known, a
complete characterization in terms of the characteristic triplet is not known. See [58, Sec-
tion 27] for an overview. Moreover, there are also many results regarding the continuity
and differentiability properties of their densities, see [58, Section 28] and cited articles.
We give an extension of these results and study the integral modulus of continuity of
densities of infinitely divisible distributions and especially of stochastic integrals driven
by a Lévy process, where the integrand is a deterministic function g.
The normal distribution is itself an infinitely divisible distribution with characteristic
triplet (a, γ, 0). If a > 0 it has of course a Lebesgue density with very nice properties
so it is not very suprising that we find bounds for the modulus and as a consequence we
obtain for the larger class of distributions with characteristic triplet (a, γ, ν) with a > 0
similiar estimates for the integral modulus.
In the more complicated case a = 0, we will give sufficient conditions on the characteristic
triplet (0, γ, ν) to have Hölder bounds for the modulus ||f(z− ·)− f(·)||L1(R) if ν(dx) has
a Lebesgue density in a neighborhood of zero, where f is the Lebesgue density of µ, the
probability measure with characteristic triplet (0, γ, ν).
An important subclass of infinitely divisible distributions is the class of self-decomposable
distributions. They are infinitely divisible distributions for which the Lévy measure has
a density of the form k(x)

|x| , such that k is increasing on (−∞, 0) and decreasing on (0,∞),
see [58, Theorem 15.10, p. 95]. They have a Lebesgue density if they are non-degenerate.
Furthermore, explicit bounds for the decay of their Fourier transform are known, so it
seems natural to start the search for bounds with this class. An important property of
these distributions is the unimodality. We will use this property in our proof for the
main result. By using known estimates for the modulus and the decay of their Fourier
transform it is possible to find upper bounds for the integral modulus and we will see that
most of our results are in some sense optimal.
The second part of the chapter deals with stochastic integrals of deterministic functions
with respect to Lévy processes and their corresponding densities, where we consider inte-
gration over compact and non-compact intervals. For the compact support we will deal
with kernels which are C1−diffeomorphisms on their support. We will see that every
stochastic integral with such a kernel has a Lebesgue density when the underlying Lévy
process has infinite Lévy measure and derive necessary and sufficient conditions on the
Lévy process and the kernel such that the density is of bounded variation. Based on
this we will consider for the non-compact support [0,∞) kernels such that there exists
a sequence 0 = t0 < t1 < . . . < tn → ∞ for n → ∞ such that the kernel is a C1-
diffeomorphism in every (ti, ti+1) for every i ∈ N0. We will find sufficient conditions for
the existence of a Lebesgue density of bounded variation.
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2.2 Notation and preliminaries

To fix notation, by a distribution on R we mean a probability measure on (R,B) with B
being the Borel σ−algebra on R, and similarly, by a signed measure on R we mean it to
be defined on (R,B). By a measure on R we always mean a positive measure on (R,B),
i.e. a [0,∞]-valued σ−additive set function on B that assigns the value 0 to the empty
set. The Dirac measure at a point b ∈ R will be denoted by δb, the Gaussian distribution
with mean a ∈ R and variance b ≥ 0 by N(a, b) and the Lebesgue measure by dx. For a
Lebesgue measure of a Borel set A ∈ B we write |A|. The Fourier transform at z ∈ R of
a finite positive measure µ on R will be denoted by µ̂(z) =

∫
R e

ixz µ(dx). The convolution
of two positive measures µ1 and µ2 on R is defined by µ1 ∗ µ2(B) =

∫
R µ1(B − x)µ2(dx),

B ∈ B, where B−x = {y−x| y ∈ B}. The law of a random variable X will be dentoted by
L(X). The imaginary unit will be denoted by i. We write N = {1, 2, . . . }, N0 = N ∪ {0}
and Z, R, C for the set of integers, real numbers and complex numbers, respectively. The
indicator function of a set A ⊂ R is denoted by 1A. By L1(R, A) for A ⊂ C we denote the
set of all Borel-measurable functions f : R→ A such that

∫
R |f(x)| dx <∞. By BV (R,R)

we denote the set of functions f : R → R of bounded variation, which means for every
decomposition −∞ < a1 < . . . < an < ∞ it holds ∑n−1

i=1 |f(ai) − f(ai+1)| ≤ C < ∞
for some C > 0 independent of the decomposition. By TVf ([a, b]) we denote the total
variation of the function f ∈ BV (R,R) in the interval [a, b].

2.3 Densities of infinitely divisible distributions

Our goal of this section is to prove some aspects of the integral modulus of continuity of
densities from infinitely divisible distributions. We will specialize on infinitely divisible
distributions with Lévy measure ν such that |x|ν(dx) has a Lebesgue density around a
neighborhood of 0.
As stated in the introduction the class of self-decomposable distributions is a subclass of
such distributions. All self-decomposable distributions are unimodal (see [58, Theorem
53.1, p. 404]), which will play a major rule in the proof of the main theorem. We will
derive the main result by minorizing the Lévy measure by a Lévy measure corresponding
to a self-decomposable distribution.
We start with an easy example and derive some bounds for the integral modulus of con-
tinuity of normal distributions and infinitely divisible distributions with a non-vanishing
Gaussian variance.

Remark 2.1.

i) If µ1 is an absolutely continuous distribution with Lebesgue density f such that∫
R |f(x)− f(x− z)| dx ≤ h(z) for some z ∈ R and µ2 is a probability measure, then
the Lebesgue density g of µ1 ∗ µ2 satisfies

∫
R |g(x)− g(x− z)| dx ≤ h(z).
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ii) If µ is an infinitely divisible distribution with characteristic triplet (a, γ, ν) such that
a > 0, then the Lebesgue density fµ of µ satifies∫

R

|fµ(x)− fµ(x− z)| dx ≤ C|z|

for some constant C and every z ∈ R and especially for µ with characterstic triplet
(a, γ, 0), a > 0, it holds

lim
z→0
|z|−1

∫
R

|fµ(x)− fµ(x− z)| dx =
√

2
πa
.

Proof. i) We know that µ1 ∗µ2 is absolutely continuous with Lebesgue density g(x) =∫
R f(x− y)µ2(dy). Then∫

R

|g(x)− g(x− z)| dx ≤
∫
R

∫
R

|f(x− y)− f(x− z − y)| dxµ2(dy) ≤ h(z).

ii) Let µ1 = N(0, a) be a normal distribution with mean 0 and variance a > 0. We
have that fµ1(x) = 1/

√
2πa exp(−x2/(2a)) and find by a simple calculation that

∫
R

|fµ1(x)− fµ1(x− z)| dx =
√

2
πa

∫
(−|z|/2,|z|/2)

exp(−x2/(2a)) dx,

which is O(|z|) for |z| → 0. The rest follows from i), since µ = µ1 ∗ µ2, where µ2 is
infinitely divisible with characteristic triplet (0, γ, ν).

Now we will state and prove our main result. There are many consequences of this
result and we will later show some applications to obtain further infinitely divisible dis-
tributions with a density of bounded variation.

Theorem 2.2. Let µ be an infinitely divisible distribution with characteristic triplet
(a, γ, ν) where a ≥ 0, γ ∈ R and ν a Lévy measure such that |x|ν(dx) has a Lebesgue
density k in a neighborhood around zero with lim infx→0+ k(x) + lim infx→0− k(x) =: cinf .

i) If cinf > 1/p for 1 < p ≤ 2, then µ has a Lebesgue density
fµ ∈ L1(R,R+) ∩ Lp/(p−1)(R,R+) and there exists a constant C > 0 such that∫

R

|fµ(x− z)− fµ(x)| dx ≤ C|z|
1
p (2.2)

for every z ∈ R.
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ii) If cinf > 1, then f is continuous on R and there exists a constant C > 0 such that∫
R

|fµ(x− z)− fµ(x)| dx ≤ C|z| (2.3)

for every z ∈ R.

iii) Now let csup := lim supx→0+ k(x) + lim supx→0− k(x) < 1
p
with p ∈ (0,∞) and let

a = 0. Then, if µ has a Lebesgue density fµ, it satisfies

sup
0≤h≤|z|

∫
R

|fµ(x− h)− fµ(x)| dx ≥ C|z|
1
p (2.4)

for some constant C > 0 and all z ∈ (−1, 1).

Proof. For the proof assume that a = 0 as otherwise (2.2) and (2.3) would be implied
by Remark 2.1 ii). For the proof of i) and ii) we assume first that k is increasing on
(−δ, 0) and decreasing on (0, δ) for some δ > 0 and else 0 such that (0, γ, k(x)

|x| dx) is the
characteristic triplet of a self-decomposable distribution µ, see [58, Theorem 15.10].
i) We then know that c = cinf = csup = k(0+) + k(0−) > 0 . Then it holds true that
|µ̂(z)| = o(|z|−α) as |z| → ∞ with 0 < α < c, see [58, Lemma 28.5, p. 191]. If c > 1

p
, it

follows that µ̂ ∈ Lp(R,C) and we conclude that fµ ∈ Lp
∗(R, [0,∞)), see [37, Proposition

2.2.16, p. 104], where p∗ = p
p−1 . As µ is unimodal (with mode m), we get for z positive

∫
R

|fµ(x− z)− fµ(x)| dx

=
∫

(−∞,m)

fµ(x)− fµ(x− z) dx+
∫

(m,m+z)

|fµ(x− z)− fµ(x)| dx

+
∫

(m+z,∞)

fµ(x− z)− fµ(x) dx

=
∫

(−∞,m)

fµ(x) dx+
∫

(m+z,∞)

fµ(x− z) dx+
∫

(m,m+z)

|fµ(x− z)− fµ(x)| dx

+
∫

(m−z,m+z)

fµ(x) dx−

 ∫
(−∞,m)

fµ(x− z) dx+
∫

(m−z,m+z)

fµ(x) dx+
∫

(m+z,∞)

fµ(x) dx


=

∫
(m,m+z)

|fµ(x− z)− fµ(x)| dx+
∫

(m−z,m+z)

fµ(x) dx. (2.5)
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Now as fµ ∈ Lp
∗(R), we conclude from (2.5) and the triangle inequality that∫

R

|fµ(x− z)− fµ(x)| dx ≤ ||fµ||Lp∗z
1
p + ||fµ||Lp∗z

1
p + 2

1
p ||fµ||Lp∗z

1
p ≤ (2 + 2

1
p )||fµ||Lp∗ z

1
p .

The assumption for z < 0 follows by symmetry.
ii) Since c = k(0+) + k(0−) > 1, it follows from [58, Theorem 28.4] that fµ is continuous
on R, and since µ is also unimodal, fµ must be bounded. Hence we can bound the modulus
by (2.5) (for z > 0) by∫

R

|fµ(x− z)− fµ(x)| dx ≤
∫

(m,m+z)

|fµ(x− z)− fµ(x)| dx+
∫

(m−z,m+z)

fµ(x) dx

≤4 sup
x∈R
|fµ(x)|z.

Now we assume that µ is infinitely divisible with characteristic triplet (0, γ, ν) such that
there exists δ > 0 such that |x|ν(dx) has a Lebesgue density k in (−δ, δ). We know that
there exists for small ε > 0 a ρ > 0 such that k(x) ≥ lim infy→0+ k(y) − ε

2 > 0 for every
x ∈ (0, ρ) and k(x) ≥ lim infy→0− k(y) − ε

2 > 0 for every x ∈ (−ρ, 0). So we can find a
minorizing Lévy measure l(x)/|x| dx for ν by setting

l(x) = 1(0,ρ)(x)
(

lim inf
y→0+

k(y)− ε

2

)
+ 1(−ρ,0)(x)

(
lim inf
y→0−

k(y)− ε

2

)
,

(if lim inf
y→0+

k(y) = 0, but lim inf
y→0−

k(x) = cinf , set l(x) = 1−ρ,0(x)
(
cinf − ε

2

)
). Let µ1 be the

self-decomposable distribution with triplet (0, γ, l(x)
|x| dx) and µ2 be the infinitely divisible

distribution wtih triplet (0, 0, ν − l(x)
|x| dx). Then µ = µ1 ∗ µ2 and since µ1 satisfies i) and

ii), respectively, if ε is chosen small enough, so does µ by Remark 2.1 i).

iii) First assume that µ is such that |x|ν(dx) has a (bounded) Lebesgue density k in
(−δ, δ) such that k is monotone on (−δ, 0) and on (0, δ). Observe that for every ε > 0
there exists a constant C > 0 such that |µ̂(z)| > C(1 + |z|)−c−ε, c = csup, for every z ∈ R,
see [62, Proposition 1]. Moreover, we know by [10, Corollary 3] that

sup
|x|≥ 1

|z|

|µ̂(x)| ≤ C ′ sup
0≤h≤|z|

∫
R

|fµ(x− h)− fµ(x)| dx

for some constant C ′ and all z > 0. So we see that

C̃|z|c+ε ≤ C

(
1 + 1
|z|

)−c−ε
≤ C ′′ sup

0≤h≤|z|

∫
R

|fµ(x− h)− fµ(x)| dx

for some constants C, C̃, C ′′ > 0 and all |z| < 1. Choosing ε = 1
p
− c gives the claim in

26



this special case.
For general µ we set

l(x) = 1(0,ρ)(x)
(

lim sup
y→0+

k(y) + ε

2

)
+ 1(−ρ,0)(x)

(
lim sup
y→0−

k(y) + ε

2

)

for small enough ρ and ε and majorize ν by l(x)/|x||(−δ,δ)dx+ ν|(−δ,δ)c(dx) which gives us
our assertion by Remark 2.1 i), as otherwise the majorizing distribution would not satisfy
iii).

Remark 2.3.

i) For Theorem 2.2 i) and ii) it is sufficient that |x|ν(dx) can be minorized by a
measure with the sufficient conditions. Similarly, for Theorem 2.2 iii) it is sufficient
that |x|ν(dx) can be majorized by a measure with the sufficient conditions and that
a = 0. This follows from Remark 2.1.

ii) For Theorem 2.2 iii) one can give further conditions on k such that csup = 1/p is
sufficient for (2.4) to hold, see for example [62, Proposition 1].

Another example where we can apply the same techniques is a symmetric infinitely
divisible distribution µ with characteristic triplet (0, 0, ν) such that ν is unimodal and has
mode 0. Then also µ is unimodal with mode 0, see [58, Theorem 54.2].

Corollary 2.4. Let µ be an infinitely divisible distribution with characteristic triplet
(0, 0, ν). Assume that

lim inf
r→0

∫
[−r,r] x

2 ν(dx)
r2 log(1

r
) =: C >

1
2p

for some 1 < p ≤ 2. Then µ has a Lebesgue density fµ ∈ L1(R, [0,∞))∩Lp/(p−1)(R, [0,∞)).
Furthermore, if ν is unimodal with mode 0 and µ is symmetric, then there exists a constant
C > 0 such that ∫

R

|fµ(x− z)− fµ(x)| dx ≤ C|z|
1
p

for every z ∈ R.
If additionally the condition

lim inf
r→0

∫
[−r,r]

x2ν(dx)

r2−α > 0,

is satisfied for some α ∈ (0, 2), we can bound the modulus by |z| times a constant.
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Proof. Assume that

lim inf
r→0

∫
[−r,r] x

2 ν(dx)
r2 log(1

r
) := C >

1
2p.

Then there exists a constant ε > 0 such that
∫

[−r,r] x
2ν(dx) ≥ (C − ε)r2 log 1

r
for small

enough r and C − ε > 1
2p . As 1− cos(u) ≥ 2

(
u
π

)2
for |u| ≤ π, we see that

|µ̂(z)| = exp
∫

R

(cos(xz)− 1)ν(dx)


≤ exp

− 2
π2

∫
|x|≤π/|z|

z2x2ν(dx)


≤ exp

(
− 2
π2 z

2(C − ε)π
2

z2 log
∣∣∣∣ zπ
∣∣∣∣
)

= exp
(
− log

∣∣∣∣ zπ
∣∣∣∣2(C−ε)

)
= π2(C−ε)

|z|2(C−ε) ≤
π2(C−ε)

|z|
1
p

+δ

for some δ > 0 and |z| large enough. It follows that µ̂ ∈ Lp(R,C) and from that we
conclude that there exists a density, which is p/(p−1)-integrable. Now if ν is additionally
unimodal with mode 0 then so is µ, see [58, Theorem 54.2]. By the same proof as in
Theorem 2.2 i) we conclude that the modulus of continuity can be bounded by |z|

1
p times

a constant. If the Lévy-measure especially satisfies the condition

lim inf
r→0

∫
[−r,r]

x2ν(dx)

r2−α > 0,

the Lebesgue density is continuous, see [58, Proposition 28.3] and the modulus of conti-
nuity is bounded by |z| times a constant by the same proof as in Theorem 2.2 ii).

2.4 Densities of stochastic integrals

In this section we look at distributions arising as stochastic integrals
∫ t
0 g(s)dL(s) or∫∞

0 g(s)dL(s), when g is a deterministic function and L a Lévy process. A Lévy process is
a real-valued stochastic process L = (Lt)t≥0 with stationary and independent increments,
such that L0 = 0 almost surely and such that the paths of L are right-continuous with
finite left-limits. There exists a one-to-one correspondence between infinitely divisible dis-
tributions and Lévy processes (in law). In particular, the distribution of a Lévy process L
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at time 1 is infinitely divisible and characterizes the distribution of L. The characteristic
triplet of L(L1) is then also called the characteristic triplet of L.
The existence of the integrals

∫ t
0 g(s)dL(s) or

∫∞
0 g(s)dL(s) can be completely character-

ized by the characteristic triplet (a, γ, ν) of L and g, see [56, Theorem 2.7, p. 461]. In the
case that t is finite, it is sufficient that g is bounded for the existence of the stochastic
integral. If t =∞ and EL2

1 <∞, then g ∈ L1(R)∩L2(R) is sufficient for the existence of
the integral and if g is exponentially decreasing, the finiteness of E log+(L1) is sufficient.
For a more detailed overview see [56, Theorem 2.7, p. 461] or [58, Supplements 57].
The integrals are infinitely divisible with characteristic triplet (ag, γg, νg) where

γg =
∫

[0,t)

γg(s) +
∫
R

g(s)r(1[−1,1](g(s)r)− 1[−1,1](r)) ν(dr)
 ds,

ag =
∫

[0,t)

ag(s)2 ds and (2.6)

νg(B) =
∫

[0,t)

∫
R

1B\{0}(g(s)r) ν(dr) ds, B ∈ B (2.7)

with t ∈ [0,∞].

2.4.1 Stochastic integrals over compact intervals

Now look at distributions of the form Z =
∫

[0,t] g(s) dL(s), where t ∈ [0,∞) and L =
(Ls)s≥0 is a Lévy process with characteristic triplet (0, γ, ν) with ν(R) > 0. We give suffi-
cient conditions depending on L and g such that Z satisfies the assumptions of Theorem
2.2. We immediately restrict to the case when the Gaussian variance a = 0, for otherwise
ag > 0 by (2.6) (unless

∫ t
0 g(s)2 ds = 0) and hence Remark 2.1 ii) can be applied. We start

with the following lemma, where we write x
B

:= {x
b

: b ∈ B} for x ∈ R and B ⊂ R \ {0}.

Lemma 2.5. Let g : [0, t]→ R be a C1-diffeomorphism onto its range.

i) Then |x|νg(dx) is absolutely continuous with Lebesgue density k given by

k(x) =
∫
R

1g([0,t])(x/r)
|x|
|r|

∣∣∣(g−1)′(x/r)
∣∣∣ ν(dr) <∞

for all x ∈ R \ {0}.

ii) Let g > 0 in [0, t]. If lim infx→0+ ν( x
g([0,t])) = λ1 > 0, then lim infx→0+ k(x) ≥

infy∈g([0,t]) |y||(g−1)′(y)|λ1 and if lim supx→0+ ν( x
g([0,t])) = λ2 <∞, then

lim supx→0+ k(x) ≤ supy∈g([0,t]) |y||(g−1)′(y)|λ2.
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Proof. i) We know from (2.7) that for every A ∈ B(R)

(|x|νg)(A) =
∫
R

∫
[0,t]

|g(s)r|1A(g(s)r) ds ν(dr)

=
∫
R

∫
rg([0,t])

|x|
|r|

∣∣∣(g−1)′(x/r)
∣∣∣1A(x) dx ν(dr)

=
∫
R

1A(x)
∫
R

1g([0,t])(x/r)
|x|
|r|

∣∣∣(g−1)′(x/r)
∣∣∣ ν(dr) dx.

So we see that the density is given by
∫
R 1g([0,t])(x/r) |x||r| |(g

−1)′(x/r)| ν(dr). Observe that
the integral is taken for every x 6= 0 in a set away from zero, so boundedness is enough
for the finiteness of the integral.
ii) Now assume that g > 0. We see that for x ∈ R \ {0}

∫
R

1g([0,t])(x/r)
|x|
|r|

∣∣∣(g−1)′(x/r)
∣∣∣ ν(dr) ≤ sup

y∈g([0,t])
|y||(g−1)′(y)|(ν(x/g([0, t]))

and ∫
R

1g([0,t])(x/r)
|x|
|r|

∣∣∣(g−1)′(x/r)
∣∣∣ ν(dr) ≥ inf

y∈g([0,t])
|y||(g−1)′(y)|ν

(
x

g([0, t])

)
.

The rest follows by taking the limits.

Remark 2.6. For the existence of a Lebesgue density of νg it is enough to assume that
preimages of Lebesgue null sets under g are again Lebesgue null sets, a condition called
Lusin (N−1)-condition. To see this, let B ∈ B be a Lebesgue null set. Then so is 1

r
(B\{0})

for every r 6= 0 and hence by (2.7) and the Lusin (N−1)-condition we obtain

νg(B) =
∫
R

∫
[0,t]

1g−1( 1
r

(B\{0}))(s) ds ν(dr)

=
∫
R

∣∣∣∣g−1
(1
r

(B \ {0})
)∣∣∣∣ ν(dr) = 0

(recall that | · | denotes here the Lebesgue measure). This shows that νg is absolutely
continuous and hence has a density. Sufficient conditions for the Lusin (N)−1-conditions
to hold can be found in [39, Theorem 4.13, p. 74].

As a consequence of Lemma 2.5 and Theorem 2.2 we find sufficient conditions for the
existence of a Lebesgue density of bounded variation.
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Corollary 2.7. Let g : [0, t]→ R be a C1−diffeomorpism onto its range and L be a Lévy
process with characteristic triplet (0, γ, ν) with ν(R) > 0. Let Z =

∫
[0,t] g(t) dL(t).

i) Let ν(R) =∞. Then the distribution of Z is absolutely continuous.
ii) Let g > 0 on [0, t]. If(

lim inf
x→0+

ν

(
x

g([0, t])

)
+ lim inf

x→0−
ν

(
x

g([0, t])

))
inf

y∈g([0,t])
|y||(g−1)′(y)| > 1,

then Z has a density which is of bounded variation.
iii) Let g > 0 on [0, t]. If(

lim sup
x→0+

ν

(
x

g([0, t])

)
+ lim sup

x→0−
ν

(
x

g([0, t])

))
sup

y∈g([0,t])
|y||(g−1)′(y)| < 1,

then the density of the random variable Z (if existent) cannot be of bounded variation.

Proof. i) This follows by (2.7), Lemma 2.5 i) and [58, Theorem 27.7, p. 177].
ii) + iii) Clear by Theorem 2.2 and Lemma 2.5 ii). Observe that the condition in ii)
implies ν(R) =∞ such that Z has a density by i).

Example 2.8. Let g(s) = 1+s on [0, t] and L be a Lévy process with characteristic triplet
(0, γ, ν) such that ν has a Lebesgue density f with f(x) = 0 for x < 0 and f(x) = cx−1

for small x > 0 and some c > 0. Then inf
y∈g([0,t])

|y| |(g−1)′(y)| = 1 and

ν

(
x

g([0, t])

)
=

x∫
x/(1+t)

cs−1ds = c log(1 + t).

By Corollary 2.7,
t∫

0
(1 + s)dLs has a Lebesgue density and this is of bounded variation

if c > (log(1 + t))−1 and not of bounded variation if c < (log(1 + t))−1. In contrast,
by Theorem 2.2, the density of L1 is of bounded variation if c > 1 and not of bounded
variation if c < 1. This shows that the integral has a smoothing effect on L.

Example 2.9. Let us look at the Lévy-measure ν(dx) =
∞∑
n=0

knδb−n(dx) for some integer

b ∈ N \ {1} such that
∞∑
n=0

kn =∞ and supn∈N kn ≤ C <∞ for some positive C > 0. It is
indeed a Lévy measure as even

∫
R

min{1, x}ν(dx) =
∞∑
n=0

knb
−n ≤ C

∞∑
n=0

b−n = C

1− b−1 <∞.

It is known that the one-dimensional distribution of the Lévy process L with characteristic
triplet (0, 0, ν) is continuous singular, see [58, Theorem 27.19]. Let g : [0, 1] → R be a

31



positive, increasing C1 diffeomorphism onto its range with g(1)
g(0) ≥ bl for some l ∈ N. Let

x ∈ [0, 1]. We know that there exists an n ∈ N such that b−n < x ≤ b−n+1. We have that

ν

([
x,
g(1)
g(0)x

])
≥ ν

(
(b−n, b−n+1+l]

)
=

n−1∑
r=n−l−1

kr

and see by Corollary 2.7 ii) that if there exist ε > 0 and m ∈ N, m ≥ l + 1, such
that

i−1∑
r=i−l−1

kr ≥ 1+ε
infy∈g([0,1]) |y||(g−1)′(y) for every i ≥ m then the density of the random

variable Z =
1∫
0
g(t)dL(t) is of bounded variation (observe that lim infx→0+ ν

(
x

g([0,t])

)
=

lim infx→0+ ν
([
x, g(1)

g(0)x
])
). Examples of such sequences (kn)n∈N are easily constructed.

Now let g be an increasing positive C1-diffeomorphism onto its range with g(1)
g(0) ≤ bl for

some l ∈ N. Then we have ν
(
[x, g(1)

g(0)x]
)
≤ ν

(
[b−n+1, b−n+1+l]

)
=

n−1∑
r=n−l−1

kr and we see

that if there exist ε > 0 and anm ∈ N,m ≥ l+1, such that
i−1∑

r=i−l−1
kr ≤ 1−ε

supy∈g([0,1]) |y||(g−1)′(y)

for every i > m, then by Corollary 2.7 iii) the density of Z is not of bounded variation
(the density exists by Corollary 2.7 i)). It is easy to construct such examples. Observe
that they satisfy ν(R) = ∞, hence positive C1-diffeomorphisms and ν(R) = +∞ do not
imply bounded variation of the density of Z.

Example 2.10. Let ν(dx) =
∞∑
n=0

knδb−2n with b > 1, ∑∞n=0 kn =∞ and supn∈N kn ≤ C <

∞. Let g : [0, 1] → R+ be a positive increasing C1-diffeomorphism onto its range and
m > 0 such that g(1)

g(0) = bm. Then it is relatively easy to see that

ν

([
x

g(1) ,
x

g(0)

])
= kn−1

if there exists an n ∈ N such that x ∈ [g(1)b−2(n−1)−m, g(1)b−2(n−1) ], otherwise the term
is equal to 0 for x small enough. We see directly that we cannot use Corollary 2.7 ii)
anymore to give a sufficient condition for the density to be of bounded variation since
lim infx→0+ ν

(
x

g([0,t])

)
= 0, but if kn ≤ 1−ε

supy∈g([0,1]) |y||(g−1)′(y) for some ε > 0 for every
n > n0 ∈ N then the density is not of bounded variation by Corollary 2.7 iii).

Now assume that we have a non-deterministic Lévy-process L = (Lt)t≥0, L(L1) being
self-decomposable, with characteristic triplet (0, γ, ν) with l(x)

|x| the Lebesgue-density of
the Lévy-measure, and that we have a bounded strictly positive function g > 0 on an
interval [0, t]. This is as in Corollary 2.7, but observe that we no longer assume that g is
a C1-diffeomorphism on the cost of more restrictive conditions on L. It follows from (2.7)
that the Lévy measure of Z and hence also Z has a density fg by [58, Theorem 27.7].

32



Corollary 2.11. Let Z be as above with density fg ∈ L1(R, [0,∞)).
i) If l(0+) + l(0−) > 1/(pt) with p ∈ (1, 2], then there exists a constant C > 0 such

that ∫
R

|fg(x− z)− fg(x)| dx ≤ C|z|
1
p

for every z ∈ R.
ii) If l(0+) + l(0−) > 1/t, then there exists a constant C > 0 such that∫

R

|fg(x− z)− fg(x)| dx ≤ C|z|

for every z ∈ R.
iii) If l(0+) + l(0−) < 1

pt
with p ∈ (0,∞) and a = 0, then

sup
0≤h≤|z|

∫
R

|fg(x− h)− fg(x)| dx ≥ C|z|
1
p

for some constant C > 0 and all z ∈ (−1, 1).

Proof. The characteristic triplet of L̂(Z) is given by (0, γg, νg) as before, where

νg(B) =
∫

[0,t]

∫
R

1B(g(s)r) l(r)
|r|

dr ds

by (2.7). By easy calculations we find that

k(r)/|r| :=
∫

[0,t]
l(r/g(s)) ds/|r| (2.8)

is the Lebesgue density of νg. Then

cg : = k(0+) + k(0−)

= lim
r→0+

∫
[0,t]

l(r/g(s)) ds+ lim
r→0−

∫
[0,t]

l(r/g(s))g(s) ds

=
∫

[0,t]
l(0+) ds+

∫
[0,t]

l(0−) ds

= (l(0+) + l(0−))t,

and the assertions follow by Theorem 2.2.

Remark 2.12. It follows from (2.9) that in the situation of Corollary 2.11 the distribution
of Z is also self-decomposable. By Corollary 2.11 iii) we see that its probability density
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is not of bounded variation if the Lévy measure l(x)
|x| dx satisfies l(0+) + l(0−) < 1/t.

As this property is independent of g, we see that for fixed t we cannot find a positive
C1-diffeomorphism for every characteristic triplet such that the stochastic integral has a
density of bounded variation.

2.4.2 Stochastic integrals over [0,∞)

Now we want to prove some aspects of the densities of distributions of the form
∫

[0,∞) g(t)dL(t),
whenever such an integral exists. As before we assume that L has characteristic triplet
(0, γ, ν) with ν(R) > 0. We assume that g is a strictly positive, continuous function which
attains its maximum

c := max
t∈[0,∞)

g(t)

and that there exists a decomposition (ti)i∈N0 with 0 = t0 < t1 < . . . and ti → ∞ for
i→∞ such that g restricted to (ti, ti+1) is a C1−diffeomorphism onto its range for every
i ∈ N0. Then we can write∫

[0,∞)
g(t) dL(t) =

∞∑
i=0

∫ ti+1

ti
g(t) dL(t)

where the limit is taken in probability and from Lemma 2.5 i) we see that
∫

[0,∞) g(t)dL(t)
has a Lévy νg measure with Lebesgue density

k(x)
|x|

:= 1
|x|

∑
i∈N0

∫
R

1g((ti,ti+1))(x/r)
|x|
|r|
|(g−1)′(x/r)|ν(dr).

From (2.7) we further see that νg(R) = +∞, so that
∫

[0,∞) g(t)dL(t) has a Lebesgue
density by [58, Theorem 27.7, p. 177]. Now we can write the density of the Lévy measure
for x > 0 as

k(x)
|x|

= 1
|x|

∫
R

∑
i∈N0

1g((ti,ti+1))(x/r)
|x|
|r|
|(g−1)′(x/r)|ν(dr)

= 1
|x|

∫
x

g((0,∞))

h(x/r)ν(dr)

= 1
|x|

∫
[ xc ,∞)

h(x/r)ν(dr) a.e., (2.9)

with
h(s) :=

∑
i∈Is
|s||(g−1|(ti,ti+1))′(s)|,
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where Is = {i ∈ N0 : s ∈ g((ti, ti+1))}. Similarly, k(x)
|x| = 1

|x|
∫

(−∞,x
c

] h
(
x
r

)
ν(dr) for x < 0.

Now we obtain immediately from Theorem 2.2:
Proposition 2.13. Let g have the same properties as above.
i) The random variable

∫
[0,∞) g(t) dL(t), if existent, has a density of bounded variation, if

lim inf
x→0+

∫
[ xc ,∞)

h(x/r)ν(dr) + lim inf
x→0−

∫
(−∞,xc ]

h(x/r)ν(dr) > 1.

ii) The random variable
∫
[0,∞) g(t) dL(t), if existent, has not a density of bounded variation,

if
lim sup
x→0+

∫
[ xc ,∞)

h(x/r)ν(dr) + lim sup
x→0−

∫
(−∞,xc ]

h(x/r)ν(dr) < 1.

If the integral is existent, it is known that there exists a sequence (zn)n∈N such that
zn →∞ and g(zn)→ 0 for n→∞. We use this simple fact to prove our next corollary.
Corollary 2.14. Let g : [0,∞) → (0,∞) have the same properties as above, denote
T := {ti : i ∈ N} and assume that

lim inf
x→∞,x/∈T

∣∣∣∣∣ g(x)
g′(x)

∣∣∣∣∣ = α

for some α ∈ (0,∞]. Then
∫

[0,∞) g(t) dL(t) has a density of bounded variation, if ν(R) >
1
α
.

Proof. Assume that lim infx→∞,x/∈T
∣∣∣ g(x)
g′(x)

∣∣∣ = α for some α ∈ (0,∞].
We define the function h̃ : (0, c]→ R+ ∪ {∞} by h̃(x) = h(x) for all x ∈ (0, c] \ g(T ) and
h̃(x) =∞ otherwise. Then it holds for x > 0 that

k(x) =
∫
[ xc ,∞)

h
(
x

r

)
ν(dr) =

∫
[ xc ,∞)\{xr∈g(T )}

h
(
x

r

)
ν(dr) +

∫
{x
r
∈g(T )}

h
(
x

r

)
ν(dr).

Now as ν has a countable number of points with positive mass we conclude that only in
the set {x

r
∈ g(T )} ∩ {r ∈ B}, where B is the set of points with a positive mass of ν,∫

{x
r
∈g(T )} h

(
x
r

)
ν(dr) is unequal to 0. So we see that we only differ on a Lebesgue null set

by considering k̃(x) =
∫
[ xc ,∞) h̃

(
x
r

)
ν(dr) instead of k. Oberserve that the same arguments

work for x < 0.
Let xn → 0+ for n → ∞ with xn /∈ g(T ) and choose yn → ∞ with g(yn) = xn (existent
since g is continuous and by the observation above). We see that

lim inf
n→∞

h̃(xn) ≥ lim inf
n→∞

|xn|
|g′(yn)| = lim inf

n→∞

|g(yn)|
|g′(yn))| ≥ α,
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as yn →∞. Therefore we obtain by the Lemma of Fatou

lim inf
x→0+

k(x) ≥ αν((0,∞)) and lim inf
x→0−

k(x) ≥ αν((−∞, 0)).

Proposition 2.13 implies that
∫
[0,∞) g(t)dL(t) has a density of bounded variation if ν(R) >

1
α
.

Remark 2.15. We could also use other specifications for g. For example consider a
strictly positive and continuous function g on [0,∞) such that there exist sequences
(an)n∈N and (bn)n∈N with 0 < an < bn ≤ an+1 for every n ∈ N such that g|(an,bn) is
a C1-diffeomorphism onto its range and g(∪∞n=m[an, bn)) is a half-open interval with a
maximum c < ∞ and infimum 0 for an m ∈ N, i.e. g(∪∞n=m[an, bn)) = (0, c]. For these
kind of functions Proposition 2.13 i) and Corollary 2.14 also hold true, where

h(s) :=
∑
i∈Is
|s||(g−1|(ai,bi))′(s)|,

with Is = {i ∈ N0 : s ∈ g((ai, bi))}.

Example 2.16. Applying Corollary 2.14 to the function g(x) = e−bx with b > 0 gives
α = 1

b
, hence

∫
[0,∞) e

−btdL(t) (if existent) has a density of bounded variation if ν(R) > 1
b
.

Applying Corollary 2.14 (more precisely, the extension according to Remark 2.15) to the
function g(x) = min{x−p, 1} with p > 0 gives α = ∞. Hence

∫
[0,∞) min{t−p, 1}dL(t) (if

existent) has a density of bounded variation when ν(R) > 0.

If g(x) = e−x
2 we cannot use Corollary 2.14 as g(x)

g′(x) = 1/(2x) → 0 for x → ∞. We
will give another condition such that we can obtain sufficient conditions for the existence
of a probability density of bounded variation implied by such a kernel function.

Corollary 2.17. Let g(x) = e−ψ(x) with ψ : [0,∞) → R continuous such that ψ :
(0,∞) → (0,∞) is a strictly increasing C1-diffeomorphism and such that ψ(0) = 0 and
(ψ−1)′ is decreasing. Then the Lebesgue density of

∫
[0,∞) g(t)dL(t) is of bounded variation

if

lim inf
x→0+

(ψ−1)′(− log(x))ν((x, 1)) + lim inf
x→0−

(ψ−1)′(− log |x|)ν((−1, x))

= lim inf
x→0+

ν((x, 1))
ψ′(ψ−1(− log(x))) + lim inf

x→0−

ν((−1, x))
ψ′(ψ−1(− log |x|)) > 1.

Proof. For simplicity of notation, we assume that ν((−∞, 0)) = 0. A direct calculation
gives us from (2.9) that

k(x) =
∫

(x,∞)
(ψ−1)′(log(r)− log(x))ν(dr) =

∫
(x,∞)

1
ψ′(ψ−1(log(r)− log(x)))ν(dr).
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As (ψ−1)′ is decreasing we see that for 0 < x < 1

k(x) ≥
∫

(x,1)
(ψ−1)′(− log(x))ν(dr) = (ψ−1)′(− log(x))ν((x, 1)).

So we see by Proposition 2.13 that if

lim inf
x→0+

(ψ−1)′(− log(x))ν((x, 1)) = lim inf
x→0+

ν((x, 1))
ψ′(ψ−1(− log(x))) > 1

the Lebesgue density of
∫
[0,∞) g(t)dL(t) is of bounded variation.

Example 2.18. Let ψ(x) = xp for p > 1. Then we have ψ−1(x) = x1/p, (ψ−1)′(x) =
1
p
x1/p−1, which is decreasing. We see that if

lim inf
x→0+

ν((x, 1))(
log

(
1
x

))1/p−1 + lim inf
x→0−

ν((−1, x))(
log

(
1
|x|

))1/p−1 > p

the Lebesgue density of
∫
[0,∞) e

−tpdL(t) is of bounded variation.
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3 On Quasi-Infinitely Divisible
Distributions with a Point Mass

This chapter is grounded on the published article by Berger [6]. An infinitely divisible
distribution on R is a probability measure µ such that the characteristic function µ̂ has
a Lévy-Khintchine representation with characteristic triplet (a, γ, ν), where ν is a Lévy
measure, γ ∈ R and a ≥ 0. A natural extension of such distributions are quasi-infinitely
distributions. Instead of a Lévy measure, we assume that ν is a ‘signed Lévy measure’,
for further information on the definition see [51]. We show that a distribution µ =
pδx0 + (1 − p)µac with p > 0 and x0 ∈ R, where µac is the absolutely continuous part,
is quasi-infinitely divisible if and only if µ̂(z) 6= 0 for every z ∈ R. We apply this to
show that certain variance mixtures of mean zero normal distributions are quasi-infinitely
divisible distributions, and we give an example of a quasi-infinitely divisible distribution
that is not continuous but has infinite quasi-Lévy measure. Furthermore, it is shown that
replacing the signed Lévy measure by a seemingly more general complex Lévy measure
does not lead to new distributions. Last but not least it is proven that the class of quasi-
infinitely divisible distributions is not open, but path-connected in the space of probability
measures with the Prokhorov metric.

3.1 Introduction

The class of infinitely divisible distributions is an important class of distributions, since
they correspond in a natural way to Lévy processes. It is well known that infinitely
divisible distributions on R are characterized by the Lévy-Khintchine formula in the sense
that a distribution µ is infinitely divisible if and only if there exist a ≥ 0, γ ∈ R and a
Lévy measure ν such that

µ̂(z) = exp
−1

2az
2 + iγz +

∫
R

(
eixz − 1− ixz1[−1,1](x)

)
ν(dx)

 (3.1)

for each z, where µ̂ denotes the characteristic function of µ.
The class of quasi-infinitely divisible distributions generalizes the class of infinitely divis-
ible distributions. By definition, a probability distribution µ is quasi-infinitely divisible if
and only if its characteristic function admits a Lévy-Khintchine representation (3.1), but
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with a, γ ∈ R and ν being a quasi-Lévy measure, meaning informally that ν is a ‘signed
Lévy measure’. See [51] and Section 2 below for the precise defintion. It is easily seen
that a distribution µ is quasi-infinitely divisible if and only if its characteristic function is
the quotient of the characteristic functions of two infinitely divisible distributions, equiv-
alently if there exist two infinitely divisible distributions µ1, µ2 such that µ1 ∗ µ = µ2.
Hence, quasi-infinitely divisible distributions appear naturally in the study of factorisa-
tion of infinitely divisible distributions.
Applications of quasi-infinitely divisible distributions can be found in physics, see [17 and
25], and in insurance mathematics, see [66].
Although examples of quasi-infinitely divisible distributions have appeared before in the
literature (e.g. [20] and [52]), a first step to a systematic treatment of these distributions
has only been given recently by Lindner et al. [51]. They showed in particular that the
class of quasi-infinitely divisible distributions is dense in the class of probability distribu-
tions with respect to weak convergence, and using the Wiener-Lévy theorem they showed
that a discrete distribution µ concentrated on a lattice of the form hZ + r with h > 0,
r ∈ R, is quasi-infinitely divisible if and only if its characteristic function µ̂ does not have
zeroes on the real line. They also gave an example of a distribution whose characteristic
function has no real zeroes, but such that the distribution nevertheless was not quasi-
infinitely divisible. They also studied various distributional properties of quasi-infinitely
divisible distributions in terms of the characteristic triplet. Another important class of
quasi-infinitely divsible distributions was established much earlier by Cuppens [19, Propo-
sition 1; 20 Theorem 4.3.7]. He showed that any probability distribution µ that has an
atom of mass greater than 1/2 is quasi-infinitely divisible.
The goal of this chapter is to obtain a further class of quasi-infinitely divisible dis-
tributions. A main result in this direction will be that a distribution µ of the form
µ(dx) = pδx0(dx) + (1 − p)f(x)λ(dx), where p ∈ (0, 1], x0 ∈ R, and f being a Lebesgue
density, is quasi-infinitely divisible if and only if its characteristic function has no ze-
roes on the real line. This can then be seen on the one hand as a counter part to the
above mentioned result by Cuppens, and on the other to the above mentioned result by
Lindner et al. Its proof makes use of a Wiener-Lévy theorem due to Krein [48] for a
specific Banach algebra. As a byproduct of our result, we find a quasi-infinitely divisible
distribution that is not continuous but has infinite quasi-Lévy measure, thus answering
an open question in [51, Open Question 7.2, p. 8510] in the negative. We also show
that convex combinations of N(0, ai)-distributions, or more generally variance mixtures
of mean zero normal distributions are quasi-infinitely divisible, provided that the lower
endpoint t1 of the mixing distribution % is strictly positive and that %({t1}) > 0. We also
treat quasi-infinite divisibility for distributions whose singular part µd is supported on a
lattice and such that µ̂d has no zeroes on the real line.
The results mentioned above can be found in Section 3.4. In Section 3.2, we recall basic
notation and the formal definition of quasi-infinitely divisible distributions. In Section
3.3, we address the question if it also makes sense to look at probability distributions µ
whose characteristic function have a Lévy-Khintchine type representation with a ‘complex
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Lévy measure’, and show that this does not lead to a new class, i.e. that no probability
distribution exists such that the Lévy measure in the Lévy-Khintchine type representa-
tion of its characteristic function has a non-zero imaginary part. This result will then
be used intensively in the proofs for Section 3.4. Finally, in Section 3.5 we show that
the complement of the class of quasi-infinitely divisible distributions is also dense with
repect to weak convergence, and that the set of quasi-infinitely divisible distributions is
path-connected with respect to the Prokhorov topology. This sheds some further light on
the topological properties of this class of distributions.

3.2 Notation and Preliminaries

To fix notation, by a distribution on R we mean a probability measure on (R,B) with B
being the Borel σ−algebra on R, and similarly, by a signed measure on R we mean it to be
defined on (R,B). By a measure on R we always mean a positive measure on (R,B), i.e.
an [0,∞]-valued σ−additive set function on B that assigns the value 0 to the empty set.
The Dirac measure at a point b ∈ R will be denoted by δb, the Gaussian distribution with
mean a ∈ R and variance b ≥ 0 by N(a, b) and the Lebesgue measure by λ(dx). Weak
convergence of measures will be denoted by ‘ d→’ and the Fourier transform at z ∈ R of a
finite complex measure µ on R will be denoted by µ̂(z) =

∫
R e

ixz µ(dx). The convolution
of two complex measures µ1 and µ2 on R is defined by µ1 ∗ µ2(B) =

∫
R µ1(B − x)µ2(dx),

B ∈ B, where B − x = {y − x| y ∈ B}. The law of a random variable X will be dentoted
by L(X). The real and imaginary part of a complex number z will be denoted by Re z
and Im z, respectively, the imaginary unit will be denoted by i. We write N = {1, 2, . . . },
N0 = N ∪ {0} and Z, R, C for the set of integers, real numbers and complex numbers,
respectively. The indicator function of a set A ⊂ R is denoted by 1A. By L1(R, A)
for A ⊂ C we denote the set of all Borel-measurable functions f : R → A such that∫
R |f(x)|λ(dx) <∞.

Informally, a quasi-Lévy type measure is the difference of two Lévy measures. This
however is not always a signed measure, because the difference of two Lévy measures ν1
and ν2 such that ν1(R) = ν2(R) =∞ is not a signed measure. Therefore, the definition is
slighty different. Let us recall the following definitions of [51, Def.2.1-3, pp. 8487-8488]:
Definition 3.1 (6, Definition 2.1, p. 1675).
a) Let Br := {B ∈ B|B∩ (−r, r) = ∅} for r > 0 and B0 := ∪r>0Br be the class of all Borel
sets that are bounded away from zero. Let ν : B0 → R be a function such that ν|Br is a
finite signed measure for each r > 0 and denote the total variation, positive and negative
part of ν|BR by |ν|Br |, ν+

|Br and ν
−
|Br , respectively. Then the total variation |ν|, the positive

part ν+ and the negative part ν− of ν are defined to be the unique measures on (R,B)
satisfying

|ν|({0}) = ν+({0}) = ν−({0}) = 0
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and

|ν|(A) = |ν|Br |(A), ν+(A) = ν+
|Br(A), ν−(A) = ν−|Br(A)

when A ∈ Br for some r > 0.
b) A quasi-Lévy type measure is a function satisfying the condition of a) such that its
total variation |ν| satisfies

∫
R(1 ∧ x2)|ν|(dx) <∞.

Definition 3.2 (6, Definition 2.2, p. 1676). a) Let µ be a probability distribution on R.
We say that µ is quasi-infinitely divisible if its characteristic function has a representation

µ̂(z) = exp
−1

2az
2 + iγz +

∫
R

(eixz − 1− ixz1[−1,1](x))ν(dx)
 ,

where a, γ ∈ R and ν a quasi-Lévy-type measure. The characteristic triplet (a, γ, ν) of µ
is unique (see [58, Exercise 12.2]).
b) A quasi-Lévy type measure ν is called quasi-Lévy measure, if additionally there exist a
quasi-infinitely divisible distribution µ and some a, γ ∈ R such that (a, γ, ν) is the char-
acteristic triplet of µ. We call ν the quasi-Lévy measure of µ.
c) Let µ be quasi-infinitely divisible with characteristic triplet (a, γ, ν). If

∫
[−1,1] |z| |ν|(dx) <

∞, then we call γ0 := γ −
∫

[−1,1] z ν(dz) the drift of µ. In that case, the characteristic
function of µ allows the representation

µ̂(z) = exp
−1

2az
2 + iγ0z +

∫
R

(eixz − 1)ν(dx)
 .

We shall see in Theorem 3.5 that the parameter a is necessarily non-negative, and we
call it the Gaussian variance of µ.

Remark 3.3 (6, Remark 2.3, p. 1676). Not every quasi-Lévy-type measure is a quasi-
Lévy measure. For example, the signed measure ν(dx) = −δ1(dx) is a quasi-Lévy-type
measure but not a quasi-Lévy measure, see [51, Example 2.9, p. 8491].

3.3 Complex quasi-Lévy Type measures

As stated in Definition 3.2, a quasi-infinitely divisible distribution is a probability dis-
tribution µ whose characteristic function admits a Lévy-Khintchine type representation
with a quasi-Lévy-type measure. It is natural to ask if there are further distributions
whose characteristic function allows a Lévy-Khintchine type representation with a com-
plex quasi-Lévy-type measure. Theorem 3.5 below shows that this is not the case. But
before that we need a precise definition:

42



Definition 3.4 (6, Definition 3.1, p. 1676).
A complex quasi-Lévy type measure is a function ν : B0 → C such that Re ν and Im ν are
quasi-Lévy type measures.

The integral of a function f : R→ C satisfying |f(x)| ≤ C(x2 ∧ 1) for some constant
C with respect to a complex quasi-Lévy type measure can be defined in the obvious way
as ∫

R

f(x)ν(dx) := lim
r↓0

∫
|x|≥r

f(x)ν|Br(dx) =
∫
R

f(x)(Re ν)(dx) + i
∫
R

f(x)(Im ν)(dx),

which shows in particular that x 7→ eizx− 1− izx1[−1,1](x) is integrable with respect to ν
for every z ∈ R.
We now come to the aforementioned result:

Theorem 3.5 (6, Theorem 3.2, p. 1676). Let µ be a distribution on R whose characteristic
function allows a representation of the form

µ̂(z) = exp
iγz − 1

2az
2 +

∫
R

(eixz − 1− izx1[−1,1](x))ν(dx)
 (3.2)

where γ ∈ C, a ∈ C and ν is a complex quasi-Lévy-type measure. Then a, γ ∈ R, a ≥ 0
and Im ν = 0, i.e. ν is a quasi-Lévy measure and µ is quasi-infinitely divisible.

Proof. We see that

|µ̂(z)|2 = µ̂(z)µ̂(−z) = exp
−az2 +

∫
R

(eixz + e−ixz − 2)ν(dx)


= exp
−az2 +

∫
R

2(cos(xz)− 1)ν(dx)


and

µ̂(z)
µ̂(−z) = exp

i2γz + i
∫
R

2(sin(xz)− zx1[−1,1](x))ν(dx)
 .

As |µ̂(z)| > 0 for every z ∈ R, we see that

|µ̂(z)|2 = exp
(
log(|µ̂(z)|2)

)
,

where log is the natural logarithm. As the distinguished logarithm is uniquely determined
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(see [58], Lemma 7.6) and

g(z) = −az2 +
∫
R

2(cos(xz)− 1)ν(dx)

is continuous and g(0) = 0, we conclude that

−1
2az

2 +
∫
R

(cos(xz)− 1)ν(dx) ∈ R

for every z ∈ R and especially we obtain

−1
2Im az2 +

∫
R

(cos(xz)− 1)(Im ν)(dx) = 0.

Furthermore, as |µ̂(z)| = |µ̂(z)| = |µ̂(−z)|, we conclude that

γz +
∫
R

(sin(xz)− zx1[−1,1](x))ν(dx) ∈ R

for every z ∈ R. It follows that

0 = Im γz +
∫
R

(sin(xz)− zx1[−1,1](x))(Im ν)(dx)

for every z ∈ R. At last, with the quasi-Lévy measure Im ν we obtain a Lévy-Khintchine
formula for δ0(dx), because

0 = iIm γz − 1
2Im az2 +

∫
R

(cos(xz)− 1)(Im ν)(dx) + i
∫
R

(sin(xz)− xz1[−1,1])(Im ν)(dx)

= iIm γz − 1
2Im az2 +

∫
R

(eixz − 1− ixz1[−1,1](x))(Im ν)(dx).

Hence

δ̂0(z) = 1 = exp(0) = exp
iIm γz − 1

2Im az2 +
∫
R

(eixz − 1− ixz1[−1,1](x))(Im ν)(dx)
 .

The uniqueness of the characteristic triplet of quasi-infinitely divisible distributions then
shows that Im γ = Im a = 0 and that Im ν is the null-measure. Hence µ is quasi-infinitely
divisible. That a ≥ 0 follows from Lemma 2.7 in [51].

Remark 3.6 (6, Remark 3.3, p. 1677). Theorem 3.5 is very helpful to prove quasi-infinite
divisibility of certain distributions, as it is often easier to establish a Lévy-Khintchine type
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representation with a complex quasi-Lévy-type measure rather than directly with a quasi-
Lévy-type measure. An example is the proof of Theorem 8.1 in [51]. There it is shown,
using the Lévy-Wiener-Theorem, that a distribution µ on Z with µ̂(z) 6= 0 for all z allows a
Lévy-Khintchine type representation with a complex Lévy-type measure ν = ∑

k∈Z\{0} bkδk
for some summable sequence bk ∈ C. There, it is shown using an involved approximation
argument that the bk are actually real and hence µ quasi-infinitely divisible. This step
can now be simplified considerably by using Theorem 3.5.

3.4 Some new quasi-infinitely divisible distributions

3.4.1 Absolutely continuous distributions plus a point mass

In this section we will look at distributions of the form

µ(dx) = pδx0(dx) + (1− p)f(x)λ(dx), (3.3)

where λ is the Lebesgue measure, f a Lebesgue density, x0 ∈ R and p ∈ (0, 1). We first
specialize to x0 = 0. The characteristic function is then given by

µ̂(z) = p+ (1− p)f̂(z),

where f̂(z) =
∫
R e

ixzf(x)λ(dx). We want to use a similar argument as in [51] in order to
show every distribution µ of the form (3.3) is quasi-infinitely divisible if and only if µ̂(z) 6=
0 for every z ∈ R. We denote by R the extended real numbers, i.e. R = R ∪ {−∞,∞}.
A characteristic function µ̂ of the distribution µ of the form (3.3) is then nonzero on the
set R if and only if it is nonzero on R. This follows directly from the Riemann-Lebesgue
Lemma.
At first let us fix some notation.

Definition 3.7 (6, Definition 4.1, p. 1678). We denote by W (R,C) the space

W (R,C) := {F : R→ C |∃p ∈ C, f ∈ L1(R,C) such that

F (z) = p+
∫
R

f(x)eixz λ(dx) for all z ∈ R}.

With the norm ||F || = |p|+ ||f ||L1(R,C) for F (z) = p+
∫
R
f(x)eixz λ(dx) the normed space

(W (R,C), || · ||) becomes a Banach algebra (see [49, Theorem 4.1]).

Definition 3.8 (6, Definition 4.2, p. 1678). LetW (R,C) 3 F (z) = p+
∫
R e

ixzf(x)λ(dx) 6=
0 for every z ∈ R and p ∈ C \ {0}. Then we can interpret F as a closed curve in C. By
the property of the distinguished logarithm, there exists a continuous function g : R→ R
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such that

F (z)
|F (z)| = exp (ig(z)) for all z ∈ R.

Then the index ind(F ) of F is defined as

ind(F ) := 1
2π ( lim

z→+∞
g(z)− lim

z→−∞
g(z)).

Remark 3.9 (6, Remark 4.3, p. 1678). By the Riemann-Lebesgue, it is relatively easy to
see that ind(F ) is well-defined and ind(F ) ∈ Z. Also, for F (z) = p +

∫
R e

ixzf(x)λ(dx) ∈
W (R,C) we have F (z) 6= 0 for all z ∈ R if and only if p 6= 0 and F (z) 6= 0 for all z ∈ R.

The key ingredient for identifying further quasi-infinitely divisible distributions is
[48, Theorem L, p. 175] which asserts the following: Given a function F (z) = p +∫
R
eixzf(x)λ(dx) such that f ∈ L1(R,C), p ∈ C \ {0}, F (z) 6= 0 for every x ∈ R and

ind(F ) = 0 there exist some q ∈ C and a function g ∈ L1(R,C) such that

F (z) = exp
q +

∫
R

eixzg(x)λ(dx)
 for all z ∈ R.

With the aid of Theorem [48, Theorem L, p. 175] we can now give a Lévy-Khintchine
type representation for arbitrary F ∈ W (R,C) that do not vanish on R and are such that
F (0) = 1.

Theorem 3.10 (6, Theorem 4.4, p. 1678).
Let F ∈ W (R,C) with F (z) 6= 0 for every z ∈ R and F (0) = 1. Denote by m the index
of F . Then there is some function g ∈ L1(R,C) such that

F (z) = exp
∫

R

(eixz − 1)
(
g(x) + me−|x|

|x|
(1(0,∞)(x)− 1(−∞,0)(x))

)
λ(dx)

 (3.4)

for all z ∈ R.

Proof. a) Let us first assume that m = ind(F ) = 0. By [48, Theorem L, p. 175] as stated
above there exist a constant c ∈ C and a function g ∈ L1(R,C) such that

F (z) = exp
c+

∫
R

eizxg(x)λ(dx)
 .
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As F (0) = 1, we conclude that

c+
∫
R

g(x)λ(dx) ∈ 2πiZ.

Hence, we can write

F (z) = exp
c+

∫
R

g(x)λ(dx)
 exp

∫
R

(eixz − 1)g(x)λ(dx)


= exp
∫

R

(eixz − 1)g(x)λ(dx)
 .

b) Now assume that 0 6= m = ind(F ) ∈ N. Define the function Q : R→ C by

Q(z) = (z − i)m
(z + i)m , z ∈ R.

Since

z + i

z − i
= 1 + 2i

z − i
= 1− 2

1 + iz
= 1− 2

0∫
−∞

exeixz λ(dx), z ∈ R,

it follows that z 7→ z+i
z−i ∈ W (R,C) and hence, sinceW (R,C) is a Banach algebra, that also

Q−1 ∈ W (R,C) and thatQ−1F ∈ W (R,C). Then obviouslyQ−1(z)F (z) 6= 0 for all z ∈ R,
and by the proof of Theorem 2.2, p. 180 in Krein [48], it follows that ind(Q−1F ) = 0 and
hence ind(Q(0)Q−1F ) = 0. Hence, by part a) already proved, there is some g ∈ L1(R,C)
such that

Q(0)Q−1(z)F (z) = exp
∫

R

(eixz − 1)g(x)λ(dx)
 , for all z ∈ R. (3.5)

But

1
(z + i)m = (−i)m 1

(1− iz)m = (−i)m exp
(∫ ∞

0
(eixz − 1)me

−x

x
λ(dx)

)
for all z ∈ R

(see [58], Example 8.10), hence

(z − i)m =
(

(−1)m 1
(−z + i)m

)−1

= (−1)mim exp
− ∞∫

0

(e−izx − 1)me−x

x
λ(dx)
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so that

Q(z) =
(
z − i
z + i

)m
= (−1)m exp

∫
R

(eixz − 1)
(
me−x

x
1(0,∞)(x)− me−|x|

|x|
1(−∞,0)(x)

)
λ(dx)

 .
Observe that (−1)m = Q(0). Together with (3.5) this gives the desired result when
m ∈ N.
c) Now assume that m = ind(F ) ∈ −N. Then x 7→ F (−z) =: G(z) ∈ W (R,C) with
ind(G) = −m. The result then follows from b).

Similarly as in Lindner et al. [51], who showed that a distribution on Z is quasi-
infinitely divisible if and only if its characteristic function has no zeroes, we can now prove
that a distribution whose singular part consists of a non-trivial atom is quasi-infinitely
divsible if and only if its characteristic function has no zeroes:

Theorem 3.11 (6, Theorem 4.5, p. 1679). Let µ be a probability distribution of the form
(3.3). Then µ is quasi-infinitely divisible if and only if µ̂(z) 6= 0 for every z ∈ R. In that
case, the quasi-Lévy measure ν of µ is given by(

g(x) + me−|x|

|x|
(1(0,∞)(x)− 1(−∞,0)(x))

)
λ(dx),

where g ∈ L1(R,R) and m is the index of µ̂ ∗ δ−x0. Furthermore,
∫ 1
−1 |x||ν|(dx) < ∞, µ

has drift x0 and Gaussian variance 0. Finally, |ν| is finite if and only if m = 0, and if
m 6= 0, then ν−(R) = ν+(R) =∞.

Proof. That µ̂(z) 6= 0 for all z ∈ R is obviously necessary for µ to be quasi-infinitely
divisible. To see that it is sufficient, it is sufficient to assume that x0 = 0, since µ is quasi-
infinitely divsible if and only if µ̃ := µ ∗ δ−x0 is quasi-infinitely divsible. By Theorem 3.10
we see that µ̃ has a Lévy-Khintchine representation given by

ˆ̃µ(z) = exp
∫

R

(eixz − 1)(g(x) + me−|x|

|x|
(1(0,∞)(x)− 1(−∞,0)(x)))λ(dx)


for all z ∈ R with some g ∈ L1(R,C). Then Theorem 3.5 implies that g ∈ L1(R,R) and
µ is quasi-infinitely divisible. The remaining assertions are clear.

Example 3.12 (6, Example 4.6, p. 1680). It is worth noting that distributions of the
above form with non-zero index can indeed occur. For example, consider the distribution

µ(dx) = 1
1000δ0(dx) + 999

1000ρ(dx),
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where ρ = N(1, 1). Then µ̂(z) = 1
1000 + 999

1000e
ize−z

2/2 6= 0 for all z ∈ R. Observing that
µ̂(π) < 0, Re µ̂(z) > 0 for all z ≥ 2π, Im µ̂(z) = e−z

2/2 sin(z) it is easy to see that µ̂
has index 2. Hence µ is quasi-infinitely divisible with quasi-Lévy measure ν satisfying
ν−(R) = ν+(R) = |ν|(R) =∞ by Theorem 3.11.

Remark 3.13 (6, Remark 4.7, p. 1680). In [51, Open Question 7.2, p. 8510] it was
asked that if for a quasi-infinitely divisible distribution µ with triplet (a, γ, ν) continuity
of µ is equivalent to a 6= 0 or |ν|(R) = ∞. Example 3.12 answers this question in the
negative. Indeed, the distribution µ there is not continuous, but the total variation of the
quasi-Lévy measure is infinite.

Remark 3.14 (6, Remark 4.8, p. 1680). It is known that distributions of the form (3.3)
with p ∈ [0, 1), x0 = 0 and f vanishing on (−∞, 0) are infinitely divisible provided log f
is convex on (0,∞) or f is completely montone on (0,∞), see [58, Theorem 51.4, 51.6].
Theorem 3.11 shows that quasi-infinite divsibility can be achieved for a much wider class
of distributions µ of this type, provided p > 0 and µ̂ has no zeroes, but with no other
assumptions on f .

As in [51, Corollary 8.3, p. 8513], one can now see that factors of a quasi-infinitely
divisible distribution of the form (3.3) are also quasi-infinitely divisible.

Corollary 3.15 (6, Corollary 4.9, p. 1680). Let µ be a distribution of the form (3.3) and
µ1, µ2 probability distributions such that µ = µ1 ∗ µ2. Then µ is quasi-infinitely divisible
if and only if µ1 and µ2 are quasi-infinitely divisible.

Proof. We write

µi = µdi + µaci + µcsi

for i = 1, 2 where µdi is the discrete part, µaci is the absolute continuous part and µcsi is
the continuous singular part. Hence, we can write

µ =µd1 ∗ µd2 + µd1 ∗ µcs2 + µd1 ∗ µac2

+ µcs1 ∗ µd2 + µcs1 ∗ µcs2 + µcs1 ∗ µac2 + µac1 ∗ µd2 + µac1 ∗ µcs2 + µac1 ∗ µac2 .

As µd1 ∗ µd2 is the only discrete part, we conclude that µ1 and µ2 each have exactly one
point mass. Moreover, µcsi has to be zero for i = 1, 2, as µcsi ∗µdj is continuous singular for
j 6= i. So we can write

µ = (p1δz1(dx) + µac1 ) ∗ (p2δz2(dx) + µac2 ),

such that p = p1p2. It follows from Theorem 3.11 that µ1 and µ2 are quasi-infinitely
divisible if and only if µ is quasi-infinitely divisible.
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It follows from Theorem 3.11 and the closedness of the class of quasi-infinitely divisible
distribution under convolution [51, Remark 2.6.a, p. 8490] that if µ is a distribution
of the form (3.3) with µ̂(z) 6= 0 for all z ∈ R, and if µ′ is an infinitely-divisible (or
quasi-infinitely divisible) distribution, then µ′ ∗ µ is again quasi-infinitely divisible. This
observation can be used to derive quasi-infinite divisibility of certain variance mixtures of
normal distributions or more generally mixtures of distributions of Lévy processes. More
precisely, we have:

Corollary 3.16 (6, Corollary 4.10, p. 1681).
a) Let % be a probability distribution on R with %((−∞, t1)) = 0 and %({t1}) > 0 for some
t1 > 0. Let L = (Lt)t≥0 be a Lévy process such that L(Lt) is absolutely continuous for
each t > 0. Define the mixture µ :=

∫
[t1,∞) L(Lt) %(dt) by

µ(B) :=
∫

[t1,∞)

L(Lt)(B) %(dt), B ∈ B. (3.6)

Then µ is quasi-infinitely divisible if and only if µ̂(z) 6= 0 for all z ∈ R. In particular,
if % = ∑n

i=1 piδti with t1 < t2 < . . . < tn and 0 < p1, . . . , pn < 1, ∑n
i=1 pi = 1, then

µ = ∑n
i=1 piL(Lti) is quasi-infinitely divisible if and only if µ̂(z) 6= 0 for all z ∈ R.

b) The assumption µ̂(z) 6= 0 for all z ∈ R for µ of the form (3.6) is in particular satisfied
when L(L1) is symmetric.

Proof. a) Write µt = L(Lt). Then

µ =
∫

[t1,∞)

µt %(dt) = %({t1})µt1 +
∫

(t1,∞)

µt%(dt)

= µt1 ∗

%({t1})δ0 +
∫

(t1,∞)

µt−t1%(dt)

 .
Assume that µ̂(z) 6= 0 for all z ∈ R. Then (%({t1})δ0 +

∫
(t1,∞)

µt−t1%(dt)) (̂z) 6= 0 for

all z ∈ R. Since µt−t1 is absolutely continuous for all t > t1, so is
∫

(t1,∞)
µt−t1%(dt).

Hence %({t1})δ0 +
∫

(t1,∞)
µt−t1%(dt) is quasi-infinitely divisible by Theorem 3.11. Since µ1

is infinitely divisible, this shows quasi-infinite divisibility of µ. The converse and the
specialization to % = ∑n

i=1 piδti are clear.
b) This follows from the fact that

µ̂(z) =
∫

[t1,∞)

µ̂t %(dt)

and that µ̂t(z) > 0 when µt is symmetric.
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Corollary 3.16 applies in particular when L is a standard Brownian motion and hence
to variance mixtures of the form ∑n

i=1 piN(0, ai) or more generally to variance mixtures of
the form

∫
[t1,∞) N(0, t)%(dt) when %({t1}) > 0 and t1 > 0. That a variance mixture of the

form pN(0, a) + (1− p)N(0, b) with 0 < a < b and p ∈ (1/2, 1) is quasi-infinitely divisible
was already observed in [51, Example 3.6]. Corollary 3.16 improves in particular on that
result in the sense that it shows that p ∈ (1/2, 1) is superfluous.
Observe that a distribution of the form

∫
[0,∞) N(0, t)%(dt) cannot be infinitely divisible

when the support of % is additionally bounded and % is non-degenerate, see [45, Theorem
2], but it is infinitely divisible if % is infinitely divisible (e.g. [60, Example IV, 11.6).
Hence Corollary 3.16 sheds some further light onto the behaviour of variance mixtures of
normal distributions.

Remark 3.17 (6, Remark 4.11, p. 1681). Corollary 3.16 continues to hold when L
is replaced by an additive process for which all increment distribution L(Lt − Ls) with
0 < s < t are absolutely continuous. The proof is exactly the same as in Corollary 3.16.
In particular, µ = ∑n

i=1 piN(bi, ai) is quasi-infinitely divisible for 0 < p1, . . . , pn < 1,∑n
i=1 pi = 1, 0 < a1 < a2 < . . . < an and b1, . . . , bn ∈ R if and only if µ̂(z) 6= 0 for all

z ∈ R.

3.4.2 Absolutely continuous distributions plus a lattice distribution

Until now we considered distributions of the form pδx0 + µac, where p > 0 and µac was
absolutely continuous. We will now generalise Theorem 3.11 to distributions of the form

µ = µd + µac,

where µd is a non-zero discrete measure supported on a lattice with non-vanishing char-
acteristic function, and µac is absolutely continuous. We use the well known Wiener’s
Lemma, which states that for a function f(z) = ∑

k∈Z
cke

ikz with ∑k∈Z |ck| < ∞ such that

f(z) 6= 0 for every z ∈ R there exists a function g(z) = ∑
k∈Z

dke
ikz with ∑k∈Z |dk| < ∞

such that

f(z)g(z) = 1

for every z ∈ R. For a proof see [53, Corollary 4.27]. Now we prove the aforementioned
generalisation.

Theorem 3.18 (6, Theorem 4.12, p. 1681). Let µ be a probability distribution of the
form

µ(dx) = µd(dx) + f(x)λ(dx),
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where µd is a non-zero discrete measure supported on a lattice of the form r + hZ for
some r ∈ R and h > 0, µ̂d(z) 6= 0 for all z ∈ R and f ∈ L1(R, [0,∞)). Then µ is
quasi-infinitely divisible if and only if µ̂(z) 6= 0 for all z ∈ R. In that case, the Gaussian
variance of µ is zero and the quasi-Lévy measure ν satisfies

∫ 1
−1 |x| |ν|(dx) <∞.

Proof. By shifting and scaling the distribution, we assume without loss of generality that
supp µd ⊂ Z, hence we can write

µd(dx) =
∑
k∈Z

pkδk(dx).

Its characteristic function is given by

µ̂d(z) =
∑
k∈Z

pke
ikz.

Now by Wiener’s Lemma [53, Corollary 4.27] as stated above there exists a function g
with g(z)µ̂d(z) = 1 for all z ∈ R and

g(z) =
∑
k∈Z

cke
ikz

and ∑k∈Z |ck| <∞. We can associate a complex measure % such that

%(dx) =
∑
k∈Z

ckδk(dx),

and especially we conclude that

µd ∗ % = δ0.

Now we decompose µ as follows

µ = µd ∗ (δ0 + % ∗ µac),

where µac(dx) = f(x)λ(dx). Since µ̂d(z) 6= 0 for all z ∈ R, µd is quasi-infinitely divisible
with finite quasi-Lévy measure by [51, Theorem 8.1, p. 8512]. Furthermore, % ∗ µac is
absolutely continuous, hence there exists some g ∈ L1(R,C) such that %∗µac = g(x)λ(dx).
Theorem 3.10 then shows that (δ0+%∗µac)̂has a (possibly complex) Lévy-Khintchine type
representation, and since µd is quasi-infinitely divisible, so does µ̂. But µ is a probability
distribution and it follows from Theorem 3.5 that µ is quasi-infinitely divisible. That the
Gaussian variance of µ is zero and the quasi-Lévy measure satisfies

∫ 1
−1 |x| |ν|(dx) < ∞

then follows from Theorem 3.11 and its proof.

As in Corollary 3.15, we can now show that factors of a quasi-infinitely divisible
distribution of the form µ = µd + µac as above are also quasi-infinitely divisible.
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Corollary 3.19 (6, Corollary 4.13, p. 1682). Let µ be of the form µ(dx) = µd(dx) +
f(x)λ(dx) as above with µ̂d(z) 6= 0 for all z ∈ R and µd being concentrated on a lattice.
Let µ = µ1 ∗ µ2 be a factorisation of µ. Then µ is quasi-infinitely divisible if and only if
µ1 and µ2 are quasi-infinitely divisible.

Proof. Assume µ̂(z) 6= 0 for all z ∈ R. As in Corollary 3.15 we can write µ as

µ =µd1 ∗ µd2 + µd1 ∗ µcs2 + µd1 ∗ µac2

+ µcs1 ∗ µd2 + µcs1 ∗ µcs2 + µcs1 ∗ µac2 + µac1 ∗ µd2 + µac1 ∗ µcs2 + µac1 ∗ µac2 .

Now we know that µd1 ∗ µd2 is the only discrete part of µ, so we conclude

µd = µd1 ∗ µd2.

By [51, Corollary 8.3] we know that µd1 and µd2 are lattice distributions with non-vanishing
characteristic functions. µdi ∗ µcsj is continuous singular for i 6= j, hence µcsi = 0 and from
Theorem 3.18 we conclude that µ1 and µ2 are quasi-infinitely divisible.
The converse is clear.

In Remark 3.17 we characterized quasi-infinite divisibility of ∑n
i=1 piN(bi, ai) as long

as a1 < a2 < . . . < an. With the aid of Theorem 3.18, we can now also consider the case
when a1 ≤ a2 ≤ . . . ≤ an, provided the bi satisfy a small restriction:

Example 3.20 (6, Example 4.14, p. 1683). Let µ =
n∑
i=1

piµi with bi, . . . , bn ∈ R ,
0 < a1 ≤ a2 ≤ . . . ≤ an, 0 < p1, . . . , pn < 1, ∑n

i=1 pi = 1, µi ∼ N(bi, ai) and µ̂(z) 6= 0
for every z ∈ R. We denote by J the set of indices for which bi = b1 and assume that all
bi, i ∈ J , lie on a lattice and that ∑

j∈J
pje

ibjz 6= 0

for z ∈ R. Then µ is quasi-infinitely divisible.

Proof. We decompose µ as

µ = µ̃ ∗ (
∑

i∈{1,... ,n}\J
piµ̃i +

∑
j∈J

pjδbj)

with µ̃i ∼ N(bi, ai − a1) and µ̃ ∼ N(0, a1). We conclude from Theorem 3.18 that µ is
quasi-infinitely divisible.
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3.5 Topological Properties of quasi-infinitely divisible
distributions

In [51, Theorem 4.1, p. 8499] it was shown that the class of quasi-infinitely divsible dis-
tributions on R is dense in the class of all probability distributions with respect to weak
convergence. Since distributions exists that are not quasi-infinitely divisible, the class of
quasi-infinitely divisible distributions cannot be closed, unlike the class of infinitely divisi-
ble distributions. In this section we show that the class of infinitely divisible distributions
is neither open. However, it is path-connected.
Denote by P(R) the set of all probability measures. Denote by π : P(R)×P(R)→ [0,∞)
the Prokhorov metric on P(R). Then it is known that (P(R), π) is a complete metric
space, and that the topology defined by the weak convergence is the same as for π, i.e.
for a sequence (µn)n∈N ⊂ P(R) and µ ∈ P(R) weak convergence of µn to µ is equivalent
to π(µn, µ)→ 0 as n→∞, see [7, Theorem 6.8, p. 73]. Now we can show:

Proposition 3.21 (6, Proposition 5.1, p. 1683). The set QID(R) of all quasi-infinitely
divisible distribution on R is not open in the space (P(R), π). Moreover, P(R) \QID(R)
is dense in (P(R), π).

Proof. Let µ, ν ∈ P(R) be such that the characteristic function ν̂ has zeroes on R. We
define the sequence of measures

µn(dx) = µ(dx) ∗ ν(n dx)

for every n ∈ N. Then µn is clearly not quasi-infinitely divisible as its characteristic
function has zeroes on R, since

µ̂n(z) = µ̂(z)ν̂( z
n

).

Moreover, µn d→ µ. This shows that P(R) \QID(R) is dense in (P(R), π). In particular,
QID(R) cannot be open.

Now we show that QID(R) is path-connected. Recall that for a metric space (X, d),
a subset Y ⊆ X is called path-connected if for every x, y ∈ Y there exists a continuous
function p : [0, 1]→ Y such that p(0) = x and p(1) = y.

Proposition 3.22 (6, Proposition 5.1, p. 1683). The space of quasi-infinitely divisible
distributions is path-connected, especially connected.

Proof. Let µ0 and µ1 be two quasi-infinitely divisible distributions. Then it holds that

µt(dx) := µ0( 1
1− tdx) ∗ µ1(1

t
dx)
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is also quasi-infinitely divisible for t ∈ (0, 1). This holds because

ht(dx) := µ1

(1
t
dx
)

has the characteristic function

ĥt(z) := µ̂1(zt) = exp
−1

2at
2z2 + iγtz +

∫
R

(
eizx − 1− izx1[−1,1]

)
ν(1
t
dx)


where µ0 is quasi-infinitely divisible with characteristic triplet (a, γ, ν). Similarly

µ0

( 1
1− tdx

)
is also quasi-infinitely divisible. We conclude that µt(dx) is quasi-infinitely divisible for
every t ∈ (0, 1) with µ̂t(z) = µ̂0((1−t)z)µ̂1(tz). Moreover p : [0, 1]→ P(R) with p(0) = µ0,
p(1) = µ1 and p(t) = µt for t ∈ (0, 1) is continuous, because it holds for every t0 ∈ [0, 1]
µ̂t(z) → µ̂t0(z) for t → t0 for every z ∈ R. Hence QID(R) is path connected. Finally,
observe that path-connectness implies connectness, see [2, Theorem 3.29, p. 61].
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4 Lévy driven CARMA generalized
processes and stochastic partial
differential equations

We define a Lévy driven CARMA random field as a generalized solution of a stochastic
partial differential equation (SPDE) and provide a sufficient criterion for the existence of
this generalized processes. Furthermore, we give sufficient conditions for the existence of
a mild solution of our SPDE. Our model finds a connection between all known definitions
of CARMA random fields.

4.1 Introduction

Autoregressive moving average (ARMA) processes are very well known processes in time
series analysis. An ARMA(p, q) process (Xk)k∈Z, p, q ∈ N0, is given by

Xk −
p∑
i=1

aiXk−i = Wk +
q∑
j=1

bjWk−j, (4.1)

where a1, . . . , ap, b1, . . . , bq ∈ C are deterministic coefficients and (Wk)k∈Z is white noise
or even an independent and identically distributed (iid) sequence of random variables. In
short form we can also write

a(B)Xk = b(B)Wk,

where a(z) = 1−
p∑
i=1

aiz
k, b(z) = 1 +

q∑
j=1

bjz
j are polynomials and B is the shift operator

defined by BlYk = Yk−l for l ∈ N. ARMA(p, q) processes were generalized in various ways
and have many applications, e.g. in finance, astrophysics, engineering and traffic data,
see [35], [29], [67] and [46].
As the solution of (4.1) is a discrete process on a lattice, a possible way to generalize
the concept is to study a continous version of (4.1), which is called continuous ARMA
(CARMA) process. A CARMA(p, q) process (Xt)t∈R, where p > q, is given by

Xt = b′Yt, t ∈ R, (4.2)
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where Y = (Yt)t∈R is a Cp-valued process satisfying the stochastic differential equation

dYt = AYtdt+ epdLt (4.3)

with

A =



0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1
−ap −ap−1 −ap−2 . . . −a1

 , ep =



0
0
...
0
1

 ∈ Cp and b =



b0
b1
...

bp−2
bp−1

 ,

where a1, . . . , ap, b0, . . . , bp−1 ∈ C are determinstic coefficients such that bq 6= 0 and bj = 0
for every j > q, b′ denotes the transpose of b and L = (Lt)t∈R is a two-sided Lévy process.
The equations (4.2) and (4.3) are the so called state-space representation of the formal
stochastic differential equation

a(D)Yt = b(D)DLt,

with D the differential operator and a(z) = zp + a1z
p−1 + . . . + ap and b(z) = b0 + b1z +

. . . + bqz
q are polynomials. In [15] necessary and sufficient conditions on L and A were

given such that there exists a strictly stationary solution of (4.2) and (4.3), namely it was
shown that it is sufficient and necessary that E log+(|L1|) <∞. CARMA processes have
many applications, see [33] and [13].
As the CARMA process is defined on R, spatial problems cannot be easily transferred.
Our starting point to tackle this problem is the equation

p(D)s = q(D)L̇, (4.4)

where p, q are polynomials in d variables, D denotes the differential operator and L̇ denotes
Lévy white noise. Our solution s is defined as a generalized solution, see Section 4.3. We
will define s to be the CARMA(p, q) generalized process.
There are already some extensions of the CARMA process to the multidimensional setting,
which can partially be seen as special cases of our definition. Lately, there were the two
papers of Brockwell and Matsuda [16] and Pham [55], who introduce different concepts
of CARMA processes in the multidimensional setting. In [16] the new CARMA random
field was given by

Sd(t) :=
∫
Rd

p∑
r=1

b(λr)
a′(λr)

eλr‖t−u‖dL(u), (4.5)

where dL denotes the integration over a Lévy bases, a and b are polynomials such that
a(z) = ∏p

i=1(z2 − λ2
i ) and some further restrictions. The model has a well understood

second order behaviour and can be used for statistical estimation. However, the authors
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do not deal with a dynamical description.
Pham [55] follows another way and defines a CARMA random field Y as a mild solution
of the system of SPDEs given by

Y (t) = b′X(t), t ∈ Rd, (4.6)
(Ip∂d − Ad) · · · (Ip∂1 − A1)X(t) = cL̇(t), t ∈ Rd, (4.7)

where L̇ is a Lévy basis, A1, . . . , Ad ∈ Rp×p are matrices and Ip is the identity matrix.
Pham speaks of causal CARMA random fields, as the solution of the system (4.6) depends
only on the past in the sense that the solution at point x depends solely on the behavior
of L̇ on (−∞, x1] × · · · × (−∞, xd]. So we can see directly that there is a big difference
between these two definitions.
We find a connection between these two models and our proposed definition.
We will start with an abstract analysis of generalized processes and prove for a far more
general class than (4.4) the existence of a generalized solution under mild conditions on
the Lévy white noise. Our solution is similar to the definition of generalized CARMA(p, q)
process in [14] and as there, we do not assume that the degree of the polynomial p is higher
than the degree of the polynomial q. We will discuss two examples, which are related to
the processes of Brockwell and Matsuda [16] and Pham [55]. We will also give certain
conditions on p and q that guarantee that the obtained generalized solutions are random
fields.
The above mentioned results can be found in Section 4.3 and Section 4.4, where our
main results are Theorem 4.5 and Theorem 4.16. In Section 4.2 we recall some basic
notation. In Section 4.3 we recall the definitions of Lévy white noise and generalized
random processes. Moreover, we prove that a convolution operator with certain properties
regarding its integrability defines a generalized random process and as an application we
will study stochastic homogeneous elliptic partial differential equations. In Section 4.4 we
use this theorem to show the existence of a CARMA generalized processes. Moreover, we
study the concept of mild solutions in Section 4.5, prove existence of mild CARMA random
fields and show some connections between the mild and generalized solutions. In Section
4.6 we study the moment properties of a CARMA random fields and show that if the
Lévy white noise has existing α-moment for some 0 < α ≤ 2, then the CARMA random
field has also finite α-moment, see Proposition 4.27. In Section 4.7 we will study the
connection between our model and the CARMA random field of Brockwell and Matsuda
[16].

4.2 Notation and Preliminaries

To fix notation, by (Ω,F) we denote a measurable space, where Ω is a set and F is
a σ-algebra and by L0(Ω,F ,K) we denote all measurable functions f : Ω → K with
respect to F where K = R,C. In the case that F and K are clear from the context
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we set L0(Ω) = L0(Ω,F ,K). If we consider a probability space (Ω,F ,P), where P is a
probability measure on (Ω,F), we say that a sequence (fn)n∈N ⊂ L0(Ω) converges to f in
L0(Ω) if fn converges in probability to f with respect to the measure P . In the case of
(Rd,B(Rd)) we denote by B(Rd) the Borel-σ-algebra on Rd. Bb(Rd) is the set of all Borel
sets, which are bounded.
We write N = {1, 2, . . . }, N0 = N ∪ {0} and Z, R, C for the set of integers, real numbers
and complex numbers, respectively. If z ∈ C, we denote by =z and <z the imaginary and
the real part of z. ‖ · ‖ denotes the Euclidean norm and r+ := max{0, r} for every r ∈ R .
The indicator function of a set A ⊂ Rd, d ∈ N, is denoted by 1A. By Lp(Rd, A) for A ⊆ C
and 0 < p ≤ ∞ we denote the set of all Borel-measurable functions f : Rd → A such that∫
Rd |f(x)|p λd(dx) < ∞ for 0 < p < ∞ and ess supx∈Rd |f(x)| < ∞ for p = ∞, where λd
is the d−dimensional Lebesgue measure. We denote by ||f ||Lp = (

∫
R |f(x)|p λ(dx))1/p for

0 < p < ∞ and ‖f‖L∞ = ess supRd |f | the Lp-(quasi-)norm for a measurable function f .
By df we denote the distribution function of f , which means that

df (α) := λd({x ∈ Rd : |f(x)| > α}), α ≥ 0. (4.8)

We denote by BR(x) the ball {y ∈ Rd : ‖x − y‖ < R} and x ∧ y := min{x, y} for two
real numbers x and y. For a set A ⊂ Rd and an element x ∈ Rd we set dist(x,A) :=
inf{‖x − y‖ : y ∈ A}. The space D(Rd) denotes the set of all infinitely differentiable
functions f : Rd → R with compact support, where we denote the support of f by
supp f . The topological dual space of D(Rd) will be denoted by D′(Rd), where an element
u ∈ D′(Rd) is called a distribution. We will write 〈u, ϕ〉 := u(ϕ) for ϕ ∈ D(Rd). For a
function f ∈ L1(Rd,Cd) we set Ff(x) =

∫
Rd
e−i〈z,x〉f(z)λd(dz) and the L2-Fourier transform

likewise. Let p(z) = ∑
|α|≤m

pαz
α, α ∈ Nd

0 and zα = zα1
1 . . . zαdd , such that pβ 6= 0 for some

β with |β| := β1 + . . . + βd = m. Then we define deg(p) := m, the degree of p. We set
Dα = ∂α1

x1 . . . ∂
αd
xd

for α ∈ Nd
0. We denote by A∗ the adjoint of the operator A.

We recall here the definition of a Lévy basis, as we explain some connection between a
Lévy basis and generalized stochastic process, which will be defined later.

Definition 4.1 (see [56, p. 455]). A Lévy basis is a family (L(A))A∈Bb(Rd) of real valued
random variables such that

i) L(⋃∞n=0An) = ∑∞
n=0 L(An) a.s. for pairwise disjoint sets (An)n∈N0 ⊂ Bb(Rd) with⋃

n∈N0 An ∈ Bb(Rd),
ii) L(Ai) are independent for pairwise disjoint sets A1, . . . , An ∈ Bb(Rd) for every

n ∈ N,
iii) there exist a ∈ [0,∞), γ ∈ R and a Lévy measure ν on R (i.e. a measure ν on R

such that ν({0}) = 0 and
∫
R

min{1, x2}ν(dx) <∞) such that

EeizL(A) = exp
(
ψ(z)λd(A)

)
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for every A ∈ Bb(Rd), where

ψ(z) := iγz − 1
2az

2 +
∫
R

(eixz − 1− ixz1[−1,1](x))ν(dx), z ∈ R.

The triplet (a, γ, ν) is called the characteristic triplet of L and ψ its characteristic
exponent. By the Lévy-Khintchine formula, L(A) is then infinitely divisible.

4.3 SPDEs and generalized solutions

4.3.1 The concept of generalized solutions

This section deals with Lévy white noise and the definition of solutions of the SPDEs
given in (4.4). We will prove a multiplier theorem for general Lévy white noise and use
this theorem to prove the existence of our CARMA random process. We will follow mainly
[32, Section 2].
As already mentioned, we denote by D(Rd) the space of infinitely differentiable func-
tions with compact support, where we assume that the space is equipped with the usual
topology, i.e. we say that a sequence (ϕn)n∈N ⊂ D(Rd) converges to ϕ in D(Rd) if there
exists a compact subset K ⊂ Rd such that supp ϕn, supp ϕ ⊂ K for every n ∈ N and
supx∈Rd |Dα(ϕn(x)− ϕ(x))| → 0 for n→∞ for every multiindex α ∈ Nd

0.
Let (Ω,F ,P) be a probability space. We recall the definition of a generalized random
process.
Definition 4.2 (see [32, Definition 2.1]). A generalized random process is a linear and
continuous function s : D(Rd) → L0(Ω). The linearity means that, for every ϕ1, ϕ2 ∈
D(Rd) and γ ∈ R,

s(ϕ1 + γϕ2) = s(ϕ1) + γs(ϕ2) almost surely.

The continuity means that if ϕn → ϕ in D(Rd), then s(ϕn)→ s(ϕ) in L0(Ω).

As shown in [65, Corollary 4.2], there exists a measurable version from (Ω,F) to
(D′(Rd), C) with respect to the cylindrical σ-field C generated by the sets

{u ∈ D′(Rd)| (〈u, ϕ1〉, . . . , 〈u, ϕN〉) ∈ B}

with N ∈ N, ϕ1, . . . , ϕN ∈ D(Rd) and B ∈ B(RN). From now on we will always work
with such a version.
The probability law of a generalized random process s is given by

Ps(B) := P(s ∈ B)
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for B ∈ C. The characteristic functional P̂s is then defined by

P̂s(ϕ) =
∫

D′(Rd)

exp(i〈u, ϕ〉)dPs(u), ϕ ∈ D(Rd).

We will work with Lévy white noise, which is a generalized random process where the
characteristic functional satisfies a Lévy-Khintchine representation.

Definition 4.3. A Lévy white noise L̇ is a generalized random process, where the char-
acteristic functional is given by

P̂L̇(ϕ) = exp

 ∫
Rd

ψ(ϕ(x))λd(dx)


for every ϕ ∈ D(Rd), where ψ : R→ C is given by

ψ(z) = iγz − 1
2az

2 +
∫
R

(eixz − 1− ixz1|x|≤1)ν(dx)

where a ∈ R+, γ ∈ R and ν is a Lévy-measure, i.e. a measure such that ν({0}) = 0 and∫
R

min(1, x2)ν(dx) <∞.

We say that L̇ has the characteristic triplet (a, γ, ν).

The existence of the Lévy-white noise was proven in [34]. The domain of the Lévy
white noise can also be extended to indicator functions 1A for A be a Borel set with
finite Lebesgue measure by using the construction in [32, Proposition 3.4]. For a more
general function f we say that f is in the domain L̇ if there exists a sequence of elemen-
tary functions fn converging almost everywhere to f such that 〈L̇, fn1A〉 convergens in
probability for n → ∞ for every Borel set A and set 〈L̇, f〉 as the limit in probability of
〈L̇, fn〉 for n → ∞, where for an elementary function f := ∑m

j=1 aj1Aj , 〈L̇, f〉 is defined
by ∑m

j=1 aj〈L̇,1Aj〉, see also [32, Definition 3.6]. For the maximal domain of the Lévy
white noise L̇ we write L(L̇). By setting L(A) := 〈L̇,1A〉 for bounded Borel sets A, the
extention of a Lévy white noise L̇ can be identified with a Lévy basis L in the sense of
Rajput and Rosinski [56], see [32, Theorem 3.5 and Theorem 3.7]. As a Lévy basis can
be identified with a Lévy white noise in a canonical way, i.e. 〈L̇, ϕ〉 :=

∫
Rd
ϕ(x)dL(x) for

ϕ ∈ D(Rd), we do not differ between a Lévy basis and Lévy-white noise. In particular,
a Borel-measurable function f : Rd → R is in L(L̇) if and only if f is integrable with
respect to the Lévy basis L in the sense of Rajput and Rosinski [56], see [32, Def. 3.6].
The Lévy white noise is stationary in the following sense.
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Definition 4.4. A generalized process s is called stationary if for every t ∈ Rd, s(· + t)
has the same law as s. Here, s(·+ t) is defined by

〈s(·+ t), ϕ〉 := 〈s, ϕ(· − t)〉 for every ϕ ∈ D(Rd).

4.3.2 Generalized stochastic processes constructed from Lévy white
noise

We now state and prove our first theorem which asserts that a large class of SPDEs has a
generalized solution by only assuming weak moment conditions on the Lévy white noise.

Theorem 4.5. Let L̇ be a Lévy white noise with characteristic triplet (a, γ, ν) and G :
Rd → R be a measurable function such that G ∈ L1(Rd). Define

GR(x) :=
∫

BR(x)

|G(y)|λd(dy) (4.9)

for every x ∈ Rd and R > 0 and

hR(x) = x

1/x∫
0

dGR(α)λ1(dα) for x > 0. (4.10)

Assume that ∫
R

1|r|>1hR(|r|)ν(dr) <∞ (4.11)

for every R > 0. Then

s(ϕ) := 〈L̇, G ∗ ϕ〉, ϕ ∈ D(Rd) (4.12)

defines a stationary generalized random process.

Observe that although ϕ ∈ D(Rd), G ∗ ϕ is in general not in D(Rd) unless G has
compact support. The point is that nevertheless, s defined by (4.12) gives a generalized
random process. Sufficient conditions for (4.11) to hold will be treated in Example 4.6.

Proof. We need to show that G ∗ ϕ ∈ L(L̇) and 〈L̇, G ∗ ϕn〉 → 〈L̇, G ∗ ϕ〉 as n → ∞ in
L0(Ω) for a sequence (ϕn)n∈N converging to ϕ in D(Rd). As 〈L̇, G ∗ ·〉 is linear, this is
equivalent to check that 〈L̇, G ∗ (ϕn − ϕ)〉 → 0 as n→∞ in L0(Ω), which is implied by

∫
Rd

∣∣∣∣∣∣γϕn ∗G(x) +
∫
R

r(ϕn ∗G)(x)(1|r(ϕn∗G)(x)|≤1 − 1|r|≤1)ν(dr)

∣∣∣∣∣∣λd(dx)→ 0, (4.13)
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∫
Rd

∫
R

1 ∧ (r(ϕn ∗G)(x))2ν(dr)λd(dx)→ 0 and (4.14)

a2
∫
Rd

|G ∗ ϕn(x)|2λd(dx)→ 0 (4.15)

for n → ∞ if ϕn → 0 for n → ∞ in D(Rd), see [56, Theorem 2.7] (that G ∗ ϕ ∈ L(L̇)
follows if the above quantities are finite).
Since G ∈ L1(Rd) it is easily seen that∫

Rd

|γϕn ∗G(x)|λd(dx) ≤ |γ| ||ϕn||L1||G||L1 → 0

for n→∞. The other term in (4.13) will be splitted up into∫
Rd

∫
R

|r(ϕn ∗G)(x)| · |1|r(ϕn∗G)(x)|≤1 − 1|r|≤1|ν(dr)λd(dx)

=
∫
Rd

∫
R

|r(ϕn ∗G)(x)|1|r(ϕn∗G)(x)|≤1,|r|>1ν(dr)λd(dx)

+
∫
Rd

∫
R

|r(ϕn ∗G)(x)|1|r(ϕn∗G)(x)|>1,|r|≤1ν(dr)λd(dx)

=
∫
R

|r|1|r|>1

∫
Rd

|(ϕn ∗G)(x)|1|(ϕn∗G)(x)|≤ 1
|r|
λd(dx)ν(dr)

+
∫
R

|r|1|r|≤1

∫
Rd

|(ϕn ∗G)(x)|1|(ϕn∗G)(x)|> 1
|r|
λd(dx)ν(dr) = I1(n) + I2(n).

We give a pointwise upper bound for the convolution. Let R > 0 be such that supp (ϕn) ⊂
Br(0) for some r < R. We then see that for every x ∈ Rd

(ϕn ∗G)(x) =
∫
Rd

G(y)ϕn(x− y)λd(dy) =
∫

BR(x)

G(y)ϕn(x− y)λd(dy) ≤ GR(x)||ϕn||∞.

We then obtain

dϕn∗G(α) =λd
(
{x ∈ Rd : |ϕn ∗G(x)| > α}

)
≤λd

(
{x ∈ Rd : |GR(x)| > α/||ϕn||∞}

)
= dGR(α/||ϕn||∞). (4.16)

So we see by [37, Exercise 1.1.10, p. 14] that

∫
Rd

|(ϕn ∗G)(x)|1|(ϕn∗G)(x)|≤ 1
|r|
λd(dx) ≤

1
|r|∫

0

dϕn∗G(α)λ1(dα) ≤

1
|r|∫

0

dGR(α/||ϕn||∞)λ1(dα).
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We see that the right hand side converges to 0 for n→∞ and for n large enough we have
1
|r|∫

0

dGR

(
α

||ϕn||∞

)
λ1(dα) ≤

1
|r|∫

0

dGR (α)λ1(dα) = 1
|r|
hR(|r|).

Lebesgue’s dominated convergence theorem using (4.11) implies∫
R

|r|1|r|>1

∫
Rd

|(ϕn ∗G)(x)|1|(ϕn∗G)(x)|≤ 1
|r|
λd(dx)ν(dr)→ 0

for n→∞.
For I2(n) we see from Young’s inequality that∫

Rd

|(ϕn ∗G)(x)|1|(ϕn∗G)(x)|> 1
|r|
λd(dx) ≤ |r| · ||ϕn ∗G||2L2(Rd) ≤ |r|‖G‖2

L1(Rd)‖ϕn‖2
L2(Rd)

and again from Lebesgue’s dominated convergence theorem (since
∫
|r|≤1 r

2ν(dr) <∞)∫
R

|r|1|r|≤1

∫
Rd

|(ϕn ∗G)(x)|1|(ϕn∗G)(x)|> 1
|r|
λd(dx)ν(dr)→ 0

for n→∞. This gives (4.13).
Now we check (4.14). We first note that

1 ∧ (r2(ϕn ∗G)(x)2) ≤1|r(ϕn∗G)(x)|>11|r|>1 + |ϕn ∗G(x)||r|1|r(ϕn∗G)(x)|>11|r|≤1

+ (ϕn ∗G(x)r)21|r(ϕn∗G)(x)|≤11|r|≤1 + |ϕn ∗G(x)||r|1|r(ϕn∗G)(x)|≤11|r|>1.

From the calculations that led to (4.13) we conclude that the second and fourth term
(when integrated with respect to ν(dr)λd(dx)) converge to 0 for n→∞ and for the first
term we note that∫

Rd

1|r(ϕn∗G)(x)|>1λ
d(dx) = dϕn∗G

(
1
|r|

)
≤ dGR

(
1

|r|||ϕn||∞

)

and by Lebesgue’s dominated convergence theorem we conclude that
∫
R

1|r|>1dGR

(
1

|r|||ϕn||∞

)
ν(dr)→ 0

for n→∞, as hR(|r|) ≥ dGR(1/|r|). For the third term we easily see that∫
R

∫
Rd

(ϕn ∗G(x)r)21|r(ϕn∗G)(x)|≤11|r|≤1λ
d(dx)ν(dr)
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≤||ϕn ∗G(x)||2L2

∫
R

1|r|≤1|r|2ν(dr)→ 0

for n→∞. This gives (4.14). Finally, (4.15) follows from Young’s inequality since

‖G ∗ ϕn‖2
L2(Rd) ≤ ‖G‖2

L1(Rd)‖ϕn‖2
L2(Rd) → 0 for n→∞.

The stationarity of the Lévy white noise implies the stationarity of the generalized process
s, as

〈s(·+ t), ϕ〉 = 〈s, ϕ(· − t)〉 = 〈L̇, G ∗ ϕ(·+ t)〉 = 〈L̇(·+ (−t)), G ∗ ϕ〉.

Example 4.6. We assume that

ec||x||G(x) ∈ L2(Rd)

for some constant c > 0. By the Hölder inequality we conclude∫
Rd

|G(x)|λd(dx) ≤ || exp(−c|| · ||)||L2 · || exp(c|| · ||)G(·)||L2 <∞

and

∫
BR(x)

|G(y)|λd(dy) ≤ ||ec||·||G||L2

 ∫
BR(x)

e−2c||y||λd(dy)


1/2

≤ CR exp(−c||x||)

for some constant CR > 0. Hence,

dGR(α) ≤ dexp(−c||·||)

(
α

CR

)
,

for α > 0. We conclude that for r ≥ CR,

1/|r|∫
0

dGR(a)λ1(da) ≤

1
|r|∫

0

Cd

 log
(
CR
α

)
c

d λ1(dα)

= Cd
cd
CRΓ(d+ 1, log(CR|r|))

= C

|r|

d∑
k=0

log(CR|r|)k
k!

for some finite constants Cd and C, where Γ(d+ 1, z) =
∫∞
z tde−tλ1(dt) denotes the upper
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incomplete gamma function. Assuming
∫
|r|>1

log(|r|)dν(dr) <∞, we conclude

∫
R

1|r|>1/CR

(
C

d∑
k=0

log(CR|r|)k
k!

)
ν(dr) <∞

and by Theorem 4.5 we obtain that s defined as above defines a generalized process.

The kernel function G has not always such nice integrability properties as assumed in
Theorem 4.5. For example, the Green function of the Laplacian is neither integrable nor
square integrable. As this is the case, we will prove another theorem, which will assure
the existence of the generalized process s under some other, but stronger, conditions.

Theorem 4.7. Let L̇ be a Lévy white noise with characterstic triplet (a, γ, ν) such that
the first moment of L̇ vanishes, i.e. E|〈L̇, ϕ〉| <∞ and E〈L̇, ϕ〉 = 0 for every ϕ ∈ D(Rd)
and assume G ∈ L1

loc(Rd) such that ‖G ∗ ϕn‖L2(Rd) → 0 for n → ∞ for every sequence
(ϕn)n∈N ⊂ D(Rd) converging to 0. Then s : D(Rd)→ L0(Ω) defined by

s(ϕ) := 〈L̇, G ∗ ϕ〉

defines a stationary generalized process if

∫
R

1|r|>1|r|
∞∫

1
|r|

dGR(α)λ1(dα)ν(dr) <∞ and (4.17)

∫
R

1|r|>1|r|2
1
|r|∫

0

αdGR(α)λ1(dα)ν(dr) <∞ (4.18)

for all R > 0, where GR is defined by (4.9).

Observe that (4.11) can be written as
∫
|r|>1 |r|

∫ 1/|r|
0 dGR(α)λd(dα)ν(dr), which is

slightly stronger than (4.18). However, for Theorem 4.7 we additionally need (4.17) and
E〈L̇, ϕ〉 = 0 for every ϕ ∈ D(Rd).

Proof. By [58, Example 25.12, p. 163] we need to show similarly to Theorem 4.5 that
(4.14), (4.15) and

∫
Rd

∣∣∣∣∣∣
∫
R

r(ϕn ∗G)(x)1|r(ϕn∗G)(x)|>1ν(dr)

∣∣∣∣∣∣λd(dx)→ 0, (4.19)

are satisfied for all (ϕn)n∈N converging to 0 in D(Rd). Let (ϕn)n∈N ⊂ D(Rd) converg-
ing to 0 such that supp ϕn ⊂ BR(0) for some R > 0 and all n ∈ N. Using that
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∫
Rd |f(x)|1|f(x)|>βλ

d(dx) =
∫∞
β df (α)λ1(dα) + βdf (β) for β > 0 and measurable f (cf.

[37, Exercise 1.1.10, p. 14]), we estimate (4.19) by

∫
Rd

∣∣∣∣∣∣
∫
R

r(ϕn ∗G)(x)1|r(ϕn∗G)(x)|>1ν(dr)

∣∣∣∣∣∣λd(dx)

≤
∫
R

1|r|≤1|r|2ν(dr)‖G ∗ ϕn‖2
L2(Rd)

+
∫
R

1|r|>1|r|
∫
Rd

|(ϕn ∗G)(x)|1|r(ϕn∗G)(x)|>1λ
d(dx)ν(dr)

=
∫
R

1|r|≤1|r|2ν(dr)‖G ∗ ϕn‖2
L2(Rd)

+
∫
R

1|r|>1|r|
∞∫

1
|r|

dϕn∗G(α)λ1(dα)ν(dr) +
∫
R

1|r|>1dϕn∗G(1/|r|)ν(dr)

→ 0

for n→∞ by Lebesgue’s dominated convergence, where we used that by (4.16)

∫
R

1|r|>1|r|
∞∫

1
|r|

dϕn∗G(α)λ1(dα)ν(dr) +
∫
R

1|r|>1dϕn∗G(1/|r|)ν(dr)

≤
∫
R

1|r|>1|r|
∞∫

1
|r|

dGR(α/‖ϕn‖∞)λ1(dα)ν(dr) +
∫
R

1|r|>1dGR(1/(|r|‖ϕn‖∞))ν(dr)

≤
∫
R

1|r|>1|r|
∞∫

1
|r|

dGR(α)λ1(dα)ν(dr) +
∫
R

1|r|>1dGR(1/|r|)ν(dr)

for large n and the latter integral is finite by (4.17), (4.18) and
x∫

0

αdGR(α)λ1(dα) ≥ dGR(x)
x∫

0

αλ1(dα) = 1
2dGR(x)x2 for every x > 0.

This gives (4.19). We control (4.14) by∫
Rd

∫
R

1 ∧ (r(ϕn ∗G)(x))2ν(dr)λd(dx)

≤
∫
Rd

∫
R

1|r(ϕn∗G)(x)|>11|r|>1 + |ϕn ∗G(x)|2|r|21|r|≤1 + |ϕn ∗G(x)|2|r|21|r(ϕn∗G)(x)|≤11|r|>1ν(dr)λd(dx)
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=:I1 + I2 + I3.

We have already shown in the proof of Theorem 4.5 how to control I1 and I2, so we only
need to show that I3 converges to 0 for n→∞. We conclude by [37, Exercise 1.1.10] that∫

Rd

∫
R

|ϕn ∗G(x)|2|r|21|r(ϕn∗G)(x)|≤11|r|>1ν(dr)λd(dx)

≤2
∫
R

1|r|>1r
2

1
|r|∫

0

αdϕn∗G(α)λ1(dα)ν(dr)→ 0

since

∫
R

1|r|>1r
2

1
|r|∫

0

αdϕn∗G(α)λ1(dα)ν(dr) ≤
∫
R

1|r|>1r
2

1
|r|∫

0

αdGR(α)λ1(dα)ν(dr) <∞

for large n by (4.16) and by our assumption (4.18). Hence, we conclude that s defines
a generalized process. Stationarity follows by the same arguments as in the proof of
Theorem 4.5.

Remark 4.8. If for every R > 0 there exists a bounded Borel set AR and a constant
CR > 0 such that GR(x) ≤ CRG(x) for all x ∈ Rd \ AR, then we can replace GR by G
in (4.10), (4.17) and (4.18).This follows from the estimate dGR(α) ≤ λd(AR) + dG(α/CR)
for (4.10) and (4.18), and for (4.17) one can argue similarly to the proof of Example 4.10
below, using the boundedness of GR on a set A2R related to AR.

Remark 4.9. Under certain conditions one can replace hR(|r|) in (4.11) by dGR(1/|r|),
for example if for every R > 0, dGR ∈ Lp([0, 1]) for some p > 1 and dGR(x)x1/p ≥ C for
some constant C > 0 independent of x. This follows by

1
xdGR(x)

x∫
0

dGR(α)λ1(dα) ≤ x1−1/p

xdGR(x)‖dGR‖L
p([0,1]) ≤

1
C
‖dGR‖Lp([0,1]) <∞ for all x ∈ (0, 1).

Example 4.10. We assume that G ∈ L1
loc(Rd) and there exist β > d/2, C > 0 and a

bounded, open set A with 0 ∈ A such that |G(x)| ≤ C‖x‖−β for all x ∈ Rd \ A. We find
that

dGR(α) ≤ C ′(α−
d
β + 1α≤‖GR‖L∞(A2R)),
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where A2R := {x ∈ Rd : dist(x,A) ≤ 2R}. We conclude
∞∫

1
|r|

dGR(α)λ1(dα) ≤ C̃|r|
d
β
−1 + C ′max{‖GR‖L∞(A2R) −

1
|r|
, 0}

and
1
|r|∫

0

αdGR(α)λ1(dα) ≤ C̃
(
|r|

d
β
−2 + |r|−2

)

for some constant C̃ > 0 for all |r| > 1. Writing G = G1BM (0) +G1Rd\BM (0) for large M ,
we have G1BM (0) ∈ L1(Rd) and G1Rd\BM (0) ∈ L2(Rd) and since ϕn ∈ L1(Rd) ∩ L2(Rd) we
obtain from Young’s inequality that ‖G ∗ ϕn‖L2(Rd) → 0, n → ∞. If

∫
|r|>1
|r|

d
β ν(dr) < ∞,

we conclude by Theorem 4.7 (if L̇ satisfies the assumptions specified there) that s(ϕ) :=
〈L̇, G ∗ ϕ〉 defines a generalized random process.

Until now we have only given sufficient conditions for the existence of a generalized
process s defined by a convolution with a suitable kernel G. We will give a necessary
condition if G is positive in Rd.

Corollary 4.11. Let G ∈ L1
loc(Rd) such that G(x) ≥ 0 λd−a.e (or G(x) ≤ 0 λd−a.e.).

Let L̇ be a Lévy white noise with characteristic triplet (a, γ, ν). If s : D(Rd) → L0(Ω)
defined by s(ϕ) := 〈L̇, G ∗ ϕ〉 for ϕ ∈ D(Rd) defines a generalized process, then

∫
R

1|r|>1dGR

(
1
|r|

)
ν(dr) <∞

for every R > 0 and GR defined by (4.9).

Proof. We know that for ϕ ∈ D(Rd), it is necessary for G ∗ ϕ ∈ L(L̇) that (cf. [56,
Theorem 2.7, p.461-462])

∞ >
∫
R

∫
Rd

(1 ∧ (rϕ ∗G)(x)2)λd(dx)ν(dr) ≥
∫
R

∫
Rd

1|r|>11|rϕ∗G|>1λ
d(dx)ν(dr)

=
∫
R

1|r|>1dG∗ϕ (1/|r|) ν(dr). (4.20)
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Now let ϕ ∈ D(Rd), ϕ ≥ 0 such that ϕ ≥ 1 in BR(0). We see that

dG∗ϕ(α) = λd


x ∈ Rd :

∫
Rd

G(x− y)ϕ(y)λd(dy) > α




≥ λd


x ∈ Rd :

∫
BR(x)

G(y)λd(dy) > α


 = dGR(α).

By assumption we conclude∫
R

1|r|>1dGR (1/|r|) ν(dr) ≤
∫
R

∫
Rd

(1 ∧ (rϕ ∗G)(x)2)λd(dx)ν(dr) <∞.

4.4 CARMA generalized processes

We construct a generalization of CARMA processes. A CARMA generalized process is a
generalized solution of a special SPDE.
Definition 4.12. Let L̇ be a Lévy white noise, n,m ∈ N0 and p, q : Rd → R be polyno-
mials of the form

p(x) =
∑
|α|≤n

pαx
α and q(x) =

∑
|α|≤m

qαx
α.

A generalized process s : D(Rd)→ L0(Ω) is called a CARMA(p, q) generalized process if
s solves the equation

p(D)s = q(D)L̇,

which means that

〈s, p(D)∗ϕ〉 = 〈L̇, q(D)∗ϕ〉 a.s. for every ϕ ∈ D(Rd). (4.21)

Recall that p(D)∗ = p(−D) and q(D)∗ = q(−D).

4.4.1 Homogeneous Elliptic SPDEs

Let p(z) = ∑
|α|≤m aαz

α be a polynomial in d variables and L̇ some Lévy noise. We are
interested in generalized solutions of the stochastic partial differential equation

p(D)s = L̇. (4.22)
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Let G be a fundamental solution of the operator p∗(D), i.e. a distribution such that
p∗(D)G ∗ ϕ = ϕ for every ϕ ∈ D(Rd). By the theorem of Malgrange-Ehrenpreis, such
a fundamental solution always exists. Suppose this fundamental solution arises actually
from a function G such that the assumptions of Theorem 4.5 or Theorem 4.7 are satisfied.
If we then define the generalized process s by

〈s, ϕ〉 := 〈L̇, G ∗ ϕ〉 for ϕ ∈ D(Rd),

then this defines a generalized process that satisfies (4.22). This follows from the simple
calculation

〈p(D)s, ϕ〉 = 〈s, p∗(D)ϕ〉 = 〈L̇, G ∗ (p∗(D)ϕ)〉 = 〈L̇, p∗(D)G ∗ ϕ〉 = 〈L̇, ϕ〉.

To find conditions when Theorem 4.7 can be applied, we at first specialise to homogeneous
elliptic partial differential operators. We say that a polynomial is elliptic homogeneous
of degree m if p(z) = ∑

|α|=m
aαz

α and p(z) 6= 0 for all z ∈ Rd \ {0}. We call p(D) then an

elliptic homogenous partial differential operator of degree m. Observe that in this case
the adjoint operator is given by p∗(D) = (−1)mp(D). Hence, the fundamental solution of
p∗(D) and p(D) differ only by the factor (−1)m. We now have:

Proposition 4.13. Let p(D) be an elliptic homogeneous partial differential operator of
degree m ∈ N. If d > 2m and the Lévy white noise L̇ with characteristic triplet (a, γ, ν)
satisfies ∫

R

1|r|>1|r|
d

d−m+εν(dr) <∞

for some ε > 0 and the first moment of L̇ vanishes, then there exists a generalized process
s which solves the SPDE (4.22).

Proof. It is known that in the case of such a partial differential operator, the fun-
damental solution arises from a locally integrable function G that satisfies |G(x)| ≤
c‖x‖m−d log(‖x‖) for all ‖x‖ ≥ 2 and some constant c > 0, see [54, Proposition 2.4.8,
p. 155]. The rest follows from Example 4.10.

Remark 4.14. In the case of the Laplacian ∆, when d ≥ 5, with methods similar to the
proof of Example 4.6 one can show that it is enough that∫

R

1|r|>1|r|
d
d−2ν(dr) <∞ (4.23)

for the existence of a generalized solution. Moreover, if we choose for ∆ the fundamental
solution G(x) = cd|x|2−d, where cd ∈ R \ {0}, then by Corollary 4.11 it is also necessary
that (4.23) holds true for 〈L̇, G ∗ ϕ〉 to define a generalized solution.
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4.4.2 General CARMA setting

For classical CARMA processes in dimension 1 the assumptions on the polynomials are
that q/p has only removable singularities on the imaginary axis and the degree of the
polynomial p is higher than the degree of q, which implies that ‖q/p‖L2(iR) < ∞. For a
detailed discussion see [15]. In dimension 1 CARMA generalized processes were defined
in [14], where the white noise was assumed to be Gaussian and the polynomial p has no
zeroes on the imaginary axis, see [14, Proposition 2.5, p. 3616]. All the assumptions on
the polynomials above imply even more, namely that q/p has a holomorphic extension on
the strip {z ∈ C : |<z| < ε} for a small ε > 0. We take this as an assumption also for
higher dimensions d:

Assumption 4.15. The rational function q(i·)/p(i·) has a holomorphic extension in a
strip {z ∈ Cd : ‖=z‖ < ε} for some ε > 0.

This assumption implies especially that there exist two polynomials h and l such that
h(i·)/l(i·) = p(i·)/q(i·) and l(i·) has no zeroes in the strip {z ∈ Cd : ‖=z‖ ≤ ε/2}. Hence
we may and do assume for the rest of this section that h = p and l = q.
We prove an existence theorem under mild moment conditions.

Theorem 4.16. Let p, q be polynomials as in Definition 4.12 such that the Assumption
4.15 holds true. Furthermore, let L̇ be a Lévy white noise with characteristic triplet
(a, γ, ν) such that ∫

R

1|r|>1 log(|r|)dν(dr).

Then there exists a stationary CARMA(p, q) generalized process.

Proof. Under the Assumption 4.15 it follows by arguments similar as in the proof of [40,
Lemma 2, p. 557] that there exists an α ∈ N and δ > 0 such that

sup
‖η‖≤δ

∥∥∥∥∥ q(−i ·+η)
p(−i ·+η)ψ(·+ iη)

∥∥∥∥∥
L2(Rd)

<∞,

where

ψ(z) :=
1 +

d∑
j=1

z2
i

α .
It follows by a Paley-Wiener theorem (e.g. [57, Theorem XI.13, p.18]) that the inverse
Fourier transform G of q(−i·)

ψ(·)p(−i·) satisfies

ec||x||G(x) ∈ L2(Rd)
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for some 0 < c < δ. Observe that G is indeed real-valued, as q(−i·)
p(−i·)ψ(·) = q(i·)

p(i·)ψ(−·) . Observe
that F−1ψF· : D(Rd)→ D(Rd) is a continuous mapping, as

F−1(ψ(·)Fϕ) = (1−∆)αϕ.

By Example 4.6 follows that s defined by

〈s, ϕ〉 :=
〈
L̇, G ∗ F−1 (ψ(·)Fϕ)

〉
for every ϕ ∈ D(Rd) (4.24)

is a generalized process and by similar arguments to the proof of Theorem 4.5 it follows
that s is stationary. Now let ϕ ∈ D(Rd), we conclude by Fp(−D)ϕ = p(−i·)Fϕ for all
ϕ ∈ D(Rd) that

〈s, p(D)∗ϕ〉 =
〈
L̇,
(
G ∗ F−1 (ψ(·)F(p(D)∗ϕ))

)〉
=
〈
L̇,F−1

(
ψ(·) q(−i·)

ψ(·)p(−i·)p(−i·)Fϕ
)〉

= 〈L̇,F−1 (q(−i·)Fϕ)〉 = 〈L̇, q(D)∗ϕ〉.

Remark 4.17. Under the assumptions of Theorem 4.16 the only solutions of (4.21) are
of the form s + u, where s is the solution constructed in Theorem 4.16 and u solves the
equation 〈u, p(D)∗ϕ〉 = 0 a.s. for every ϕ ∈ D(Rd).

We obtain directly the following corollary, which generalizes [14, Proposition 2.5, p.
3616] from Gaussian noise to Lévy white noise.

Corollary 4.18. Let d = 1 and p(z) = ∏n
j=1(pj − z) and q(z) = ∏m

j=1(qj − z) be two
real polynomials, such that p/q has no roots on the imaginary axis. Then there exists a
stationary generalized solution s : D(Rd) → L0(Ω) of the equation p( d

dx
)s = q( d

dx
)L̇ for

every Lévy white noise L̇ with characteristic triplet (a, γ, ν) such that
∫
|r|>1 log(|r|)ν(dr).

Example 4.19. Consider the polynomial p(iz) := −λ −
d∑
j=1

z2
j for d ∈ N with λ > 0,

which corresponds to the partial differential operator L = −λ+ ∆. The real part is given
by < p(iz) = −λ−

d∑
j=1

((< zj)2−(= zj)2), from which we conclude that p(i·) has no roots in

{z ∈ Cd : ‖= z‖2 < λ} . It follows that for every polynomial q there exists a generalized
solution s : D(Rd)→ L0(Ω) of

(−λ+ ∆)s = q(D)L̇. (4.25)

Example 4.20. Let p(D) = ∏d
j=1(λj−∂xj)αj , αj ∈ N0 for all j ∈ {1, · · · , d} and |λj| > 0.

Then its corresponding polynomial is given by p(iz) = ∏d
j=1(λj − izj)αj and by Theorem
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4.16 we find a generalized solution of the equation p(D)s = q(D)L̇ for every partial
differential operator q(D), as 1/p(i·) is holomorphic in {z ∈ Cd : ‖=z‖ < ε} for some
ε > 0.

4.5 CARMA random fields

Until now we have studied generalized solutions of the CARMA SPDE (4.4), but in the
literature of stochastic partial differential equations driven by Lévy noise the concept of
mild solutions seems to be more used, as the mild solution is itself a random field. We
show under stronger conditions the existence of a mild solution of (4.4). But first we
recall what a mild solution is.

Definition 4.21 (see [65]). Let p(D) and q(D) be partial differential operators and let
G : Rd → R be a locally integrable fundamental solution of the equation p(D)u = q(D)δ0,
which means that for every ϕ ∈ D(Rd), p(D)G ∗ ϕ = q(D)ϕ. We say that X = (Xt)t∈Rd
defined by

Xt =
∫
Rd

G(t− s) dL(s),

where L denotes a Lévy basis, is the mild solution of the equation p(D)X = q(D)dL,
provided that the integral exists. Observe that it is necessary that G is a function.

We know already that L̇ can be extended to a Lévy basis, see [32]. We state our first
result, which follows directly from the proofs of Theorem 4.5 and Corollary 4.11.

Proposition 4.22.
i) Let G : Rd → R be a measurable function with G ∈ L1(Rd) ∩ L2(Rd). We define

h(x) := x

1/x∫
0

dG(a)λ1(da) for x > 0.

Let L be a Lévy basis (equivalently L̇ a Lévy white noise) with characteristic triplet
(a, γ, ν), and assume that ∫

R

1|r|>1h(|r|)ν(dr) <∞.

Then the integral
Xt =

∫
Rd
G(t− s)dL(s)

exists and defines a stationary random field (Xt)t∈Rd.
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ii) Conversely, if G : Rd → R is measurable and the integral
∫
Rd
G(−s)dL(s) exists, then

necessarily ∫
R

1|r|>1dG(1/|r|)ν(dr) <∞.

Proof. By [56, Theorem 2.7], the integral
∫
Rd
G(t− s)dL(s) exists if and only if

∫
Rd

γG(x) +
∫
R

rG(x)(1|rG(x)|≤1 − 1|r|≤1)ν(dr)
λd(dx) <∞,

∫
Rd

∫
R

1 ∧ (rG(x))2ν(dr)λd(dx) <∞ and

∫
Rd

a|G(x)|2λd(dx) <∞.

That the conditions specified in (i) are sufficient then follows by calculations similar to
those in the proof of Theorem 4.5, while necessity of the condition specified in (ii) follows
as in (4.20). That Xt as defined in (i) is stationary is clear.

Now we conclude that there exists a mild solution of the CARMA(p, q) SPDE under
some further restrictions.

Theorem 4.23. Let L be a Lévy basis in Rd with characteristic triplet (a, γ, ν) such that∫
R

1|r|>1 log(|r|)dν(dr) <∞. Assume furthermore that there exists ε > 0 such that

sup
η∈Bε(0)

∥∥∥∥∥q(i ·+η)
p(i ·+η)

∥∥∥∥∥
L2
<∞. (4.26)

Then there exists a mild solution of the equation

p(D)X = q(D) dL, (4.27)

which is given by

Xt =
∫
Rd

F−1
(
q(i·)
p(i·)

)
(t− x)dL(x), t ∈ Rd. (4.28)

Proof. Taking Fourier transforms, it is easy to check that G := F−1 q(i·)
p(i·) is a fundamental

solution of p(D)u = q(D)δ0. By [57, Theorem XI.13, p.18] we see that ec‖·‖G ∈ L2(Rd) for
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all 0 < c < ε and G is real-valued by the same argument as in Theorem 4.16. It follows
that

h(r) = r

1/r∫
0

dG(α)λ1(dα) ≤ dG exp(c‖·‖)(1) + r

1/r∫
0

dexp(−c‖·‖)(α)λ1(dα)

The rest follows by Proposition 4.22 and similar calculations as in Example 4.6.

Example 4.24. Let d = 1, 2, 3, λ > 0 and p(D) = (λ−∆). We see that

sup
‖η‖≤λ/2

‖1/p(i ·+η)‖L2(Rd) <∞

and by Theorem 4.23 we conclude that there exists a mild solution of the equation (λ−
∆)X = dL.

Example 4.25. The causal CARMA random field constructed in [55, Definition 3.3] and
[47, Definition 2.1] is the mild solution of the equation P (D)X = Q(D)dL, where P and
Q are given in [47, Proposition 2.5]. We observe that P and Q satisfy the assumption of
Theorem 4.23, so that the causal CARMA random field of [55,47] can be seen as a special
case of CARMA random fields defined in the present chapter.

In classical analysis, a locally integrable function f : Rd → R specifies a distribution
Tf by Tf (ϕ) :=

∫
Rd
f(x)ϕ(x)λd(dx) for ϕ ∈ D(Rd). It is now natural to ask if a mild solu-

tion X of p(D)X = q(D)dL also gives rise to a generalized solution of p(D)X = q(D)L̇
via 〈X,ϕ〉 :=

∫
Rd
Xsϕ(s)λd(ds).

That this is indeed the case, at least under some weak conditions which allow the appli-
cation of a stochastic Fubini theorem, is the contents of the next proposition.

Proposition 4.26. Let L be a Lévy basis with existing first moment and p and q be as
in Theorem 4.23. Let

G := F−1
(
q(i·)
p(i·)

)
.

Then the mild solution

Xs =
∫
Rd

G(s− u)dL(u), s ∈ Rd,

of (4.28) gives rise to a generalized solution X of the SPDE p(D)X = q(D)L̇ via

〈X,ϕ〉 :=
∫
Rd

Xsϕ(s)λd(ds), ϕ ∈ D(Rd).
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Proof. Observe that G ∈ L1(Rd)∩L2(Rd) by the proof of Theorem 4.23. We see that for
every ϕ ∈ D(Rd)

|rϕ(t)G(t− s)| ∧ |rϕ(t)G(t− s)|2

=1|rϕ(t)G(t−s)|>1|rϕ(t)G(t− s)|+ 1|rϕ(t)G(t−s)|≤1|rϕ(t)G(t− s)|2

≤1|r|>11|rϕ(t)G(t−s)|>1|rϕ(t)G(t− s)|+ 1|r|≤11|rϕ(t)G(t−s)|>1|rϕ(t)G(t− s)|2

+ 1|r|≤11|rϕ(t)G(t−s)|≤1|rϕ(t)G(t− s)|2 + 1|r|>11|rϕ(t)G(t−s)|≤1|rϕ(t)G(t− s)|
=1|r|>1|rϕ(t)G(t− s)|+ 1|r|≤1|rϕ(t)G(t− s)|2.

Since∫
Rd

∫
Rd

∫
R

1|r|>1|rϕ(t)G(t− s)|ν(dr)λd(ds)λd(dt) ≤
∫
R

1|r|>1|r|ν(dr)‖|ϕ| ∗ |G|‖L1 <∞ and

∫
Rd

∫
Rd

∫
R

1|r|≤1|rϕ(t)G(t− s)|2ν(dr)λd(ds)λd(dt) ≤
∫
R

1|r|≤1|r|2ν(dr)‖|ϕ|2 ∗ |G|2‖L1 <∞

by Young’s inequality and by assumption we conclude from a stochastic Fubini result ([4,
Theorem 3.1 and Remark 3.2, p. 926]; observe that ϕ has compact support and that λd
is finite on the support of ϕ) that

〈X,ϕ〉 : =
∫
Rd

Xsϕ(s)λd(ds) =
∫
Rd

∫
Rd

G(s− t)ϕ(s)dL(t)λd(ds)

a.s.=
∫
Rd

∫
Rd

G(s− t)ϕ(s)λd(ds)dL(t)

(from the discussions preceeding Theorem 3.1 in [4] it follows also that a version of Xs can
be chosen such that Xsϕ(s) is integrable with respect to λd). Further, X : D(Rd) → L0

is clearly linear and estimates as above show that it is also continuous, hence X is a
generalized random process. To see that p(D)X = q(D)L̇, observe that

〈X, p(D)∗ϕ〉 =
∫
Rd

∫
Rd

G(s− t)p(D)∗ϕ(s)λd(ds)dL(t)

=
∫
Rd

(G(−·) ∗ p(D)∗ϕ)(t)dL(t)

=
∫
Rd

(p(D)∗G(−·) ∗ ϕ)(t)dL(t)

=
∫
Rd

q(D)∗ϕ(t)dL(t)

= 〈L̇, q(D)∗ϕ〉,
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where we used in the last equality but one that G(−·) is the fundamental solution of
p(−D)u = q(−D)δ0. It follows that X is a generalized solution of the SPDE p(D)X =
q(D)L̇.

4.6 Moment properties

We say that a generalized process s : D → L0(Ω) has existing β-moment, β > 0, if
E|〈s, ϕ〉|β <∞ for every ϕ ∈ D(Rd).
Let L̇ be a Lévy white noise with characteristic triplet (a, γ, ν). Then it is easy to see (cf.
[58, Theorem 25.3, p. 159]) that L̇ has existing β-moment if and only if∫

|z|>1

|z|βν(dz) <∞.

Next we show that if L̇ has existing β-moment then so has the CARMA generalized
process given in Theorem 4.16.

Proposition 4.27. Let L̇ have existing β-moment (β > 0) and let p and q be polynomi-
als satisfying Assumption 4.15. Then the stationary CARMA(p, q) generalized process s
constructed in Theorem 4.16 has existing β-moment, too.

Proof. Let ϕ ∈ D(Rd). From (4.24) and [56, Theorem 2.7] we see that the Lévy measure
of the random variable s(ϕ) is given by

νs(ϕ)(B) =
∫
Rd

∫
R

1B\{0}(rG ∗ (1−∆)αϕ(x))ν(dr)λd(dx),

where G and α are defined as in the proof of Theorem 4.16. We conclude∫
|z|>1

|z|βνs(ϕ)(dz) =
∫
R

|r|β
∫

|(G∗(1−∆)αϕ)(x)|> 1
|r|

|G ∗ (1−∆)αϕ(x)|βλd(dx)ν(dr)

=
∫
|r|≤1

|r|β
∫

|(G∗(1−∆)αϕ)(x)|> 1
|r|

|G ∗ (1−∆)αϕ(x)|βλd(dx)ν(dr) (4.29)

+
∫
|r|>1

|r|β
∫

|(G∗(1−∆)αϕ)(x)|> 1
|r|

|G ∗ (1−∆)αϕ(x)|βλd(dx)ν(dr).

For β ≥ 1 we see by the Young inequality

‖G ∗ (1−∆)αϕ‖βLβ ≤ ‖(1−∆)αϕ‖βLβ‖G‖
β
L1 (4.30)
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and for 0 < β < 1 we note that∫
Rd

|G ∗ (1−∆)αϕ(x)|βλd(dx)

=
∫
Rd

|G ∗ (1−∆)αϕ(x)|β exp(−(b/4)β‖x‖) exp((b/4)β‖x‖)λd(dx)

≤C

 ∫
Rd

|G ∗ (1−∆)αϕ(x) exp((b/4)‖x‖)|λd(dx)


β

≤C

 ∫
Rd

|(1−∆)αϕ(y)| exp((b/4)‖y‖)
∫
Rd

|G(x)| exp((b/4)‖x‖)λd(dx)λd(dy)


β

≤C ′‖G exp(b‖ · ‖)‖βL2(Rd)

 ∫
Rd

|(1−∆)αϕ(y)| exp((b/4)‖y‖)λd(dy)


β

,

where b > 0 is chosen such that ‖G exp(b‖ · ‖)‖L2 <∞ and C and C ′ are finite constants.
From the previous calculations it is immediate that the term in (4.29) corresponding to
the integral when |r| > 1 is finite for all β > 0, and that the integral corresponding to the
term |r| ≤ 1 is finite when β ≥ 2. When β ∈ (0, 2] we estimate similar to (4.30)∫

|r|≤1

|r|β
∫

|(G∗(1−∆)αϕ)(x)|> 1
|r|

|G ∗ (1−∆)αϕ(x)|βλd(dx)ν(dr)

≤
∫
|r|≤1

|r|2ν(dr)‖G ∗ (1−∆)αϕ(x)‖2
L2(Rd) <∞.

We conclude that
∫
|z|>1
|z|βνs(ϕ)(dz) is finite for β > 0.

By the same means we obtain the following.

Proposition 4.28. Let X be the mild solution of a CARMA(p,q)-equation constructed
in Theorem 4.23. If the β−moment of the Lévy-white noise exists for 0 < β ≤ 2, then
E|Xx|β <∞ for every x ∈ Rd.

Proof. Let G = F−1 q(i·)
p(i·) and denote the Lévy measure of Xx =

∫
Rd
G(x − t)dL(t) by νG.

Then by [56, Theorem 2.7],∫
|z|>1

|z|βνG(dz) =
∫
R

|r|β
∫

|G(x)|> 1
|r|

|G(x)|βλd(dx)ν(dr)
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=
∫
|r|≤1

|r|β
∫

|G(x)|> 1
|r|

|G(x)|βλd(dx)ν(dr) +
∫
|r|>1

|r|β
∫

|G(x)|> 1
|r|

|G(x)|βλd(dx)ν(dr)

≤
∫
|r|≤1

|r|2
∫

|G(x)|> 1
|r|

|G(x)|2λd(dx)ν(dr) +
∫
|r|>1

|r|β
∫

|G(x)|> 1
|r|

|G(x)|βλd(dx)ν(dr)

= I1 + I2.

I1 is clearly finite, and I2 is finite since ec‖·‖G ∈ L2(Rd) for some c > 0 (see the proof of
Theorem 4.23) and hence G ∈ Lβ(Rd).

Remark 4.29. The β considered in Proposition 4.28 has to be smaller or equal than 2,
as otherwise there may exist some β for which the Proposition does not hold. Look for
example at the fundamental solution of the partial differential operator λ − ∆ for some
λ > 0 in dimension 3, which is given by c exp(−

√
κ‖x‖)

‖x‖ with c a constant. The fundamental
solution does not live in L3

loc(R3), see [41, Section 2.1, Equation (21)], which implies that
E|Xx|3 =∞ for all x ∈ R3.

As a corollary we get the following easy result.

Corollary 4.30. Let the Lévy basis L have existing second moment σ2 (i.e., E(L([0, 1]d)2) =
σ2) with vanishing first moment. Then, under the assumptions of Theorem 4.23, the spec-
tral density of the mild solution X of a CARMA(p,q)-SPDE with polynomials p and q is
given by

f(ξ) = σ2
∣∣∣∣∣q(iξ)p(iξ)

∣∣∣∣∣
2

. (4.31)

Proof. It is clear that Xx has existing second moment and vanishing first moment. More-
over, we see from the Itô-isometry that

EX0Xy = σ2
∫
Rd

G(x)G(x− y)λd(dx).

As G is the inverse Fourier transform of q(iξ)
p(iξ) we conclude as in [16, Theorem 2, p. 841]

that the spectral density is given by (4.31).

4.7 CARMA random fields in the sense of Brockwell and
Matsuda

We will now analyze the CARMA random fields in the sense of Brockwell and Matsuda
defined in [16] and show that the corresponding random field defines a mild solution
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of a fractional stochastic partial differential equation. In our setting we find for odd
dimensions the corresponding CARMA generalized processes with respect to a SPDE of
type (4.21). A CARMA random field in the sense of Brockwell and Matsuda is defined
as follows: Let 0 ≤ q < p, a∗(z) = zp + a1z

p−1 + . . .+ ap = ∏p
i=1(z − λi) be a polynomial

with real coefficients and distinct roots λi with strictly negative real parts and b∗(z) =
b0 + b1z + . . . + bq−1z

q−1 + zq = ∏q
i=1(z − κi) also be a polynomial with real coefficients.

Assume that λi 6= κj for all i and j. Define the functions

a(z) =
p∏
i=1

(z2 − λ2
i ) and b(z) =

q∏
i=1

(z2 − κ2
i ).

Let L be a Lévy basis in Rd with finite second moment. Then the isotropic CARMA(p, q)
field driven by L (in the sense of Brockwell and Matsuda) is given by

Xt =
∫
Rd

p∑
i=1

b(λi)
a′(λi)

eλi||t−u|| dL(u) (4.32)

for every t ∈ Rd. Here, a′ denotes the derivative of the polynomial a. For a more detailed
introduction see [16, Definition 3.1, p. 837].

Proposition 4.31. Let X = (Xt)t∈Rd be defined by (4.32) and d be odd. Then X is the
mild solution of the SPDE

p∏
i=1

a′(λi)(−∆ + λ2
i )

d+1
2 X = cd

p∑
i=1

2λib(λi)
p∏

j=1,j 6=i
a′(λj)(−∆ + λ2

j)
d+1

2 dL (4.33)

for some constant cd depending on the dimension d.

Proof. We know from [16, Theorem 2, p.841] that the Fourier transform of the isotropic
CARMA kernel is given by

cd

p∑
i=1

2λib(λi)
a′(λi)(‖z‖2 + λ2

i )
d+1

2
= cd

p∑
i=1

2λib(λi)
p∏

j=1,j 6=i
a′(λj)(‖z‖2 + λ2

j)
d+1

2

∏p
i=1 a

′(λi)(‖z‖2 + λ2
i )

d+1
2

, z ∈ Rd,

for some constant cd dependend on the dimension d. We conclude that Sd is the mild
solution of the SPDE

p∏
i=1

a′(λi)(−∆ + λ2
i )

d+1
2 X = cd

p∑
i=1

2λib(λi)
p∏

j=1,j 6=i
a′(λj)(−∆ + λ2

j)
d+1

2 L̇

by comparing our mild solution to the definition in (4.28).

For even d we see that ∏p
j=1(−∆+λ2

i )
d+1

2 defines a fractional Laplace operator, which
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is defined by

p∏
j=1

(−∆ + λ2
i )

d+1
2 ϕ := F−1

p∏
j=1

(
d∑

m=1
z2
m + λ2

j)
d+1

2 Fϕ. (4.34)

A fundamental solution G of Au = Bδ0, where A and B are fractional operators defined
by (4.34), is defined by AG ∗ ϕ = Bϕ for all ϕ ∈ D(Rd). Allowing this larger class of
solutions we obtain the following.

Proposition 4.32. Let X = (Xt)t∈Rd be defined by (4.32). Then X is the mild solution
of the (fractional) SPDE

p∏
i=1

a′(λi)(−∆ + λ2
i )

d+1
2 X = cd

p∑
i=1

2λib(λi)
p∏

j=1,j 6=i
a′(λj)(−∆ + λ2

j)
d+1

2 L̇ (4.35)

for some constant cd dependend on the dimension d.

Proof. Follows the same arguments as above.
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5 Lévy driven linear and semilinear
stochastic partial differential
equations

The goal of this chapter is twofold. In the first part we will study Lévy white noise in
different distributional spaces and solve equations of the type p(D)s = q(D)L̇, where p
and q are polynomials. Furthermore, we will study measurability of s in Besov spaces.
By using this result we will prove that stochastic partial differential equations of the form

p(D)u = g(·, u) + L̇

have measurable solutions in weighted Besov spaces, where p(D) is a partial differential
operator in a certain class, g : Rd × C → R satisfies some Lipschitz condition and L̇ is a
Lévy white noise.

5.1 Introduction

A stochastic process X = (Xt)t∈R is called a CARMA process, if X is a solution of the
(formal) stochastic differential equation

m∑
j=0

aj
djX(t)
dtj

=
n∑
k=1

bk
dkL(t)
dtk

(5.1)

where m,n ∈ N, aj, bk ∈ R for every 0 ≤ j ≤ m and 0 ≤ k ≤ n and L is a Lévy process.
Equation (5.1) can also be written as a(D)Xt = b(D)L(t), where a(z) =

m∑
j=0

ajz
j and

b(z) =
n∑
j=1

bjz
j. In [15] necessary and sufficient conditions on L on the polynomials a and

b were given such that there exists a strictly stationary solution of (5.1), namely it was
shown that it is sufficient and necessary that E log+(|L1|) <∞. CARMA processes have
many applications, see for example [33] and [13].
For dimensions greater than 1, there exist more than one definition of a CARMA random
field. Here, we will recall only the definition in the sense of Chapter 4. For the other
definitions see the two papers of Brockwell and Matsuda [16] and Pham [55]. In Chapter
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4 a CARMA random field s is a stationary generalized stochastic process on the space of
test functions D(Rd) := C∞c (Rd), which solves the equation

p(D)s = q(D)L̇, (5.2)

where p and q are real polynomials in d-variables and L̇ is Lévy white noise with charac-
teristic triplet (a, γ, ν), where (5.2) means that

〈s, p(D)∗ϕ〉 = 〈L̇, q(D)∗ϕ〉

for every ϕ ∈ D(Rd), where p(D)∗ denotes the (formal) adjoint operator of p(D). For
the definition of stationary generalized processes and Lévy white noise see Section 5.3 or
Chapter 4, Definition 4.3. It was shown that if the rational function p

q
has a holomorphic

extension in a certain set and
∫
|r|>1 log(|r|)dν(dr) <∞, then there exists a stationary

solution of (5.2). The problem of the stationary generalized solution s is that it may not
have a random field representation and the question of uniqueness is open. Furthermore,
as the regularity of s is not well-understood, it is not directly clear if one can solve more
complex SPDEs than (5.2). The goal of this chapter is to tackle these problems and give
some answers to these questions. We will show the existence of the Lévy white noise
in the space of tempered ultradistributions and Fourier hyperfunctions defined as in [63]
and [43] and show that (5.2) has solutions in the space of tempered (ultra-)distributions,
Fourier hyperfunctions and Besov spaces under specific assumptions. Furthermore, we
will analyze the semilinear equation

p(D)s = g(·, s) + L̇ (5.3)

in certain weighted Besov spaces, where g : Rd×C→ R is a sufficiently regular function.
The above mentioned results can be found in Sections 5.3 and 5.4, where our main results
are Theorem 5.10, Theorem 5.13 and Proposition 5.16. In detail, in Section 5.3 we recall
the definition of generalized stochastic processes and study (5.2) in the three different
spaces. In Section 5.4 we study (5.3) in different Besov spaces.

5.2 Notation and Preliminaries

To fix notation, by (Ω,F) we denote a measurable space, where Ω is a set and F is
a σ-algebra and by L0(Ω,F ,K) we denote all measurable functions f : Ω → K with
respect to F where K = R,C. In the case that F and K are clear from the context
we set L0(Ω) = L0(Ω,F ,K). If we consider a probability space (Ω,F ,P), where P is a
probability measure on (Ω,F), we say that a sequence (fn)n∈N ⊂ L0(Ω) converges to f in
L0(Ω) if fn converges in probability to f with respect to the measure P . In the case of
(Rd,B(Rd)) we denote by B(Rd) the Borel-σ-set on Rd.
We write N = {1, 2, . . . }, N0 = N ∪ {0} and Z, R, C for the set of integers, real numbers
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and complex numbers, respectively. If z ∈ C, we denote by =z and <z the imaginary and
the real part of z. The Euclidean norm is denoted by ‖ · ‖ and r+ := max{0, r} for every
r ∈ R . By C∞(Rd,C) we denote the set of all functions ϕ : Rd → C which are infinitely
often differentiable. Furthermore, by Lp(Rd, A) for A ⊆ C and 0 < p ≤ ∞ we denote
the set of all Borel-measurable functions f : Rd → A such that

∫
Rd |f(x)|p λd(dx) < ∞

for 0 < p < ∞ and ess supx∈Rd |f(x)| < ∞ for p = ∞, where λd is the d−dimensional
Lebesgue measure. We denote by ||f ||Lp = (

∫
R |f(x)|p λ(dx))1/p for 0 < p < ∞ and

‖f‖L∞ = ess supRd |f | the Lp-(quasi-)norm for a measurable function f . We write 〈x〉 :=
(1 + ‖x‖2)1/2 and ‖f‖Lp(Rd,ρ) := ‖〈·〉ρf‖Lp(Rd) for ρ ∈ R. Let (ak)k∈N0 ⊂ C be a sequence
and we set

‖(ak)k∈N0‖lq :=
∑
k∈N0

|ak|q
 1

q

for 0 < q < ∞. For q = ∞ the norm is given by ‖(ak)k∈N0‖ = supk∈N0 |ak|. By df we
denote the distribution function of f : Rd → C, which means that

df (α) := λd({x ∈ Rd : |f(x)| > α}), α ≥ 0. (5.4)

The space D(Rd) denotes the set of all infinitely differentiable functions f : Rd → R
with compact support with its usual topology (e.g. [32, Section 2.1]), where we denote
the support of f by supp f . The topological dual space of D(Rd) will be denoted by
D′(Rd), where an element u ∈ D′(Rd) is called a distribution. The space S(Rd) denotes
the Schwartz space equipped with its usual topology, see [21, Section 1, p. 4391] and
S ′(Rd) its topological dual with its strong topology. We sometimes write S and S ′, if
the dimension is clear. We will write 〈u, ϕ〉 := u(ϕ) for ϕ ∈ D(Rd) (or S(Rd)) and
u ∈ D′(Rd) (or S ′(Rd)). We say that a function a : Y → R from some function space
Y acts as a Fourier multiplier for some function space X to a function space R with
well-defined Fourier transform F if a : X → R is defined by a(u) := F−1(aFu), where
(aF(u))(t) = a(t)F(u)(t) such that the inverse Fourier transform F−1 is well-defined.
For a function f ∈ L1(Rd,Cd) we set Ff(x) =

∫
Rd
e−i〈z,x〉f(z)λd(dz) and the L2-Fourier

transform likewise. A polynomial p is a function given by p(z) = ∑
|α|≤m

pαz
α, α ∈ Nd

0,

m ∈ N, zα = zα1
1 . . . zαdd and |α| := α1 + . . .+αd. We set Dα = ∂α1

x1 . . . ∂
αd
xd

for α ∈ Nd
0. We

denote by A∗ the adjoint of the operator A.
We introduce weighted Besov spaces and follow [64]. Let ϕ0 ∈ S(Rd) such that ϕ0(x) = 1
if ‖x‖ ≤ 1 and ϕ0(x) = 0 if ‖x‖ ≥ 3/2, and we set

ϕk(x) = ϕ0(2−kx)− ϕ0(2−k+1x), x ∈ Rd, k ∈ N.
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As
∞∑
k=0

ϕk(x) = 1 for all x ∈ Rd, it is clear that (ϕk)k∈N0 is a dyadic decomposition of

unity in Rd. We set

∆kf := F−1ϕkFf

for every f ∈ S ′(Rd). Observe that this object is a well-defined function, which can be
evaluated pointwise, see [63, Remark 1, p. 37]. A weighted Besov space Bl

r,t(Rd, ρ) is a
subspace of S ′(Rd) which is characterized by four parameters l, ρ ∈ R and r, t > 0, where
f ∈ Bl

r,t(Rd, ρ) if and only if

‖f‖Blr,t(Rd,ρ) := ‖(2lk‖∆kf‖Lr(Rd,ρ))k∈N0‖lt <∞.

For r = t = 2 and l > 0 we identify the weighted Sobolev spaceW l
2(Rd, ρ) with Bl

2,2(Rd, ρ),
i.e. there exists a continuous and bijective mapping ξ from Bl

2,2(Rd, ρ) to W l
2(Rd, ρ) such

that for all f ∈ Bl
2,2(Rd, ρ)

f(ϕ) =
∫
Rd
ξ(f)(x)ϕ(x)λd(dx) for all ϕ ∈ S, (5.5)

see [63, Theorem 2.5.6, p. 88]. Moreover, ξ is also continuous from Bl
r,r(Rd, ρ) to Lr(Rd, ρ)

for l > 0, r ≥ 2. From now on we write for ξ(f) simply f .
An interesting property of the Besov spaces are their embeddings, which are described as
follows:

Proposition 5.1 (see [31, Proposition 3, p. 1605]). Let p0, p1 ∈ (0,∞] and τ0, τ1, ρ0, ρ1 ∈
R with τ0 ≥ τ1. It holds that Bτ0

p0,p0(Rd, ρ0) is continuously embedded in Bτ1
p1,p1(Rd, ρ1) if

τ0 − τ1 ≥ d
p0
− d

p1
, p1 ≥ p0 and ρ0 ≥ ρ1. If the inequalities are strict, the embeddings are

compact.

5.3 Linear stochastic partial differential equations in the
spaces of tempered distributions, tempered
ultradistributions, Fourier hyperfunctions and Besov
spaces with polynomial weights

At first we give a short introduction to generalized processes on more general distributional
space A′, which is the dual space of a suitable function space A over R. For example,
A can be the Schwartz space S(Rd), the space of test functions D(Rd) or even weighted
Besov spaces Bs

p,q(Rd, ρ) for suitable s, p and ρ.

Definition 5.2 (see [32], Definition 2.1). An A′-valued generalized random process s is
a measurable mapping from (Ω,F) to a distributional space (A′, C(A′)), where C(A′)
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denotes the σ-field generated by the cylindrical sets

{u ∈ A′ : 〈u, ϕj〉 ∈ B for every j = 1, . . . , n}

for every ϕ1, . . . , ϕn ∈ A and B ∈ B(R).

Since in our cases under consideration A′ will be nuclear or even a Hilbert space,
it follows from [42, p.6] that C(A′) is equal to the σ−algebra B∗(A′) generated by the
weak-∗-topology in A′.
The probability law of a generalized random process s is given by

Ps(B) := P(s ∈ B)

for B ∈ B∗(A′). The characteristic functional P̂s is then defined by

P̂s(ϕ) =
∫
A′

exp(i〈u, ϕ〉)dPs(u), ϕ ∈ A.

We will work with Lévy white noise, which is a generalized random process, where the
characteristic functional satisfies a Lévy-Khintchine representation.

Definition 5.3. A Lévy white noise L̇ on A′ is an A′-valued generalized random process,
where the characteristic functional is given by

P̂L̇(ϕ) = exp

 ∫
Rd

ψ(ϕ(x))λd(dx)


for every ϕ ∈ A, where ψ : R→ C is given by

ψ(z) = iγz − 1
2az

2 +
∫
R

(eixz − 1− ixz1|x|≤1)ν(dx)

where a ∈ R+, γ ∈ R and ν is a Lévy-measure, i.e. a measure such that ν({0}) = 0 and∫
R

min(1, x2)ν(dx) <∞.

We say that L̇ has the characteristic triplet (a, γ, ν).

In the case that A is a complex function space given by A = Areal + iAreal, where
Areal = A ∩ {ϕ ∈ A : ϕ is real-valued }, we construct a Lévy white noise on Areal and set
for ϕ ∈ A

〈L̇, ϕ〉 = 〈L̇,Reϕ〉+ i〈L̇,=ϕ〉.

The Lévy white noise is stationary in the following sense:
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Definition 5.4. A generalized random process s is called stationary if for every t ∈ Rd,
s(·+ t) has the same law as s. Here, s(·+ t) is defined by

〈s(·+ t), ϕ〉 := 〈s, ϕ(· − t)〉 for every ϕ ∈ A.

It is well-known that a Lévy white noise L̇ on the space of tempered distributions
S ′ with characteristic triplet (a, γ, ν) exists if and only if there exists an ε > 0 such
that

∫
|r|>1
|r|εν(dr) < ∞, see [21, Theorem 3.13, p. 4412]. As the space of tempered

distributions is too small for many cases of the Lévy white noise, we will construct the Lévy
white noise in another distributional space. We discuss the existence of the Lévy white
noise in the space of tempered ultradistribution. The space of tempered ultradistributions
is very similar to the space of tempered distributions, especially the space S ′ω is nuclear,
which allows us to use the Bochner-Minlos Theorem. Moreover, by similar arguments we
construct Lévy white noise in the space of Fourier hyperfunctions. Furthermore, we will
discuss in the spirit of Chapter 4 the solvability of the equations

p(D)s = q(D)L̇ (5.6)

in the space of tempered distributions, tempered ultradistributions and Fourier hyperfunc-
tions, where p(z) = ∑

|α|≤n pαz
α and q(z) = ∑

|α|≤m qαz
α are real multivariate polynomials.

Moreover, we will study (5.6) also for Lévy white noise in Besov spaces, as these results
are needed in Section 5.4 for more complex (nonlinear) stochastic partial differential equa-
tions. We start with an existence result on the space of tempered distributions of (5.6).
Observe that p(D)∗ = p(−D) and q(D)∗ = q(−D).

Proposition 5.5. Let L̇ be a Lévy white noise on the space of tempered distributions S ′.
Let p and q be two polynomials such that there exists two polynomials h and l such that
q(i·)
p(i·) = h(i·)

l(i·) on Rd and l has no zeroes on iRd. Then there exists a generalized process s
on the space of tempered distributions solving (5.6), i.e. it holds that

〈s, p(D)∗ϕ〉 = 〈L̇, q(D)∗ϕ〉 (5.7)

for all ϕ ∈ S(Rd), which is stationary. If p(iz) 6= 0 for all z ∈ Rd, then the solution s is
unique.

Proof. We observe by [40, Lemma 2] that ϕ 7→ F−1
(
q(i·)
p(i·)Fϕ

)
defines a continuous oper-

ator from S(Rd) to S(Rd) and define

〈s, ϕ〉 := 〈L̇,F−1
(
q(i·)
p(i·)Fϕ

)
〉. (5.8)

We conclude that s defines a generalized process on the space of tempered distributions.
That it solves (5.7) follows easily by Fp(−D)ϕ = p(−i·)Fϕ for every ϕ ∈ S and the
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stationarity of s follows from that of L̇.
Now let u be another solution of the equation (5.6). One observes that

〈p(D)(s− u), ϕ〉 = 0 (5.9)

for every ϕ ∈ S. In the case that p(iz) 6= 0 for all z ∈ Rd it is known that only the
null-solution satisfies equation (5.9), see [54, Proposition 2.4.1, p. 152], so we conclude
s = u.

Our second distribution space is the space of tempered ultradistributions. For a
detailed introduction to these spaces see [63]. We recall the definition.

Definition 5.6. Let ω : Rd → R be a real-valued function such that ω(x) = σ(‖x‖),
where σ(t) is an increasing continuous concave function on [0,∞) with

σ(0) = 0,
∞∫
0

σ(t)
1 + t2

λ1(dt) <∞,

σ(t) ≥ c+m log(1 + t) if t ≥ 0

for some c ∈ R and m > 0. Then the space Sω is the set of all infinitely differentiable
functions ϕ : Rd → C such that

pα,η(ϕ) := sup
x∈Rd

eηω(x)‖Dαϕ(x)‖ <∞,

πα,η(ϕ) := sup
x∈Rd

eηω(x)‖Dα(Fϕ)(x)‖ <∞,

for every multi-index α and every η > 0. The space is equipped with its seminorms given
above and its topological dual S ′ω is called the space of tempered ultradistributions.

We denote by ω→(α) := sup{x ∈ [0,∞) : ω(xe1) < α} for α ∈ (0,∞), where e1 is the
unit vector (1, 0 . . . , 0).
We split a function ϕ ∈ C∞(Rd,C) in its real and imaginary part and prove the existence
of a Lévy white noise on

Srealω = Sω ∩ {ϕ : Rd → C : ϕ(x) ∈ R for all x ∈ Rd}.

Observe that Srealω equipped with the topology of Sω is closed and therefore nuclear. We
then set 〈L̇, ϕ〉 := 〈L̇,<ϕ〉+ i〈L̇,=ϕ〉 which defines the Lévy white noise on Sω.

Theorem 5.7. Let (a, γ, ν) be a characteristic triplet and ω be a function defined as in
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Definition 5.6. If

∫
|r|>1

|r|
1/|r|∫
0

ω→(c log(|α|−1))dλ1(dα)ν(dr) <∞

for some c ∈ (0,∞), then there exists a Lévy white noise L̇ : (Ω,F) → (S ′ω, C(S ′ω)) with
characteristic triplet (a, γ, ν).

Proof. We need to show that the function

P(ϕ) := exp

 ∫
Rd

iγϕ(u)− 1
2aϕ(u)2 +

∫
R

(eixϕ(u) − 1− ixϕ(u)1|x|≤1)ν(dx)λd(du)



defines a continuous and positive-definite mapping on Srealω and P(0) = 1. Then we con-
clude by the Bochner-Minlos Theorem [30, Theorem 1, p. 1186] that there exists a Lévy
white noise in (S ′ω, C(S ′ω)) with characteristic triplet (a, γ, ν).
That P(0) = 1 is trivial, so we start with the continuity. Therefore, let ρ(x) := exp(−ηω(x))
with η > 0. We see that

dρ(α) : = λd({x ∈ Rd : ρ(x) > α})
= λd({x ∈ Rd : ω(x) < log(α−1)/η})
= cdω

→(log(|α|−1)/η)d (5.10)

for some constant cd > 0. Now let (ϕn)n∈N be a sequence in Srealω such that ϕn → 0 in
Sω, which implies that supx∈Rd eηω(x)|ϕn(x)| → 0 for n→∞ for all η > 0 or equivalently
|ϕn(x)| ≤ cne

−ηω(x) for all x ∈ Rd for a sequence (cn)n∈N ⊂ [0,∞) converging to 0 for
n→∞. We conclude by (5.10) and Lebesgue’s dominated convergence theorem that

∫
|r|>1

|r|
1/|r|∫
0

dϕn(α)λ1(dα)ν(dr)→ 0, n→∞.

Now by similar arguments as Theorem 4.5 we see that P is continuous on Srealω . That
P is positive definite follows by a denseness argument similar to [30, Proposition 2, p.
1187].

We give two examples and obtain for a special weight ω the space S(Rd).

Example 5.8. Let ω(x) = m log(1 + ‖x‖) for m > 0. It is well-known that Sω = S, see
[63, Remark 4, p. 246], and we see that

ω→(α) = eα/m − 1
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for all α > 0 and we obtain for c ∈ (0,m) and α ∈ (0, 1)

ω→(c log(|α|−1)) = ω→(log(|α−c|)) ≤ α−c/m.

As c ∈ (0, 1) is arbitrary, we conclude from Theorem 5.7 that if
∫
|r|>1 |r|εν(dr) < ∞ for

some ε > 0 there exists a Lévy white noise with characteristic triplet (a, γ, ν) on S ′ω = S ′,
thus recovering the sufficient condition of [21, Theorem 3.13, p. 4412].

Example 5.9. Let ω(x) = ‖x‖β for 0 < β < 1. It is easily seen that ω satisfies the
assumptions of Definition 5.6 and furthermore,

ω→(α) = α1/β

for α ∈ (0,∞). We conclude from Theorem 5.7 that a Lévy white noise with characteristic
triplet (a, γ, ν) exists on S ′ω if ∫

|r|>1
(log(|r|))d/βν(dr).

In the next step we will analyze equation (5.6) in the space of tempered ultradistri-
butions. We will obtain similar results as in Proposition 5.5.

Theorem 5.10. Let p, q be two real polynomials and assume that the rational function
q(i·)/p(i·) has a holomorphic extension in a strip {z ∈ Cd : ‖=z‖ < ε} for some ε > 0.
Furthermore, let ω be as in Definition 5.6 and L̇ be a Lévy white noise on the space of
tempered ultradistribution S ′ω under the conditions of Theorem 5.7. Then there exists a
generalized stationary process s in the space of tempered ultradistributions S ′ω such that

p(D)s = q(D)L̇.

Moreover, if p(i·) has no zeroes in the strip, then the solution is unique.

Proof. Observe that for every c > 0 there exists an n ∈ N such that ω(x) ≤ n+ c‖x‖ for
all x ∈ Rd, otherwise, the assumption of Definition 5.6 can not hold true. Now choose
α ∈ N such that

sup
‖η‖≤δ

∥∥∥∥∥ q(−i ·+η)
p(−i ·+η)ψ(·+ iη)

∥∥∥∥∥
L1(Rd)

<∞

for some 0 < δ < ε, where ψ(z) := (1 +
d∑
j=1

z2
j )α. It is not immediately clear that such

an α ∈ N exists, but by a similar argument as in the proof of [40, Lemma 2, p. 557]
we conclude that such an α exists. We define G := F−1 q(−i·)

p(−i·)ψ(·) and we observe that
there exists a constant C > 0 such that |G(x)| ≤ C exp

(
− δ

2‖x‖
)
for all x ∈ Rd, see [57,

Theorem IX.14, p. 18]. One infers by the subadditivity of ω (see [63, Remark 2, p. 246])
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for ϕ ∈ Sω that

|G ∗ ϕ(x)| ≤
∫
Rd

|G(y)ϕ(x− y)|λd(dy)

≤ p0,η(ϕ)
∫
Rd

|G(y)e−ηω(y−x)|λd(dy) ≤ p0,η(ϕ)e−ηω(x)
∫
Rd

|G(y)eηω(y)|λd(dy)

(5.11)

for every η > 0. We conclude that |G ∗ ϕ(x)| ≤ Ce−ηω(x) for some constant C > 0 and as
Dαϕ ∈ Sω, we conclude that

sup
x∈Rd

eηω(x)‖DαG ∗ ϕ(x)‖ = sup
x∈Rd

eηω(x)‖G ∗Dαϕ(x)‖ <∞

for every η > 0. Moreover, for the Fourier-transform of G ∗ ϕ it is easy to see that

sup
z∈Rd

eηω(z)‖DαF(G ∗ ϕ)(z)‖ = sup
z∈Rd

eηω(z)‖
∑
|β|≤|α|

pβ(z)DβFϕ(z)‖ <∞, (5.12)

which follows by [40, Lemma 2, p. 557] for every η > 0, where pβ are rational functions
well-defined on {z ∈ Cd : ‖=z‖ < ε} for every |β| ≤ |α|. So by similar estimates as in
(5.11) and (5.12) one sees that

ϕ 7→ F−1 q(−i·)
p(−i·)ψ(·)Fψ(·)ϕ (5.13)

defines a continuous operator from Sω to Sω. Hence

〈s, ϕ〉 = 〈L̇,F−1 q(−i·)
p(−i·)ψ(·)Fψ(·)ϕ〉,

defines a generalized random process s : (Ω,F)→ (S ′ω, C(S ′ω)). That is solves (5.6) follows
as in Theorem 4.16.
The uniqueness of the solution s follows by the proof of [44, Proposition 2.2].

We have shown so far that for every Lévy white noise L̇ with characteristic triplet
(a, γ, ν) living in S ′ω for every ω satisfying the assumptions of Definition 5.6 there exists
a unique solution s of the equation

p(D)s = q(D)L̇,

if p(iξ) has no zeroes in a strip around Rd. In Theorem 4.5 we have seen that we obtain
a solution s in the space of distributions D′ in the case that∫

|r|>1
log(|r|)dν(dr) <∞, (5.14)
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but it seems difficult to find such ω such that L̇ would be living in S ′ω if the Lévy white
noise satisfies (5.14), as (5.14) does not imply the condition of Theorem 5.7 for any suitable
weight functions ω. Therefore, we use another more suitable space for the analysis of (5.6)
under the assumption of (5.14), the space of analytic functions with rapid decay and its
topological dual, the Fourier hyperspace.
Definition 5.11. The space P∗ consists of all functions ϕ ∈ C∞(Rd,C) which have an
analytic continuation on a strip

Aδ := {z ∈ Cd : ‖=z‖ < δ}

for some δ > 0 and it holds that

sup
z∈Al
| exp((δ − ε)‖z‖)ϕ(z)| <∞ (5.15)

for every 0, ε, l < δ. The space P∗ is nuclear with its inductive topology, i.e. a sequence
(ϕn)n∈N ⊂ P∗ converges to 0 if and only if there exists a δ > 0 such that ϕn has an
analytic continuation in Aδ for every n ∈ N and

sup
z∈Aδ/2

| exp(δ/2‖z‖)ϕn(z)| → 0 for n→∞,

see [43, p. 408]. We denote by Q its topological dual and call it the space of Fourier
hyperfunctions.

We show first that there exists a Lévy white noise on L̇ with characteristic triplet
(a, γ, ν) on Q if (5.14) holds. Observe that we split a function ϕ ∈ C∞(Rd,C) in its real
and imaginary part and prove on each part separately the existence of the Lévy white
noise. Then 〈L̇, ϕ〉 := 〈L̇,<ϕ〉+ i〈L̇,=ϕ〉.
Proposition 5.12. Let (a, γ, ν) be a characteristic triplet such that (5.14) holds true.
Then there exists a Lévy white noise on (Q, C(Q)).

Proof. The proof is very similar to that of Theorem 5.7. At first we observe for ρ(x) :=
D exp(−δ‖x‖) for some D, δ > 0 that

dρ(α) = λd({x ∈ Rd : ρ(x) > α})

= λd({x ∈ Rd : ‖x‖ < −1
δ

log(α/D)})

= −C log(α/D)d

for some constant C > 0 for all α < D. So for every sequence (ϕn)n∈N ⊂ P∗ convgerging
to 0 we obtain similar to Example 4.6 that∫

|r|>1
|r|
∫ 1/|r|

0
dϕn(α)λ1(dα)ν(dr)→ 0, n→∞.

95



By following the same argumentation as in the proof of Theorem 5.7 one infers that there
exists a Lévy white noise L̇ on Q.

As a final step we prove the unique solvability of equation (5.6) in Q.

Theorem 5.13. Let L̇ be a Lévy white noise on Q. Assume that p, q be two real poly-
nomials such that the rational function q(i·)/p(i·) has a holomorphic extension in a strip
{z ∈ Cd : ‖=z‖ < ε} for some ε > 0.Then there exists a generalized stationary process s
in Q such that

p(D)s = q(D)L̇.

Moreover, if p has no zeroes in the strip, than the solution is unique.

Proof. The uniqueness when p has no zeroes on the strip follows in the same manner as
in Proposition 5.5 by the proof of [44, Proposition 2.2].
For the existence of the stationary solution s, let G, ψ and α be as in the proof of Theorem
5.10. Since (F−1ψ(·)Fϕ) = (1−∆)αϕ, it follows similarity to the proof of Theorem 4.16
that it is sufficient to show that

T : P∗ → P∗, ϕ 7→ G ∗ (1−∆)αϕ

is continuous. To see this let (ϕn)n∈N ⊂ P∗ be converging to 0, i.e. there exists a δ > 0 such
that ϕn has an analytic continuation inAδ for every n ∈ N and supz∈Aδ | exp(δ‖z‖)ϕn(z)| →
0 for n→∞. Then it holds by Cauchy’s integral formula for derivatives that (1−∆)αϕn ∈
P∗ for every n ∈ N and (1 − ∆)αϕn → 0 for n → ∞ in P∗. So it is sufficient to show
that T̃ : P∗ → P∗ defined by T̃ (ϕ) := G ∗ ϕ is continuous. This follows easily by the
same method as in the proof of Theorem 5.10. Therefore we obtain a mapping s : Ω→ Q
defined by s(ϕ) := 〈L̇, G ∗ (1−∆)αϕ〉 for every ϕ ∈ P∗, which solves (5.6) and is station-
ary.

As a Lévy white noise L̇ on S ′(Rd) with characteristic triplet (a, γ, ν) such that∫
|r|>1 |r|εν(dr) < ∞ lives in S ′(Rd), it is only natural to ask if the Lévy white noise
can be constructed on certain negative Sobolev spaces with some weights. In [31] it
was shown that P (L̇ ∈ W τ

2 (Rd, ρ)) = 1 for τ < −d/2 and ρ < −d/min{ε, 2}. Indeed,
there exists even a generalized process on (W τ

2 (Rd, ρ),B∗(W τ
2 (Rd, ρ))) which follows by

[42, Theorem 1.2.4, p.6]. Moreover, L̇ can be seen as a random variable on the space
(W τ

2 (Rd, ρ),B(W τ
2 (Rd, ρ))), which is just the Borel σ−field generated by the strong topol-

ogy on W τ
2 (Rd, ρ), see [42, p. 6]. In this case, the solution s of (5.6) can be identified

with a random variable on a weighted Sobolev space, or more generally weighted Besov
spaces, too:

96



Lemma 5.14. Let p, q be polynomials in d variables such that there exists κ ∈ (0,∞)
such that ∣∣∣∣∣Dγ q(iξ)

p(iξ)

∣∣∣∣∣ ≤ cγ〈ξ〉−κ−|γ| (5.16)

for every γ ∈ Nd
0, where cγ ≥ 0. Let L̇ be a Lévy white noise on S ′ with characteristic

triplet (a, γ, ν) such that
∫
|r|>1 |r|εν(dr) < ∞ for some ε > 0. Let ρ < −d/min{2, ε},

l < −d
2 and choose a version of L̇ in the Sobolev space W l

2(Rd, ρ) as described above.
Then there exists a solution s of (5.6) in S ′ which almost surely lies in Bτ+κ

r,r (Rd, ρ) when-
ever r ∈ [2,∞] and τ ≤ l+d

(
1
r
− 1

2

)
, and even is a random variable in (Bτ+κ

r,r (Rd, ρ),B(Bτ+κ
r,r (Rd, ρ))).

Proof. By [28, Theorem 5.4.2, p. 224] we conclude that ϕ 7→ F−1 q(i·)
p(i·)Fϕ defines a contin-

uous operator both from S ′ to S ′ and fromW l
2(Rd, ρ) toW l+κ

2 (Rd, ρ). We conclude by con-
struction of s in (5.8) that we have a solution in S ′ which is also in (W l+κ

2 (Rd, ρ),B(W l+κ
2 (Rd, ρ))).

The rest follows easily by Proposition 5.1.

Observe that if κ > d
(
1− 1

r

)
, with r ≥ 2 we can choose l and τ from above such

that τ +κ > 0. In this case, s has positive regularity and can be identified with a random
field on Rd via the mapping of (5.5).

Example 5.15. Let p(D) = (λ −∆)α for α ∈ N and λ > 0 and q(D) = 1. Then (5.16)
is satisfied for κ = 2α, see [37, Example 6.2.9, p. 449].

5.4 Semilinear stochastic partial differential equations

Our goal of this section is to study the semilinear stochastic partial differential equation

p(D)s = g(·, s) + L̇, (5.17)

where L̇ is a Lévy white noise on S ′ with characteristic triplet (a, γ, ν) such that
∫
|r|>1 |r|εν(dr) <

∞ for some ε > 0, p is a polynomial in d variables and g : Rd ×C→ R a sufficiently nice
function. We assume that the Lévy white noise is the modified version on the measurable
space (Bl

2,2(Rd, ρ),B(Bl
2,2(Rd, ρ))), where l < −d/2 and ρ < − d

min{2,ε} . We are looking for
a Bβ

r,r(Rd, ρ) ⊂ S ′-valued solution s, where r ≥ 2 and β > 0. Observe that since r ≥ 2
and β > 0 every f ∈ Bβ

r,r(Rd, ρ) can be identified with a function ξ(f) ∈ Lr(Rd, ρ) in a
continuous way via (5.5). We again denote by f the function ξ(f). Then g(·, s) means
the function

g(·, s) : Rd → R, x 7→ g(x, s(x)),
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which in turn can again be identified with a distribution via

〈g(·, s), ϕ〉 :=
∫
Rd

g(x, s(x))ϕ(x)λd(dx).

By a Bβr,r(Rd, ρ) ⊂ S ′-valued solution of (5.17) we mean a measurable mapping

s : (Ω,F)→ (Bβ
r,r(Rd, ρ),B(Bβ

r,r(Rd, ρ)))

such that

〈s, p(D)∗ϕ〉 =
∫
Rd
g(x, s(x))ϕ(x)λd(dx) + 〈L̇, ϕ〉

for every ϕ ∈ S.

Proposition 5.16. Let r ∈ [2,∞], ρ < − d
min{2,ε} , κ > d(1− 1/r) + β for some β > 0 and

p(D) be a partial differential operator satisfying∣∣∣∣∣Dγ 1
p(iξ)

∣∣∣∣∣ ≤ cγ〈ξ〉−κ−|γ| (5.18)

for every γ ∈ Nd
0, where cγ ≥ 0. Furthermore, let g : Rd × C→ R be a Lipschitz function

such that

|g(x, y)| ≤ C(1 + |y|)

for some constant C > 0 for all x ∈ Rd and y ∈ C and assume that

‖g‖Lip := sup
x∈Rd

sup
z,y∈C

|g(x, y)− g(x, z)|
|y − z|

<(‖p(D)−1‖Lr(Rd,ρ)→Bβr,r(Rd,ρ)‖id‖Bβr,r(Rd,ρ)→Lr(Rd,ρ))
−1 <∞.

(5.19)

Let L̇ be a Lévy white noise on S ′ with characteristic triplet (a, γ, ν) such that
∫
|r|>1 |r|εν(dr) <

∞. Let l = β − κ + d
(

1
2 −

1
r

)
< −d

2 and choose a version of L̇ in the Sobolev space
Bl

2,2(Rd, ρ) as described above.
Then there exists a unique measurable mapping s : (Ω,F)→ (Bβ

r,r(Rd, ρ),B(Bβ
r,r(Rd, ρ))),

which solves the equation (5.17). Especially, it holds that s ∈ Lr(Ω, Bβ
r,r(Rd, ρ)) if ε >

r ≥ 2.

Remark 5.17. Observe that

p(D)−1 : Bβ−κ
r,r (Rd, ρ)→ Bβ

r,r(Rd, ρ) and
p(D)−1 : Lr(Rd, ρ)→ Bβ

r,r(Rd, ρ)
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are well-defined and continuous linear operators by assumption (5.18) and that Bl
r,r(Rd, ρ)

is continuously embedded into Bj
r,r(Rd, ρ) for every l > j and Lr(Rd, ρ) is continuously

embedded into Ba
r,r(Rd, ρ) for every a < 0, see [28, Theorem 5.4.2, p. 224].

Proof. We set u to be the unique solution of

p(D)u = L̇. (5.20)

From Lemma 5.14 we see that u has a measurable version from (Ω,F) to (Bβ
r,r(Rd, ρ),B(Bβ

r,r(Rd, ρ))).
We see that in order to solve (5.17) we need to solve the equation

p(D)v = g(·, u+ v) (5.21)

with v ∈ Bβ
r,r(Rd, ρ), where u is defined in (5.20), as s := u + v solves (5.17). Since

u ∈ Bβ
r,r(Rd, ρ), we have g(·, u+ v) ∈ Lr(Rd, ρ), as∫

Rd

〈x〉rρ|g(x, u(x) + v(x))|rλd(dx) ≤
∫
Rd

〈x〉rρC(1 + |u(x)|+ |v(x)|)rλd(dx)

≤ C ′(1 + ‖u‖rLr(Rd,ρ) + ‖v‖rLr(Rd,ρ))

for some suitable constants C and C ′ > 0. Moreover, we see from Remark 5.17 that
p(D)−1g(·, u + v) ∈ Bβ

r,r(Rd, ρ). Therefore let ũ ∈ Bβ
r,r(Rd, ρ) and we define Ψũ = Ψ :

Bβ
r,r(Rd, ρ)→ Bβ

r,r(Rd, ρ) by

Ψ(ϕ) = p(D)−1g(·, ũ+ ϕ)

for all ϕ ∈ Bβ
r,r(Rd, ρ). We show that there exists a fixed point of Ψ, which is especially

the solution of (5.21) for the fixed ũ ∈ Bβ
r,r(Rd, ρ). We see that

‖Ψ(ϕ1)−Ψ(ϕ2)‖Bβr,r(Rd,ρ) ≤ ‖p(D)−1‖Lr(Rd,ρ)→Bβr,r(Rd,ρ)‖g(·, ũ+ ϕ1)− g(·, ũ+ ϕ2)‖Lr(Rd,ρ)

≤ ‖p(D)−1‖Lr(Rd,ρ)→Bβr,r(Rd,ρ)‖g‖Lip‖id‖Bβr,r(Rd,ρ)→Lr(Rd,ρ)‖ϕ1 − ϕ2‖Bβr,r(Rd,ρ).

It follows that Ψ is a strict contraction and by Banach’s fixed point theorem we conclude
that for every ũ ∈ Bβ

r,r(Rd, ρ) there exists a unique solution v ∈ Bβ
r,r(Rd, ρ) of

p(D)ṽ = g(·, ũ+ ṽ).

By a small calculation we see that ṽ depends continuously on ũ. Namely let u1 and u2 be
in Bβ

r,r(Rd, ρ) and let v1 and v2 be the corresponding fixed points. We see that

‖v1 − v2‖Bβr,r(Rd,ρ)

≤‖p(D)−1‖Lr(Rd,ρ)→Bβr,r(Rd,ρ)‖g(·, u1 + v1)− g(·, u2 + v2)‖Lr(Rd,ρ)

≤‖p(D)−1‖Lr(Rd,ρ)→Bβr,r(Rd,ρ)‖g‖Lip‖id‖Bβr,r(Rd,ρ)→Lr(Rd,ρ)(‖u1 − u2‖Bβr,r(Rd,ρ) + ‖v1 − v2‖Bβr,r(Rd,ρ)),
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which implies that

‖v1 − v2‖Bβr,r(Rd,ρ) ≤
‖p(D)−1‖Lr(Rd,ρ)→Bβr,r(Rd,ρ)‖g‖Lip‖id‖Bβr,r(Rd,ρ)→Lr(Rd,ρ)

1− ‖p(D)−1‖Lr(Rd,ρ)→Bβr,r(Rd,ρ)‖g‖Lip‖id‖Bβr,r(Rd,ρ)→Lr(Rd,ρ)
‖u1 − u2‖Bβr,r(Rd,ρ).

We conclude that there exists a measurable solution v of (5.21) in the space
(Bβ

r,r(Rd, ρ),B(Bβ
r,r(Rd, ρ))). As the solution s of (5.17) is then given by s = u + v, we

conclude that we find a unique measurable solution of (5.17).
Now let ε > r ≥ 2. We compute as above that

‖s‖Bβr,r(Rd,ρ) =‖p(D)−1p(D)(u+ v)‖Bβr,r(Rd,ρ)

≤‖p(D)−1‖Lr(Rd,ρ)→Bβr,r(Rd,ρ)‖g(·, s)‖Lr(Rd,ρ) + C‖p(D)u‖Bβ−κr,r (Rd,ρ)

≤‖p(D)−1‖Lr(Rd,ρ)→Bβr,r(Rd,ρ)‖g(·, s)‖Lr(Rd,ρ) + C‖L̇‖Bβ−κr,r (Rd,ρ)

for some constant C, from which we conclude that

‖s‖Bβr,r(Rd,ρ) ≤ C ′(1 + ‖L̇‖Bβ−κr,r (Rd,ρ))

for some constant C ′ and by [3, Proposition 5] we infer that E‖s‖r
Bβr,r(Rd,ρ) <∞.

Example 5.18. Let d = 1, 2 or 3, λ > 0 and L̇ be a Lévy white noise in S ′ with∫
|x|>1 |x|εν(dx) < ∞ for some ε > 0. Let ρ < − d

min 2,ε and choose a modification of
L̇ which is (Wα

2 (Rd, ρ),B(Wα
2 (Rd, ρ)) measurable with α ∈ (−2,−3/2). Then for every

β ∈ (0, 2 + α] there exists some εβ > 0 such that

(λ−∆)s+ c sin(s) = L̇

has a unique and measurable solution in W β
2 (Rd, ρ) for all c ∈ (0, εβ).

Proof. By [37, Example 6.2.9, p. 449] we know that (λ − ∆) satisfies (5.18) for κ = 2
and u is even a real-valued distribution. Moreover, we see that sin is Lipschitz-continuous
with Lipschitz constant equal to 1 and by Proposition 5.16 we conclude that there exists
a unique pathwise solution.
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6 Central Limit Theorems for Moving
Average Random Fields with
Non-Random and Random Sampling
On Lattices

For a Lévy basis L on Rd and a suitable kernel function f : Rd → R, consider the
continuous spatial moving average field X = (Xt)t∈Rd defined by Xt =

∫
Rd f(t− s) dL(s).

Based on observations on finite subsets Γn of Zd, we obtain central limit theorems for the
sample mean and the sample autocovariance function of this process. We allow sequences
(Γn) of deterministic subsets of Zd and of random subsets of Zd. The results generalise
existing results for time indexed stochastic processes (i.e. d = 1) to random fields with
arbitrary spatial dimension d, and additionally allow for random sampling. The results
are applied to obtain a consistent and asymptotically normal estimator of µ > 0 in the
stochastic partial differential equation (µ −∆)X = dL in dimension 3, where L is Lévy
noise.

6.1 Introduction

Many statistical models with more than one spatial dimension are described by a linear
stochastic partial differential equation with some additive noise, which means that we
have a random field X on Rd satisfying

L(µ)X = dL, (6.1)

where L(µ) is a linear partial differential operator depending on some parameter µ and
dL denotes some noise, for example Gaussian or stable noise. If L(µ) has an integrable
fundamental solution Gµ the mild solution of (6.1) can be written as

Xt =
∫
Rd

Gµ(t− s)dL(s), (6.2)

where dL denotes the additive noise, see for example [5], [55], [65] and Chapters 4 and 5.
The solution (6.2) is a so called continuous moving average random field.
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The additive noise dL studied in this chapter will be a Lévy white noise, where the
Gaussian white noise and stable noise are included. A detailed study of Lévy white noise
can be found in [32], where it is also shown that a Lévy white noise defines a Lévy basis
in the sense of Rajput and Rosinski [56]. Random fields of the form

Xt =
∫
Rd

f(t− s) dL(s), (6.3)

with a suitable kernel function f : Rd → R and a Lévy basis L on Rd (as in (6.2) with
f = Gµ) can be seen as a continuous and spatial extension of the discrete time moving
average processes Z = (Zt)t∈Z, defined by

Zt =
∑
k∈Z

at−kWk, (6.4)

where (Wk)k∈Z is an independent and identically distributed sequence and ak, k ∈ Z, are
real coefficients.

In many cases one is interested in estimating the parameter µ of the equation (6.1).
If we know how the fundamental solution Gµ depends on the parameter µ, it is sometimes
possible to give moment estimators for µ. Of particular interest are estimators of the
mean E(Xt) and the autocovariance cov (Xt, Xt+h) for t, h ∈ Rd. In most applications
only discrete spatial data is available, for example observations based on a finite subset
Γn of the lattice Zd. A natural estimator for EXt is then the sample mean 1

|Γn|
∑
s∈Γn Xs,

while a natural estimator for the autocovariance cov (Xt, Xt+h) is the (adjusted) sample
autocovariance

γ∗n(h) := 1
|Γn|

∑
s∈Γn

XsXs+h, h ∈ Zd (6.5)

(assuming that the Lévy basis and hence X have mean zero and that for each s ∈ Γn, both
Xs andXs+h are observed). Motivated by this, in this chapter we will provide central limit
theorems for the sample mean and sample autocovariance function as defined in (6.5) for
continuous spatial moving average random fields as defined in (6.3) (equivalently, (6.2)),
when the kernel function f decays sufficiently fast and the Lévy basis has finite variance
or finite fourth moment and mean zero, respectively. The sampling sequence (Γn)n∈N
will be a nested sequence of finite subsets of Zd satisfying |Γn| → ∞ and some extra
conditions, and it will be either a sequence of deterministic subsets (referred to as non-
random sampling) or a sequence of random subsets (referred to as random-sampling), more
precisely of the form Γn = {t ∈ [−n, n)d ∩ Zd|Yt = 1}, where (Yt)t∈Zd is a {0, 1}−valued
stationary ergodic random field on Zd. In the case of non-random sampling, we will need
slightly higher moment conditions on the Lévy basis.

Central limit theorems for the sample mean and the sample autocovariance of (6.4)
are classic and can be found e.g. in Chapter 7 of the book [12] (for d = 1). On the
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other hand, central limit theorems for Lévy driven moving average processes based on
discrete low-frequency observations have only recently attracted attention, and this also
only in dimension d = 1, i.e. for continuous time series and not spatial data. In [18], the
asymptotics of the sample mean and sample autocovariance are studied when f decays
sufficiently fast and L has finite second or fourth moment, respectively. [59] studies the
situation when f decays slowly leading to a long-memory process X, while [27] considers
the heavy tailed situation when the Lévy process L is in the domain of attraction of a
stable non-normal distribution, and in [9] the case of random sampling when the process
X is sampled at a renewal sequence is treated. Observe that all these results are in
dimension d = 1 only. The results of this chapter can be seen as a generalization of the
results of [18], who have d = 1 and Γn = {1, 2, . . . , n}, to arbitrary spatial dimensions
d ∈ N and more general sets Γn, and additionally allowing random sampling as described
above.

The chapter is organized as follows. In the next section, we fix notation and recall
the notion of Lévy bases. Then, in Section 6.3, we state the main results of the present
chapter. These are central limit theorems for the sample mean as described above for
non-random and random sampling (Theorems 6.2 and 6.7, respectively), and central limit
theorems for the sample autocovariance as described above for non-random and random
sampling (Theorems 6.9 and 6.10, respectively). In Section 6.4 we apply the results to a
random field given as a solution as in (6.1), more specifically, we consider the stochastic
partial differential equation

(µ−∆)X = dL

in dimension d = 3, where ∆ denotes the Laplace operator, and obtain a consistent and
asymptotically normal estimator of µ > 0 based on the sample mean. Finally, Sections
6.5 and 6.6 contain the proofs of the main theorems for the sample mean and the sample
autocovariance, respectively.

6.2 Notation and Preliminaries

To fix notation, by a distribution on R we mean a probability measure on (R,B(R))
with B(R) being the Borel σ−algebra on R. By a measure on Rd, d a natural number,
we always mean a positive measure on (Rd,B(Rd)), i.e. an [0,∞]-valued σ−additive set
function on B(Rd), the Borel σ−algebra on Rd, that assigns the value 0 to the empty
set. The set Bb(Rd) is the set of all bounded Borel measurable sets. The Dirac measure
at a point b ∈ R will be denoted by δb, the Gaussian distribution with mean a ∈ R and
variance b ≥ 0 by N(a, b) and the Lebesgue measure by λd on Rd. If a random vector
X has law L we write X ∼ L. Weak convergence of measures will be denoted by " d→".
We write N = {1, 2, . . . }, N0 = N∪ {0} and Z, R for the set of integers and real numbers
respectively. The indicator function of a set A ⊂ R is denoted by 1A. By Lp(Rd, A) for
1 ≤ p < ∞ and A ⊂ C we denote the set of all Borel-measurable functions f : Rd → A

103



such that
∫
Rd |f(x)|p λd(dx) < ∞. If A = R we simply write Lp(Rd). For two different

sets A,B ⊂ Rd, we denote by dist(A,B) := inf{‖x− y‖ : x ∈ A and y ∈ B}, where ‖ · ‖
is the euclidean norm. We write ‘a.e.’ to denote almost everywhere and ‘a.s.’ to denote
almost surely. |A| denotes the number of elements of the set A.
We are interested in integrals of the form

∫
Rd f(u) dL(u), where dL denotes the integration

over a Lévy basis. A Lévy basis can be understood in the following way:

Definition 6.1 (see [56, p. 455]). A Lévy basis is family (L(A))A∈Bb(Rd) of real valued
random variables such that

i) L(⋃∞n=0An) = ∑∞
n=0 L(An) a.s. for pairwise disjoint sets (An)n∈N0 ⊂ Bb(Rd) with⋃

n∈NAn ∈ Bb(Rd),
ii) L(Ai)are independent for pairwise disjoint sets A1, . . . , An ∈ Bb(Rd) for every n ∈ N,
iii) there exist a ∈ [0,∞), γ ∈ R and a Lévy measure ν on R (i.e. a measure ν on R

such that ν({0}) = 0 and
∫
R

min{1, x2}ν(dx) <∞) such that

EeizL(A) = exp
(
ψ(z)λd(A)

)
for every A ∈ Bb(Rd), where

ψ(z) := iγz − 1
2az

2 +
∫
R

(eixz − 1− ixz1[−1,1](x))ν(dx), z ∈ R.

The triplet (a, ν, γ) is called the characteristic triplet of L and ψ its characteristic
exponent. By the Lévy-Khintchine formula, L(A) is then infinitely divisible.

It can be shown that the characteristic triplet is unique; conversely, to every a ∈
[0,∞), γ ∈ R and Lévy measure ν there exists a Lévy basis with (a, ν, γ) as characteristic
triplet. It follows from the general theory of infinitely divisible distributions that for a
Lévy basis L with characteristic triplet (a, ν, γ) and p ∈ [1,∞), we have

∫
|x|>1
|x|pν(dx) <

∞ if and only if E|L(A)|p < ∞ for some (equivalently, all) A ∈ Bb(Rd) with λd(A) > 0.
In that case,

EL(A) = λd(A)EL([0, 1]d).

Integration of deterministic functions with respect to Lévy bases is described by
Rajput and Rosinski [56]; in particular for simple functions f of the form f =

n∑
j=1

xj1Aj
with xj ∈ R and Aj ∈ Bb(Rd), the integral

∫
A
f(u)dL(u) for A ∈ B(Rd) is defined as

n∑
j=1

xjL(Aj ∩A). A general Borel-measurable function f : Rd → R is called integrable with

respect to L, if there exists a sequence of simple functions (fn)n∈N such that fn → f λd−a.e.
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and such that
∫
A
fn(u)dL(u) converges in probability as n → ∞ for every A ∈ B(Rd), in

which case this limit is denoted by
∫
A
f(u)dL(u), see [56, p.460]. Rajput and Rosinski

also characterize integrability of functions. In particular, if f ∈ L1(Rd) ∩ L2(Rd) and
EL([0, 1]d)2 < ∞, or if f ∈ L2(Rd), EL([0, 1]d)2 < ∞ and EL([0, 1]d) = 0, then the
integral

∫
f(u)dL(u) is well-defined and satisfies E (

∫
f(u)dL(u))2 < ∞. This follows by

standard calculations. Moreover, for two such functions f, g we have

cov

 ∫
Rd

f(u)dL(u),
∫
Rd

g(u)dL(u)

 = σ2
∫
Rd

f(u)g(u)λd(du), (6.6)

where σ2 = EL([0, 1]d)2. For a stationary random field X = (Xt)t∈Rd with finite second
moment we write γX(t) := cov (Xt, X0).

6.3 Main results

In this section, we formulate our main results. To specify the sampling grid, throughout
we fix some orthogonal d× d−matrix A ∈ O(d) and some ∆ > 0, and consider the set

∆AZd = {∆Av : v ∈ Zd}.

Our sampling sets Γn will then be subsets of ∆AZd. The process under consideration
is given by Xt =

∫
Rd
f(t − s)dL(s), where f : Rd → R is integrable with respect to the

Lévy basis L. By homogeneity of the Lévy basis, it is easy to see that (Xt)t∈Rd is a
strictly stationary random field, meaning that its finite dimensional distributions are shift
invariant.

6.3.1 Central limit theorems for the sample mean

In this and the next section, we give central limit theorems (CLTs) for the sample mean.

Theorem 6.2. Let L be a Lévy basis with E(L([0, 1]d)2 < ∞ and f ∈ L1(Rd) ∩ L2(Rd),
and let

Xt :=
∫
Rd

f(t− u)dL(u), t ∈ Rd.

Let ∆ > 0, A ∈ O(d), and (Γn)n∈N be a sequence of finite subsets of ∆AZd such that

a) Γn ⊂ Γn+1 for every n ∈ N,
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b) |Γn| → ∞ as n→∞, and

c) anl := |{(t,s)∈Γn×Γn:t−s=l}|
|Γn| converges as n→∞ to some al for each l ∈ ∆AZd.

Assume that ∑
t∈∆AZd

sup
n∈N

ant

∫
Rd

|f(−u)f(t− u)|λd(du) <∞. (6.7)

Then ∑
t∈∆AZd

at|cov (Xt, X0)| <∞,

and

1√
|Γn|

∑
t∈Γn

Xt − EL([0, 1]d)
∫
Rd

f(u)λd(du)

 d→ N

0,
∑

t∈∆AZd
atcov (Xt, X0)


as n→∞.

Remark 6.3. From the definition of anl it is obvious that 0 ≤ anl ≤ 1, hence necessarily
also al ∈ [0, 1] for each l ∈ N.
A sufficient condition for (6.7) to hold is hence that

∑
t∈∆AZd

∫
Rd

|f(−u)f(t− u)|λd(du) <∞.

Denoting

F (u) :=
∑
t∈Zd
|f(u+ ∆At)|, u ∈ Rd,

it is easy to see that F is periodic and that
∑

t∈∆AZd

∫
Rd

|f(−u)f(t− u)|λd(du) =
∫
Rd

|f(u)|F (u)λd(du)

=
∫

∆A([0,1]d)

∑
t∈∆AZd

|f(u+ t)|F (u)λd(du)

=
∫

∆A([0,1]d)

F (u)2λd(du),

so that F ∈ L2(∆A([0, 1]d)) is a sufficient condition for (1.22) to hold. Observe however
that there also other cases when (1.22) holds but F /∈ L2(∆A([0, 1]d)). For example, when
the sets Γn are contained in some hyperplane of Rd, then many of the anl will be 0.
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Example 6.4. Let Γn = ∆A(−n, n]d ∩ ∆AZd. Then it is clear that anl in Theorem 1.5
will converge to 1 as n→∞ for each l ∈ ∆AZd. Sequences that satisfy limn→∞ a

n
l = 1 for

each l are called Følner. They play an important role in ergodic theorems in the theory
of amenable groups, see [50].

Another example of sequences (Γn) satisfying the assumptions of Theorem 6.2 can
be obtained as realisations of certain random subsets, in which also the limits al may be
non-trivial (i.e. different from 0 or 1). This follows from the next lemma, where we use
the concept of ergodicity on ∆AZd, see [61, Definition 1.1, p. 52].

Lemma 6.5. Let (Yt)t∈∆AZd be a {0, 1}−valued stationary ergodic random field such that
EY0 6= 0 (i.e. P (Y0 = 0) < 1). We define

Γn := {t ∈ ∆A[−n, n)d ∩∆AZd : Yt = 1}.

Then (Γn)n∈N satifies

{(t, s) ∈ Γn × Γn : t− s = l}
|Γn|

→ EYlY0

EY0
a.s. for n→∞.

Especially, (Γn)n∈N satisfies almost surely the assumptions of Theorem 6.2.

Proof. This is an easy application of the ergodic properties of Zt. We write

{(t, s) ∈ Γn × Γn : t− s = l}
|Γn|

=

∑
t∈∆A[−n,n)d∩∆A[−n−l,n−l)d∩∆AZd

YtYt+l

|∆A[−n, n)d ∩∆A[−n− l, n− l)d ∩∆AZd|

· |∆A[−n, n)d ∩∆AZd|∑
t∈∆A[−n,n)d∩∆AZd

Yt
· |∆A[−n, n)d ∩∆A[−n− l, n− l)d) ∩∆AZd|

|∆A[−n, n)d ∩∆AZd| .

Letting n go to infinity we obtain the assertion from the ergodic theorem for random fields
(e.g. Lindenstrauss [50, Theorem 1.3]).

Example 6.6. Let (Zt)t∈∆AZd be a random field of independent and identically distributed
random variables. A typical example of an ergodic random field is the moving average
random field Mt := ∑

l∈∆AZd
alZt−l, where (al)l∈∆AZd ∈ RA∆Zd such that the sum is well-

defined. Let ϕ : R→ {0, 1} be a measurable function, then the random field ϕ(Mt) is an
ergodic and stationary random field. Assuming that ϕ(Mt) > 0 with probability greater
than 0, ϕ(Mt) satisfies the assumption of Lemma 6.5.
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6.3.2 From Non-Random Sampling to Random Sampling

We obtain a CLT on sequences (Γn)n∈N similar to the construction as in Lemma 6.5 under
the assumption that (Yt)t∈∆AZd is α-mixing, which means that

αY (k;u, v) := sup{α(σ(Yt, t ∈ A), σ(Yt, t ∈ B)) : dist(A,B) ≥ k, |A| ≤ u, |B| ≤ v} → 0

for k →∞ for every u, v ∈ N, where for two σ-fields F and G, α(F ,G) is defined by

sup{|P (A)P (B)− P (A ∩B)| : A ∈ F , B ∈ G}.

A related but much stronger condition is h-dependence. A stationary random field Y =
(Yt)t∈Zd or Y = (Yt)t∈Rd is h-dependent (h > 0), if for every two finite subsets A,B ⊂ Zd
(⊂ Rd, resp.) the two σ-fields σ(Ys : s ∈ A) and σ(Ys : s ∈ B) are independent if
dist(A,B) > h.

Theorem 6.7. Let (Yt)t∈∆AZd be a {0, 1}−valued α−mixing random field, which is inde-
pendent of the Lévy basis L and satisfies P (Y0 = 1) > 0. Moreover, assume there exists a
δ > 0 such that Y satisfies

i) for every u, v ∈ N it holds αY (k;u, v)kd → 0 for k →∞,

ii) for every u, v ∈ N such that u+v ≤ 4 it holds
∞∑
k=0

kd−1αY (k;u, v) <∞ and especially
∞∑
k=0

kd−1αY (k; 1, 1)δ/(2+δ) <∞.

Let Γn be as in Lemma 6.5 and X = (Xt)t∈Rd be a moving average random field with
Xt =

∫
Rd f(t− u) dL(u) with E|L([0, 1]d)|2+δ <∞ and f ∈ L1(Rd) ∩ L2+δ(Rd). If

∑
t∈∆AZd

EY0Yt

∫
Rd

|f(−u)| |f(t− u)|λd(du) <∞,

then we have that

1√
|Γn|

∑
t∈Γn

Xt − EL([0, 1]d)
∫
Rd

f(u)λd(du)

 d→ N

0,
∑

t∈∆AZd

1
EY0

cov (YtXt, Y0X0)


as n→∞. In the special case that Y is h−dependent for some finite h > 0, it is enough
to assume that E|L([0, 1]d)|2 <∞ and f ∈ L1(Rd) ∩ L2(Rd).

Example 6.8. Every h-dependent random field Y is α-mixing with αY (k;u, v) = 0 for
|k| > h. Other examples of (non-h-dependent) random fields Y with suitable mixing rates
can be constructed by [26 ,Theorem 2, p. 58].
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6.3.3 Non-Random Sampling of the Autocovariance

Our object of interest is the estimator

γ∗n(t) := 1
|Γn|

∑
s∈Γn

XsXs+t

for some (Γn)n∈N ⊂ ∆AZd. We assume that Γn satisfies the same conditions as in Theorem
1.5. We state a central limit theorem for the sample autocovariance which can be proven
similar to Theorem 1.5. Netherless, the calculations are a little bit longer.
We assume that

EL([0, 1]d)4 <∞, EL([0, 1]d) = 0, σ2 := EL([0, 1]d)2 > 0 (6.8)

and denote

η := σ−4EL([0, 1]d)4.

Theorem 6.9. Let m ∈ N and ∆1, . . . ,∆m ∈ ∆AZd, Γn as in Theorem 6.2, and let
(Xt)t∈Rd = (

∫
Rd f(t− s)dL(s))t∈Rd be a moving average random field such that it satisfies

the assumptions (6.8), f ∈ L2(Rd) ∩ L4(Rd) and
∑

l∈∆AZd

∫
Rd

sup
n∈N

anl |f(u)f(u+ l)f(u+ ∆p)f(u+ l + ∆d)|λd(du) <∞

for every p, d ∈ {1, . . . ,m} and ∑
l∈∆AZd

sup
n∈N

anl γX(l)2 <∞.

Then √
|Γn|(γ∗n(∆1)− γX(∆1), . . . , γ∗n(∆m)− γX(∆m)) d→ N(0, V ) as n→∞, (6.9)

where N(0, V ) is the multivariate normal distribution with mean 0 and covariance matrix
V = (vpq)p,q∈{1,... ,m} given by

vpq =
∑

l∈∆AZd
al

(
(η − 3)σ4

∫
Rd

f(u)f(u+ ∆p)f(u+ l)f(u+ l + ∆q)λd(du)

+ γX(l)γX(l + ∆q −∆p) + γX(l + ∆q)γX(l −∆p)
)
.
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6.3.4 Random Sampling of the Autocovariance

Now we present a theorem similiar to Theorem 6.7.

Theorem 6.10. Let (Yt)t∈∆AZd be a {0, 1}-valued α−mixing random field with mixing
rates as in Theorem 6.7 (δ > 0), which is independent of the Lévy basis L. Let X =
(Xt)t∈Rd be a moving average random field with Xt =

∫
Rd f(t − u) dL(u) such that (6.8)

holds with E|L([0, 1]d)|4+δ < ∞ and f ∈ L2(Rd) ∩ L4+δ(Rd). Let ∆1, . . . ,∆m ∈ ∆AZd
and for every p, d ∈ {1, . . . ,m} assume that

∑
t∈∆AZd

EY0Yt

∫
Rd

|f(u)f(u+ t)f(u+ ∆p)f(u+ t+ ∆d)|λd(du) <∞

and ∑
l∈∆AZd

EY0YlγX(l)2 <∞.

Then for Γn := {t ∈ ∆A[−n, n)d ∩∆AZd : Yt = 1} we have√
|Γn|(γ∗n(∆1)− γX(∆1), . . . , γ∗n(∆m)− γX(∆m)) d→ N(0, V ) (6.10)

as n→∞, with covariance matrix V = (vpq)p,q∈{1,... ,m} given by

vpq =
∑

l∈∆AZd

EY0Yl
EY0

(
(η − 3)σ4

∫
Rd

f(u)f(u+ ∆p)f(u+ l)f(u+ l + ∆q)λd(du)

+ γX(l)γX(l + ∆p −∆q) + γX(l + ∆p)γX(l + ∆q)
)
. (6.11)

6.4 Applications

In this section we present an application of our theorems before. We fix the dimension
d = 3 and estimate the parameter µ > 0 of the equation

(µ−∆)X = dL, (6.12)

where L is a Lévy basis with EL([0, 1]3)2 <∞. The mild solution of (6.12) can be written
as

X(x) =
∫
Rd

Gµ(x− z)dL(z), (6.13)
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where Gµ(x) := exp(−√µ‖x‖)
‖x‖ for x 6= 0, see [22, Definition 3.5] for the notion of the

mild solution. That Gµ is a fundamental solution of (µ − ∆)X = δ0 follows e.g. from
[41, Section 2.1, Equation (21)]. We see that Gµ ∈ L1(R3) ∩ L2(R3), so X exists since
EL([0, 1]3)2 <∞.
Calculating the mean we obtain

EX(x) = EX(0) = EL([0, 1]3)
µ

.

Our moment estimator is then given by

µ̂n = EL([0, 1]3) |Γn|∑
k∈Γn

X(k) . (6.14)

Corollary 6.11. Let µ̂n be defined as in (6.14), EL([0, 1]3) 6= 0 and Γn ⊂ ∆AZ3 satisfying
the assumptions of Theorem 6.2. Then µ̂n defines a consistent and asymptotically normal
estimator.

Proof. By Theorem 6.2 we conclude that µ̂n is asymptotically normal, as
∑

t∈∆AZd

∫
Rd

|Gµ(−u)Gµ(t− u)|λd(du)

=
∑

t∈∆AZd

∫
Rd

|Gµ(−u)Gµ(t− u)| exp (ε‖u‖+ ε‖t− u‖) exp (−ε‖u‖ − ε‖t− u‖)λd(du)

≤
∑

t∈∆AZd
exp (−ε‖t‖) ‖Gµ exp(ε‖ · ‖)‖2

L2 ,

which is finite for 0 < ε <
√
µ. As asymptotical normality implies consistency, we are

done.

If in the situation above, additionally Γn is a tempered Følner sequence, which means
that

lim
n→∞

((k + Γn) \ Γn) ∪ (Γn \ (Γn + k))
|Γn|

= 0 for all k ∈ ∆AZ3 and (6.15)∣∣∣∣∣∣
⋃
k<n

(−Γk + Γn)

∣∣∣∣∣∣ ≤ C|Γn| for some constant C > 0, (6.16)

then the estimator µ̂n is strongly consistent by [50, Theorem 1.2, p. 260]. A simple
example of a tempered Følner sequence is (−n, n]d ∩ Zd.
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6.5 Proof of Theorems 6.2 and 6.7

Since

Xt =
∫
Rd

f(t− u)dL′(u) + E(L([0, 1]d))
∫
Rd

f(u)λd(du),

where the mean zero Lévy basis L′ is defined by

L′(A) := L(A)− EL([0, 1]d)λd(A), A ∈ Bb(Rd),

and since

cov (YtXt, Y0X0) = cov (Yt(Xt − EXt), Y0(X0 − EX0))

in Theorem 6.7 by independence of X and Y , we may and do assume for rest of this
section that EL([0, 1]d) = 0.

Proof of Theorem 6.2. For every h ∈ N we define a new random field (X(h)
t )t∈∆AZd by

X
(h)
t :=

∫
Rd

f(t− u)1∆A[−h,h)d(t− u) dL(u).

It is obvious that (X(h)
t )t∈∆AZd is 2

√
d∆h+ 1-dependent.

We want to use [38, Theorem 2, p. 135]. We set U (n,h)
t := 1√

|Γn|
X

(h)
t . We calculate that

E

∑
t∈Γn

U
(n,h)
t

2

= 1
|Γn|

∑
t,s∈Γn

EX(h)
t X(h)

s = 1
|Γn|

∑
t,s∈Γn

γX(h)(t− s) =
∑

l∈∆AZd
anl γX(h)(l).

(6.17)

Letting n go to infinity, we obtain

E

∑
t∈Γn

U
(n,h)
t

2

→
∑

t∈∆AZd
atγX(h)(t).

Furthermore, we immediately see that

∑
t∈Γn

E(U (n,h)
t )2 = 1

|Γn|
∑
t∈Γn

E(X(h)
t )2 = γX(h)(0) <∞
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and
∑
t∈Γn

E
(

(U (n,h)
t )21|U(n,h)

t |≥ε

)
= 1
|Γn|

∑
t∈Γn

E(X(h)
t )21|X(h)

t |≥ε
√
|Γn|

= E(X(h)
0 )21|X(h)

0 |≥ε
√
|Γn|
→ 0 for n→∞.

Hence all conditions of [38, Theorem 2, p. 135] are satisfied and we conclude that

1√
|Γn|

∑
t∈Γn

X
(h)
t

d→ Y (h)

for n→∞ with Y (h) ∼ N(0,∑t∈∆AZd atγX(h)(t)).
Observe that limh→∞ γX(h)(t) = γX(t) for all t ∈ ∆AZd by (6.6) and dominated conver-
gence and |γX(h)(t)| ≤ σ2 ∫

Rd
|f(−u)| |f(t − u)|λd(du), hence we conclude by dominated

convergence that

lim
h→∞

∑
t∈∆AZd

atγX(h)(t) =
∑

t∈∆AZd
atγX(t)

and hence

Y (h) d→ Y ∼ N(0,
∑

t∈∆AZd
atγX(t)) for h→∞.

As in (6.17), we obtain

E

 1√
|Γn

∑
t∈Γn

(Xt −X(h)
t )

2

=
∑

l∈∆AZd
anl γX−X(h)(l)

=
∑

l∈∆AZd
anl

∫
Rd

f(l − u)1Rd\∆A[−h,h)d(t− u)f(−u)1Rd\∆A[−h,h)d(−u)λd(du),

hence

lim
h→∞

lim
n→∞

E

 1√
|Γn|

∑
t∈Γn

Xt −X(h)
t

2

= 0

from Lebesgue’s dominated convergence theorem for series. An application of Chebyshev’s
inequality gives for ε > 0,

lim
h→∞

lim
n→∞

P

 1√
|Γn|

∣∣∣∣∣∣
∑
t∈Γn

Xt −X(h)
t

∣∣∣∣∣∣ > ε

 = 0.
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The claim then follows by a variant of Slutsky’s theorem, e.g. [12, Proposition 6.3.9, pp.
207-208].

Proof of Theorem 6.7. The proof is very similiar to the proof of Theorem 6.2. Let us start
with approximating Xt by X(h)

t as above. Observe that

1√
|Γn|

∑
t∈Γn

X
(h)
t = (2n)d/2√

|Γn|
1

(2n)d/2
∑

t∈∆A((−n,n]d∩Zd)
X

(h)
t Yt.

We know that (2n)d/2√
|Γn|
→ (
√
EY0)−1, which follows from the ergodic theorem. Furthermore,

as (X(h)
t ) is (2

√
d∆h + 1)−dependent and Y is α−mixing, we obtain that (X(h)

t Yt)t∈∆AZ
is α−mixing with the same rate as Y . From this we conclude by [26, Theorem 3, p. 48]
that

1
(2n)d/2

∑
t∈Γn

X
(h)
t

d→ N

0,
∑

t∈∆AZd

1
EY0

cov (X(h)
t Yt, X

(h)
0 Y0)

 for n→∞.

Now by the same arguments as above we conclude that this theorem holds true when Y is
α-mixing. When Y is even h′-dependent for some h′, then (X(h)

t Yt)t∈∆AZd is max{h′, 2
√
d∆h+

1}-dependent and we can use [38, Theorem 2, p. 135] instead of [26, Theorem 3, p. 48]
and hence need weaker moment conditions.

6.6 Proof of Theorems 6.9 and 6.10

Proposition 6.12. Let f1, . . . , f4 ∈ L4(Rd) ∩ L2(Rd). It holds true that

E
4∏
i=1

∫
Rd

fi(t)dL(t) = (η − 3)σ4
∫
Rd

f1(u)f2(u)f3(u)f4(u)λd(du)

+ σ4
∫
Rd

∏
i=1,2

fi(u)λd(du)
∫
Rd

∏
i=3,4

fi(u)λd(du)

+ σ4
∫
Rd

∏
i=1,3

fi(u)λd(du)
∫
Rd

∏
i=2,4

fi(u)λd(du)

+ σ4
∫
Rd

∏
i=1,4

fi(u)λd(du)
∫
Rd

∏
i=2,3

fi(u)λd(du).

Proof. Follows directly from the proof of [9, Lemma 4.1].
Proposition 6.13. Under the assumptions of Theorem 6.9, for ∆p,∆q ∈ ∆AZd, we have

|Γn|cov (γ∗n(∆p), γ∗n(∆q))→
∑

l∈∆AZd
alTl for n→∞,
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where

Tl :=(η − 3)σ4
∫
Rd

f(u)f(u+ l)f(u+ ∆p)f(u+ l + ∆q)λd(du)

+ γX(l)γX(l + ∆q −∆p) + γX(l + ∆q)γX(l −∆p).

Proof. A direct calculation gives us

|Γn|cov (γ∗n(∆p), γ∗n(∆q)) = 1
|Γn|

∑
s,t∈Γn

cov (XtXt+∆p , XsXs+∆q)

= 1
|Γn|

∑
s,t∈Γn

E(XtXsXt+∆pXs+∆q)− γX(∆p)γX(∆q)

= 1
|Γn|

∑
s,t∈Γn

E(X0Xs−tX∆pXs−t+∆q)− γX(∆p)γX(∆q)

= 1
|Γn|

∑
s,t∈Γn

Ts−t,

which follows from Proposition 6.12, and we get that

1
|Γn|

∑
s,t∈Γn

Ts−t =
∑

l∈∆AZd
anl Tl.

By our assumptions and Lebesgue’s dominated convergence theorem for series we conclude
that

|Γn|cov (γ∗n(∆p), γ∗n(∆q))→
∑

l∈∆AZd
alTl for n→∞.

Proof of Theorem 6.9. Let h ∈ N and X(h)
t be given by

X
(h)
t :=

∫
Rd

f (h)(t− u) dL(u),

where f (h)(u) := f(u)1∆A[−h,h)d(u). We define

U
(h)
t := (X(h)

t X
(h)
t+∆1

, . . . , X
(h)
t X

(h)
t+∆m

).

Now observe that U (h)
t is (2

√
d∆h+ 2 supi=1,... ,m ‖∆i‖+ 1)-dependent. We want to show

that
1√
|Γn|

∑
t∈Γn

(U (h)
t − (γX(h)(∆1), . . . , γX(h)(∆m))) d→ Y (h) d= N(0, V (h)) (6.18)
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as n→∞, where V (h) = (v(h)
pq )p,q∈{1,... ,n} is defined by (6.11) with f replaced by f (h). Let

α = (α1, . . . , αm) ∈ Rm \ {0}. Definde K(h)
t := α(U (h)

t − (γX(h)(∆1), . . . , γX(h)(∆m)))T ,
which is also (2

√
d∆h + 2 supi=1,... ,m ‖∆i‖ + 1)-dependent. Then we see that EK(h)

t = 0
and

1
|Γn|

E

∑
t∈Γn

K
(h)
t

2

= 1
|Γn|

∑
t,s∈Γn

EK(h)
t K(h)

s

= 1
|Γn|

∑
t,s∈Γn

E(α(U (h)
t − (γX(h)(∆1), . . . , γX(h)(∆m)))T

α((U (h)
s − (γX(h)(∆1), . . . , γX(h)(∆m)))T )

= 1
|Γn|

∑
t,s∈Γn

E
m∑

i,j=1
αiαj(X(h)

t X
(h)
t+∆i
− γX(h)(∆i))(X(h)

s X
(h)
s+∆j

− γX(h)(∆j))

= 1
|Γn|

∑
t,s∈Γn

m∑
i,j=1

αiαjcov (X(h)
t X

(h)
t+∆i

, X(h)
s X

(h)
s+∆j

).

By Proposition 6.13 we conclude that

1
|Γn|

E

∑
t∈Γn

K
(h)
t

2

→
m∑

i,j=1
αiαjv

(h)
ij

for n→∞. Furthermore, for every ε > 0 we have

lim
n→∞

1
|Γn|

∑
t∈Γn

E(K(h)
t )21|K(h)

t |≥|Γn|ε

= lim
n→∞

E(K(h)
0 )21|K(h)

0 |≥|Γn|ε
= 0

and
1
|Γn|

∑
t∈Γn

E(K(h)
t )2 = E(K(h)

0 )2 <∞.

By [38, Theorem 2, p. 135] we conclude that

1√
|Γn|

∑
t∈Γn

K
(h)
t

d→ N(0,
m∑

i,j=1
αiαjv

(h)
ij ), n→∞.

By the Crámer-Wold Theorem we see that (6.18) holds true. Next we have to show that
V (h) → V for h → ∞. But this follows from dominated convergence, since f (h) → f in
L4(Rd) and in L2(Rd) as h→∞, since |f (h)| ≤ |g| and by (6.6). Hence we get

Y (h) d→ Y ∼ N(0, V ) as h→∞.
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The claim will now follow by [12, Proposition 6.3.9, pp. 207-208] if we can show that for
any ε > 0,

lim
h→∞

lim
n→∞

P

√|Γn|
∣∣∣∣∣∣γ∗n(∆i)− γX(∆i)−

1
|Γn|

∑
t∈Γn

X
(h)
t X

(h)
t+∆i

+ γX(h)(∆i)

∣∣∣∣∣∣ > ε

 = 0.

(6.19)

Let us first observe that

E(
√
|Γn|((γ∗n(∆i)− γX(∆i)−

1
|Γn|

∑
t∈Γn

X
(h)
t X

(h)
t+∆i

+ γX(h)(∆i)))2

=|Γn|
var (γ∗n(∆i)) + var

 1
|Γn|

∑
t∈Γn

X
(h)
t X

(h)
t+∆i

− 2cov
γ∗n(∆i),

1
|Γn|

∑
t∈Γn

X
(h)
t X

(h)
t+∆i

 .
From Proposition 6.12 we see that

|Γn|var (γ∗n(∆i))

= 1
|Γn|

E
∑
t,s∈Γn

XtXsXt+∆i
Xs+∆i

− γX(∆i)2

=
∑

l∈∆AZd
anl
(
(η − 3)σ4

∫
Rd

f(u)f(u+ l)f(u+ ∆i)f(u+ l + ∆i)λd(du)

+ γX(l)2 + γX(l + ∆i)γX(l −∆i)
)
,

|Γn|var
 1
|Γn|

∑
t∈Γn

X
(h)
t X

(h)
t+∆i


= 1
|Γn|

E
∑
t,s∈Γn

X
(h)
t X(h)

s X
(h)
t+∆i

X
(h)
s+∆i
− γX(h)(∆i)2

=
∑

l∈∆AZd
anl
(
(η − 3)σ4

∫
Rd

f (h)(u)f (h)(u+ l)f (h)(u+ ∆i)f (h)(u+ l + ∆i)λd(du)

+ γX(h)(l)2 + γX(h)(l + ∆i)γX(h)(l −∆i)
)

and

|Γn|cov
γ∗n(∆i),

1
|Γn|

∑
t∈Γn

X
(h)
t X

(h)
t+∆i


= 1
|Γn|

E
∑
t,s∈Γn

XtX
(h)
s Xt+∆i

X
(h)
s+∆i
− γX(h)(∆i)γX(∆i)
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=
∑

l∈∆AZd
anl
(
(η − 3)σ4

∫
Rd

f(u)f (h)(u+ l)f(u+ ∆i)f (h)(u+ l + ∆i)λd(du)

+ σ4
∫
Rd

f(u)f (h)(u+ l)λd(du)
∫
Rd

f(u+ ∆i)f (h)(u+ l + ∆i)λd(du)

+ σ4
∫
Rd

f(u+ ∆i)f (h)(u+ l)λd(du)
∫
Rd

f(u)f (h)(u+ l + ∆i)λd(du)
)
.

By inserting all the terms and by Lebesgue’s dominated convergence theorem we conclude
that

lim
h→∞

lim
n→∞

E(
√
|Γn|(γ∗n(∆i)− γX(∆i)−

1
|Γn|

∑
t∈Γn

X
(h)
t X

(h)
t+∆i
− γX(h)(∆i)))2 = 0.

An application of Chebyshev’s inequality then gives (6.19) and hence the claim.

Proof of Theorem 6.10. We observe that∑
t∈Γn

(XtXt+∆i
− γX(∆i) =

∑
t∈∆A([−n,n)d∩Zd)

Yt(XtXt+∆i
− γX(∆i))

and

cov (Yt(X(h)
t X

(h)
t+∆i
− γX(h)(∆i)), Ys(X(h)

s X
(h)
s+∆j

− γX(h)(∆j)))

=EYt(X(h)
t X

(h)
t+∆i
− γX(h)(∆i))Ys(X(h)

s X
(h)
s+∆j

− γX(h)(∆j)

− EYt(X(h)
t X

(h)
t+∆i
− γX(h)(∆i))EYs(X(h)

s X
(h)
s+∆j

− γX(h)(∆j))

=EYtYsE(X(h)
t X

(h)
t+∆i
− γX(h)(∆i))(X(h)

s X
(h)
s+∆j

− γX(h)(∆j).

Repeating the same steps as in the proof of Theorem 6.7 gives the claim.
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