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Abstract: Ferroptosis has emerged as a new type of cell death in different pathological conditions,
including neurological and kidney diseases and, especially, in different types of cancer. The hallmark
of this regulated cell death is the presence of iron-driven lipid peroxidation; the activation of key
genes related to this process such as glutathione peroxidase-4 (gpx4), acyl-CoA synthetase long-chain
family member-4 (acsl4), carbonyl reductase [NADPH] 3 (cbr3), and prostaglandin peroxidase
synthase-2 (ptgs2); and morphological changes including shrunken and electron-dense mitochondria.
Iron overload in the liver has long been recognized as both a major trigger of liver damage in
different diseases, and it is also associated with liver fibrosis. New evidence suggests that ferroptosis
might be a novel type of non-apoptotic cell death in several liver diseases including non-alcoholic
steatohepatitis (NASH), alcoholic liver disease (ALD), drug-induced liver injury (DILI), viral hepatitis,
and hemochromatosis. The interaction between iron-related lipid peroxidation, cellular stress signals,
and antioxidant systems plays a pivotal role in the development of this novel type of cell death.
In addition, integrated responses from lipidic mediators together with free iron from iron-containing
enzymes are essential to understanding this process. The presence of ferroptosis and the exact
mechanisms leading to this non-apoptotic type of cell death in the liver remain scarcely elucidated.
Recognizing ferroptosis as a novel type of cell death in the liver could lead to the understanding
of the complex interaction between different types of cell death, their role in progression of liver
fibrosis, the development of new biomarkers, as well as the use of modulators of ferroptosis, allowing
improved theranostic approaches in the clinic.
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1. Introduction

In the liver, the presence of hepatocyte death is reflected in the levels of serum transaminases,
which are the most widely used markers of hepatic function [1]. Moreover, these markers have
prognostic value in a wide range of chronic liver diseases, often involving persistent inflammation
of any underlying cause, such as hepatitis C virus infection (HCV), alcoholic liver disease (ALD),
non-alcoholic steatohepatitis (NASH), drug-induced liver injury (DILI), and hepatocellular carcinoma
(HCC) [2–4].

Cell death represents not only the endpoint in response to a variety of insults but can also be
self-executed in a process called programmed cell death (PCD). Distinct forms of hepatocyte cell
death include apoptosis (a typical form of PCD), necrosis, pyroptosis, necroptosis, and autophagy.
The differences between these modes of liver cell death include distinct changes in the nucleus,
cytoplasm, and other organelles such as lysosomes. Despite having different pathways involved,
all these mechanisms result in irreparable cellular dysfunction, leading to cell death [5–9].

Very recently, a new type of cell death termed ferroptosis, in which the hallmark is the contribution
of iron to the development of oxidative cell damage, has been described [10]. Studies on ferroptosis
have been done mainly in animal models of cancer as well as renal and neurological injury [11–15].
Current studies suggests a possible association between ferroptosis and different types of chronic liver
disease including hemochromatosis, ALD, HCV, NASH, and HCC, as well as DILI. An imbalance
in iron metabolism as well as reactive oxygen species (ROS)-induced lipid peroxidation has been
recognized as a mechanism of liver injury in these diseases [16–18].

In the first part of this review, we give a brief overview of the common types of cell death,
which highlights some fundamental differences with ferroptosis; next, we discuss general mechanisms
in ferroptosis and evidence indirectly involving ferroptosis and iron-mediated cellular damage in liver
diseases. Finally, the clinical implications of recognizing this type of cell death are described.

2. General Mechanisms of Liver Cell Death

Clinical data and experimental models clearly suggest that different types of hepatocyte death
trigger the progression of liver disease from different etiologies. The prevailing type of cell death
is tissue, spatiotemporal, and situation-specific, and it seems to be a constitutive mechanism in the
normal development and physiology of a tissue [19]. Recognizing the specific type of cell death in liver
disease is crucial for the detection of specific risk factors involved in the progression and perpetuation
of the damage. In addition, the understanding of the mode of cell death will help to develop the novel
targeted therapies, the dissection of molecular mechanisms, and the interactions between different
pathways involved in hepatocyte damage [6]. Table 1 shows the main characteristics of each type of
cell death.

Table 1. Characteristics of the different types of cell death.

Apoptosis [9,20,21] Necrosis/Necroptosis
[6,9,22–24]

Pyroptosis
[25–27]

Autophagic Cell
Death [28–32] Ferroptosis [10,33,34]

Morphological
changes

Shrunken cells, membrane
blebbing, nuclear
condensation and

fragmentation

Oncosis, swelling of the
organelles and practically

no change in the nuclei
until later stages when

chromatin condensation is
observed

Plasma membrane
rupture,

pyroptotic body
formation, and cell

flattening

Formation of
autophagosomes

Shrunken,
electron-dense

mitochondria and
rupture of the outer

mitochondrial
membrane

Triggering
stimuli

DNA damage and reactive
oxygen species (ROS)

overload or endoplasmic
reticulum (ER) stress

(intrinsic), extracellular
microenvironment

alterations and mediated by
death receptors (DRs)

(extrinsic)

Physicochemical stress in
the cells, detected by

TNFR1, Fas, or TLR-3/4

Extracellular stimuli
(e.g., TNF, IFNγ and

TLR ligands) and
different intracellular

pathogens

Metabolic stressors

Glutamate,
pharmacological

induction (erastin,
sulfasalazine,

sorafenib)

Main
components in
the pathway

Caspases: initiation (caspase
2, 8, 9 and 10) and execution

(caspase 3, 6 and 7)

(RIPK1), RIPK3, and
mixed lineage kinase
domain-like (MLKL)

Inflammasomes,
caspase 1, IL-1ß, and

IL-18

ATGs proteins,
acid hydrolases

Iron, GPX4, ACLS4,
SLC7A11, PTGS2
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3. Apoptosis

Apoptosis, a highly regulated cell death and one of the most studied, has been detected in
many experimental models of liver disease [35,36]. Shrunken cells, membrane blebbing, nuclear
condensation, and fragmentation are the main morphological features of this type of cell death [9].
These changes finally lead to the breakdown of the cell into small fragments called apoptotic bodies.
Kupffer cells (liver resident macrophages that are part of the reticuloendothelial system (RES)) then
engulf these apoptotic bodies causing the enhanced expression of death ligands (TNF, TNF-related
apoptosis-inducing ligand (TRAIL), and Fas ligand (FasL), eliciting further immunological responses,
perpetuating and causing secondary damage [37,38]. Another hallmark of apoptosis is the contribution
of specific caspases that are involved in the initiation (caspase 2, 8, 9 and 10) and execution (caspase 3,
6 and 7) of cell death [20].

Apoptosis can be categorized as intrinsic or extrinsic, depending on whether the initial signal is
due to microenvironmental perturbations such as DNA damage and ROS overload or endoplasmic
reticulum (ER) stress (intrinsic), or elicit by extracellular microenvironment alterations and mediated by
death receptors (DRs) (extrinsic) [21]. The intrinsic pathway initially involves the participation of Bcl-2
family members and both the release of cytochrome C and caspase activation. After noxious stimuli
are released (e.g., ROS) from different sources, members of the Bcl-2 family of proteins are differentially
regulated, leading to mitochondrial outer membrane permeabilization. This means that a highly
regulated interaction between pro- and anti-apoptotic signaling occurring in members of this family is
responsible for the control of the mitochondrial pathway in apoptosis [39]. This interaction takes place
on the outer membrane of mitochondria and includes three different subgroups within the Bcl-2 family:
BH3-only proteins (initiates apoptosis, includes Bid, Bim, and Puma), pro-survival elements (such
as Bcl-2), and the effectors of apoptosis (Bax and Bak) [40]. When the balance between the different
proteins from the three groups favors apoptosis, there is a reduction in the energy metabolism in
mitochondria caused by a derangement of the electron transport chain and the release of proteins
that activate caspases and trigger the alteration of the redox potential [41,42]. Once the interaction
between the Bcl-2 proteins takes place, the next event involves permeabilization of the mitochondrial
outer membrane, allowing the release of intermembrane space proteins, including cytochrome C to
the cytosol [43]. Then, cytochrome c binds to APAF1 (apoptotic protease-activating factor-I) and in
the presence of dATP enables apoptosome formation [44]. The apoptosome allows the activation of
pro-caspase-9 to caspase-9, which in turn activates the effector caspases 3 and 7 [45,46].

The extrinsic pathway, on the other hand, initiates with the binding of an extracellular death ligand
(TNF, Fas ligand, or TRAIL) onto the surface of the extracellular domain of a transmembrane DRs,
such as Fas cell surface death receptor (Fas) or TNF receptor superfamily member 1A (TNFR1) [46,47].
DRs recruit the Fas-associated death-domain (FADD) and translate the signal into the cytoplasm,
leading to the assembly of the death-inducing signaling complex (DISC). This complex is formed
by interactions involving Fas receptor, leading to the recruitment of FADD (Fas-associated death
domain protein) and finally caspase-8 (and caspase-10), triggering the dimerization and activation
of these caspases [44,46,48,49]. The binding of TNF to TNFR1 enables the formation of a complex
that includes receptor-interacting serine/threonine-protein kinase 1 (RIPK1), FADD, and caspase-8,
initiating apoptosis (in the absence of FLIPs, or FLICE-inhibitory proteins) [49,50].

4. Necrosis and Necroptosis

Necrosis was largely known as a “chaotic” response to different stressors, including
physicochemical stress, and it is characterized by increased cytoplasmic granularity, mitochondrial
damage, impairment in the production of energy (ATP), and the subsequent failure of ATP-dependent
ion pumps. The final result is an acute “osmotic” change (oncosis) in the cell and cell organelles, leading
to swelling and eventually rupture of the membrane, with the release of intracellular content (including
damage-associated molecular patterns (DAMPs) and, finally, eliciting a strong inflammatory/immune
response [6,9,22].
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Although necrosis was initially regarded as an essentially ‘disorganized’ cellular response, it has
now been shown that there are specific pathways that regulate necroptosis, including a necrosis-like
mode of regulated cell death [22]. Necroptosis is induced when extracellular or intracellular stimuli
are detected by TNFR1, Fas, or Toll-like receptors (TLR)-3 and 4, and it includes the participation
of different elements such as receptor-interacting serine/threonine protein kinase 1 (RIPK1), RIPK3,
and mixed lineage kinase domain-like (MLKL) [22,51]. It has been demonstrated that necroptosis is
involved in modulating adaptive immunological functions, such as maintaining T-cell homeostasis in
adults [52].

There are several factors that can initiate necroptosis, including TNF, Fas, TRAIL, IFN, LPS,
dsRNA, DNA damage, endoplasmic reticulum (ER) stress, viral infection, and anticancer drugs [22].
Following TNF stimulation, TRADD and RIPK1 are recruited to the TNF receptor, forming the
complex I. Here, RIPK1 is ubiquitylated by cIAPs (Lys63-linked) or LUBAC (linear ubiquitylation),
stabilizing the complex and recruiting nuclear factor (NF)-kB signaling pathway complexes. Further
stimulation and the action of specific enzymes results in the deubiquitylation of the complex and forms
the complex II composed of oligomerized FADD, TRADD, and RIPK1. This complex recruits and
activates caspase-8, finally leading to apoptosis. However, when caspase-8 activity is not available,
deubiquitylated RIPK1 recruits RIPK3 via RHIM (RIP Homotypic Interaction Motif) interaction,
undergoing autophosphorylation and necrosome formation. In this complex, RIPK3 recruits and
phosphorylates MLKL, forming active oligomers that finally translocate to and destabilize the plasma
membrane through interaction with phosphatidylinositide (PI) [51]. This causes cell membrane
permeabilization and cellular death, and it is characterized by oncosis, swelling of the organelles, and
nearly no change in the nuclei until later stages when chromatin condensation is observed [23,53].

5. Autophagy

The main function of autophagy is to contribute to cellular renewal, allowing the lysosomal
degradation of different components, including extracellular material and membrane proteins as
well as cytosolic components and organelles [28]. In autophagy, cytoplasmic materials are delivered
to the lysosome, the autophagosomes are formed from autophagy-related (ATGs) proteins, and
finally, the contained elements are degraded. Three types of autophagy have been described,
including (a) Macroautophagy, (b) Microautophagy, and (c) Chaperone-mediated autophagy. Canonical
macroautophagy incorporates cytoplasmic components into lysosomes and is the best described type
of autophagy [29]. In this section, the term autophagy refers to macroautophagy.

Several stimuli lead to the induction of autophagy, including starvation, drugs (e.g., rapamycin,
amiodarone, loperamide) and some diseases [30,31,54]. Autophagy has different stages, including
(a) Initiation of autophagosome formation, (b) Elongation, (c) Maturation, and (d) Fusion with
lysosomes [9]. In the first step of autophagy, an isolation membrane (phagophore) is usually formed
around a small part of the cytoplasm, invasive microbes, or an organelle; then, it is sequestered by a
membrane-sac structure that is later elongated, leading to the formation of a double-membrane vesicle:
the autophagosome. The formation of the autophagosomes initiates with the presence of metabolic
stressors and depends on the coordinated action of the ATGs proteins. Then, the autophagosome
matures and sequesters completely the intracellular cargo (its outer membrane fusing with the
lysosome), forming an autolysosome, where its inner membrane and content are degraded by the
acid hydrolases [28,31,55]. The resulting macromolecules diffuse to the cytoplasm through membrane
permeases [56] where they are used for metabolic recycling.

Specifically, in cell death, autophagy can have different roles: (a) autophagy-associated cell death;
(b) autophagy-mediated cell death, and (c) autophagy-dependent cell death [32]. In the first two,
autophagy has a secondary role, depending on the presence of other types of cell death (e.g., apoptosis),
which are responsible for executing cell death itself. In contrast, autophagy-dependent cell death does
not require other types of cell death. Interestingly, autophagy seems to act as a cell death backup
mechanism, being activated when apoptosis is inhibited. In Bax/Bak double knockout mice—which are
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resistant to apoptosis—the pathways and morphological changes indicate the activation of autophagy
when cells are exposed to death ligands [57].

Autophagy plays an important role in the regulation of metabolism in the liver, energy production,
and as a quality control checkpoint of organelles such as mitochondria. The disruption of this pathway
has been linked to various liver diseases including NAFLD, HCC, and chronic viral hepatitis, among
others, [29] and although autophagy has been mainly described as a “recycling” mechanism, there
is evidence showing that autophagy could be associated to liver cell death. In a study of 12 patients
with acute liver failure (ALF) secondary to anorexia nervosa, liver biopsies showed the formation of
autophagosomes in electron microscopy, as well as changes in immunostaining showing expression of
ATG5 in controls and patients, and evidence of endoplasmic reticulum (ER) stress only in the patient
group; the findings in the liver biopsy reasonably excluded apoptosis or necrosis as the predominant
mechanism of liver injury. Although a more detailed analysis of the mechanisms of cell death would
be recommended, the findings in this study suggest that autophagy could elicit cell death under some
specific circumstances [24].

Finally, there is evidence showing a link between the activation of autophagy and the development
of ferroptosis through a process known as “ferritinophagy”, featuring the autophagic degradation
of ferritin. In this process, the nuclear receptor coactivator 4 (NCOA4, a selective cargo receptor for
the turnover of ferritin) helps to maintain iron homeostasis, contributing to ferritin degradation, thus
increasing iron levels and promoting the development of ferroptosis. Autophagy promotes ferroptosis
by the degradation of ferritin [58,59].

6. Pyroptosis

Pyroptosis is a type of regulated cell death that it is mainly involved in proinflammatory events.
This means that while the other types of regulated cell death can be observed in normal physiological
processes, such as embryogenesis, pyroptosis is present always as a non-physiologic response to several
extracellular stimuli (e.g., TNF, IFN, and TLR ligands) and to different intracellular pathogens [25,26].
Initially, pyroptosis was described as being dependent on caspase 1 activation; however, recent findings
show that it can be triggered by other caspases (such as caspase-3), whilst it can also be dependent on
pore formation by the gasdermin (GSDM) protein family [27].

In order to induce canonical pyroptosis mediated by inflammasomes, two steps are required:
(a) a priming step, where mediators are transcriptionally generated; and (b) an inflammasome
activation/assembly phase [25].

In the first step, the cell is “primed” by extracellular ligands such as TNF and pathogen-associated
molecular patterns (PAMPs), resulting in the enhanced gene expression of non-active or immature forms
of different signaling proteins, including pro-IL1ß, pro-IL18, and gasdermin D (GSDMD). In the second
step, DAMPs and components of intracellular pathogens bind to pattern recognition receptors (PRRs),
which can include nucleotide-binding domain-like receptors (NLR) pyrin and HIN domain (PYHIN) or
tripartite motif (TRIM) families. This allows inflammasome assembly and the activation of caspase-1,
which further cleaves pro-ILs into their active forms (IL-1ß and IL-18). Moreover, active caspase-1
promotes the proteolytic cleavage of GSDMD, promoting the release of the N-terminal domain of
GSDMD, which translocates to the plasma membrane, undergoes oligomerization, and generates
membrane pores. In contrast, the non-canonical inflammasome involves the activation of caspase-4 or 5
(in humans), or caspase-11 (in mice), by intracellular LPS. Activated caspases cleave some lesser-known
targets, including GSDMD, which then, as in the canonical mechanism, translocate to the membrane,
leading to pore formation [26].

7. Iron Metabolism

The metabolism of iron is tightly regulated by different molecules and transporters. However,
although a specific mechanism responsible for the direct elimination of iron has not been elucidated,
modulation in the absorption of dietary iron occurs depending on the iron stores in the body and
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other conditions such as inflammation and hypoxia. This modulation is achieved through a delicate
interplay involving the RES–gut–liver axis [60].

Dietary iron is taken up by intestinal epithelial cells (IECs) through the luminal membrane,
internalized, stored, and finally released to the circulation via ferroportin. In the apical membrane
of enterocytes, ferric iron (Fe3+) is reduced to its ferrous state (Fe2+) by duodenal cytochrome b
(D-cytb), and then, it is internalized into the enterocytes by divalent metal-ion transporter 1 (DMT1).
Then, iron is stored as ferritin or distributed to target cells/organs via the circulation either through
ferroportin and/or bound to transferrin (and to a lesser extent, other low-molecular-weight compounds
e.g., citrate) [60,61]. Finally, iron is taken up by cells via the surface transferrin receptor (TfR1).
The non-transferrin-bound iron (NTBI) is responsible for the oxidant-mediated cellular injury, and its
levels increase with transferrin saturation. In physiological conditions, transferrin is saturated 30%
with iron, while a value <16% indicates iron deficiency and >45% reflects iron overload; when the
saturation is higher than 60%, the risk of iron accumulation in different cells increases [61].

One of the most important molecules regulating iron balance is hepcidin, which is produced in
the liver and secreted into the circulation, playing a key role in iron homeostasis. Hepcidin modulates
iron efflux into the plasma by altering the function and inducing the degradation of the ferroportin
present in macrophages and enterocytes [62]. The expression of hepcidin is controlled through the
bone morphogenetic protein (BMP) and JAK2/STAT3 signaling pathways, which, can be influenced
by inflammation [63,64]. Responses to iron levels/hypoxia can be explained by a systemic and a
compartmentalized effect, the latter referring to a local effect in enterocytes or macrophages, where the
above-mentioned pathways are involved.

Iron is a critical growth factor for several pathogens (including in tuberculosis and malaria);
therefore, iron levels are carefully controlled in the body by protein chaperones such as transferrin and
ferritin. So, reducing levels of iron during inflammation would naturally contribute to limiting its
availability in order to limit pathogen proliferation [65]. Interestingly, cytoplasmic-soluble free iron is
an important source for oxidation reactions that produces hydroxyl and peroxyl radicals that, in turn,
contribute to the peroxidation of PUFA-PLs [66]. As a consequence, cells with an excess of iron are
more sensitive to ferroptosis [10].

8. Ferroptosis

First described as a form of cell death in cancer by Stockwell and colleagues [10], the key
event of ferroptosis is the iron-driven production of ROS, in which the iron possibly originates
both from intracellular organelles as well as cytoplasm iron stores and iron-containing enzymes.
Morphologically, ferroptosis is characterized by shrunken, electron-dense mitochondria, rupture of
the outer mitochondrial membrane, and the presence of lipid peroxidation [10,33,67,68]. Currently,
ferroptosis can be detected by measuring lipid peroxidation (LPO), increased PTGS2 expression
(genetic and protein), and decreased content of the reduced form of nicotinamide adenine dinucleotide
phosphate (NADPH) [66,69,70].

The cystine/glutamate antiporter Xc- plays a crucial role in ferroptosis. The Xc- system consists
of the SLC7A11 and SLC3A2 subunits, allowing the extrusion and internalization of glutamate and
cysteine, respectively [71]. This allows for the ATP-dependent peptide coupling of cysteine and
glutamate to form y-glutamylcysteine (GGC), which is catalyzed by y-glutamylcysteine ligase (GCL).
Glutathione synthetase (GSS) joins GGC to glycine to produce glutathione (GSH). Finally, GSH is
utilized by glutathione peroxidase (GPX) to scavenge ROS and lipid reactive species produced by
the disruption of lipid membranes, the mitochondrial electron transport chain and possibly from the
release of iron from iron-containing enzymes [34,72,73] (Figure 1).
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Figure 1. General mechanisms of ferroptosis. The Xc- antiporter system consisting of the SLC7A11 
and SLC3A2 subunits, which allows the extrusion and internalization of glutamate and cysteine. 
γ-glutamylcysteine ligase (GCL) binds glutamate and cysteine together to form γ-glutamylcysteine. 
Later, glutathione (GSH) is formed, which is used then by glutathione peroxidase (GPX4) to 
scavenge ROS and lipid reactive species produced by peroxisomes and the release of iron from 
mitochondrion. Glutathione reductase (GR) catalyzes the reduction of glutathione disulfide (GSSG) 
to GSH using nicotinamide adenine dinucleotide phosphate (NADPH). ACSL4 facilitates the 
formation of phospholipids (PL), and finally oxidized-PE interacts with Fe2+, triggering 
iron-dependent lipid peroxidation. Downregulation of the GPX4 cycle leads to lipid peroxidation, 
which causes the breakthrough of lipid membranes, disruption of the mitochondrial electron 
transport chain, and shrunken mitochondria. PE, phosphatidylethanolamine; AA, arachidonic acid; 
ACSL4, long-chain-fatty-acid-CoA ligase 4. 

There are several isozymes of GPX (GPX1–GPX8) [74], of which GPX4 is the most important in 
protecting against lipid peroxidation driven by ferroptosis. Although the downstream pathway of 
GPX4 is not well understood, it has been demonstrated that several factors (e.g., erastin) can increase 
ferroptosis by indirectly downregulating the GPX4 cycle. Interestingly, cyclooxygenase-2 (COX-2; 
see below) has been identified as a marker of ferroptosis (PTGS2 gene) together with other markers, 
including changes in NADPH levels and lipid peroxidation. [70,75]  

There is evidence showing ferroptosis-induced endoplasmic reticulum stress after the 
pharmacological inhibition of cystine-glutamate exchange. [76] Upon ER stress and 
pharmacological-induced ferroptosis (v.gr. with erastin and sorafenib), there is an increased 
expression of PUMA through the ER stress–mediated PERK–eIF2a–ATF4–CHOP pathway, but 
without inducing apoptosis, suggesting a link between apoptosis and ferroptosis. [77] The precise 
role of ER stress and ferroptosis needs to be further assessed. 

Figure 1. General mechanisms of ferroptosis. The Xc- antiporter system consisting of the
SLC7A11 and SLC3A2 subunits, which allows the extrusion and internalization of glutamate
and cysteine. γ-glutamylcysteine ligase (GCL) binds glutamate and cysteine together to form
γ-glutamylcysteine. Later, glutathione (GSH) is formed, which is used then by glutathione peroxidase
(GPX4) to scavenge ROS and lipid reactive species produced by peroxisomes and the release
of iron from mitochondrion. Glutathione reductase (GR) catalyzes the reduction of glutathione
disulfide (GSSG) to GSH using nicotinamide adenine dinucleotide phosphate (NADPH). ACSL4
facilitates the formation of phospholipids (PL), and finally oxidized-PE interacts with Fe2+, triggering
iron-dependent lipid peroxidation. Downregulation of the GPX4 cycle leads to lipid peroxidation,
which causes the breakthrough of lipid membranes, disruption of the mitochondrial electron transport
chain, and shrunken mitochondria. PE, phosphatidylethanolamine; AA, arachidonic acid; ACSL4,
long-chain-fatty-acid-CoA ligase 4.

There are several isozymes of GPX (GPX1–GPX8) [74], of which GPX4 is the most important in
protecting against lipid peroxidation driven by ferroptosis. Although the downstream pathway of
GPX4 is not well understood, it has been demonstrated that several factors (e.g., erastin) can increase
ferroptosis by indirectly downregulating the GPX4 cycle. Interestingly, cyclooxygenase-2 (COX-2;
see below) has been identified as a marker of ferroptosis (PTGS2 gene) together with other markers,
including changes in NADPH levels and lipid peroxidation [70,75].

There is evidence showing ferroptosis-induced endoplasmic reticulum stress after the
pharmacological inhibition of cystine-glutamate exchange [76]. Upon ER stress and pharmacological-
induced ferroptosis (v.gr. with erastin and sorafenib), there is an increased expression of PUMA
through the ER stress–mediated PERK–eIF2a–ATF4–CHOP pathway, but without inducing apoptosis,
suggesting a link between apoptosis and ferroptosis [77]. The precise role of ER stress and ferroptosis
needs to be further assessed.
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8.1. The Role of Lipids in Ferroptosis

There is evidence suggesting that lipids are involved as mediators of ferroptosis orchestrating its
final steps, both as small lipid particles interfering with the function of the membranes and membrane
proteins, and also as lipids eliciting intracellular signaling and stimulating other pathways involved
in cell death [10,33]. In fact, ferroptosis is sometimes described as death by LPO due to their tight
association [66].

Lipids and its metabolites are mediators of many biological responses [78,79]. The role of lipids
exerting different functions in inflammation, immunology, metabolism, and as a component of
membranes has been extensively studied. One of the most important features is their function as
effectors regulating growth-related signals, gene expression, and cell survival [78,80]. The equilibrium
between cell proliferation and cell death mediated by lipids is maintained by an intricate network that
includes many different enzymes. These proteins are readily available to catalyze lipids derived from
intracellular and extracellular sources, yielding metabolites derived mainly from arachidonic acid (AA)
and other fatty acids, including prostaglandins, leukotrienes, and lipoxins [81–83]. The action of the
different lipids depends on the lipid itself, their specific receptors, and the cell tissue type. For example,
in decompensated cirrhosis, prostaglandin E2 (PGE2) mediates immunosuppression [84].

In the context of ferroptosis, the oxidation of polyunsaturated-fatty-acid-containing phospholipids
(PUFA-PL), which occurs not only in the plasma membrane but also in other subcellular locations,
seems to play a central role [10,33]. As a result of the LPO of polyunsaturated fatty acids (PUFA), a wide
range of oxidation products are produced, such as malondialdehyde (MDA) and 4-hydroxynonenal
(4-HNE), which can modulate transcription factors and induce cell death [67]. Moreover, among the
several enzymes described to drive ferroptotic cell death, lipoxygenases (LOX) have been found to be
the most important, [33,68] even although the precise mechanism is still not fully understood. However,
recent studies show that ferroptosis inhibitors, including LOX inhibitors, execute an antioxidant
function preventing the autooxidation and non-enzymatic destruction of membrane PUFA-PL [69].
Finally, evidence indicates that upon the induction of ferroptosis, COX-2 overexpression is induced.
Since its inhibition through indomethacin did not show changes in ferroptotic cell death, COX-2 seems
to be only a marker of ferroptosis, but it does not seem to play a key role in this process [12]. This further
contributes to add more complexity to the exact role of lipids and its by-products in ferroptosis.

8.2. Keap1-Nrf2 System

The Keap1-Nrf2 system plays an important role as a sensor of oxidative stress/cellular damage,
regulating the expression of genes related to detoxifying and/or antioxidant enzymes [85,86]. Keap-1
(Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated protein 1) is a sensor
of cell damage, including reactive oxygen species (ROS) and electrophiles. These stress signals induce
Nrf2 (NF-E2-related factor 2) activation, which in turn activates the expression of several genes involved
in the antioxidant response. Keap1 is found mainly on the perinuclear cytoplasm, where it is attached
to the actin cytoskeleton. Disruption of the cytoskeleton allows the release of Nrf2 from actin-bound
Keap1, and thus the translocation and nuclear entry of Nrf2 [87,88]. In the nucleus, Nrf2 forms a
heterodimer with small MAF (sMAF), and then this heterodimer activates the gene expression of
detoxifying enzymes through its binding to the antioxidant response elements (AREs)/electrophile
response elements (EpREs). The result is the activation of multiple defense enzymatic systems, leading
to cytoprotective processes aimed at preserving the integrity of the cell and its components [89,90].

The basic structural components of the Keap1-Nrf2 system include a trimer, consisting of one
Nrf2 and two keap1 molecules. Importantly, there are multiple cysteine residues on keap1, which react
according to the type of electrophile [91]. For example, Cys151, Cys273, and Cys288 are cysteine
residues acting independently or collaboratively as sensors of oxidative stress. On the other hand, the
oxidative changes of Keap1 also cause modifications, leading to its inactivation and finally to Nrf2
stabilization and nuclear accumulation [92,93].
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Under normal conditions, in the absence of oxidative stress, Nrf2 undergoes degradation via the
ubiquitin–proteasomal pathway; therefore, its levels are very low [87,93]. This process is mediated by
Keap1, which is an E3 ubiquitin ligase substrate-recognition subunit targeting Nrf2, and it is therefore
ubiquitinated by the Keap1-Cul3 E3 ligase and degraded. Upon exposure to ROS and other molecules,
levels of Nrf2 increase considerably due to the inability of Keap1 to ubiquitinate Nrf2, promoting Nrf2
accumulation in the nucleus and inducing nuclear target genes associated with antioxidant, metabolic,
and detoxifying enzymes [86].

Additionally, Nrf2 may play an important role as an anti-inflammatory factor given that the Nrf2
gene binds to the promoter region of some pro-inflammatory genes, blocking the transcription of
lipopolysaccharide-induced cytokines such as IL-1β and IL-6 [94].

Of interest, cysteine residues Cys273 and Cys288 on Keap1 can also react with 15-deoxy-D12,14
prostaglandin J2 (15d-PGJ2), thus modulating its function and exerting some of the effects related
to this prostaglandin. Moreover, 15d-PGJ2 activates p53 expression via Nrf2 upregulation of heme
oxygenase-1 (HO-1), possibly increasing the production of iron. Consequently, activation of the
Keap1–Nrf2 system could play an important role in the final step of ferroptosis, particularly in the
interaction between iron, lipid mediators, and ROS [95,96].

Finally, there is data showing that Nrf2 induces some of the ferroptosis-related genes, such as
glutathione peroxidases (GPXs), suggesting an intricate interaction between different systems and the
participation of different cellular levels in this type of cell death. Supporting this, the Keap1–Nrf2
system has been also implicated in the regulation of the heme metabolism, including iron trafficking,
erythrocyte survival, erythropoiesis, which has been extensively addressed, as discussed in a recent
review [97,98]. Furthermore, Nrf2 can induce ferritin, modulate the expression of ferroportin (fpn1),
and enable iron to incorporate into pirin (PIR), which is a nuclear non-heme iron-binding protein that
regulates the NF-kB signaling pathway. Overall, the coordinated action of the Keap1–Nrf2 system
depends upon the prevailing redox cellular state, together with the available iron [99].

8.3. Interaction between Iron and Oxidative Stress

Two types of iron can be found in the body: free iron and bound iron. The type related to oxidative
stress is free iron, owing to its instability and high reactivity. Iron is involved in the Fenton reaction,
where hydrogen peroxide (H2O2) is catalyzed by iron, yielding the highly reactive hydroxyl radical:

Fe2+ + H2O2 → Fe3+ + HO. + OH-

The high amount of iron distributed throughout the body, together with the constant mitochondrial
production of H2O2, renders this reaction an important source of free radicals, [100] leading to oxidative
damage to lipids, proteins, and DNA.

In addition to the interplay between iron and ROS, some reactive nitrogen species (RNS) can
react with the iron in some proteins, causing dysfunction, such as cellular toxicity, metabolic enzyme
damage, or permeability transition pore stimulation, that ultimately can lead to cell death [101]. In fact,
nitrogen monoxide (NO) has a high affinity for iron and can form dinitrosyl-dithiolato-Fe complexes
(DNICs), interfering with the normal function of iron-containing enzymes involved in DNA synthesis,
mitochondrial electron transport chain, and aconitase, among others [102–104].

9. Proposed Biomarkers of Ferroptotic Cell Death

As it has been mentioned in previous sections, ferroptosis has distinctive characteristics including
morphological changes (shrunken mitochondria), the involvement of lipid peroxidation, as well as
the expression of key genes indicating the participation of this type of cell death. Among these genes,
the increased expression of cbr3, acsl4, and ptgs2 are associated to the presence of ferroptosis. On the
other hand, the decreased expression of gpx4 and slc7a11 has been associated with ferroptosis [10].
While a specific biomarker of ferroptosis is not currently available, the understanding of the pathways
related to the different types of cell death (including ferroptosis), as well as the potential liver diseases
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where iron and oxidative stress play a pivotal role, will help to identify more specific biomarkers of
ferroptosis, and finally, to associate them with specific clinical outcomes.

10. Ferroptosis and Liver Disease

Iron-overload disorders include primary and secondary iron overload that can be further
categorized as defects in the hepcidin–ferroportin axis, impairing iron transport and causing ineffective
erythropoiesis [60]. The most representative disease related to iron overload is hemochromatosis.
More than 100 years ago, the association between iron deposits and liver damage was described as
hemochromatosis, and subsequently, the mechanisms involved in chronic inflammation, genetics,
and cellular damage have been elucidated. Iron-mediated cellular injury is the basis of iron-overload
disorders, resulting in organ damage including in the brain, heart, pancreas, and liver [105].

Iron overload in liver diseases arises from two sources: (i) increased intestinal absorption following
iron-mediated cellular injury (described above), and (ii) increased iron burden present in some diseases
such asβ-thalassemia, where frequent repeated blood transfusions are required. Regardless of the cause
of iron overload, uncontrolled free iron exerts significant oxidative damage in the liver, contributing to
the progression of disease and the development of complications such as HCC [106]. Indeed, there is
growing evidence supporting the role of iron as a mediator of liver injury and disease beyond well
recognized iron-overload disorders such as hemochromatosis and β-thalassemia [16,17].

10.1. Ferroptosis in Metabolic Liver Diseases: Hereditary Hemochromatosis | Non-Alcoholic Fatty Liver
Disease (NAFLD)

10.1.1. Hemochromatosis (HH)

In hereditary hemochromatosis (HH), the role of iron in initiating and perpetuating liver damage
with further liver fibrosis and HCC has been well described [107]. In particular, HH is caused by
genetic mutations, such as in genes encoding hemochromatosis protein (HFE) or SLC40A1 (Ferroptin-1),
whose proteins are involved in limiting iron absorption [108]. Moreover, aggressive therapies aimed to
decrease iron content through phlebotomy and iron chelators have proven useful in these patients,
showing an improvement in several outcomes, including portal hypertension [109].

A striking feature in patients with HH is the development of diabetes, in addition to liver damage.
The proposed causes of diabetes in HH include decreased pancreatic β-cell function secondary to
apoptosis and increased ROS, decreased insulin secretory capacity, and decreased sensitivity to
glucose-induced insulin secretion [110]. Finally, an improvement in metabolic outcomes, including
higher insulin sensitivity, has been documented after bloodletting in some studies [111,112].

10.1.2. Non-Alcoholic Fatty Liver Disease (NAFLD)

The role of altered iron metabolism in NAFLD has been extensively studied in recent years.
The association between iron and fatty liver comes from the link between iron and the development
of metabolic syndrome features, [113] including diabetes in diseases such as HH and iron overload
secondary to multiple transfusions (referred as the dysmetabolic iron overload syndrome, or
DIOS) [114,115]. In these patients, insulin resistance (IR) correlates with the increase in serum ferritin,
and half of them display some degree of NAFLD [116,117]. Interestingly, a recent study has shown that
increased serum hepcidin levels correlates with liver iron content in NAFLD patients with DIOS [118].

Furthermore, augmented levels of serum ferritin in patients with NASH not only are linked to
disease severity, including hepatic fibrosis and inflammation, but they also correlate with hepatic iron
deposits [119–123]. Recent studies have shown an increased duodenal iron absorption in these patients
after oral challenge with iron through the upregulation of DMT1 mRNA in duodenal tissue and the
further activation of IRP1 (iron regulatory protein 1) [124]. Although these data suggest iron-lowering
therapies as a therapeutic approach in NASH, including phlebotomy, they have been shown to be
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useful only in particular patients with NASH, with evidence of no benefit in a further randomized
clinical trial [125–127].

10.2. Ferroptosis in Alcoholic Liver Disease (ALD)

Active alcohol consumption has been associated with hepatic iron overload mediated by different
mechanisms including low hepcidin levels that, in turn, can increase the duodenal iron transport via
increased duodenal DMT1 and ferroportin expression [128–131]. In addition to these mechanisms,
a synergistic effect of alcohol and iron increasing liver fibrogenesis and oxidative stress has been
proposed. In fact, feeding rodents with carbonyl iron together with a liquid ethanol diet causes elevated
serum transaminases levels, steatosis, as well as inflammation and fibrotic markers. This evidence
suggests that dietary iron supplementation to an ethanol diet exacerbates hepatocellular damage
and promotes liver fibrogenesis which, at least in some experimental cases, leads to cirrhosis and
HCC [132–136]. It is of note that the high hepatic iron content in alcohol-related cirrhosis patients has
been associated with adverse outcomes, including mortality [137].

10.3. Ferroptosis and Viral Hepatitis

Chronic hepatitis C virus (HCV) infection can induce iron overload through different mechanisms
including (as with ALD) the suppression of hepatic hepcidin, which is caused by HCV-induced
oxidative stress, leading to upregulation of duodenal ferroportin-1 [138,139]. Iron overload in HCV
has been linked to progressive liver damage, with poorer outcomes being used as a surrogate marker
for the severity of the disease in this population [140,141]. Interestingly, transferrin receptor protein 1
(TfR1) has been described in HCV entry facilitating virion internalization, as well as in HCV-driven
changes in iron metabolism hepatocyte–KC cross-talk that promotes enhanced viral replication and
translation [142–144].

Furthermore, changes in iron kinetics are observed during treatment with PEG-IFN/ribavirin,
observing an acute increase in serum hepcidin levels 24 h after treatment with a further increase in iron
and ferritin levels [145–147]. These dynamic changes could be involved in the viral kinetics associated
with treatment, and they might be part of a reactive response of macrophages toward IFN.

10.4. Ferroptosis and Drug-Induced Liver Injury (DILI)

Drug-induced liver injury (DILI) is the predominant cause of acute liver failure (ALF) in Europe
and the USA, with acetaminophen (APAP; paracetamol) as the model hepatotoxin [148]. Although
the pathophysiological mechanisms driving APAP toxicity have been extensively studied, there are
also characteristics that implicate the participation of ferroptosis. The main feature of APAP toxicity is
the formation of N-acetyl-p-benzoquinone imine (NAPQI), which is a highly reactive and toxic APAP
metabolite. NAPQI is normally detoxified by glutathione (GSH); however, APAP overdose results
in excess NAPQI formation and the subsequent depletion of the GSH antioxidant [149]. In addition,
some studies have shown that LPO is essential in the mechanism of APAP-induced cell death, whilst
both Vitamin E and iron chelators have been used to ameliorate this damage in susceptible animals
(i.e., vitamin E deficiency) [150]. In a recent study, challenge with ferrostatin-1, a specific ferroptosis
inhibitor, to primary mouse hepatocytes treated with APAP led to increased cell viability. Since
ferrostatin-1 was found to have no influence on CYP2E1 or cellular GSH content, it can be inferred
that its protective effect on APAP-induced cell death is independent from interfering with APAP
metabolism to NAPQI [151]. Thus, these findings support the potential involvement of this type of cell
death in DILI.

Antioxidants such as vitamin E and N-acetyl cysteine (NAC) have been successfully used in
non-APAP DILI, including studies of hepatotoxic effects of sulfasalazine and anti-tuberculosis drugs
among others [152], which underscores the important role of ROS in DILI. Furthermore, mutations in the
GST gene leading to deficiency in glutathione S-transferase activity increase the risk of hepatotoxicity
upon treatment with antituberculosis drugs [153].
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Taken together, these findings suggest ferroptosis as a plausible mechanism involved in some
types of DILI. This mode of cell death may be a transient or a sequential phenomenon that follows the
initial damage that progresses to glutathione depletion, cell damage, and the release of intracellular
components, including iron [154].

10.5. Ferroptosis and Hepatocellular Carcinoma (HCC)

Other diseases have been associated with iron overload, the consequent activation of HIF-α, and
the further decrease of hepcidin expression, including HCC, with increased risk in specific populations,
mainly in those carrying the mutation C282Y in the HFE gene (homeostatic iron regulator), which
leads to higher hepatic iron deposition and serum ferritin [155–157].

In several types of cancer, ferroptosis has been proposed as a strong inhibitor of tumor growth,
and in other types of cancer, it has enhanced the sensitivity to chemotherapeutic drugs [158]. However,
the exact role of ferroptosis in HCC is still not fully elucidated. Several studies have shown that the
cytotoxic effect of sorafenib (a multikinase inhibitor used for HCC treatment) in HCC derived-cell lines
could be explained by the induction of oxidative stress and iron-dependent cell death that resembles
ferroptosis, but not other types of cell death such as apoptosis or autophagy. Moreover, these effects
were completely blocked by using ferroptosis inhibitors, including ferrostatin-1, suggesting a key role
of ferroptosis in the mechanism of pharmacologically-induced cell death induction in HCC [159,160].
Furthermore, it is known that many HCC cells lose retinoblastoma (Rb) protein function. A recent
study showed that HCC cells with decreased levels of Rb displayed a higher rate of cell death after
sorafenib exposure. This effect had in vivo implications demonstrated by the fact that nude mice
receiving tumor xenografts from HCC with low Rb expression had a high level of tumor regression
after sorafenib treatment. This demonstrates that an Rb-negative status in HCC could be in fact be
responsible for the effectiveness of Sorafenib via ferroptosis [161,162].

It has also been demonstrated that Nrf2 has a protective role in HCC against ferroptosis. Specifically,
when HCC cell lines are exposed to erastin or sorafenib, activation of the p62–Keap1–NRF2 pathway
prevents Nrf2 degradation, promoting p62 nuclear accumulation and leading to the activation of
several factors that inhibit ferroptosis [163].

11. Experimental Models of Iron Overload and Liver Damage

Different animal models have been developed to elucidate the role of iron in liver disease. Studies
in animals include the exogenous administration of iron and/or genetic modifications altering and
promoting iron overload [164–166].

A comprehensive review showing some knockout models in mice for the study of iron overload,
including Hfe-/- and iron regulatory protein (Ipr2)-/- mice, has been published elsewhere [167].
These models have helped define the role of the different receptors and molecules on iron overload and
their importance in liver disease, as well as the mechanisms linked to cell damage elicited by iron. Some
approaches that are aimed at selectively deleting or down-regulating iron-related genes in specific
tissues can be accomplished through the Cre-loxP system or siRNA knockdown. These techniques
have shown the relevance of specific components of iron metabolism in a particular type of cell.

Genetically modified mice include models resembling hemochromatosis, disruption in
mitochondrial iron metabolism, alterations in iron trafficking through the body, and signaling to
hepcidin. In particular, hepcidin knockout mice displayed significantly increased iron absorption and
overload that led to elevated liver enzymes, mild hepatic inflammation, and moderate liver fibrosis
after feeding them with an iron-rich diet [168,169].

12. Clinical Implications for the Study of Ferroptosis

For clinicians, it is necessary to understand the fine balance between iron deficiency and iron
overload, especially in the context of chronic liver disease, where chronic infection and/or inflammation
could be exacerbated by iron supplementation. This needs to be counterbalanced with the fact that
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iron-deficiency anemia is a frequent finding in chronic liver diseases, which has been associated with
adverse outcomes and exacerbation of some complications of cirrhosis such as hepatic encephalopathy
and decreased quality of life [170,171].

In patients with cirrhosis, hemoglobin levels inversely correlate with hepatic venous pressure
gradient, and the presence of anemia is associated with a worsened hyperdynamic circulation in
portal hypertension [172,173]. Increased inflammation and the further production of IL-6 and IL-1(R)
increases hepcidin transcription, leading to hypoferremia and finally to anemia [61].

The recognition of ferroptosis as a mechanism of liver disease could help to better understand
the complex relationship between specific components occurring at a particular moment of liver cell
damage and the elicited response of the tissue as a whole. In addition, new markers of ferroptotic
hepatic cell death and the development of ferroptosis inhibitors (described below) could help to impede
progression and/or lead to the reversion of liver damage triggered by different stressors.

13. Pharmacological Modulation of Ferroptosis

Although several biomarkers have been proposed as indicators of ferroptosis, at present, there are
no specific and reliable markers of this mode of cell death. Most studies concerning ferroptosis are
based on the different changes elicited upon erastin administration (described above).

Modulators of ferroptosis can be classified as inducers and inhibitors (Table 2) depending on
their effect at some stage of the pathway. Inducers can be further classified as type 1 (inhibitors of
the Xc- system) or type 2 (direct inhibitors of gpx4). Although specific compounds modulating this
pathway have been recently developed, repurposed drugs targeting iron overload-related diseases
such as hemochromatosis and secondary iron overload (e.g., multiple transfusions) have been proven
to be useful in attenuating damage triggered by ferroptosis. Some of these drugs include deferoxamine,
deferasirox, and deferiprone, through which their effect as iron chelators could help to prevent
iron-driven damage.

Other drugs that can modulate ferroptosis include sulfasalazine, sorafenib, and some lipophilic
antioxidants such as Vitamin E. Their role as ferroptosis modulators has been recently recognized,
which could explain to some extent their observed clinical effects. Recently, a class of drugs specifically
designed to target ferroptosis has been developed; among these compounds, ferrostatin-1 and
liproxstatin-1 are the best categorized. The characteristics of these compounds are shown in Table 2.

Table 2. Proposed mechanism of action and common uses of the different ferroptosis modulators.

Compound Molecular Target/Mechanism
of Action Common Use, Notes

INDUCER

Erastin [174–176] Inhibits Xc- system
(irreversibly) Ferroptosis inducer in research

RSL3 [177,178] Inactivates gpx4 Ferroptosis inducer in research

Glutamate [179] Competitive inhibition of the
Xc- system

High concentrations inhibit the function of the
antiporter, lowering the intracellular levels of GSH

and therefore increasing oxidative damage.

Sulfasalazine [179,180] Inhibits Xc- system
Patients with inflammatory bowel disease and

arthropathies. Used in research in different types of
cancer (v.gr. lymphoma, CNS tumors)

Sorafenib [160] Multikinase inhibitor/inhibit
Xc- system

Used mainly as a therapy in patients with advanced
hepatocellular carcinoma
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Table 2. Cont.

Compound Molecular Target/Mechanism
of Action Common Use, Notes

INHIBITOR

Ferrostatin-1 [181]
Interferes with ROS

accumulation from lipid
peroxidation

Second- and third-generation ferrostatins are more
stable.

Liproxstatin-1 [15]
Interferes with ROS

accumulation from lipid
peroxidation

Relative potency stronger than Ferr-1. Inhibits FINs
(RSL3, erastin).

Zileuton [182] Inhibits 5-LOX (abrogates
cytosolic ROS production) Available as an oral compound.

DFO [34,174] Iron chelator Used in patients with iron overload

Vitamin E and analogs
(v.gr. Trolox) [183,184] Antioxidant/ROS scavenger

Some trials have tested its effect (e.g., age-related
macular degeneration, dementia, metabolic diseases,

NAFLD) without conclusive results

1,10-phenanthroline
[185,186] Iron chelator

Used as a metal chelator and redox indicator. Mixed
with different metals (Cu, Mn, Ag) has antimicrobial

activity

deferasirox [187,188] Iron chelator Used in patients with iron overload

deferiprone [187–189] Iron chelator Used in patients with iron overload

RSL3, Ras-selective lethal 3; gpx4, glutathione peroxidase 4; DFO, deferoxamine; CNS, central nervous system; ROS,
reactive oxygen species; 5-LOX, 5-lipoxygenase; FINs, ferroptosis-inducing compounds.

14. Conclusions and Future Perspectives

The characterization of the specific mechanisms of hepatocyte cell death is important in order
to understand the pathophysiological pathways of liver damage inherent to the etiology of the liver
disease [6,9]. It is also relevant to develop strategies aimed at halting progression of the damage, and
new targeted therapies that allow greater clinical efficacy with minimal side effects. Emerging studies
show that ferroptosis is a novel and determinant type of regulated cell death involving the activation
of signal transduction pathways that affect diverse hepatic cell populations in different experimental
models of liver disease [34,159]. Currently, there are some challenges in ferroptosis. One of them is the
lack of a specific marker suitable for use both in animal studies, as well as in the clinical setting. As the
research in the field progresses and our understanding of the mechanisms associated to this type of
cell death increases, it will be possible to better (and easily) characterize the presence of ferroptosis.
On the other hand, the role of lipidomics and the interaction with iron needs to be thoroughly studied
in liver diseases.

Finally, delimiting more precisely the presence of ferroptosis will open the possibility of new
therapeutic options, as well as the development of specific biomarkers in liver diseases, and better
understanding the complex series of events following initiation of inflammation leading to fibrosis,
cirrhosis, and end-stage carcinogenesis.
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Abbreviations

Acsl4 Acyl-CoA Synthetase Long Chain Family Member 4
APAF1 Apoptotic Protease-Activating Factor-I
APAP Acetaminophen
AREs Antioxidant Response Elements
ASH Alcoholic Steatohepatitis
ATGs autophagosomes
ATP Adenosine Triphosphate
Bcl-2 B-cell Lymphoma 2
BH3 Bcl-2 Homologous 3
BMP Bone Morphogenetic Protein
Cbr3 Carbonyl Reductase 3
CNS Central Nervous System
COX Cyclooxygenase
Cul3 Cullin 3
DAMP Damage-Associated Molecular Pattern
DATP Deoxyadenosine Triphosphate
D-cytb Duodenal Cytochrome b
DFO Deferoxamine
DILI Drug-Induced Liver Injury
DIOS Dysmetabolic Iron Overload Syndrome
DMT1 Divalent Metal-Ion Transporter 1
DNA Deoxyribonucleic Acid
DNICs Dinitrosyl-Dithiolato-Fe Complexes
DR Death Receptor
DsRNA Double Stranded RNA
EpREs Electrophile Response Elements
ER Endoplasmic Reticulum
FADD Fas-Associated Death-Domain
FAS Fas Cell Surface Death Receptor
Fe3+ Ferric Iron
Fe2+ Ferrous Iron
FINs Ferroptosis-Inducing Compounds
FLIP FLICE-Inhibitory Protein
Fpn1 Ferroportin
GCL Y-Glutamyl-Cysteine Ligase
GGC Y-Glutamyl-Cysteine
GPX Glutathione Peroxidase
Gpx4 Glutathione Peroxidase 4
GSS Glutathione synthetase
GSDM Gasdermin
GSH Glutathione
GST Glutathione S-Transferase
H2O2 Hydrogen Peroxide
HCC Hepatocellular Carcinoma
HCV Hepatitis C Virus Infection
HH Hereditary Hemochromatosis
HFE Homeostatic Iron Regulator
HNE 4-Hydroxynonenal
INF Interferon
IRP1 Iron Regulatory Protein 1
Ipr2-/- Regulatory Protein 2
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5-LOX 5-Lipoxygenase
KCs Kupffer Cells
Keap-1 Kelch-Like Erythroid Cell-Derived Protein 1
LOX Lipoxygenases
LPO lipid peroxidation
MDA Malondialdehyde
MLKL Mixed Lineage kinase Domain-Like
NADPH Nicotinamide Adenine Dinucleotide Phosphate
NAFLD Non-Alcoholic Fatty Liver Disease
NASH Non-Alcoholic Steatohepatitis
NAPQI N-Acetyl-P-Benzoquinone Imine
NF-κB Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells
NLR Nucleotide-Binding Domain–Like Receptors
NO Nitrogen Monoxide
Nrf2 NF-E2-Related Factor 2
NTBI non-transferrin-bound iron
PAMPs Pathogen-Associated Molecular Patterns
PIR Pirin
Pro-IL Pro-Inflammatory Cytokine Interleukin
PRRs Pattern Recognition Receptors
Ptgs2 Prostaglandin-Endoperoxide Synthase 2
PUFA-PL Polyunsaturated-Fatty-Acid-Containing Phospholipids
PYHIN Pyrin and HIN Domain
Rb Retinoblastoma
RIPK Receptor-Interacting Serine/Threonine-Protein Kinase
RHIM RIP Homotypic Interaction Motif
ROS Reactive Oxygen Species
RNS Reactive Nitrogen Species
RSL3 Ras-Selective Lethal 3
SiRNA Small Interfering RNA
SLC3A2 Glutamate/Cystine Antiporter Solute Carrier Family 3 Member 2
SLC7A11 Glutamate/Cystine Antiporter Solute Carrier Family 7 Member 11
sMAF Heterodimer with Small MAF
TfR1 Transferrin Receptor 1
TLR Toll Like Receptors
TNF Tumor Necrosis Factor
TNFR1 TNF Receptor Superfamily Member 1A
TRADD TNF-R Adopter Protein via Death Domain
TRAIL TNF-Related Apoptosis-Inducing Ligand,
TRIM Tripartite Motif
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