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Abstract

The separation between regions of certain homogeneity of a data set in 2D or 3D is termed segmentation.
Registration or referencing, on the other hand, denotes the process of transferring different data sets
into a common reference frame or system.

Since the appearance of Terrestrial Laser Scanning (TLS) – combined with quasi-area-based acqui-
sition methods and the associated enormous amount of data in the form of so-called point clouds –
in engineering geodesy and related fields such as architecture and civil engineering, segmentation as
well as registration have been among the most important processing steps with regard to an automated
evaluation and further processing of point clouds.

Several procedures have been established, however, each of them representing independent and
detached strategies in their solution of the individual process steps, whose disadvantages are mostly
expressed on the segmentation side in incompleteness, the unilateral use of information or inefficiency
as well as on the registration side by the lack of a suitable stochastic model.

This thesis first of all emphasizes the importance of segmentation and registration, as well as the
necessity to use an adequate stochastic model in the context of Terrestrial Laser Scanning. As a result of
the discussed disadvantages of existing methods, the motivation points as well as the prerequisites for
the following chapters result.

A decisive component in any evaluation with measured quantities, also in association with segmen-
tation and registration procedures, is the choice of a suitable individual weighting of the observations
via the knowledge of the respective precision. Up to now, the precision-limiting factors influencing the
measuring components in TLS could not be mapped in an all-embracing model. Consequently, a new
stochastic model addressing this issue is presented.

A recent look on the topic of segmentation with TLSmostly shows the less effective application to a
3D data structure in combination with already referenced point clouds and the monolateral use of solely
3D information. Therefore, a new segmentation method is presented that addresses these problems and
guarantees almost complete segmentation results based on the natural data structure of a single scan
with proven and very efficient image processing routines. The examples show the versatile applicability
of the segmentation algorithm using both 3D and intensity information on urban and natural object
structures in the individual point clouds.
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In the last chapter the loop closes. A unique synergetic segmentation and registration procedure
is presented, which uses the information gain from both process steps mutually. Based on exten-
sive segments of the segmentation of single scans, plane sub-segments are detected with a special
sub-segmentation procedure, incorporating the derived stochastic model. By means of a plane-based
matching procedure, approximate values are initially derived for a subsequent comprehensive registra-
tion procedure of the individual scans. Finally, the point clouds of the single scans can be transferred
into a common coordinate system using the external transformation parameters determined from the
registration step. Simultaneously, the existing matching information of corresponding planes can be
used to complement segments that are not completely captured due to different scanning perspectives
on the object. Thus, the result of this processing chain is a complete registered and segmented 3D point
representation of an object previously acquired with a TLS from different perspectives.
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Kurzfassung

Die Abgrenzung von Bereichen gewisser Homogenität eines Datensatzes im 2D oder 3Dwird als soge-
nannte Segmentierung bezeichnet. Als Registrierung oder Referenzierung versteht man hingegen eine
Überführung der verschiedenen Datensätze in ein gemeinsames Bezugs- oder auch Referenzsystem.

Seit dem Einzug des Terrestrischen Laserscannings (TLS) – verbunden mit quasi-flächenhaften Erfas-
sungsmethoden und der damit einhergehenden enormen Datenmenge in Form von sog. Punktwolken
– in die Ingenieurgeodäsie und verwandte Fachbereiche wie u. a. Architektur und das Bauingenieurwe-
sen, zählen die Segmentierung als auch die Registrierung zu den wesentlichen Prozessierungsschritten
imHinblick auf eine automatisierte Auswertung undWeiterverarbeitung von Punktwolken.

Etabliert haben sich einige Verfahren, die aber jeweils in ihrer Lösung der einzelnen Prozessschritte
voneinander unabhängige und losgelöste Strategien darstellen, deren Nachteile sich auf der Segmen-
tierungsseite zumeist in Unvollständigkeit, dem einseitigenNutzen von Informationen oder Ineffizienz
sowie auf Registrierungsseite durch Nichtvorhandensein oder Fehlen eines geeigneten stochastischen
Modells äußern.

Die vorliegende Arbeit stellt zunächst die Wichtigkeit der Segmentierung und Registrierung, als
auch die damit einhergehende Notwendigkeit zur Nutzung eines adäquaten stochastischen Modells, im
Kontext des TLS heraus. Aus den andiskutierten Nachteilen bestehender Verfahren ergeben sich die
Motivationspunkte sowie die Voraussetzungen für die nachfolgenden Kapitel.

Eine maßgebliche Komponente bei jeglichen Auswertungen mit gemessenen Größen, auch in
Verbindung mit Segmentierungs- und Registrierungsverfahren, ist die Wahl von einer geeigneten
individuellen Gewichtung der Beobachtungen über die Kenntnis der jeweiligen Präzision. Bislang
konnten die präzisionslimitierenden Einflussfaktoren auf die Messkomponenten beim TLS nicht in
einem allumfänglichenModell abgebildet werden, wodurch ein neues stochatisches Modell vorgestellt
wird, das sich diesem Sachverhalt widmet.

Ein aktueller Blick zum Thema Segmentierung mit TLS zeigt zumeist die weniger effektive Anwen-
dung auf eine 3D-Datenstruktur in Verbindung mit bereits referenzierten Punktwolken und der einseit-
igen Nutzung ausschließlicher 3D-Informationen. Daher wird ein neuartiges Segmentierungsverfahren
vorgestellt das sich den Problemen annimmt und auf Basis der durch die Scanentstehung natürlichen
Datenstruktur eines Einzelscans mit bewährten und sehr effizienten Bildverarbeitungsroutinen nahezu
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vollständige Segmentierungsergebnisse gewährleistet. Die Beispiele zeigen die vielseitige Anwend-
barkeit des Segmentierungsalgorithmus unter Nutzung von 3D- als auch Intensitätsinformationen auf
urbane als auch natürliche Objektstrukturen in den einzelnen Punktwolken.

Im letzenKapitel schließt sich derKreis. Eswird ein einzigartiges synergetisches Segmentierungs- und
Registrierungsverfahren vorgestellt, welches den Informationsgewinn aus beiden Prozesschritten wech-
selseitig ausnutzt. Basierend auf flächenhaften Segmenten der Segmentierung von Einzelscans werden
ebene Untersegmente unter Einbeziehung des abgeleiteten stochastischen Modells mit einem speziellen
Subsegmentierungsverfahren detektiert. Über ein ebenenbasiertesMatchingverfahrenwerden zunächst
Näherungswerte für ein sich anschließendes allumfassendes Registrierungsverfahren der Einzelscans
generiert. Schließlich können die Punktwolken der Einzelscans über die aus dem Registrierungsschritt
bestimmten äußeren Transformationsparameter in ein gemeinsames Koordinatensystem überführt
werden und zugleich über die vorhandeneMatchinginformation korrespondierender Ebenen Segmente
vervollständigt werden, die durch unterschiedliche Scanperspektive auf das Objekt nicht vollständig
erfasst werden. Somit ist das Resultat dieser Verarbeitungskette eine vollständige registrierte und
segmentierte 3D-Punktrepräsentation eines zuvor aus unterschiedlichen Perspektiven mit einem TLS

aufgenommenen Objektes von Interesse.
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0
Introduction

Terrestrial laser scanning (TLS)1 has meanwhile reached a high acceptance level in applied
as well as engineering geodesy and is consequently used in numerous fields of application such as
kinematic laser scanning (Boeder et al. 2010), deformation monitoring (Mechelke et al. 2012),
(Lindenbergh and Pietrzyk 2015), archaeology and cultural heritage (Böhler andMarbs 2004)
or biomass estimation (Tilly et al. 2013).

While in the past, in contrast to total stations, the quasi pioneering technology of laser scanners,
it has always been possible to ensure areal acquisition in the photogrammetric field, the evaluation,
however, was limited to the pointwise discretization of objects for the various applications, partly due
to the insufficient computing and storage capacity at that time. For instance, in the monitoring of
buildings and natural objects with regard to movements and deformations, spatial discretization was in
the past a fundamental method of engineering geodesy, see (Brunner 2007).

Since the appearance of TLS in engineering geodesy, a paradigm shift from this previously point-
based to a now widely characterized approach by linear or surface-based measurement and evaluation
methods has taken place (Kuhlmann et al. 2013).

1 In the following, TLS is used to denote both the instrument (Terrestrial Laser Scanner) and themeasuringmethod
(Terrestrial Laser Scanning).
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0.1 Processing and Analysis of TLSMeasurements

The quasi-surface acquisition method associated with TLS, see Section 1.2.1 and Figure 1.3, and the
resulting vast amount of data for an acquisition, also called scan, is mapped in a so-called point cloud. In
order to capture an object in its entirety, or to determine changes to an object, for example, several scans
of potentially other instrument positions2 with different perspectives onto the object are necessary. A
classical evaluation strategy with the central processes from the planning of the measuring project via
acquisition and evaluation towards the final product is shown in Figure 1 and is usually pursued for the
above mentioned fields of application.
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a. Preparation
• viewpoint planning
• scan connecting

b. Acquistion / scanning

Changedetection
/

D
eform

ation
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c. Readout / preprocess

d. Registration process

e. Data interpretation
• segmentation
• classification
•modelling

f. Product / model
• CAD- / BIM- model
• 3D-model / mesh
•Variance comparison

Figure 1: Evaluation strategy and processing chain for TLS.

The general workflow for the use of a TLS according to Figure 1 usually starts with a

a. preparation step involving a viewpoint planning under engineering geodetic aspects (Wujanz
et al. 2016b), as well as the definition of the geometrically overlapping scans, followed by the
actual

b. acquisition based on the pre-planning, the

2 Instrument positions are also simply denoted as standpoints in the following.
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0.1. processing and analysis of tls measurements

c. readout of the data per scan from the scanner and possibly a pre-processing such as e. g. filtering
or data reduction is performed, usually followed by a

d. referencing of the individual scans into a common coordinate system, see also Section 1.11, whose
referenced overall point cloud is subjected to an

e. interpretation step with regard to a segmentation, see also see Section 1.10, classification or a
modeling of areas, see also Section 4.3.2, of the point cloud in order to finally obtain a finished

f. product or model in the form of a CAD- or BIM-model, 3D-model or similar.

According to Kuhlmann et al. (2013) the so-called engineering geodesy comprises the complete
set of methods for the evaluation and modelling of the measured quantities as well as the derived
estimated parameters. Among them, the planning process, e. g. also the viewpoint planning, as well
as the measuring process itself, see left part of Figure 1, and the complete subsequent evaluation and
interpretation, see right part of Figure 1, represent the essential core competences of engineering geodesy
(Kuhlmann et al. 2014). Within the core competence,

d. Registration, see Section 1.11, as well as

e. Segmentation, see Section 1.10

belong to the fundamental processing steps with regard to an automated evaluation and further
processing of point clouds.

segmentation in general: Segmentation (lat. segmentum – section) is the subdivision of a whole
into individual expedient segments (i.e. sections, parts or elements) that can be segregated from
one another.

registration in general: The task of registration or referencing (lat. referre – refer to something)
is to transfer the measurement data (2D or 3D) of individual view- or standpoints given in a
local coordinate system from an instrument – e. g. captured with a TLS – into a common
(superordinate) coordinate system. The result of a registration is a complete dataset composed
of measurements, e. g. three dimensional (3D) points, captured from several connected3 stand-
points. This process is of utmost importance in the completion of a dataset.

Considering the engineer-geodetic challenge to detect geometric changes with regard to a deformation
analysis of an object or building, the segmentation of unchanged areas for a subsequent unadulterated
registration spanning several epochs is indispensable. Hence, the quality of the segmentation and
registration results rises and falls with the quality of the statement of a deformation analysis.

3 See Section 1.11 how a connection could look like
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0.1.1 Current Evaluation Strategy

When looking at the current evaluation strategy of TLS point clouds, see Figure 1, with regard to the
registration, see Section 1.11, as well as the segmentation of point clouds, see Section 1.10, it can generally
be stated that the individual processing steps of the methodologies, relying on different data concepts,
are carried out independently of each other and in sequential order.

In (Mahmoudabadi et al. 2016) the segmentation of a single scan is efficiently solved, yet the
context for registration is not discussed. A registered point cloud is used by Riveiro et al. (2016),
however, the previous registration is not related to the segmentation. In both cases, the focus remains
on segmentation.

remark: In order to be able to perform a subsequent segmentation in the second processing step
after the registration, e. g. (Riveiro et al. 2016), the extensive buildup of topological relationships
between individual points is again required, see Section 1.4.

If one considers registration methods, planes are segmented in (Gielsdorf 2009) first, which serve
afterwards as identical information for the registration, but they have no further purpose.

Rabbani et al. (2006) extend this concept by detecting several geometric primitives in the form of
cylinders, spheres and also planes in the point clouds and using this information for registration and
modeling. However, the registration also takes a leading role.

important note: Existing strategies for solving both tasks are, however, based on a registration
that is independent of the segmentation in its processing step. Amutual support between segmentation
and registration methods, which is hereinafter referred to as ”synergetic segmentation and registration”,
has not yet been applied.

it is worth mentioning that currently all methods, whether for registration or segmenta-
tion, are based on either no quality models or incomplete ones due to missing, or not fully modeled,
stochastic information for the measured values, see Section 0.2.1.1 and also Section 1.9.
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0.2 Quality in the context of TLS

The quality assessment of measuring methods and systems on the one hand, and the results of a
measuring and evaluation process on the other hand, has always been one of the key aspects in geodesy
and therefore also takes on a major role in conjunction with TLS.

quality in general: Quality (lat. qualitas – condition, feature, characteristic or status) is defined
according to the valid standard Deutsches Institut fur Normung e.V. (2015) for quality
management as the degree to which a set of inherent characteristics of an object fulfills require-
ments and thus indicates the extent to which an object or result meets existing requirements.

By definition, the term quality can be broadly defined and can be transferred either to a measuring
instrument, the measuring process or the evaluation and its results. As a basis for any rating, a so-called
quality model with characteristics and parameters serves (Schwieger and Zhang 2019).

Kuhlmann et al. (2014) also dedicates a separate section to quality assessment and quality manage-
ment within the core competencies of engineering geodesy.

One of the most important characteristics of quality established in geodesy is the accuracy whose
measure or parameter –with respect to the result of various evaluationprocesses aswell as the adjustment
calculation, see Section 1.8, – is given as so-called Standard Deviation (SD).

a. High precision but low accuracy.

Y

X

σ

δ

σp
φ

ỹ

x̃

µy

µx

blunder

b. Ideal case of precision and accuracy.

σ

δ

Figure 2: Relationship between accuracy, precision and correctness of measured values according to (Schwarz
1995) and (Witte and Sparla 2015, p. 69).
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In Figure 2, the concept of accuracy, including both systematic and random errors, see also Sections 1.2.4
and 1.8.2, is illustrated graphically, where

σ represents the so-called precision σ, indicates the size of the randommeasurement deviations
of a measurement series around its mean value, approaching the expected values µx, µy with
an increasing number of repeated measurements,

δ denotes the trueness, the size of the systematic deviation as the difference between the mean
or expected values µx, µy of the measurement series and the values x̃, ỹ recognized as correct
values,

σp denotes the accuracy of a single point of the series of measurements and

φ indicates the resolution with which the relevant measuring instrument generates the measured
values.

Accuracy according to Figure 2a, thus describes the correspondence between the values x̃, ỹ considered
to be correct and singlemeasured values xi,yi and can thus be regarded as a generic term for correctness
and precision.

note: Ameasurement result is accurate if it is theoretically free of systematic and random errors.

The ideal case is shown in the right Figure 2b, when the true values x̃, ỹ coincides with the expected
values µx, µy within the precision σ, i.e. δ < σ. If δ is even within the resolutionφ of the measuring
instrument, one speaks of themeasurements being free of systematic errors, or transferred to ameasuring
instrument that has been comprehensively calibrated, see also Section 1.2.5.

Not to be neglected in the quality assessment, however, are also the reliability criteria, see also
Section 1.8.9.2, so-called redundancy components4 as described in Neitzel (2010). With respect to the
adjustment calculation, Section 1.8, not only the stochastic model, see Section 1.8.3 or especially Section 1.9,
but also the functional model, see Section 1.8.2, is crucial for an unambiguous quality assessment of the
results. As Neitzel (2010) points out, the matching of a complete functional relationship between
the observations (model building) and the searched parameters with an appropriate stochastic model
for the observations is indispensable.

4 The redundancy components of the observations, see also Section 1.8.9.2, indicate to what extent the respective
observation is controlled by the measurement configuration. In the case of sufficiently well controlled obser-
vations based on an adequate measurement configuration, measurement errors in the data material can then
ideally also be detected and filtered out, see Section 1.8.8.
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0.2.1 Quality models for TLS

When transferring the concept of quality to TLS, special quality models can be formulated within
the context of a quality assessment, describing on the one hand the quality of the instrument, the
acquisition and the resulting point clouds, see Table 1, and on the other hand also that of the evaluation
processes registration and segmentation, see Table 2.

Table 1: Quality model for TLS, acquisition and point cloud.

quality models quality characteristics quality parameters

instrument calibration and accuracy parameters with std
measuring resolution ∆ρ,∆φ,∆θ
unambigious max. distance ρmax

stochastic model precision σρ, σφ, σθ

acquisition measuring arrangement viewpoint plan
sampling rate low, normal, hig, premium
angular resolution medium, high, super or ultra high

point cloud degree of discretization point spacing∆x,∆y,∆z
point precision σx, σy, σz

information content geometric, radiometric
completeness via registration

Accordingly, a TLS can be qualitatively assessed by means of the criteria whether and how extensively it
has been calibrated with a certain accuracy, cf. Section 1.2.5, which maximum unambiguous distance
∆ρ and maximum angular resolution∆φ,∆θ can be achieved device-technically, cf. Section 1.2.6 and
Section 1.2.2.1, especially Table 1.2, how large the maximum achievable measuring distance ρmax is, see
Table 1.2, and to what extent precision statements (σρ, σφ, σθ), cf. also Table 1.2 and see Section 2.1,
for the raw measuring information are possible based on a stochastic model.

However, the quality of the acquisition is directly related to the choice of the angular resolution
and acquisition rate for the distance measurement, see also Section 1.2.6, and the optimization of the
measurement setup in the course of a viewpoint planning as e. g. in (Wujanz et al. 2016b).

By means of the degree of discretization, expressed by the point spacing σx, σy, σz, on the object,
i. e. howmuch point information is located in a certain area, the knowledge of the precision of these
points σx, σy, σz, the information content of geometric as well as radiometric information and, if
applicable, the completeness by a registration procedure, the quality of the point clouds generated with
a TLS can be characterized. Since the knowledge about the point precisions depends on the one hand
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on the use of an adequate stochastic model, cf. Section 2.3.1, and on the other hand the point spacing
on the object depends on the chosen, or planned measurement configuration, as well as the selected
acquisition parameters, cf. Section 1.2.1, especially Figure 1.3, there is a direct connection between the
choice of the TLS as well as the type of recording with the quality of a resulting point cloud.

Table 2: Quality models for TLS’s evaluation steps segmentation and registration.

quality models quality characteristics quality parameters

segmentation completeness –
diversity in objects curved, planar, cylindrical, etc.
separation precision geometric and radiometric

registration precision parameters with std
reliability redundancy components

Actually, in the case of TLS, due to the complexity of the measurement and evaluation process, one
must speak of quality modeling over several process steps, as Neuner (2019) explains referring to
the example of registration with targets, cf. also Section 1.11. As already illustrated in Table 1, the
individual model categories are intertwined and only in combination form a comprehensive quality
picture. Hence, not least the quality of a point cloud resulting from the choice of the instrument
and the acquisition configuration is decisive for the quality of subsequent processing steps such as
segmentation and registration, see Table 2.

When considering segmentationmethodswith regard toTLS, the primary goal is to obtain a complete
segmentation result, see also Section 1.10, especially Item 1, and, if possible, to cover a large diversity in
the recognition of objects, such as planar, curved or even cylindrical surface elements, with a minimum
of additional information. The precision of the separability of the individual objects from each other
depends on the one hand on the precision σx, σy, σz of the points themselves and on the other hand
on the degree of discretization, respectively the point spacing∆x,∆y,∆z, on the object, cf. also Table 1.
Accordingly, the segmentation result is also directly defined by the quality during the acquisition and
the use of a TLSwith a qualitative stochastic model.

Registration techniques rely on methods of adjustment calculus, see also Section 1.8, and regardless
of the design of the functionalmodel, see also Section 1.8.2, a stochasticmodel, see Section 1.8.3, is always
underlying, which can be derived from the precisions of the observation pairs used for registration, cf.
e. g. Equation (4.24). Reliability measures such as redundancy components, see Section 1.8.9.2, also
provide insight into the controllability of the observations in registration procedures and can be used
in terms of the calculation of normalized residuals to significantly identify poor observation data, see
Section 1.8.8.2.
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0.2.1.1 stochastic modelling

Stochastic models constitute one of the essential quality characteristics in the use of TLS, see Table 1,
since, as explained in the previous section, they influence the quality of both the point clouds arising
from the acquisition and the processing methods to be applied to them.

For instance, this becomes apparent when using the point precision to estimate the significance to
which points belong by definition to a plane in the course of a plane segmentation, cf. Section 4.3.2.

When considering registration procedures, the influence of the observations can thus be controlled
via the weight derived from the respective precision on the adjustment result, see also Section 1.8.3 and
(Niemeier 2008, p. 124). Hence, the use of a meaningful stochastic model for the referencing of TLS
scans is of utmost importance for an adequate precision statement of the registration parameters, not
least since only then erroneous observations as well as weak or false correspondences can be correctly
identified and eliminated, cf. Section 1.8.8.2.

suitable stochastic models are indispensable for both segmentation and referencing algorithms.

However, modeling the quality for the reflectorless distance measurement of a TLS as a precision charac-
teristic is a considerable challenge in practice owing to the numerous precision-limiting environmental
influences and its complexity, see Section 1.2.4.1. So far, various approaches exist to incorporate stochas-
tic models, see Section 1.9, however, they could not be mapped in their completeness to consider all
influences in a unified and comprehensive model and consequently have only moderate explanatory
power.

0.3 Aim and Scope of Research

The research topics of this dissertation are thematically classified into the modeling of quality in TLS,
inspired by themotifs in Section 0.2, especially Section 0.2.1 and Section 0.2.1.1, on the one hand, and the
evaluation process of TLSmeasurements, inspired by the motifs in Section 0.1, especially Section 0.1.1,
on the other hand.

resarch focus 1: As a consequence of the missing or only partially modeled stochastic models
for TLS, see Section 0.2.1.1 and also Section 1.9, previous quality models for TLS, such as in Table 1, are
incomplete, nevertheless, as described in Section 0.2.1, having a great relevance and significance on
evaluationprocedures and their quality, aswell as the segmentation and registration in the context ofTLS.
Hence, Chapter 2 investigates whether an all-embracing stochastic model that covers all environmental
influences can be established in order to enhance and complement the quality model.
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resarch focus 2: The potential of segmentation as well as registrationmethods for TLS currently
is not fully exploited caused by the sequential and independent approach to evaluation, see Section 0.1.1
and Figure 1, and hence potential synergies cannot be used. Moreover, the lack of or the incomplete
application of stochastic information on the basis of a stochastic model for the evaluation procedures is
a further weakness. As a consequence, Chapter 4 examines in how far partial information derived from
different segmentations in Chapter 3 can be extracted and used in the course of a registration procedure
and, conversely, investigate how the registration information obtained might serve a comprehensive
segmentation.

consequently, in summary, this thesis intoduces a new method that exploits the existing
topology of single scans for efficient segmentation by using extracted features, enriched with stochastic
from a new stochastic model, as corresponding registration information to complement the previous
segmentation result.

0.4 Thesis Organisation

The individual chapters of the present thesis are to be seen in a certain context, which results in a
structure according to Figure 3.

First of all, Chapter 0 initiates by emphasizing the significance of TLS and the associated evaluation
steps of segmentation and registration, which culminates to the motivational reasons for the main
chapters.

Building on this, Chapter 1 provides a brief insight into existing methods (Sections 1.9 to 1.11) and
illustrates underlying principles and evaluation methods, to be seen in the context of laser scanning,
with relevance to and as a prerequisite for the main chapters. Among them are the genesis of the
measurement, as well as influences on the measurement within TLS in Section 1.2, the representation of
the measurement in Section 1.4, mathematical background such as coordinate systems, graph theory,
Helmert’s transformation or the definition of rotations in Section 1.3 and Sections 1.5 to 1.7, as well as
concepts of adjustment calculus, in particular the Gauß Helmert Model (GHM) and the accompanying
elimination of outliers in Section 1.8.

In the first major Chapter 2, a new stochastic model is established bymeans of the intensity behaviour
and influencing factors on the distance measurement of a TLS in Sections 2.1 and 2.2, followed by
the evaluation and derivation in Section 2.3 and the demonstration of suitability in Section 2.4. The
derivation of stochastic models in 3Dmeasuring mode as well as the usability for pulse-based TLS are
shown in Section 2.5 and Section 2.6 for completeness.

The presentation of a new, very efficient method for the segmentation of point clouds based on
geometric as well as radiometric information is given in Chapter 3 referring to an example data set
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from Section 3.1, preprocessed in Section 3.2. After the description of the segmentation algorithm in
Section 3.3, results with concluding evaluation are shown in Sections 3.4 and 3.5.

Taking advantage of a pre-segmentation, see Section 4.3.1, of the individual point clouds of the
example data set in Section 4.1 provided by the segmentation algorithm implemented in Chapter 3,
planar regions with derived stochastic information based on Chapter 2 are segmented and matched in
Section 4.3.2 and Section 4.4 of Chapter 4 in order to reference the point clouds in Section 4.5 and
finally to complement the individual segmentations to an overall segmentation in Section 4.6 via the
existing matching. The final results and a closing discussion of the segmentation algorithm can be
found in Sections 4.7 and 4.8.

A concluding consideration of the individual chapters of this thesis with reflections for further
investigations ends with Chapter 5.

0.4.1 Main Structure of the Thesis

Chapter 0
Introduction to
motivation and
scope of research

Chapter 1
Fundamentals and

related work

Chapter 2
An all-embracing
stochastic model

for TLS

Chapter 3
Segmentation based

on geometric
and radiometric
information

Chapter 4
Combined synergetic
segmentation and

registration

Chapter 5
Conclusion and

outlook

Figure 3: Structure and dependencies of chapters.
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0.4.2 Implementation of Functions

The algorithms and the functions contained therein for the evaluation of the laser scans with regard
to segmentation and registration were implemented exclusively in the interpreter language Matrix
Laboratory (MatLab)5.

5 MatLab®is a proprietary software developed by the U.S. company MathWorks®(https://www.mathworks.
com/products/matlab.html) to overcome mathematical problems, mainly numerical calculations based on
matrices, and to graphically visualize the results.
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1
Fundamentals and RelatedWork

The following chapter deals with the general theoretical and functional relationships as well
as the basics in the field of TLS for the subsequent main chapters and serve as a guide. In particular, a
categorization of the measurement method is given in Section 1.1, followed by measurement principles
as well as the resulting measurement quantities and error influences in Section 1.2. Processing methods
of relevance for this thesis are presented in Sections 1.9 to 1.11, as well as the required data representation
in Section 1.4. Special functional relationships and methods of particular concern are presented in
Sections 1.5 to 1.7, and an introduction of adjustment methods is finally given with Section 1.8.

1.1 Methods of 3D-Data Acquisition

Measuring methods enabling the measurement of 3D information are characterized by a variety of
features and properties. Basically, a categorization into

a. passive and

b. active methods

can be made in this context. Whereas active methods, see Figure 1.1, transmit energy to the object to be
captured in order to subsequently receive the emitted radiation, passive methods, among them imaging
methods such as photogrammetry and especially Digital Image Correlation (DIC), operate with existing
radiation.
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active 3D acquisition

tactile

surface volume

CMM DVS

contactless

surface volume

CT

optical other

interferometry radarlaserscanning triangulation ultrasound

Figure 1.1: Active 3D acquisition methods based on (Gühring 2002, p. 14).

Scanning laser measuring systems as well as TLSs are categorized within the active methods among those
that operate contactless and areal1, cf. Figure 1.1, having an optical measuring component.

1.2 Laser scanning

In general, the term laser scanning refers to the 3D capturing of an object’s surface by temporal and
spatial scanning with a laser beam (Deumlich and Staiger 2002, p. 403). The combination of
scanning under the spatial angles of rotationφ and θwith distance measurement ρ is reflected in the
so-called polar measuring principle, see Figure 1.3. The simultaneous and mostly incremental recording
of these polar elements enables the conversion of the 1D distance measurement to 3D cartesian object
coordinates, see Equation (1.1). The entirety of this set of points that is formed during the acquisition
process of an object is referred to as point cloud.
The basic functionality of scanning devices is similar, but they can be further differentiated by various
beam deflection systems

• rotating mirrors,

• oscillating mirrors,

1 In contrast to imaging methods, the acquisition of measured values with laser scanning is strictly speaking
quasi-areal based due to the mode of operation, see also Figure 1.3.
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1.2. laser scanning

• rotating / oscillating mirrors

and kinds of EDMUs, see Section 1.2.2. Laser scanning is used in various fields of application, according
to which three general categories of laser scanners can be distinguished:

1. Terrestrial Laser Scanners (TLSs)

2. Mobile Laser Scanners (MLSs)

3. Airborne Laser Scanners (ALSs)

According to their name, TLSs are used for terrestrial or stationary ground-based laser scanning, cap-
turing the environment spherically from a stationary position. Most current TLS use beam deflection
systems in the form of rotating mirrors and differ significantly in their potential range, realized with
common EDM (rangefinder)methods, such as TimeOf Flight (TOF) andAmplitudeModulated Contin-
uous Wave (AMCW) principles, see Section 1.2.2. Depending on the device type and the corresponding
EDMU, these are suitable in practice, e. g. for the surveying of industrial plants, larger buildings up to
high structures or opencast mines.

Laser scanners mounted on a mobile moving platform are referred to as MLSs and ideally have
only a single vertical beam deflection unit, thus they are also known as profile scanners according
to their scanning mode. In addition to the MLS, a GPS unit and an IMU are usually installed on the
platform so that the data can be transferred to a common reference frame by direct georeferencing. This
kind of system is termed aMobile Mapping System (MMS). For elongated and extensive target areas,
e. g. tunnels or roadways, the Terrestrial Laser Scanning is not really suitable due to the requirement
of many individual standpoints and therefore more time-efficient MMSs are used. According to the
environmental requirements, also different distance measuring methods are used in certain devices.

The functionality of ALS is similar to that ofMLS, whereby some have an oscillating mirror as beam
deflection unit and, due to the one-sided orientation caused by the application, only require a compar-
atively small Field Of View (FOV) (typically 40° to 70°) in contrast to MLS (360°), (Mettenleiter
et al. 2015, p. 30). A major aspect of ALS is the possibility of multi-target capability2 in combination
with a long range, allowing only pulse propagation methods to be used, for example in forest areas, to
scan both treetops and the forest floor.

1.2.1 Terrestrial Laserscanner – Scanning Principle andMeasurements

The main internal components a TLS consists of as a so-called panorama scanner 3 are the following

2 The almost new TLSRiegl VZ-400i also has a multi-target EDMU embedded.
3 Panorama scanners are capable of rotating around their standing axis, enabling them, in contrast to camera view
scanners with a maximum FOV of approximately 50° x 50°, to capture the environment except their footprint in a
360° scan.
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a. Electro-optic Distance Measurement Unit (EDMU)

b. motor and standing axis (φ) with angle encoder (light green)

c. device base to connect the TLSwith a tribrach on a tripod

d. rotating mirror

e. motor and tilting axis (θ) with angle encoder (light green)

f. Central Processor Unit (CPU)

depicted in Figure 1.2. Within the device, continuous laser light is emitted by the diode of the EDMU

(a), which incident the rotating mirror (d) of the vertical beam deflection unit (e) and is deflected
perpendicularly. The signal reflected by the object then returns to the EDMU in the same way and is
recorded by a photo diode and evaluated.

laser beam

a

b

c

d

e

f

Figure 1.2: Basic components of a TLS based on (Mettenleiter et al. 2015, p. 14).

Due to the circular deflection θ (360°) of the laser beam with a high rotational speed of typically 25 to
50 Hz of the rotating mirror coupled with the measuring rate of up to 2 million distance values per
second of the EDMU, up to 20000 2D points are obtained on a profile plane orthogonal to the tilting
axis. A further, significantly slower rotationφ (180°) performed by the horizontal deflection unit (e)
around the standing axis of the device results in up to 5000 profiles or 50 million 3D points per laser
scan (Mettenleiter et al. 2015, p. 14). This incremental scanning of the object, see Figure 1.3, is
coordinated by the control unit of the CPU, so that the angle encoders of the two deflection units (b
and e) capture the two angle values θ and φ synchronously with the distance measurement ρ, see
Section 1.2.2, in the EDMU.
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1.2. laser scanning

The elementary observations of a TLS are the polar elements4 φ (direction of rotation), θ (tilting angle),
the corresponding reflectorless distance measurement ρ as well as from the interaction with the object
resulting intensity I. Due to the incremental row ( i ) and column ( j ) scanning of the laser scanner in
a predefined angular increment∆θ = ∆φ, the 3D coordinates, see also Section A.1.2,

xi,j =


xi,j

yi,j

zi,j

 =


ρi,j sin(θ0 + i∆θ) cos(φ0 + j∆φ)

ρi,j sin(θ0 + i∆θ) sin(φ0 + j∆φ)

ρi,j cos(θ0 + i∆θ)

 (1.1)

have a definite position in a raster, where ρi,j denotes the distance corresponding to θi,j = (θ0 + i∆θ)

andφi,j = (φ0 + j∆φ). Figure 1.3 shows the scanning of a building and the formation of such a grid.

X

Y

Z

[
xi,j

Ii,j

]
j

i

(φ0, θ0)

∆φ

∆θ
φ

θ

ρi,j

x

y

z

Figure 1.3: Creation of a grid by incremental scanning of the TLS.

The control unit of the TLS’s CPU, see Figure 1.2 and denoted by f, is responsible for coordinating the
measurements with the movements of the deflection units, denoted by b and e in Figure 1.2, whereby
the pixel-by-pixel aggregation5 of the measured values is already carried out in the EDMU, Figure 1.2 a,
(Mettenleiter et al. 2015, p. 21).

4 Usually, the manufacturers of TLSs only provide 3D coordinates as the result of an acquisition, which can be
converted into polar coordinates if required.

5 With oscillating scanning heads, line shifts may occur under certain circumstances, so that the topology in the 2D

grid representation, see Figure 1.3 on the right, is no longer given precisely. However, this error can simply be
corrected by means of the known polar elements, but is not of importance for the panorama scanner used in the
investigation, as it has a rotating scanning head.
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1.2.2 Electro-optical DistanceMeasurement (EDM) – Principles and Differences

For a better understanding of the connections and the error budget of the measured values in the
following sections, the basic principles of EDM are explained in this section, with reference to e. g.
(Deumlich and Staiger 2002) for a more detailed explanation.
Various methods are suitable for EDM, differing mainly in their application, measurement range and
expected precision, such as

• pulse propagation time method (TOF),

• multi waveformmethod,

• triangulation method,

• phase difference method (AMCW),

• frequency difference method (FMCW),

• interferometry.

Table 1.1 lists the most common selection criteria for certain measurement methods, see Section 1.2.2, in
order to define the measurement method for the respective measurement task.

Table 1.1: Comparison of different methods for EDMwith regard to their performance data according to
(Mettenleiter et al. 2015, p. 9).

method measuring range characteristics

pulse propagation 1 m – several km fast, new standards due to
multi-waveformmethod

triangulation 1 m – 30 m cheap, robust for short distances,
strongly dependent on the surface

interferometry 10 µm – 50 m slow, expensive,
very high accuracy

phase difference max. 300 m very fast,
reasonable costs for high accuracies

Among the most common EDM methods used in modern laser scanners are the pulse propagation
method, also known as Time Of Flight (TOF) principle, and the phase difference method.
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1.2. laser scanning

pulse propagation method: For the TOFmethod, very short light pulses are generated in the
EDMU via a high-frequency oscillator with a clock frequency of around 15 GHz. A light pulse emitted
by the transmitter diode at time te with a certain amplitudeAe is reflected at an object surface and
after a certain time tr registered by the receiver of the EDMUwith an amplitudeAr, see Figure 1.4.

t

A

0

te

tr

ρ

Figure 1.4: Principle of pulse method.

The distance to the object

ρ =
c∆t

2nr
(1.2)

is determined by the measured time difference ∆t, which is proportional to the travelled path, where

c speed of light in vacuum

∆t = tr − te time difference between emitted pulse at te and received pulse at tr, see Figure 1.4

nr refractive index of medium

An essential advantage of the TOFmethod compared to the phase difference method, see Section 1.2.2,
is the unambiguousness of the distance measurement and the possibility of measuring larger distances.

However, the TOF method is less accurate due to the too high demands on time measurement
resulting from the enormous speed of the light.

multi-waveform method: The multi waveformmethod is based on the classical TOFmethod,
see Section 1.2.2, whereby all information is recorded within the time window between transmission
and receipt. If several objects are in the beam path within this time period, this leads to multiple
reflections, e. g. due to the partial transmittance of some object surfaces, whose received pulse sequences
can be evaluated individually.

For example, the distances to several objects in one spatial direction can be determined or any
interfering objects can be filtered out. In particular ALS systems are able to achieve a higher temporal
and hence spatial resolution (Roth, Thompson, et al. 2008).
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triangulation method: Triangulation is one of the oldest existing measurement methods
and dates back to the 8th century. As the name triangulation suggests, the geometry within a triangle is
used under certain assumptions (known quantities) to calculate the desired measured quantity.

A large variety of modern so-called active and passive triangulation methods are used in current
measuring instruments. Active triangulation methods

• laser triangulation,
• light section triangulation,
• structured light triangulation,

use at least one (structured) light source in combinationwith at least one camera sensor, whereas passive
methods are based on classical photogrammetry with only one or more 2D cameras.

Contrary to other methods, laser triangulation indirectly determines the distance to the object. The
laser beam, which is only used for signalization, hits an object and is detected as a light spot at a certain
position in the photosensitive sensor, see Figure 1.5.

ρ

b

f

∆x

α

Figure 1.5: Principle of laser triangulation.

In a simplified representation, the displacement ∆x of the light spot on the sensor and the focal length
f have the same ratio as the object distance to be determined ρ and the base distance b between laser
diode and camera, representing the tangent of the triangulation angle α.

b

ρ
=

∆x

f
= tanα ⇒ ρ =

bf

∆x
(1.3)

phase difference method: In contrast to the TOFmethod, with the phase difference method6

continuous high-frequency laser light (continuous wave as carrier wave) is amplitude-modulated with a

6 The phase difference method is also often referred to as the phase comparison method and, due to the formation
of the measurement signal, the term AMCWmethod is also common.
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1.2. laser scanning

sinusoidal signal (modulation wave) whose modulation frequency fm is generated in a high-frequency
oscillator of the EDMU, see Figure 1.6.

t

Carrier Wave

t

ModulationWave

t

Amplitude Modulated Continuous Wave (AMCW)

Figure 1.6: Amplitude modulation of a carrier wave.

The resulting amplitude-modulated signal (AMCW)Ae(t), see (1.4a), is permanently emitted by the
transmitting diode in the EDMU during ameasurement process and the signalAr(t), see (1.4b), backscat-
tered at the object is recorded phase-shifted by the receiving photodiode.

Ae(t) = Ae0

[
sin(ωt)

]
, (1.4a)

Ar(t) = Ar0

[
sin(ωt+ ∆φ)

]
, (1.4b)

where
Ae0 ,Ar0 maximum amplitudes of emitted and measured reflected signal

∆φ = φr − φe phase difference between emitted signal with phaseφe and measured reflected
signal with phaseφr which is eqivalent to ∆φ = ω∆t

ω = 2πfm angular frequency with modulation frequency fm

Figure 1.7 illustrates the principle of the phase difference method according to the emitted and reflected
signal, see (1.4). The received signal evaluated in the EDMU results in themeasuredmaximum amplitude
Ar0 (intensity) and the measured phase difference ∆φ, see (1.4b), leading to the length∆λ = λ∆φ

2π of
the shifted signal.
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The distance to the object ρ = nλ+∆λ
2 is calculated from the wave remainder∆λ and the number n

of integer wavelengths λ.

t

A
n2π

Ae(t)

∆φ Ar(t)

∆λ

λ ρ

ωt

Figure 1.7: Principle of phase difference method.

Due to the unknown number of integer wavelengths, at least two modulation frequencies are applied
in practice. The so-called coarse channel with fmc only serves to determine a coarse but unambiguous
distance value, whereas the fine channel with fmf

provides very precise but ambiguous distance values.
Thewavelengthλc resulting from the coarse channel limits at once themaximummeasuring distance

ρ = λc

2 . The coarse distance ρc, see (1.5a) , results, so to speak, directly as a wave remainder.
Via the coarsely determined distance, the ambiguities regarding the fine channel can be determined,

resulting in the final distance ρf, see (1.5b).

ρc =
∆φcλc

4π , (1.5a)

ρf =
λf
2

(
n+

∆φf

2π

)
, (1.5b)

where
∆φc, ∆φf measured phase differences of coarse and fine modulated carrier waves

λc = c
fmc

wavelength of the coarse signal based on the coarse modulation frequency fmc

n = b2ρc

λf
c number of complete wavelengths λf of the fine signal

Another possibility of signal propagation with the phase difference method is to simultaneously
amplitude-modulate the carrier signal with two sinusoidal signals of different frequencies (Metten-
leiter et al. 2015, p. 10).
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1.2. laser scanning

Ae(t) = Ae0

[
sin(ωct) + sin(ωft)

]
, (1.6a)

Ar(t) = Ar0

[
sin(ωct+ ∆φc) + sin(ωft+ ∆φf)

]
, (1.6b)

where
Ae0 ,Ar0 maximum amplitude of emitted signal and measured reflected signal

∆φc, ∆φf phase differences between emitted and reflected signal of coarse and fine modulated
signal, see Equation (1.6b)

ωc,ωf coarse and fine angular frequencies based on coarse and fine modulation frequencies
fmc and fmf

A so-called frequency-selective calculation of the phase differences of both measuring channels results
in a unambiguous and precise distance.

frequency difference method: Unlike the phase difference method, see Section 1.2.2, the
frequency difference method frequency modulates the transmitter signal at a constant amplitude.

The Frequency Modulated Continuous Wave (FMCW) method, named according to the signal
generation, records the difference in frequencies between the transmitted and received signal, which is
proportional to the distance.

By using several such frequency modulated signals, the distance is determined unambiguously.
Similar to multi waveform, see Section 1.2.2, the FMCWmethod can be used to measure several targets
in one spatial direction.

1.2.2.1 comparison of amcwwith tof method

In Table 1.2, the AMCWmethod is compared to the TOFmethod with regard to the ambiguity range,
the distance resolution and the distance uncertainty7.

The maximum unambiguous distance ρmax is limited in the phase measurement by the use of
the coarse modulation frequency fmc = c

λc
, whereby the time tmi after which sufficient intensity is

still received for signal evaluation is decisive in the propagation time method. The strength of the laser
pulse allows the maximum distance to be influenced in the TOFmethod, however, the Signal-to-Noise
Ratio (SNR), having a negative effect on the signal evaluation, rises with decreasing distance.

7 With distance uncertainty, the term precision of a distance measurement, used in the following, is understood.
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Table 1.2: Comparison of TOF and AMCWmethods according to (Wehr and Lohr 1999).

criterion tof amcw

unambiguous max. distance ρmax = c
2 tf ρmax = λc

2

distance resolution ∆ρ = c
2∆to ∆ρ = λf

4π∆φ

distance uncertainty σρ = c
2 trise

1√
SNR

σρ = λf

4π
1√
SNR

For the AMCW method, the resolution ∆ρ of the distance measurement is limited on the one hand
by the fine modulation frequency fmf

= c
λf

– the higher the modulation frequency, the higher the
resolution – and on the other hand by the phase measurement∆φ.

A theoretical distance resolution of ∆ρ ≈ 0.05 mm is obtained from a commonly used fine
modulation frequency of fmf

= 96 MHz and the possibility of digital phase measurement with a
resolution of up to 1

10000 of a period (Deumlich and Staiger 2002, p. 163).
The resolution of the time∆to is crucial for the distance resolution of the propagation time method.

With a signal propagation of 15 GHz, this leads to a temporal resolution of∆to ≈ 0.066 ns, resulting
in a distance resolution of∆ρ ≈ 10.0 mm.

Concerning the distance uncertainty σρ, the determination of the time trise of the ascending pulse
is of importance for the TOFmethod, respectively the fine modulation wavelength λf for the AMCW

method. In addition, the square root of the SNR, see also Section 1.2.4.1, has an inversely proportional
effect on the determination of the uncertainty.

note: A reduction of the noise component and thus of the stochastic effects, see Section 1.2.4.1,
i. e. an improvement of the SNR, can be realized by repeated measurements and subsequent averaging.
Systematic error components present in the measurements, see Section 1.2.4, are mostly compensated
by the device manufacturers in the laboratory or determined in a calibration process, see Section 1.2.5.

1.2.3 Principle of AngularMeasurement

The two deflection units, see Figure 1.2,

• beam deflection unit with respect to tilting axis (e)

• deflection unit with respect to standing axis (b)

of modern TLSs are equipped with so-called encoders, that determine the respective deflection angles8,

8 If the rotation axis of the instrument is aligned vertical the deflection angles θ andφ are named zenith angle and
horizontal direction.
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1.2. laser scanning

tilting angle θ and directionφ referring to the instrument system according to Neitzel (2006), see
also Section 1.3. The schematic layout of an angle encoder is shown in Figure 1.8.

a

b

c

d

Figure 1.8: Schematic representation of an angle encoder for according to (Mettenleiter et al. 2015).

The circular encoder disk, see Figure 1.8, made of glass is mounted on the respective rotor axis (a) and
has a very fine incremental radial line graduation (b) imprinted on the outer ring. The read head (c)
attached on the outer ring of the encoder disk is equipped with an optical sensor capable of counting
the number of lines during rotation.
The known number of lines on the disc determines the possible angular resolution9 ∆θ = ∆φ of the
scanner, resulting in the actual angular position

θ = φ = nl∆φ with ∆θ = ∆φ (1.7)

according to the number nl of currently counted lines. The reference point or zero point (d) of the
angle measurement is marked by a separate dash, called the index, according to which the counternl is
reset to 0 after one complete rotation.

1.2.4 Error Influences onMeasurements

The error budget within the TLS is very complex, according to which various influencing groups on the
measured values

• influences stemming fromthemeasurement system (errors causedby theEDMU, see Section 1.2.4.1,
axis errors, see Section 1.2.4.3)

• influences arising from the signal path (atmospheric influences, see Section 1.2.4.1)

• influences stemming from the acquisition configuration (distance to the object and incidence
angle), see also Section 1.2.4.2

9 Modern TLS, such as the Z+F IMAGER®5006h, are equipped with angle encoders, that have 200000 line
graduations, yielding an angular resolution of∆θ = ∆φ = 0.0018◦.
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• influences originating from the measured object (color, material, humidity, etc.), see also Sec-
tion 1.2.4.2

can be differentiated from each other. With regard to some specific error influences on the measured
values during TLS, a general distinction is made between random and systematic errors, see also Sec-
tion 1.8.2. As the name suggests, systematic errors systematically falsify measurements, i.e. by defined
amounts.

If systematic influences can be evidenced significantly via a suitable measurement setup, they may
be transferred into an adequate error model in case all dependencies can be modeled. In the context
of a system calibration, as e. g. in Section 1.2.5 for a TLS, calibration parameters (errors from the EDMU

and axis errors) can be finally determined and taken into account via suitable correction terms to the
original measured values.

Errors of a random nature are caused within the device by the physical imperfection of the EDMU

and the beam deflection unit , moreover, they include all stochastic effects caused by other influences
that cannot be incorporated in a correction model.

1.2.4.1 influencing factors on distance measurement

errors caused by the rangefinder Errors arising from the EDMU can be distinguished as
listed below

• zero error k0

• scale error ∆s
• cyclic phase error ∆cp
• phase inhomogeneities

and sum up to the overall error

ρr − ρm = ∆ρ+ vρ = k0 + ∆s+ ∆cp (1.8)

from the difference between reference ρr and measured ρm distance and a small residual error vρ.

zero error: For reflectorless distance measurement of a TLS, the beam deflection system with e. g.
rotating mirror causes signal delays in optics and electronics resulting in so-called blind paths
of the measuring beam. The blind path is the distance the emitted signal travels from its
transmitting point (electronic zero) to the zero point of the measuring instrument (mechanical
zero), ideally coinciding with the TLS’s axes, see also Section 1.2.4.3.

The constant and distance-independent path has a systematic effect on all distance values and is
referred to as the zero error.
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Due to the strong temperature dependence of the error10 byheating effectswithin the instrument

k0 = ρr − ρm, (1.9)

it is continuously detected in the laser scanner via a reference distance ρr and the measured
values ρm are compensated by it (Mettenleiter et al. 2015, p. 49).

scale error: The scale for EDM is determined by the oscillator frequency for time measurement
in the TOFmethod and by the modulation frequency fmf

for fine measurement in the AMCW

method.

The measurement frequency is falsified due to temperature-related (temperature dependence
of the quartz resonance frequency) as well as operation time-dependent (ageing of the quartz
and change in the operating voltage) circumstances.

The resulting deviation (frequency error ∆f) of the actual frequency f of the EDM compared
to the nominal frequency f0 results in a distance error proportional to the distance or a scale
deviation (scale error ∆s), which has to be taken into account by a scale correction.

The scale error ∆s is determined by the manufacturers TLSs by comparing measured distance
values ρmi

with precisely determined reference distance values ρri on a comparator track
(interferometric measuring principle, see (Joeckel et al. 2008)).

Using a suitable functional model11, see also Section 1.8.2,

ρri = ρmi
(1 + ∆s) where ∆s =

f0 − f

f
=

∆f

f
(1.10)

the scale error ∆s can be determined, for example, by using a GMM, see Section 1.8.5.

cyclic phase error: The transmitting and receiving units of the EDMU are located very close to
each other, causing an electrical superposition of parts of the transmitter signal with the distance
signal detected in the receiver, termed electrical crosstalk.

Furthermore, scattering infrared radiation can reach the receiver directly from the transmitter
and be superimposed with the incoming light of the measurement. Due to the use of the same

10When correcting for the zero error k0 in the device, it is assumed that the measured distances ρm have already
been compensated for all other systematic errors.

11 In reality, the zero error and all other systematic errors, such as the parameters for describing the cyclic phase
error, are determined simultaneously via an comprehensive functional model, otherwise the errors cannot be
separated.

27



fundamentals and relatedwork

optical components that are equally traversed by the emitted and received beams, multiple
reflections may also occur. In both cases, this is referred to as optical crosstalk.

The aforementioned causes act in their entirety as a cyclic phase error that occurs periodically
with a multiple of the fine modulation wavelength λf and can be distance-dependent.

Accordingly, a correction model results whose parameters can be determined by measuring
reference distances ρri with a length comparator, see e. g. similar to (Deumlich and Staiger
2002, p. 166) or as part of a self-calibration (e. g. Bae and Lichti 2007)

∆cp = Ac1 sin
(
(ρmi

− φf)
4π
λf

)
+Ac2 cos

(
(ρmi

− φf)
4π
λf

)
(1.11)

whereAc1 ,Ac2 are the correction amplitudes for the cyclic correction andφf is the phase shift.

phase inhomogeneities: Since the transmitter diodes cannot be manufactured without errors,
the modulation phase may be dependent on the transmitter location on the diode surface.
This leads to the fact that not all modulated beams have the same phase position at the same
time, one speaks of phase inhomogeneity (Deumlich and Staiger 2002, p. 164). Using
high-quality diodes combined with optical mixing of the beams before the signal is transmitted,
phase inhomogeneities can be largely reduced.

note: The root mean square (RMS) value ερ =
√

1
n

∑n
i=1 vρi

of the remaining errors vρi
after

compensation of the 1, . . . ,n distances to the true reference distances are specified by some manufac-
turers of TLSs as so-called linearity error, e. g. (Mettenleiter et al. 2015, p. 51), and are given for a
certain distance. For the TLS Z+F IMAGER®5006h primarily used in this thesis, this error is less than 1
mm per 50 m and indicates the accuracy of the distance measurement.

atmospheric influences Further influencing factors on the EDM are different atmospheric
conditions such as

• temperature12,

• air pressure,

• and relative humidity,

12The atmospheric influences act in their magnitude as in the indicated order, whereas the temperature has the
largest influence.
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1.2. laser scanning

acting during measurements along the measuring path. These have a direct effect on the velocity of
propagation c of the measuring beam and thus on the determination of the distance.

Suitable correction terms can be used to determine the so-called refraction coefficient n prevailing
under the current meterological conditions. Hence the correction value

en = ρ
(nref − n

n

)
13 (1.12)

for a distance measurement ρ results, also referred to as 1st velocity correction due to the impact of
the atmospheric influences on the velocity of propagation c, where nref = c0

fmλm
is the reference

refraction coefficient, which depends on the modulation frequency fm and the wavelength λm.
The correction value acts like a scale error, see also Section 1.2.4.1, depending on the distance to be

determined. For long distances and extreme atmospheric conditions, the error influence may be so
large that it has to be taken into account.

stochastic effects Unknown and uncorrectable systemic errors, see Section 1.2.4, as well as
random errors are reflected in the distance noise, indicating the precision of the distance measurement.

Since the EDM is based on the analysis of the received laser light, see Section 1.2.2, the distance noise
(precision σρ) depends on the energy of the received light (amplitude Ar0 , see Equation (1.4b) or
Equation (1.6b)) (Mettenleiter et al. 2015, p. 51) and is therefore also subject to all other factors
influencing the intensity measurement, see Section 1.2.4.2.

Due to the very complex relationships of the different influencing factors on the intensity, see
Equation (1.15), in particular the correlation of the influence of the material properties on the influences
of the incidence angle and the distance, see Figure 1.11, the distance noise σρ of a TLS is always indicated
in practice for a certain distance ρ under an incidence angleα of 0° and for the respective surface with a
known reflectivity γλ.

In order to determine the TLSs distance noise σρ, distances to different panels, e. g. as shown in
Figure 2.1, are usually determined on a measuring track by the manufacturer during factory calibration
(Mettenleiter et al. 2015, pp. 50-51), see Section 1.2.5. By means of a large number n of single
measurements ρi, randomly distributed around their mean value

ρm =
1
n

n∑
i=1

ρi, (1.13)

their deviations∆ρi = ρi − ρm from the mean value ρm can be determined, resulting in the typical
normally distributed characteristic according to Gauss, see Figure 1.9, based on their frequencies f.

13The refraction coefficient nr in Section 1.2.2 corresponds with the correction to the expression (1 + nref−n
n

)
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Figure 1.9: General distribution of the distance noise σρ for the mean distance ρm.

Depending on the distance, incidence angle, material properties and sampling rate, see Table 1.3, an
individual distribution of the distance residuals is obtained. The wider the distribution, the less precise
the distance measurement. The manufacturers specify the so-called 1σ noise, see Figure 1.9, as the
decisive parameter.

however due to the comprehensive factors influencing the intensitymeasurement, see Section 1.2.4.2,
and especially the complex interrelationship between the influences, compare Equation (1.15), hence
also on the distance measurement, researches such as Soudarissanane et al. (2011), Elkhrachy and
Niemeier (2006) and Zámečníková et al. (2014) consider the aspects independently of each other.

1.2.4.2 influencing factors on intensity measurement

Factors that directly influence the intensity of the reflected laser light and hence on the EDM can be
divided into the following three groups:

a. Scanner properties (frequency of electromagnetic wave, beam divergence14)

b. Scanning geometry (incidence angle, object distance)

c. Object properties (roughness, reflective behaviour of the irradiated surface)

Figure 1.10 illustrates the relationships between the influencing factors of groups a, b and c, that weaken
the energy of the emitted signal strengthAe0 .

14The laser spot size depends on the measuring distance, the angle of incidence and the beam divergence and has a
direct effect on the backscattering behaviour, see also (Pesci et al. 2011)
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Figure 1.10: Interaction of the factors influencing the intensity with respect to the radar equation.

Afunctional relationship between the emittedAe0 and the received signal strengthAr0 canbe indicated
by means of the radar equation

Ar0 =
Ae0d

2
r

4πρ44β2ηsηaσc (1.14)

– both radar electromagnetic and laser waves follow the same principles –, see e. g. (Wagner et al.
2006), where

dr [m] receiver aperture diameter of the TLS

ηs system transmission factor with respect to the optical TLS components

ηa atmospheric attenuation factor

ρ [m] range (distance) from scanner to object

β = λ
π [rad] beam divergence depending on the wavelength λ of the emitted light

α [rad] incidence or scattering angle, defined as the angle between the incident
beam and the surface normalns

σc = γλA cosα [m2] backscatter cross section comprising the product of the target reflectivity
γλ, the target areaA = πρ24β2 and the influence cosα of the incidence
angle α (scattering angle) on the object surface in relation to an isotropic
scatterer (Jelalian 1992)

By inserting the backscatter cross section σc into the original radar equation, see (1.14), a simplified
form for a so-called laser equation is obtained:

Ar0 =
Ae0d

2
rγλ cosα
4ρ2 ηsηa (1.15)

Obviously, (1.15) depends solely on the instrument properties a (dr, ηs,Ae0) as well as an atmospheric
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factor ηa, the scanning geometry b (ρ, α) and the object properties c (γλ).
Assuming that the parameter ηs is constant related to a certain instrument (Höfle and Pfeifer

2007), a common characteristic parameterCi = Ae0d
2
rηs for the TLS can be specified with the other

constant instrument-related parameters dr andAe0 .
At least during a TLS capture, the atmospheric conditions, see also Section 1.2.4.1, remain almost

constant, thus the factor ηa is to be regarded as conditionally constant. In a further simplified repre-
sentation, the received signal amplitude

Ar0 ∝
Ciγλ cosαηa

4ρ2 (1.16)

by the constancy of the other terms emphasizes the proportionality to the material reflectivity γλ and
to the impact of the incidence angle by cosα, as well as the reversed proportionality to the square of
the range 1

ρ2 .
In order to verify the theoretical regularities of the distance with 1

ρ2 , the angle of incidence with
cosα, as well as the surface reflectivity γλ with regard to the intensity behavior, panels with different
radiometric properties, see Figure 2.1, can be measured at defined distances and at different incidence
angles in the 1D-mode15 of the TLS.
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Figure 1.11: Intensity behaviour of the TLS Z+F IMAGER®5006h as a function of the measured distance ρ for
different panels, each with different reflectivity..

15Most TLSs do not provide a 1D-mode due to the loss of eye safety from a static laser beam, but profile 2D- or 3D
modes can be used alternatively.
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Figure 1.11 shows the mean intensity values

Im =
1
n

n∑
i=1

Ii (1.17)

obtained from the i = 1 · · ·nmeasured individual intensities Ii in percent for the panels in Figure 2.1
as a function of the distance ρ. The blue and red curves in Figure 1.11 illustrate the percentage decrease
in intensity for the 1l and 2l panels and confirm the theoretical loss in intensity by the ratio 1

ρ2 .
Below 10 m, the data values no longer follow this trend, as the scanner in this area seems to slightly

attenuate the very high signal intensity in order to avoid overmodulation (Blaskow and Schneider
2014). Basically, darker panels feature lower intensity values compared to lighter ones due to their lower
reflectivity – the darker the panels, the lower the reflection behaviour and hence also the intensity. The
percentage decrease in intensity due to different radiometric properties, e. g. of panel 1 l and panel 4 d
with more than 80%, is highest at shorter distances.

The influence of the incidence angle on the intensity is shown in Figure 1.12. The graph shows the
evaluation of the intensity of a panel with average reflectivity at 10 and 30 m by varying the incident
angle α.
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Figure 1.12: Intensity behaviour of the TLS Z+F IMAGER®5006h as a function of the incidence angle α at
different distances..

The intensity behavior, or the intensity drop with increasing incidence angle, for both distances is
largely linear but still slightly different from the degree of decrease, so that the influence of the incidence
angleα is not strictly independent of that of the distance. Furthermore, the behavior is not comparable
to the theoretical one of cosα.
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Even if systematics in the decrease of the intensity with increasing distance ρ as well as with incident
angle α can be observed, the effects cannot be represented in a generic model. On the one hand, due
to a slight correlation between distance and incident angle, see Figure 1.12, as well as the very different
drop behavior of the intensity at different radiometric surface properties, see Figure 1.11. Further effects
not yet considered, such as object roughness and the material itself, lead to more unknown factors and
dependencies, making modeling impossible without prior knowledge.

in the case of purely systematic effects, as Section 1.2.4.1, which can be significantly detected and
separated by means of a suitable measurement arrangement, a modeling and thus also an evaluation
in amathematical model, such as GMM or GHM, is possible. However, since the effects are not purely
systematic but also random and, moreover, cannot be modeled, they are all reflected in the intensity
decrease.

since all influences are reflected in the intensity and also affect the distance noise, as shown in
section Section 1.2.4.1, as well as the fact that the distance measurement is based on the evaluation of
the backscattered intensity (Mettenleiter et al. 2015, p. 51), the question arises whether a general
relationship between the intensity and noise behavior of the distance measurement can be established,
see the findings in Chapter 2.

1.2.4.3 influencing factors on angle measurement

Aswith distancemeasurement, cf. Section 1.2.4.1, there are also error components in anglemeasurement,
which are referred to as axis errors in the following.

axis errors are systematic deviations of the axes within the local coordinate system of a polar
measuring system, such as a total station or laser scanner, see also Section 1.3. According to Deumlich
and Staiger (2002) p. 205-206 and 211-212, an error-free idealized polar measuring system is present if

• the tilting axis ta is perpendicular to the rotation axis ra,

• the collimation axis ca is normal to the tilting axis ta and

• the collimation axis ca intersects the rotation axis ra.

In addition to the above enumeration, Deumlich and Staiger (2002) mention that the rotation
axis ra should remain strictly plumb, however, this is not an internal instrument error, rather a set-up
error. Since laser scanning, in contrast to tacheometry, the transfer of individual standpoints due to
different evaluation methods usually takes place in a local coordinate system at the beginning, a strict
vertical rotation axis is not necessarily required. Especially since today’s compensators ensure a safe
perpendicular positioning in case of rough levelling.
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These systematic deviations from the ideal are illustrated in Figures 1.13a to 1.13c and are referred to
subsequently as tilting axis error i, collimation axis error c and collimation axis eccentricity e.

a. Tilting axis error.

ra

ta

i

b. Collimation axis error.

ta

c

ca

c. Coll. axis eccentricity.

ca

P

e

Figure 1.13: Axis errors for a TLS based on Neitzel (2006).

From the definition of the axis errors according to Figure 1.13a, the following angle conditions between
the axes

αtra − i = 90° (1.18a)

αtca − c = 90° (1.18b)

αrca = θ− h with h as height index error (1.18c)

result with
αtra angle between tilting and rotation axis,

αtca angle between tilting and collimation axis and

αrca angle between rotation and collimation axis depending on direction measurement θ.

For the determination of the angular errors, e. g. also for the Z+F IMAGER®5006h, reference targets
of a test field measured with high accuracy are used, which are compared with the measurements
extracted from the laser scan data (Mettenleiter et al. 2015, p. 55). As with the distance correction in
Section 1.2.4.1, the differences canbe included in a correctionmodel and the angular errors, corresponding
to axis errors i and c, can be determined accordingly, whereby the RMS errors εθ and εφ resulting from
the calibration specify the angular accuracy of the TLS.
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1.2.5 Calibration of TLSs

The aim of instrument calibration is to determine the internal systematic error components of a
measuring device, in this case the errors caused by the EDMU, see Section 1.2.4.1, and axis errors, see
Section 1.2.4.3, of a TLS. The calibration parameters or systematic errors are modelled as a function of
the actual measured values and possible additional parameters in a comprehensive functional model (p.
1, para. 2, cl. 1, Petrovic 2003), here calibration model, so that ideally only random error components,
see also Section 1.2.4.1, remain.

note: In order to determine valid calibration parameters, suitable measurement configurations
and evaluation methods that guarantee sufficient error impacts are necessary.
In principle, a distinction can be made between two calibration types in the context of TLS:

1. individual and independent determination of errors within distance and directionmeasurement

2. combineddeterminationof all instrumental error components as part of a system self-calibration

Independent calibration parameters regarding the EDMU of a TLS can be determined by measuring and
comparing reference distances, see also Section 1.2.4.1, ideally on a length comparator such as those
used by most instrument manufacturers.

The separate determination of the axis errors can be carried out according to Neitzel (2006)
referring to a vectorial functional description16 of the errors by Stahlberg (1997). An overview of
procedures for component as well as system calibration of TLSs is given by Schulz (2008).

With regard to the joint determination of the calibration parameters for the EDMU as well as the
angle measuring unit, (Rietdorf et al. 2004; Rietdorf 2005) proposes a procedure in the wake of a
concatenated transformation of laser scans based on observed planar patches.

A slightly different functional error approach inspired by Lichti (2007) for self-calibration of TLSs
is used by Bae and Lichti (2007).

1.2.6 Interaction ofMeasurement Resolution and -Quality

The angular resolution of a laser scanner, here TLS Z+F IMAGER®5006h, is directly related to the
sampling rate, resulting in various combinations according to Table 1.3.

16The determination of the axis errors in this functional relationship presupposes the measurement of both faces
in analogy to a tacheometer.
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Table 1.3: Combination of various measuring rates with angular resolutions for a TLS Z+F IMAGER®5006h
(based onMettenleiter et al. 2015, p. 49).

angular resolution [°] sampling rates [kHz]

low normal high premium

Medium (0.072) 254 127 63.5 63.5
High (0.036) 508 254 127 63.5
Super high (0.018) 1016 508 254 127
Ultra high (0.009) 1016 1016 508 254

The angular resolution is the parameter that influences the degree of discretization at the object, which
is also distance and object dependent (angle of incidence). The basic measuring frequency of the TLS

used is a constant 1016 kHz for all sampling rates. However, the sampling rate enables the precision to
be affected. For a sampling rate of 256 kHz, a single target point can thus be measured 4 times, resulting
in a approx.

√
4-times lower distance measurement noise after averaging, cf. Figure 2.6.

Depending on the measuring task and effort estimation, taking into account recording time17 and
quantity of data, the suitable combination of quality (sampling rate) and resolution at the object
(angular resolution) can be selected according to Table 1.3.

the knowledge about the sampling rate is hereafter of major importance with respect to the
derivation and utilization of the proper stochastic model, cf. Chapter 2.

1.3 Coordinate Systems in the context of TLS

With regard to TLS, several coordinate systems are used, which are presented here for completeness and
further understanding for the following chapters.

scanner coordinate system The coordinate system of a TLS is a 3D cartesian right-handed
coordinate system. This local scanner coordinate system can be arbitrarily oriented, depending on how
the scanner is mounted on the tripod, see Figure 1.14.

The three-dimensionalCartesian coordinates of a point canbe calculated from the current directional
valuesφ, θ and the distance ρ according to Figure A.2 by Equation (A.13).

17The recording time is proportional to the resolution and quality. For far away objects, a higher angular resolution
coupled with a better quality (lower sampling rate) is therefore recommended.
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Figure 1.14: Local coordinate system of a TLS.

pixel coordinate system Due to the polar operating principle resulting in regular incremental
scanning –∆φ,∆θ – by TLSs of its environment, see Figure 1.3, the measured values can be mapped
into a grid structure, see Figure 1.15.
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Figure 1.15: Pixel coordinate system after scanning of a TLS.

This raster structure can be interpreted as a pixel coordinate system and can be spanned for both the
intensity values Ii,j and the resulting geometry, the coordinate values xi,j, see also Figure 1.18.

The origin of this coordinate system is defined by the beginning of the scan (φ0 = 0, θ0 = 0). It is
spanned by the positive column j and row axis i and is n×m in size, with n the size of a scanline i
andm the number of scanlines j.

remark: The data structure corresponds to amatrix or raster data structure as defined in Section 1.4.
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1.3.1 Outer Orientation in the context of TLS

The relation of the sensor coordinate system, see Section 1.3, to a superordinate coordinate system is
called outer orientation18 within the scope of TLS. Figure 1.16 shows several local scanner coordinate
systems, like in Section 1.3 for each scan station i in relation to a superordinate coordinate system.
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Y
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Ri,X0iscan station i

x

y

z
x

y

z

xy

z

Figure 1.16: Outer orientation of TLS standpoints with respect to the superordinate system.

By means of the outer orientation of a scanner standpoint i, the measured values or local coordinates x
can be transformed into the superordinate coordinate system usingX = X0i + Rix

19.

remark: In the course of a concatenated transformation of laser scans, in Section 4.5, exterior
orientations of individual scanner stations are determined.

1.4 Spatial Data Representation and Indexing

Depending on the measuring device used to acquire spatial data or whether these data have already
been further processed, e. g. in the context of referencing, they are available either

a. structured (e. g. topology by grid or matrix, octree, kd-tree) or

b. unstructured (no topology as non-structured point cloud).

18The term outer orientation or exterior orientation stems from the photogrammetric domain and is mostly used
within the context of bundle adjustment.

19The formulation is similar to the spatial similarity transformation, see Section 1.7, whereby the scale is assumed
to be constant at 1 due to the true to scale measurements of the TLS.
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If the 3D data is available in unstructured form, it must be structured hierarchically in order to carry out
spatial neighbourhood analyses such as labelling, see also Section 1.5. In forming the most commonly
used hierarchical 3D data structure (Samet 2006, p. 211), an octree, the environment is subdivided into
cubic volumes, so-called voxels, see Figure 1.17a.

octree: An octree (lat. octo – eight and engl. tree) is a data structure in computer science, whose
rooted tree has nodes with either eight direct children or none at all.

a. 3D Voxels of octree. b. Octree branching structure.

Figure 1.17: Formation of an octree structure for unstructured data.

For a given point cloud volume, the space is recursively divided into eight voxels according to Figure 1.17a
until a desired level of detail or voxel size is reached.

note: The more information content, i. e. the denser the 3D points, the higher the level of detail of
the object is represented and the finer the subdivision.

This subdivision can be represented as a so-called tree structure, see Figure 1.17b, in which a fast and
efficient search can be carried out for e. g. a neighbourhood analysis.

By storing the number of scan lines and their length while scanning with a TLS, the 3D data can be
stored as a regular grid, see Section 1.3 and Figure 1.15, resulting in a structured data form reduced in
complexity by one dimension.

Each four corresponding measured values xi,j, yi,j, zi,j and Ii,j are stored at their pixel position,
which leads to the layer structure in Figure 1.18, whereby the coordinate valueswere previously calculated
from the original polar elements θi,j,φi,j and ρi,j, see Equation (1.1).
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Figure 1.18: Information of the TLS represented in different Data Layers.

remark: If the original data structure is used by the scanning method of a TLS, see also Figures 1.3
and 1.14, the formation of an octree, see Figure 1.17, can be omitted, since the known adjacencies result
in a more or less direct tree structure, cf. Section 1.5.

InMatLab, the layer structure according to Figure 1.18, as well as further information of the scan, such
as dimensions or additional information, can be stored in a so-called structure array, see Figure 1.19.

structure array: A structure is a data type that groups related data using data containers called
fields. Each field can contain data of any type or size.

point clouds

p_cloud(1) p_cloud(i)

.name

.size

.x

'station 1'
[3,3]

1 2 3

4 5 6

7 8 9

.name

.size

.x

.y

.z

.I

'station i'
[3,3]
· · ·
· · ·
· · ·
· · ·

Figure 1.19: Representation of a point cloud structure array in MatLab.

InMatLab syntax, the structure according to Figure 1.19 for p_cloud(1) results as follows by Code 1.1.
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Code 1.1: Filling a point cloud structure in MatLab.

1 p_cloud(1).name = 'station 1';

2 p_cloud(1).size = [3,3];

3 p_cloud(1).x = [1,2,3;4,5,6;7,8,];

Access to, for example, the x-component of the p_cloud data structure with index 1, can then be
accessed very easily by p_cloud(1).x.

1.5 Graph Theory and Connected Component Labeling

Labeling CCs20 is one of the most used and efficient method in Computer Vision (CV) to detect
contiguous regions, mostly in digital images but also data of higher dimensionality (Samet and
Tamminen 1988), see also Section 1.4.
Shapiro (1996) defines Connected Component Labeling (CCL) as an operator whose

input is a binary image and [...] output is a symbolic image in which the label assigned
to each pixel is an integer uniquely identifying the connected component to which that
pixel belongs.

CCL can be understood as an application of graph theory.

graph definition: A graphG is a pairG = (V,E) where V is a finite set of vertices, also called
nodes or points of G and E ⊆ {{x,y} | (x,y) ∈ V2 ∧ x 6= y} is a subset, the edges, also
called links or lines – i. e. an edge is associated with two distinct vertices – ofG (Bender and
Williamson 2010).

On the basis of so-called vertices, containing the information21, and connecting edges, representing the
adjacencies22, a certain graph can be constructed, see also Figure 1.17.

For the labeling, i. e. the identification of connected regions, a special algorithm traverses this graph
and labels the vertices on the basis of the connectivity and the relating neighboring values described by
a heuristic23.

20CCL is also often used synonymously with Connected Component Analysis (CCA), region labeling or region
extraction and blob extraction or blob discovery.

21For the CCL, various types of information, such as 3D data in an octree data structure, see also Figure 1.17a, or
various image information as 2D raster can be considered.

22Depending on the medium, either 3D or 2D, the connectivity is determined. For example, raster structures such as
images can have a 4- (direct) or 8- connected neighborhood, see Figure 3.5, whereas a voxel structure in an octree,
see also Figure 1.17a, can have either a 6- (directly adjacent faces), 18- (adjacent faces and edges) or 26- (adjacent
faces, edges and corners) connected neighborhood.

23A heuristic concerning a voxel structure with 3D points can be a distance criterion between points of two
adjoining voxel cells or concerning a raster structure for example the difference of the grey values of adjoining
pixels.
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If the problem is transferred to a grey-value image, see Figure 1.20a, a binary image can be obtained by
simple thresholding, Figure 1.20b24.

remark: The pixels that correspond to a defined gray value range are classified via thresholding.

a. Greyscale image. b. Binary image.

0 0 0 0 0 0 0

0 1 1 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 1 1 0

0 0 0 1 1 1 0

0 0 0 0 0 0 0

c. Graph of CC.

22

23 28

29 34

35

Figure 1.20: From a greyscale image via a binary representation to a graph representation.

The addressed vertices or nodes represent the foreground pixels marked with 1, where 0 represents the
background pixels. The objective is to assign the foreground pixels of a defined neighborhood, here a
direct connectivity, to a region respectively to a label. If one starts from the left upper pixel (linear index
22) of the right pixel cluster, the graph in Figure 1.20c results, which must be traversed for complete
labeling of the contiguous pixel group. The mentioned edges represent the connections to the vertices,
denoted by their linear indices 22 to 35, based on the neighborhood relationship.

For labeling by traversing such a graph there are basically two different approaches, named graph
traversal methods:

1. Depth First Search (DFS)

2. Breadth First Search (BFS)

However, the main difference between the two methods of navigating through a graph lies in the
different search order. DFS, as the name implies, visits the child vertices before visiting the sibling
vertices, whereas the reverse rule applies to the BFS.

In practice, different data structures are used to represent the neighbourhood relations of individual
vertices in graphs (Cormen et al. 2001, pp.528–531):

• Adjacency list
• Adjacency matrix

24Based on the Matlab example from the connected component labeling blog of Steve Eddins:
https://blogs.mathworks.com/steve/2007/03/20/connected-component-labeling-part-3/
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• Incidence matrix

In the following the 2D adjacency matrix is used, which has rows and columns for each graph node.
Figure 1.21b shows the graphical representation of the adjacency matrix, see Figure 1.21a, from the
example in Figure 1.20b for a direct neighbourhood. Anon-zero element indicates a connection between
the nodes and thus defines the neighborhood.

a. Adjacency matrix.

0 1 1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 1 0

0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 1 0

b. Connection of nodes.

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

Destination nodes
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no
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Figure 1.21: Adjacency matrix and visualization from the direct connections of a binary matrix.

In general, a distinction is made between two ways of processing algorithms for labeling CCs:

1. One pass over the image

2. Two passes over the image

While one pass algorithms visit each pixel only once, two pass algorithms work in two steps. Both
graph traversing, see example in Figure 1.20 and Code 1.2, and flood or seed filling, see also Code A.6, are
among the one pass algorithms.

Code 1.2: Labeling connected components of a graph.

1 function CC = get_cc_of_graph(BW, conn)

2 %input: binary matrix BW and connectivity conn 4 or 8

3 %output: struct CC of indices for connected components

4

5 % pad BW with zeros to ensure neighbourhood of border pixels

6 BW = padarray(BW,[1 1],0,'both');

7

8 [M,~] = size(BW);
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9

10 % linear connectivity neighbour offsets (n_off)

11 if isequal(conn,4)

12 n_off = [-1;M;1;-M]; %direct connectivity

13 elseif isequal(conn,8)

14 n_off = [-1;M;1;-M;M+1;M-1;-M+1;-M-1]; %full connectivity

15 end

16

17 % numbering of nodes based on find functions linear indexing

18 lin_ind = find(BW); n = length(lin_ind);

19 nodes = zeros(size(BW)); nodes(BW) = (1:n);

20

21 % find all the nonzero neighbours

22 neighb_idx = bsxfun(@plus,lin_ind,n_off');

23 neighb = BW(neighb_idx);

24

25 % pairwise connections

26 lin_pix_ind_r = repmat(lin_ind,conn,1);

27 pairs = [nodes(lin_pix_ind_r(neighb)),nodes(neighb_idx(neighb))];

28

29 % sparse adjacency matrix

30 A = sparse([pairs(:,1);(1:n)'],[pairs(:,2);(1:n)'],1);

31

32 % Dulmage-Mendelsohn decomposition of adjacency matrix

33 [p,~,r,~] = dmperm(A); lin_ind_u = lin_ind(p);

34

35 % unpad array

36 [ri,ci] = ind2sub(size(BW),lin_ind_u); BW = BW(2:end-1,2:end-1);

37 lin_ind_u = sub2ind(size(BW),ri-1,ci-1);

38

39 for i = 1:length(r)-1

40 CC.PixelIdxList{i} = lin_ind_u(r(i):r(i+1)-1);

41 end

If the function get_cc_of_graph is applied to the binary image BW in Figure 1.20b with the neigh-
borhood parameter conn = 4, a structure CC with linear indices of the pixel-connected regions is
obtained. Access to the indices [8;9;14;15] of the first region is obtained with CC.PixelIdxList
{1,1}, likewise access to the indices[22;23;28;29;34;35]of the second regionwithCC.PixelIdxList
{1,2}, see also Figure 1.20c. If, in addition, an extended neighbourhood with conn = 8 is chosen,
the present example results in a single region.
The graph-based labeling algorithm is structured in the following steps:

1. Define and number nodes of foreground pixels in the graph (lines 17 to 19)

2. Find all the pairwise node connections (lines 21 to 27) based on the neighbourhood definition
n_off (lines 10 to 15)

3. Build up a graph representation, i. e. adjacency matrix (lines 29 to 30), from the pairwise
connections pairs
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4. Perform equivalence class resolution25 by computing the Dulmage Mendelsohn Decomposition
(DMD)26 of adjacency matrix A (lines 32 to 33) in order to get the CCs

Haralick and Shapiro (1992) describes at pp. 28-48 a simple two pass algorithm in which temporary
labels are assigned to the foreground pixels in the first step in order to subsequently relabel them in
the second step based on the mapping of equivalence class resolution. An extension of this technique,
in which the equivalence class resolution is performed in the first pass with a union find method, is
described by Sedgewick (1998) at pp. 11-20.

The labeling of CCs can be used in the context of region-based segmentation to find contiguous
regions with pixels of similar characteristics. For this purpose, an optimization of a graph-based
approach is presented in Section 3.3.2.

1.6 Representation of Rotations in 3D space

Rotations inR3are generally transformations and serve amongst others to describe the spatial orienta-
tion of different sensors, see also Section 1.3.1, in a coordinate system, as well as to transform 3D data into
a common coordinate system, e. g. in the context of a spatial similarity transformation as in Section 1.7,
and are realized via so-called rotation matrices such as

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (1.19)

The quadratic rotation matrixR is defined as an orthogonal matrix and must consequently fulfil the
characteristic

RTR = RRT = I, (1.20)

where I represents the unit matrix. In addition, two further characteristics

RT = R−1, detR = 1 (1.21)

result from orthogonality. From the demand for orthogonality, see Equations (1.20) to (1.21), six
constraints for the nine elements of the rotation matrix arise

25The result of equivalence class resolution is the mapping information of subsets of temporary labels to the same
object.

26If the matrix is an adjacency matrix, the CCs of a graph can be calculated by applying the DMD.
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r2
11 + r2

12 + r2
13 = 1,

r2
21 + r2

22 + r2
23 = 1, (1.22a)

r2
31 + r2

32 + r2
33 = 1,

and moreover

r11r21 + r12r22 + r13r23 = 0,

r21r31 + r22r32 + r23r33 = 0, (1.22b)

r11r31 + r12r32 + r13r33 = 0,

which are referred to as orthogonality conditions27. With respect toR, the Equations (1.22a) to (1.22b)
mean that each row represents a unit vector and each column is orthogonal to each other. A point xp,
(p = 1, . . . ,n), in a local system can thus be transferred viaR to a superior system

Xp = Rxp, xp = RTXp

and vice versa. Within an adjustment (cf. Section 1.8) the nine parameters of the rotation matrix
are usually not determined directly, rather by specific sets of parameters (rotation parameters, see
Sections 1.6.1 to 1.6.2). These differ in

• the number of parameters,

• the potential occurrence of singularities,

• the uniqueness,

• the geometrical interpretation and

• the computational effort (Stallmann 2008).

Generally, a rotation matrix can be described by three independent parameters, as in Section 1.6.1 when
using Euler angles, hence when using more parameters, as e. g. in Section 1.6.2 for parameterization
withQuaternions, dependencies among the parameters exist, which have to be considered as constraints
in the context of an adjustment, cf. Section 1.8.

27Strictly speaking, the six orthogonality conditions represent three orthogonality and three normalization condi-
tions (Kraus 2004, p. xx)
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However, if the nine elements ofR shall be determined directly as rotation parameters, the six orthogo-
nality conditions – Equations (1.22a) to (1.22b) – must be considered as constraints, cf. Section 1.8, in
order to describe the interdependencies of the parameters within an adjustment.

This issue is very interesting because the parameters rij in the overdetermined case can be calculated
from a linear adjustment in the course of an affine transformation (Fang 2015), thus providing good
approximations to determine the parameters of the spatial similarity transformation, see also Section 1.7,
by introducing the aforementioned constraints.

1.6.1 Parameterization using Euler Angles

The Euler angles28 (ω,φ, κ) according to Leonhard Euler (Euler 1775) represent the three rotation
angles in sequence around the coordinate axes (X, Y,Z). The entire rotationR results from the product
of three single rotationsRω,Rφ andRκ with

Rωφκ = RωRφRκ.

Considering the three single rotations

Rω =


1 0 0

0 cosω − sinω

0 sinω cosω

 , Rφ =


cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ

 , Rκ =


cos κ − sin κ 0

sin κ cos κ 0

0 0 1


the full rotation reads

Rωφκ =


cφcκ −cφsκ sφ

cωsκ+ sωsφcκ cωcκ− sωsφsκ −sωcκ

sωsκ− cωsφcκ sωcκ+ cωsφsκ cωcφ

 (1.23)

with the abbreviations c for cos and s for sin respectively. The rotation sequence is of decisive im-
portance when using rotation matrices and defines the order in which the individual rotations take
place. Rotations around co-rotated axes – e. g. (1.23) – refer to the previously reached coordinate system,
whereas the single rotations of space-bound axes are related to the initial system (Stallmann 2008).
As a consequence, the rotation around fixed coordinate axes is swapped mathematically in comparison
to co-rotated such asRκφω = RκRφRω.

28The Euler angles (Euler 1775) are also often referred to as Cardano angles (Cardano 1560)
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In geodesy, the usual rotation sequences for co-rotated axes include the aforementioned Equation (1.23)
and the sequenceφ -ω - κ frequently used in photogrammetry (cf. Kraus 1994; Schwidefsky and
Ackermann 1976). Theoretically, all combinations for parameterization are conceivable.

a major disadvantage of all parameterizations with three elements (Euler angles) is that
singularitiesmight occur. This circumstance is caused by the fact that the description is not unique due
to the interdependencies of the angles. In the case of unfavourable angle constellations (e. g. φ = 90◦,
ω = 90◦, κ = 0◦) some single rotations can be represented by an infinite number of angles. As a
result, a degree of freedom is lost. The phenomenon is known as the so-called gimbal lock.

1.6.2 Parameterization usingQuaternions

Another possibility to describe a rotation in space is the use of algebraic rotation parameters, also
known as Quaternions29. In contrast to parameterization with Euler angles (cf. Section 1.6.1), no
singularities can occur when using quaternions, which is a considerable advantage.

In addition, the expressions in (1.24) are linked bilinear, reducing their sensitivity to approximate
values in terms of Least Squares Adjustment (LSA). They also provide good numerical stability paired
with good convergence behavior.

since the parameterization is unique, in comparison to the Cardan rotation, see Section 1.6.1, no
conventions have to be considered regarding the rotation sequence.

The Quaternion rotation is closely related to other conventions of rotation, including the one with
Euler angles. The connections between different parametrisations can be found, e. g. , in (Diebel
2006). A very strong relationship exists between the rotation with Rodrigue parameters, to which
Pujol et al. (Pujol et al. 2012) also refers. A brief derivation is given in Section A.1.1, which leads to
the representation

Rq0qxqyqz =


q2

0 + q2
x − q2

y − q2
z 2(qxqy − q0qz) 2(qxqz + q0qy)

2(qxqy + q0qz) q2
0 − q2

x + q2
y − q2

z 2(qyqz − q0qx)

2(qxqz − q0qy) 2(qyqz + q0qx) q2
0 − q2

x − q2
y + q2

z

 . (1.24)

29TheQuaternions are also referred to asHamiltonQuaternions orHamiltonnumbers according to SirWilliam
Rowan Hamilton, but they were independently discovered three years earlier byOlinde Rodrigues (Rodrigues
1840).
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The rotation parameters must satisfy the condition (cf. Equation (A.6))

‖q‖ = q2
0 + q2

x + q2
y + q2

z = 1, (1.25)

since the rotation matrix, see Equation (1.24), unlike Equation (1.23), depends on four parameters30. To
compensate for the over-parameterization, the auxiliary condition, see (1.25), has to be considered in
the context of an adjustment in terms of a constraints for the unknowns. By taking (1.25) into account,
the requirements for an orthogonal rotation matrix, see Equations (1.20) to (1.21), are met.

1.7 Classical 3D-Helmert Transformation

With the help of the spatial similarity transformation31, three dimensional (3D) cartesian coordinates can
be transformed in shape into a specific target system. It serves as a fundamental basis and mathematical
framework for most registration procedures, especially in the context of TLS. The relationship between
the source and target system can be illustrated using vector addition.

X = X0 + λRx (1.26)

where

X0 = [X0, Y0,Z0]
T Translation of the origin of the initial systemOi with respect to the target

systemOt

R =
[
r11 r12 r13
r21 r22 r23
r31 r32 r33

]
Rotation matrix specifying the rotation (ω,φ, κ) of the coordinate axes of
the initial system in relation to the target system, see Equation (1.23)

λ Scale factor of the initial system in relation to the target system

A point P, see Figure 1.22, represented by its vectorX in the target system, can thus be described as the
sum of the translation vectorX0 and the vector x in the initial system. To ensure the validity of the
vector addition, the vector x is transferred viaR into a system parallel to the initial system and scaled
with λ, see (1.26).

30Often variants (q0,q1,q2,q3), (w, x,y, z) and (d,a,b, c) are used instead of the parameter set
(q0,qx,qy,qz) for the designation of Quaternions in the literature.

31The spatial similarity transformation is also often referred to as 3D-Helmert transformation. Due to the seven
parameters to be determined, the term 7-parameter transformation is also common
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Y0
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Figure 1.22: Principle of spatial similarity transformation.

Spatial coordinates xi = [xi,yi, zi]T of the points pi(i = 1, . . . , k) in the initial system are trans-
formed into the spatial coordinatesXi = [Xi, Yi,Zi]

T of the homologous points Pi(i = 1, . . . , k)
in the target system via the transformation rule of the 3D-Helmert TransformationXi = X0 + λRxi,
see also Equation (1.26), where k is the number of homologous points. In total seven parameters have
to be determined, the three translation parameters X0, Y0, Z0, the three rotation parametersφ,ω, κ
and a common scale factor λ. Thus, the spatial similarity transformation represents a special case of
the spatial affine transformation, in which a separate scale and a shear parameter are applied for each
coordinate axis.

note: If algebraic rotation parameters, see Section 1.6.2, are used instead of trigonometric param-
eters, see Section 1.6.1, for the parameterization of the rotation matrix, this results in an additional
parameter to be determined for the rotation parameters. This procedure offers some advantages both
for the calculation and the determination of approximate values.

The six parameters for translation and rotation, or sevenparameterswhenusingQuaternions, comply
with the parameters of the so-called exterior orientation32, see also Section 1.3.1.

32The exterior orientation is also referred to in the literature as outer orientation, mostly in the context of pho-
togrammetric issues.
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remarks: For the unambiguous solution of the seven or eight parameters when using quaternions,
at least two full control points and one or two further coordinate components are required. At least
three homologous points (control points) must be provided for an adjustment. These may not lie on a
straight line in space.

1.8 Concepts of Adjustment Theory

The methods of adjustment calculus constitute a decisive basis for many calculation methods used in
geodesy. In this thesis, adjustment problems are treated in the context of the evaluation of the stochastic
model, see Section 2.3, the segmentation of planes, see Section 4.3.2, and the registration procedure in
Section 4.5.

1.8.1 Adjustment Problem

If more observations than unknowns are present (n > u) in a problem statement, where

n Number of observations

u Number of unknowns,

then this problem is overdetermined and is termed an adjustment problem. However, even in the case
of a definite problem (n = u), the systemof observations and to be estimated parameters is determined.
Accuracy measures, see Section 1.8.9.1, can also be derived via the law of variance propagation, but no
control or reliability, cf. Section 1.8.9.2, of such a minimum configuration is ensured.

The task of the adjustment is to adapt the unknown parameters linked to the measured values via a
functional model, cf. Section 1.8.2, in amathematical model 33, see Sections 1.8.5 to 1.8.7, reasonably to
the empirical measured data defined by a stochastic model, cf. Section 1.8.3. This is done by introducing
so-called corrections34 for the observations and specifying an additional requirement for a function
of these corrections, i. e. residuals. The most common requirement is that the squared sum of the
weighted residuals should become minimal, see Equation (1.41).

1.8.2 The FunctionalModel

Geodesy is concerned with describing reality based on physics or geometry in the form of measured
quantities. In most cases, however, not all the parameters that constitute the respective phenomena can
be measured. For this reason, a functional relationship (functional model) must be established between

33Themathematical model consits of the functional model and stochastic model.
34In geodesy the term residuals has become established for this kind of corrections, used in this thesis.
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the actual observed measured values35 and the unknown quantities. With regard to the least squares
method, see Section 1.8.4, the model often appears in the form

l̃ = f(x̃). (1.27)

In this form the quantity of observations, represented by vector l̃, is mapped via their functional
relationship to the quantity of true to be estimated parameters x̃.

However, the representation is not contradiction-free, since there are no error-free measurements
from a technical and human point of view. In reality, the vector l̃ is falsified by various deviations36

resulting in the following realistic model

l− εr − εs − εg = f(x̂), (1.28)

where
l Observation vector that contains according to (1.28) all measurements with the above men-

tioned error influences, that must be reduced by these,

x̂ Parameter vector with stochastic estimates,

εr Random errors caused by non controllable influences of the measuring instruments and the
erroneous human observer,

εs Systematic errors resulting from inadequate or unfavourable measuring arrangements or
measuring processes or from an insufficient modeling of the functional model or as a result
from a decalibrated instrument,

εg Gross errors that can occur, e. g. due to incorrect allocations of the measured quantities lwith
the functional relationship f(x̂).

note: In practice, however, it is usually not possible to describe the systematic errors in a functional
way, since one either does not know the correlation inwhich the errors occur or they cannot be separated
from each other.

In the case of known systematics, the error can be taken into consideration with a suitable measurement
configuration. Gross errors cannot be detected directly either, but can be eliminated or taken into
account using special methods such as Baardas data snooping (Baarda 1968).

For the reasons mentioned above, it is therefore assumed that the measured values l are only affected
by random errors εr. By renaming the random errors to the resiuals

35Observed measured values are referred to simply as observations in the following.
36All these deviations, whether random or systematic, are usually referred to as errors.
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v = −εr,

conventionally used in geodesy, the so-called error equations

l+ v = f(x̂) (1.29)

can be introduced.

1.8.2.1 linearisation

If the functional realtionship f(x̂) is non-linear, a so-called linearisation is required. The Taylor series
expansion approach is used to determine function values f of a non-linear function at a position x0+∆x

if the start value of function f(x0) is known and the correction ∆x is small, see Figure 1.23.

x

f(x)

slope:
(
∂f

∂x

)
x=x0

x0

f(x0)

f(x0 + ∆x)

x0 + ∆x

∆x

Figure 1.23: Linearisation of a function according to Niemeier (2008) p. 122.

The function value for f(x0 + ∆x) can be calculated with the Taylor series, knowing that the partial
derivative of the function f in x0 can be interpreted as the gradient of the tangent at the respective
point with

f(x0 + ∆x) = f(x0) +

(
∂f

∂x

)
x=x0

x+
1
2

(
∂f

∂x

)2

x=x0
x2 + · · · . (1.30)

Due to the requirement for linearity, the linearisation in (1.30) is limited to the first term for adjustment
purposes. Figure 1.23 shows at a glance that this is only an approximate solution. As a consequence,
good approximate values x0 must be provided for higher order functions, with a severely non-linear
characteristic, so that the corrections ∆x remain small. In addition, an iterative procedure is always
required.
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Transferring the procedure fromEquation (1.30) to the functionalmodel of then observation equations
i = 1, . . . ,n, see (1.29), with the u unknown parameters j = 1, . . . ,u, we obtain

li + vi = fi(x
0
1, x0

j , . . . , x0
u) +

(
∂fi
∂x1

)
x0
x̂1 +

(
∂fi
∂xj

)
x0
x̂j + · · ·+

(
∂fi
∂xu

)
x0
x̂u. (1.31)

If the partial derivatives in (1.31) with their abbreviations

aij =

(
∂fi
∂xj

)
are summarised according to the order of observations li and unknowns x̂j in a n× umatrix37

A =


a11 a12 · · · a1u

a21 a22 · · · a2u
...

... . . . ...

an1 an2 · · · anu

 , (1.32)

the linearised error equations can be specified in matrix form

l+ v = x0 +Ax̂ = f(x0) +Ax̂. (1.33)

Introducing the so-called truncated observation vector

∆l = l− l0 = l− f(x0) (1.34)

yields the known relation

∆l+ v = Ax̂, (1.35)

to be solved by a Gauss-Markov model, see Section 1.8.5.

concluding remark: An insufficient functional modelling inevitably leads to a systematic falsi-
fication of the desired parameters. Good approximate values are mandatory for non-linear problems38.

37The matrixA is often called A-matrix, but also design matrix.
38In the linear case, the searched unknowns x̂ are obtained directly, in the nonlinear case via suitable approximate
values only corrections for the unknowns are obtained, hence in the following ∆x̂ is used instead of x̂within the
nonlinear case.
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1.8.3 The StochasticModel

For the observed quantities li, it applies that these were observed with a certain precision. This a priori
information can be taken on the basis of empirical values or instrument-related accuracy specifications
are available, which are usually preferable.

These specifications are of crucial importance for an adjustment, since the searched parameters x̂ and
their precisions are directly influenced by the precisions of the individual observations li (Niemeier
2008). Therefore, a reliable accuracy statement of the respectivemeasured values is evenmore important.
For use in linearized adjustmentmodels, see Sections 1.8.5 to 1.8.6, the precision information is presented
in a matrix

Σll =


σ2

1 0

σ2
i

. . .

0 σ2
n

 (1.36)

as standard deviations σiof the respective measured values li. This matrix is referred to as the Variance-
CovarianceMatrix (VCM) of then observations or also called stochastic model of adjustment calculation.
On the main diagonal the variances are listed in the order of the observations. The secondary diag-
onal elements represent the covariances and are set to zero for the most commonly assumed case of
uncorrelated observations.

If the observations can be considered to be equally precise and uncorrelated, the Variance-Covariance
Matrix (VCM) results with

σ2
1 = σ2

2 = σ2
i · · · = σ2

n = σ2

to a matrix

Σll =


σ2 0

σ2

. . .

0 σ2

 = σ2I, (1.37)

which is obtained by multiplying the uniform variance factor 39 σ2 by the unit matrix I. For the process

39Also denoted as variance of the unit of weight or sigma a posteriori.
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of adjustment, the above representation (1.37) is generalised to a weighted approach

Qll =
1
σ2

0
Σll =

1
σ2

0


σ2

1 0

σ2
i

. . .

0 σ2
n

 (1.38)

according to Niemeier (2008) p. 124. This matrix is formed over the product of the reciprocal global
precision factor σ2

0 and the VCM from Equation (1.36) and is known as the Cofactor Matrix (CM) of the
observations. It only contains precision ratios with regard to the globally applied accuracy. Based on
the CM of the observations expressed by (1.38), the weight matrix

P = Q−1
ll (1.39)

results, which is incorporated in the minimization task of Equation (1.41).

1.8.4 Least SquaresMethod (LSM)

The most commonly used estimation method to solve adjustment problems is the Least Squares
Method (LSM)40. It was discovered by C.F. Gauss andA.M. Legendremore or less at the same time at
the beginning of the 19th century. When adjusting according to the LSM, the target function of the
residuals v is that the sum of all squared residuals

n∑
i=1

v2
i = vTv→ min (1.40)

should become minimal. If a stochastic model, see Section 1.8.3, is also considered, so that the observa-
tions cannot be regarded as equally weighted and uncorrelated, the requirement of the least square
sum of the weighted residuals

n∑
i=1

pivivi = vTPv→ min (1.41)

must bemet. Thismethod has the prominent characteristic that the standard deviation of each adjusted
quantity becomes minimal and thus pursues the goal of minimal variance.

40Also known as error square method or L2-Norm.
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A fundamental prerequisite for the applicability of LSM is that the observation errors are approximately
normal distributed random quantities. Regarding the necessity of normally distributed measurements
R.F. Helmert (Helmert 1924) writes:

Lässt sich nachweisen, dass das Fehlervorkommen derGaußschen Form (remark: normal
distribution) [...] entspricht, so erhalten wir [...] durch die Methode der kleinsten
Quadrate die wahrscheinlichsten Werte der Unbekannten. Zugleich besitzen diese
Werte die größten Gewichte bzw. die kleinsten mittleren Fehler. Entspricht aber das
Fehlervorkommen dem Gaußschen Fehlergesetze nicht, so haben wir nicht mehr die
wahrscheinlichstenWerte der Unbekannten, dagegen in ihrer Bestimmung immer noch
die kleinsten mittleren Fehler [...].

Furthermore, the observations should ideally be free of gross errors, as these have a significant influence
on the normal distribution of the measured values. In addition, the functional model, see Section 1.8.2
must be described sufficiently so that no systematics can affect the random errors. If the above criteria
cannot be fulfilled, the LSM provides unrealistic model parameters.

In order to be able to perform an adjustment with a high percentage of gross errors, alternative
estimation methods, such as the L1-Norm, or procedures for identifying and eliminating these are used,
see e. g. (Baarda 1968) in case of an maximum error budget of 3-5% (Niemeier 2008, p. 218). In
geodesy there are three common adjustment models, see Section 1.8.4, which are based on the LSM.

Gauß-Helmert-Model
Φ(̃l, x̃) = 0

Gauß-Markov-Model
l̃ = Φ(x̃)

Conditional Observations
Φ(̃l) = 0

Figure 1.24: Adjustment models according to the LSM.

The Gauß Helmert Model (GHM), see Section 1.8.6, is a superordinate model, see Section 1.8.4, since all
other models can be derived from it – it is therefore also referred to as the general case of adjustment
calculation41. It may contain several observation quantities in a functional context, cf. Equation (1.50),
which are formulated as so-called condition equations.

The most common and most popular adjustment model is the GaußMarkovModel (GMM). Only
one measured quantity may occur in the functional context of the GMM, see Section 1.8.5, but each

41R.F. Helmert (Helmert 1924) also defines the general case of adjustment calculation as conditional observations
with unknowns
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problemdefinition in aGHM can be transferred into an equivalent adjustment for aGMM by introducing
so-called pseudo observations for the additional measured quantities.

The rather less common model is the adjustment according to conditional observations. In the case
of conditional observations, the functional relationship consists only of observations, i.e. without
unknowns.

finally, all models pursue the minimisation of the same objective function, see Equation (1.40),
and thus represent all adjustment procedures in the sense of the Least Squares Method (LSM).

1.8.5 The GaußMarkovModel (GMM)

The adjustment based on the GaußMarkovModel (GMM) results in the linear or linearized functional
model rearranged according to the residuals

v = Ax̂− l (1.42)

and introduced in Section 1.8.2, see also Equation (1.35). According to the minimisation principle of
least squares and the given weight matrix P it is claimed

Ω = vTPv→ min . (1.43)

Inserting the function of the residuals (1.42) into (1.43) and performing a few matrix operations now
leads to the final objective function

vTPv = (x̂TAT − lT)P(Ax̂− l)

⇒ x̂TATPAx̂− x̂TATPl− lTPAx̂+ lTPl

⇒ x̂TATPAx̂− 2x̂TATPl+ lTPl

(1.44)

for which the minimum has to be determined. To determine the minimum of a function, the first
derivative of this function must be set to zero – since the gradient in a point, cf. Figure 1.23, is mathe-
matically equal to zero at a minimum – and must be resolved according to the searched term. The first
derivative of (1.44) following the variable x̂ then yields

∂(vTPv)

∂x̂
= 2(ATPAx̂−ATPl). (1.45)

As it can easily be seen, the first derivative of (1.45) becomes zero if the expression in brackets becomes
zero, which results in the equation system

ATPAx̂−ATPl = 0 ⇒ ATPAx̂ = ATPl (1.46)
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to be solved for the LSM. If a left multiplication with (ATPA)−1 is then performed, the solution vector

x̂ = (ATPA)−1ATPl (1.47)

of the system is obtained, whereby it is assumed that the inverse ofATPA exists respectively that the
matrix has full column rank.

The expressionATPA in (1.47) is usually referred to as the normal equation matrix and is therefore
briefly calledN, while the other partATPl of the system in (1.46) is titled as the so-called right side
and is often namedn. Thus Equation (1.46) can also be written as

Nx̂ = n. (1.48)

The adjusted final parameters are obtained in the non-linear case

x̂ = x0 + ∆x̂ (1.49)

via the approximate values of the unknowns x0 and∆x̂ = x̂ from (1.47), the vector of adjusted reduced
unknowns, or simplified corrections, for the unknowns.

it can be stated that:

1. With a non-linear model a linearization must be carried out at the location of suitable approxi-
mate values x0 (cf. Section 1.8.2.1) and an iterative calculation must be carried out.

2. The higher the degree of nonlinearity, the more accurate the approximate values must be in
order to ensure a solution converging to the global minimum of the objective function.

1.8.6 The GaußHelmertModel (GHM)

In contrast to the GMM, see Section 1.8.5, the functional relationship of the GHM is not formulated by
observations as a function of the unknowns and possible fixed quantities, but by so-called conditional
equations. In Equation (1.42) it is assumed that each observation can be represented as a function of
the searched parameters.

In the following model, however, several observations and unknowns can also occur in a functional
context. The observation vector l, the residuals v and the unknowns x are thus linked by r nonlinear,
differentiable conditional equations of the form

Ψi(v, x) = hi(l+ v, x) = 0 , where i = 1, . . . , r. (1.50)
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For the complete and correct linearisation, see Section 1.8.2.1, of (1.50), the approximate values for
the residuals v0 and the unknowns x0 are introduced. Accordingly, a complete linearisation must be
carried out at the locations x0 of the unknowns and the residuals v0.

important note: The linearisation in many standard works of adjustment calculation, as for
example in (Niemeier 2008) or (Jäger et al. 2005), is however erroneously performed only at the
location x0 of the unknowns, which is equivalent to an additional linearisation for the residuals at the
location v0 = 0. The results of the analytical strategy used in this literature therefore only correspond
to an approximate solution.

Netherless, the necessity of this proper linearisation was pointed out early in (Pope 1972). In (Lenz-
mann and Lenzmann 2004) the issue is taken up again and a correct solution scheme is presented.
The strict evaluation of theGHM described in the following is based on the explanations in (Lenzmann
and Lenzmann 2004), resulting in the entirely linearised condition equations

f(v, x̂) = Ψi(v
0, x0) + B(v− v0) +A(x̂− x0) = 0. (1.51)

The linearisation of (1.50) is based on the above considerations with the Jacobians of the partial deriva-
tives

B(v, x̂) = ∂Ψi(v, x)
∂v

∣∣∣∣
v0, x0

and A(v, x̂) = ∂Ψi(v, x)
∂x

∣∣∣∣
v0, x0

(1.52)

at locations x0 and v0 respectively. The fact that an adjustment problem with a design matrixA, see
(1.52), in which residulas v can occur, needs not to be solved by frequently propagated total least squares
techniques is explained in (Neitzel and Petrovic 2008).

According to Böck (Böck 1961) a strict linearisation, as mentioned above, is indispensable, if the
residuals v are not differentially small in relation to the observations l. Observations li with a low
weight pi =

1
σi
, respectively a large standard deviation σi, are strongly corrected in the sense of the

adjustment, thus a correct linearisation is mandatory in such cases.
Anyway, there are also special problems where no residuals in the design matrix arise and these can

be solved with an incomplete linearisation.
From (1.51) the current vector of misclosures

w = −Bv0 + Ψi(v
0, x0) (1.53)

with the approximate values v0 and x0 results from the previous iteration step.
The addition−Bv0+Ψi(v

0, x0) guarantees the requirement of theWeightedLeast Squares (WLS) sum
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for the residuals, cf. Equation (1.41), and can be derived algebraically (Gründig 2003). Considering
Equations (1.51) to (1.53), the linearised condition equation

A(x̂− x0) + Bv+w = 0 (1.54)

to be minimised with respect to the GHM can hence be specified. Under the secondary condition (1.54)
and the main condition with the requirement of Least Squares Estimation (LSE), see Equation (1.41),
it is now a challenge to find a minimum. This can be done by using the so-called Lagrange function
(Lagrange 1788), which allows to solve minimization problems with several secondary conditions.
The complete target function

Ω = vTPv− 2kT(Bv+A(x̂− x0) +w)→ min (1.55)

to be minimized is thus obtained. In (1.55) x̂ and v are to be determined in such a way that vTPv

becomes minimal under fulfilment of the secondary condition (1.54), where k represents the so-called
Lagrange multiplier42.

The minimum of (1.55) can then be obtained using the partial derivatives

∂Ω

∂v
= 2vTP− 2kTB (1.56a)

∂Ω

∂(x̂− x0)
= −2kTA (1.56b)

∂Ω

∂kT
= −2(Bv+A(x̂− x0) +w) (1.56c)

according to the present unknowns v, x̂− x0 and k. Regarding the zero determination, the derivatives
(1.56a) to (1.56c) are set to zero in the context of the minimization task, resulting in the three equations

−Pv+ BTk = 0, (1.57a)

ATk = 0, (1.57b)

Bv+A(x̂− x0 +w) = 0. (1.57c)

42In the parlance of geodesy and adjustment calculation these multiplicators are called correlates. They serve as an
indicator for the influence of the respective condition on the adjustment result.

62



1.8. concepts of adjustment theory

Rearranging (1.57a) to Pv and multiplying it by P−1, the residulas

v = QllB
Tk (1.58)

can be determined taking into account that P−1 = Qll, whereQll is the CM of the observations l.
Inserting (1.58) into (1.57c) results in the common expression

BQllB
Tk+A(x̂− x0) +w = 0. (1.59)

With the second condition, respectively (1.57b), and the conditional equation, expressed by (1.59), the
entire equation system to be solvedBQllB

T A

AT 0

 k̂

(x̂− x0)

w
0

 = 0 (1.60)

can be formulated in block matrix notation. For x̂− x0, the abbreviation ∆x̂ can be written. From the
current approximate values x0 of the unknowns and their adjusted corrections∆x̂, the final unknowns
result in analogy to the GMM, cf. Section 1.8.5 and equation (1.49)

x̂ = x0 + ∆x̂ and v̂ = QllB
Tk̂, (1.61)

whereas the adjusted residuals arise from (1.58). After each iteration step, the estimated residuals and
unknowns are introduced into the adjustment as new approximate values x0 = x̂ and v0 = v̂ until a
certain break condition is reached. A possible termination criterion

maxΨi(v̂, x̂) = max
[
0 · · · 0

]T
< tc (1.62)

is thus reached if the maximum element of the vector (1.50) resulting from the original nonlinear
condition equations is smaller than a bound tc, e. g. tc = 10−7.

note: An iterative approach is absolutely necessary for non-linear problems of any kind, since the
approximate values are often not so accurate at the beginning and the corrections ∆x̂ of the unknowns
are therefore slightly larger. A possible break condition could thus also be formulated for the unknown
corrections, as it is frequently applied in practice.

finally, it should be noted that regardless of the chosen functional model, the general
case of adjustment calculation provides an identical solution for the parameters to be estimated as the
GMM, see Section 1.8.5. However, the prerequisite for this is that a correct linearisation is carried out, as
can be found in (Lenzmann and Lenzmann 2004), among others. When transferring the GHM into
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an equivalent GMM in the context of so called quasi observations, there are also no limitations as long as
the residuals in the linearisation are taken into account.

1.8.7 The GaußHelmertModel (GHM) with Constraints

In addition to the usual condition equations, see Equation (1.50), the unknown parameters may also be
subject to other mathematical-geometric conditions. This is the case, for example, when quaternions
are used to parameterize the rotation matrix, see Section 1.6.2.

In contrast to the conditional equations in Equation (1.50), the so-called constraint equations do
not contain observation content, but merely represent relations between unknowns and constants.
The unknowns x and the constants c are thus linked via r nonlinear and differentiable conditions of
the general form

γi(x) = hi(x, c) = 043 , where i = 1, . . . , r. (1.63)

Since no observations with stochastic information in the form of weights occurs in (1.63), these do not
represent weighted condition equations in contrast to (1.50) and thus have no controllable influence on
the adjustment result. The influence on the adjustment is infinite, as desired in a fixed mathematical-
geometrical context, hence this type of condition is also termed deterministic condition44.

Within the context of the adjustment, these additional conditions must be included, leading to a
conditional adjustment with unknowns and conditions between them (GHMwith constraints). For
this (1.63) are linearized analogously to Equation (1.51) under the introduction of the approximate
values x0 as follows

g(x) = C(x̂− x0) + γ(x0) = c

= C∆x̂+ γ(x0) = c
, (1.64)

where

C(x0) =
∂γ(x0)

∂x0
(1.65)

is the matrix of the partial derivatives and

wr = γ(x0) − c (1.66)

43To prevent a rank deficiency, the deterministic constraint equations must be mutually linearly independent.
44Also referred to as a mandatory condition.
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is the condition vector. By using c = 0 the linearized constraint equation reads

C∆x̂+wr = 0. (1.67)

With (1.67) andEquation (1.51), the task tobe solved represents aminimizationproblemwith constraints,
which can be set up using the Lagrange function, cf. Section 1.8.6 and especially Equation (1.55). The
objective function to be minimized thus results from Equations (1.41), (1.54) and (1.67) to

Ω = vTQll
−1v− 2kT(Bv+A∆x̂+w) − 2kT

r(C∆x̂+wr)→ min . (1.68)

In order to find the minimum of the function according to (1.68), the derivatives are formed according
to the unknowns, resulting in the conditional equations

∂Ω

∂v
= Qll

−1v− BTk = 0, (1.69a)

∂Ω

∂∆x̂
= −ATk−CTkr = 0, (1.69b)

∂Ω

∂k
= Bv+A∆x̂+w = 0, (1.69c)

∂Ω

∂kr
= C∆x̂+wr = 0. (1.69d)

Assuming that the adjustment task consists of n conditional equations and r constraint equations and
that u unknowns are to be determined, then the system of equations


Qll

−1 −BT 0 0

B 0 A 0

0 −AT 0 −CT

0 0 C 0




v̂

k̂

∆x̂

k̂r

 =


0

−w

0

−wr

 (1.70)

to be solved can be constructed with the equations Equations (1.69a) to (1.69d) in block matrix form.
The system of (1.70) is very complex and difficult to solve using the standard algorithm of the gaussian
elimination method. For this reason it is reduced to solve ∆x̂ and k̂r. However, rearranging (1.69a) to
v̂ and thus replacing v̂ in (1.69c) results in

k̂ =
(
BQllB

T
)−1(

−A∆x̂−w
)
. (1.71)
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By inserting (1.71) in (1.69b) and excluding ∆x̂ follows

(
AT

(
BQllB

T
)−1

A
)
∆x̂−CTkr = −AT

(
BQllB

T
)−1

w. (1.72)

With (1.71) and (1.72) the reduced system of equationsAT
(
BQllB

T
)−1

A −CT

C 0

∆x̂

k̂r

 =

−AT
(
BQllB

T
)−1

w

−wr

 45 (1.73)

results, see also (Neitzel and Johannes 2009). With the abbreviations

M = BQllB
T

N = ATM−1A
(1.74)

leads after (1.72) and rearrangement

∆x̂ = N−1
(
CTkr −ATM−1w

)
. (1.75)

Inserted in (1.69d) and rearranged to kr results in

kr =
(
CN−1CT

)−1(
CN−1ATM−1w−wr

)
. (1.76)

From (1.71), taking into account the above abbreviations, results

k = −M−1
(
A∆x̂+w

)
(1.77)

and under the transition of (1.69a)

v = QllB
Tk. (1.78)

45Certain tasksmay require some unknowns to be fixed during the adjustment process so that they are not corrected.
In addition, stochastic a priori information may be available in the form of standard deviations for different
unknowns resulting from e. g. a previous measuring step or campaign. Similar to the CM of observationsQll

an a priori CM can then be established for the u unknowns: Qxxap = 1
σ2

0

[
σ2

1 σ2
2 · · · σ2

u

]
The matrix

allows each unknown to be assigned an individual weight. A major advantage of introducing a priori precision
information in this form is that no need to introduce it via so-called pseudo observations. Since unbiased estimates
for the unknowns are available, requirement ∆x̂TQxxap

−1
∆x̂must be established in addition to the Lagrange

function of the LSM in (1.68) (Caspary 2007). The equation system to be solved from (1.73) is then extended via
the normal equation matrixN = Qxxap

−1 +AT
(
BQllB

T
)−1

A.
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note: Considering Equations (1.75) to (1.78), unlike (1.73), the system can also be solved via a
Cholesky factorization46, which drastically reduces the memory requirements and the computing time
rapidly decreases.

The unknowns are then obtained via the approximate values x0 and the adjusted corrections from
(1.75), which together with the vector of residuals from (1.78) enter the following iteration step as new
approximate values.

1.8.8 Detection and Elimination of Outliers in an Observation Series

The detection and elimination of outliers occupies a very high priority in the adjustment calculation,
see Section 1.8, and the general statistical evaluation of measurement data.

note: Only data that have been filtered of errors allow a distinct and meaningful interpretation of
the final results.

1.8.8.1 overall model test

The so called global test47 (Niemeier 2008, p. 167) is used for the overall assessment of the adjustment
result. It compares the empirical standard deviation s0 after the adjustment (a posteriori) with the
previously assumed theoretical a-priori value σ0, the standard deviation of the unit weight48

Tf =
σ0

s0
(1.79)

where

s0 =
vTQll

−1v

r
49 (1.80)

and v denotes the residual vector andQll the CM of the observations. The value r describes the degree
of freedom, also used as redundancy, of the specified adjustment problem. Depending on how the
adjustment was formulated, the degree of freedom r is calculated generally by r = n− u or in case of
existing restrictions (Ghilani 2010, p. 429) by r = n − u + c, where n represents the number of
observations and u the set of unknown parameters as well as c that of the constraint equations.

46Also known as Cholesky decomposition. The matrix must be positively definite.
47Alternatively the term overall model test is used, e. g. by (Teunissen 2000, p. 93).
48Also referred to as theoretical reference variance
49See also Equation (1.38) and Equation (1.41)
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The evaluation is done with a test, see e. g. (Teunissen 2000, p. 93; Niemeier 2008, p. 167). If the
test turns out to be positive, this may indicate gross outliers in the data material. However, the test can
also be affected by an incomplete modelling (functional model), which, strictly speaking, can only be
proven when there are no more gross errors in the measured data. Furthermore, a positive test can also
indicate an incorrect stochastic model.

1.8.8.2 individual test of observations

The concept of detecting gross errors (blunders) in data is known as data snooping (Baarda 1968).

If the hypothesis, see Niemeier (2008) p. 167, of the global test, see Section 1.8.8.1, is rejected, a deeper
insight into the measured data is obligatory. This analysis is also called local test because it only refers to
the individual observation li.

However, the approach is based on the assumption that a gross errormainly affects only the respective
correction or residual vi of the individual observation li. As test variable the so-called normalized
residual

NVi =
vi

σvi

=
vi

σ0
√
qvvii

(1.81)

is used. For the calculation of the test quantitiesNVi, the diagonal elements qvvii
of the CM of the

residualsQvv are used, see also Equation (1.85). An important aspect for the calculation of (1.81) is that
the theoretical standard deviation of the unit of weight σ0 is to be used, since the empirical value s0

could already be falsified by outliers.

The assessment of the test value is again based on a statistical test procedure, e. g. (Neitzel 2010).
Strictly speaking, the test is only valid for the one observation li with the largest valueNVi.

note that this method is only suitable for datasets that contain no more than 3-5% of outliers in
relation to all observations (Niemeier 2008, p. 218).

1.8.9 Quality Assessment

In all fields of geodesy, it is of central importance to judge the adjustment result. This is done in the
form of precision assessments of the estimated parameters. Here the statement on the reliability of
the accuracy measures is of major importance, not at least for the detection of measurement errors, see
Section 1.8.8.2. Furthermore, the choice of the functional model, see Section 1.8.2, is not insignificant
and directly related to the reliability of the precision of the estimated parameters.
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1.8.9.1 accuracy measures

The knowledge of how precisely the unknowns were determined is as essential as the determination
of the unknowns itself. However, a meaningful evaluation presupposes a correctmathematical and
stochastic model, cf. Sections 1.8.2 and 1.8.3. The CM of the unknowns

Q∆x̂∆x̂ = N−1 −N−1CQkrkrC
TN−150 (1.82)

can be formed by applying the law of covariance propagationwith regard to Equation (1.75), considering

Qkrkr =
(
CN−1CT

)−1, (1.83)

whereupon the precision measures of the quantities to be estimated can be derived. From the diagonal
elements qxxi

of matrix (1.82), the standard deviations

σxi
= s0
√
qxxi

(1.84)

can be specified for the unknowns using the empirical weighting factor s0.

1.8.9.2 reliability measures

In addition to precision, see Section 1.8.9.1, reliability is an important quality criterion. It refers to
the control of the observations and thus characterizes the quality of the realization. The reliability
measures are formed from the CM of the residuals

Qvv = QllB
TQkkBQll, (1.85)

which is obtained by applying the law of covariance propagation to (1.78), taking into account the CM

of the correlates with respect to conditions

Qkk = M−1 −M−1AQ∆x̂∆x̂A
TM−1. (1.86)

The derivation of reliability measures is closely related to the redundancy components (Förstner 1979)
of the observations li

QvvP = QllB
TQkkB, (1.87)

50The structure of the CM follows the vector of unknowns ∆x̂.
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which can be derived from (1.85). The diagonal elements ri of thematrix (1.87) represent the redundancy
components. The sum of all redundancy components

n∑
i=1

ri = trace
(
QvvP

)
= r (1.88)

results in the total redundancy of the adjustment problem.

important note: The redundancy component ri indicates the amount by which a possible
measurement error is reflected in the correction vi. In order to be able to detect gross errors in the
observations, see e. g. Section 1.8.8.2, sufficiently high redundancy components are therefore required.
The redundancy is thus a measure of the controllability of an observation.

1.9 On StochasticModelling of TLSMeasurements

As for all other surveying instruments, the decision whether a specific sensor is suitable for a certain
task or not is made on the basis of the specified accuracy, see Section 1.2.4.1 and the measurement noise,
see also Section 1.2.4.1 and more general Section 0.2. The individual weighting of single observations
based on a suitable stochastic model, cf. Sections 0.2.1.1 and 1.8.3,is of immense importance for many
applications in the field of TLS, for instance:

• Identification of outliers related to adjustment calculation e. g. (Baarda 1968), see also Sec-
tion 1.8.8.2

• Statistically significant identification of deformations cf. e. g. (Wujanz 2016)

• Sensor calibration of TLS’s e. g. (Lichti 2007), see also Section 1.2.5

• Registration (Grant et al. 2012; Burger et al. 2018), see Section 1.11 and segmentation (Burger
et al. 2017), see Section 1.10, of point clouds

• Direct georeferencing of TLS (Scaioni 2005)

• Modelling the uncertainty of aMMS (Mezian et al. 2016)

Due to the individual magnitude of the uncertainty of individual observed distances of TLSs caused by
the influencing factors affecting the distance measurement, see especially Section 1.2.4.1, no constant
weights can be assumed for the observations (Soudarissanane et al. 2011). Consequently, methods
have been developed in the past to address this issue. Böhler et al. (2003) in an early publication on
the topic derives the noise of the EDMU of a TLS from residuals of adjusted planes previously scanned.
A similar approach was pursued by Heister (2006), who chose spherical targets instead of planes.

Even if the use of scanned geometric primitives to derive the distance stochastic seems self-explanatory
at first glance, some influences with negative effects on the stochastic, such as
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• accuracy of angle encoders,

• spatial resolution of the data as well as redundancy,
• accuracy of the applied geometric primitives and

• processing software,

see also (Wujanz et al. 2017a), cannot be neglected. However, the majority of authors, including
Voegtle et al. (2008) and Soudarissanane et al. (2011), follow this approach.

Strictly speaking, however, the observations and thus also the distance measurement should be
considered independently of each other in order to avoid dependencies in order to draw conclusions
about the surface properties.

An alternative method is pursued by Zámečníková et al. (2014), determining the deviations
between reference measurements and the observations of a TLS on a calibration track.

Another very simole stochastic model, referring only to the dependence of the distance to the object,
see Figure 1.11, is used by Elkhrachy and Niemeier (2006).

1.10 On the Segmentation of TLS Point Clouds

Apart from the registration, see Sections 0.1 and 1.11, the segmentation belongs to the central work steps
that contribute to the automation with regard to the further processing of point clouds, which have
been captured e. g. with a TLS, cf. Section 0.1.
It often serves as the basis for the subsequent classification of segments into related object classes and
enables, for instance, the extraction of characteristics (features) that can serve as information for a
registration.
Basically, a distinction can be made between three major data structures to which segmentation algo-
rithms can be applied:

• one dimensional (1D) data structure (e. g. list or array)

• two dimensional (2D) data structure (e. g. image grid or matrix, quadtree, graph),

• three dimensional (3D) or spatial data structure (e. g. octree, kd-tree)

The representation of a point cloud as a list or grid belongs to the group of non-hierarchical data
structures, while the tree structures quadtree or octree (Samet 2006, p. 211) belong to the hierarchical
ones due to their structure.

The main purpose of applying appropriate data structures for the segmentation of point clouds
is to quickly determine neighbouring points for selection and extraction. Spatial data structures are
usually built up in this context in order to reproduce the topology lost due to the registration of point
clouds as a result of the solely cartesian description.
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The relations in a grid, such as from a TLS scan, however, are directly defined, whichmeans that no time-
consuming and computation-intensive topology creation as in the case of registered datasets is required.
In this thesis, this advantage is exploited and, as a consequence, one focuses on the segmentation of a
single scan in raster representation.

Regardless of the data structure on which segmentation algorithms are applied, two different
categories can be differentiated:

• knowledge-based segmentation,

• data-driven segmentation.

In the case of knowledge-based or model-based approaches, a previous knowledge about the shape and
form of the objects to be extracted is assumed. Using such a predefined model, suitable objects can be
searched specifically (Pu and Vosselman 2009). However, if very heterogeneous data is provided,
model-based concepts are less effective and a data-driven one is preferable. The segmented regions,
when using a data-driven approach, do not have to correspond to the real objects – they can be assigned
to the objects by a further analysis.

A data-driven segmentation based on a grid data structure (e. g. image grid) can be carried out in the
following manners:

• point- or pixel-based (simple thresholding),

• edge-based (defined by contours),

• region- or area-based (using neighbourhood relations),

• hybrid (combination of methods).

The new segmentation approach outlined in Chapter 3 below is based on a combination of a pixel-based
and a region-based approach, which generally provide better results for noisy data compared to an
edge-based solution.

With the region-based evaluation of point clouds, the segmentation pursues the goal of grouping
points in a neighborhood into subsets (segments or even regions) according to predefined homogeneity
criteriaH.

Considering a data set P, which has to be split into n segments Pi(i = 1 . . .n), the following five
requirements can be demanded on a segmentation algorithm (Horowitz and Pavlidis 1974; Jiang
and Bunke 1997):

1.
⋃n

i=1 Pi = P

2. Pi(i = 1 . . .n)

3. Pi ∩ Pj = ∅, for i 6= j

72



1.10. on the segmentation of tls point clouds

4. H(Pi) = true, for i = 1, 2 . . .n

5. H(Pi ∪ Pj) = false, for i 6= j

The quantity of all segments
⋃n

i=1 Pi should on one hand match the entire data set P (Item 1). On the
other hand, each point may only be assigned to one segment (Item 3), in which individual segment
points have a certain relationship – e. g. connected in a neighborhood of 4 or 8 – (Item 2). Again, all
points Pi of a region must satisfy a homogeneity criteriaH (Item 4), however adjacent segments should
be distinguishable byH (Item 5).

it should be noted that most segmentation methods do not fulfill all mentioned require-
ments and thus often an attenuation for 1. and 3. is condoned.

For the solution of the task of segmenting point clouds obtained with TLS, see also Section 0.1, there
are many scientific contributions so far, which on the one hand pursue different strategies and on the
other hand are based on different data concepts.

A well known method for segmentation is the split and merge procedure, whichWang and Tseng
(2004) apply to lidar data. However, it has the disadvantage that the subdivision of the data does not
follow their natural structures and the segmentation therefore depends on the merge order.

In contrast, the also widely used region growing technique, which is used for example by Vo et al.
(2015) on the basis of an octree data structure, see also Section 1.4, provides directly contiguous regions.
Nevertheless, it is much more computationally intensive and the segmentation result depends on the
choice of the socalled seed points. In addition, without further analysis, it only fulfils the criteria by
Item 3 and Item 4 of the requirements for a segmentation algorithm.

Rabbani et al. (2006) present a similar approach on the example of industrial plant segmentation,
which also assumes an unstructured data representation.

Barnea and Filin (2013) use a point cloud in polar representation and take advantage of image
information for segmentation in addition to geometry.

The data structure of the point cloud as a grid is taken fromMahmoudabadi et al. (2016) and,
like Riveiro et al. (2016), uses a connected component method, see also Section 1.5, for segmentation.
Indeed, additional intensity and image information is also used, but first all data layers are processed
separately and then combined to form a single result.

remark: Due to the various advantages and disadvantages, a skilful combination of methods is
often used to achieve satisfactory results.
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1.11 On the Registration of TLS Point Clouds

Registration or referencing in general denotes an orientation procedure in geodesy and can be applied
to both 2D or 3D data. The task of registration in the context of TLS is to transfer the point clouds
resulting after the acquisition from individual standpoints with local coordinate systems into a common
(superordinate) coordinate system, cf. also Section 0.1. The result of a registration is a complete
dataset composed of 3D points captured from several connected standpoints. This process is of utmost
importance in the completion of a dataset.

The process of transfering a point cloud into another coordinate system is known as transformation,
Section 1.7. In order to transform several point clouds present in a local coordinate system into a
common coordinate system, there are different strategies that can be reasonable depending on the type
of task, the present data and the availability of additional measuring instruments or sensors.
In principle, the following registration procedures can be distinguished:

• Use of Artificial Targets

• Georeferenced Approaches

• Data-Driven Approaches

As a standard in Terrestrial Laser Scanning (TLS), the use of special targets in the form of coded targets
or spheres, which are distributed in the object space and subsequently identified in the individual scans
and assigned to each other, has become established. Registration then takes place exclusively via the
corresponding target centres estimated from the targets. The automatic identification of such targets
is presented in (Abmayr et al. 2008). A major advantage of using target marks is that the individual
point clouds do not require to overlap apart from the target itself. A disadvantage is the additional
time required to attach the target marks or the fact that it is not possible to place them at all, since the
object space cannot or must not be entered.

The so-called georeferencing uses additional sensors to determine the position and orientation of
the measuring system in the superior (superordinate) system. If additional sensors, e. g. GPS receivers
for position determination and Inertial Measuring Units (IMUs) for orientation determination are used
together with the actual acquisition system – e. g. TLS – on a surveying platform, this is referred to as
direct georeferencing. A prerequisite for such a measuring concept is the knowledge of the relative
orientations of the measuring systems to each other determined by a simultaneous calibration as
well as a synchronous acquisition. Kinematic laser scanning is an example of such a concept (Hesse
2007), although there are also static applications (Paffenholz et al. 2010). An example of direct
georeferencing for photogrammetric applications is described in (Cramer et al. 2000).

Another type of direct georeferencing is known as tracking. An exterior, superordinate, system,
usually a camera or multi-camera system, observes a measuring sensor and records its position and
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orientation for each measuring position. Since the exterior system must remain unchanged, the
measuring volume is limited.

One possibility of ”indirect” georeferencing in terrestrial laser scanning is to measure the aforemen-
tioned targets or distinct object points with a total station in the context of a network measurement
and to use the corresponding points identified in the respective laser scans for a direct transformation
into a superior coordinate system.

Regarding data-driven solutions, the information used for registration are obtained literally from
the captured data itself. No additional signalisation in the form of targets or the use of external sensors
as in the previously presented procedures is required. The following methods can be distinguished
from each other:

• surface-based,

• feature-based,

• geometry based.

Surface-basedmethods, such as the Iterative Closest Point (ICP) algorithm (Besl andMcKay 1992), are
very popular and are included in many commercial software solutions. Since ICP algorithms determine
adjacent point pairs in order to determine transformation parameters in an iterative procedure, the
respective point clouds must be approximately aligned to each other. Otherwise, the algorithmmay
converge to an incorrect local solution. Another surface-based method is referred to as ”least squares
surface matching” (Akca 2007; Gruen and Akca 2005).

A further approach is to detect and match feature points in adjacent scenes, which can then be
used for registration. A distinction is made between 3D- (e. g. Rusu et al. 2009) and 2D-features (e. g.
Boehm and Becker 2007), which are obtained either solely via a distinctive geometry description in
the point cloud itself or by using the intensity information and its subsequent allocation to 3D-space.
Feature detectors that use both geometry and radiometry in combination can minimise mismatches by
providing a more explicit description.

When registering point clouds, however, finding corresponding information in the point clouds to
be referenced is a challenge. Due to the quasi-areal mode of operation of the TLS, see Section 1.2.1, no
direct point correspondences can be formed between adjacent scans, but must necessarily be derived
from the geometry or radiometry in the environment. To overcome this circumstance, one can benefit
from the advantages of the quasi-areal acquisition of the TLS, see Figure 1.3, by deriving the parameters
of geometric primitives in the point clouds and using them as information for registration. These
data-driven procedures based on the geometry of surface elements provide direct and unambiguous
correspondences via approximated straight lines, planes, cylinders or spheres in the contiguous scans
and make use of the high redundancy of the surface-based recording.
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Methods among them, which are based on the extraction of straight lines in 3D, are used by Licht-
enstein and Benning (2010) or (VonHansen et al. 2008). Plane-based methods, that have their
strengths especially in urban environments due to the favourable availability of surfaces, have been
addressed in various publications (Rietdorf et al. 2004; Von Hansen 2006; Gielsdorf 2009;
Dold 2010; Previtali et al. 2014).

A contribution which uses both planes, cylinders and spheres describe Rabbani et al. (2006).

remark: All contributions deal with registration techniques detached from the workflow of the
actual segmentation.
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Das, wobei unsere Berechnungen versagen, nennen wir
Zufall.

Albert Einstein

2
A comprehensive stochastic model for TLS

Despite the well-established TLSs, suitable models capable to describe the stochastic characteris-
tics of reflectorless EDMUs, as evidenced e. g. by the research of Böhler et al. (2003) and Soudaris-
sanane et al. (2011), have only recently been proposed. From a geodetic point of view, this situation
has been unsatisfactory, since a comprehensive knowledge of the precision is crucial in addition to the
accuracy of measurements, cf. Section 0.2 and figure 2, for a variety of applications and the model-
ing of quality, see Sections 0.2.1 and 0.2.1.1. For the first time, therefore, a major breakthrough for a
comprehensive stochastic model has been achieved with contributions (Wujanz et al. 2016a; Wujanz
et al. 2016c; Wujanz et al. 2017a; Wujanz et al. 2017b; Wujanz et al. 2018a; Wujanz et al. 2018b),
providing the initial basis for this chapter.

The reason why the stochastic properties have not been well understood so far is mainly caused by
the poor understanding of the stochastic behavior of reflectorless EDMUs, leading to the development
of TLS. In order to better understand the influences on distance noise, these are therefore considered
separately in various contributions on this topic, see also Section 1.9:

• object distance (Elkhrachy and Niemeier 2006),

• surface properties (Zámečníková et al. 2014) and
• different incidence angles (Soudarissanane et al. 2011).

The influence of the object distance is largely independent of that of the incidence angle, see also
Figure 1.12, allowing both to be considered separately in a stochastic model. However, the influences
are distorted by the unknown surface properties γλ, see also Figure 1.11, which cannot be determined
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without further effort. In addition, the determination of incidence angles for individual points in the
neighbourhood is not particularly reliable due to the ratio of local point density and noise. For these
reasons, a separate consideration of different influences is not practicable and purposeful, since the
effects cannot be modeled explicitly due to their unknownness and interdependence.

Existing methods, see Section 1.9, for the derivation of distance noise are also subject to several
influences, which can significantly falsify the outcome.

The incompleteness of previous stochastic models, as well as the inappropriate approach to derive
such models, leads in summary to three arguments (Wujanz et al. 2017a, p. 147), which are reflected in
the motivation for this chapter:

1. The input parameters for the stochastic model should be independent to other elementary
observations or derived quantities such as Cartesian coordinates.

2. All previously mentioned influences have an impact onto the signal‘s strength and hence the
precision of distance measurements. A causal separation of influencing factors cannot be made.

3. Raw intensity values1 are capable of capturing those influences provoked by the acquisition
configuration as well as radiometric properties of a sampled surface. Hence, intensity values
should be suitable to assign stochastic properties to rangefinders, if a characteristic behaviour
can be observed.

To address these problems, a novel intensity-based stochastic model for the reflectorless EDMU of a Z+F
IMAGER®5006h is experimentally derived. The influences of the scanning geometry as well as the
interaction between the emitted signal and the surface, see Section 1.2.4.1, are considered completely.

To gain a better understanding of the relationships between the intensity behavior of an EDMU

and the distance noise σρ, Section 2.1.1 introduces an experminental setup resulting in measurements
representing the characteristics of an APD. In Section 2.2, the remaining effects of the incidence angleα
and certain material properties on this characteristic curve are presented, followed by the derivation of
the stochastic model in Section 2.3. Based on two different experiments, see Section 2.4, the stochastic
model was successfully validated for three selected sampling rates. In case a 1D scanmode is not available
for a certain TLS, a possibility to derive the stochastic model in 3Dmeasurement mode is presented in
Section 2.5. Finally, the applicability of the general principle for determining stochastic models for TOF

TLSs is demonstrated in Section 2.6.

1 Usually the intensity values for a data set are given either in a gray value range from 0-255 or normalized from 0-1,
whereby they are always individually distributed over the entire range. As a result, the intensities from different
data sets do not correspond to each other due to the use of different gray value stretching functions, thus raw
intensity values are used. Raw intensity values recorded by the applied TLS Z+F IMAGER®5006h theoretically
range from zero to five million increments (Inc) and can be specially exported with the manufacturer software
Z+F LaserControl®.
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2.1 Intensity Behaviour – SNR and Precision of Distance

The relationship between SNR and the achievable precision of measurements is also widely used in
other fields of geodesy, such as photogrammetry (Ackermann 1984), leading to the motivation to
find such a relationship in TLS.

2.1.1 Experimental Arrangement andData Acquisition

For a deeper understanding of the dependency of signal strength to signal noise, equivalent with
intensity to intensity noise for a TLS, one can take advantage of the influence of distance and surface
reflectivity on the received intensity, see Figure 1.11. A representative intensity characteristic is obtained
by covering the largest possible intensity spectrum.

For this purpose, four so-called Alucore®2 panels with a side length of 5 cm were used, coated on
both sides with a different dull shade of grey (from white to black) and thus showing different surface
reflectivities, see Figure 2.1.

a. Panel 1 l. b. Panel 1 d. c. Panel 2 l. d. Panel 2 d.

e. Panel 3 l. f. Panel 3 d. g. Panel 4 l. h. Panel 4 d.

Figure 2.1: Imprinted ALUCORE®panels with different radiometric properties (grey values varying from
0-255).

2 ALUCORE®is an aluminium composite panel consisting of two cover plates and an aluminium honeycomb
core for versatile applications in architecture, transport and industry, characterised by its optimum planarity,
formability and colour variety.
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The panels attached to a tripod with a holder were finally captured3 in 5 m steps at different distances
between 5 and 44 m at an incidence angle of ∼ 0° in 1Dmode of the TLS, see Figure 2.2, whereby the
panels with their light (l) and dark (d) sides were interchanged at each position, resulting in 64 data sets.

Figure 2.2: Standard measurement setup for the derivation of the stochastic model.

By data acquisition in 1Dmode, repeated observations of the distance between scanner and panel, as
well as the intensity in the particular measurement rate, see also Section 1.2.6, of 1016 kHz are recorded.

Based onn = 1000measurements with i = 1, · · · ,n for the distance ρi and intensityAi, of each
data set, stochastic measures were derived to describe the behaviour of the TLS’s EDMU. Themean values
of the raw intensity values Ā =

∑n
i=1 Ai

n and distances ρ̄ =
∑n

i=1 ρi

n as well as their corresponding

empirical StandardDeviations (SDs)σA =

√∑n
i=1 ∆A2

i

n−1 andσρ =

√∑n
i=1 ∆ρ2

i

n−1 were calculated based
on the observations reduced by the mean values∆Ai = Ai − Ā and∆ρi = ρi − ρ̄.
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Figure 2.3: Intensity behaviour of the Avalanche Photo Diode (APD) for the TLS Z+F IMAGER®5006h.

3 In order to avoid possible falsification effects due to different ambient light conditions, the measurements were
carried out in a cellar without windows.
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If one now applies the intensity noiseσA as a function of the mean intensity Ā, the characteristic curve
of the EDMU’s photodiode is shown in Figure 2.3a on the left. The amount of signal noise leading to
the noise characteristic in Figure 2.3a is illustrated in Figure 2.4, which depicts the noise distributions
for panel 4 l at different distances. Figures 2.4a to 2.4d indicate that the histograms become narrower
with increasing range, resulting in lower signal noise σA.

a. Intensity histogram Panel 4 l at 5 m.

-σA σA ∆A

n

b. Intensity histogram Panel 4 l at 15 m.

-σA σA ∆A

n

c. Intensity histogram Panel 4 l at 25 m.

-σA σA ∆A

n

d. Intensity histogram Panel 4 l at 35 m.

-σAσA ∆A

n

Figure 2.4: Histograms of the intensity measurements for the panel 4 l at different distances resulting from the
maximum sampling rate of 1016 kHz, see also Section 1.2.6..

With the definition of the Signal-to-Noise Ratio (SNR)

SNR =
Ā

σA
(2.1)

between the mean signal amplitude Ā and the SD of the amplitude σA, a further characteristic curve
of the mean intensity as a function of the SNR can be represented in Figure 2.3b on the right.

Figure 2.3a shows that on the one hand the signal noise of the APD increases with increasing signal
strength, but on the other hand Figure 2.3b shows a simultaneous increase of the SNRwith increasing
signal strength. Since the SNR is directly related to the precision of the distance measurement (Met-
tenleiter et al. 2015, p. 51), larger SNRs should therefore result in more favorable distance precisions
σρ. Consequently, and due to the recognizable characteristic of the SNR, see Figure 2.3b, it is obvious
to obtain a comparable characteristic for the precision of the distance, cf. Section 2.1.2.
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it should be noted that each observation series contains potential outliers having a direct
impact on the determination of mean values and standard deviations for intensity and thus also on the
characteristic curves, see Figure 2.6, hence it is necessary to eliminate them beforehand.

However, in practice data snooping (Baarda 1968), see also Section 1.8.8.2, or so-called robust estima-
tors (Rousseeuw and Leroy 1987) are used to detect outliers, presuppose the stochastic information
to be determined itself, and thus are not suitable. Assuming normally distributed measurements
(Ghilani 2010, p. 525 ff.), erroneous observations were therefore consequently rejected by applying
the so-called 3σ-rule (Pukelsheim 1994). The outlier rate of the cleaned data series was on average
0.29% and maximum 1.19%.

2.1.2 Influence of Object Distance and Radiometry to derive Distance Noise

In comparison to the intensity histograms, see Figure 2.4, the corresponding distance histograms,
see Figure 2.5, behave differently with regard to the Panel 4 l. With increasing distance, broader
distributions are obtained for the distance measurements ρ, i. e. less precise (σρ) mean values ρ̄ for the
distances.

a. Distance histogram Panel 4 l at 5 m.

-σρσρ ∆ρ

n

b. Distance histogram Panel 4 l at 15 m.

-σρ σρ ∆ρ

n

c. Distance histogram Panel 4 l at 25 m.

-σρ σρ ∆ρ
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d. Distance histogram Panel 4 l at 35 m.

-σρ σρ ∆ρ

n

Figure 2.5: Histograms of the distance measurements for the panel 4 l at different distances corresponding to
the intensity histograms shown in Figure 2.4.
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Applying the precision of the distances σρ as a function of the average signal strength Ā, see Figure 2.6,
results in a reciprocal relationship – represented by blue data points related to the maximum sampling
rate of 1016 kHz – to Figure 2.3a due to the distance histograms which are inversely proportional to the
intensities.
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Figure 2.6: Precision of the distance measurement σρ as a function of the mean intensity Ā for the sampling
rates of 1016 kHz (blue dots), 508 kHz (red dots) and 127 kHz (black dots) for the TLS Z+F IMAGER®5006h.

Red data points characterize measurements recorded at a sampling rate of 508 kHz and black data
points indicate those recorded at 127 kHz. The different sampling rates result in three curves expressing
the characteristics of the Avalanche Photo Diode (APD), whereby the precision of the distance σρ

increases with increasing signal strength regardless of which sampling rate has been applied.
The averaging of the measured values when using different sampling rates, see Section 1.2.6, has a

direct effect on the noise of the distance measurement, which is reflected in an offset of the courses.
The precision of the distance measurements with respect to the basic measurement rate follows approx-
imately the relation

√
k – corresponds to the standard deviation of the mean value (Ghilani 2010, p.

20) –, where k is the ratio between the basic (1016 kHz) and the selected sampling rate.
For example, a distance recorded at a sampling rate of 508 kHz has a

√
2 times lower noise compared

to the corresponding one recorded at the basic sampling rate of 1016 kHz.
The noise behaviour of the intensity measurement, see Figure 2.3, as well as that of the distance

measurement, see Figure 2.6, results from the use of the intensity-influencing quantities of distance
paired with different surface reflectivities (panels in Figure 2.1) by the experimental setup in Figure 2.2.
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Figure 2.7 shows a more detailed analysis of the 127 kHz data points from Figure 2.6, highlighting the
influence of range on distance noise with circle edges color-coded from red (5 m) to blue (44 m). The
circle areas are coloured in the shades of grey of the respective panels used, see Figure 2.1, and thus
represent the influence of radiometry on the distance noise.
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Figure 2.7: Color-coded classification of the influences of object distance ρ and radiometry on the precision of
distance measurements σρ at 127 kHz.

interim conclusion: In particular, overlapping data points show that an explicit cause for the
deterioration of distance noise σρ can neither be clearly assigned to the radiometric properties of a
panel nor to the object distance. This confirms the hypothesis presented above, see Item 2, that a causal
separation of the influencing factors onto the SNR cannot be made.

2.2 Further Factors Influencing the Distance Stochastics

In this section, the influence of the incidence angle α and the effect of different materials with special
reflectance properties γ on the 127 kHz data series trend (black dots) shown in Figure 2.6 is examined.

2.2.1 Impact of the Incidence Angle

It has alreadybeenprovenby several publications, such as Soudarissananeet al. (2011) orZámečníková
et al. (2014), that the incidence angle α has a significant influence on reflectorless distance measure-
ment of EDMUs, accompanied by an increasing loss of intensity with growing incidence angles, see also
Figure 1.12.
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Toclarify the effects of the incidence angleαon the characteristic course of the distance noise determined
so far, see Figure 2.6, the panel 4 l, see Figure 2.1g, was recorded in an experiment at object distances of
15 and 30 m in 1Dmode at incidence angles4 between 16 and a maximum of 63°.
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Figure 2.8: Influence of the incidence angle α onto the distance precision σρ for two different object distances.

The measurements were evaluated in analogy to Section 2.1.1 and are plotted in Figure 2.8 together
with the black dotted data series from Figure 2.6 recorded at the same measuring rate of 127 kHz. The
points are colored according to their object distance, according to Figure 2.7 – orange represents 15 m
and light blue 30 m.

As to be expected, the observation group at 15 m also shows better distance precision at higher
intensity values compared to the observation group at 30 m. Within an observation group, the signal
strength equally decreases with increasing incidence angles, which is reflected in a higher distance noise.

interim conclusion: However, it is obvious that these observations follow the general trend
of the other observations (black dots), recorded at an incidence angle of ∼ 0°.

2.2.2 Effects caused by differentMaterials

The interaction between the emitted laser signal and the object surface, which is also termed ob-
ject or surface reflectivity γ, is the subject of intense scientific attention with regard to TLS, such as
(Zámečníková et al. 2014).

4 The incidence angles were determined by the normal vector of the panel surface and the direction vector of the
measuring beam.
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The object reflectivity for a certain object cannot be determined directly due to the strong dependen-
cies on other factors influencing the intensity, see Section 1.2.4.1, especially Equation (1.15), hence no
noteworthy results have been obtained in the past to describe these effects. Sections 2.1.2 to 2.2.1, in
particular Figure 2.7 and Figure 2.8, demonstrated that raw intensity values are suitable for mapping
the effects caused both by the acquisition configuration and by radiometric properties.

In order to prove whether raw intensity values are also appropriate for considering the effects
caused by different materials, samples5 of common construction materials –Figure 2.9– with different
radiometric and surface-related (e. g. roughness) properties were investigated.

a. Acrylic wall plaster. b. Beech Panel. c. Pumice. d. Red clinker.

e. Resin coated plywood. f. Styrofoam. g. White silicate plaster.

Figure 2.9: Material samples of different characteristics to examine the stochastic model.

To derive the actual reflectivity γλ of the materials at different wavelengths, the samples were measured
with a Perkin Elmer Lambda 19 spectrometer, providing the material spectra in Figure 2.10.

5 The material samples have a size of ∼ 5×5 cm and vary in thickness from 1 to 2 cm.
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Figure 2.10: Spectral reflectance curves for different materials of a Perkin Elmar Lamba 19 spectrometer covering
the wavelength range 350-2500 nm.

From the readings of the spectral curves at the wavelength of the applied TLS of 780 nm (red vertical
line in Figure 2.10), the following reflectivities are obtained for the different materials:

a. Acrylic-based wall plaster: 29.1% Figure 2.9a

b. Beech panel: 78.7% Figure 2.9b

c. Pumice (rough | smooth): 53.7% | 60.1% Figure 2.9c

d. Red clinker: (rough | smooth): 35.8% | 40.4% Figure 2.9d

e. Resin coated plywood: 7.8% Figure 2.9e

f. Styrofoam: 73.6% Figure 2.9f

g. White silicate plaster: 79.4% Figure 2.9g

For the first study, material samples a, b, e, f and g, see Figure 2.9, were scanned from a distance of
15 m and 30 m as well as at incidence angles of 0° and 20°. The observations evaluated equivalent to
Section 2.1.1 are shown in Figure 2.11 together with the reference trend (black dots) from Figure 2.6 at
the same measurement rate of 127 kHz.
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Figure 2.11: Influence of material samples from Figure 2.9 under varying acquisition configurations captured at
127 kHz.

To be able to assign the data patches to the corresponding materials and their acquisition configuration,
the pattern face was colored in the corresponding material color, where the shape represents the
incidence angle –circles for 0° and triangles for 20°– and the color of the shape edge –orange for 15 and
light blue for 30 m– indicates the object distance.

interim conclusion: Regardless of which acquisition configuration the materials originate
from or which immensely different levels of reflectivity they have, see list above, all observations follow
the reference trend. Hence it can be concluded that the raw intensity values are also capable of expressing
influences caused by different materials.

The two sides of the material samples c and d have very different degrees of roughness6, which is also
reflected in different reflectivity values for the rough and smooth side, see material list above.

To also analyze the influences of the material’s roughness, both sides of the material samples c and d
were again observed under different acquisition configurations (0 and 20°, 15 and 30 m) with the same
sampling rate of 127 kHz applied before as a result of a second experiment.

Figure 2.12 shows the measurement of the rough side of the material by triangular data patches and
the measurement of the smooth side by round data patches. The material type is represented by the
respective material color of the surface patches.

6 Sawing the pumice stone produces a porous cut surface with higher roughness. For clinker, the adhesive surface
is comparatively smooth to the decorative granular outer layer. As a result, the corresponding reflection ratios
are clearly different.
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Figure 2.12: Effect of roughness and smoothness for different materials under differing acquisition
configurations captured at 127 kHz.

In Figure 2.12, four clusters can be identified as a result of different reflection ratios, which can be
reduced to two clusters – rectangles in orange for 15 m and light blue for 30 m – depending on the
object distance.

interim conclusion: As in the previous investigations, see Section 2.1.2 and Section 2.2.1,
of other influencing factors, it is also evident here that raw intensity values are capable of mapping
the influences from different material roughnesses on the previously determined course (black dots)
regardless of the recording geometry.

2.3 The StochasticModel of a TLS

The results of the aforementioned experimental series, see Sections 2.1 to 2.2, confirm the arguments
under Item 2 and Item 3, according to which stochastic values for individual distances can be derived
from raw intensity values.

Figure 2.13 shows the relevant intensity range on the abscissa axis and the corresponding distance
noise on the ordinate for a fictitiousTLS. The lower andupper abscissa values of the black intensity curve
represent the usable intensity range for the determination of the stochastic model, i. e. the range that
should ideally be covered by intensity measurements of a TLS via a suitable acquisition configuration,
see also Figure 2.2, so that a meaningful model can be derived.
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Figure 2.13: Characteristic intensity range to describe the distance noise for a fictitious laser scanner.

With decreasing intensity and increasing distance noise, a blue jagged area7 is finally reached in which a
correct distance measurement is no longer possible. This is due to electronic noise, occurring when the
SNR, see also Figure 2.3b, becomes smaller than 2, i. e. the noise component begins to exceed the signal
component.

In the higher intensity range, the black curve asymptotically approaches the red line, indicating the
maximum resolution of the TLS applied.

note: The stochastic model does not allow conclusions to be drawn below the resolution of the
EDMU, since the distance measurements recorded within this intensity range differ randomly by the
magnitude of the maximum resolution ∆ρ.

Based on the characteristic decrease in distance precision of the APD in Figure 2.6, a power function –
f : x 7→ axr a, r ∈ R – ideally serves as functional model

σρ = aIb + c or σρ = aIb8 (2.2)

to describe the stochastic model. Within an Least Squares Adjustment (LSA), the unknown parameters
â and b̂ can be determined by adding the residuals vIi to the observed intensities Ii

9 and introducing

7 Themeasurements recorded in the area of electronic noise have not been taken into account for further processing.
8 For the TLS used, the parameter c, which describes an additional offset of the precision curve, was not significant
and hence was not considered in the functional model. For other laser scanners, however, it might be of some
importance!

9 The intensities Ii are equivalent to the mean intensities Ā derived in Section 2.1.1.
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the standard deviation of the distance measurements σρi
as fixed parameters10, leading to so-called

condition equations:

0 = â(Ii + vIi)
b̂ − σρi

11 (2.3)

The adjustment problem with the nonlinear condition equations of the type according to (2.3), can
ideally be solved in a GHM, see Section 1.8.6, by linearizing, see Section 1.8.2.1, the conditional equations
at the location of suitable approximate values x0 and v0.
After introducing the vector of the corrections to the approximate values

∆x̂ =
[
∆â ∆b̂

]T
, (2.4)

the Jacobian matrix

J1 =



(I1 + v0
I1
)b

0
a0(I1 + v0

I1
)b

0 ln
(
I1 + v0

I1

)
...

...

(Ii + v0
Ii
)b

0
a0(Ii + v0

Ii
)b

0 ln
(
Ii + v0

Ii

)
...

...

(In + v0
In
)b

0
a0(In + v0

In
)b

0 ln
(
In + v0

In

)


(2.5)

can be set up with the partial derivatives of the conditional equations according to the unknowns â
and b̂. Concerning the GHM the Jacobian matrix

J2 =


a0b0(I1 + v0

I1
)b

0−1 0

a0b0(Ii + v0
Ii
)b

0−1

. . .

0 a0b0(In + v0
In
)b

0−1

 (2.6)

10Since the derivation of the measured values for the intensity and the distance measurement in Section 2.1.1 is
performed in the same way and the accuracy information σI of the respective mean intensity observation Ā is
taken into account in the adjustment, the observed precision σρ of the distance measurement is assumed to be
constant.

11 The condition equation can also be reformulated into the form Ii + vIi = (
σρi

â
)

1
b̂ as a so-called observation

equations, allowing an evaluation in a GMM, see Section 1.8.5. However, due to the unfavorable differential
quotients for the convergence behavior, an evaluation in the GHM, see Section 1.8.6, is preferred in this case.
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with the partial derivatives of the condition equations according to the residuals

v̂ =
[
v̂I1 · · · v̂Ii · · · v̂In

]T
(2.7)

for the observations Ii, with i = 1, · · · ,n, is additionally obtained. Considering the condition vector

Ψ(v0, x0) =



a0(I1 + v0
I1
)b

0
− σρ1

...

a0(Ii + v0
Ii
)b

0
− σρi

...

a0(In + v0
In
)b

0
− σρn


(2.8)

in Equation (1.53) and the individual precisions of the intensities σIi in the CM of the observations

Qll =
1
σ2

0



σ2
I1

0
. . .

σ2
Ii

. . .

0 σ2
In


, (2.9)

the Jacobians J1, see (2.5), withA = J1 and J2, see (2.6), with B = J2 can now be used in Equa-
tion (1.60) to obtain the solution ∆x̂, see (2.4).
The unknowns x̂ = [ â b̂ ]

T and residuals v̂ are finally obtained from Equation (1.61).

note: Since this is only the solutionof a linearized substitute problem, theunknowns x̂ and residuals
v̂ based on Equation (1.58) are to be introduced into the adjustment as new approximate values x0

and v0. This iterative calculation is carried out until a selected break condition, cf. Equation (1.62), is
reached. Possible outliers were eliminated by data snooping, see Section 1.8.8.2, after convergence in the
respective iteration step.

Table 2.1 lists the results of the regressions for any sampling rate of the curves in Figure 2.6. Each
parameter set [â b̂] 12 describes an individual distance noise behaviour of the EDMU in the TLS applied

12The estimated parameters of the stochastic model refer to raw intensity values as input for the functional model
in Equation (2.2), yielding the precision for distances in meters.
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for each sampling rate via the functional relationship in (2.2), where the values in round brackets are
the standard deviations (1σ) of the respective adjusted parameters.

Table 2.1: Estimated stochastic model parameters for different sampling rates of the TLS Z+F IMAGER®5006h.

sampling rate [kHz] model parameters

â (σa) b̂ (σb)

1016 1.3168 (0.0414) -0.5577 (0.0027)
508 1.1742 (0.0363) -0.5756 (0.0027)
127 0.4696 (0.0209) -0.5587 (0.0047)

Figure 2.14 shows the regression curve through the data points based on the adjusted parameters â and
b̂, see Table 2.1, of the stochastic model by applying Equation (2.2) for the sampling rate of 508 kHz.
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Figure 2.14: Regression curve through the data points with respect to the sampling rate of 508 kHz.

2.3.1 Derivation of a StochasticModel for Point Clouds

The precision of a 3D point obtained by a TLS depends on the precision of the corresponding original
polar measurements, i. e. the precision of the direction σφ and tilt angle σθ as well as the precision of
the distance σρ, as illustrated by the functional relationship given by Equation (A.13).

The precision of the angle measurements can be taken from the manufacturer’s data sheet for a TLS,
resulting in σφ = σθ = 0.007° for the Z+F IMAGER®5006h used (Zoller+Fröhlich 2010).
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On the basis of the observed raw intensity I for a 3D point and the proposed stochasticmodel parameters
related to the sampling rate in Table 2.1, Equation (2.2) can be used to determine the precision of the
distance measurement σρ.

By means of Variance-Covariance Propagation (VCP) (Ghilani 2010, p. 86 ff.), it is now possible to
determine the precision for the individual coordinate values of a 3D point, taking

Σxxi
= FiΣlli

FT
i , (2.10)

and considering the functional or design matrix

Fi =


sin θi cosφi ρi sin θi sinφi ρi cos θi cosφi

sin θi sinφi ρi sin θi cosφi ρi cos θi sinφi

cos θi 0 ρi sin θi

 , (2.11)

containing the partial derivatives with respect to themeasured quantities via the functional relationship
in Equation (A.13), as well as the corresponding CM

Σlli
= diag

[
σ2
ρi

σ2
φi

σ2
θi

]
(2.12)

by knowing the precision of the polar elements. The precision of the 3D point, i. e. point error

σ3Di
=

√∑
traceΣxxi

, (2.13)

can be easily calculated from the diagnonal elements of the individual by (2.10) determined CM

Σxxi
=


σ2
xi

σxyi
σxzi

σyxi
σ2
yi

σyzi

σzxi
σzyi

σ2
zi

 , (2.14)

containing the precision information of the corresponding coordinate values.

Figure 2.15 shows a color coded representation of 3D precision for an entire dataset calculated by
function compute_point_precision, see Code A.8, of the presented object in Figure 3.1a.
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Figure 2.15: Representation of precision in 3D for the object presented in Figure 3.1a.

2.4 Validation of the StochasticModel

This section focuses on the validation of the novel stochastic model presented in Section 2.3, for which
two independent methods have been developed.

The first method presented in Section 2.4.2 is based on an overall analysis of the stochastic properties
of the TLS, comprising the assumed precisions for directions, tilt angles and distances.

Since the first method is based on the evaluation of a geometric shape in form of a planar surface,
its precision in planarity must be significantly below the precision of the scanner to be examined, an
independent method is presented in Section 2.4.3. The second method is characterized by the use of
unfavorable or non-smooth surface properties and focuses solely on the precision of the distances.

2.4.1 Interpretation of the Adjustment Result as Verification

Both methods for validating the stochastic model are based on the same concept that takes advantage of
the properties of the global test presented in Section 1.8.8.1.

Under the assumption that the functional model was chosen appropriately and that there are no
outliers present in the observation material, the global test is an indicator of the suitability of the
stochastic model used.

usually the statement whether the calculated empirical SD s0, see Equation (1.80), matches the SD

of the unit weight σ0 is made with the chi-square test, see Section 1.8.8.1. However, the test is limited
to problem cases with a redundancy f < 20, since the error probability increases significantly with
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increasing redundancy (Fornell and Larcker 1981; Smith andMcMillan 2001; Neitzel and
Petrovic 2008).

As the redundancies exceed this limit immensely due to the numerous observations for the subsequent
evaluations, a criterion established in practice is used according towhich the stochasticmodel is assumed
to be correct if s0 falls into the interval of 0.7 < s0 < 1.3 with the assumption of σ0 = 1 (Müller
2000, p. 345). The test then can be interpreted as follows:

• s0 > 1: Weighting of observations was too optimistic
Observations are less precise than the model assumption

• s0 < 1: Weighting of observations was too pessimistic
Observations are more precise than the model assumption

2.4.2 Validation based on Planar Surfaces

For the verification process of the stochastic model, four planar panels with a side length of 50 cm,
identical in material and radiometric properties to those in Figure 2.1, were scanned in 3Dmode under
different acquisition configurations, see Figure 2.16.

a. Acquisition configuration. b. Replacement of panels.

Figure 2.16: Arrangement of the panels for verification of the stochastic model for test scenario A, characterized
by red rectangles (left), and interchange of the panels (right).

In a further working step, the 3D points of the panels were extracted from the point cloud 13 and the

13 Since point clouds can usually only be exported in cartesian coordinates, a conversion into polar coordinates by
Section A.1.2 is performed, representing the elementary observations of the scanner
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separate amounts of data were each subjected to a plane regression.

In order to ensure the appropriate functional model assumption postulated in Section 2.4.1, here the
assumption as a plane, the front and rear sides of each individual panel were checked for planarity with
a GOMATOS I structured light scanner. The inspection resulted in an average planarity of< 0.1
mm, as also specified by the manufacturer, which is below the resolution of the TLS examined and thus
an accurate model assumption could be proven.

The functional model for a planar surface with the common use of cartesian coordinates reads

nxxi + nyyi + nzzi − d = 0 (2.15)

with i = 1, · · · ,n points on the plane by considering the constraint

n2
x + n2

y + n2
z = 1 (2.16)

for the length of the normal vector. Expressing the cartesian coordinates in (2.15) as a function of
corresponding polar coordinates with Equation (A.13) results in the desired functional relationship

nxρi sin θi cosφi + nyρi sin θi sinφi + nzρicosθi − d = 0 (2.17)

of elementary observations. Assuming that the elementary observations θi,φi and ρi are only subject
to random errors, see also Section 1.8.2, residuals for directions vφi

, tilt angles vθi
and distances vρi

are introduced, leading to

n̂x(ρi + vρi
) sin(θi + vθi

) cos(φi + vφi
)+

n̂y(ρi + vρi
) sin(θi + vθi

) sin(φi + vφi
)+

n̂z(ρi + vρi
)cos(θi + vθi

) − d̂ = 0

(2.18)

where

n̂x, n̂y, n̂z are the unknown adjusted values of the components of the normal vector of the
estimated plane, as well as

d̂ the unknown adjusted perpendicular distance from the estimated plane to the origin
of the local coordinate system of the scanner.

Summarizing the residuals in the vector

v̂ =
[
v̂φ1 · · · v̂φn

v̂θ1 · · · v̂θn
v̂ρ1 · · · v̂ρn

]T
(2.19)
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and the precision relations of the observations with the SD of the unit weight σ0 = 1 in a weight matrix

P = diag

[
1

σ2
φ1
· · · 1

σ2
φn

1
σ2
θ1
· · · 1

σ2
θn

1
σ2
ρ1
· · · 1

σ2
ρn

]
14, (2.20)

the objective function to be minimized of an LSA is given by Equation (1.41). The functional relation
(2.18) corresponds to the form according to Equation (1.50), which leads with the constraint of (2.16)
to a nonlinear LSAwith condition equations and constraints between the unknowns (Mikhail and
Ackermann 1976).

Ideally, an iterative solution can be achieved with an evaluation and appropriate linearization
according to Lenzmann and Lenzmann (2004) in a GHMwith constraints, see Section 1.8.7.

Based on (2.18), the condition vector with the current approximate values for the residuals and
unknowns is obtained

Ψ(v0, x0) =
[
Ψ0

1 · · · Ψ0
i · · · Ψ0

n

]T
(2.21)

by using the individual conditions

Ψ0
i = n0

x(ρi + v0
ρi
) sin(θi + v0

θi
) cos(φi + v0

φi
)+

n0
y(ρi + v0

ρi
) sin(θi + v0

θi
) sin(φi + v0

φi
)+

n0
z(ρi + v0

ρi
)cos(θi + v0

θi
) − d̂.

(2.22)

Similarly, the constraint vector based on (2.16) is obtained

γ0 = n0
x

2 + n0
y

2 + n0
z

2 − 1 (2.23)

with the current approximate values for the unknowns. The Jacobian matrix with the partial derivatives
of the condition equations in (2.21) according to the unknowns is obtained

J1 =



∂Ψ0
1

∂n0
x

∂Ψ0
1

∂n0
y

∂Ψ0
1

∂n0
z

−1
...

...
...

...
∂Ψ0

i

∂n0
x

∂Ψ0
i

∂n0
y

∂Ψ0
i

∂n0
z

−1
...

...
...

...
∂Ψ0

n

∂n0
x

∂Ψ0
n

∂n0
y

∂Ψ0
n

∂n0
z

−1


(2.24)

14The precision of the directions σφi
and the tilt angles σθi

were set to 0.007° according to the manufacturer’s
specifications and the precision of the distances σρi

stems from the proposed stochastic model of TLS as already
used previously in Section 2.3.1
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based on Equation (1.52) by using the substitutions

∂Ψ0
i

∂n0
x

= (ρi + v0
ρi
) sin(θi + v0

θi
) cos(φi + v0

φi
),

∂Ψ0
i

∂n0
y

= (ρi + v0
ρi
) sin(θi + v0

θi
) sin(φi + v0

φi
), (2.25a)

∂Ψ0
i

∂n0
z

= (ρi + v0
ρi
)cos(θi + v0

θi
).

With the partial derivatives of the condition equations in (2.21) according to the residuals

∂Ψ0
i

∂v0
φi

= −n0
x(ρi + v0

ρi
) sin(θi + v0

θi
) sin(φi + v0

φi
)

+n0
y(ρi + v0

ρi
) sin(θi + v0

θi
) cos(φi + v0

φi
)

∂Ψ0
i

∂v0
θi

= n0
x(ρi + v0

ρi
) cos(θi + v0

θi
) cos(φi + v0

φi
)

+n0
y(ρi + v0

ρi
) cos(θi + v0

θi
) sin(φi + v0

φi
) − n0

z(ρi + v0
ρi
)sin(θi + v0

θi
),

(2.26a)

∂Ψ0
i

∂v0
ρi

= n0
x sin(θi + v0

θi
) cos(φi + v0

φi
)

+n0
y sin(θi + v0

θi
) sin(φi + v0

φi
) + n0

z cos(θi + v0
θi
),

the Jacobian matrix

J2 =


∂Ψ1
∂v0

φ1
0 0

0 . . . 0

0 0 ∂Ψn

∂v0
φn

∂Ψ1
∂v0

θ1
0 0

0 . . . 0

0 0 ∂Ψn

∂v0
θn

∂Ψ1
∂v0

ρ1
0 0

0 . . . 0

0 0 ∂Ψn

∂v0
ρn

 (2.27)

results based on Equation (1.52) analogous to the Jacobian matrix J1, see (2.24). Finally, the Jacobian

J3 =
[
2n0

x 2n0
y 2n0

z 0
]

(2.28)

is obtained with the partial derivatives of the constraint equations in (2.23) after the unknowns. Using
the Jacobians withA = J1,B = J2 andC = J3 and forming the vectors of misclosures according to
Equations (1.53) and (1.66) using the condition and constraint vectors in (2.21) and (2.23), the solution for
the vector of reduced unknowns ∆x̂ = [ ∆n̂x ∆n̂y ∆n̂z ∆d̂ ]T is obtained withQll = P−1, see (2.20),
taking Equation (1.73).
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since this is like in Section 2.3 only the solution of a linearized substitute problem, the unknowns
x̂ and residuals v̂ based on Equation (1.61) are to be introduced into the adjustment as new approx-
imate values x0 and v0. This iterative calculation is carried out until a selected stop criterion, cf.
Equation (1.62), is reached.

During the iteration steps, after each convergence15 of s0, Baarda’s data snooping (Baarda 1968), see
Section 1.8.8.2, was applied to detect and remove outliers in the observation material.

Two scenarios, a and b, with different acquisition configurations, were prepared to verify the
stochastic model by satisfying the combination of distance (Elkhrachy and Niemeier 2006) and
incidence angle (Grant et al. 2012) dependent models.

Regarding scenario a, panels with different radiometric properties, cf. Figure 2.1, were repeatedly
measured at constant positions, highlighted by red rectangles in Figure 2.16a, by exchanging them
among each other, highlighted by orange rectangles in Figure 2.16b, with a constant sampling rate of
508 kHz in order to quantify the influences of different radiometric properties while maintaining the
same acquisition configuration on the new stochastic model.

Table 2.2 contains the empirical SDs s0 based on the adjusted planes, as well as the mean intensity
Im, for the different realisations of scenario a. For scenarios a1-a4, the corresponding scan geometry16

is given in the first column of the table.

Table 2.2: Empirical standard deviation s0 after plane adjustment and mean intensity Im for different scenarios
a1 of the measuring arrangement a.

scan geometry a1 a2 a3 a4
s0 | Im[Inc] s0 | Im[Inc] s0 | Im[Inc] s0 | Im[Inc]

Pos. 1: 4.94 m | 12° 1.16 | 1.519·106 1.05 | 3.701·105 1.13 | 9.041·105 1.16 | 1.503·106

Pos. 2: 12.32 m | 5° 1.11 | 9.142·105 1.11 | 1.025·106 1.01 | 2.533·105 1.04 | 5.283·105

Pos. 3: 19.42 m | 7° 1.01 | 1.101·105 0.99 | 2.448·105 1.03 | 4.159·105 1.03 | 4.322·105

Pos. 4: 25.88 m | 8° 0.95 | 1.395·105 0.97 | 2.313·105 0.92 | 2.308·105 0.96 | 6.054·104

it can be concluded that the proposed stochastic model is capable of describing effects
caused by different radiometric properties as well as the acquisition configuration, cf. Section 1.2.4.1,

15Means that the difference of a computed value from the previous to the actual iteration step has reached a value
close to zero in terms of a stop criteria

16The recording geometry refers to the distances between the centroids of the extracted planes and the origin of
the local scanner coordinate system, as well as the incidence angle, defined as the angle between the plane normal
and the incident beam of the TLS.
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2.4. validation of the stochastic model

since according to Müller (2000), as can be seen in Table 2.2, all empirical SDs s0 fall within the given
interval of 0.7 < s0 < 1.3.

To illustrate the influence of poorly chosen precision information for the observations or unsuitable
stochastic models on the adjustment result, expressed by the empirical SD s0, the measurements of
scenario a417 from Table 2.2 were reprocessed.

For this purpose, different weight matrices Pc1,Pc1.5 andPc2 were created, respectively based on
the assumption of equally precise distances with σρ = 1 mm, σρ = 1.5 mm and σρ = 2 mm, and used
as new precision models for the measured values from scenario a4 in further plane adjustments.

Table 2.3: Empirical SDs s0 based on different unrealistic stochastic models for scenario A4 from Table 2.2.

weight matrix position 1 position 2 position 3 position 4
s0 s0 s0 s0

P 1.16 1.04 1.03 0.96
Pc1 0.48 0.68 0.77 1.96
Pc1.5 0.32 0.46 0.52 1.37
Pc2 0.24 0.34 0.39 1.05

Table 2.3 compares the original empirical SDs based on the evaluation of the new derived stochastic
model P for the positions from scenario A4, see last column of Table 2.2, with the empirical SDs based
on the unrealisticmodelsPc1,Pc1.5 andPc2. For theweightmatrixPc1 there are significant deviations
(up to 0.96 for position 4) from the s0 of the individual positions to the SD of the unit of weight σ0 and
thus also to the s0 of the proposed weight matrixP (up to 1.0 for position 4), therefore 3 of 4 values do
not lie within the required acceptance range.

it can be stated that Pc1, as well as the other weight matricesPc1.5 andPc2, are not suitable
for describing the stochastic properties of the TLS used due to the above findings.

furthermore, it should be noted that with regard to s0 in terms of a position (table
columns 2, 3, 4 or 5 in Table 2.3), even changes in stochastics within submillimeter range, i. e. from 1 to
1.5 and from 1.5 to 2 mm, may lead to major changes in s0, indicating a high sensitivity for the correct
choice of a stochastic model.

17Due to its largest variation in intensity between the individual panel positions and the accompanying clearer
significance for the experiment, scenario a4 was preferred to the others.
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To estimate the sole influence of different radiometric properties on the distance noise σρ, the highest
and lowest intensity values Im for a constant scanning geometry, here with respect to position 1 in
Table 2.2, were used in Equation (2.2) with the parameters of the stochastic model for the relevant 508
kHz from Table 2.1 to calculate the corresponding precisions.

For the intensity values 370.104 and 1.519.370 the values 0.73 mm and 0.33 mm result for the distance
noise σρ, leading to a difference in precision18 of 0.4 mm solely due to the radiometric variation.

as already stated before, see Table 2.3, these submillimeter differences have a considerable
effect on the empirical SD s0, which clearly argues against the validity of range and/or incidence angle
dependent stochastic models for TLS’s EDMUs.

in summary, it can be concluded that the previous results based on scenario a, see Fig-
ure 2.16, support the argument in Item 3 that raw intensity values are able to consider the influences
caused by the acquisition configuration and the radiometric properties.

In order to check whether the newly developed stochastic model is capable of describing the distance
noise of the EDMU differentiated by different sampling rates, with scenario b individual panels were
repeatedly recorded with a constant acquisition configuration but with different sampling rates.

Table 2.4: Empirical standard deviation s0 after plane adjustment and mean intensity Im for different sampling
rates of scenario A4 from Table 2.2.

scan geometry b1 (1016 kHz) b2 (508 kHz) b3 (127 kHz)
s0 | Im[Inc] s0 | Im[Inc] s0 | Im[Inc]

Pos. 1: 10.09 m | 11° 1.02 | 4.398·105 1.02 | 4.424·105 1.04 | 4.452·105

Pos. 2: 12.17 m | 13° 1.07 | 7.798·105 1.08 | 7.846·105 0.99 | 7.895·105

Pos. 3: 15.74 m | 10° 1.04 | 5.517·105 1.04 | 5.536·105 0.98 | 5.589·105

Pos. 4: 17.02 m | 9° 1.01 | 3.674·105 0.98 | 3.690·105 1.05 | 3.725·105

Table 2.4 shows that the empirical SD s0 for the different sampling rates all fall within the required
interval of 0.7 < s0 < 1.3, which confirms the validity of the parameter sets for the sampling rates in
Table 2.1 and thus the stochastic models.

18 If the measurements had been carried out with a sampling rate of 1016 kHz, this would even lead to a precision
difference of 0.56 mm.

102



2.4. validation of the stochastic model

2.4.3 Validation using Arbitrary Surfaces

In order to also provide a possibility to verify the stochastic model, which is on the one hand independent
of a geometric precision of the test object, as in Section 2.4.2 of the planarity of the panels, and on the
other hand only considers the distance component ρ regardless of the other observations θ andφ, a
further procedure based on repeated distance measurements l = [ ··· ρi ··· ]T is presented.

The solution expressed in a GMM, according to the calculation of a weighted mean is obtained
straightforward by Equation (1.47) with the design matrix

A =
[
1 · · · 1

]T
(2.29)

and the weight matrix

P = diag

[
· · · 1

σ2
ρi

· · ·
]

, (2.30)

where σ0 = 1 and the precisions ρi via the corresponding intensities are based on the proposed
stochastic model according to Equation (2.2).

On the basis of the residuals according to Equation (1.42), the empirical SDs s0 were determined
with Equation (1.80) using the weight matrix from (2.30) and presented in Figure 2.17 together with
the s0 of the procedure described in Section 2.4.2. The s0 values from Section 2.4.2 are represented
by triangles and the s0 values based on this section by circles, where the different colors indicate the
sampling rate on which the data points are based. The two vertical green lines define the intensity range
on which the experiments are based and indicate the bandwidth within the proposed stochastic model
has been verified.
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Figure 2.17: Intensity behaviour of the TLS Z+F IMAGER®5006h as a function of the incidence angle α at
different distances..
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in summary all empirical standard deviations s0 with values between 0.92 and 1.16 fall within
the desired interval of 0.7 < s0 < 1.3. In addition, the mean value of 1.03 indicates that the specific
weights based on the stochastic model fit very well to the corresponding observations.

it should be noted that s0 increases slightly with increasing signal strength, which can be
attributed to the fact that the precision of the distance measurement gradually coincides with the
maximum resolution of the distance of 0.1 mm (Zoller+Fröhlich 2010).

concluding, it can be stated that the proposed stochastic models, see Table 2.1, could be
verified using both independent methods in this section.

2.5 Deriving StochasticModels based on 3D-MeasuringMode

A major drawback of the method for deriving the stochastic model presented in Section 2.3 is the
necessity of a repeatable measurement of a single distance ρ, requiring the beam deflection unit of
the TLS to be switched off. The so-called 1D mode is only released by a few manufacturers, which is
mainly due to eye safety issues. Therefore, this section focuses on the subject of deriving stochastic
models even during normal operation of a TLS and is founded on the findings contained in the research
contributions of (Wujanz et al. 2018a) and (Wujanz et al. 2018b).

To derive intensity-based stochastic models in normal operation, i. e. based on 3D point clouds, larger
planar panels, such as in Figure 2.16, have to be used in contrast to the 1D mode, cf. Figure 2.1, thus
ensuring sufficient evaluable information. This is due to the fact that in the 3Dmode one has to rely on a
planar analysis due to the missing correspondence and repeatability of single measurements. However,
the basic measurement setup can be taken over from that in Figure 2.2.

In principle, two approaches to derive stochastic models in the 3Dmeasurement mode can be distin-
guished:

a. Interpretation of residuals as stochastics of distance measurement

b. Derivation of EDMU stochastics based on ”quasi-ranges”

Considering approach a, planes are estimated from the respective measurements on the panels, with
i = 1, · · · ,n points on the plane, cf. Section 2.4.2 and Equation (2.15), and the mean residual

∆pm =

∑n
i=1 ∆pi

n
(2.31)
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2.5. deriving stochastic models based on 3d-measuring mode

from the individual residuals

∆pi =| nxxi + nyyi + nzzi − d | 19 (2.32)

of the points [xi,yi, zi] to the adjusting plane is determined, serving as a representative quantity for
the stochastic of the distance measurement – σρ=̂∆pm.

remark: The general idea to use residuals from a plane adjustment as stochastic quantity for
reflectorless measurements is not new (Böhler et al. 2003).

Furthermore, the average raw intensity Im is determined for these measurements and compared to the
corresponding calculated precision values σρ for the distance. In Figure 2.18, the standard deviations
σρ of the distances determined at the same sampling rate of 508 kHz are plotted on the vertical axis, the
raw mean intensity values Im on the horizontal axis and compared to the stochastic reference model
from Figure 2.14 (light green line) arising on the 1Dmode.

104 105 106 107
0

1

2

3

4

5

Intensity [Inc]

SD
σ
ρ
of

di
sta

nc
es
[m

m
]

508 kHz 3D resuduals
508 kHz 1D reference

Figure 2.18: Comparison of the reference stochastic model based on an sampling rate of 508 kHz with 3D
residual procedure.

As can be observed in Figure 2.18, the data points, depicted in red, calculated on the basis of the 3D

mode follow the reference course (green line) almost completely, with minor differences in magnitude
of up to 0.17 mm for higher intensity values.

19Since the residuals ∆pi of the plane adjustment depend on the orientation of the sample, the residuals may have
to be corrected for this influence. This can be done simply by using the specified normal vector indicating the
orientation of the sample.
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Figure 2.19: Comparison of the reference stochastic model based on an sampling rate of 508 kHz with ”quasi
range” procedure.

Another possibility to derive the stochastic model in 3D measurement mode is offered by variant b.
Here the polar measurement values on the panel are determined from the cartesian coordinates, cf.
Section A.1.2, and residuals to the mean measurement distance ρ̄ in a defined region are derived. Those
residuals that lie below the distance resolution of the TLS applied, here 0.1 mm, are used to determine
the measurement uncertainty.

Figure 2.19 shows the evaluation (red data points), comparable with Figure 2.18, for the stochastic
reference model (green line). Again, only minor differences at higher intensities can be observed, but
the course of the calculated data points is more noisy compared to Figure 2.18.

it can be stated that the derivation of EDMU stochastics based on ”quasi ranges” (method b)
is obviously very sensitive to the chosen acquisition configuration, hence method a is preferred.

2.6 Validity for pulsed TLS

The focus of the previous derivation of stochastic models was on TLSs that operate with the phase
comparison method, cf. also Section 1.2.2, see Section 2.3 and Section 2.5. Nevertheless, in this section
we will discuss whether the method can be transferred to TLSs that operate with the pulse propagation
method and is based on the findings in (Wujanz et al. 2018a) and (Wujanz et al. 2018b).

For this purpose, a scanner from this category, the Riegl VZ-400i, was used and an intensity-based
stochastic model according to Section 2.5, variant a has been derived, see Figure 2.20.
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Figure 2.20: Stochastic model of the MTA 1 zone of a Riegl VZ-400i laser scanner.

Analogous to Section 2.3, a stochastic model can be derived, which was extended by one parameter c,
cf. Equation (2.2), due to the different intensity behavior of the diode.

2.7 Conclusion

Referring to Section 1.9 existing efforts to derive stochastic models were elaborated, the importance and
requirements of those models were emphasized, consequently the necessity of a new all-encompassing
stochastic model was pointed out.
Subsequently, the intensity behavior of the APD employed was evaluated using a suitable measuring
arrangement, and associated with the precision of the distance measurement in Section 2.1.

Further distance and radiometry related factors influencing the stochastics of the distance measure-
ment, such as the angle of incidence or different material properties, were investigated in Section 2.2,
showing that the stochastic model is capable of covering all effects.

Finally, the characteristic trend in Figure 2.14 has been described with a functional model, see
Equation (2.2), and the parameters of the stochastic model have been determined, whereupon the
validation in Section 2.4 shows the usability.

In Section 2.5, however, the applicability of the derivation of stochastic models in 3Dmeasurement
mode was demonstrated and in Section 2.6 for scanners that operate pulse-based.

in summary it can be concluded that a giant step towards an all-embracing stochastic model,
applicable for different laser scanner types, could be developed, which maps all influencing factors on
the distance measurement in one model and considers them completely.
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The new stochastic model is a basic module for processing the measured values in Chapters 3 and 4 and
is already being used or discussed also by other scientists, see Section 2.7.1.

2.7.1 Acceptance and Fields of Application

Meanwhile, the intensity-based stochastic model has gained wide acceptance and is used for a variety of
scientific research questions, as listed below:

[44] E. Heinz, M.Mettenleiter, H. Kuhlmann, and C. Holst: “Strategy for deter-
mining the stochastic distance characteristics of the 2D Laser Scanner Z+ F Profiler
9012A with special focus on the close range”. In: Sensors 18.7 (2018), p. 2253.

[56] G. Kerekes andV. Schwieger: “Elementary error model applied to terrestrial laser
scanning measurements: study case arch dam Kops”. In:Mathematics 8.4 (2020),
p. 593.

[57] G. Kermarrec: “On Estimating theHurst Parameter fromLeast-Squares Residuals.
Case Study: Correlated Terrestrial Laser Scanner Range Noise”. In:Mathematics 8.5
(2020), p. 674.

[58] G. Kermarrec, H. Alkhatib, and I. Neumann: “On the sensitivity of the pa-
rameters of the intensity-based stochastic model for terrestrial laser scanner. Case
study: B-spline approximation”. In: Sensors 18.9 (2018), p. 2964.

[59] G. Kermarrec, M. Lösler, and J. Hartmann: “Analysis of the temporal correla-
tions of TLS range observations from plane fitting residuals”. In: ISPRS Journal of
Photogrammetry and Remote Sensing 171 (2021), pp. 119–132.

[60] G.Kermarrec, I.Neumann,H.Alkhatib, and S. Schön: “The stochasticmodel
for Global Navigation Satellite Systems and terrestrial laser scanning observations:
A proposal to account for correlations in least squares adjustment”. In: Journal of
Applied Geodesy 13.2 (2019), pp. 93–104.

[107] B. Schmitz, C. Holst, T. Medic, D. D. Lichti, and H. Kuhlmann: “How
to Efficiently Determine the Range Precision of 3D Terrestrial Laser Scanners”. In:
Sensors 19.6 (2019), p. 1466.

[138] X. Zhao, G. Kermarrec, B. Kargoll, H. Alkhatib, and I. Neumann: “Influ-
ence of the simplified stochastic model of TLS measurements on geometry-based
deformation analysis”. In: Journal of Applied Geodesy 13.3 (2019), pp. 199–214.
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3
Segmentation based on Geometric and

Radiometric Information

The segmentation belongs, apart from the registration to the most important operational steps
contributing to the automation regarding the subsequent processing of point clouds, see also Sec-
tion 0.1. From Section 1.10 it emerges that a variety of different segmentation methods for point clouds
captured with a TLS already exist. However, most of these methods consider point clouds from different
standpoints already transformed into a superordinate coordinate system (registered, see also Section 1.11)
and are therefore dependent on a recovery of the topology by the prior construction of suitable 3D data
structures, see Section 1.4. In contrast, if one assumes a single TLS position, the data is available as a grid
(in polar representation, see especially Figure 1.3) due to the line- and column-wise operating principle
of the laser scanner. The known topology, as in an image matrix, enables very efficient neighborhood
analyses with already proven image processing routines, from which geometric as well as radiometric
information can be obtained for the segmentation of a single scan.

First of all, Section 3.2 describes the pre-processing steps based on the data of the test objects presented
in Section 3.1, providing the information required for segmentation. On this basis, the new procedure
for segmenting TLS point clouds is presented in Section 3.3. An illustration andmore detailed analysis of
further results of the procedure presented, followed by a conclusion in Section 3.5, is given in Section 3.4.
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segmentation based on geometric and radiometric information

3.1 Sample Datasets

The new segmentation algorithm shall be explained in the following by means of processing a sample
data set and validated by more detailed analyses with the use of two further data sets. The views of the
test objects

• a teahouse in the park of the Charlottenburg Palace (”Belvedere”),

• b inner dome of the outdoor facility of the Orangery in Potsdam,

• c landslide in Obergurgel

captured with TLSs and upon whom the data sets are based are depicted in Figure 3.1.

a. Teahouse Belvedere. b. Orangery Potsdam. c. Landslide.

Figure 3.1: Front view of the test objects Belvedere (left), Orangery (center) and landslide (right).

Figure 3.1a shows the front view of the 24 m high, 17 m wide and 13 m deep tea house ”Belvedere”
constructed in the late Baroque and the position of the TLS Z+F IMAGER®5006h with equipment
from which the building was scanned. The data set recorded from this perspective serves as the basis
for the representation of the segmentation algorithm in the following Sections 3.2 to 3.3.

The individual geometry layers of the data set related to the scan position shown in Figure 3.1a are
depicted color-coded in Figure 3.2 according to their coordinate values. The range of values extends
from -15 (blue) to 15 m (red), whereas the value passage of 0 m was assigned white.

Due to the incremental scanning of a TLS in predefined angular increments, see Figure 1.3, the
individual measured values refer to the respective scan line and column, so that the measured values are
directly available in such a raster structure.

110



3.1. sample datasets
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Figure 3.2: Geometry layersX, Y andZ related to the standpoint in Figure 3.1a.

However, during data export the values are stored in various formats, e. g. the proprietary ptx-format in
a list. With the knownnumber of scan columnsc and lines r, the raster structure (matrix) is reproducible
again. Code 3.1 shows the function rearrange_2_matrix which performs the conversion of a
point cloud as a list p_cloud_l into a matrix structure p_cloud.

Code 3.1: Conversion of TLS data based on polar acquisition in a matrix structure.

1 function p_cloud = rearrange_2_matrix(p_cloud_l)

2 %input: struct lists p_cloud_l.p3D and p_cloud_l.int

3 %output: struct matrices p_cloud.x,.y,.z and p_cloud.int

4

5 % known scan rows r and columns c of scanned point cloud

6 r = p_cloud_l.size(1,1); c = p_cloud_l.size(1,2);

7

8 p_cloud = struct('x',{[]},'y',{[]},'z',{[]},'int',{[]});

9 for i = 1:r

10 p_cloud.x(i,:) = p_cloud_l.p3D(((i-1)*c+1):(i*c),1);

11 p_cloud.y(i,:) = p_cloud_l.p3D(((i-1)*c+1):(i*c),2);

12 p_cloud.z(i,:) = p_cloud_l.p3D(((i-1)*c+1):(i*c),3);

13 p_cloud.int(i,:) = p_cloud_l.int(((i-1)*c+1):(i*c),1);

14 end

The intensity information I corresponding to the geometry, see Figure 3.2, is color-coded in Figure 3.3a,
where the decrease in intensity from object near areas in the center (red) to farther away and with a
larger angle of incidence to the right and left edge regions (yellow via green to blue) is obvious, see also
Section 1.2.4.1.

On the basis of the raw intensity values, the new stochastic model presented in Chapter 2, see Equa-
tion (2.2), can be used to calculate the precision for each individual 3D point according to Section 2.3.1
with Equation (2.13). The resulting precision layerΣXYZ with the color bar ranging from blue (<1
mm) to red (>8 mm) is shown in Figure 3.3b to the right of the intensity layer Figure 3.3a. It can be
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segmentation based on geometric and radiometric information

clearly seen that the point precision is inversely proportional to the strength of the intensity, reflecting
the behaviour of the EDMU observed in Section 2.1.
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Figure 3.3: Intensity layer I and corresponding precision layerΣXYZ related to the standpoint in Figure 3.1a.

For the evaluation of the segmentation results, the so-called ”egyptian basket arch portal” of the orangery
in the new garden of Potsdam, Figure 3.1b, was also scanned with the TLS Z+F IMAGER®5006h,
resulting in another data set. Due to their different geometric elements ( pillars, planes, curved surfaces)
and the complexity of their composition, the two data sets of the buildings, see Figures 3.1a to 3.1b, are
particularly suitable for evaluating a segmentation algorithm.

In order to also analyze the applicability of the strategy pursued by the segmentation algorithm
with regard to natural objects, a third data set, see Figure 3.1c, was captured1 with the new TLS Z+F
IMAGER®5016 of a landslide in Obergurgel.

3.2 Data Preprocessing for Information Retrieval

For the subsequent segmentation, the informations contained in the data layers in Figures 3.2 to 3.3
must be preprocessed. In particular, point normals that represent the surface condition of the object in
a local environment are suitable for deriving geometric criteria. Radiometric information in the form
of intensity values can additionally contribute to a differentiated separation of objects in the case of a
more homogeneous surface geometry. With regard to an additional classification into individual object
classes, cf. Figure 2.10, intensity values also take on an important role.

3.2.1 Local Neighbourhood Analysis and Convolution

Efficient neighbourhood analyses are needed to derive such criteria in local areas. With themathematical
formulation of a raster or matrix structure as a function f(x,y) of two variables x and y, indicating

1 The TLS measurements were carried out by Daniel Wujanz.

112



3.2. data preprocessing for information retrieval

the position of a value f(x,y)within the structure, a third function

g(x,y) = f(x,y) ? h(x,y) =
+∞∫

x ′=−∞
+∞∫

y ′=−∞
f(x ′,y ′)h(x− x ′,y− y ′)dx ′dy ′ (3.1)

is obtained by means of the so-called convolution with a function h(x,y). The product f(x,y) ?
h(x,y)2 in (3.1) of the two functions with discrete domainsD1 ⊆ Z andD1 ⊆ Z leads to discrete
convolution3:

g(x,y) = f(x,y) ? h(x,y) =
∑

x ′∈D1

∑
y ′∈D2

f(x ′,y ′)h(x− x ′,y− y ′) (3.2)

Local linear image processing operations can be realized by a discrete convolution4 according to (3.2)
with the substitutions f = K and h = M

M?(i, j) =
w∑

p=1

w∑
q=1

M(i− p+ kc, j− q+ kc)K(p,q), (3.3)

where
M is the original matrix to be convolved

K is the quadratic convolution matrix or kernel5 of size w × w and center position
kc = w

2 + 0.5

M?(i, j) is the resulting pixel or value at the position (i, j) in the matrixM?

The convolution according to (3.3) describes the successive shift of the kernelK to each position (i, j)
of the matrix M, see Figure 3.4, whereby the horizontally and vertically flipped kernel values are
multiplied by the corresponding matrix values within the mask and summed up in order to store them
at the position (i, j) in the filtered matrixM? weighted by the kernel elements.

2 The arithmetic operator ? symbolically represents the convolution operation
3 The convolution of two functions can also be performed with the so called convolution theorem f(x,y) ?
h(x,y) = F−1Ff(x,y) ? Fh(x,y) in frequency domain, where F is denoted by the Fourier Transformation.

4 The convolution can be expressed byM?(i, j) =
∑w

p=1
∑w

q=1 M(i+p−kc, j+q−kc)K(p,q) as a linear
filtering and subsequently used in this sense. For symmetrical filter matrices K, the convolution is equivalent to
filtering.

5 The convolution matrix is often referred to as a filter operator, filter mask or kernel in the context of filtering.
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Figure 3.4: Convolution of a data matrixMwith a kernelK.

The process of discrete convolution based on Equation (3.3) and its graphical representation in Figure 3.4,
can be described algorithmically in the case of filtering with the following Algorithm 3.1:

Algorithm 3.1: Filtering a matrix by a kernel.

input : AmatrixM of size r× c and a filter kernelK of sizew×w

output :A filtered matrixM? of same size

for i← kc to r− 1 + c do
for j← kc to c− 1 + c do

Mij ← 0
for p← 1 to w do

for q← 1 to w do
Mpq ←M[i+ p− kc, j+ q− kc]K[p,q]
Mij ←Mij +Mpq

end
end
M?[i, j]←Mij

end
end
return M?
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3.2. data preprocessing for information retrieval

3.2.2 Describing Local Changes within the Data

The derivation of local changes in the data is a prerequisite for the pixel-based segmentation in Sec-
tion 3.3.1. The extent of the scatter of measured values can be easily expressed by the Standard Devia-
tion (SD). This idea can be transferred to the values within a filter maskK. Considering a 3×3 filter
mask applied to a matrixM, see Figure 3.4, with its neighborhood values, see Figure 3.5, the SD

σM?
i,j

=

√∑w
p=1

∑w
q=1

(
M(i+ p− kc, j+ q− kc) − M̄

)2

nk − 1 (3.4)

can be given to describe themean change of the values within themask, wherew = 3 and consequently
c = 2 and the number of kernel elements is nk = 9.
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Figure 3.5: Kernel K with size 3×3 at position (i, j) in matrixM.

Using the so-called Steiner’s displacement theorem6, see e. g. (Chan et al. 1983), the expression of the
empirical variance beneath the square root in (3.4) with respect to the mean M̄ can be reformulated to

σ2
M?

i,j
=

∑w
p=1

∑w
q=1 M

2(i+ p− kc, j+ q− kc) − nkM̄
2

nk − 1 . (3.5)

Substituting the mean value M̄ =
∑w

p=1
∑w

q=1 M(i+p−kc,j+q−kc)

nk
for (3.5) and reformulating yields

σ2
M?

i,j
=

1
nk − 1

w∑
p=1

w∑
q=1

M2(i+ p− kc, j+ q− kc)

−
1

nk(nk − 1)

( w∑
p=1

w∑
q=1

M(i+ p− kc, j+ q− kc)

)2. (3.6)

Using the calculation expression for the variance of values σ2
M?

i,j
within a kernel in (3.6), the local

calculation of the SD with respect to a kernel K applied to an entire matrixM can be described by
means of convolution, see Equation (3.3).

6 Also known as Huygens theorem in literature and has a second relation to mechanics.
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segmentation based on geometric and radiometric information

The function calc_change_in_region7, see Code 3.2, calculates the local standard deviations by
using two separate convolutions applying an average filter

K =


1 1 1

1 1 1

1 1 1

 , (3.7)

here with an edge length ofw = 3. A first convolution is performed with a weighting of the filter
elements by 1

nk−1 = 1
8 on the squared elements in the matrixM2 (corresponds to the first part of

(3.6)). The second convolution is applied to the original matrixM and then the result is squared and
weighted with 1

nk(nk−1) = 1
72 (corresponds to the second part of (3.6)). The root of the difference

between the two convolutionmatrices (conv1 and conv2 in Code 3.2), represented by M_filt, finally
contains the local SDs.

Code 3.2: Region-based calculation of standard deviations for a matrixM using an modified convolution
approach.

1 function M_filt = calc_change_in_region(M, wK)

2 %input: matrix M and kernel width wK

3 %output: filtered matrix M_filt with standard deviations

4

5 % build kernel

6 K = ones(wK);

7

8 % Number of Kernel elements

9 nK = wK^2; nK1 = nK-1;

10

11 % Expand M that interpolation is valid at the boundaries

12 [M, rows, cols] = expand_borders(M, wK);

13

14 %filter: rewritten covolution for computing standard deviation

15 conv1 = filter2(K/nK1,M.^2);

16 conv2 = filter2(K,M).^2/(nK*nK1);

17

18 M_filt = sqrt(conv1-conv2); M_filt = M_filt(rows,cols);

By applying an average filter, as in Equation (3.7), a slight smoothing8 of the data takes place at the same
time, which is advantageous for the region-based approach in Section 3.3.2 unlike edge-based methods.

7 Uses function expand_borders in Section A.3, see Code A.2
8 The degree of smoothing depends on the size of the filter maskw, ideally defined by the point spacing on the
object, cf. Equation (3.15), and increases with increasing mask size.
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3.2. data preprocessing for information retrieval

note that the average filter in Equation (3.7) canbe separated, whichmeans that it can be represented
by multiplying two single one-dimensional operators:

K = k1k2 =
1
3


1

1

1

 1
3

[
1 1 1

]
=

1
9


1 1 1

1 1 1

1 1 1

 (3.8)

For the convolutionprocess this implies that in the case of separability, the two-dimensional convolution
can be reduced to two one-dimensional operations by applying the second operator to the intermediate
result of the first.

remark: The application of a 2D filter of size w × w requires for each position (i, j) w2 read
accesses andmultiplications, as well asw2 − 1 additions. In a separated application, the computational
effort is reduced to only 2w read accesses and multiplications, as well as 2(w− 1) additions, resulting
in a significant saving of computation time.
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Figure 3.6: Computed information layers regarding curvature, point spacing and change in intensity.
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Transferring the previously described principle for the local calculation of changes in the data to the
intensity layer I, see Figure 3.3a, Code 3.2 with the use of I_filt=calc_change_in_region(I,3)
can be carried out to calculate the matrix with the SDs of the intensities ∆I=I_filt, see Figure 3.6c.
These can be interpreted as an average measure of the intensity change within the mask used for the
calculation.

note: For the segmentation algorithm in Section 3.3, it is not mandatory to perform a radiometric
calibration of the intensity values in advance by means of a compensation for its influencing factors,
see also Section 2.1.2, as described in (Erić and Göring 2017), since only changes are of relevance.

Within a mask, see Figure 3.5, adjacent points do not necessarily have to be neighboured in the 3D due
to the incremental scanning, see Figure 1.3. Calculating the changes ∆X, ∆Y and ∆Z in analogy to
the intensity change ∆I by applying the function calc_change_in_region for each geometry
layer in Figure 3.2, i. e. for ∆X=x_filt andX=x using x_filt=calc_change_in_region(x,3)
with a mask sizew = 3 indicating a direct neighbourhood for the calculation, cf. Figure 3.5, the layer
D =

√
∆X2 + ∆Y2 + ∆Z2 that represents the spatial point change can be calculated with function

calc_point_density, see Code A.5. The layerD, see Figure 3.6a, is a measure for the mean point
distance (mean point spacing) within the used mask and can be applied as an additional geometry
criterion in Section 3.3 to exclude ”spatially wrong”9 neighbours during segmentation.

Again, the local changes∆nX,∆nY and∆nZ of the previously calculated layersnX,nY andnZ of the
normal components, see Figure 3.8, from Section 3.2.3 can be determined equivalent to the calculation
of the density layerD, see above, with the same function calc_change_in_region. The local
change of the point normals, which can also be interpreted as curvature of the surface, results in layer
C =

√
∆nX

2 + ∆nY
2 + ∆nZ

2, see Figure 3.6b, by applying function calc_point_curvature,
seeCodeA.4. The information in layerC is theprimary input for the geometric part of the segmentation
algorithm in Section 3.3, since it includes the change of the geometry of the object.

3.2.3 Efficient Calculation of Point Normals

The efficient and precise10 calculation of point normals, describing the surface geometry in a small
neighborhood, is indispensable for segmentation on a geometric basis, particularly as they serve as

9 Means that a 3Dpoint could be neighboured in thematrix data structure in terms of the neighnourhooddefinition,
see also Figure 3.5, but spatially it may lie on another surface and therefore its distance to the relating neighbouring
point exceeds the usual point spacing in a certain area, i. e. within the kernel mask.

10Precise in this context means that the point normals are determined with minimum variation in the geometry, i.
e. variation in the normal vector components.
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3.2. data preprocessing for information retrieval

input information for the calculation of the curvature, see Section 3.2.2, which constitutes one of three
basic sets of information for segmentation.
An efficient and common calculation method of the normal direction in a point can be realized via
the two direction vectors to the respective point neighbors. Considering the direct neighbours, see
also Figure 3.5, of a certain position (i, j) in the respective geometry layers, see Figure 3.7, the direction
vectors

a =


ax

ay

az

 =


X(i,j−1) − X(i,j+1)

Y(i,j−1) − Y(i,j+1)

Z(i,j−1) − Z(i,j+1)

 and b =


bx

by

bz

 =


X(i−1,j) − X(i+1,j)

Y(i−1,j) − Y(i+1,j)

Z(i−1,j) − Z(i+1,j)

 (3.9)

can be calculated via the coordinate differences in row (i) and column (j) direction.

X i
j−1

Xi
j

X i
j+1

Xi−1
j

Xi+1
j

Y i
j−1

Yi
j

Y i
j+1

Yi−1
j

Yi+1
j

Z i
j−1

Zi
j

Z i
j+1

Zi−1
j

Zi+1
j

Figure 3.7: Calculation of point normals within the matrix structure of coordinatesX, Y andZ.

Forming the cross product of these two vectors, a vector

n =


nx

ny

nz

 =


ax

ay

az

×

bx

by

bz

 =


−(aybz − azby)

−(azbx − axbz)

−(axby − aybx)

 (3.10)

is obtained that is perpendicular to the plane spanned by the vectors. It represents the geometry in the
local neighborhood and can be understood as surface normal in point (i, j).

The calculation for an entire data setM in raster format can ideally be implemented using two
filtering procedures, cf. also Equation (3.8). The differences of the neighborhood values can be
determined by the gradients

∇j =
∂M(i, j)

∂j
=

1
2
(
M(i, j− 1) −M(i, j+ 1)

)
=

1
2

[
1 0 −1

]
(3.11a)

∇i =
∂M(i, j)

∂i
=

1
2
(
M(i+ 1, j) −M(i− 1, j)

)
=

1
2

[
−1 0 1

]T
, (3.11b)
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corresponding to the first derivative, in column and row direction of the matrixM, from which the
one-dimensional filter masks are derived.

By applying the kernelKr = 1
2 [ 1 0 −1 ], cf. (3.11a), to each coordinate layerX, Y andZ in Figure 3.2

by means of filtering, see Section 3.2.1, the three matrices

aX = Kr ? X

aY = Kr ? Y

aZ = Kr ? Z

(3.12)

with the vector components in column direction are obtained as a result. Again, by applying the kernel
Kc = 1

2 [−1 0 1 ]T, cf. (3.11b), the matrices

bX = Kc ? X

bY = Kc ? Y

bZ = Kc ? Z

(3.13)

with the vector components in row direction are obtained in analogy. With the element by element
calculation of the matrices in (3.12) and (3.13) according to (3.10)

nX(i, j)

nY(i, j)

nZ(i, j)

 =


aX(i, j)

aY(i, j)

aZ(i, j)

×

bX(i, j)

bY(i, j)

bZ(i, j)

 , (3.14)

the matricesnX,nY andnZ result with its corresponding normal vector components.
According to this approach, function calc_point_normals, see Code A.3 calculates the layers

of the normal vector components, see Figure 3.8, depending on the kernel size wK by applying the
respective filter masks mask_r and mask_c.
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Figure 3.8: Computed layers regarding the normal vector componentsnX,nY andnZ.
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3.2. data preprocessing for information retrieval

Due to the incremental scanning of the TLS, see Figure 1.3, and changes in the object geometry, different
point spacings result, see Figure 3.6a. When using the filter masksKr andKc with a lengthw = 3 –
termed ”uniform filter mask” in the following – to calculate the point normals according to Code A.3,
different precisions for the calculated normals result for different areas with varying point spacings.
This is reflected in higher noise after the calculation of the curvature information in areas where the
points are more dense. This is due to the fact that in regions with a small point spacing, the direction
vectors, see Equation (3.9), for calculating the normals span a smaller area, causing more geometrically
instable normals. In order to take this circumstance into account, the size of the filter mask

w =



3, for D(i, j) = 0.02

5, for 0.01 = D(i, j) < 0.02

7, for 0.005 = D(i, j) < 0.01

9, for D(i, j) < 0.005

(3.15)

can be selected as a function of the local point spacing – termed ”adapted filter mask” in the following
– inD(i, j), see Figure 3.6a.

function calc_point_normals_d11, see Code 3.3, follows this principle by determining the
mask positions pos_mask in the switch - case statement (lines 13 to 25) for different ranges of point
spacings based on the information in layerD, see Figure 3.6a, (p_cloud.d in Code 3.3) and applying
the appropriate filter masks to them.

Code 3.3: Efficient point normal calculation by means of filtering under consideration of the point spacing.

1 function p_cloud = calc_point_normals_d(p_cloud)

2 %input: struct p_cloud.x, p_cloud.y, p_cloud.z

3 %output: struct p_cloud.nx, p_cloud.ny, p_cloud.nz

4

5 [rows,cols] = size(p_cloud.x);

6

7 normals_x = zeros(rows*cols,1);

8 normals_y = zeros(rows*cols,1);

9 normals_z = zeros(rows*cols,1);

10

11 % choose individual mask size depending on point spacing

12 for i = 1:4

13 switch i

14 case 1

15 wK = 3;

11 Uses function expand_borders, see Code A.2, and calc_point_normals, see Code A.3 in Section A.3
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16 pos_mask = find(p_cloud.d>=0.02);

17 case 2

18 wK = 5;

19 pos_mask = find(p_cloud.d >= 0.01 & p_cloud.d < 0.02);

20 case 3

21 wK = 7;

22 pos_mask = find(p_cloud.d >= 0.005 & p_cloud.d < 0.01);

23 case 4

24 wK = 9;

25 pos_mask = find(p_cloud.d < 0.005);

26 end

27

28 % compute normals for specific mask size wK

29 p_cloud = calc_point_normals(p_cloud,wK);

30

31 normals_x(pos_mask) = normals_x(pos_mask)+p_cloud.nx(pos_mask);

32 normals_y(pos_mask) = normals_y(pos_mask)+p_cloud.ny(pos_mask);

33 normals_z(pos_mask) = normals_z(pos_mask)+p_cloud.nz(pos_mask);

34 end

35

36 p_cloud.nx = reshape(normals_x,rows,cols);

37 p_cloud.ny = reshape(normals_y,rows,cols);

38 p_cloud.nz = reshape(normals_z,rows,cols);

In order to differentiate between various methods for calculating point normals and to determine the
effects of using different filter masks, unique or adapted, four spatially distributed regions were selected
in the data set, see Figure 3.9.

Figure 3.9: Regions for the evaluation of methods for computation of point normals.
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3.3. new segmentation algorithm for tls data

For the data set, see Figure 3.2, the point normals were calculated using the methods of simple filtering
(uniformmask), see Code A.3, filtering with different masks (adapted mask), see Code 3.3, and Singular
Value Decomposition (SVD), introduced in Section A.1.3, followed by the corresponding curvature
information for each result.

Subsequently, the mean SDs of the values within the regions were calculated for each curvature
layer. Since the curvature describes the change of the point normals in a region, the calculated SDs

in homogeneous areas represent a criterion for the remaining noise of the normals, which in turn
characterizes the quality of the method used. Table 3.1 lists the results of the regions for the different
methods, as well as the processing time for the calculation of the point normal.

Table 3.1: Comparison of different methods for normal calculation on a raster data structure.

calc. method proc. time [s] noise [SD]

region 1 region 2 region 3 region 4

SVD 148.96009 0.00695 0.02596 0.01637 0.01146
uniformmask 0.48976 0.00935 0.030479 0.01674 0.01284
adapted mask 2.69816 0.00526 0.01040 0.00948 0.00590

One can easily recognize the enormous differences in the processing time of the methods based on
filtering compared to the calculation with SVD, which is much slower. For the remaining noise in the
individual regions, values of a similar magnitude emerge for the method based on simple filtering and
SVD, whereby generally, as was to be expected, in the regions with a narrower point spacing (regions
2 and 3) the noise is higher in comparison to the other regions, indicating point normals with less
precision. The method adjusting the filter mask on the basis of the point spacing shows a significant
noise reduction of up to factor 3 in these areas, which indicates a better normal determination compared
to the other methods.

3.3 New Segmentation Algorithm for TLS Data

On the basis of the pre-processing steps explained in Section 3.2, this section focuses on the workflow of
segmentation, which is essentially based on a combined pixel- and region-based solution, see Section 3.3.1
and Section 3.3.2. The entire process diagram of the algorithm is shown in Section 3.3.

Starting from a laser scan available as a list of 3D coordinates x, y, z and intensity values I, the
first step is the conversion with Code 3.1 into the equivalent polar representations, see Figure 3.2 and
Figure 3.3a.
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laserscan
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Figure 3.10: Process diagram of the segmentation algorithm.

Subsequently, the pre-processing of the geometry and intensity information, provided asX-,Y -,Z-layer
and I-layer, is carried out in Section 3.2, yielding the basic layersC (curvature information),D (point
spacing information) and ∆I (change in intensity) for the subsequent segmentation.
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3.3. new segmentation algorithm for tls data

By means of previously determined homogeneity criteria HC, HD and H∆I for curvature, point
spacing, and change of intensity, to be satisfied by the regions being segmented, the pixel-based segmen-
tation, see Section 3.3.1, provides a purely binary representation, see Figure 3.11a, without knowledge of
any neighborhood relationships.

a. Binary representation. b. Segmented cloud.

Figure 3.11: Results of pixel-based segmentation (binary matrix left) and region-based segmentation
(color-coded regions right).

On the basis of the white pixels in the left Figure 3.11a, meeting the homogeneity requirements, in
the last step a neighborhood analysis groups the connected pixels with the region-based segmentation
from Section 3.3.2 into regions. Figure 3.11b on the right shows the final segmented point cloud with
the separated regions, each assigned a different12 color.

3.3.1 Pixel-based Segmentation

The pixel-based segmentation is the fundament for the following region-based approach in Section 3.3.2.
Using previously defined homogeneity criteriaHC,HD andH∆I for the segmentation base layersC,
D and ∆I determined in Section 3.2, the values within each layer can be divided into two classes.

Each value within these matrices is checked for homogeneity according to its specific critea following
the rules in (3.16a) to (3.16c). A value thus meets the homogeneity requirements if it is smaller than the

12Due to the recurring discrete color map and the sequential color assignment, adjacent regions can be of the same
color and yet spatially separated.
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predefined homogeneity threshold and is labeled with 1, otherwise with 0.

BC(i, j) =

1, C(i, j) 5 HC

0, C(i, j) > HC

(3.16a)

BD(i, j) =

1, D(i, j) 5 HD

0, D(i, j) > HD

(3.16b)

B∆I(i, j) =

1, ∆I(i, j) 5 H∆I

0, ∆I(i, j) > H∆I

(3.16c)

For the determination of the threshold values for homogeneity, a histogram- based approach can be
applied, where Figure 3.12 shows the histograms of the layers in Figure 3.6.

a. Density histogramD.
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Figure 3.12: Computed information layers regarding curvature, point spacing and change in intensity.
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3.3. new segmentation algorithm for tls data

The histogram for the characterization of the point spacing, see Figure 3.12a, shows the most frequent
point spacings up to 2 cm, whereby point spacings from 5 cm are no longer caused by the scanning
process and the object geometry, so that the criterionHD=0.05 can be selected.

Homogeneous curvature information in Figure 3.12b can be found in the range between 0 and 0.1
rad with the highest frequencies, a meaningful threshold valueHC, can therefore be found behind the
highest peak between 0.05 and 1. Values above represent non-homogeneous edge information.

Minor intensity changes within the magnitude of three times the SD of the intensities, see also
Figure 2.3a, or constant intensity conditions can be found in Figure 3.12c up to approx. 3 · 104, or
4 · 104 Inc after the peak. Values above represent abrupt intensity changes due to strong changes in the
object geometry or texture, therefore a favorable threshold value is given withH∆I=3 · 104.

The conjunction of the binary matrices in Equations (3.16a) to (3.16c) results in a binary matrix

BC,D,∆I = BC ∧ BD ∧ B∆I (3.17)

in which the pixels are labelled with 1, also labelled with 1 at the same locations in the single binary
matrices, characterized by those pixels which satisfy all homogeneity requirements equally.

The example Code 3.4 shows the pixel-based segmentation based on the binaryization of the ma-
trices p_cloud.c, p_cloud.d and p_cloud.di (or rather C,D and ∆I) by the threshold values
curv_threshold, dist_threshold and int_threshold (or ratherHC,HD andH∆I).

Code 3.4: Pixel-based segmentation with all information layers.

1 %% pixel based segmentation

2

3 % homogeneity criteria (thresholds)

4 curv_threshold = 0.05;

5 dist_threshold = 0.05;

6 int_threshold = 4*10^4;

7

8 % get binary representations

9 bin_mat_c = p_cloud.c < curv_threshold;

10 bin_mat_d = p_cloud.d < dist_threshold;

11 bin_mat_di = p_cloud.di < int_threshold;

12

13 % pixels that meet all criteria

14 bin_mat = bin_mat_c & bin_mat_d & bin_mat_di;

The result of the pixel-based segmentation of the data set represented by Figures 3.2a to 3.2c and 3.3a
applying the homogeneity criteria HC = 0.05, HD = 0.05 and H∆I = 3 · 104 is the binary
representation in Figure 3.11a.
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concluding remarks: Neighborhood relations between the pixels are not considered with this
procedure. The segmentation result for the subsequent region-based segmentation, see Section 3.3.2,
depends primarily on the appropriate choice of homogeneity criteria.

The homogeneity criteria may have to be determined again for further data sets of the same object
generated from other standpoints, if the conditions regarding geometry or radiometry at the object
differ strongly from the previous ones.

In this case, an automated derivation of homogeneity criteria is recommended to ensure an individual
and optimal evaluation for each point cloud of a standpoint. One can take advantage of proven
thresholding methods for gray level histograms in image segmentation, such as the method according
to Otsu (1979). For simple, i. e. clearly separable histograms with a defined bi-class distribution of the
values, a global method is sufficient, whereas for histograms with a diverse distribution, a division via a
multi-level thresholding method is necessary.

For instance, to handle varying geometric conditions within a scan, it can also be useful to apply a
local, so-called adaptive thresholding.

3.3.2 Region-based Segmentation

With the pixel-based segmentation in Section 3.3.1, a representation of values already exists that meets
the required criteria for segmentation with regard to surface geometry, intensity and point spacing.
These values labelled in a binary matrix with 1 have no affiliation to their neighborhoods so far, see also
the neighborhood relations in Figure 3.5, as a result a subsequent grouping of the neighborly connected
pixels in regions must take place. Such a segmentation of a binary data representation can be realized
very efficiently with methods of the so-called Connected Components (CCs) labeling, see Section 1.5.

a. Binary matrix extract.

1 1 1 1 1 0 0

1 1 0 0 1 0 0

0 0 1 0 1 0 1

0 0 1 1 0 0 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

b. Runs of binary matrix.

1 1 1 1 1 0 0

1 1 0 0 1 0 0

0 0 1 0 1 0 1

0 0 1 1 0 0 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

c. Labeled runs.

1 1 1 1 1 0 0

1 1 0 0 1 0 0

0 0 1 0 1 0 1

0 0 1 1 0 0 1

1 0 0 0 0 1 1

1 1 0 0 0 1 1

1 1 0 0 0 1 1

Figure 3.13: Run Length Encoding (RLE) in the context of Connected Component (CC) Labeling
for a binary matrix.

Considering a section of the binary matrix from Figure 3.11a, see Figure 3.13a, the matrix can be
represented in row direction for each column as a sequence (so-called runs) of individual pixel values
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3.3. new segmentation algorithm for tls data

solely by the starting pixel and the length of the sequence13, so-called runlength (Haralick and
Shapiro 1992, pp.40), see Figure 3.13b. Hence the name of this method, which is known as Run
Length Encoding (RLE) in the context of lossless data compression.

Assuming a direct neighborhood, cf. also Figure 3.7, runs in a subsequent column are adjacent if
there is at least one pixel in the same row, leading to the following connections after Figure 3.13b:

• run 3 is connected to run 1

• run 4 is connected to run 2

• run 5 is connected to run 3

• run 7 is connected to run 5

• run 8 is connected to run 6

• run 9 is connected to run 7

• run 11 is connected to run 10

The dependencies of the runs to each other result in the following graphs in Figure 3.14, whose nodes
now correspond to the individual runs in contrast to a single pixel representation as in Section 1.5, i. e.
Figure 1.20c.

a. Graph region 1.

r1

r3 r5

r7 r9

b. Graph region 2.

r2

r4

c. Graph region 3.

r6

r8

d. Graph region 4.

r10

r11

Figure 3.14: Graph representations of the connectivity for the individual runs in Figure 3.13b.

The graphs in Figures 3.14a to 3.14d each represent four independent regions via the connected runs,
labeled with different colors in Figure 3.13c.

The graph-based runlength labeling algorithm is called by CC = get_cc_of_rl_graph(BW,

conn)14 under the input parameters BW (binary image) and conn = 4 (connectivity) and is composed
of the following steps:

13A sequence can also be described with its starting and ending pixels.
14Uses function rlenc, see Code A.7 in Section A.3
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1. Finding runs applying function rlenc by computing the run lengths of each run (lines 17
to 19) while

2. determining which runs on the previous column are connected (lines 26 to 42)

3. Construct a graph representation, i. e. a sparse adjacency matrix (lines 50 to 51), from the
pairwise connected runs pairs (line 48)

4. Compute equivalence classes, see also Section 1.5, (lines 53 to 54) in order to label the runs
according to the class they belong to (lines 56 to 65)

Code 3.5: Labeling connected components of a graph consisting of run lengths.

1 function CC = get_cc_by_rle(BW, conn)

2 %input: binary matrix BW and connectivity conn 4 or 8

3 %output: struct CC of indices for connected components

4

5 % connectivity offset

6 if isequal(conn,4)

7 c = 0; %direct connectivity

8 elseif isequal(conn,8)

9 c = 1; %full connectivity

10 end

11

12 [rows,cols] = size(BW);

13 runs = cell(cols,1);

14

15 n_labels = 0;

16 pairs = [];

17 for i = 1:cols

18 column = BW(:,i);

19 [runs_col,labels] = rlenc(column);

20

21 if ~isempty(runs_col)

22 runs{i} = [runs_col+(i-1)*rows,labels+n_labels];

23 n_labels_col = labels(end);

24 n_labels = n_labels+n_labels_col;

25

26 % check which column runs are connected

27 if i > 1 && ~isempty(runs{i-1})

28 % iterate over runs

29 n_runs = numel(runs{i}(:,3));

30 for j = 1:n_runs

31 % runs are connected if they overlap

32 ind_j_i = (runs{i}(j,1)-rows >= runs{i-1}(:,1)-c...

33 & runs{i}(j,1)-rows <= runs{i-1}(:,2)+c)...

34 | (runs{i}(j,2)-rows >= runs{i-1}(:,1)-c...

35 & runs{i}(j,2)-rows <= runs{i-1}(:,2)+c)...

36 | (runs{i}(j,1)-rows < runs{i-1}(:,1)...

37 & runs{i}(j,2)-rows > runs{i-1}(:,2));

38 n_id = sum(ind_j_i);

39 pairs_tmp = [repmat(runs{i}(j,3),n_id,1),...

40 runs{i-1}(ind_j_i,3)];

130



3.3. new segmentation algorithm for tls data

41 pairs = [pairs;pairs_tmp];

42 end

43 end

44 end

45 end

46

47 pairsd = [pairs(:,2),pairs(:,1)]; pairs = [pairs;pairsd];

48 pairs = sortrows(pairs);

49

50 % sparse adjacency matrix

51 A = sparse([pairs(:,1);(1:n_labels)'],[pairs(:,2);(1:n_labels)'],1);

52

53 % Dulmage-Mendelsohn decomposition of adjacency matrix

54 [p,~,r,~] = dmperm(A);

55

56 runs = cell2mat(runs);

57 n_nodes = length(r)-1;

58 for i = 1:n_nodes

59 ind_runs = p(r(i):r(i+1)-1); runs_reg = runs(ind_runs,:);

60 n_runs = numel(ind_runs); pix_idx = [];

61 for j = 1:n_runs

62 pix_idx_tmp = runs_reg(j,1):runs_reg(j,2);

63 pix_idx = [pix_idx,pix_idx_tmp];

64 end

65 CC.PixelIdxList{i} = pix_idx;

66 end

note: This method is very efficient because each pixel is scanned only once and the connectivity
analysis can be determined from the runs alone. The number of runs is much smaller compared to the
number of foreground pixels used by the other methods, e. g. in Section 1.5 and Code 1.2, resulting in a
smaller adjacency matrix.

3.3.3 Overall Segmentation and Region Analysis

The overall segmentation is composed of the pixel-based, see Section 3.3.1, and region-based segmen-
tation, see Section 3.3.2, and describes the final process of the new segmentation algorithm, in which
a complete segmentation of a point cloud is obtained on the basis of the pre-processed information
channels by means of the transfer of the homogeneity criteria, in Section 3.3.

A point cloud structure p_cloud with all the information layers pre-processed in Section 3.2
and the variable det_params, which contains detection parameters, is transferred to function

get_homog_regions15, which performs the overall segmentation.

15Uses function get_cc_by_rle, see Code 3.5 in Section 3.3.2
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The algorithm in Code 3.6 detects contiguous regions that satisfy a minimum number of points
min_points, have a certain neighborhood conn, and fulfill homogeneity criteria based on threshold
values curv_thresh, dist_thresh, int_thresh, all defined in det_params, and is structured in:

1. Perform pixel-based segmentation (lines 13 to 18), see also Section 3.3.1, according to homo-
geneity thresholds in det_params (lines 8 to 11)

2. Perform region-based segmentation (lines 20 to 22)

3. Further processing including separation of regions having a minimum number of points (lines
25 to 29) and individual region analysis (lines 34 to 62)

Code 3.6: Segmenting of regions based on homogeneity criteria.

1 function [ regions ] = get_homog_regions(p_cloud, det_params)

2 %input 1: struct p_cloud with information .x,.y,.z,.i,.c,.d,.di

3 %input 2: detection parameters det_params

4 %output: struct regions

5

6 cloud_size = size(p_cloud.x);

7

8 % read detection parameters

9 min_points = det_params(1,1); conn = det_params(2,1);

10 curv_thresh = det_params(3,1); dist_thresh = det_params(4,1);

11 int_thresh = det_params(5,1);

12

13 %% pixel based segmentation

14 bin_mat_c = p_cloud.c < curv_thresh;

15 bin_mat_d = p_cloud.d < dist_thresh;

16 bin_mat_di = p_cloud.di < int_thresh;

17 % only pixel that satisfy all criteria

18 bin_mat = bin_mat_c & bin_mat_d & bin_mat_di;

19

20 %% region based segmentation

21 % get connected components

22 CC = get_cc_by_rle(bin_mat,conn);

23

24 %% further processing

25 % get only regions that satisfy min_points

26 n_points_region = cellfun(@numel,CC.PixelIdxList);

27 idx_over = find(n_points_region > min_points);

28 [~,idx_sort] = sort(n_points_region(idx_over),'descend');

29 idx_over = idx_over(idx_sort);

30

31 % number of regions

32 num_regions = numel(idx_over);

33

34 % analyze regions

35 for i = 1:num_regions

36 regions(i).region_id = i;

37 idx_p_r = CC.PixelIdxList{idx_over(1,i)};

38 regions(i).point_indices = idx_p_r;
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39

40 % compute boundary

41 regions(i).bbox = get_bbox(cloud_size,idx_p_r);

42

43 % extract 3D information and accuracy

44 p_3D = [p_cloud.x(idx_p_r),p_cloud.y(idx_p_r),p_cloud.z(idx_p_r)];

45 p_3D_p = [p_cloud.s_x(idx_p_r),p_cloud.s_y(idx_p_r),...

46 p_cloud.s_z(idx_p_r)];

47

48 % center of gravity

49 regions(i).cog = mean(p_3D)';

50

51 % plane approximation

52 [plane_approx_region,plane_dists] = fitplane(p_3D);

53 regions(i).plane_params = plane_approx_region;

54

55 % average point accuracy

56 regions(i).av_point_acc = mean(sqrt(p_3D_p(:,1).^2 ...

57 +p_3D_p(:,2).^2+p_3D_p(:,3).^2));

58

59 % maximum distance to plane

60 regions(i).max_plane_dist = max(plane_dists);

61

62 % mean intensity of region

63 regions(i).mean_intensity = mean(p_cloud.i(idx_p_r));

64 end

The result of function get_homog_regions is a structure regions, arranged in Figure 3.15.

regions

regions(1) regions(i)

.region_id

.point_indices

.bbox

.cog

.plane_params

.mean_intensity

3
[8;9;13;..]

[7,3,35,12]

[7.14,6.25,9.93]

[0.0,0.0,0.9,2.7]

1546.5

.region_id

.point_indices

.bbox

.cog

.plane_params

.mean_intensity

10

· · ·
· · ·
· · ·
· · ·
· · ·

Figure 3.15: Representation of a regions structure array in MatLab.

This includes information, among others, such as the average intensity .mean_intensity, the center
of gravity .cog or the bounding box .bbox of a region regions(i), and whether a region represents
a plane with .plane_params or not.
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segmentation based on geometric and radiometric information

note that the extended region analysis based on the existing geometry, as well as radiometric
information is important for the further processing of the point clouds, such as the sub-segmentation
in Section 4.3.2 or the matching procedure in Section 4.4.

Code 3.7: Access to the 3D coordinates of a specific region in the point cloud.

1 x_region = p_cloud(1).x(region(3).point_indices);

2 y_region = p_cloud(1).y(region(3).point_indices);

3 z_region = p_cloud(1).z(region(3).point_indices);

The Code 3.7 example illustrates the extraction of the 3D coordinates x_region, y_region and
z_region of region 3 in point cloud 1, used e. g. to access the coordinates for estimation purposes.

3.4 Segmentation Results

In the following, some segmentation results that have been generated with the algorithm previously
described in Section 3.3 will be examined in more detail.

Figure 3.16a on the left shows the full details of the segmentation result for the ”Belvedere” test data
set used in Section 3.3 to introduce the algorithm, see also Figure 3.1a. The Figure 3.16b on the right
illustrates the segmentation of the second test data set, a scan of an inner dome in the outer area of the
”Orangery” in Potsdam, see Figure 3.1b.

a. Teahouse Belvedere segmented. b. Orangery Potsdam segmented.

Figure 3.16: Results of the region-based segmentation (color-coded regions) of the front view of the test objects
Belvedere (left) and inner dome in the outer area of the Orangery (right).

The objects in Figure 3.16 are composed of a large variety of geometric elements. It can be seen that
both in the left Figure 3.16a and in the right Figure 3.16b pillars, planes and curved surface elements

134



3.4. segmentation results

were recognized equally by the algorithm, characterizing the data-driven approach in a particular
manner. Also the completeness of the segmentation results and the variation of the segment sizes are
an indication for a functioning segmentation algorithm.

For a closer look on both segmentation results, some detailed views of representative areas are
presented with Figure 3.17 for the ”Belveder” object in Figure 3.16a as well with Figure 3.18 for the
”Orangery” object in Figure 3.16b.

a. Belvedere detail 1. b. Belvedere detail 2. c. Belvedere detail 3.

Figure 3.17: Detailed view from the overall result in Figure 3.16a of the region-based segmentation (color-coded
regions) of the front view of the test object Belvedere.

a. Orangery detail 1. b. Orangery detail 2 and 3. c. Orangery detail 4.

Figure 3.18: Detailed view from the overall result in Figure 3.16b of the region-based segmentation (color-coded
regions) of the inner dome in the outer area of the Orangery.
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Even areas delimited by small depressions, such as fugues, were reliably segmented. Evidence of this can
be found on the facade of the example ”Belvedere”, see the detailed views of separated stone parts of
the facade in Figures 3.17a and 3.17c, and on the segments of the dome of the ”Orangery” data set, see
the detailed views of indentations in Figures 3.18a and 3.18c as well the separation from just minimal
indentations or fugues for the door parts (lower part of Figure 3.18b) or the rim stones at the roof
(upper part of Figure 3.18b).

In addition, it can be observed for all detailed views in Figures 3.17 and 3.18 that the segmentation
extends almost to the respective actual segment boundaries, caused by spatial or radiometric changes,
either by depressions, gaps or edges, geometry jumps as well as color changes.

To also validate the applicability of the segmentation algorithm with regard to natural objects and
conditions, a part of the data set of the landslide area in Figure 3.1c was evaluated. Figure 3.19 shows the
segmented boulder field, whereby the upper and lower area, in which only trees and shrubs occurred,
compare with Figure 3.1c, was not considered.

Figure 3.19: Results of the region-based segmentation (color-coded areas) of a small area of the landslide in
Obergurgel.

As can easily be seen, both large and small boulders and single stones could be reliably detected and
separated from each other, confirming the applicability of the method for natural objects.
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3.4. segmentation results

Table 3.2 lists the segmentation criteria that function get_homog_regions, see Code 3.6, uses as
input parameters for the various data sets that lead to the segmentation results in Figure 3.16 and
Figure 3.19.

Table 3.2: Segmentation parameters used to evaluate the various example data sets.

dataset segmentation parameters

min. points connectivity HC HD H∆I

Belvedere 100 4-connected 0.05 0.05 3.0·104

Orangery 100 4-connected 0.08 0.05 3.0·104

Landslide 15 4-connected 0.3 0.05 –

Furthermore, the new segmentation method meets almost all the requirements for an algorithm
described in Section 1.10. The first requirement, that the segmented areas in their entirety should
correspond to the complete data set, is, as with many other methods, only valid in an attenuated form
due to the limitation by the choice of homogeneity criteria16. Only the fifth requirement, cf. Section 1.10
and Item 5, is not fulfilled by the homogeneity criteria uniformly selected for the entire segmentation
range. The algorithm differs strongly from other methods, for instance the ”Region Growing”, which
meet only a few of these requirements.

3.4.1 Influence of Homogeneity Criteria

Figure 3.20 shows a detailed view of the upper part of the right red pillar depicted in Figure 3.11b and
indicates how the use of the point spacing information of layerD, see also Figure 3.6a affects the
segmentation of a pillar. In Figure 3.20a on the left, the points meet the homogeneity criterionHC for
the curvature information of layerC, see Figure 3.6b, but it can be seen that not all points are spatially
adjacent. However, in Figure 3.20b on the right, layerD is used as additional information, which
allows a clear and distinct separation even in 3D space. The points now also fulfil the homogeneity
criterionHD for complying with an average point distance and are now also spatially adjacent.

16The homogeneity criteria can practically also be selected individually for certain areas in a matrix by subdividing
the matrix and performing the binaryization, see Section 3.3.1, for each subarea and reassembling these to an
entire binary matrix.
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Figure 3.20: Upper part of the segmented red pillar in Figure 3.11b right without point spacing information

(left pillar) and with (right pillar).

3.4.2 Performance Evaluation

Table 3.3 lists various parameters related to the datasets of each standpoint required to capture the
entire object shown in Figure 3.1a. Among these datasets, a distinction is made between the number of
data points, the number of regions segmented by the segmentation algorithm explained in Section 3.3
and the processing time required for segmentation with and without region analysis.

Table 3.3: Criteria for various processed data sets to evaluate the segmentation algorithm.

dataset no. of points no. of segments proc. time [s]

ccl ccl + analysis

1 5.204·106 487 0.0707 2.2269
2 4.938·106 453 0.0595 1.8995
3 2.186·106 198 0.0261 0.4999
4 7.367·106 511 0.1040 3.4385
5 1.673·106 48 0.0148 0.1230
6 1.966·106 234 0.0215 0.4191
7 3.330·106 323 0.0364 1.0278
8 7.794·106 304 0.1070 3.4419
9 6.391·106 420 0.0755 3.0125
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3.5. conclusion

in this context, the pure region-based segmentation in terms of the CCLwithout any prepro-
cessing steps, see Section 3.3.2 and especially the efficiency of function get_cc_by_rle by Code 3.5
and as part of Code 3.6 line 22, is compared against the latter in addition to the subsequent region
analysis concerning the part termed as %% further processing (lines 24 to 62) of the function
get_homog_regions, see Code 3.6, and the result of the analysis as structure of additional informa-
tion in Figure 3.15.
It can be seen that the processing time of the segmentation algorithm does not depend on the number
and size of the regions found, but solely on the size of the data set. This is mainly due to the highly
efficient region analysis algorithm, see Section 3.3.2, which scans each pixel only once.

3.5 Conclusion

With the final result representation in Section 3.4 it has been demonstrated that the segmentation algo-
rithm is able to provide an almost complete and very detailed segmentation independent of the geometry
and size of the regions to be segmented, see also Figures 3.16a to 3.16b and Figure 3.19. Furthermore,
it could be illustrated that the additional use of information, such as the point spacing information
as depicted in Figure 3.20, improved the segmentation results by a clearer spatial delineation. Due to
the way the presented method is designed, further information can be used for segmentation without
additional effort, such as the precision of the 3D coordinates, which can be used by the development
of a new stochastic model as introduced by Chapter 2. In general, due to the raster data structure, cf.
Section 1.4, the method is clearly superior to other methods in terms of execution time, see Table 3.3,
by using efficient image processing routines, especially the region-based analysis in Section 3.3.2 of the
data.

final remark: The result of the segmentation from this chapter serves as a source for a sub-
segmentation into planar regions, see Section 4.3.2, for the registration procedure, presented in Chap-
ter 4.
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Probleme kann man niemals mit derselben Denkweise
lösen, durch die sie entstanden sind.

Albert Einstein

4
Synergetic Segmentation and Registration

Numerousestablishedsolutionsareknownfor the sole and independent task of segmentation
or registration, see Sections 1.10 and 1.11. The essential work steps regarding the automated processing
of point clouds are based on different strategies and data concepts, see Sections 0.1 and 1.10, and each
represent stand-alone solutions. Thus existing strategies for the solution of both tasks in the first
processing step are based on a registration detached from the segmentation. A challenge here is the
subsequent processing step of segmentation, requiring a complex re-establishment of topological
relationships between individual points, cf. Section 1.4.

In (Mahmoudabadi et al. 2016) the segmentation of a single scan is efficiently solved, but the
context of the registration is not discussed. A registered point cloud is used by Riveiro et al. (2016),
whereby the previous registration is not related to the segmentation. In both cases, the segmentation is
in focus.

Considering registration procedures, in (Gielsdorf 2009)1 planes are segmented first, serving
consequently as identical information for registration, but they have no other relevance. Rabbani et al.
(2006) extend this concept by detecting several geometrical primitives in shape of cylinders, spheres and
planes within the point clouds and using those informations for registration and modelling. However,
the focus is mainly on registration.

1 The concept of registration in this chapter follows the idea according to Gielsdorf (2009).
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remark: Amutual support of segmentation and registration, which can also be characterized as
”synergetic segmentation and registration”, does not exist yet.

Consequently, this chapter introduces a new methodology that exploits the existing topology
of individual scans for efficient segmentation in order to use extracted features as corresponding
information for registration to complement the previous segmentation result.

Based on an example data set, see Section 4.1, the entire process chain of the algorithm from seg-
mentation in Section 4.3 through matching and registration in Sections 4.4 and 4.5 to the overall
segmentation in Section 4.6 is presented. A final presentation of the results, followed by a conclusion,
is given in Section 4.7.

4.1 Sample Dataset

The new approach for a synergetic procedure for the collaborative segmentation and registration of
point clouds will be presented in the following using the processing of an example data set. The test
object is the teahouse in the park of the Charlottenburg Palace ”Belvedere”, see Figure 3.1a, already
used to introduce the segmentation algorithm in Chapter 3.

SP 1 (b)

SP 2 (a)

SP 3 (c)

Figure 4.1: Overview of the standpoints (SP1-3) and acquisition areas (green, red and blue delimited) that led to
the data a, b and c in Figure 4.2, in relation to the object..

The test data set consists of data captured by a TLS from three standpoints. Figure 4.1 shows the
locations of the standpoints and the respective fields of view (red for SP 1, green for SP 2 and blue for
SP 3) of the laser scanner on the test object in top view. Figure 4.2 shows the different views onto the
object from the different positions based on the intensity data.
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a. View Standpoint 2. b. View Standpoint 1. c. View Standpoint 10.

Figure 4.2: Views onto the object, respectively data slices, emerging from the different positions in Figure 4.1.

4.2 Synergetic Segmentation and Registration of TLS Data

Considering an object captured with a TLS from several standpoints and the resulting point clouds in
individual local coordinate systems, Section 4.2 shows the algorithm of synergetic segmentation and
registration.

local scans
x,y, z, I

conversion to
polar representation

pre-segmentation
Section 4.3.1

sub-segmentation
Section 4.3.2

segmented
point clouds

local plane
segments

plane matching
Section 4.4

plane registration
Section 4.5

matching of segments
Section 4.6

registered and
segmented
point cloud

Figure 4.3: Process diagram of the synergetic segmentation and registration algorithm.

Initially, the conversion of the individual point clouds into their polar representation takes place with
Code 3.1, and subsequently the pre-segmentation procedure, see Section 4.3.1, is applied. The resulting
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segments are subjected to the sub-segmentation process, see Section 4.3.2, which results in local planes
for the respective point clouds. With the following matching procedure, see Section 4.4, on the one
hand the correspondences of planes of neighbouring scan or point cloud pairs are provided and on the
other hand the approximate values for the subsequent final registration, see Section 4.5, are determined.
Using the calculated parameters of the outer orientations and the direct correspondence of local planes
to the original segments obtained from the sub-segmentation algorithm, see Section 4.3.2, individual
local sub-segments can be assigned to each other, see Section 4.6.

remark: The sub-segments form entire segments in the registered superordinate point cloud,
composed of the local2 point clouds of the standpoints, cf. Section 1.3, transformed via the outer
orientations, cf. Section 1.3.1, into the common, i. e. superordinate coordinate system. As a result, a
complete point cloud registered and segmented via several standpoints is obtained.

4.3 Segmentation Process

4.3.1 Pre-segmentation of individual Scans

Starting from the point clouds of the respective standpoints in a raster structure, see Figure 4.2, the
segmentation algorithm presented in Chapter 3 was applied. Figure 4.4 shows the results of the
segmentation for the point clouds of positions 1 (Figure 4.2b), 2 (Figure 4.2a) and 10 (Figure 4.2c) from
the front of the tea house ”Belvedere”, see also Figure 3.1a.

a. View Standpoint 2. b. View Standpoint 1. c. View Standpoint 10.

Figure 4.4: Presegmented regions (color-coded) based on the region-based segmentation in Chapter 3 for the
datasets a, b and c in Figure 4.2 of the test object Belvedere.

The efficient neighborhood analysis using proven image processing algorithms, see Section 3.2.1, charac-
terizes the algorithm in comparison to 3D segmentation methods, especially with regard to processing

2 Local in the context of point clouds describes the initial coordinate system, or the scanner coordinate system, see
also Section 1.3.
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time, see Table 3.3. The subdivision of the data is performed in segmentation based on the natural
structure of the object, in contrast to conventional ”split and merge” methods. The almost complete
and very detailed segmentation, see Figures 4.4a to 4.4c, reveals in regions that have been reliably
detected independently of their geometry (planes, pillars, curved surfaces) and size. By using additional
information, e. g. point distance information or intensity change, see Section 3.4.1, the segmentation
results could be improved by a clearer spatial segregation. This is reflected among others in the fact
that even small depressions, e. g. fugues, can separate individual segments from each other.

4.3.2 Sub-Segmentation into Planar Regions

The registration that follows the segmentation uses information by planar surfaces in form of plane
correspondences to derive the transformation parameters. Therefore the point clouds have to be
subdivided into planar regions in the first step. For each segment originating from the pre-segmentation,
see Figure 4.4, a sub-segmentation into planar segments takes place using a special ”split and merge”
procedure. Figure 4.5 shows the planes detected on the basis of the pre-segmented point clouds of
positions 1, 2 and 10.

a. View Standpoint 2. b. View Standpoint 1. c. View Standpoint 10.

Figure 4.5: Detected planes from sub-segmentation on the basis of the pre-segmented point clouds, i. e. datasets
a, b and c in Figure 4.4.

Table 4.1 summarises the result of the sub-segmentation from Figure 4.5 compared to the previous
segments, see Figure 4.4, for the three positions. Specified is the number of split segments detected
in the corresponding processing time based on a given number of original segments. Concerning the
large soil segments, the majority and the smallest subdivisions resulted from the large variation of the
geometry of the worn out subsoil.
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Table 4.1: Results for various processed data sets to evaluate the segmentation algorithm.

standpoint no. of points segments sub-segmentation

sub-segments proc. time [s]

1 8.825·106 969 6573 25.726
2 8.725·106 910 4771 19.678
10 8.361·106 661 4068 16.738

The division of a segment from the pre-segmentation is carried out until the points Pi = [ xi yi zi ]T

with i = 1, · · · ,n of a sub-segment sufficiently satisfy a plane equation in the form

nxxi + nyyi + nzzi − d = 0 (4.1)

under the condition

n2
x + n2

y + n2
z = 1. (4.2)

The unknowns are the components nx, ny and nz of the normal vector of the plane and the perpen-
dicular distance d of the plane from the coordinate origin. To determine the unknown parameters, the
coordinate values xi, yi, zi are reduced to their center of gravity

xcg = xi −
1
n

n∑
i=1

xi, ycg = yi −
1
n

n∑
i=1

yi, zcg = zi −
1
n

n∑
i=1

zi (4.3)

and the vectors with the reduced coordinate values are combined in an augmented matrix

D =


x1 − xcg y1 − ycg z1 − zcg

x2 − xcg y2 − ycg z2 − zcg

...
...

...

xn − xcg yn − ycg zn − zcg

 . (4.4)

OnDTD3, a Singular Value Decomposition (SVD)4, e. g. Golub and Van Loan (2013) p. 76 ff. and

3 The SVD onD directly is still possible, but not recommended if the plane consists of a large number of points,
e. g. for a plane represented by 7k points the calculation is approx. times 5k faster, a plane with 13.3k points
( double amount) approx. times 14k ( 3 times more).

4 Formore information how the SVD is applied programmatically, see also the function fitplane by Code A.16.
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see also Section A.1.3,

UΣVT = SVD(DTD) (4.5)

can now be performed that provides the best column rank approximation with respect to the quadratic
error. The desired normal vectorn = [nx ny nz ]T then corresponds to the last column of the matrix
V. Finally, the orthogonal distance of the searched plane to the origin can be indicated by

d =

∑
(nxxi + nyyi + nzzi)

n
. (4.6)

important remark: Usually, the determination of plane parameters by SVD is to be considered
as an approximate solution, since the coordinates are assumed to be equally weighted and uncorrelated
quantities. However, during the split and merge process, a rigorous solution as in Section 2.4.2 was
intentionally omitted for the sake of performance. Comparisons revealed no significant differences in
the detection of planes between the two methods. For the use of the computed plane parameters as
observables with corresponding SD for the subsequent matching procedure in Section 4.4, as well as for
the registration process in Section 4.5, a rigorous solution is finally computed according to Section 2.4.2.

For the assessment of a plane defined according to Equation (4.1) with regard to the further splitting
into sub-segments, the individual absolute point distances

εi =| nxxi + nyyi + nzzi − d | (4.7)

to the adjusted plane are compared against their respective precision

σεi
= n2

xσ
2
xi

+ n2
yσ

2
yi

+ n2
zσ

2
zi

5. (4.8)

In so far a plane is defined as a plane if 95% of the set of all point distances εi in the sense of error
distribution does not exceed its individual precision σεi

by a factor of three (3σ rule). The 95% error
interval was chosen due to Baarda’s data snooping (Baarda 1968) capability of 5%, which is applied
in the ensuing rigorous plane adjustment according to Section 2.4.2.

5 The precision of the point distances σεi
is calculated from the adjusted plane parameters and the individual

point accuracies σxi
, σyi

, σzi
based on the stochastic model from Chapter 2 using VCP, see also Section 2.3.1

and especially Equation (2.13).
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Further secondary criteria can be defined by a minimum number of points and a minimum seg-
ment width and height. The function predicate_is_plane6, see Code 4.1, checks a region
for planarity using the additional criteria (lines 11 to 14) and the main criterion (line 34) and returns
plane_flag=true in case of confirmation otherwise false.

Code 4.1: Definition of a planar region.

1 function plane_flag = predicate_is_plane(region)

2

3 % get parameters of the region

4 w = region.bbox(1,3);

5 h = region.bbox(1,4);

6 r_p = region.plane_params;

7 r_ids = region.point_indices;

8 num_elements = numel(r_ids);

9

10 % define plane

11 if num_elements < 100 || w < 3 || h < 3

12 plane_flag = 0;

13 return;

14 end

15

16 % points and precision

17 p_3D = [p_cloud.x(r_ids),p_cloud.y(r_ids),p_cloud.z(r_ids)];

18 p_3D_p = [p_cloud.s_x(r_ids),p_cloud.s_y(r_ids),p_cloud.s_z(r_ids)];

19

20 % point to plane distances and precision

21 plane_dists = abs(r_p(1,1).*p_3D(:,1)+r_p(2,1).*p_3D(:,2)...

22 +r_p(3,1).*p_3D(:,3)-r_p(4,1));

23 plane_dist_acc = sqrt((r_p(1,1).*p_3D_p(:,1)).^2 ...

24 +(r_p(2,1).*p_3D_p(:,2)).^2+(r_p(3,1).*p_3D_p(:,3)).^2);

25

26 % threshold parameters for defining a adequate plane

27 perc_thresh = 0.95;

28

29 % gets plane distances smaller 3 times their sd

30 p_dists_in_sig_range = plane_dists < 3*plane_dist_acc;

31

32 % percentage of inliers

33 perc = nnz(p_dists_in_sig_range)/numel(p_dists_in_sig_range);

34

35 % is plane if min. 95% are inlier

36 plane_flag = perc_thresh <= perc;

The Code 4.2 excerpt shows the main process of splitting and merging a region of the function
split_merge, see Code A.13, which is divided into the following 4 steps:

6 Is used by function predicate_split, see Code A.9, and merge_regions, see Code A.12 in Section A.3
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1. Lines 4 to 14: try to dividemainregion, seefunctionsplit_region (CodeA.11), ifregion
is not dividable, then check by function predicate_is_plane, see Code 4.1, if the region
is already planar

2. Lines 21 to 36: successive splitting of all subregions until they can be assigned to a planar
region in plane_regions according to predicate_is_plane

3. Lines 38 to 48: try to merge existing subregions that may have been unfavourably divided by
the function merge_regions, see Code A.12

4. Line 17 and 51: Repeat steps 2. and 3. until all subregions have been assigned (Line 49,
subregions = []).

Code 4.2: Region splitting and merging.

1 %% region splitting and merging

2

3 % try to split main region first

4 subregions = split_region(region,@predicate_split);

5

6 if isempty(subregions)

7 flag_is_plane = predicate_is_plane(region);

8 if flag_is_plane

9 plane_regions(1) = region;

10 else

11 plane_regions = [];

12 end

13 return;

14 end

15

16 n_plane_regions = 0;

17 while ~isempty(subregions)

18

19 n_sub_subregions = 0;

20 n_subregions = numel(subregions);

21 for i = 1:n_subregions

22 % try to split subregions

23 subregions_tmp = split_region(subregions(i),@predicate_split);

24 if isempty(subregions_tmp)

25 plane_flag = predicate_is_plane(subregions(i));

26 if plane_flag

27 plane_regions(num_plane_regions+1) = subregions(i);

28 n_plane_regions = num_plane_regions+1;

29 end

30 else

31 for j = 1:numel(subregions_tmp)

32 sub_subregions(n_sub_subregions+j) = subregions_tmp(j);

33 end

34 n_sub_subregions = numel(sub_subregions);

35 end

36 end

37

38 if exist('sub_subregions','var')

39 subregions = sub_subregions;
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40 clear 'sub_subregions' 'n_sub_subregions';

41 % try to merge some subregions

42 [merged_plane_regions, subregions] = merge_regions(...

43 subregions,@predicate_merge);

44 if ~isempty(merged_plane_regions)

45 for j = 1:numel(merged_plane_regions)

46 plane_regions(n_plane_regions+1) = ...

47 merged_plane_regions(j);

48 n_plane_regions = num_plane_regions+1;

49 end

50 end

51 else

52 subregions = [];

53 end

54 end

55

56 if ~exist('plane_regions','var')

57 plane_regions = [];

58 end

The division into regions by applying the split_region7 function, see Code A.11, is based on the
segment widthw and height h, always dividing by the longest segment side. In addition, the

ratio =
n

wh
(4.9)

of the content (number of points n) to the segment size (wh) is taken into account, ensuring the best
possible ratio after splitting for all subregions.

The merge of previously unfavorably subdivided regions is attempted by the merge_regions
function, see Code A.12, which verifies whether neighboring regions represent the same plane
according to predicate_merge, see Code A.10. Hence, adjacent planes are identical if they border
each other to a certain extent and have a significantly similar orientation in space (plane normal). This
is the case if the angle

∠(n1,n2) = arccos 〈n1|n2〉
‖n1‖ · ‖n2‖

(4.10)

between the plane normals n1 and n2 is below a defined threshold value. A merge attempt is thus
performed according to Code A.10 if the angle∠(n1,n2) of the normal vectors of two adjacent planes
is less than 0.02 radians, i. e. about 1 degree.

Figure 4.6 shows the behavior of the ”split and merge” algorithm in Code A.13 of successive splitting
into planar subregions based on an initial region.

7 Uses function predicate_split, see Code A.9 in Section A.3, to decide whether to divide
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a. Initial region.

7.5

8
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b. Iteration 1.
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c. Iteration 2.
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e. Iteration 4.
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f. Iteration 5.
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Figure 4.6: Computed information layers regarding curvature, point spacing and change in intensity.

The result of function split_merge, see Code A.13, is a structure plane_regions, which is based
on the structure regions in Figure 3.15, see Figure 4.7.

planar regions

plane_regions(1) plane_regions(i)

.region_id

.point_indices

.bbox

.cog

.plane_params

.av_point_accuracy

.max_plane_dist

.s_0_plane

5
[10;12;17;..]
[4,5,20,10]
[10.23,1.45,5.67]
[0.0,0.0,1.0,5.2]
0.005
0.01
1.13

.region_id

.point_indices

.bbox

.cog

.plane_params

.av_point_accuracy

.max_plane_dist

.s_0_plane

8
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

Figure 4.7: Representation of a regions structure array in MatLab.

In the structure plane_regions the region_id guarantees the clear assignment to the region from
which the respective plane is derived, that is of relevance for the region merging in Section 4.6. Further-
more, for the matching process in Section 4.4 the centroid cog, the plane parameters plane_params
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and quality criteria of the plane, like the mean point accuracy of points on the plane av_point_acc
or the maximum plane distance max_plane_dist are stored.

concluding remark: Ordinary split and merge methods, such as the one used in (Gielsdorf
2009), are applied to an entire dataset, thus the successive splitting without prior information results in
segments that do not extend to the geometry boundaries of the dataset. The distinctive feature of the
developed split and mergemethod is that the subdivision of the segments relies on the pre-segmentation
in Chapter 3, see also Figure 4.4, and thus follows the present geometry in the data set reaching up to
the geometry transitions (segment boundaries).

4.4 Matching Process

On the basis of the planes found in Section 4.3.2 for each point cloud of the three standpoints, see
also Figure 4.5, correspondences between the planes are searched for each pair of standpoints. The
matching procedure is a three-step procedure and includes the

• initial determination of the rotation matrixR08,

• initial determination of the translation vector t0,

• improvement ofR, t and the matching via a rigorous adjustment in a GHM

between the two local coordinate systems of adjacent standpoints. For two identical planes of a
standpoint pair in the defined source system s and target system t, the equations read as follows

nsxsi − ds = 0

ntxti − dt = 0
, (4.11)

where
ns andnt are the normal vectors of the plane pair

ds and dt are the perpendicular distances of the planes from the coordinate origin

xsi and xti are single points on the planes in the source and target system satisfying the equations.

8 It is recommended to use rotationmatrices with quaternions, see e. g. (Luhmann 2018, p. 63 ff.) and Section 1.6.2,
as these allow fast convergence in an adjustment, see also Section 1.8, with low demands on the quality of the
approximate values.
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For the initial determination of the rotation between both systems, expressed by the rotation matrix
R0, with

R0ns − nt = 09 (4.12)

a direct relationship between the normal vectors ns and nt of the plane pair of Equation (4.11) can
be established. Moreover, if one assumes levelled TLS during the acquisition the determination ofR0

using (4.12) is reduced to the 2D case. Thus a single rotation κ around the standing axis,see Figure 1.2 b.,
of the TLS can be assumed, which corresponds to a rotation around the Z-axis,see also Section 1.6.1Rκ,
resulting in

R0 = RZ =


cos κ − sin κ 0

sin κ cos κ 0

0 0 1

 . (4.13)

With the substitutions a0 = cos κ and o0 = sin κ two linear conditional equations

a0nsx − o0nsy − ntx = 0

o0nsx + a0nsy − nty = 0
(4.14)

are obtained from (4.12). Based on two correspondences (nsxnsy |ntxnty), the transformation pa-
rameters a and o can be easily determined via the linear equation systemntx

nty

 =

nsx −nsy

nsx nsy

a0

o0

 . (4.15)

In an iterative procedure, appropriate normal vector pairs can be used to determine R0, the most
likely solution being the one with the most correspondences. In order to limit the enormous number
of possible plane pairs due to the large number of planes found, see also Table 4.1, and to increase
efficiency10, planes on the floor and ceiling are excluded as they are not relevant for determining the
rotation around the Z-axis anyway. A faster and better way to determine the rotation parameters is to
systematically change the angle κ and apply the resulting rotation matrix, see Equation (4.13), to the
normals in the source system and find corresponding normals in the target system for each iteration
step.

9 The normal vector of a plane in the source systemns rotated byR0 must correspond to the equivalent normal
vectornt of the plane in the target system.

10For the planes found of standpoint 1, see Table 4.1, there are more than 31 million correspondence possibilities to
the planes of standpoint 2.
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Code 4.3 shows the determination of the rotation parameters, according to which the best rotation
corresponds to the one with the most correspondences. In the first pass, the rotation angle κ is found
with a precision of the initial step width of one degree, whereupon a new interval is finally built around
this value with a step width smaller by a power of ten, thus improving the precision. The process is
repeated twice until a precision one hundredth of a degree is reached.

Code 4.3: Determine initial rotation for matching planes.

1 %input: planes_source planes_target

2 %output: rotation parameters a, o

3

4 % exclude planes on the floor and ceiling

5 ind_source = find(abs(planes_source(3,:)) < 0.5);

6 ind_target = find(abs(planes_target(3,:)) < 0.5);

7

8 n_s = planes_source(1:3,ind_source);

9 n_t = planes_target(1:3,ind_target);

10 n_n_s = numel(ind_source);

11

12 %threshold for normal matching

13 n_thr = 0.001;

14

15 corresp_struct = zeros(360,3);

16 for i = 1:360

17 kappa_tmp = pi()*(i/180);

18 a = cos(kappa_tmp);

19 o = sin(kappa_tmp);

20 R_tmp = [a -o 0;o a 0;0 0 1];

21 n_st = R_tmp*n_s;

22 for j=1:n_n_s

23 i_nx = n_t(1,:) < n_st(1,j)+n_thr & n_t(1,:) > n_st(1,j)-n_thr;

24 i_ny = n_t(2,:) < n_st(2,j)+n_thr & n_t(2,:) > n_st(2,j)-n_thr;

25 i_nz = n_t(3,:) < n_st(3,j)+n_thr & n_t(3,:) > n_st(3,j)-n_thr;

26 end

27 i_all = i_nx & i_ny & i_nz;

28 corresp_struct(i,:) = [a,o,nnz(i_all)];

29 end

To determine the initial translation, it is assumed that the foot point xFs
= nsds of the plane in the

source system transformed with

xFt
= R0xFs

+ t (4.16)

into the target system should correspond to the foot point xFt
= ntdt of the plane in the target
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system. Taking Equation (4.11) and Equation (4.12) into account, this leads to a further relationship

ds + ntt
0 − dt = 0, (4.17)

in order to be able to determine the translation t0 between the local systems. On the basis of respectively
three correspondences from the totality of all found plane correspondences for the determination of
the rotation matrixR0, translation parameters can now be determined by solving the linear equation
system 

dt1 − ds1

dt2 − ds2

dt3 − ds3

 =


ntx1

nty1
ntz1

ntx2
nty2

ntz2

ntx3
nty3

ntz3



t0
x

t0
y

t0
z

 (4.18)

based on (4.17), where the indices 1 to 3 indicate three correspondences between the planes in the source
and target system. The most probable translation t0 is again the one that results from the majority
of correspondences. The function translation_from_3_corresp shows the calculation of the
translation parameters T from 3 plane correspondences.

Code 4.4: Determine initial translation for matching planes.

1 function T = translation_from_3_corresp(planes_source, planes_target)

2 %input planes_source, planes_target

3 %output translation T

4

5 l = (planes_target(4,:)-planes_source(4,:))';

6

7 A = [planes_target(1,:)' planes_target(2,:)' planes_target(3,:)'];

8

9 T = A\l;

Table 4.2 shows the initial transformation parameters for the scan pairs of positions 1 with 2 and 10
with 1, determined according to the procedures described above.

Table 4.2: Listing of initial transformation parameters.

scan pair initial transformation parameters

ω0 [°] φ0 [°] κ0 [°] t0
x [m] t0

y [m] t0
z [m]

2 to 1 0 0 32.0290 6.9438 7.1909 0.0761
10 to 1 0 0 -41.2465 0.4941 -14.0535 0.1659
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Taking the initially found transformation parameters between the respective scan pairs as a basis, using
function match_planes_by_datum11, a final, so-called date-dependent matching can be carried
out, providing the finite plane correspondences for the following calculation step.

Code 4.5: Matching of planes by known datum in case of transformation parameters.

1 function matches = match_planes_by_datum(p_t, p_s, R, T, m_thr)

2 %input: - structs p_t, p_s of target and source planes

3 % - R, T the transformation parameters

4 % - m_thr(1:3,1) a matching thershold array

5 %output: - matches(n,2) of n matches for a scanpair, where

6 % matches(i,1) is target and matches(i,2) source

7

8 % matching thresholds

9 n_t = m_thr(1,1); %change in plane normal

10 d_t = m_thr(2,1); %change in plane dist to origin

11 d_cogs_t = m_thr(3,1); %max dist for matching cogs

12

13 % extract necessary plane information from struct

14 p_t_cog = reshape(extractfield(p_t,'cog'),3,[]);

15 p_s_cog = reshape(extractfield(p_s,'cog'),3,[]);

16 p_t = reshape(extractfield(p_t,'plane_params'),8,[]);

17 p_s = reshape(extractfield(p_s,'plane_params'),8,[]);

18

19 % transform planes from source to target system with initial R, T

20 p_s_t = transform_planes(p_s,R,T);

21

22 % transform pcogs from source to target system with initial R, T

23 p_s_cogs_t = transform_points(p_s_cog,R,T);

24

25 %% find for transformed planes corresponding planes in target system

26 matches = [];

27

28 for i = 1:numel(p_s_t(1,:))

29 % component nx ny nz within thresholds

30 i_nx = p_t(1,:) < p_s_t(1,i)+n_t & p_t(1,:) > p_s_t(1,i)-n_t;

31 i_ny = p_t(2,:) < p_s_t(2,i)+n_t & p_t(2,:) > p_s_t(2,i)-n_t;

32 i_nz = p_t(3,:) < p_s_t(3,i)+n_t & p_t(3,:) > p_s_t(3,i)-n_t;

33 % component d within thresholds

34 i_d = p_t(4,:) < p_s_t(4,i)+d_t & p_t(4,:) > p_s_t(4,i)-d_t;

35

36 i_all = i_nx & i_ny & i_nz & i_d;

37

38 m_i = find(i_all);

39 % for all found planes get distance from cogs

40 if ~isempty(m_i)

11 Uses function transform_planeswhich performs the transformation of plane parameters to another co-
ordinate system, see Code A.15, and function transform_points for equivalently transforming points, see
also Code A.1
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41 n_matches = numel(m_i);

42 d_cogs = zeros(n_matches,1);

43 for j = 1:n_matches

44 dX = p_s_cogs_t(:,i)-p_t_cog(:,m_i(1,j));

45 d_cogs(j,1) = sqrt(dX(1,1).^2+dX(2,1).^2+dX(3,1).^2);

46 end

47 i_cog_m = find(d_cogs < d_cogs_t);

48 if ~isempty(i_cog_m)

49 matches_t = [m_i(1,i_cog_m)',ones(numel(i_cog_m),1)*i];

50 matches = [matches;matches_t];

51 end

52 end

53 end

Based on the condition Equations (4.12) and (4.17), a rigorous adjustment can be carried out in a GHM

to reveal and eliminate erroneous correspondences12 and hence improve the transformation parameters.

Introducing the residuals vns = [ vnsx
vnsy

vnsz ]T, vds
and vnt = [ vntx

vnty
vntz ]

T, vdt
for

the observation pairsns = [nsx nsy nsz ]T,ds andnt = [ntx nty ntz ]T,dt, four conditions

(ds + vds
) + (ntx + vntx

)t̂x + (nty + vnty
)t̂y + (ntz + vntz

)t̂z − (dt + vdt
) = 0

r̂11(nsx + vnsx
) + r̂12(nsy + vnsy

) + r̂13(nsz + vnsz
) − (ntx + vntx

) = 0

r̂21(nsx + vnsx
) + r̂22(nsy + vnsy

) + r̂23(nsz + vnsz
) − (nty + vnty

) = 0

r̂31(nsx + vnsx
) + r̂32(nsy + vnsy

) + r̂33(nsz + vnsz
) − (ntz + vntz

) = 0

(4.19)

emerge from each plane match of the source system s to the target system t, where

t̂x, t̂y, t̂z are the unknown adjusted values of the components of the translation vector t̂,
as well as

r̂11, r̂12, · · · r̂33 the unknown adjusted elements of the rotation matrix R̂, expressed by the quater-
nions q̂ = [ q̂0 q̂x q̂y q̂z ]T to be determined, see also Equation (1.24).

From the rotation matrixR0 initially found, approximate values for the rotation parameters can be
derived in the form of quaternionsq0 = [ q0

0 q0
x q0

y q0
z ]

T, to be used together with the approximate
values of the translation parameters t0 = [ t0

x t0
y t0

z ]
T and the original residuals v0

nsx
, v0

nsy
, v0

nsz
, v0

ds

12Neighboring planes in different scans may lead to several matches among each other within the matching
thresholds, possibly including matches that are not so favorable for registration.
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as well as v0
ntx

, v0
nty

, v0
ntz

, v0
dt

initialized with 0, yielding the approximate condition equations

Ψ0
k =
(ds + v0

ds
) + (ntx + v0

ntx
)t0

x + (nty + v0
nty

)t0
y + (ntz + v0

ntz
)t0

z − (dt + v0
dt
)

r0
11(nsx + v0

nsx
) + r0

12(nsy + v0
nsy

) + r0
13(nsz + v0

nsz
) − (ntx + v0

ntx
)

r0
21(nsx + v0

nsx
) + r0

22(nsy + v0
nsy

) + r0
23(nsz + v0

nsz
) − (nty + v0

nty
)

r0
31(nsx + v0

nsx
) + r0

32(nsy + v0
nsy

) + r0
33(nsz + v0

nsz
) − (ntz + v0

ntz
)


(4.20)

assuming n plane matches, with {k = 1 : n} based on (4.19). The entire condition vector

Ψ0 =
[
Ψ0

1 · · · Ψ0
k · · · Ψ0

n

]T
(4.21)

is therefore composed of the vectorsΨ0
k from the individual plane matches. For a plane match kwith

respect to (4.20), the initial residuals can be summarized in a vector

v0
k =

[
v0
nsx

v0
nsy

v0
nsz

v0
ds

| v0
ntx

v0
nty

v0
ntz

v0
dt

]T
, (4.22)

forming the entire vector of residuals

v0 =
[
v0

1 · · · v0
k · · · v0

n

]T
(4.23)

for nmatches. According to the order of the residual vector v0 in (4.23), the precision relations of the
observations are given by the choice of the SD of the unit weight ofσ0 = 0.01 in the CM of observations

Qll = diag
[
Qll1 · · · Qllk

· · · Qlln

]
(4.24)

with the individual CMs of observations

Qllk
= diag

[
Qlls | Qllt

]
(4.25)

for each plane match k, containing the respective CMs of observations

Qlls =
s0

2
s

σ0
2Qxxs and Qllt =

s0
2
t

σ0
2Qxxt

13, (4.26)

13The precision of the plane components stems from the plane adjustment of the plane segmentation procedure
in Section 4.3.2,i. e. the adjustment after Section 2.4.2, and is based on the individual point precisions derived
from the proposed stochastic model of the TLS as already used previously in Section 2.3.1.

158



4.4. matching process

for the plane matches k in the source system s as well the target system t, using the corresponding CMs

of adjusted unknownsQxxs ,Qxxt and the empirical reference variances s0
2
s, s0

2
t, computed after each

rigorous plane adjustment following Section 2.4.2 via Equation (1.82).

Equations (4.23) and (4.24) result in the minimization of the objective function under the secondary
condition (constraint vector)

γ0 = q0
0

2 + q0
x

2 + q0
y

2 + q0
z

2 − 1 (4.27)

with respect to the rotation parameters according to ??, ideally providing an iterative solution to the
problem of Equation (4.21) in a GHMwith constraints between the unknowns, see also Section 1.8.7.
The Jacobian matrix with the partial derivatives of the condition equations in Equation (2.21) according
to the unknowns

J1 =
[
J11 · · · J1k · · · J1n

]T
(4.28)

is obtained with

J1k =
[
∂Ψ0

k

∂q0
0

∂Ψ0
k

∂q0
x

∂Ψ0
k

∂q0
y

∂Ψ0
k

∂q0
z

∂Ψ0
k

∂t0
x

∂Ψ0
k

∂t0
y

∂Ψ0
k

∂t0
z

]
(4.29)

for each plane match k based on Equation (4.20), where

∂Ψ0
k

∂t0
x

=


ntx + v0

ntx

0

0

0


∂Ψ0

k

∂t0
y

=


nty + v0

nty

0

0

0


∂Ψ0

k

∂t0
z

=


ntz + v0

ntz

0

0

0


and

∂Ψ0
k

∂q0
0
=


0

2q0
0(nsx + v0

nsx
) − 2q0

z(nsy + v0
nsy

) + 2q0
y(nsz + v0

nsz
)

2q0
z(nsx + v0

nsx
) + 2q0

0(nsy + v0
nsy

) − 2q0
x(nsz + v0

nsz
)

−2q0
y(nsx + v0

nsx
) + 2q0

x(nsy + v0
nsy

) + 2q0
0(nsz + v0

nsz
)


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∂Ψ0
k

∂q0
x

=


0

2q0
x(nsx + v0

nsx
) + 2q0

y(nsy + v0
nsy

) + 2q0
z(nsz + v0

nsz
)

2q0
y(nsx + v0

nsx
) − 2q0

x(nsy + v0
nsy

) − 2q0
0(nsz + v0

nsz
)

2q0
z(nsx + v0

nsx
) + 2q0

0(nsy + v0
nsy

) − 2q0
x(nsz + v0

nsz
)



∂Ψ0
k

∂q0
y

=


0

−2q0
y(nsx + v0

nsx
) + 2q0

x(nsy + v0
nsy

) + 2q0
0(nsz + v0

nsz
)

2q0
x(nsx + v0

nsx
) + 2q0

y(nsy + v0
nsy

) + 2q0
z(nsz + v0

nsz
)

−2q0
0(nsx + v0

nsx
) + 2q0

z(nsy + v0
nsy

) − 2q0
y(nsz + v0

nsz
)



∂Ψ0
k

∂q0
z

=


0

−2q0
z(nsx + v0

nsx
) − 2q0

0(nsy + v0
nsy

) + 2q0
x(nsz + v0

nsz
)

2q0
0(nsx + v0

nsx
) − 2q0

z(nsy + v0
nsy

) + 2q0
y(nsz + v0

nsz
)

2q0
x(nsx + v0

nsx
) + 2q0

y(nsy + v0
nsy

) + 2q0
z(nsz + v0

nsz
)

 .

With the partial derivatives of the conditional equations concerning a planematchk, see Equation (4.20),
with respect to the residuals

J2k =


0 0 0 1 t0

x t0
y t0

z −1

r0
11 r0

12 r0
13 0 −1 0 0 0

r0
21 r0

22 r0
23 0 0 −1 0 0

r0
31 r0

32 r0
33 0 0 0 −1 0

 , (4.30)

a further Jacobian matrix

J2 = diag
[
J21 · · · J2k · · · J2n

]
(4.31)

results in analogy to the Jacobian matrix J1, see Equation (4.28). Finally, the Jacobian matrix

J3 =
[
2q0

0 2q0
x 2q0

y 2q0
z 0 0 0

]
(4.32)

is obtained with the partial derivatives of the constraint equation in Equation (4.27) according to the
unknowns. Using the Jacobians with A = J1, B = J2 and C = J3 and forming the vectors of
misclosures

wr = γ0 and w = −Bv0 +Ψ0 (4.33)
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according to Equations (1.53) and (1.66) using the condition and constraint vectors in Equation (4.21) and
Equation (4.27), the solution for the vector of reducedunknowns∆x̂ = [ ∆q̂0 ∆q̂x ∆q̂y ∆q̂z ∆t̂x ∆t̂y ∆t̂z ]

T

is obtained taking Equation (1.73).

note: Since this is like in Section 2.3 and Section 2.4.2 only the solution of a linearized substitute
problem, the unknowns x̂ and corrections v̂ based on Equation (1.61) are to be introduced into the
adjustment as new approximate values x0 and v0. This iterative calculation is carried out until a selected
break condition, cf. Equation (1.62), is reached. After each convergence for the actually observation
material, Baarda’s data snooping (Baarda 1968), see Section 1.8.8.2, was applied to detect and remove
outliers in form of incorrect or inproper plane matches.

Figure 4.8 shows the allocated planes of standpoint pairs 2 with 1 (upper image pair) and 1 with 10
(lower image pair), cf. the overview of the standpoints in Figure 4.1.

a. Match 2 to 1. b. Match 1 to 2. c. Match 10 to 2.

d. Match 2 to 10. e. Match 1 to 10. f. Match 10 to 1.

Figure 4.8: Result of plane matching with respect to standpoint pairs 2 with 1 (upper left image pair), 10 with 1
(lower right image pair) and 10 with 2 (upper right and lower left image).

The intermediate matching of the planes with respect to the standpoints 2 and 10 cannot be performed
according to the above procedure due to the small overlap of the two scans. On the one hand, however,
direct matches can be created from the other two matching pairs via identical IDs for position 1.
Assuming, for example, a plane match [200,8] for the pair of viewpoints 2 with 1, as well as another
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plane match [155,8] for the pair of viewpoints 10 with 1, where the plane with the ID 200 in scan 2
corresponds to the plane respectively ID 8 in scan 1 and accordingly the IDs 155 with 8 in scan 10, and
scan 1, a direct match [155,200] between the pair of viewpoints 10 with 2 can be specified using the
same ID 8 of both matches.

On the other hand, the calculation of the relative transformation parameters between the point
cloud of standpoint pair 10 and 2 can be derived from the other two transformations, see Table 4.3, by
using the conventions

R10,2 = RT
2,1R10,1

t10,2 = RT
2,1

(
t10,1 − t2,1

), (4.34)

where
R2,1, t2,1 are the relative transformation parameters from scan 2 to scan 1 and

R10,1, t10,1 are the relative transformation parameters from scan 10 to scan 1 as well as

R10,2, t10,2 the computed ones describing the transformation between scan 10 and scan 2.

Table 4.3 shows the final results of the matching process described above in the form of the transforma-
tion parameters from standpoint to standpoint on the basis of thematched plane pairs of the individual
standpoints, Figure 4.8.

Table 4.3: Values and Standard Deviations (SDs) for the relative transformation parameters of the scanner
standpoint pairs after the matching process of Section 4.4.

scan pair matches relative transformation parameters

ω̂ [°] φ̂ [°] κ̂ [°] t̂x [m] t̂y [m] t̂z [m]
σω σφ σκ σtx σty σtz

2 to 1 658 0.002062 -0.021111 -32.159455 6.9529 7.1930 0.0175
0.002175 0.000958 0.000679 0.0014 0.0027 0.0003

10 to 1 650 -0.015842 -0.004972 -41.287382 0.5029 -14.0508 0.1670
0.001432 0.001677 0.000973 0.0011 0.0021 0.0002

Table 4.3 indicates that the translations t̂x, t̂y, t̂z between a scan pair of the standpoints were deter-
mined with a SD in the millimetre to tenth of a millimetre range,corresponding to the magnitude of
the point precision of the TLS applied. The rotation between a scan pair, described by ω̂, φ̂, κ̂, have
been determined with a SD in the range of a few angular seconds.
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concluding remark: The transformation parameters determined in this section, see Table 4.3,
represent relative transformation parameters between a source and a target coordinate system as in
the spatial similarity transformation in Section 1.7. In this case between two local scanner coordinate
systems, see also Section 1.3, of adjacent viewpoints.

Based on the individual calculated transformation parameters among the directly adjacent scan pairs,
the function match_planes14, see Code 4.6, can now be used to determine final plane matches
among all linked scan pairs, even those that are not directly adjacent.

Code 4.6: Matching of planes between the various adjacent and geometrically overlapping point clouds of
individual scan pairs.

1 function p_matches = match_planes(p_viewpoint, init_pose, m_pairs)

2 %input: - p_viewpoint{i} cell array of planes,

3 % where i is the scan number, see order of match_pairs

4 % - init_pose{i} initial pose between scan pairs

5 % in the form [R,T], see match_pairs, e.g. from 2 to 1

6 % - e.g. m_pairs = [1 2;1 3;2 3];

7 % corresp. to scan overlap matches 1-2, 1-10, 2-10

8 %output: - r_matches of regions in scans

9

10 %% datum dependent matching

11

12 % matching thresholds

13 n_t = 0.005; %change in plane normal

14 d_t = 0.1; %change in plane normal

15 d_cogs_t = 0.3; %max dist for matching cogs

16 m_thr = [n_t;d_t;d_cogs_t];

17

18 n_match_pairs = numel(m_pairs(:,1));

19 p_matches = cell(1,n_match_pairs);

20 for i = 1:n_match_pairs

21 p_t = p_viewpoint{m_pairs(i,1)};

22 p_s = p_viewpoint{m_pairs(i,2)};

23 R = init_pose{1,i}(:,1:3); T = init_pose{1,i}(:,4);

24 p_matches{i} = match_planes_by_datum(p_t,p_s,R,T,m_thr);

25 end

Thus, even taking Equation (4.34) into account, the correspondences of the only moderately overlap-
ping point clouds can be taken into account with respect to position 2 with 10.

Another possibility to generate further potential matching pairs between only poorly overlapping
scans is to consider the same plane indices across different scan pairs. For example, a match in the point

14Uses function match_planes_by_datumwhich performs a matching of planes based on initial transforma-
tion parameters, see Code 4.5
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cloud pair 1 - 2, which is also a match with the same ID in the point cloud pair 1 - 10, indicates that
there is also a match with this ID for the pair 2 - 10. Such a direct assignment procedure can be used
to complete missing matches, thus adding Code A.14 to the end of the function match_planes,
see Code 4.6. The planes assigned to each other finally serve as initial information for the subsequent
chained transformation process in Section 4.5.

4.5 Registration Process

The planes found in Section 4.3.2 and matched in Section 4.4 serve as identical information for a
simultaneous registration of point clouds from several standpoints. Similar to a bundle adjustment
in photogrammetry, where image points associated to several images serve as identical information, a
so-called outer orientation, see also Section 1.3.1, is determined for each standpoint (scanning position).

Via the respective exterior orientations, the point clouds of the corresponding scanning positions can
finally be transferred to the superordinate coordinate system via e. g. function transform_points,
see Code A.1. Figure 4.9 illustrates the relationship between two local, corresponding planes from two
adjacent point clouds in relation to the superordinate coordinate system.

X

Y

Z

xy

z

xFkidki

nki

x

y
z

xFkj dkj

nkj

(Ri, ti)
(Rj, tj)

Figure 4.9: Corresponding plane pair k in point clouds i and j in relation to a superordinate coordinate system.

For an identical pair of planes k occurring in the point clouds i and j, see Figure 4.9, the equations

nki
x− dki

= 0

nkj
x− dkj

= 0
(4.35)
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can be given analogously to Equation (4.11). With the transformation of the normal vectorsnki
and

nkj
into the superordinate systemnkglob

one obtains directly

nkglob
= Rinki

= Rjnkj

⇒ Rinki
− Rjnkj

= 0,
15 (4.36)

resulting in three conditional equations

r̂i11n̂ix + r̂i12n̂iy + r̂i13n̂iz − r̂j11n̂jx − r̂j12n̂jy − r̂j13n̂jz = 0

r̂i21n̂ix + r̂i22n̂iy + r̂i23n̂iz − r̂j21n̂jx − r̂j22n̂jy − r̂j23n̂jz = 0

r̂i31n̂ix + r̂i32n̂iy + r̂i33n̂iz − r̂j31n̂jx − r̂j32n̂jy − r̂j33n̂jz = 0

(4.37)

for a plane match k concerning the point clouds i and j, where

r̂i11 , r̂i12 , · · · r̂i33 are the unknown adjusted elements of the rotation matrix R̂i for point cloud
i, expressed by the quaternions q̂i = [ q̂i0 q̂ix q̂iy q̂iz ]

T to be determined,
see also Equation (1.24) as well as

r̂j11 , r̂j12 , · · · r̂j33 the unknown adjusted elements of the rotation matrix R̂j for point cloud j
and

n̂ix = nix + vnix

n̂iy = niy + vniy

n̂iz = niz + vniz

are the corrected normal vector component observations of point cloud i after
introducing the residuals as well as

n̂jx = njx + vnjx

n̂jy = njy + vnjy

n̂jz = njz + vnjz

the corrected normal vector component observations of point cloud j

Considering the same assumption as in Section 4.4, that the plane footpoints xFki
= nki

dki
and

xFkj
= nkj

dkj
of corresponding planes k in the point clouds i and j, cf. Figure 4.9, transformed

into the superordinate system via xFkglob
= RixFki

+ ti = RjxFkj
+ tj

16, see also Equation (4.16),

15 Indicates that the local normal vectors in the superordinate coordinate systemmust be identical.
16A similar procedure, which uses the centers of gravity of the planes for the translation determination, is described
in Gielsdorf (2009).
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should correspond to each other, with the dot product

dkglob
= 〈nkglob

, xFkglob
〉

= 〈(Rinki
), (Rinki

dki
+ ti)〉 = 〈(Rjnkj

), (Rjnkj
dkj

+ tj)〉

⇒ dki
+ 〈Rinki

, ti〉− dkj
− 〈Rjnkj

, tj〉

17 (4.38)

another conditional equation emerges

d̂i + (r̂i11n̂ix + r̂i12n̂iy + r̂i13n̂iz)t̂ix + (r̂i21n̂ix + r̂i22n̂iy + r̂i23n̂iz)t̂iy

+ (r̂i31n̂ix + r̂i32n̂iy + r̂i33n̂iz)t̂iz − d̂j − (r̂j11n̂jx + r̂j12n̂jy + r̂j13n̂jz)t̂jx

− (r̂j21n̂jx + r̂j22n̂jy + r̂j23n̂jz)t̂jy − (r̂j31n̂jx + r̂j32n̂jy + r̂j33n̂jz)t̂jz = 0

(4.39)

for a plane match k concerning the point clouds i and j, where

t̂ix , t̂iy , t̂iz are the unknown adjusted values of the components of the position vector t̂i of
the exterior orientation for point cloud i as well as

t̂jx , t̂jy , t̂jz the unknown adjusted values of the components of the position vector t̂j of the
exterior orientation for point cloud j and

d̂i = di + vdi

d̂j = dj + vdj

are the corrected observations for the orthogonal distances to the plane origines
of point clouds i and j after introducing the residuals

From Section 4.4 the transformation information between the individual point clouds can be used as
approximate information for the individual exterior orientations iwithq0

i = [ q0
i0

q0
ix

q0
iy

q0
iz ]

T and
t0
i = [ t0

ix
t0
iy

t0
iz ]

T, to be used together with the approximate residuals v0
nix

, v0
niy

, v0
niz

, v0
di

for a
plane k, in order to obtain the approximate condition equations as vector

Ψ0
kij

=
d0
i + r0

i1
n0
it

0
ix

+ r0
i2
n0
it

0
iy

+ r0
i3
n0
it

0
iz
− d0

j − r0
j1
n0
jt

0
jx
− r0

j2
n0
jt

0
jy

− r0
j3
n0
jt

0
jz

r0
i11

n0
ix

+ r0
i12

n0
iy

+ r0
i13

n0
iz
− r0

j11
n0
jx
− r0

j12
n0
jy

− r0
j13

n0
jz

r0
i21

n0
ix

+ r0
i22

n0
iy

+ r0
i23

n0
iz
− r0

j21
n0
jx
− r0

j22
n0
jy

− r0
j23

n0
jz

r0
i31

n0
ix

+ r0
i32

n0
iy

+ r0
i33

n0
iz
− r0

j31
n0
jx
− r0

j32
n0
jy

− r0
j33

n0
jz


(4.40)

17 Indicates that the local orthogonal distances to a plane’s origin in the superordinate coordinate systemmust be
identical.
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assuming n plane matches, with {k = 1 : n} for point cloud pairs i and j based on Equations (4.37)
and (4.39), where

r0
i1
· · · r0

i3
are the substitutions for rowwise matrix elements, such as for e. g. r0

i1
=

[ r0
i11

r0
i12

r0
i13 ] concerning the exterior orientation i as well as

r0
j1
· · · r0

j3
the equivalent substitutions concerning exterior orientation j and

n0
i = [n0

ix
n0

iy
n0

iz ]
T is the initial corrected normal vector with its components e. g. n0

ix
= nix +

v0
nix

of the plane match in point cloud i as well as

n0
j = [n0

jx
n0

jy
n0

jz ]
T the eqivalent initial corrected cormal vector with its components e. g. n0

jx
=

njx + v0
njx

in point cloud j and

d0
i = di + v0

di

d0
j = dj + v0

dj

the initial corrected orthogonal distances to the plane origines of point clouds
i and j after introducing the residuals.

The entire condition vector for all point cloud pairs i and j

Ψ0 =
[
Ψ0

12 Ψ0
13 · · · Ψ0

23 Ψ0
24 · · · Ψ0

ij

]T
(4.41)

is therefore composed of the point cloud pair vectors

Ψ0
ij =

[
Ψ0

1ij · · · Ψ0
2ij · · · Ψ0

kij
· · · Ψ0

nij

]T
18 (4.42)

containing the individual plane matches k from Equation (4.40). The initial residuals for a pair of
point clouds are summarized in a vector

v0
ij =

[
v0

1ij v0
2ij v0

3ij · · · v0
kij

· · · v0
nij

]T
(4.43)

consisting of the individual plain matches

v0
kij

=
[
v0
nix

v0
niy

v0
niz

v0
di

| v0
njx

v0
njy

v0
njz

v0
dj

]T
. (4.44)

Thus the entire vector of residuals for all point cloud pairs reads

v0 =
[
v0

12 v0
13 · · · v0

23 v0
24 · · · v0

ij

]T
. (4.45)

According to the order of the residual vector v0 in (4.45), the precision relations of the observations are
given in equivalence to Section 4.4, cf. Equation (4.24), by the choice of the SD of the unit weight of

18For a simplified representation, the same number of {k = 1 : n} plane matches per scan pair ij is assumed.

167



synergetic segmentation and registration

σ0 = 0.01 in the CM of observations

Qll = diag
[
Qll12 Qll13 · · · Qll23 Qll24 · · · Qllij

]
(4.46)

with the individual CMs of observations

Qllij
= diag

[
Qll1,ij Qll2,ij Qll3,ij · · · Qllk,ij · · · Qlln,ij

]
(4.47)

for a pair of point clouds ij and its submatrices

Qllk,ij = diag
[
Qlli

| Qllj

]
(4.48)

of the individual plane match k, composed of the respective CMs of observations

Qlli
=

s0
2
i

σ0
2Qxxi

and Qllj
=

s0
2
j

σ0
2Qxxj

19, (4.49)

for the planematches k in the system i and j, using the corresponding CMs of adjusted unknownsQxxi
,

Qxxj
and the empirical reference variances s0

2
i , s0

2
j , computed after each rigorous plane adjustment

following Section 2.4.2 via Equation (1.82).
As in Section4.4 an iterative solution to theproblemcase of Equation (4.41) in aGHMwith constraints,

see also Section 1.8.7, between the rotation parameters for each exterior orientation of the individual
point clouds takes place.

The rotational part assuming i = 1, · · · ,m exterior orientations, represented by quaternions, is
thus subject to the secondary condition

γ0
n =



q0
10

2 + q0
1x

2 + q0
1y

2 + q0
1z

2 − 1
...

q0
i0

2 + q0
ix

2 + q0
iy

2 + q0
iz

2 − 1
...

q0
m0

2 + q0
mx

2 + q0
my

2 + q0
mz

2 − 1


. (4.50)

However, for the matching procedure in Section 4.4, the relationship between the start and target
systems predetermines the geodetic datum, unlike the registration procedure, the datum is not directly

19The precision of the plane components stems from the plane adjustment of the plane segmentation procedure
in Section 4.3.2,i. e. the adjustment after Section 2.4.2, and is based on the individual point precisions derived
from the proposed stochastic model of the TLS as already used previously in Section 2.3.1.
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defined by the mathematical relationship. For the present case, two common possibilities for defining
the geodetic datum are reasonable:

a. Specifying the datum in one of the local scanner coordinate system of a TLS’s station

b. Definition of the datum via the approximate values of the exterior orientations to be estimated,
i. e. transformation parameters into the superordinate coordinate system, in the sense of a free
adjustment.

For case a, each parameter of the relevant exterior orientation yields one constraint equation for the
selected fix station i, four

qi0 = const., qix = const., qiy = const. and qiz = const. (4.51)

to define the rotation and another three

tix = const., tiy = const., and tiz = const. (4.52)

to define the translation, setting each of the components to a constant value. Usually, the translation
components are set to tix = tiy = tiz = 0 and the rotation components are set as unit quaternion
qi = [ qi0 qix qiy qiz ]T = [ 1 0 0 0 ]T in order to choose a reference coordinate system that is neither
rotated nor translated.

the consideration of a fixed exterior orientation during the adjustment is straightforward.
The corresponding parameters are introduced as constant quantities, consequently also no partial
derivatives are formed and do not cause any correction. From the technical side of programming, the
definition of the datum can easily be assigned to another local coordinate system reducing the Jacobians
by the corresponding columns.

In case b, applied in this section, the datum is defined distributed over all i = 1, · · · ,m exterior
orientations for the local coordinate systems according to the idea of a free adjustment. In doing so,
after Gielsdorf (2009) three constraint equations

γ0
t =


∑

t̂ix −
∑

t0
ix∑

t̂iy −
∑

t0
iy∑

t̂iz −
∑

t0
iz

 =


∑

∆t̂ix∑
∆t̂iy∑
∆t̂iz

 (4.53)
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are considered to determine the translation and another three

γ0
r =


∑

2(q̂i0 q̂ix + q̂iy q̂iz) −
∑

2(q0
i0
q0
ix

+ q0
iy
q0
iz
)∑

2(q̂ix q̂iz − q̂i0 q̂iy) −
∑

2(q0
ix
q0
iz
− q0

i0
q0
iy
)∑

2(q̂ix q̂iy + q̂i0 q̂iz) −
∑

2(q0
ix
q0
iy

+ q0
i0
q0
iz
)



=


∑

2(∆q̂i0∆q̂ix + ∆q̂iy∆q̂iz)∑
2(∆q̂ix∆q̂iz − ∆q̂i0∆q̂iy)∑
2(∆q̂ix∆q̂iy + ∆q̂i0∆q̂iz)


(4.54)

to determine the rotation.
The Jacobian matrix with the partial derivatives of the condition equations according to the unknowns

Ja =



Ja121
Ja122

0 0 · · · 0 0 0

Ja131
0 Ja133

0 · · · 0 0 0

0 Ja232
Ja233

0 · · · 0 0 0

0 Ja242
0 Ja244

· · · 0 0 0
...

...
...

... · · ·
...

...
...

0 0 0 0 · · · Jaiji
0 Jaijj


(4.55)

is composed of the matrices

Jaiji
=

[
J1iji J2iji J3iji Jkiji

· · · Jniji

]T

Jaijj
=

[
J1ijj J2ijj J3ijj Jkijj

· · · Jnijj

]T (4.56)

for each neighboured point clouds i and jwith

Jkiji
=

[
∂Ψ0

kij

∂q0
i0

∂Ψ0
kij

∂q0
ix

∂Ψ0
kij

∂q0
iy

∂Ψ0
kij

∂q0
iz

∂Ψ0
kij

∂t0
ix

∂Ψ0
kij

∂t0
iy

∂Ψ0
kij

∂t0
iz

]
Jkijj

=

[
∂Ψ0

kij

∂q0
j0

∂Ψ0
kij

∂q0
jx

∂Ψ0
kij

∂q0
jy

∂Ψ0
kij

∂q0
jz

∂Ψ0
kij

∂t0
jx

∂Ψ0
kij

∂t0
jy

∂Ψ0
kij

∂t0
jz

] (4.57)

for each plane match k based on Equation (4.40), where

∂Ψ0
kij

∂t0
ix

=
[
r0
i1
n0
i 0 0 0

]T ∂Ψ0
kij

∂t0
iy

=
[
r0
i2
n0
i 0 0 0

]T ∂Ψ0
kij

∂t0
iz

=
[
r0
i3
n0
i 0 0 0

]T
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and

∂Ψ0
kij

∂q0
i0

=


2(t0

ix
[ q0

i0
−q0

iz
q0
iy ]

T + t0
iy
[ q0

iz
q0
i0

−q0
ix ]

T + t0
iz
[−q0

iy
q0
ix

q0
i0 ]

T)n0
i

2(q0
i0
n0
ix

− q0
iz
n0
iy

+ q0
iy
n0
iz
)

2(q0
iz
n0
ix

+ q0
i0
n0
iy

− q0
ix
n0
iz
)

2(−q0
iy
n0
ix

+ q0
ix
n0
iy

+ q0
i0
n0
iz
)



∂Ψ0
kij

∂q0
ix

=


2(t0

ix
[ q0

ix
q0
iy

q0
iz ]

T + t0
iy
[ q0

iy
−q0

ix
−q0

i0 ]
T + t0

iz
[ q0

iz
q0
i0

−q0
ix ]

T)n0
i

2(q0
ix
n0
ix

+ q0
iy
n0
iy

+ q0
iz
n0
iz
)

2(q0
iy
n0
ix

− q0
ix
n0
iy

− q0
i0
n0
iz
)

2(q0
iz
n0
ix

+ q0
i0
n0
iy

− q0
ix
n0
iz
)



∂Ψ0
kij

∂q0
iy

=


2(t0

ix
[−q0

iy
q0
ix

q0
i0 ]

T + t0
iy
[ q0

ix
q0
iy

q0
iz ]

T + t0
iz
[−q0

i0
q0
iz

−q0
iy ]

T)n0
i

2(−q0
iy
n0
ix

+ q0
ix
n0
iy

+ q0
i0
n0
iz
)

2(q0
ix
n0
ix

+ q0
iy
n0
iy

+ q0
iz
n0
iz
)

2(−q0
i0
n0
ix

+ q0
iz
n0
iy

− q0
iy
n0
iz
)



∂Ψ0
kij

∂q0
iz

=


2(t0

ix
[−q0

iz
−q0

i0
q0
ix ]

T + t0
iy
[ q0

i0
−q0

iz
q0
iy ]

T + t0
iz
[ q0

ix
q0
iy

q0
iz ]

T)n0
i

2(−q0
iz
n0
ix

− q0
i0
n0
iy

+ q0
ix
n0
iz
)

2(q0
i0
n0
ix

− q0
iz
n0
iy

+ q0
iy
n0
iz
)

2(q0
ix
n0
ix

+ q0
iy
n0
iy

+ q0
iz
n0
iz
)


are the partial derivatives regarding exterior orientation i and moreover

∂Ψ0
kij

∂t0
jx

=
[
−r0

j1
n0
j 0 0 0

]T ∂Ψ0
kij

∂t0
jy

=
[
−r0

j2
n0
j 0 0 0

]T ∂Ψ0
kij

∂t0
jz

=
[
−r0

j3
n0
j 0 0 0

]T

and

∂Ψ0
kij

∂q0
j0

=


−2(t0

jx
[ q0

j0
−q0

jz
q0
jy ]

T + t0
jy
[ q0

jz
q0
j0

−q0
jx ]

T + t0
jz
[−q0

jy
q0
jx

q0
j0 ]

T)n0
j

2(−q0
j0
n0
jx
+ q0

jz
n0
jy

− q0
jy
n0
jz
)

2(−q0
jz
n0
jx
− q0

j0
n0
jy

+ q0
jx
n0
jz
)

2(q0
jy
n0
jx
− q0

jx
n0
jy

− q0
j0
n0
jz
)


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∂Ψ0
kij

∂q0
jx

=


−2(t0

jx
[ q0

jx
q0
jy

q0
jz ]

T + t0
jy
[ q0

jy
−q0

jx
−q0

j0 ]
T + t0

jz
[ q0

jz
q0
j0

−q0
jx ]

T)n0
j

2(−q0
jx
n0
jx
− q0

jy
n0
jy

− q0
jz
n0
jz
)

2(−q0
jy
n0
jx
+ q0

jx
n0
jy

+ q0
j0
n0
jz
)

2(−q0
jz
n0
jx
− q0

j0
n0
jy

+ q0
jx
n0
jz
)



∂Ψ0
kij

∂q0
jy

=


−2(t0

jx
[−q0

jy
q0
jx

q0
j0 ]

T + t0
jy
[ q0

jx
q0
jy

q0
jz ]

T + t0
jz
[−q0

j0
q0
jz

−q0
jy ]

T)n0
j

2(q0
jy
n0
jx
− q0

jx
n0
jy

− q0
j0
n0
jz
)

2(−q0
jx
n0
jx
− q0

jy
n0
jy

− q0
jz
n0
jz
)

2(q0
j0
n0
jx
− q0

jz
n0
jy

+ q0
jy
n0
jz
)



∂Ψ0
kij

∂q0
jz

=


−2(t0

jx
[−q0

jz
−q0

j0
q0
jx ]

T + t0
jy
[ q0

j0
−q0

jz
q0
jy ]

T + t0
jz
[ q0

jx
q0
jy

q0
jz ]

T)n0
j

2(q0
jz
n0
jx
+ q0

j0
n0
jy

− q0
jx
n0
jz
)

2(−q0
j0
n0
jx
+ q0

jz
n0
jy

− q0
jy
n0
jz
)

2(−q0
jx
n0
jx
− q0

jy
n0
jy

− q0
jz
n0
jz
)


are the equivalent partial derivatives regarding exterior orientation j. With the partial derivatives of the
conditional equations concerning a plane match k, see Equation (4.40), with respect to the residuals in
Equation (4.45)

Jbkij
=


r0
i1
t0
i r0

i2
t0
i r0

i3
t0
i 1 −r0

j1
t0
j −r0

j2
t0
j −r0

j3
t0
j 1

r0
i11

r0
i12

r0
i13

0 −r0
j11

−r0
j12

−r0
j13

0

r0
i21

r0
i22

r0
i23

0 −r0
j21

−r0
j22

−r0
j23

0

r0
i31

r0
i32

r0
i33

0 −r0
j31

−r0
j32

−r0
j33

0

 , (4.58)

where

r0
i1
· · · r0

i3
are the substitutions for columnwise matrix elements, such as for e. g. r0

i1
=

[ r0
i11

r0
i21

r0
i31 ]

T concerning the exterior orientation i as well as

r0
j1
· · · r0

j3
the equivalent substitutions concerning exterior orientation j,

and the resulting matrices

Jbij
= diag

[
Jb1ij

Jb2ij
Jb3ij

· · · Jbkij
· · · Jbnij

]
(4.59)
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containing all matches k for a point cloud combination i, j a further Jacobian matrix

Jb = diag
[
Jb12 Jb13 · · · Jb23 Jb24 · · · Jbij

]
(4.60)

results. Finally, the Jacobian matrices with the partial derivatives of the constraint equations according
to the unknowns, respectively i = 1, · · · ,m exterior orientations

Jn = diag



2q0
10 2q0

1x 2q0
1y 2q0

1z 0 0 0
...

...
...

...
...

...
...

2q0
i0

2q0
ix

2q0
iy

2q0
iz

0 0 0
...

...
...

...
...

...
...

2q0
m0 2q0

mx
2q0

my
2q0

mz
0 0 0


(4.61)

to take the normalization of the rotation quaternions in Equation (4.50) into account as well

Jt =
[
∂γ0

t

∂t0
1
· · · ∂γ0

t

∂t0
i
· · · ∂γ0

t

∂t0
m

]
(4.62)

and

Jr =
[
∂γ0

r

∂q0
1
· · · ∂γ0

r

∂q0
i
· · · ∂γ0

r

∂q0
m

]
(4.63)

with the partial derivatives for the Jacobian matrix Jt according to the initial translation components
for an individual exterior orientation of the constraints γ0

t, see Equation (4.53)

∂γ0
t

∂t0
i

=


0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

 (4.64)

anmoreover for the Jacobian matrix Jr according to the initial rotations components of the constraints
γ0
r, see Equation (4.54)

∂γ0
r

∂q0
i

=


2q0

ix
2q0

i0
2q0

iz
2q0

iy
0 0 0

−2q0
iy

2q0
iz

−2q0
i0

2q0
ix

0 0 0

2q0
iz

2q0
iy

2q0
ix

2q0
i0

0 0 0

 (4.65)

for the definition of the geodetic datum based on Equations (4.53) and (4.54) are obtained. Thus the
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overall Jacobian matrix considering all constraint equations reads

Jc =
[
Jn Jt Jr

]T
. (4.66)

Using the Jacobians withA = Ja,B = Jb andC = Jc and forming the vectors of misclosures

wr =
[
γ0
n γ0

t γ0
r

]T
and w = −Bv0 +Ψ0 (4.67)

according to Equations (1.53) and (1.66) using the condition and constraint vectors in Equation (4.41)
and Equations (4.50), (4.53) and (4.54), the solution for the vector of reduced unknowns

∆x̂ =
[
· · · ∆q̂i0 ∆q̂ix ∆q̂iy ∆q̂iz ∆t̂ix ∆t̂iy ∆t̂iz · · ·

]T
(4.68)

is obtained taking Equation (1.73). The results of the registration procedure are presented in Section 4.7
with the outer orientation parameters in Table 4.4.

note: According to Section 4.4 and the unknowns x̂ and corrections v̂ based on Equation (1.61) are
to be introduced into the adjustment as new approximate values x0 and v0. This iterative calculation
is carried out until a selected break condition, cf. Equation (1.62), is reached. After each convergence
for the actually observation material, Baarda’s data snooping (Baarda 1968), see Section 1.8.8.2, was
applied to detect and remove outliers in form of incorrect or inproper plane matches.

4.6 Assignment process to entire segments

The matching procedure in Section 4.4 automatically provides direct correspondences of the planes of
adjacent scan or point cloud pairs segmented with the subsegmentation algorithm in Section 4.3.2. Since
the planar subsegments are derived from the segments of the segmentation algorithm in Section 4.3.1,
direct correspondences of these local planes to the original segment are given, reflecting the structure in
Figure 4.7.

The plane indices plane_ids of the planes emerging from a specific region can be obtained from
Code 4.7 taking e. g. region with region_id =3 by considering the structures of a region, see also
Figure 3.15, and a plane, see also Figure 4.7, as follows.

Code 4.7: Access the indices of planes corresponding to a specific region.

1 plane_ids = find(extractfield(plane_regions,'region_id')' == 3);
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Consequently, the correspondences of the segments of different point clouds containing one or more
matches of subplanes are assigned automatically.
Figure 4.10 shows in row 1 a selection ofmain segments to bemerged in the colors yellow, green, red and
orange, originating from the point cloud segmentation of viewpoints 2, 1 and 10, see also Figures 4.10a
to 4.10c. The line below indicates the sub-segments resulting from these main segments in the shape
of planar areas, see Figures 4.10d to 4.10f, whereas the patches filled out in the respective color indicate
direct planematches among the point clouds. Theremay also be so-called direct correspondences, whose
region of origin corresponds to a single plane match, as far as the criteria for a plane according to the
definition are fulfilled, e.g. the respective yellow and green segments in scan 2 and 1.

a. Matching regions in scan 2. b. Matching regions in scan 1. c. Matching regions in scan 10.

d. Subregion matches in scan 2. e. Subregion matches in scan 1. f. Subregion matches in scan 10.

Figure 4.10: Assignment of individual segments to entire segments based on matching of subsegments.

Looking at the separation into planes for the lower partial surface, see Figure 4.10e and Figure 4.10f,
shown in a red and orange partial area for scan 1, as well as a larger orange one in scan 10, the following
matches among the planes result, indicated by the color-filled areas:

• plane 2661 in scan 1 matches plane 5041 in scan 10
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• plane 2667 in scan 1 matches plane 5047 in scan 10

• plane 2669 in scan 1 matches plane 5049 in scan 10

• plane 2676 in scan 1 matches plane 5989 in scan 10

• plane 2678 in scan 1 matches plane 5993 in scan 10

• plane 2685 in scan 1 matches plane 5990 in scan 10

• plane 2690 in scan 1 matches plane 5992 in scan 10

• plane 2690 in scan 1 matches plane 5993 in scan 10

note: Following the definition of a plane match, see also Code 4.1 or Equation (4.1), under cer-
tain circumstances, as can be seen above, several matches can be created between planes if they are
geometrically close together.

Code 4.8: Matching of regions from individual point clouds based on matching planes.

1 function r_matches = match_regions(p_viewpoint, p_matches, m_pairs)

2 %input: - p_viewpoint{i} cell array of planes,

3 % where i is the scan number, see match_pairs

4 % - e.g. m_pairs = [1 2;1 3;2 3];

5 % corresp. to scan overlap matches 1-2, 1-10, 2-10

6 % - p_matches of planes in scan pairs, see match_pairs

7 %output: - r_matches of regions in scans

8

9 n_match_pairs = numel(m_pairs(:,1));

10 n_all_matches = sum(cellfun(@numel,p_matches)) / 2;

11 n_stations = numel(p_viewpoint);

12 r_matches = zeros(n_all_matches,n_stations);

13 idx = 0;

14

15 %% build region matches

16 for i = 1:n_match_pairs

17 n_matches = numel(p_matches{1,i}(:,1));

18 for j = 1:n_matches

19 idx = idx+1;

20 p_scan_t = p_viewpoint{m_pairs(i,1)}(p_matches{1,i}(j,1));

21 p_scan_s = p_viewpoint{m_pairs(i,2)}(p_matches{1,i}(j,2));

22 r_matches(idx,m_pairs(i,1)) = p_scan_t.region_id;

23 r_matches(idx,m_pairs(i,2)) = p_scan_s.region_id;

24 end

25 end

26

27 [r_matches,~,~] = unique(r_matches,'rows');
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By knowing the assignment of the planes ids to the respective region via the corresponding region_id,
from which the planes are derived, the function match_regions20, see Code 4.8, can now be used
to form correspondences, stored in r_matches, between the individual main segments of the scans:

• region 18 in scan 1 matches region 3 in scan 10

• region 231 in scan 1 matches region 3 in scan 10

Consequently, the same correspondence of the regions with the id 18 and 231 in scan 1 to the similar
region with the id 3 in scan 10 allows to form a uniform region and to merge the area covered by the
sign in scan 1, reflected in 2 subregions (red and orange), see Figure 4.10b.

a. Main regions from scan station 1.
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b. Combined regions from station 1 and 10.
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Figure 4.11: Detailed views of the region parts of a surface patch captured from scan station 1 and 10 and its
combination to an entire region.

20Uses p_matcheswith planar matches for point cloud pairs, build by function match_planes, see Code 4.6
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synergetic segmentation and registration

By means of the final registration parameters, the outer orientations in Table 4.4, the individual lo-
cal partial segments, derived from each point cloud of a scan, can be transformed into a common,
superordinate coordinate system in the same manner as the whole point clouds of the standpoints.

Ultimately, the partial segments can be joined together in the registered superior point cloud via the
matching information to entire segments, obtaining a uniform overall segmentation in addition to a
complete registered point cloud. Figure 4.1121 shows the union of the individual segments of the orange
and red regions from the above example, see Figure 4.10b and Figure 4.10c.

4.7 Results

The procedure for synergetic segmentation and registration presented in Sections 4.3 to 4.5 was applied
to the three point clouds of the standpoints, see also Figure 4.1 and Figure 4.2, of the object ”Belvedere”.
In the following, some of the obtained results are examined in more detail.

An indication of the result of the overall registration shall initially be given by an overview based on
various cross sections normal to the Z-axis in the XY-plane at different heights, see Section 4.7.

Figure 4.12: Horizontal cross sections to validate the registration result.

The individual sections through the registered point clouds are shown in Figures 4.13a to 4.13c, with the
points marked in green representing the object scanned from station 2, the red ones that were scanned
from station 1 and the blue ones those scanned from station 10, see also Figure 4.1.

In each of the illustrations, themore present color indicateswhich standpoint hasmainly contributed
to the completion of the object through the different perspective on the object and the associated point
density in certain areas.

21The orange points in Figure 4.11a are depicted in black for Figure 4.11b to ensure better visualisation.
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4.7. results

a. Cut at z=-0.5 m.
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b. Cut at z=8.0 m.
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c. Cut at z=13 m.
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Figure 4.13: Individual cuts from the registered point cloud at different heights.
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synergetic segmentation and registration

For a detailed evaluation of the registration result, two spatially distributed segments of different
geometry types (area in orange and pillar in red) in the three adjacent scans were assigned to each other
in Figure 4.14 according to the principle described in Section 4.6.

a. Assignment standpoint 2. b. Assignment standpoint 1. c. Assignment standpoint 10.

Figure 4.14: Assigned segments (plane in orange and pillar in red) for the point clouds of the positions 2 (left), 1
(middle) and 10 (right).

Figure 4.15 shows a more detailed analysis of the planar region captured from the three different
perspectives of the standpoints, see Figures 4.14a to 4.14c, and depicted in orange.

a. Plane front view.
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Figure 4.15: Detailed views (front view and top view) of the points of the planar region (depicted in the
respective standpoint color based on Figure 4.1) merged from the three perspectives (depicted in orange) in

Figures 4.14a to 4.14c.
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4.7. results

Figure 4.16 shows a more detailed analysis of the pillar captured from the three different perspectives of
the standpoints, see Figures 4.14a to 4.14c, and depicted in red.

a. Pillar front view.
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b. Pillar top view.
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Figure 4.16: Detailed views (front view and top view22) of the points of the pillar (depicted in the respective
standpoint color based on Figure 4.1) merged from the three perspectives (depicted in red) in Figures 4.14a

to 4.14c.

On the one hand, Figures 4.15a and 4.16a illustrate the merging of the subsegments resulting from
the different perspectives and related occlusions into one overall segment. The green colored areas
represent those captured from position 2 (Figure 4.14a) the red colored areas represent those captured
from position 1 (Figure 4.14b) and the blue colored areas represent those captured from position 10
(Figure 4.14c), see also Figure 4.1. If, on the other hand, one considers the respective top views in

22As the pillar tapers, its top view results in a wider ring.
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synergetic segmentation and registration

Figures 4.15b and 4.16b of the segments merged via the registration, see the results in Table 4.4, one can
conclude that the subsegments in the overlap area superimpose each other within the measurement
noise of the TLS employed. The quality of the unification of the planar region in Figure 4.15a also
appears to be in the range of the measurement noise, even though the segment is far outside the main
overlapping and thus matching range of scan 1 and 2 of the respective positions, see Figures 4.14a
and 4.14b. Both are important factors for a precise and reliable registration.

For a more detailed assessment of the exterior orientations, see also Section 1.3.1, Table 4.4 lists
the results of the registration determined by the procedure in Section 4.5. For the calculated rotation
angles23 ω̂, φ̂, κ̂ and the translation parameters t̂x, t̂y, t̂z their SD is given.

Table 4.4: Values and Standard Deviations (SDs) for the exterior orientations of the individual scanner
standpoints after the registration process of Section 4.5.

scan position exterior orientation parameters

ω̂ [°] φ̂ [°] κ̂ [°] t̂x [m] t̂y [m] t̂z [m]
σω σφ σκ σtx σty σtz

2 -0.327306 -0.003297 -32.153729 6.9690 7.2250 0.0027
0.002556 0.002691 0.004260 0.0020 0.0023 0.0003

1 0.030773 0.033118 0.005023 -0.0072 -0.014 0.0211
0.002086 0.002486 0.001029 0.0014 0.0027 0.0003

10 0.282756 -0.055904 -41.300534 0.4939 -14.0685 0.1607
0.002086 0.002486 0.001029 0.0014 0.0027 0.0003

Table 4.4 indicates that the positions (translations to the superordinate coordinate system, see also
Section 1.3.1) t̂x, t̂y, t̂z of the standpoints were determined with a SD in the millimetre to tenth of a
millimetre range, which corresponds to the magnitude of the global point precision of the TLS applied.
The vertical component t̂z was consistently determined more precisely than the other two, which can
be attributed to the dominant number of existing horizontally aligned plane matches, see Figure 4.8.

The rotation angles ω̂, φ̂, κ̂with respect to the orientations of the standpoints have been determined
with a SD in the range of a few angular seconds. Similar to the bundle adjustment in photogrammetry
with image coordinates, the registration method presented in Section 4.5 allows the consideration of
connections in the form of identical planes across several standpoints, having a positive effect on the
determination of the exterior orientations due to geometric stabilization and increased redundancy.

23The conversion of the parameters from rotation matrices with quaternions, see also Equation (1.24), into the
common Euler angles ω̂, φ̂, κ̂ is shown e. g. in (Luhmann 2018, p. 65).
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4.8. conclusion

4.8 Conclusion

The concluding presentation of individual results in Section 4.7 showed that, on the one hand, the
information obtained by a presegmentation to individual scans in Section 4.3.1 can be used in the form
of a split into planes, see Section 4.3.2, for a registration, see Sections 4.4 to 4.5, and, on the other hand,
the orientation and matching information derived from the registration can be used in Section 4.6 to
complete the segmentation result.

The highly efficient pre-segmentation algorithm, see Section 4.3.1 and also Chapter 3, which classifies
regions independently of their geometry and size based on additional information, coupled with the
precise registration procedure in Section 4.5, which is independent of point density and distribution
on the object, provide a complementary simultaneous solution to both problems.

The need for the time-consuming build-up of a topology in 3D, see also Sections 1.4 and 3.3.2, is
completely obsolete here with regard to the registered point cloud, hence leading to a much more
efficient procedure compared to others. With the high precision, compare Tables 4.3 and 4.4, and by
outlier detection, cf. Section 1.8.8.2, reliable registration based on planes, see section Section 4.5, many
point clouds of individual standpoints can be transferred very efficiently into a superordinate context.
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5
Conclusion and Outlook

Withthe furtherdevelopmentofthe TLS and its associatedmore precise and discrete quasi-area
acquisition methods, today’s TLSs now have a very broad field of application in a variety of disciplines,
see Chapter 0. Accordingly, the point clouds resulting from the acquisition, as well as the processing
methods to be applied to them from the core competence area of engineering geodesy, see Section 0.1
and (Kuhlmann et al. 2013), as well as the segmentation and registration, are also subject to increasingly
higher quality demands in the form of so-called quality models, see Section 0.2.1. On the basis of the
disadvantages of present methods, see Section 0.1.1, in particular the detached processing of segmenta-
tion and registration without the use of a meaningful stochastic model for a quality characteristic, the
main research topics emerged in Section 0.3. In Chapter 1, fundamental topics relevant within the main
chapters with regard to the recording and evaluation of TLSmeasurements were addressed first. Finally,
with Chapter 2 it was possible for the first time to derive and validate an all-encompassing stochastic
model based solely on the intensity measurement of a TLSs using a suitable measurement and evaluation
concept, considering all environmental influences affecting the reflectorless distance measurement. The
segmentation procedure in Chapter 3, operating on the natural data structure of point clouds and thus
being very efficient, is capable of processing both geometric and radiometric data as well as in combina-
tion of a TLS to effectively subdivide individual point clouds of a scan into different geometrically related
regions, such as planes, cylinders or generally curved surfaces, without any additional information.
Following on this, in Chapter 4 the segments from the pre-segmentation in Section 4.3.1 could be
exploited to identify significant planes, see Section 4.3.2 using stochastic information from the stochastic
model derived in Section 2.3. These were subsequently used as corresponding information within
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conclusion and outlook

overlapping point clouds frommultiple viewpoints for registration into a common coordinate system,
see Section 4.5, whereby the matching information could in turn be used to complete the individual
segmentations from Section 4.3.1 to form an overall segmentation, see also Section 4.6. The procedure
for the combined segmentation and registration of laser scans was called Synergetic Segmentation and
Registration due to the mutual use and knowledge gain of information.

5.1 Contribution to Science and Engineering

The present thesis contributes decisively to two main research foci, see also Section 0.3, within the core
competencies of engineering geodesy, see among others (Kuhlmann et al. 2013), in the context of TLS:

1. Derivation and validation of a new and comprehensive stochastic model for TLS, see Chapter 2.

2. Synergetic segmentation and registration of TLS point clouds, see Chapter 4.

However, the fact that stochastic properties of TLSs can be derived from simply the raw intensity values
while reflecting any environmental influences affecting the reflectance led to the first development of a
meaningful stochastic model in Chapter 2, contributing to the complement of previous quality models
for TLSs, see also Section 0.2.1, especially Table 1. Due to the facile transferability and applicability of
the findings to other scanner types, the new stochastic model has already gained wide acceptance within
engineering and applied disciplines of geodesy and beyond, see Section 2.7.1.

• The knowledge about the accuracy, thus also the precision of observations, cf. Section 0.2
and Figure 2, takes an essential role with regard to the modeling of the quality of measuring
instruments, in particular of TLSs, see also Section 0.2.1, as well as the evaluation of measuring
and evaluation methods since the early days of geodesy.

• With the new and meaningful stochastic model for TLSs, very realistic precision statements can
now be met regarding the respective observations, in particular concerning the reflectorless
distance measurement, cf. Equation (2.2), which, in turn, allows the full potential of the several
evaluation strategies with respect to TLS, such as segmentation and registration methods, to be
exploited for the first time.

• On the one hand, this can be decisive for the statistical statement of the affiliation of points to a
region or especially to a plane in the case of a plane segmentation, see Section 4.3.2, but also
in the classical sense for the weighting of the observations in the course of a usual evaluation
process in a GMM or GHM, e. g. also in case of registration, see Equation (4.24), and especially
the associated detection of outliers in the data, see also Section 1.8.8.2.

• Also e. g. with regard to a deformation analysis on the basis of TLS data, the knowledge of the
precision about the 3D points is crucial for a significant test decision whether and to which
extent regions have deformed or changed, see also e. g. (Kauker and Schwieger 2017; Zhao
et al. 2019), hence the new stochastic model is also of enormous importance in this context.
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5.2. ideas for improvement and research perspective

due to the complexity of many evaluation processes, a VCP over several process steps is often
unavoidable and therefore the basic statement about the precision of the input measured values is even
more important.
When looking at the previous detached and independent evaluation strategy for segmentation and
registration processes, see Section 0.1.1, a joint solution has been proposed for the first time in Chapter 3
and Chapter 4 with which both processing steps are carried out as efficiently as possible in combination
with maximum precision taking advantage of mutual synergies.

• By using the original scan data with its natural data structure resulting from the creation process,
see Section 1.2.1 and figure 1.3, a fast and well separated segmentation result on single scans can
be achieved with the help of an extremely efficient CCA in Section 3.3.2 basing on the geometric
and radiometric information, whereas one could conceivably perform a pre-segmentation on
the CPU of a TLS directly in the field and thus achieve a time saving in the overall evaluation
chain.

• In Section 4.3 of Chapter 4, a new algorithm for the segmentation of planar patches based on
individual regions from the pre-segmentation was presented thereupon, which, in contrast to
other classical split and merge methods, is oriented by the pre-segmentation according to its
natural, in the data present, features and thus also results in planes with an extension to the
segment boundaries.

• The subsequent plane matching in Section 4.4 serves not only for correspondence generation
between planes of different point clouds for the plane-based registration in Section 4.5, but is
also equally information provider for the assignment procedure of the individual regions from
the scan-based pre-segmentations for completion to overall regions, see Section 4.6.

• Consequently, the plane-based segmentation with observation information in the form of plane
correspondences contributes to the success of the registration on the one hand, and on the other
hand the registration via the matching information participates in a uniform and complete
segmentation result, whereby a segmentation on an already registered point cloud, which is
usual in practice, accompanied by the again complex and time-consuming reconstruction of
the topology, cf. also Section 1.10, is omitted.

moreover, by continuously carrying meaningful stochastic information based on the stochastic
model throughout the entire evaluation process, false or unreliable plane correspondences can be stably
and reliably detected and eliminated during registration, which has a positive effect on the reliability
and precision of the registration result.

5.2 Ideas for Improvement and Research Perspective

Acloser look at the current developmentofTLSs (cf. e. g. Junttila et al. 2017; Li et al. 2016;Matikainen
et al. 2017), shows that in the near future there will be laser scanners with several information channels
due to the integration of diodes with different wavelengths. By the additional information gain of the
intensity channels besides the distance channel, further perspectives and optimization possibilities for
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the evaluation of laser scans will arise (Krueger et al. 2017), similarly as they are also currently possible
e. g. after the fusion with camera images, see among others (Lichti 2005; Brell et al. 2017).

• Considering the matching process in Section 4.4, it is currently purely geometric based. How-
ever, applying additional intensity information or combinations of relative differences between
various intensity channels on the one hand would reduce the search space for possible plane
correspondences and exclude false correspondences more reliably as well. This would result in
an increase of reliability as well as efficiency of the matching process.

• Evenwith regard to a classificationof the individual scans intodifferent object classes, for example
according to the spectral characteristic of different materials as shown in Figure 2.10, the general
segmentation algorithm from Chapter 3 can be applied directly without any adaptation. The
creation of so-called index layers (radiometric coefficients) from a special combination of some
intensity channels for each material or at least a material category or object class, e. g. vegetation,
asphalt, stone, metal, etc., can be used to classify certain objects such as building materials, as
for example in the case of a definition of an Normalized Differenced Vegetation Index (NDVI)
in the context of a supervised or unsupervised image classification.

short remark: For the use of several intensity channels within the classification or for the
improvement of the matching process, a radiometric calibration per intensity channel is not mandatory,
since by difference formation or index determination between various channels, only relative values are
considered, having comparable values in a certain examination area, unlike absolute values in different
scans. The prerequisite is that the environmental influences have a comparable effect on all diodes
respectively intensity channels.
In accordance to the registration process in Section 4.5 and the qualitymodeling ofTLSs, see Section 0.2.1,
further optimizations regarding a comprehensive evaluation are conceivable:

• To cover the remaining systematics of a TLS system and to take them into account as far as
possible in the evaluation, a so-called simultaneous calibration, as e. g. also mentioned in
Section 1.2.5, is a suitable approach. Systematic error components of the TLS which are not
completely covered during the system calibration by themanufacturer at delivery can thus ideally
be determined in the context of a simultaneous calibration within the registration process and
applied to the observations in order to enhance the point cloud. In the ideal case, only random
errors in the sense of noise remain, represented solely by the new stochastic model.

• For an individual consideration also of other geometries depending on the presence in the data
during the registration process, it is conceivable to reference via the general formulation of
second order surfaces or quadrics, see also Section A.2. With a successive significance analysis, the
parameters of the original model can be reduced until the model fits to the data. The increased
flexibility and better, or more ideal and large-scale, fitting across multiple geometry models
ideally allows amore reliable and evenmore accurate registration across multiple TLS viewpoints.
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A
Complementary Information

This additional chapter provides supporting information and supplementarymaterial for the individual
chaptersChapters 1 to 4. Among themare basicmathematical relationships and source code as functions,
which can be found in other listed functions as source code examples in the main chapters.

A.1 BasicMathematics

a.1.1 Rodrigues Formulation andQuaternions

The considerations that a rotation in R3can be expressed as a function of a single rotation angle φ
and the three components ux, uy, uz of a unit vector u along the rotation axis can be traced back
to Leonhard Euler (Euler 1775) andOlinde Rodrigues (Rodrigues 1840). The three orientation
angles α, β and γ between the rotation axis and the base vectors are used to describe the position of
the rotation axis, see Figure A.1, according to which the depicted vector

u =


ux

uy

uz

 =


cosα

cosβ

cosγ

 (A.1)

is obtained.
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Figure A.1: Rodrigues rotation around a unit vectoru.

According to Rodrigues (Rodrigues 1840) a vector x in space can be rotated by the unit vectoru, see
Equation (A.1), which represents the rotation axes, and the rotation angleφ as follows:

xrot = x+ sinφ(u× x) + (1 − cosφ)u× (u× x) (A.2)

With the formation of a skew symmetric cross product matrix

U =


0 −uz uy

uz 0 −ux

−uy ux 0

 , (A.3)

so that

Ux = u× x (A.4)

applies and the substitution of the equivalent expression in the Rodrigues formula, see (A.2), one
obtains

xrot = x+ sinφ(Ux) + (1 − cosφ)(U2x). (A.5)

By excluding the vector x, to be rotated under the subcondition

‖u‖ = u2
x + u2

y + u2
z = 1, (A.6)
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A.1. basic mathematics

the known rotation matrix is obtained in Rodrigue form

R(U,φ) = I+ sinφU+ (1 − cosφ)U2 = R(ux,uy,uz,φ) =
u2
x + (1 − u2

x)cφ uxuy(1 − cφ) − uzsφ uxuz(1 − cφ) + uysφ

uxuy(1 − cφ) + uzsφ u2
y + (1 − u2

y)cφ uyuz(1 − cφ) − uxsφ

uxuz(1 − cφ) − uysφ uyuz(1 − cφ) + uxsφ u2
z + (1 − u2

z)cφ

 , (A.7)

where sφ = sinφ and cφ = cosφ respectively. By means of the double trigonometric functions

sin 2φ = 2 sinφ cosφ cos 2φ = 2 cos2 φ− sin2 φ

and the trigonometric Pythagoras1

sin2 φ+ cos2 φ = 1,

the following connections

sinφ = 2 sin φ

2 cos φ2

cosφ = cos2 φ

2 − sin2 φ

2 (A.8)

1 − cosφ = 2 sin2 φ

2

can be indicated, Substituting the equivalent expressions in (A.7) according to the relations, see Sec-
tion A.1.1, and considering that a Quaternion q = [q0,qx,qy,qz]

T can be represented with the
Rodrigue parameters (cf. Dai 2015; and Pujol et al. 2012)

q = cos φ2 + u sin φ

2 ,

1 Phytagoras (∗ around 570 B.C.; † after 510 B.C.) was an ancient Greek philosopher and pioneer of mathematics
and science. The well-known Phytagoras theoremwas named after him.
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we obtain the rotation matrix expressed by Quaternions2

R(q0,qx,qy,qz) =


q2

0 + q2
x − q2

y − q2
z 2(qxqy − q0qz) 2(qxqz + q0qy)

2(qxqy + q0qz) q2
0 − q2

x + q2
y − q2

z 2(qyqz − q0qx)

2(qxqz − q0qy) 2(qyqz + q0q1) q2
0 − q2

x − q2
y + q2

z

 , (A.9)

subject to the auxiliary condition

‖q‖ = q2
0 + q2

x + q2
y + q2

z = 1. (A.10)

a.1.2 Interrelation between Cartesian and Polar Coordinates

The relationship between cartesian and polar coordinates can be illustrated rather simple by Figure A.2
using two schematic sketches.

XY-Plane

Z

Pi

ρi
zi

ρip

θi

X

Y

Pip

ρip
yi

xi

φi

Figure A.2: Mathematical relationship between cartesian and polar coordinates.

Concerning the left part of Figure A.2, the formulas

zi = ρicosθi and ρip = ρi sin θi (A.11)

can be derived and equivalently for the right part the formulas

xi = ρip cosφi and yi = ρip sinφi. (A.12)

2 TheQuaternions are also referred to asHamiltonQuaternions orHamiltonnumbers according to SirWilliam
Rowan Hamilton, but they were independently discovered three years earlier byOlinde Rodrigues (Rodrigues
1840).
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From (A.11) an (A.12), the conversion from polar to cartesian coordinates can be given with

xi =


xi

yi

zi

 =


ρi sin θi cosφi

ρi sin θi sinφi

ρicosθi

 . (A.13)

Moreover the back conversion from cartesian to polar coordinates can be performed by

θi = arccos zi
ρi

,

φ = arctan yi

xi
and (A.14)

ρi =
√
x2
i + y2

i + z2
i

a.1.3 Point Normal calculationwithin gridded data using SVD

Similar to Section 3.2, the point normal calculation with SVD is based on the successive analysis and
evaluation of small data areas. Due to the gridded data structure, see also Figure 3.2, the same evaluation
principle can be applied as for filtering with Algorithm 3.1. The red mask in Figure 3.5 is shifted
consecutively and pixel by pixel (for each position i, j) over the entire grid M, see Figure 3.4, and
simultaneously for each layerM = X,M = Y ,M = Z from Figure 3.2. At each position (i, j) the
coordinate values

xij =

[
Xi−1

j−1
Xi−1

j

Xi−1
j+1

X i
j−1

Xi
j

X i
j+1

Xi+1
j−1

Xi+1
j

Xi+1
j+1

]T

yij =

[
Yi−1

j−1
Yi−1

j

Yi−1
j+1

Y i
j−1

Yi
j

Y i
j+1

Yi+1
j−1

Yi+1
j

Yi+1
j+1

]T

(A.15)

zij =

[
Zi−1

j−1
Zi−1

j

Zi−1
j+1

Z i
j−1

Zi
j

Z i
j+1

Zi+1
j−1

Zi+1
j

Zi+1
j+1

]T

lying within the mask of size 3x3 are taken, reduced to their center of gravity3

3 Assuming that the points represent a plane of the form according to Equation (2.15), the distance d to the origin
can be eliminated by the centroid reduction of the points therein, so that only the information of the normal
vector is contained in the centroid reduced data.
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xijcg
= xij −wnk

∑
xij

yijcg
= yij −wnk

∑
yij (A.16)

zijcg
= zij −wnk

∑
zij,

wherewnk
= 1

9 is the weighting factor for the nk = 9 elements for the corresponding mask size, and
summarized in a matrix

D =
[
xijcg

yijcg
zijcg

]
. (A.17)

A Singular Value Decomposition (SVD), see also Golub and Van Loan (2013) p.76 ff., can now be
performed onDTDwith

UΣVT = SVD(DTD), (A.18)

where
U,V are the left and right orthogonal matrices containing the respective singular vectors and

Σ is the diagonal matrix comprising the singular values to its singular vectors.

The singular vector sv belonging to the smallest singular value inΣ from the right orthogonal matrix
(last column of V), contains the desired normal vector information n, which represents the point
normal of the reference point within a mask. For each mask position, the calculated normal vector
components are stored in a separate layer at the same position (mask center point), as in Figure 3.8.

remark: The SVD can be reached by solving an Eigen Value Decomposition (EVD) onDTD, since
singular values have a direct relationship to eigenvalues (Golub and Van Loan 2013, p. 77).

A.2 Transformation of arbitrary surfaces

The transformation of planar surface elements, see Section 4.5, can be derived from a general surface in
R3. In 3D space, a so-called quadric can be used to describe an arbitrary surface in space, which is also
called second order surface or quadratic surface:

f(X) = XTAX+ bTX+ c = 0 (A.19)

where
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X = [X, Y,Z]T is a transformed point via (A.21) into a specific coordinate system satisfying
(A.19),

A =
[
a11 a12 a13
a21 a22 a23
a31 a32 a33

]
is a symmetric matrix containing the coefficients for the quadratic part,

b = [b1,b2,b3]
T is the vector containing the linear part and

c is the constant part of (A.19).

Due to the symmetry ofA, Equation (A.19) is formulated into

a11X
2+a22Y

2+a33Z
2+2a12XY+2a13XZ++2a23YZ+p1X+p2Y+p3Z+c = 0. (A.20)

From the general design of a quadric, various objects in space, including cylinders, cones, planes,
hyperboloid, etc., but also curved surfaces, can be derived or described by reducing (A.20) by a few
parameters. From the transformation of a point x into a superordinate coordinate system

X = Rx+ t, (A.21)

the quadric described by (A.19) can be reformulated as follows

f(Rx+ t) = (xTRT + tT)A(Rx+ t) + 2bT(Rx+ t) + c, (A.22)

which leads to

tTAt+ tTARx+ xTRTAt+ xTRTARx+ 2bTt+ 2bTRx+ c. (A.23)

Assuming symmetrie, soA = AT as mentioned above, we can say that

xTRTAt = (xTRTAt)T (A.24)

and moreover

(xTRTAt)T = tTARx, (A.25)

resulting by applying (A.23) to (A.26) in

tTAt+ tTARx+ tTARx+ xTRTARx+ 2bTt+ 2bTRx+ c. (A.26)
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After summarizing only the linear terms of Equation (A.26), yields

2tTARx+ 2bTRx = 2(tTA+ bT)Rx, (A.27)

which leads to

b∗T = (tTA+ bT)R (A.28)

and by transposing

(b∗T)
T
= (tTA+ bT)RT (A.29)

and reformulating leads to

b∗ = RT(At+ b) (A.30)

and finally to the transformed parameters

A∗ = RTAR

b∗ = RT(At+ b)

c∗ = tTAt+ 2bTt+ c

. (A.31)

Taking the transformed parameters from (A.31) into account, Equation (A.19) can be represented
uniformly

f(x) = xTA∗x+ b∗Tx+ c∗, (A.32)

or equivalently in matrix form

xT

c∗ b∗T

b∗ A∗

 x. (A.33)

Considering the exclusively linear parametersb∗ with and c∗ one finally obtains

b∗Tx+ c∗ with b∗ = RT(t+ b) and c∗ = 2bTt+ c exluding A, (A.34)

corresponding to a transformed plane equation according to Equations (4.12) and (4.17).
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remark: With the general formulation of the transformation of surfaces in space, any surface
elements present in a point cloud can be estimated and used as identical information in the context of a
registration process, see e. g. Section 4.5.

A.3 BasicMatlab Code

a.3.1 General

Code A.1: Transforming 3D points to another coordinate system.

1 function XYZ = transform_points(xyz, R, T)

2 %input: - xyz(3,n) point list [x;y;z]

3 % - R, T the transformation parameters

4 %output: - XYZ(3,n) the transformed points

5

6 XYZ = R*xyz;

7 XYZ(1,:) = XYZ(1,:)+T(1,1);

8 XYZ(2,:) = XYZ(2,:)+T(2,1);

9 XYZ(3,:) = XYZ(3,:)+T(3,1);

Code A.2: Expanding a matrixM for filtering purposes.

1 function [M, rows, cols] = expand_borders(M, wK)

2 %input: matrix M and kernel size wK

3 %output1: expanded matrix M for filtering with kernel wKxwK

4 %output2/3: valid filter indices

5

6 [m,n] = size(M);

7

8 % kernel center

9 k_c = wK/2+0.5;

10

11 rows = k_c:m+k_c-1; cols = k_c:n+k_c-1;

12

13 rep_1 = 3*M(1,:)-3*M(2,:)+M(3,:);

14 rep_2 = 3*M(m,:)-3*M(m-1,:)+M(m-2,:);

15 M = [repmat(rep_1,k_c-1,1);M;repmat(rep_2,k_c-1,1)];

16

17 rep_3 = 3*M(:,1)-3*M(:,2)+M(:,3);

18 rep_4 = 3*M(:,n)-3*M(:,n-1)+M(:,n-2);

19 M = [repmat(rep_3,1,k_c-1),M,repmat(rep_4,1,k_c-1)];
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a.3.2 Precalculation

Code A.3: Calculation of the point normals by means of filtering.

1 function p_cloud = calc_point_normals(p_cloud, wK)

2 %input: struct p_cloud.x, p_cloud.y, p_cloud.z and kernel width wK

3 %output: struct p_cloud.nx, p_cloud.ny, p_cloud.nz

4

5 switch wK

6 case 3

7 mask_r = [1 0 -1]/2;

8 mask_c = [-1;0;1]/2;

9 case 5

10 mask_r = [1 1 0 -1 -1]/4;

11 mask_c = [-1;-1;0;1;1]/4;

12 case 7

13 mask_r = [1 1 1 0 -1 -1 -1]/6;

14 mask_c = [-1;-1;-1;0;1;1;1]/6;

15 case 9

16 mask_r = [1 1 1 1 0 -1 -1 -1 -1]/8;

17 mask_c = [-1;-1;-1;-1;0;1;1;1;1]/8;

18 end

19

20 % expand borders for filtering operation

21 [xx,rows,cols] = expand_borders(p_cloud.x,wK);

22 [yy,~,~] = expand_borders(p_cloud.y,wK);

23 [zz,~,~] = expand_borders(p_cloud.z,wK);

24

25 % compute matrix gradients

26 ax = filter2(mask_r,xx); ax = ax(rows,cols);

27 ay = filter2(mask_r,yy); ay = ay(rows,cols);

28 az = filter2(mask_r,zz); az = az(rows,cols);

29

30 bx = filter2(mask_c,xx); bx = bx(rows,cols);

31 by = filter2(mask_c,yy); by = by(rows,cols);

32 bz = filter2(mask_c,zz); bz = bz(rows,cols);

33

34 % compute cross product to get normals

35 nx = -(ay.*bz-az.*by); ny = -(az.*bx-ax.*bz); nz = -(ax.*by-ay.*bx);

36

37 mag = sqrt(nx.*nx+ny.*ny+nz.*nz);

38 d = find(mag==0); mag(d) = eps*ones(size(d));

39 p_cloud.nx = nx./mag; p_cloud.ny = ny./mag; p_cloud.nz = nz./mag;

Code A.4: Calculation of the point curvature by means of filtering.

1 function p_cloud = calc_point_curvature(p_cloud)

2 %input: struct p_cloud.nx, p_cloud.ny, p_cloud.nz

3 %output: struct p_cloud.c
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4

5 xx = p_cloud.nx;

6 yy = p_cloud.ny;

7 zz = p_cloud.nz;

8

9 % expand borders for filtering operation

10 [xx, rows, cols] = expand_borders(xx,3);

11 [yy,~,~] = expand_borders(yy,3);

12 [zz,~,~] = expand_borders(zz,3);

13

14 % compute change for all layers

15 xx_filt = calc_change_in_region(xx,3);

16 yy_filt = calc_change_in_region(yy,3);

17 zz_filt = calc_change_in_region(zz,3);

18

19 % calculate curvature

20 p_cloud.c = sqrt(xx_filt.^2+yy_filt.^2+zz_filt.^2);

21

22 p_cloud.c = p_cloud.c(rows,cols);

Code A.5: Calculation of the point density by means of filtering.

1 function p_cloud = calc_point_density(p_cloud)

2 %input: struct p_cloud.x, p_cloud.y, p_cloud.z

3 %output: struct p_cloud.d

4

5 xx = p_cloud.x;

6 yy = p_cloud.y;

7 zz = p_cloud.z;

8

9 % expand borders for filtering operation

10 [xx,rows,cols] = expand_borders(xx,3);

11 [yy,~,~] = expand_borders(yy,3);

12 [zz,~,~] = expand_borders(zz,3);

13

14 % compute change for all layers

15 xx_filt = calc_change_in_region(xx,3);

16 yy_filt = calc_change_in_region(yy,3);

17 zz_filt = calc_change_in_region(zz,3);

18

19 % calculate density

20 p_cloud.d = sqrt(xx_filt.^2+yy_filt.^2+zz_filt.^2);

21

22 p_cloud.d = p_cloud.d(rows,cols);

a.3.3 Connected Component Labeling (CCL)
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Code A.6: Labeling connected components by flood filling.

1 function CC = get_cc_by_flood_fill(BW, conn)

2 %input: binary matrix BW and connectivity conn 4 or 8

3 %output: struct CC of indices for connected components

4

5 [M,~] = size(BW);

6

7 % linear connectivity neighbour offsets (n_off)

8 if isequal(conn,4)

9 n_off = [-1;M;1;-M]; %direct connectivity

10 elseif isequal(conn,8)

11 n_off = [-1;M;1;-M;M+1;M-1;-M+1;-M-1]; %full connectivity

12 end

13

14 % start with nearest foreground pixel and label it

15 idx = find(BW,1); idx_region = idx; label_val = 1;

16

17 while ~isempty(idx)

18 % set the just labeled pixels to 0

19 BW(idx) = 0;

20

21 % find all the nonzero neighbours

22 neighb_idx = bsxfun(@plus,idx,n_off');

23 neighb_idx = unique(neighb_idx(:));

24

25 idx = neighb_idx(BW(neighb_idx));

26 idx_region = [idx_region;idx];

27

28 % if empty --> region labeled and find next foreground pixel

29 if isempty(idx)

30 CC.PixelIdxList{label_val} = idx_region;

31 idx = find(BW,1); idx_region = idx;

32 label_val = label_val+1;

33 end

34 end

Code A.7: Run length encoding for connected components labeling.

1 function [runs, labels] = rlenc(col_vect)

2 %input: column of an binary matrix BW

3 %output: runs with start and end pixel, corresp. label

4

5 p_idx = find(col_vect);

6

7 if isempty(p_idx)

8 runs = []; labels = []; return;

9 end

10

11 num_p = numel(p_idx); label = 1;

12 if num_p == 1
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13 runs(1,:) = [p_idx(1),p_idx(1)];

14 else

15 runs(1,:) = [p_idx(1),[]];

16 end

17

18 for i = 1:num_p-1

19 % end of run

20 if p_idx(i+1) > p_idx(i)+1

21 % end current run

22 runs(label,2) = p_idx(i);

23 % start new run

24 label = label+1; runs(label,1) = p_idx(i+1);

25 end

26 % end of last run

27 if i == num_p-1

28 runs(label,2) = p_idx(end);

29 end

30 end

31

32 labels = (1:label)';

a.3.4 StochasticModel

Code A.8: Computes precision layers for a point cloud structure.

1 function p_cloud = compute_point_precision(p_cloud, filter)

2 %input 1: struct p_cloud with information .x,.y,.z,.i

3 %output: struct p_cloud with add. information .sx,.sy,.sz

4

5 switch filter

6 case 0

7 params = load('params_1MHZ.mat');

8 case 1

9 params = load('params_12MHZ.mat');

10 case 2

11 params = load('params_18MHZ_new.mat');

12 end

13

14 params = params.power_func_params;

15

16 % angular accuracy

17 angular_acc = 0.007;

18

19 % conversions

20 RHO = 180/pi;

21

22 x = double(p_cloud.x); y = double(p_cloud.y);

23 z = double(p_cloud.z); int = double(p_cloud.int);

24
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25 % polar coordinates from cartesian

26 d = sqrt(x.^2+y.^2+z.^2);

27 az = atan_4q(y,x)*RHO;

28 vz = acos(z./d)*RHO;

29

30 % compute dist accuracies

31 dist_acc = params(1,1)*power(int,params(2,1));

32

33 % Error propagation for a Z+F Imager 5006

34 az = az/RHO;

35 vz = vz/RHO;

36 angular_acc = angular_acc/RHO;

37

38 dx_d_d = cos(az).*sin(vz);

39 dx_d_az = -d.*sin(az).*sin(vz);

40 dx_d_vz = d.*cos(az).*cos(vz);

41

42 s_x = sqrt((dx_d_d.^2).*(dist_acc.^2)+(dx_d_az.^2).*...

43 (angular_acc.^2)+(dx_d_vz.^2).*(angular_acc.^2));

44

45 dy_d_d = sin(az).*sin(vz);

46 dy_d_az = d.*cos(az).*sin(vz);

47 dy_d_vz = d.*sin(az).*cos(vz);

48

49 s_y = sqrt((dy_d_d.^2).*(dist_acc.^2)+(dy_d_az.^2).*...

50 (angular_acc.^2)+(dy_d_vz.^2).*(angular_acc.^2));

51

52 dz_d_d = cos(vz);

53 dz_d_vz = -d.*sin(vz);

54

55 s_z = sqrt((dz_d_d.^2).*(dist_acc.^2)+(dz_d_vz.^2).*...

56 (angular_acc.^2));

57

58 p_cloud.s_x = s_x;

59 p_cloud.s_y = s_y;

60 p_cloud.s_z = s_z;

a.3.5 Segmentation

Code A.9: Decision of splitting a region.

1 function split_flag = predicate_split(region)

2

3 % get parameters of the region

4 w = region.bbox(1,3);

5 h = region.bbox(1,4);

6

7 % stop split, if points in region are less than 100 or w or h < 5

8 if numel(region.point_indices) < 100 || w < 5 || h < 5
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9 split_flag = 0;

10 else

11 % test if region is already plane region

12 flag = predicate_is_plane(region);

13

14 content_ratio = numel(region.point_indices)/(w*h);

15

16 if w > h

17 bbox_size_ratio = h/w;

18 else

19 bbox_size_ratio = w/h;

20 end

21

22 content_ratio_thresh = 0.5;

23 size_ratio_thresh = 0.1;

24

25 % compute flag

26 split_flag = ~flag || content_ratio < content_ratio_thresh || ...

27 bbox_size_ratio < size_ratio_thresh;

28 end

Code A.10: Decision of merging two regions.

1 function merge_flag = predicate_merge(region_pairs)

2

3 % threshold parameters for merging two planes

4 angle_thresh = 0.02; % [radiant] eqivalent to approx 1.0 degree

5

6 % get parameters of the region pairs

7 w_1 = region_pairs(1).bbox(1,3);

8 h_1 = region_pairs(1).bbox(1,4);

9

10 w_2 = region_pairs(2).bbox(1,3);

11 h_2 = region_pairs(2).bbox(1,4);

12

13 % check if planes are adjacent

14 c_size = cloud_size;

15 up = region_pairs(2).point_indices-1;

16 up_r = region_pairs(2).point_indices-1+c_size(1,1);

17 up_l = region_pairs(2).point_indices-1-c_size(1,1);

18 down = region_pairs(2).point_indices+1;

19 down_r = region_pairs(2).point_indices+1+c_size(1,1);

20 down_l = region_pairs(2).point_indices+1-c_size(1,1);

21 point_indices_2 = unique([up;up_r;up_l;down;down_r;down_l]);

22 num_conn_elements = nnz(ismember(region_pairs(1).point_indices,...

23 point_indices_2));

24

25 % calculate flag

26 min_conn = min([w_1;h_1;w_2;h_2]);

27 if num_conn_elements < min_conn/4

28 merge_flag = 0;
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29 return;

30 end

31

32 % check if planes have similar normal direction

33 theta = acos(min(1,max(-1,region_pairs(1).plane_params(1:3,1).'*...

34 region_pairs(2).plane_params(1:3,1)/norm(region_pairs(1). ...

35 plane_params(1:3,1))/norm(region_pairs(2).plane_params(1:3,1)))));

36

37 merge_flag = theta < angle_thresh;

Code A.11: Splitting a region.

1 function subregions = split_region(region, func)

2

3 flag = feval(func,region);

4 if flag

5

6 w = region.bbox(1,3);

7 h = region.bbox(1,4);

8

9 % if content ratio is not high enough

10 content_ratio_thresh = 0.6;

11 content_ratio = numel(region.point_indices)/(w*h);

12

13 if content_ratio < content_ratio_thresh

14

15 % check for optimal division

16 subreg_d_w = divide_region(region,cloud_size,'w');

17 subreg_d_h = divide_region(region,cloud_size,'h');

18

19 content_ratio_d_w1 = numel(subreg_d_w(1).point_indices)/...

20 (subreg_d_w(1).bbox(1,3)*subreg_d_w(1).bbox(1,4));

21 content_ratio_d_w2 = numel(subreg_d_w(2).point_indices)/...

22 (subreg_d_w(2).bbox(1,3)*subreg_d_w(2).bbox(1,4));

23 content_ratio_d_h1 = numel(subreg_d_h(1).point_indices)/...

24 (subreg_d_h(1).bbox(1,3)*subreg_d_h(1).bbox(1,4));

25 content_ratio_d_h2 = numel(subreg_d_h(2).point_indices)/...

26 (subreg_d_h(2).bbox(1,3)*subreg_d_h(2).bbox(1,4));

27 content_ratio_d_w = content_ratio_d_w1+content_ratio_d_w2;

28 content_ratio_d_h = content_ratio_d_h1+content_ratio_d_h2;

29

30 if content_ratio_d_w >= content_ratio_d_h

31 subregions = subreg_d_w;

32 else

33 subregions = subreg_d_h;

34 end

35 else

36 if w > h || w == h

37 subregions = divide_region(region,cloud_size,'w');

38 else

39 subregions = divide_region(region,cloud_size,'h');
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40 end

41 end

42

43 % compute and add plane parameters

44 flag_subregion = true(2,1);

45 for i = 1:2

46 if numel(subregions(i).point_indices) > 2

47 p_3D = [p_cloud.x(subregions(i).point_indices),...

48 p_cloud.y(subregions(i).point_indices),...

49 p_cloud.z(subregions(i).point_indices)];

50 p_3D_p = [p_cloud.s_x(subregions(i).point_indices),...

51 p_cloud.s_y(subregions(i).point_indices),...

52 p_cloud.s_z(subregions(i).point_indices)];

53

54 [plane_approx_region, plane_dists] = fitplane (p_3D);

55

56 subregions(i).plane_params = plane_approx_region;

57 subregions(i).av_point_acc = mean(sqrt(p_3D_p(:,1).^2 ...

58 +p_3D_p(:,2).^2+p_3D_p(:,3).^2));

59 subregions(i).max_plane_dist = max(plane_dists);

60

61 % add cog and region id

62 subregions(i).cog = mean(p_3D)'; %real 3D cog

63 subregions(i).region_id = region.region_id;

64 flag_subregion(i,1) = true;

65 else

66 flag_subregion(i,1) = false;

67 end

68 end

69 % delete too small subregions

70 subregions = subregions(flag_subregion);

71 else

72 subregions = [];

73 end

Code A.12: Merging regions.

1 function [plane_regions, subregions] = merge_regions(regions, func)

2

3 % select regions with special properties

4 n_regions = numel(regions);

5

6 max_plane_dist = zeros(n_regions,1);

7 av_point_acc = zeros(n_regions,1);

8

9 for i = 1:n_regions

10 max_plane_dist(i,1) = regions(i).max_plane_dist;

11 av_point_acc(i,1) = regions(i).av_point_acc;

12 end

13

14 % get mergeable regions
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15 ind_merge_planes = max_plane_dist < av_point_acc;

16 mergeable_regions = regions(ind_merge_planes);

17

18 if ~isempty(mergeable_regions)

19 ind_p_r = 0;

20 merged_pairs = [];

21

22 % create region pairs

23 n_mergeable_regions = numel(mergeable_regions);

24 pair_combs = combnk(1:n_mergeable_regions,2);

25

26 while ~isempty(pair_combs)

27 num_pair_combs = numel(pair_combs)/2;

28

29 for i = 1:num_pair_combs

30 region_pairs(1) = mergeable_regions(pair_combs(i,1));

31 region_pairs(2) = mergeable_regions(pair_combs(i,2));

32

33 % test if regions are connected having similar orientation

34 flag = feval(func,region_pairs);

35 if flag

36 merged_region_tmp.bbox = [];

37

38 % combine two regions to one region and test it

39 merged_region_tmp.point_indices = [region_pairs(1)...

40 .point_indices;region_pairs(2).point_indices];

41

42 % update bounding box

43 bbox = get_bbox(cloud_size,...

44 merged_region_tmp(i).point_indices);

45 merged_region_tmp(i).bbox = bbox;

46

47 p_3D = [p_cloud.x(merged_region_tmp.point_indices)...

48 ,p_cloud.y(merged_region_tmp.point_indices)...

49 ,p_cloud.z(merged_region_tmp.point_indices)];

50 p_3D_p = [p_cloud.s_x(merged_region_tmp.point_indices)...

51 ,p_cloud.s_y(merged_region_tmp.point_indices)...

52 ,p_cloud.s_z(merged_region_tmp.point_indices)];

53

54 [plane_approx_region, plane_dists] = fitplane(p_3D);

55

56 merged_region_tmp.plane_params = plane_approx_region;

57

58 merged_region_tmp.av_point_acc = mean(sqrt(...

59 p_3D_p(:,1).^2+p_3D_p(:,2).^2+p_3D_p(:,3).^2));

60 merged_region_tmp.max_plane_dist = max(plane_dists);

61

62 % add cog and region id

63 merged_region_tmp.cog = mean(p_3D)'; %real 3D cog

64 merged_region_tmp.region_id = region.region_id;

65

66 % test if merged regions are part of a unique plane

67 flag_p = predicate_split(merged_region_tmp);

68
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69 if ~flag_p

70 plane_regions(ind_p_r+1) = merged_region_tmp;

71 merged_pairs(ind_p_r+1,:) = pair_combs(i,:);

72 ind_p_r = ind_p_r+1;

73

74 % update pair combs

75 select = ~(pair_combs(:,1) == pair_combs(i,1))...

76 & ~(pair_combs(:,1) == pair_combs(i,2))...

77 & ~(pair_combs(:,2) == pair_combs(i,1))...

78 & ~(pair_combs(:,2) == pair_combs(i,2));

79 pair_combs = pair_combs(select,:);

80 break;

81 else

82 pair_combs(i,:) = [];

83 break;

84 end

85 else

86 pair_combs(i,:) = [];

87 break;

88 end

89 end

90 end

91

92 if isempty(merged_pairs)

93 plane_regions = [];

94 subregions = regions;

95 else

96 i_not_merged = setxor((1:n_mergeable_regions)',merged_pairs(:));

97 subregions_not_merged = mergeable_regions(i_not_merged);

98 not_mergeable_regions = regions(~ind_merge_planes);

99 subregions = subregions_not_merged;

100 n_sub_n_merged = numel(subregions_not_merged);

101

102 for i = 1:numel(not_mergeable_regions)

103 subregions(n_sub_n_merged+i) = not_mergeable_regions(i);

104 end

105 end

106 else

107 plane_regions = [];

108 subregions = regions;

109 end

Code A.13: Split and merge algorithm.

1 function plane_regions = split_merge(region, p_cloud, cloud_size)

2 %input: structs p_cloud. ..., region. ..., size cloud_size

3 %output: struct plane_regions. ...

4

5 % try to split main region first

6 subregions = split_region(region,@predicate_split);

7
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8 if isempty(subregions)

9 flag_is_plane = predicate_is_plane(region);

10 if flag_is_plane

11 plane_regions(1) = region;

12 else

13 plane_regions = [];

14 end

15 return;

16 end

17

18 % split merge procedure

19 n_plane_regions = 0;

20 while ~isempty(subregions) ...

21

22 if ~exist('plane_regions','var')

23 plane_regions = [];

24 end

25

26 % functions for splitting and merging

27 function subregions = split_region(region,func) ...

28

29 function [plane_regions, subregions] = merge_regions(regions,func) ...

30

31 % definition of a planar region

32 function plane_flag = predicate_is_plane(region) ...

33

34 % decision functions for splitting or merging

35 function merge_flag = predicate_merge(region_pairs) ...

36

37 function split_flag = predicate_split(region) ...

a.3.6 Matching

Code A.14: Extending Code for direct plane matching if same correspondences are present among different scan
pairs.

1 %% direct matching

2

3 % find pairs of matching pairs for same standpoint indices of target

4 target_ids = unique(m_pairs(:,1));

5 for i = 1:numel(target_ids)

6 id_s_target{i} = find(m_pairs(:,1)==target_ids(i,1));

7 if numel(id_s_target{i}) > 1

8 combs = combnk(id_s_target{i},2);

9 n_combs = numel(combs(:,1));

10 for j = 1:n_combs

11 p_pair = [m_pairs(combs(j,1),2),m_pairs(combs(j,2),2)];

12 p_pairs = [p_pair;[p_pair(1,2),p_pair(1,1)]];

13 [is_comb,id_pairs] = ismember(p_pairs,m_pairs,'rows');
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14 if any(is_comb)

15 d_match = [];

16 n_match = numel(p_matches{1,combs(j,1)}(:,1));

17 for k = 1:n_match

18 m_ids{k} = find(p_matches{1,combs(j,2)}(:,1)...

19 == p_matches{1,combs(j,1)}(k,1));

20 if ~isempty(m_ids{k})

21 for l = 1:numel(m_ids{k})

22 d_match_t = [p_matches{1,combs(j,1)}(k,2)...

23 ,p_matches{1,combs(j,2)}(m_ids{k}(l),2)];

24 d_match = [d_match;d_match_t];

25 end

26 end

27 end

28 p_matches{1,id_pairs(is_comb)} = ...

29 [p_matches{1,id_pairs(is_comb)};d_match];

30 [tmp,~,~] = unique(p_matches{1,3},'rows');

31 p_matches{1,id_pairs(is_comb)} = tmp;

32 end

33 end

34 end

35 end

a.3.7 Registration

Code A.15: Transform planes to another coordinate system.

1 function planes_t = transform_planes(planes, R, T)

2 %input: - planes(1:4,n) with n planes

3 % where [nx;ny;nz;d] = planes(:,i)

4 %output: - planes_t transformed planes

5

6 planes_t = R*planes(1:3,:);

7 planes_t(4,:) = planes(4,:)+T'*R*planes(1:3,:);

Code A.16: Fitting a plane using SVD.

1 function [plane_params, plane_dists] = fitplane(XYZ)

2

3 [npts,rows] = size(XYZ);

4

5 % center of gravities

6 X_cog = sum(XYZ(:,1))/npts;

7 Y_cog = sum(XYZ(:,2))/npts;

8 Z_cog = sum(XYZ(:,3))/npts;

9
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10 % reduced coordinates

11 X_red = XYZ(:,1)-X_cog;

12 Y_red = XYZ(:,2)-Y_cog;

13 Z_red = XYZ(:,3)-Z_cog;

14

15 % augmented matrix

16 A = [X_red Y_red Z_red];

17

18 N = A'*A;

19

20 %perform svd and get normal vector

21 [U,S,V] = svd(N);

22

23 n_v = V(:,end);

24

25 % Flip the normal vector if it is not pointing towards the sensor

26 p1 = - [X_cog,Y_cog,Z_cog];

27 p2 = n_v';

28

29 angle = atan2(norm(cross(p1,p2)),p1*p2');

30 if angle > pi/2 || angle < -pi/2

31 n_v = -n_v;

32 end

33

34 d = (sum(n_v(1,1).*XYZ(:,1))+sum(n_v(2,1).*XYZ(:,2))...

35 +sum(n_v(3,1).*XYZ(:,3)))/npts;

36

37 plane_params = [n_v;d];

38

39 plane_dists = abs(n_v(1,1).*XYZ(:,1)+n_v(2,1).*XYZ(:,2)...

40 +n_v(3,1).*XYZ(:,3)-d);
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gleichungsverfahren: ein Leitfaden für Ausbildung und Praxis von Geodäten und
Geoinformatikern. Herbert Wichmann Publishing, Heidelberg, 2005.

[51] A. V. Jelalian: Laser radar systems. Artech House, 1992.
[52] X. Jiang and H. Bunke: “Gewinnung und Analyse von Tiefenbildern”. In:Dreidi-

mensionales Computersehen. Springer, 1997. Chap. Segmentierung.
[53] R. Joeckel, M. Stober, and W. Huep: Elektronische Entfernungs-und Rich-

tungsmessung und ihre Integration in aktuelle Positionierungsverfahren. Herbert
Wichmann Publishing, Heidelberg, 2008.

[54] S. Junttila,M.Vastaranta,X.Liang,H.Kaartinen,A.Kukko, S.Kaasalainen,
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