

Nimrod Talmon

Algorithmic Aspects of
Manipulation and Anonymization in

Social Choice and Social Networks

Die Schriftenreihe Foundations of Computing der Technischen Universität Berlin
wird herausgegeben von:
Prof. Dr. Stephan Kreutzer,
Prof. Dr. Uwe Nestmann,
Prof. Dr. Rolf Niedermeier

Foundations of Computing | 04

Nimrod Talmon

Algorithmic Aspects of
Manipulation and Anonymization in

Social Choice and Social Networks

Universitätsverlag der TU Berlin

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de abrufbar.

Universitätsverlag der TU Berlin, 2016
http://verlag.tu-berlin.de

Fasanenstr. 88, 10623 Berlin
Tel.: +49 (0)30 314 76131 / Fax: -76133
E-Mail: publikationen@ub.tu-berlin.de

Zugl.: Berlin, Technische Universität, Diss., 2015
1. Gutachter: Prof. Dr. Rolf Niedermeier
2. Gutachter: Prof. Jeffrey S. Rosenschein
3. Gutachter: Prof. Hadas Shachnai
Die Arbeit wurde am 14. Oktober 2015 an der Fakultät IV unter Vorsitz
von Prof. Dr. Marc Alexa erfolgreich verteidigt.

Das Manuskript ist urheberrechtlich geschützt.

Druck: docupoint GmbH
Satz/Layout: Nimrod Talmon

Umschlagfoto:
Hans Braxmeier | https://pixabay.com/en/euphonium-brass-instrument-93867 | CC0
https://creativecommons.org/publicdomain/zero/1.0

ISBN 978-3-7983-2804-4 (print)
ISBN 978-3-7983-2805-1 (online)

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

Zugleich online veröffentlicht auf dem institutionellen Repositorium
der Technischen Universität Berlin:
DOI 10.14279/depositonce-4941
http://dx.doi.org/10.14279/depositonce-4941

http://dnb.dnb.de
http://verlag.tu-berlin.de
mailto:publikationen@ub.tu-berlin.de
https://pixabay.com/en/euphonium-brass-instrument-93867
https://creativecommons.org/publicdomain/zero/1.0
http://dx.doi.org/10.14279/depositonce-4941

Zusammenfassung

Diese Dissertation stellt eine Untersuchung von verschiedenen kombinatorischen
Problemen im Umfeld von Wahlen und sozialen Netzwerken dar. Das Hauptziel
ist die Analyse der Berechnungskomplexität mit dem Schwerpunkt auf der para-
metrisierten Komplexität. Dabei werden für jedes der untersuchten Probleme
effiziente Algorithmen entworfen oder aber gezeigt, dass unter weit akzeptierten
Annahmen solche Algorithmen nicht existieren können.

Die Probleme, welche im Kapitel 3 und im Kapitel 4 diskutiert werden, model-
lieren das Manipulieren einer gegebenen Wahl, bei welcher gewisse Beziehungen
zwischen den Beteiligten angenommen werden. Dies kann so interpretiert wer-
den, dass die Wahl innerhalb eines Sozialen Netzwerks stattfindet, in dem die
Wähler oder die Kandidaten miteinander in Verbindung stehen.

Das Problem COMBINATORIAL CANDIDATE CONTROL, welches in Kapitel 3
untersucht wird, folgt der Arbeit von Chen et al. [42], und handelt von der
Manipulation einer Wahl durch die änderung der Kandidatenmenge über welche
die Wähler abstimmen. Genauer gesagt, gibt es einen externen Agenten, welcher
neue Kandidaten hinzufügen oder existierende Kandidaten entfernen kann. Es
wird eine kombinatorische Struktur über der Kandidatenmenge angenommen, so
dass immer wenn der externe Agent einen Kandidaten hinzufügt oder entfernt,
eine vordefinierte Kandidatenmenge (welche mit den ausgewählten Kandidaten
in Beziehung steht) ebenfalls hinzugefügt bzw. entfernt wird.

Das Problem COMBINATORIAL SHIFT BRIBERY, welches in Kapitel 4 unter-
sucht wird, folgt der Arbeit von Bredereck et al. [31], und thematisiert ebenfalls
die Manipulation einer Wahl. Hier allerdings kann der externe Agent Änderun-
gen des Abstimmungsverhaltens einiger Wähler herbeiführen. Dabei wird eine
kombinatorische Struktur über den Wählern angenommen, so dass der externe
Agent die Position des von ihm präferierten Kandidaten bei mehreren Wählern
entsprechend vordefinierter Muster gleichzeitig ändern kann.

vii

Das Problem ELECTION ANONYMIZATION, welches in Kapitel 5 untersucht
wird, folgt der Arbeit von Talmon [139], und befasst sich ebenso mit Wahlen.
Das Hauptanliegen hier ist es jedoch, die Privatsphäre der Wähler bei der Veröf-
fentlichung der Stimmenabgaben zusammen mit einigen zusätzlichen (privaten)
Informationen aufrecht zu erhalten. Die Aufgabe ist es eine gegebene Wahl so
zu verändern, dass jede Stimmenabgabe mindestens k-fach vorkommt. Dadurch
kann noch nicht einmal ein Gegenspieler einzelne Wähler identifizieren, wenn er
die Stimmenabgaben einiger Wähler bereits kennt.

Die in Kapitel 6 und 7 untersuchten Probleme behandeln gleichermaßen Pri-
vatsphärenaspekte. Präziser gesagt, geht es darum, dass ein soziales Netzwerk
(modelliert als Graph) veröffentlicht werden soll. Die Aufgabe ist es den Graphen
zu anonymisieren; dies bedeutet man verändert den Graphen, so dass es für jeden
Knoten mindestens k−1 weitere Knoten mit dem selben Grad gibt. Dadurch wird
erreicht, dass selbst ein Gegenspieler, welcher die Knotengrade einiger Knoten
kennt, nicht in der Lage ist einzelne Knoten zu identifizieren.

Bei dem Problem DEGREE ANONYMIZATION BY VERTEX ADDITION, welches
in Kapitel 6 untersucht wird, und der Arbeit von Bredereck et al. [28] folgt, wird
Anonymität durch Einführung neuer Knoten erreicht. Bei dem Problem DEGREE

ANONYMIZATION BY GRAPH CONTRACTIONS, welches in Kapitel 7 untersucht
wird, und der Arbeit von Hartung and Talmon [90] folgt, wird Anonymität durch
die Kontraktion von möglichst wenigen Kanten erreicht.

Das Hauptanliegen dieser Dissertation in Bezug auf die obig genannten Pro-
bleme ist es die Grenzen der effizienten Lösbarkeit auszuloten. Insbesondere da
die meisten dieser Probleme berechnungsschwer (genauer NP-schwer bzw. sogar
schwer zu approximieren) sind, werden einige eingeschränkte Fälle und Parame-
trisierungen der Probleme betrachtet. Das Ziel ist es effiziente Algorithmen für sie
zu entwickeln, welche in Polynomzeit laufen, wenn einige Parameter konstante
Werte aufweisen, oder besser noch zu zeigen, dass die Probleme “fixed-parameter
tractable” für die betrachteten Parameter sind. Wenn solche Algorithmen nicht
gefunden werden können, dann ist es das Ziel zu beweisen, dass diese Probleme
tatsächlich nicht “fixed-parameter tractable” bezüglich der entsprechenden Para-
meter sind, oder noch besser zu zeigen, dass die Probleme NP-schwer sind, sogar
wenn die entsprechenden Parameter konstante Werte aufweisen.

viii

Abstract

This thesis presents a study of several combinatorial problems related to social
choice and social networks. The main concern is their computational complexity,
with an emphasis on their parameterized complexity. The goal is to devise
efficient algorithms for each of the problems studied here, or to prove that, under
widely-accepted assumptions, such algorithms cannot exist.

The problems discussed in Chapter 3 and in Chapter 4 are about manipulating
a given election, where some relationships between the entities of the election are
assumed. This can be seen as if the election occurs on top of an underlying social
network, connecting the voters participating in the election or the candidates
which the voters vote on.

The problem discussed in Chapter 3, COMBINATORIAL CANDIDATE CONTROL,
following the paper by Chen et al. [42], is about manipulating an election by
changing the set of candidates which the voters vote on. That is, there is an
external agent who can add new candidates or delete existing candidates. A
combinatorial structure over the candidates is assumed, such that whenever
the external agent adds or removes a candidate, a predefined set of candidates
(related to the chosen candidate) are added or removed from the election.

The problem discussed in Chapter 4, COMBINATORIAL SHIFT BRIBERY, fol-
lowing the paper by Bredereck et al. [31], is also about manipulating an election.
Here, however, the external agent can change the way some voters vote. Specifi-
cally, a combinatorial structure over the voters is assumed, such that the external
agent can change the position of its preferred candidate in sets of voters, following
some predefined patterns.

The problem discussed in Chapter 5, ELECTION ANONYMIZATION, following
the paper by Talmon [139], is also about elections. The main concern here,
however, is preserving the privacy of the voters, when the votes are published,
along with some additional (private) information. The task is to transform a
given election such that each vote would appear at least k times. By doing so,
even an adversary which knows how some voters vote, cannot identify individual
voters.

ix

The problems discussed in Chapter 6 and in Chapter 7 are also about privacy.
Specifically, a social network (modeled as a graph) is to become publicly available.
the task is to anonymize the graph; that is, to transform the graph such that, for
every vertex, there will be at least k−1 other vertices with the same degree. By
doing so, even an adversary which knows the degrees of some vertices cannot
identify individual vertices. In the problem discussed in Chapter 6, DEGREE

ANONYMIZATION BY VERTEX ADDITION, following the paper by Bredereck et al.
[28], the way to achieve anonymity is by introducing new vertices. In the problem
discussed in Chapter 7, DEGREE ANONYMIZATION BY GRAPH CONTRACTIONS,
following the paper by Hartung and Talmon [90], the way to achieve anonymity
is by contracting as few edges as possible.

The main aim of this thesis, considering the problems mentioned above, is
to explore some boundaries between tractability and intractability. Specifically,
as most of these problems are computationally intractable (that is, NP-hard or
even hard to approximate), some restricted cases and parameterizations for these
problems are considered. The goal is to devise efficient algorithms for them,
running in polynomial-time when some parameters are assumed to be constant,
or, even better, to show that the problems are fixed-parameter tractable for the
parameters considered. If such algorithms cannot be devised, then the goal is to
prove that these problems are indeed not fixed-parameter tractable with respect
to some parameters, or, even better, to show that the problems are NP-hard even
when some parameters are assumed to be constant.

x

Preface

This thesis summarizes some of the research I did at TU Berlin from November
2013 to July 2015, while being part of the group led by Prof. Rolf Niedermeier.

I begin with mentioning the research which is not included in this thesis, and
then provide a more elaborate description of the research which is included in
this thesis.

Manipulating Elections. I worked on the COMBINATORIAL VOTER CONTROL

problem, which is related to the problem studied in Chapter 3, where there is
a combinatorial structure over the voters in a given election and an external
agent can add or delete sets of voters. This work was presented at the 39th
International Symposium on Mathematical Foundations of Computer Science
(MFCS ’14) [41] and its extended version is published in Theoretical Computer
Science [33]. I solved some open problems regarding control and bribery for
Approval voting. The corresponding paper is to be published in Information
Processing Letter [21]. I also studied election control problems for elections with
few candidates and weighted voters, a work which is to be presented at the 4th
International Conference on Algorithmic Decision Theory (ADT ’15) [30].

Diffusion in Social Networks. I was interested (and still am, to some extent)
in understanding the way information diffuses in social networks. The first work
in this direction was about the EFFECTORS problem, where the goal is to explain
a given state of a social network, assuming a specific diffusion process. The
corresponding paper was presented at the 12th Annual Conference on Theory
and Applications of Models of Computation (TAMC ’15) [34] and was invited to a
special issue of Information and Computation.

The second work in this direction was to identify for which graph classes a
Nash-equilibrium exists, with respect to a diffusion process which is modeled as
a game, played over the vertices of a social network. This work was presented at
the 12th Annual Conference on Theory and Applications of Models of Computation
(TAMC ’15) [35].

xi

Further Work. I studied approximation algorithms and the parameterized
complexity of an interval multicover problem, a work which is published in
Information Processing Letters [13]. I studied the parameterized complexity of a
competitive scheduling problem, and the corresponding paper was presented at
10th International Symposium on Parameterized and Exact Computation [98].

Next, I will briefly describe the history of the papers that did find their way into
this thesis. As most of them are fruits of collaborative effort, I will specifically
state my own contributions to them.

History of Chapter 6. When I arrived to Berlin, I read some of the papers pub-
lished by the group members, and the series of papers considering anonymization
caught my attention. Since some work have been done on anonymization by
edge addition and vertex deletion, it was natural to study degree anonymiza-
tion by vertex addition. I am responsible mainly for the hardness results for
the property-preserving vertex addition variant, for some of the cases which
are polynomial-time solvable, and, most importantly, for the fixed-parameter
tractability result with respect to the solution size and the maximum degree and
the fixed-parameter tractability result with respect to the anonymity level and
the maximum degree. This research resulted in a paper which was presented
at the 10th International Conference on Algorithmic Aspects of Information and
Management (AAIM ’14) [28] and is published in a special edition of Theoretical
Computer Science [32].

History of Chapter 7. I was still interested in degree anonymization, and
remembered that, while we were working on degree anonymization by vertex
addition, the problem of degree anonymization by graph contractions was men-
tioned. I started working on this problem by myself, for a while. I found out
that, in terms of its computational complexity, degree anonymization by graph
contractions is harder than degree anonymization by vertex addition. Then, I
visited Sepp Hartung, who was during a postdoctoral stay at the University of
British Columbia, Vancouver, Canada. I presented my results to him, and he had
a nice idea for showing fixed-parameter tractability when parameterizing by the
maximum degree and the anonymity level. Back in Berlin, I continued studying
this problem, a study that resulted in a paper which was presented at the 12th
Annual Conference on Theory and Applications of Models of Computation (TAMC
’15) [90]. The journal version, which was invited to a special issue of Information
and Computation, is currently under review.

xii

History of Chapter 3. After writing the paper concerning combinatorial voter
control in elections [41], which introduced a specific concept of manipulating
elections over combinatorial structures, I was visiting Prof. Piotr Faliszewski at
the AGH University of Science and Technology, Krakow, Poland. It was natural
to consider the COMBINATORIAL CANDIDATE CONTROL problem. Major parts
of the work concerning this problem I did together with Piotr Faliszewski, and
when I came back to Berlin, Jiehua Chen joined the project and proved some
further results. This research was summarized in a paper which was presented
at the 28th AAAI Conference on Artificial Intelligence (AAAI ’15) [42]. The journal
version is currently under review.

History of Chapter 4. The concept of combinatorial control was still of interest
to me, so I was happy when Prof. Piotr Faliszewski came up with a nice model
for the COMBINATORIAL SHIFT BRIBERY problem. I liked the model so I started
studying it, and ended up with proving most of the results appearing in the
corresponding paper, which was presented at the 10th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS ’15). The co-authors edited
the paper, polished the proofs, and added some more results to it. The journal
version is to be published in Journal of Artificial Intelligence Research [22].

History of Chapter 5. I was still thinking about problems related to voting and
social choice when I attended the Ph.D. defense of André Nichterlein, big part
of which was about anonymizing data related to social networks. I thought that
it would make sense to anonymize data related to elections. I formulated the
ELECTION ANONYMIZATION problem and studied it. This study resulted in a pa-
per which was presented at the 20th International Symposium on Fundamentals
of Computation Theory (FCT ’15) [139]. The journal version is currently under
review.

Acknowledgments. I would like to thank Rolf Niedermeier for providing guid-
ance and good atmosphere for research. I would like to thank Piotr Faliszewski
for providing some more guidance and for making me enthusiastic about compu-
tational social choice.

I would like to thank my coauthors: René van Bevern, Robert Bredereck,
Laurent Bulteau, Jiehua Chen, Stefan Fafianie, Vincent Froese, Sepp Hartung,
Danny Hermelin, Falk Hüffner, Stefan Kratsch, Judith Kubitza, André Nichter-
lein, Dvir Shabtay, Piotr Skowron, and Gerhard J. Woeginger.

xiii

To Avital and Lotem and Ben and to all my family

xiv

Contents

1. Introduction 1
1.1. Gentle Introduction . 1
1.2. Not-So-Gentle Introduction . 8

2. Preliminaries 13
2.1. General Notations . 13
2.2. Parameterized Complexity . 14
2.3. Graphs and Social Networks . 17
2.4. Elections and Control . 19
2.5. Some Useful Computational Problems 21

3. Candidate Control 25
3.1. Illustrating Example . 26
3.2. Introduction . 27
3.3. Specific Preliminaries . 33
3.4. Multicolored Clique Proof Technique 40
3.5. Cubic Vertex Cover Proof Technique 53
3.6. Set-Embedding Proof Technique for Combinatorial Variants 61
3.7. Signature Proof Technique for Destructive Control 67
3.8. Outlook . 75
Appendix . 77

4. Combinatorial Shift Bribery 103
4.1. Illustrating Example . 103
4.2. Introduction . 105
4.3. Specific Preliminaries . 109
4.4. Overview of Our Results . 116
4.5. Connection to Combinatorial Control 120
4.6. Hardness Results . 123
4.7. Exact Algorithms . 135
4.8. Approximation Algorithms . 137

xv

4.9. Outlook . 143
Appendix . 145

5. Anonymizing Elections 165
5.1. Illustrating Example . 166
5.2. Introduction . 167
5.3. Specific Preliminaries . 170
5.4. Results . 173
5.5. Outlook . 184

6. Degree Anonymization by Vertex Addition 187
6.1. Illustrating Example . 187
6.2. Introduction . 189
6.3. Specific Preliminaries . 194
6.4. Constrained Degree Anonymization 195
6.5. Plain Degree Anonymization . 200
6.6. Outlook . 219
Appendix . 221

7. Degree Anonymization by Graph Contractions 229
7.1. Illustrating Example . 229
7.2. Introduction . 231
7.3. Specific Preliminaries . 232
7.4. NP-Hardness Results . 238
7.5. General Graphs . 244
7.6. Bounded-Degree Graphs . 246
7.7. Outlook . 253

8. Outlook and Conclusion 255
8.1. Outlook . 255
8.2. Concluding Remarks . 259

xvi

1. Introduction

We begin, in Section 1.1, by providing an intuitive explanation for what this
thesis is about. This section assumes no prior knowledge about algorithms and
computational complexity, and can be safely skipped by readers familiar with the
basics of computer science.

Then, in Section 1.2, we provide a more formal overview of the computational
problems considered in this thesis, and explain our specific point of view when
studying these problems.

1.1. Gentle Introduction

This thesis is concerned with the computational complexity study and the pa-
rameterized complexity study of some computational problems related to social
networks. Section 1.1.1 explains what are computational problems and what
is computational complexity. Then, Section 1.1.2 deals with computational
intractability and explains how parameterized complexity helps to better clas-
sify hard computational problems. Finally, Section 1.1.3 describes the specific
computational problems considered in this thesis.

1.1.1. Complexity of Computational Problems

We intuitively explain what is a computational problem, what is an algorithm,
how we usually analyze the running time of an algorithm, and how we classify
computational problems by their computational complexity. For a more elaborate
introduction to these concepts, one might consult any textbook on computational
complexity, for example, the book by Sipser [137].

Computational Problems. Perhaps the best way to explain what is a compu-
tational problem and what is the complexity of a computational problem is by
discussing examples. Consider the following examples of computational problems.

1

(For simplicity, these computational problems regard numbers, but, indeed, other
types of computational problems exist.)

ADDITION Given two numbers, x and y, compute the value of x+ y.

MULTIPLICATION Given two numbers, x and y, compute the value of x∗ y.

It might be useful for some applications to solve these computational problems.
That is, to find algorithms for these computational problems.

Algorithms. Perhaps the best way to explain what is an algorithm is by dis-
cussing examples. Consider the following algorithms.

For the first problem, the ADDITION problem, several algorithms are known.
The algorithm that most people learn at school is sometimes called the Short
Addition algorithm. As an example for this algorithm, consider the following
input to the ADDITION problem:

“Add x = 243 and y= 135 together.”

The way the Short Addition algorithm proceeds on this input is by performing
the following operations. (For ease of presentation, and without loss of generality,
we do not consider cases of “carry-over”, which happen, for example, when adding
7 and 5 together.)

1) Add the ones (3+5= 8), and write as the result’s ones.

2) Add the tens (4+3= 7), and write as the result’s tens.

3) Add the hundreds (2+1= 3), and write as the result’s hundreds.

For the second problem, the MULTIPLICATION problem, several algorithms are
known. The algorithm that most people learn at school is sometimes called the
Long Multiplication algorithm. As an example for this algorithm, consider the
following input to the MULTIPLICATION problem:

“Multiply x = 243 and y= 135 together.”

The way the Long Multiplication algorithm proceeds on this input is by per-
forming the following operations.

2

1) Multiply the ones of y with the ones of x, that is, 5∗3= 15.

2) Multiply the ones of y with the tens of x, that is, 5∗4= 20.

3) Multiply the ones of y with the hundreds of x, that is, 5∗2= 10.

4) Multiply the tens of y with the ones of x, that is, 3∗3= 9.

5) Multiply the tens of y with the tens of x, that is, 3∗4= 12.

6) Multiply the tens of y with the hundreds of x, that is, 3∗2= 6.

7) Multiply the hundreds of y with the ones of x, that is, 1∗3= 3.

8) Multiply the hundreds of y with the tens of x, that is, 1∗4= 4.

9) Multiply the hundreds of y with the hundreds of x, that is, 1∗2= 2.

We are interested in counting the number of operations these algorithms
perform on different inputs, as an estimate of their running times.

Analysis of Algorithms. We want to analyze the algorithms described above, in
order to understand the amount of time it takes for these algorithms to compute
their answer. We are not interested in the exact running times (as these also
depend on the specific computing device on which these algorithms might run),
but are satisfied with rough estimates of them. Thus, we are happy with counting
the number of operations each of these algorithms performs.

Consider the example which is given for the Short Addition algorithm. There,
the algorithm performs three operations, since it performs one operation per each
digit. More generally, for two input numbers with n digits each, the algorithm
performs n operations. Thus, we say that the algorithm runs in linear time, or,
equivalently, that its running time is O(n); the notation O(n) is to be read as
“order n”: this means that the algorithm runs in time which is in order of magni-
tude as n.

Consider the example which is given for the Long Multiplication algorithm.
There, the algorithm performs nine operations, since it performs one operation
per each pair of digits (one digit of x and one digit of y). More generally, for two
input numbers with n digits each, the algorithm performs n∗n = n2 operations.
Thus, we say that the algorithm runs in quadratic time, or, equivalently, that

3

its running time is O(n2); the notation O(n2) is to be read as “order n squared”:
this means that the algorithm runs in time which is in order of magnitude as n
squared.

Computational Complexity. We have described two computational problems,
the ADDITION problem and the MULTIPLICATION problem, and one algorithm
for each of them, the Short Addition algorithm for the ADDITION problem and
the Long Multiplication algorithm for the MULTIPLICATION problem.

We have established the fact that the algorithm presented for the ADDITION

problem is faster than the algorithm presented for the MULTIPLICATION problem.
Specifically, the Short Addition algorithm runs in time which is proportional
to the number of digits of the input numbers, while the Long Multiplication
algorithm runs in time which is proportional to the number of digits of the input
numbers squared.

One might ask whether it is true that multiplying two numbers is computa-
tionally harder than adding two numbers. This is the type of questions we ask in
this thesis, and this is what computational complexity studies. That is, for two
computational problems, A and B, we want to know:

“is problem A computationally harder than problem B?”

That is, the goal of computational complexity is to identify computational prob-
lems which are of similar complexity, and to distinguish between problems, based
on their complexity.

Note that, only taking the above discussion into account, we cannot yet con-
clude whether MULTIPLICATION is harder than ADDITION, since there might
be better algorithms for MULTIPLICATION which run in time which is linear
in the input size (in effect, run as fast as the Short Addition algorithm). This
question, quite strikingly, is still open. That is, while some better algorithms for
MULTIPLICATION are known, none of them runs in O(n) time, and, importantly,
there is no proof that such an algorithm cannot exist.

1.1.2. Computational Intractability and Parameters

After establishing the basics of computational complexity, we are ready to consider
problems which are believed to be computationally intractable.

4

Computational Tractability and Intractability. Consider the following funda-
mental computational problem, called the SET COVER problem. In this problem
we are given a set of objects (for example, a set of numbers) and a collection of
sets of these objects. The task is to find a subcollection (of minimum size) from
the given collection of sets, where each object is a member of at least one set of
our chosen subcollection. Consider the following example.

Example 1. We are given the numbers 1, 2, 3, 4, and 5, as well as the collection
of sets {1,3,4}, {2,3,4}, and {2,4,5}.

The solution is the subcollection containing the sets {1,3,4} and {2,4,5}, as it is
a subcollection of minimum size (two sets) such that each number is a member of
at least one set in this subcollection. 4

One simple algorithm for the SET COVER problem proceeds by considering all
subcollections from the collection of sets. For each subcollection, the algorithm
checks whether each number is a member of at least one set in the subcollection.
Finally, the algorithm chooses the smallest subcollection considered which satisfy
the above property.

For the instance described in Example 1, the algorithm needs to consider the
following subcollections (indeed, these are all the possible subcollections of the
given collection of sets).

1) {1,3,4}.

2) {2,3,4}.

3) {2,4,5}.

4) {1,3,4} and {2,3,4}.

5) {1,3,4} and {2,4,5}.

6) {2,3,4} and {2,4,5}.

7) {1,3,4}, {2,3,4}, and {2,4,5}.

That is, the algorithm needs to consider 7 subcollections. More generally, for
an input with n sets, the algorithm needs to consider 2n −1 subcollections. Thus,
we say that the algorithm runs in exponential time, or, equivalently, that its
running time is O(2n); the notation O(2n) is to be read as “order 2 to the n”: this
means that the algorithm runs in time which is in order of magnitude as 2n.

5

(For simplicity, we assume that the algorithm performs one operation per each
subcollection.)

To appreciate the growth of the exponential function, let us look at some values
of 2n, and compare them to some values of n2. Consider the following table.

n n2 2n

1 1 2

2 4 4

3 9 8

10 100 1024

20 400 1048576

30 900 1073741824

100 10000 1267650600228229401496703205376

The point is that the exponential function grows very fast. In fact, it grows so
fast that, for example, if we feed an input of size 1000 digits to an algorithm which
runs in exponential time, then the algorithm will halt only when the universe
will collapse. Thus, the field of computational complexity distinguishes between
the following two types of problems.

Problems which are polynomial-time solvable. (Type 1)

Problems which are believed not to be polynomial-time solvable. (Type 2)

Problems which are polynomial-time solvable are problems for which there are
algorithms whose running time which can be written as nc, for some constant c.
Thus, Type 1 contains, for example, problems which can be solved in linear time
(where c = 1, that is, O(n); for example, the ADDITION problem) and problems
which can be solved in quadratic time (where c = 2, that is, O(n2); for example,
the MULTIPLICATION problem). Type 2 contains, for example, the SET COVER

problem. This means, specifically, that it is believed that there is no algorithm
for the SET COVER problem which runs in polynomial-time (this belief is in the
heart of the famous P versus NP problem; specifically, it is believed that P 6=NP).

6

Computational complexity considers problems of Type 1 as being tractable (that
is, efficiently solvable), while problems of Type 2 as being intractable (that is, as
problems which cannot be solved efficiently; recall the collapse of the universe).
In this thesis we consider several computational problems, and for each of them
we try to establish whether it is of Type 1 (tractable) or of Type 2 (intractable).

It turns out that most problems considered in this thesis are intractable. To
further study these problems, and to better understand their inherent complexity,
we use the framework of parameterized complexity.

Parameterized Complexity. Lots of computational problems, including the
problems considered in this thesis, can naturally be associated with some param-
eters. For example, three natural parameters for the SET COVER problem are
the number of numbers given, the number of sets in the given collection, and the
maximum size of the sets in the given collection. There are applications for which
certain parameters for specific problems are known to be small. Thus, algorithms
which are efficient whenever these parameters are small are of interest.

Parameterized complexity is concerned with finding such algorithms. That is,
we ask whether it is possible to devise (parameterized) algorithms which are
efficient whenever some parameters are small. In other words, while we require
from a parameterized algorithm to be correct on all inputs, we require from it to
be fast only on those inputs for which the respective parameters are small.

Specifically, similarly to the distinction done in computational complexity be-
tween tractable and intractable problems, parameterized complexity further
distinguishes between tractable and intractable parameterized problems. While
some efficient parameterized algorithms are known for some problems with re-
spect to some parameters, it is believed that no efficient parameterized algorithms
exist for some problems with respect to some parameters.

In this thesis, when faced with an intractable problem (that is, a computational
problem of Type 2), we identify some natural parameters. Then, we try to
understand for which of these parameters, when assumed to be small, we can
devise efficient algorithms for the problem under consideration. If we cannot
devise efficient parameterized algorithms, then we try to show that, under some
assumptions, such algorithms cannot exist.

1.1.3. Computational Problems Considered in this Thesis
The computational problems considered in this thesis are related to social choice
and social networks. Social choice is concerned with the study of collective

7

decision making, for example when people vote in an election. Social networks are
important constructs in biology, economics, and sociology, modeling interactions
between entities. We refer the reader to the book by Brams and Fishburn [18] for
an overview on social choice and to the book by Newman [124] for an overview on
social networks.

There are two types of computational problems considered in this thesis. The
first two problems we consider, in Chapter 3 and in Chapter 4, regard elections
performed on top some underlying social networks.

More specifically, we study, in Chapter 3, how hard it is to manipulate an
election by adding or removing candidates, when the candidates in the election
are related to each other by an underlying social network. In Chapter 4, we again
consider manipulating an election, but we allow an external agent to change some
votes in the election, when the voters participating in the elections are related to
each other by an underlying social network.

The last three problems we consider, in Chapter 5, in Chapter 6, and in Chap-
ter 7, regard the privacy of entities comprising an election or a social network,
where some data about the election or the social network is to be made publicly
available. More specifically, in Chapter 5 we consider the problem of preserving
the privacy of the voters, when data concerning the votes is to be published.
Then, in Chapter 6 and in Chapter 7 we consider preserving the privacy of the
entities comprising a social network, when the social network is to be published.
In order to preserve the privacy of the entities comprising the social network,
in Chapter 6 we allow to introduce new artificial entities to the social network,
while in Chapter 7 we allow to merge sets of entities together.

Each chapter, after a brief discussion, provides a simple example to illustrate
the specific computational problem considered in it.

1.2. Not-So-Gentle Introduction

In this thesis, for each computational problem under consideration, we are in-
terested first in classifying whether the problem is polynomial-time solvable
(that is, in P), by developing a combinatorial algorithm for it, or whether it is
NP-hard, by providing a reduction from another NP-hard problem (we disre-
gard computational problems that might be in between these classes). Then, for
each problem which we prove (or conjecture) NP-hardness, we identify natural
parameters for it, and further classify its parameterized complexity, either by
devising fixed-parameter algorithms for it, thus proving containment in FPT, or

8

by proving W-hardness, by providing a parameterized reduction for it. Then, for
some cases, we further investigate whether the parameterized problem is in XP
(that is, can be solved in polynomial-time for constant values of the parameter),
by devising an XP algorithm for it, or, showing that the problem is Para-NP-hard,
by providing a reduction from another NP-hard problem while keeping the value
of the parameter constant in the reduction. (See Chapter 2 for formal definitions
of the complexity classes and notions mentioned above.)

We study two kinds of problems. The first kind is related to manipulating a
given election, where some relationships between the entities of the election are
assumed. This can be seen as if the election occurs on top of an underlying social
network which connects either the voters participating in the election or the
candidates which the voters vote on. The second kind of problems is concerned
with issues of privacy when publishing social networks and election-related data.
Next, we formally define most of the computational problems studied in this
thesis (for clarity, omitting some variants of these problems), and state some
main results for each of them.

Combinatorial Candidate Control. This problem is discussed in Chapter 3
and models the possibility of manipulating a given election by controlling the
candidates which participate in the election, where there is some social network
connecting the candidates.

In one of the variants of the problem we are given an election (C,V), where
C is the set of candidates, V is the collection of voters, and where one of the
candidates, p, is preferred by some external agent. The goal of the external
agent is to delete as few candidates as possible, in order to make p the winner
of the election, under some voting rule R. There is some underlying structure
connecting the candidates, such that whenever the external agent is deleting a
candidate c from the election, a whole set of candidates, denoted by κ(c), is also
deleted from the election. Formally, the problem is defined as follows.

R-COMB-CCDC
Input: An election (C,V), a preferred candidate p ∈ C, a bundling
function κ, and a budget k.
Question: Is there a set C′ ⊆ C with |C′| ≤ k such that p is a winner
under the voting rule R in the resulting election (C \κ(C′),V)?

As, generally, this problem is highly intractable, the computational complexity
of this kind of election control is considered for elections with only a few voters.

9

It turns out that the parameterized complexity landscape of this problem is very
diverse.

Combinatorial Shift Bribery. This problem is discussed in Chapter 4, and also
considers issues of manipulating elections. Here, however, there is an underlying
social network connecting the voters, rather than the candidates.

In one of the variants of the problem we are given an election (C,V), where
C is the set of candidates, V is the collection of voters, and where one of the
alternatives, p, is preferred by some external agent. There is a set of shift actions,
such that each application of a shift action transforms the election by changing
the position of p in some votes, as specified by the shift action. The goal of the
external agent is to use as few shift actions as possible, in order to make p the
winner of the election, under some voting rule R. Formally, the problem is defined
as follows.

R-COMBINATORIAL SHIFT BRIBERY

Input: An election (C,V), a preferred candidate p ∈ C, a set F of shift
actions, and a budget k.
Question: Is there a subset F ′ ⊆ F of shift actions with |F ′| ≤ k such
that, after we apply the shift actions from F ′, p is a winner under the
voting rule R in the resulting election?

It turns out that this problem is highly intractable, even for some very restricted
cases. Some other cases, however, can be approximated efficiently.

Election Anonymization. This problem is discussed in Chapter 5 and is also
about elections. Here, however, the main concern is preserving the privacy of the
voters when publishing the votes of the voters participating in the election. The
task is to modify the election, but not too much, while preserving the election
winner (with respect to the given voting rule R), and such that the resulting
election is k-anonymized; an election is said to be k-anonymous if, for each voter
in it, there are at least k−1 other voters which vote the same. The idea is
that an adversary which knows the votes of some of the voters in the elections
cannot identify specific voters in a k-anonymous election. Formally, the problem
is defined as follows.

R-d-ELECTION ANONYMIZATION

Input: An election E = (C,V), anonymity level k, and a budget s.

10

Question: Is there a k-anonymous election E′ such that d(E,E′)≤ s
and the set of winners of E′ equals that of E, under the voting rule R

(where d is a metric, such that d(E,E′) models how close the elections
E and E′ are to each other)?

It turns out that the parameterized complexity landscape of this problem is very
diverse, with cases ranging from being polynomial-time solvable to Para-NP-hard.

Degree Anonymization by Vertex Addition. This problem is discussed in
Chapter 6 and is also about anonymization, but for social networks and not for
elections.

Assuming an adversary which knows the degrees of some vertices in a given
graph, the task is to transform a given graph into a k-anonymous graph, where
a graph is said to be k-anonymous if, for every vertex in it, there are at least
k−1 other vertices with the same degree. The way to achieve anonymity is by
introducing new vertices. This problem is formally defined as follows.

DEGREE ANONYMIZATION (VA)
Input: A simple undirected graph G = (V ,E), anonymity level k, and
a budget t.
Question: Is there a k-anonymous graph G′ = (V ∪V ′,E∪E′) such
that |V ′| ≤ t and E′ ⊆ {

{u,v}⊆V ∪V ′ : u ∈V ′∨v ∈V ′}?

It turns out that this problem is computationally harder than the related
problem of degree anonymization by edge addition. Specifically, while that prob-
lem is FPT with respect to the maximum degree, the problem discussed here is
Para-NP-hard for this parameter.

Degree Anonymization by Graph Contractions. This problem is discussed
in Chapter 7 and is also about anonymizing social networks. Here, however, the
allowed operations are graph contractions (for example, edge contractions) and
not vertex additions. This problem is formally defined as follows.

DEGREE ANONYMIZATION BY GRAPH CONTRACTIONS

Input: An undirected graph G = (V ,E), anonymity level k, and a
budget c.
Question: Can G be made k-anonymous by performing at most c
contractions?

11

It turns out that this problem is computationally harder than the related
problem of degree anonymization by vertex addition, but there are some cases for
which it is fixed-parameter tractable.

Each chapter in this thesis corresponds to a different problem, and can be seen
as a quest for tractability, where the goal is to understand the computational
hardness inherent in some special cases and parameterizations and to devise
parameterized algorithms for other parameterizations and special cases.

12

2. Preliminaries

Assuming only basic understanding of computational complexity, this chapter
provides all the needed preliminaries for understanding this thesis. We begin
with some basic mathematical definitions and notations (Section 2.1). Section 2.2
provides a brief introduction to parameterized complexity and to the main al-
gorithmic techniques used for devising parameterized algorithms. Then, we
formally define the two main mathematical structures which will be considered in
this thesis: graphs (Section 2.3) and elections (Section 2.4). Finally, in Section 2.5,
we provide a list of some computational problems used in this thesis.

2.1. General Notations

We use the following standard mathematical notations.

N denotes the set of natural numbers.

Q denotes the set of rational numbers.

R denotes the set of real numbers.

[n] (for n ∈N) denotes the set {1,2, . . . ,n}.

[l,u] (for l,u ∈N) denotes the set {l, l+1, . . . ,u}.

f (k) denotes a computable function dependent only on k.

poly(n) denotes a polynomial function on n (that is, nc for some constant c).

13

2.2. Parameterized Complexity

In Section 2.2.1, we provide an overview of the parameterized complexity classes
which will be used in this thesis. Then, we provide an overview of the algorithmic
techniques used in this thesis for devising parameterized algorithms. For a more
detailed introduction to these concepts we refer the interested reader to the
available textbooks on parameterized complexity [57, 82, 125, 53].

2.2.1. Parameterized Complexity Classes

We use the following parameterized complexity classes, where n denotes the size
of the encoding of the input and k denotes the value of the parameter (a more
thorough explanation follows).

P denotes the class of problems solvable in nc, for some fixed c.

FPT denotes the class of problems solvable in f (k) ·nc, for some fixed c.

XP denotes the class of problems solvable in O(nk).

We assume the following widely-accepted assumptions.

P 6= NP

FPT 6= W[1]

Assuming the above, we have the following.

NP-hardness rules out the possibility of an algorithm
running in O(nc) time, for some fixed c.

W-hardness rules out the possibility of an algorithm
running in f (k) ·nc time, for some fixed c.

Para-NP-hardness rules out the possibility of an algorithm
running in O(nk) time.

14

A more detailed introduction to these complexity classes follows. In parame-
terized complexity, the goal is to find parameters which are “responsible” for the
intractability of the problem under consideration. Then, for instances for which
these parameters are small, we might be able to devise efficient algorithms.

For example, recall the VERTEX COVER problem, which, given an undirected
graph G and an integer k, asks for a set of at most k vertices such that each
edge is incident to at least one vertex from this set. While the VERTEX COVER is
NP-hard [84], it is possible to solve it in f (k)·nc time, where f is some computable
function depending only on the value of k [57]. Therefore, if the size of the vertex
cover is not too big, and, importantly, even if the graph is huge, we can still find a
solution in “reasonable” time, that is, in polynomial time, such that the degree of
the polynomial does not depend on the input size. Thus, we say that the VERTEX

COVER problem is fixed-parameter tractable with respect to the solution size.
More formally, an instance (I,k) of a parameterized problem consists of the

“classical” problem instance I and an integer k being the parameter [57, 82, 126].
A parameterized problem is called fixed-parameter tractable (FPT) if there is an
algorithm solving it in f (k) · |I|O(1) time, for an arbitrary computable function f
only depending on the parameter k.

There are, however, some problems that, for some parameters, seem not to
be in FPT. Two fundamental examples are the CLIQUE problem and the SET

COVER problem, whose definitions are given in Section 2.5.
For these two problems, no algorithm running in time f (h) ·nc is known, where

h is the solution size, and it is widely-accepted that no such algorithm exists
(since these problems are W-hard). Building on these assumptions, one can show
that a parameterized problem L is (presumably) not fixed-parameter tractable
(that is, W-hard) by devising a parameterized reduction from the CLIQUE problem
or the SET COVER problem (both, when parameterized by the solution size)
to L. A parameterized reduction from a parameterized problem L to another
parameterized problem L′ is a function that, given an instance (I,k), computes
in f (k) · |I|O(1) time an instance (I ′,k′) (with k′ ≤ g(k)) such that (I,k) ∈ L ⇐⇒
(I ′,k′) ∈ L′. Similarly to the usual way of proving NP-hardness, lots of problems
are known to be W-hard and can be used as bases for parameterized reductions.

Note that W-hardness does not rule out the possibility of algorithms running
in |I| f (k) time. This running time ensures that the algorithms run in polynomial
time as long as the parameter is a constant. Importantly, however, this running
time is inferior to the FPT running time, as the it grows fast with respect to
the size of the input, which is not the case for FPT. Clearly, FPT ⊆ XP. As an

15

example, we mention that a simple algorithm, checking all subsets of vertices of
size k, proves XP-membership for the CLIQUE problem.

Finally, a parameterized problem which is NP-hard even for instances for
which the parameter is a constant (and therefore, not in XP with respect to this
parameter) is said to be Para-NP-hard.

2.2.2. Parameterized Algorithmics

We provide the main ideas behind some general algorithmic techniques used in
this thesis to prove membership in FPT. Notably, most of the algorithmic results
presented in this thesis are achieved by combining some of these techniques.

Branching. The idea here is to search the solution space while making sure
that the size of the search tree and the time spent at each node is upper-bounded
by some function dependent only on the parameter. The main observation used is
that sometimes the number of possibilities that the algorithm needs to branch
into are upper-bounded by some function dependent only on the parameter.

Theorem 5.4, Theorem 6.8, and Theorem 7.5 are due to branching.

Dynamic Programming. The idea here is to use the efficient recursion of dy-
namic programming while making sure that the size of the state, being stored at
each recursive call, is upper-bounded by a function only dependent on the param-
eter, and, also, that the time spent at each recursive call can be upper-bounded
by a function only dependent on the parameter.

Theorem 5.1 and Theorem 6.7 are due to dynamic programming.

Integer Linear Programming. The idea here is to formulate the problem at
hand as an integer linear program (ILP) where the number of variables is upper-
bounded by a function dependent only on the parameter. Then, fixed-parameter
tractability follows by applying a famous result of Lenstra [104].

Theorem 5.5 and Theorem 6.8 are due to integer linear programming.

Kernelization. The idea here is to perform a specific kind of preprocessing
on the input. The goal is to transform, in polynomial-time, a given problem
instance (I,k) into an equivalent instance (I ′,k′) whose size is upper-bounded
by a function dependent only on k. That is, (I,k) is a yes-instance if and only
if (I ′,k′) is a yes-instance, where k′ ≤ g(k) and |I ′| ≤ g(k), for some computable

16

function g. Indeed, such a transformation is a polynomial-time self-reduction
with the constraint that the reduced instance is “small” (measured by g(k)). In
case that such transformation exists, (I ′,k′) is called a kernel of size g(k). Usually,
a kernel is achieved by exhaustively applying a set of reduction rules, each of
them transforming an instance to another instance, while shrinking the size of
the instance. A reduction rule is said to be correct if the transformed instance
is always equivalent to the original instance, that is, both are yes-instances
or both are no-instances. It is well-known that a parameterized problem is
fixed-parameter tractable if and only if it admits a kernelization [88, 100].

Theorem 6.10 and Corollary 7.1 are due to kernelization.

2.3. Graphs and Social Networks

Some of the problems we consider in this thesis directly concern social networks.
Mathematically, we view a social network as an undirected graph. One might
imagine that the vertices correspond to the persons in the social network and
that there is an edge between two vertices if, for example, the corresponding
persons are friends.

Next, we provide some definitions and notations regarding graphs. For these
definitions, we assume a given undirected graph G = (V ,E) where V is the
set of vertices and E ⊆ (V

2
)

is the set of edges (we use the notation
(V

2
)

as a
shorthand for the set of all unordered pairs of vertices). Indeed, unless specifically
stated otherwise, all graphs considered in this thesis are undirected. For more
information on graph theory we refer the reader to any textbook on graph theory,
for example the book by Diestel [55].

deg(v) denotes the degree of vertex v, for v ∈V .

∆ denotes the maximum degree in the graph,
that is, ∆ :=maxv∈V deg(v).

Bd denotes the set of vertices of degree d, for 0≤ d ≤∆,
that is, Bd := {v ∈V : deg(v)= d}.
Bd is called the block of degree d.

As an example, consider the following graph.

17

v1

v2

v3

v4

v5

v6

In the above graph, we have ∆= 2, since

0= deg(v6),

1= deg(v1)= deg(v2)= deg(v4)= deg(v5),

2= deg(v3).

Hence, we have that

B0 = {v6},

B1 = {v1,v2,v4,v5},

B2 = {v3}.

Most of the time we will consider simple graphs, but for non-simple graphs
which might have self-loops and parallel edges, we define the degree of a vertex v
with x neighbors and y self-loops to be, as usual, x+2y (note that, in particular,
we count a self-loop twice).

2.3.1. Special Graph Classes
We consider the following special graph classes.

A tree is a connected graph with no cycles.

A path graph is a tree with no vertices of degree larger than 2.

A caterpillar tree is a tree for which removing the leaves

and their incident edges leaves a path graph.

A d-regular graph is a graph where all vertices have degree d.

A cubic graph is a 3-regular graph.

18

2.4. Elections and Control

An election E is a pair (C,V) where

C = {c1, . . . , cm} is the set of candidates.

V = (v1, . . . ,vn) is the collection of voters.

For clarity, we usually refer to the voters as females while the candidates are
referred to as males. Each voter vi is equipped with her preference order, which
is a total order Âvi over C. A voter which prefers c to all other candidates is called
a c-voter.

For a voter v` and two candidates, ci and c j, we write v` : ci Â c j to indicate
that v` prefers ci to c j. For a subset A of candidates, by writing A (or, sometimes,−→
A) within a preference order description (for example, A Â a Â b, where a and
b are some candidates not in A) we mean listing the members of A in some
arbitrary, but fixed, order. By writing

←−
A we mean listing the alternatives in

the reverse of this arbitrary, and fixed, order. Given an election E = (C,V) and
two candidates, ci, c j ∈ C, we define NE(ci, c j) := |{v` ∈ V : (v` : ci Â c j)}| (that
is, NE(ci, c j) is the number of voters preferring ci to c j). For more information
about social choice, election, and voting, we refer the interested reader to any
book on these topics, for example the book by Arrow et al. [2] (for some research
challanges in parameterized algorithmics for computational social choice, we
refer the reader to the survey by [26]).

2.4.1. Voting Rules

A voting rule R is a function that, given an election E = (C,V), returns a set
R(E) ⊆ C of election winners. Note that we use the non-unique winner model,
meaning that a voting rule might return several tied winners. We consider the
following voting rules.

The Plurality rule. Each candidate receives one point for each voter which
ranks him first, and the winners are the highest-scoring candidates.

The Veto rule. Each candidate receives one point for each voter which ranks
him last, and the winners are the lowest-scoring candidates.

19

The t-Approval and the t-Veto rules. Under t-Approval, t ≥ 1, each candidate
gets a point for each voter that ranks him among her top t positions. The
candidates receiving the highest number of points are the winners.

For m candidates, t-Veto is a synonym for (m− t)-Approval. Indeed, 1-Approval
is the Plurality rule and 1-Veto is the Veto rule. We refer to all t-Approval and
t-Veto voting rules as Approval-based rules.

The Borda rule. Under the Borda rule, each candidate c ∈ C receives∑
d∈C\{c}

NE(c,d)

points, and the candidates with the highest points win. Equivalently, under
the Borda rule, each voter gives each candidate c as many points as there are
candidates that this voter ranks below c.

The Maximin rule. Under the Maximin rule, each candidate c ∈ C receives

min
d∈C\{c}

NE(c,d)

points, and the candidates with the highest points wins.

The Copelandα rule. Under the Copelandα rule, each candidate c receives

|{d ∈ C \{c} : NE(c,d)> NE(d, c)}|+α|{d ∈ C \{c} : NE(c,d)= NE(d, c)}|
points. Intuitively, under the Copelandα rule we conduct a head-to-head contest
among each pair of candidates. For a given pair of candidates, c and d, the
candidate who is preferred to the other by a majority of voters receives one point.
If there is a tie, then both candidates receive α points, where α is a rational
number and 0≤α≤ 1.

The Condorcet rule. A candidate c is a (strong-)Condorcet winner if, for each
other candidate c′ ∈ C \{c}, it holds that

|{v ∈V : c Âv c′}| > |{v ∈V : c′ Âv c}|,
that is, if he beats all other candidates in head-to-head contests. The Condorcet
rule elects the (unique) Condorcet winner if it exists, returning an empty set
otherwise.

20

A candidate c is a weak-Condorcet winner if, for each other candidate c′ ∈ C\{c},
it holds that

|{v ∈V : c Âv c′}| ≥ |{v ∈V : c′ Âv c}|,

that is, if he beats or ties all other candidates in head-to-head contests. The
weak-Condorcet rule elects the set of weak-Condorcet winners.

Example 2. Consider the following example election. The election consists of the
candidates {a,b, c} and of the voters {v1,v2,v3,v4}, with the following preference
orders.

v1 : a Â c Â b Â d

v2 : a Â c Â b Â d

v3 : b Â c Â d Â a

v4 : c Â b Â d Â a

In this example, voter v3 prefers b the most, then c, then d, and a last. Con-
sidering some of the voting rules considered in this thesis, we have the following
winners.

• a is the Plurality winner of this election.

• c is the Borda winner and the 2-Approval winner.

• Both a and c are the weak-Condorcet winners.

• There is no strong-Condorcet winner. 4

2.5. Some Useful Computational Problems

In this section, we describe some computational problems that will be useful later
in this thesis, mainly to show NP-hardness, W-hardness, and Para-NP-hardness.

21

SET COVER (used, for example, in Theorem 5.2 and Theorem 6.2)

Definition. Given a universe of elements X , a collection S of sets of elements
of X , and a budget h, the task is to decide whether there is a subcollection S ′ ⊆S

of sets such that |S ′| ≤ h and
⋃

S∈S ′ S = X . Such a subcollection S ′ is called a set
cover.

Complexity. The SET COVER problem is NP-hard and W[2]-hard with respect to
the solution size [57, 84]. The problem remains NP-hard even when all sets con-
tain three elements, each element appears in exactly three sets, and each element
is to be covered exactly once [86] (this restricted variant is called RESTRICTED

EXACT COVER BY 3-SETS).

CLIQUE (used, for example, in Theorem 6.4)

Definition. Given an undirected graph G and an integer h, the task is to decide
whether there is a set of h pairwise adjacent vertices.

Complexity. The CLIQUE problem is NP-hard and W[1]-hard with respect to the
solution size [57, 84].

MULTICOLORED CLIQUE (used, for example, in Theorem 7.3)

Definition. Given an undirected graph whose vertices are colored in h colors and
an integer h, the task is to decide whether there is a set of h pairwise adjacent
vertices such that each vertex is of different color.

Complexity. The MULTICOLORED CLIQUE problem is NP-hard and W[1]-hard
with respect to the solution size even on regular graphs [81, 84].

INDEPENDENT SET (used, for example, in Theorem 6.1)

Definition. Given an undirected graph G and an integer h, the task is to decide
whether there is a set of h pairwise non-adjacent vertices.

Complexity. The INDEPENDENT SET problem is NP-hard even on cubic graphs [84]
and W[1]-hard with respect to the solution size [57].

VERTEX COVER (used, for example, in Theorem 7.4)

Definition. Given an undirected graph G and an integer h, the task is to decide
whether there is a set of h vertices such that each edge is incident to at least one
vertex from the set.

22

Complexity. The VERTEX COVER problem is NP-hard even on cubic graphs [84]
and FPT with respect to the solution size [57].

PARTITION INTO TRIANGLES (used, for example, in Theorem 7.4)

Definition. Given an undirected graph G with n vertices, the task is to decide
whether the vertices can be partitioned into n/3 sets of vertices such that each
set form a triangle in G.

Complexity. The PARTITION INTO TRIANGLES problem is NP-hard even on
4-regular graphs [140].

SUBSET SUM (ZERO VARIANT) (used, for example, in Theorem 4.1)

Definition. Given a set of integers A = {a1, . . . ,an}, the task is to decide whether
there is a set A′ ⊆ A such that

∑
ai∈A′ ai = 0.

Complexity. The SUBSET SUM (ZERO VARIANT) problem is weakly NP-hard [84].

CHANGE MAKING (used, for example, in Theorem 6.6)

Definition. Given integers a1, . . . ,an and integers m and b, the task is to decide
whether there are non-negative integers x1, . . . , xn such that Σi∈[n]xi ≤ m and
Σi∈[n]xiai = b.

Complexity. The CHANGE MAKING problem is weakly NP-hard [110].

STRICTLY THREE PARTITION (used, for example, in Theorem 7.1)

Definition. Given a set of integers S = {a1, . . . ,a3m} such that
∑

ai∈S ai = mB and
∀i ∈ [3m] : B/4 < ai < B/2, the task is to decide whether there are m disjoint
sets S1, . . . ,Sm, Si ⊆ S for i ∈ [m], each of containing three integers, such that
∀ j ∈ [m] :

∑
ai∈S j ai = B.

Complexity. The STRICTLY THREE PARTITION problem is strongly NP-hard [84].

NUMERICAL MATCHING WITH TARGET SUMS (used, for example, in Theo-
rem 7.2)

Definition. Given three sets of integers A = {a1, . . . ,an}, B = {b1, . . . ,bn}, and
C = {c1, . . . , cn}, the task is to decide whether the elements of A and B can be
paired such that, for each i ∈ [n], ci is the sum of the ith pair.

Complexity. The NUMERICAL MATCHING WITH TARGET SUMS problem is
strongly NP-hard [84].

23

3. Candidate Control

In the following two chapters we consider the possibility of manipulating elections,
where there is some underlying structure connecting the voters or the candidates
participating in the election.

From this point of view, this chapter and Chapter 4 represent a step towards
understanding the possibility of manipulating elections occurring over social
networks.

In the combinatorial problem considered in Chapter 4, an external agent
is allowed to manipulate a given election by changing how some voters vote,
depending on some structure connecting the voters participating in the election.
In this chapter, however, an external agent is allowed to manipulate a given
election by changing the set of candidates participating in the election. There
is an underlying social network connecting the candidates participating in the
election such that whenever the external agent adds or deletes a candidate from
the election, a whole group of (related) candidates are added or deleted from the
election.

Specifically, in this chapter we consider both the standard scenario of adding
and deleting candidates, where one asks whether a given candidate can become a
winner (or, in the destructive case, can be precluded from winning) by adding or
deleting few candidates, as well as the combinatorial scenario where adding or
deleting a candidate automatically means adding or deleting a whole group of
candidates.

Since it turns out that this problem is highly intractable in general, we con-
centrate on the well-motivated scenario of elections with only a few voters (but,
possibly, a huge number of candidates). Considering several fundamental voting
rules, the results obtained in this chapter show that the parameterized complex-
ity of candidate control, with the number of voters as the parameter, is much
more varied than in the setting with many voters, and that the combinatorial
scenario behaves somehow different from the non-combinatorial scenario.

25

Alice

BobCinderella David

Euclid

Figure 3.1. The social network used in the illustrating example.

3.1. Illustrating Example

Consider the following example, which will be used throughout the thesis.

Example 3. There is a group of five people: Alice, Bob, Cinderella, David,
and Euclid. The social network depicted in Figure 3.1 shows the friendship
relationships between the people in this group (for example, David is the only
friend of Bob).

This group of people decided to choose (that is, to elect) a group representa-
tive, and it is currently agreed that everybody will participate as voters and
as candidates in the corresponding election. Clearly, each person in the group
has preferences over which person should be the group representative. These
preferences are described in Figure 3.2 (for example, Cinderella prefers herself
the most, then Alice, then David, then Bob, and finally Euclid).

Alice : Alice Â Cinderella Â David Â Bob Â Euclid

Bob : Euclid Â Bob Â David Â Alice Â Cinderella

Cinderella : Cinderella Â Alice Â David Â Bob Â Euclid

David : David Â Cinderella Â Euclid Â Alice Â Bob

Euclid : Cinderella Â David Â Euclid Â Alice Â Bob

Figure 3.2. The election used in the illustrating example.

26

Under the Plurality voting rule, we have that Cinderella is the current winner,
since she is positioned first in the votes of Cinderella and Euclid, and all other
candidates are positioned first in the vote of at most one person.

This outcome of the election, however, is clearly not the desired outcome of the
election for Bob, since Bob would like Euclid to win the election.

Corresponding to the computational problem considered in this chapter, let us
assume that Bob can choose one person from the group and persuade him (or her)
not to participate as a candidate in the election. Moreover, taking their friendship
social network into account, it so happens that whenever Bob persuades a person
to not participate as a candidate in the election, as a result, also his (or her)
friends will not participate in the election. In this chapter, we ask the following
question: “which person shall Bob persuade?”

In the current example, the answer is Alice. That is, if Bob decides to persuade
Alice not to participate as a candidate in the election, then Cinderella and David
would not participate as candidates in the election as well, and the resulting
election would be as shown in Figure 3.3.

Alice : Bob Â Euclid

Bob : Euclid Â Bob

Cinderella : Bob Â Euclid

David : Euclid Â Bob

Euclid : Euclid Â Bob

Figure 3.3. The resulting election.

Now, under the Plurality voting rule, we have that Euclid is the winner, exactly
what Bob hoped for. 4

3.2. Introduction
Election control problems model the issue of affecting the result of an election by
either introducing some new candidates or voters or by removing some existing
candidates or voters from the election. In this chapter, we focus on election

27

control by adding or deleting candidates (so-called “candidate control”), for the
case where the election involves only a few voters.

We focus on very simple, practical voting rules such as the Plurality rule and
the Veto rule, but discuss several other rules as well. Specifically, we consider
the t-Approval and the t-Veto rules, as well as the Borda, the Maximin, and the
Copeland rules.

Besides the standard candidate control problem mentioned above, we are
particularly interested in their combinatorial variants, where instead of adding
or deleting individual candidates, the external agent adds or deletes whole groups
of candidates. In this we follow the path initiated by [33], which introduced
this type of combinatorial variant for control, specifically on combinatorial voter
control. The point is that the candidates might be connected to each other by
some underlying social network, therefore influencing each other. For example,
whenever a candidate decides to participate in the election, he influences his
friends to also participate in it. This combinatorial type of manipulating elections
is the subject of Chapter 4 as well, albeit for different kind of manipulating
operation.

Indeed, most of the candidate control problems for most of the typically studied
voting rules are NP-hard (indeed, candidate control problems are NP-hard even
for the Plurality rule; nonetheless, there are some natural examples of candidate
control problems with polynomial-time algorithms). It turns out that for the case
of elections with few voters, that is, for control problems parameterized by the
number of voters, the computational complexity landscape of candidate control
is much more varied and sometimes quite surprising. A high-level discussion of
our results is presented in Section 3.3.1 (to get a quick feel of the nature of the
results we obtain, the reader might also wish to consult Table 3.1 and Table 3.2).

The study of the computational complexity of control problems in elections
was initiated by Bartholdi et al. [5] and was continued by many researchers (see
the surveys of Faliszewski et al. [73, 76] as well as Section 3.2.3 for a literature
overview). While many researchers have considered the case of few candidates—
see, for example, the classic work of Conitzer et al. [50] on election manipulation
and subsequent papers regarding control [75, 77, 97]—very little effort was
invested into studying the case of few voters (perhaps the most notable example
of a paper focusing on this case is that of Brandt et al. [20]).

One possible reason for this situation is that the case of few voters may seem
somewhat less natural. After all, presidential elections, an archetype of elections,
rarely involve more than a few candidates but do involve millions of voters. We

28

argue that the case of few voters is as natural and as important to study, especially
in the context of multi-agent settings and various non-political elections.

3.2.1. Elections with Few Voters

Let us now argue why we believe that elections with few voters are natural,
and why (combinatorial) candidate control is an important issue regarding such
elections. First, let us look at the following examples, which include few voters
but possibly very many candidates.

Hiring committee. Consider a university department which is going to hire a
new faculty member. Typically, the committee consists of relatively few faculty
members, but it may consider hundreds of applications for a given position.
The members of the committee have to aggregate their opinions regarding the
candidates and it is quite natural to assume that at some point this would be
done through voting.

Holiday planning. Consider a group of people who are planning to spend holi-
days together. The group typically would consist of no more than a dozen persons,
but—technically—they have to choose from all possible options provided by the
travel agents, hotels, airlines, etc. This example is particularly relevant to the
case of multi-agent systems: one may foresee that in the future we will delegate
the task of finding the most satisfying holiday location to our personal software
agents that will negotiate with travel agents and other travelers on our behalf.

Meta-search engine. Dwork et al. [60] argued that one can build a web meta-
search engine that queries several other search engines (the few voters) regarding
a given query, aggregates their rankings of the web pages (the many candidates),
and outputs the consensus ranking.

In all of the examples above, it is clear that prior to holding an election, the
voters, or some particular individual, first shrink the set of candidates. In the
case of the hiring committee, most of the applications are removed from the
considerations early in the evaluation process (based on the number of journal
publications, for example). The group of people planning holidays first (implicitly)
removes most of the possible holiday options and, then, removes those candidates
that do not fully fit their preferences: for example, they remove destinations

29

which are too expensive, or they remove holiday places by the sea when they are
interested in hiking in the mountains, etc. The search engines usually disregard
those web pages that appear completely irrelevant to a given query.

This natural process of modifying the candidate set, however, creates a nat-
ural opportunity for manipulating the result. A particularly crafty agent may
remove those candidates that prevent his or her favorite candidate from winning.
Similarly, after the initial process of thinning down the candidate set, a voter
may request that some candidates are added back into consideration, possibly to
help her favorite candidate. More importantly, it is quite realistic to assume that
the voters in a small group know each other so well as to reliably predict each
others’ votes (this is particularly applicable to the example of the hiring commit-
tee). Thus, it is natural and relevant to study the computational complexity of
candidate control parameterized by the number of voters. While control problems
do not model the full game-theoretic process of adding or deleting candidates,
they allow agents to compute what effects they might be able to achieve, and, if
the corresponding computational problem is tractable, also how to achieve these
effects.1

Finally, it is quite natural to consider the case where adding or deleting a
particular candidate means also adding or deleting a number of other candidates.
For example, if a hiring committee removes some candidate from consideration,
then it might have to also remove all those with weaker publication records; if
people planning holidays disregard some expensive hotel, then they might also
want to remove those that cost more. Our model of combinatorial control captures
these settings as well.

3.2.2. Main Contributions of this Chapter

The research presented in this chapter sheds light on some surprising patterns
that were not (nearly as) visible in the context of classical complexity analysis of
election control. The two most interesting patterns can be summarized as follows
(by constructive control we mean variants of our problems where we want to
ensure some candidate’s victory, whereas by destructive control we mean cases
where the goal is to prevent some candidate from winning).

1To the best of our knowledge, game-theoretic aspects of this process of adding or deleting candidates
has not been studied in detail. However, there is a related line of research regarding strategic
candidacy, where the candidates themselves may decide to run or not [58] (see also, for example,
the works of Lang et al. [102] and Polukarov et al. [130] for some recent results).

30

1) In the non-combinatorial setting, destructive candidate control is easy for
all our voting rules, either in the fixed-parameter tractability sense or via
outright polynomial-time algorithms.

2) In the combinatorial setting, control by deleting candidates appears to be
computationally harder than control by adding candidates.

We also found an interesting difference in the complexity of non-combinatorial
constructive control by deleting candidates between the Plurality rule and the
Veto rule (recall that under the Plurality rule we elect the candidate that is
ranked first most often; under the Veto rule we elect the candidate that is ranked
last least often). This is especially interesting since the rules are so similar and
there is no such difference for the case of adding candidates.

Finally, we emphasize that almost all of the results presented in this chapter
follow by applying proof techniques that might be useful in further research
on the complexity of election problems with few voters. In particular, our W[1]-
hardness results follow via reductions from the MULTICOLORED CLIQUE problem
and have quite a universal structure. Similarly, our Para-NP-hardness proofs
follow either via reductions from the CUBIC VERTEX COVER problem and use a
universal trick to encode graphs within eight votes, or are based on embedding
SET COVER instances in our problems. Our FPT algorithms also have a fairly
universal structure and are based on what we call signatures. Indeed, we believe
that, besides the specific results obtained here, introducing these proof techniques
is an important contribution of this chapter.

3.2.3. Related Work

The computational complexity study of election control problems was initiated
by Bartholdi et al. [5], and was later followed by numerous researchers, including,
for example, Hemaspaandra et al. [95], Hemaspaandra et al. [96], Meir et al. [118],
as well as others (we refer the interested reader to the survey by Faliszewski et al.
[76], the book chapter of Faliszewski and Rothe [73], and to several recent papers
on the topic, including those of Parkes and Xia [129], Menton and Singh [120],
Erdélyi et al. [68, 69], and Rothe and Schend [134]). Briefly put, it turns out that,
for standard voting rules, control problems are typically NP-hard (however, it is
worth noting that some of these hardness results disappear in restricted domains,
as shown, for example, by Brandt et al. [19], Faliszewski et al. [78], and Magiera
and Faliszewski [112]).

31

Many authors also considered the computational complexity of manipulating
elections by partitioning candidates or voters (see, for example, the works by
Bartholdi et al. [5], Erdélyi et al. [67], Faliszewski et al. [75], Hemaspaandra et al.
[95], and Menton [119], Menton and Singh [120]). Under control by partition
of voters we first partition the voters into two groups, then conduct separate
elections within these groups, and finally hold an election among the winners of
these subelections. Further, manipulating elections by combining several control
operations was studied by Faliszewski et al. [77].

There is a growing body of research regarding the parameterized complexity of
voting problems (see, for example, the survey by Betzler et al. [11]), where typical
parameters include the solution size (for example, the number of candidates
which can be added, that is, the budget) and parameters related to the election
size (that is, the number of candidates or the number of voters). When considering
the solution size as the parameter, control problems typically turn out to be hard,
that is, typically, W[1]-hard or W[2]-hard (see, for example, the works of Betzler
and Uhlmann [9], Liu et al. [106], and Liu and Zhu [105]).

In contrast, taking the number of candidates as the parameter almost always
leads to FPT results (see, for example, the papers by Faliszewski et al. [77] and
by Hemaspaandra et al. [97]). These results are usually obtained by formulating
the problem as an integer linear problem, as done, for example, in Theorem 5.5.

So far, however, only Betzler and Uhlmann [9] considered an election con-
trol problem parameterized by the number of voters (for the Copeland rule),
and Brandt et al. [20] showed NP-hardness results for several winner determina-
tion problems even for constant numbers of voters (that is, Para-NP-hardness).
Further, the parameter “number of voters” received also some limited attention
in other voting settings (see, for example, the works of Betzler et al. [10], Dorn
and Schlotter [56], and Bredereck et al. [27]).

The study of combinatorial election control was initiated by Chen et al. [41],
who focused on voter control. Another different notion of combinatorial control
was studied by Erdélyi et al. [70]. We further stress that our combinatorial view
of control is different from the studies of combinatorial voting domains considered,
for example, by Boutilier et al. [17], Xia and Conitzer [144], and by Mattei et al.
[116].

Finally, viewing some of the work presented in this thesis as considering elec-
tions held over some underlying social networks, we mention some of the work
done on voting in social networks. Conitzer [48] and Conitzer [49], as well as Pro-
caccia et al. [131], studied two adaptations of the maximum likelihood approach
to voting, where the votes, taking into account also relationships between the

32

voters, are seen as noisy estimations of some “ground truth”. Mossel et al. [123]
studied how preferences diffuse in social networks.

3.2.4. Organization of this Chapter

This chapter is organized as follows. After some preliminaries, in Section 3.3,
we discuss our results, in Section 3.3.1. Specifically, in Section 3.3.4 we discuss
our proof techniques in a high-level fashion, giving the main intuitive ideas, and
provide the most illustrative full proofs in the following sections: in Section 3.4 we
discuss W[1]-hardness proofs based on the Multicolored Clique Proof Technique,
in Section 3.5 we discuss Para-NP-hardness proofs based on the Cubic Vertex
Cover Proof Technique, in Section 3.6 we discuss Para-NP-hardness proofs based
on the Set-Embedding Proof Technique, in Section 3.7 we discuss FPT algorithms
based on the Signature Proof Technique. Finally, in Section 3.8, we present
challenges for future research. Some remaining results, as well as the proofs not
presented in the main text of this chapter, are deferred to the appendix to this
chapter.

3.3. Specific Preliminaries

We study candidate control in elections, considering both constructive control
(CC) and destructive control (DC), by either adding candidates (AC) or deleting
candidates (DC). Thus, for example, CCAC refers to constructive control by adding
candidates.

For the case of control by adding candidates problems, we make the standard
assumption that the voters have preference orders over all the candidates—both
those already registered and those that can be added (that is, the unregistered
candidates). Naturally, when the election is conducted we consider the preference
orders to be restricted only to those candidates that either were originally regis-
tered or were added. Similarly, for the case of control by deleting candidates, to
compute the result of the election we restrict the preference orders only to those
candidates that were not deleted.

Importantly, we consider combinatorial variants of our problems, where adding
(deleting) a single candidate also automatically adds (deletes) a whole group
of other candidates (in this we follow our earlier work on combinatorial voter
control [33]; see also the work of Erdélyi et al. [70]). In these combinatorial
variants (denoted with a prefix Comb), we use bundling functions κ such that for

33

each candidate c, κ(c) is the set of candidates which are also added if c is added
(or, respectively, which are also deleted if c is deleted). For each candidate c, we
require that c ∈ κ(c) and call κ(c) the bundle of c. For a given subset of candidates
B, we write κ(B) to denote

⋃
c∈Bκ(c). Bundling functions are encoded by explicitly

listing their values for all arguments.
Formally, given a voting rule R, our problems are defined as follows (we only

list the combinatorial generalizations; the non-combinatorial variants can be
“derived” by using the identity function as κ).

R-COMB-CCAC
Input: An election (C,V), a set A of unregistered candidates such
that the voters from V have preference orders over C∪ A, a preferred
candidate p ∈ C, a bundling function κ : A →P (A), and an integer k.
Question: Is there a subset A′ ⊆ A with |A′| ≤ k such that p ∈
R(C∪κ(A′),V)?

R-COMB-CCDC
Input: An election (C,V), a preferred candidate p ∈ C, a bundling
function κ : C →P (C), and an integer k.
Question: Is there a subset C′ ⊆ C with |C′| ≤ k such that p ∈
R(C \κ(C′),V)?

The destructive variants of our problems, R-COMB-DCAC and R-COMB-DCDC,
are defined analogously, except that we replace the preferred candidate p with
the despised candidate d, and we ask whether it is possible to ensure that d is not
a winner of the election. In the DCDC case, we explicitly disallow deleting any
bundle containing the despised candidate. In the standard, non-combinatorial,
variants of control we omit the prefix “Comb” and assume that for each candidate c
we have κ(c)= {c}, omitting the bundling function in the respective discussions.

We argue, informally, that our model of combinatorial candidate control is about
the simplest that one can think of. Indeed, in a scenario with m candidates, there
are at most m corresponding bundles of candidates that can be added/deleted.
In real life, however, one might expect many more. Notably, even such a simple
model turns out to be computationally difficult and, thus, we believe that it is
instructive to consider such a simplified model first. Moreover, in many cases (for
example, combinatorial constructive control by deleting candidates) we already
obtain very strong hardness results.

34

3.3.1. Overview of Our Results and Proof Techniques
In this section, we review our results, discuss some interesting patterns we
identified in them, and provide a high-level overview of our proof techniques.
This section can be viewed as a guide for helping the reader better understand
the implications of our results, presented in Table 3.1 and in Table 3.2, and to
get an intuitive understanding of our means of obtaining them. We begin by
discussing the results regarding the Approval-based voting rules, then discuss
the results for the other voting rules, and finally describe our proof techniques.

Before we discuss the results presented in the tables, we note the following:

1) for t-Approval and t-Veto we mean t ≥ 2;
2) for Copelandα, we mean 0≤α≤ 1;
3) results marked with ♣ and ♦ are due to Faliszewski et al. [77, 75], those

marked with ♥ are due to Loreggia et al. [108], and those marked with ♠
follow from the work of Betzler and Uhlmann [9] for α ∈ {0,1} and are due
to this chapter for the remaining values;

4) question mark (?) means that the computational complexity is still open.

3.3.2. Results for Approval-Based Voting Rules
Approval-based rules are perhaps the simplest and the most frequently used
ones, so results regarding them are of particular interest. Further, they exhibit
quite interesting behavior with respect to the complexity of candidate control
parameterized by the number of voters. For the Approval-based voting rules
discussed here, the results regarding Plurality (and, to some extent, Veto), are by
far the most important ones.

In terms of standard complexity theory, all constructive and destructive candi-
date control problems for Plurality and Veto are NP-complete (see the works of
Bartholdi et al. [5] and Hemaspaandra et al. [95] for the results regarding the
Plurality rule; the results for Veto are easy to derive based on those for Plurality
and, for example, Elkind et al. [65] showed that Veto-CCAC is NP-complete2).

Yet, if we consider parameterization by the number of voters, the results change
quite drastically. We make the following observations.

2For the case of t-Approval, t ≥ 2, Faliszewski et al. [79] showed that t-Approval-CCAC and t-
Approval-CCDC are NP-complete. For the case of t-Veto, t ≥ 2, our W[1]-hardness proofs double
as NP-completeness proofs (technically, proving W[1]-hardness does not automatically imply
NP-hardness, but it does hold for our reductions).

35

Table 3.1. The complexity of candidate control (constructive (CC) and destruc-
tive (DC), adding candidates (AC) and deleting candidates (DC)) problems for
Approval-based voting rules parameterized by the number of voters.

Problem Plurality Veto t-Approval t-Veto

R-CCAC W[1]-h / XP W[1]-h / XP W[1]-h / XP W[1]-h / XP

R-CCDC FPT W[1]-h / XP W[1]-h / XP W[1]-h / XP

R-DCAC FPT FPT FPT FPT

R-DCDC FPT FPT FPT FPT

R-COMB-CCAC W[1]-h / XP W[1]-h / XP W[1]-h / XP W[1]-h / XP

R-COMB-CCDC Para-NP-h (1) Para-NP-h (1) Para-NP-h (1) Para-NP-h (1)

R-COMB-DCAC FPT FPT W[1]-h / XP ? / XP

R-COMB-DCDC Para-NP-h (3) Para-NP-h (1) Para-NP-h (2) Para-NP-h (1)

1) The results for Plurality and Veto are no longer the same (specifically,
Plurality-CCDC is FPT whereas Veto-CCDC is W[1]-hard). This is quite
surprising given both the similarities between these rules and the fact that
their standard complexity-theoretic results are almost identical.

2) For all t-Approval and t-Veto rules (including Plurality and Veto), the de-
structive non-combinatorial candidate control problems are fixed parameter
tractable. The constructive variants of these problems—with the exception
of Plurality-CCDC—are W[1]-hard.

3) For the combinatorial setting there is a sharp difference between control
by adding candidates and control by deleting candidates. Specifically, for
both the Plurality rule and the Veto rule, COMB-DCAC is fixed-parameter
tractable and COMB-CCAC is W[1]-hard, whereas Comb-CCDC and COMB-
DCDC are Para-NP-hard. For t-Approval and t-Veto with t ≥ 2, the patterns
are even simpler. All the adding-candidates cases are W[1]-hard (with one
open case), and all the deleting-candidates cases are Para-NP-hard.

36

Table 3.2. The complexity of candidate control (constructive (CC) and destruc-
tive (DC), adding candidates (AC) and deleting candidates (DC)) problems
for the Maximin, Borda, and the Copeland voting rules parameterized by the
number of voters.

Problem Maximin Borda Copelandα

R-CCAC Para-NP-h (10) Para-NP-h (10) Para-NP-h (20) ♠

R-CCDC P ♣ Para-NP-h (10) Para-NP-h (26) ♠

R-DCAC P ♣ P ♥ P ♦

R-DCDC P ♣ P ♥ P ♦

R-COMB-CCAC Para-NP-h (6) Para-NP-h (2) Para-NP-h (3) ♠

R-COMB-CCDC Para-NP-h (1) Para-NP-h (1) Para-NP-h (1) ♠

R-COMB-DCAC P Para-NP-h (2) Para-NP-h (3)

R-COMB-DCDC Para-NP-h (5) Para-NP-h (2) Para-NP-h (3)

We conclude by noting that in each of the W[1]-hard cases discussed here we
also provide an XP algorithm. This means that, under the assumption P 6=NP,
these cases cannot be strengthened to Para-NP-hardness results; thus, in some
sense, our results are tight. It is quite interesting that in the non-combinatorial
setting the demarcation line between fixed-parameter tractable and W[1]-hard
problems goes along the constructive-vs-destructive axis, whereas for the combi-
natorial setting the line between W[1]-hard (or, in-FPT for Plurality and Veto)
and Para-NP-hard problems goes along the adding-vs-deleting-candidates axis.

3.3.3. Results for Maximin, Borda, and Copeland

The results for the Maximin, the Borda, and the Copelandα rules are quite
different from those for the case of the t-Approval and the t-Veto rules. Here,
instead of FPT and W[1]-hardness results we find polynomial-time algorithms
and Para-NP-hardness results. Specifically, it has already been reported in the

37

literature that there are polynomial-time algorithms for destructive candidate
control under the Borda rule [108], the Copelandα rule [75], and the Maximin
rule [77]. For constructive candidate control, Para-NP-hardness was already
known for Copeland0 and Copeland1 [9], while in this chapter we establish the
same Para-NP-hardness for the remaining values of α (that is, for 0<α< 1), as
well as for the Borda rule and for the Maximin rule (in the latter case, only for
CCAC; CCDC is known to be in P [77]).

The most interesting results regard the combinatorial setting, where almost all
of our problems are Para-NP-hard. The only exception is Maximin-COMB-DCAC,
which can be solved in polynomial time using an algorithm that, in essence, is
identical to the one for the non-combinatorial setting. Our hardness proofs mostly
rely on a set-embedding technique (see the next section), which more-or-less
directly embeds instances of SET COVER in our control problems. Due to the
generality of this approach, we also prove that for every voting rule R that
satisfies the unanimity principle (that is, for every voting rule that chooses as
the unique winner the candidate that is ranked first by all the voters), R-COMB-
CCDC is Para-NP-hard.

Summarizing the discussion above, the high-level intuition for our more in-
volved voting rules is that constructive candidate control is hard even in the
non-combinatorial setting, whereas destructive candidate control is tractable in
the non-combinatorial settings, but becomes Para-NP-hard in the combinatorial
settings (the only exception is the Maximin rule for the destructive control by
adding candidates cases (Maximin-(Comb)-DCAC)).

3.3.4. Proof Techniques
We believe that one of the most important contributions of this chapter comes
from identifying four very general proof techniques for establishing the results
presented here. Indeed, we believe that these techniques might be useful in
studying the complexity of other election problems (especially, parameterized by
the number voters). Next we provide their high-level, intuitive descriptions.

Overview of the Multicolored Clique Proof Technique. This is a technique
used for establishing W[1]-hardness results. The main idea is to provide a
reduction from the MULTICOLORED CLIQUE (MCC) problem parameterized by
the size of the desired clique. Recall that each vertex is associated with one color
out of h colors overall and we seek a clique of size h where each vertex is of a
different color. The high-level description of our technique is as follows.

38

We provide a reduction that, given an MCC-instance, introduces a candidate
for each vertex and two candidates for each edge. We have to ensure that only
the successful control actions add exactly the candidates (for some cases, delete
all but exactly the candidates) which correspond to a multicolored clique (note
that we mean both the candidates corresponding to the vertices of the clique as
well as the candidates corresponding to the edges connecting them).

We enforce this constraint using pairs of carefully crafted votes such that if we
have two vertices but not an edge between them, then some candidate receives
one more point than it should have for our preferred candidate to win. Note that
the colors help us to upper-bound the number of voters needed for the construction
(specifically, the number of voters created in the construction depends only on the
parameter, therefore giving rise to the parameterized hardness). Formal proofs
using this technique are given in Section 3.4.

Overview of the Cubic Vertex Cover Proof Technique. This is a technique
used for establishing Para-NP-hardness results for non-combinatorial construc-
tive candidate control problems. The main idea is to provide a reduction from the
CUBIC VERTEX COVER (CVC) problem. Recall that this problem is a variant of
the standard VERTEX COVER problem where the input graph is guaranteed to be
cubic (that is, such that each vertex in it is incident to exactly three edges).

The crucial observation used in this technique is that the edges of a cubic graph
can be partitioned into four disjoint matchings. This fact allows us to encode all
information regarding the graph in a constant number of votes, in a way that
ensures that the actions of adding or deleting candidates correspond to covering
edges. Formal proofs using this technique are given in Section 3.5.

Overview of the Set-Embedding Proof Technique. This is a fairly simple
technique for showing Para-NP-hardness results for combinatorial control by
adding or deleting candidates. The idea is to reduce from the standard SET

COVER problem using the bundling function to encode the given sets.
Due to the power of bundling, a constant number of voters suffices for the

reduction. Formal proofs using this technique are given in Section 3.6.

Overview of the Signature Proof Technique. This is a group of two similar
techniques for showing FPT results for the case of destructive control under the
t-Approval and the t-Veto rules.

39

The first technique in this group is applicable for problems of destructive
control by adding candidates. The main idea is to group candidates by finding
some equivalences between them such that it will not make a difference which
candidate from a specific equivalence class we add. In other words, often it is
possible to limit the number of candidates that one has to consider by identifying
their most crucial properties (such as the subsets of voters where the candidates
are ranked ahead of some given candidate); we refer to these properties as
signatures. Our fixed-parameter tractability results follow by upper-bounding the
number of such equivalence classes as a function solely depending on the number
of voters.

The second technique is of similar nature and applies to problems of destructive
control by deleting candidates. Formal proofs using this technique are given
in Section 3.7.

Almost all proofs in this chapter follow by applying one of the four techniques
above. The few remaining ones follow by direct arguments and are given in Sec-
tion 3.8. The following sections are ordered by the proof technique employed
and present the most notable results. Proofs omitted from the main text of this
chapter are presented in the appendix to this chapter.

3.4. Multicolored Clique Proof Technique
We start our technical discussion by describing the Multicolored Clique proof
technique. We apply it to show W[1]-hardness of candidate control problems
for some cases for the t-Approval and the t-Veto rules. Indeed, all the W[1]-
hardness proofs in this chapter are based on this technique. Specifically, we
prove the following statements (throughout this chapter, all results are for the
parameterization by the number of voters):

1) For each fixed integer t ≥ 1 and for each voting rule R ∈ {t-Approval, t-Veto},
R-CCAC (and therefore also R-COMB-CCAC) is W[1]-hard.

2) For each fixed integer t ≥ 2 and for each voting rule R ∈ {Veto, t-Approval,
t-Veto}, R-CCDC is W[1]-hard.

3) For each fixed integer t ≥ 2, t-Veto-COMB-DCAC is W[1]-hard.

Recall the MULTICOLORED CLIQUE problem, which is W[1]-hard with respect
to the solution size even on regular graphs [57].

40

MULTICOLORED CLIQUE

Input: An undirected graph whose vertices are colored in h colors
and an integer h.
Question: Is there a set of h pairwise adjacent vertices such that
each vertex is of different color?

All the results in this section follow by reductions from the
MULTICOLORED CLIQUE problem and are quite similar in spirit. Thus, we start
by providing some common notation and observations for all of them.

Let I = (G,h) be a MULTICOLORED CLIQUE instance with graph G and an
integer h. The vertices of G are partitioned into h sets, V1(G), . . . ,Vh(G), each
containing all vertices colored with a given color. Without loss of generality,
we assume that each Vi(G) contains the same number of vertices, denoted by
n′, and we rename the vertices so that for each color i, 1 ≤ i ≤ h, we have
Vi(G) = {v(i)

1 , . . . ,v(i)
n′ }. The task is to decide whether there is a clique of order h

where each vertex comes from a different set Vi(G). Moreover, and without loss
of generality, we assume that each edge in G connects vertices with different
colors, that the input graph contains at least two vertices, and that this graph is
connected.

In our reductions, given an instance I = (G,h), we build elections with the
following candidates related to the graph G (in addition to the candidates specific
to a particular reduction). For each vertex v ∈ V (G), we introduce a candidate
denoted by the same symbol. For each edge e = {u,v}, we introduce two candidates,
(u,v) and (v,u); indeed, while our original graph is undirected, for our construction
we treat each undirected edge as two directed ones, one in each direction.

In the description of our preference orders, we will use the following orders
over subsets of candidates. For each color i, when we write Vi(G) in a preference
order, we mean the order

v(i)
1 Â v(i)

2 Â ·· · Â v(i)
n′ .

For each color i, each vertex v(i)
`

∈Vi(G), and each color j, j 6= i, we write L(v(i)
`

, j)
to denote the order obtained from

(v(i)
`

,v(j)
1)Â ·· · Â (v(i)

`
,v(j)

n′)

by removing those candidates (v(i)
`

,v(j)
h) for which there is no edge {v(i)

`
,v(j)

h } in G.
Intuitively, L(v(i)

`
, j) lists all edge candidates for edges which have endpoint v(i)

`

and go to vertices of color j (the particular order of these edges in L(v(i)
`

, j) is
irrelevant for our constructions).

41

Similarly, for each pair of colors i and j, 1 ≤ i, j ≤ h, i 6= j, we write E(i, j) to
mean the order

L(v(i)
1 , j)Â L(v(i)

2 , j)Â ·· · Â L(v(i)
n′ , j).

Intuitively, E(i, j) lists all the edge candidates between the vertices from Vi(G)
and the vertices from Vj(G) (note, however, that E(i, j) and E(j, i) are different).

The following two preference orders are crucial for the MULTICOLORED CLIQUE

technique. For each pair of colors, i, j, 1 ≤ i, j ≤ h, i 6= j, we define R(i, j) and
R′(i, j) as follows:

R(i, j) : v(i)
1 Â L(v(i)

1 , j)Â v(i)
2 Â L(v(i)

2 , j)Â ·· · Â v(i)
n′ Â L(v(i)

n′ , j),

R′(i, j) : L(v(i)
1 , j)Â v(i)

1 Â L(v(i)
2 , j)Â v(i)

2 Â ·· · Â L(v(i)
n′ , j)Â v(i)

n′ .

The idea behind R(i, j) and R′(i, j) is as follows. Consider a setting where u
is a vertex of color i and v is a vertex of color j (that is, u ∈Vi(G) and v ∈Vj(G)).
Note that R(i, j) and R′(i, j) contain all candidates from Vi(G) and E(i, j). If we
restrict these two preference orders to candidates u and (u,v), then they will
become u Â (u,v) and (u,v) Â u. That is, in this case they are reverses of each
other. However, if we restrict them to u and some candidate (u′,v′) different
from (u,v), then either they will be both u Â (u′,v′) or they will be both (u′,v′)Â u.
Using this effect is at the heart of our constructions.

With the above setup, we are ready to prove the results of this section. Here
we give the most interesting examples of proofs; the remaining ones are given in
the appendix to this chapter.

Theorem 3.1. PLURALITY-CCAC, parameterized by the number n of voters, is
W[1]-hard.

Proof. Let I = (G,h) be our instance of MULTICOLORED CLIQUE with graph G
and an integer h. Let the notation be the same as described above the theorem
statement. We form an instance I ′ of Plurality-CCAC as follows. Let the reg-
istered candidate set C consist of two candidates, p and d, and let the set A
of unregistered candidates contain all the vertex candidates and all the edge
candidates for G. Let p be the preferred candidate. We construct the election
such that the current winner is d. We introduce the following groups of voters
(when we write “· · ·” in a preference order, we mean listing all the remaining
candidates in some arbitrary order; below the proof we also provide an example
of applying this construction).

42

1) For each color i, 1≤ i ≤ h, we have one voter with preference order of the
form

Vi(G)Â d Â ·· · Â p.

2) For each pair of colors i, j (1 ≤ i, j ≤ h, i 6= j), we have h−1 voters with
preference order of the form

E(i, j)Â d Â ·· · Â p.

3) For each pair of colors i, j (1≤ i, j ≤ h, i 6= j), we have two voters, one with
preference order of the form

R(i, j)Â d Â ·· · Â p,

and one with preference order of the form

R′(i, j)Â d Â ·· · Â p.

4) We have h voters with preference order of the form

d Â ·· · Â p,

and h voters with preference order of the form

p Â ·· · Â d.

Note that the total number of voters is 3h+2(h+1) · (h
2
)

and that the current
winner is d with the score of (2h+2(h+1) · (h

2
)
) points. We set the budget k to

be h+2
(h
2
)= h2. This completes the construction. It is easy to see that this is a

parameterized reduction.
We now claim that it is possible to ensure that p becomes a winner by adding

at most k candidates if and only if I is a yes-instance.
First, assume that I is a yes-instance of MULTICOLORED CLIQUE and let Q be

a size-h subset of vertices that forms a multicolored clique in I. It is easy to see
that if we add to our election the h vertex candidates from Q and all the edge
candidates that correspond to edges between the candidates from Q, then, in
the resulting election, each candidate (including p and d) will have h points (for
example, each of the added vertex candidates will receive one point from the first

43

group of voters and h−1 points from the third group of voters). Thus, everyone
will win.

Now, assume that it is possible to ensure p’s victory by adding at most k candi-
dates. Let A′ be a subset of candidates such that |A′| ≤ k = h+2

(h
2
)

and adding
the candidates from A′ to the election ensures that p is a winner. Irrespective
of the contents of the set A′, in the resulting election p will have h points. Thus,
it follows that d must lose all the points from the first three groups of voters.
This implies that for each color i, 1 ≤ i ≤ h, A′ contains exactly one candidate
from Vi(G) and for each pair of colors i, j (1≤ i, j ≤ h, i 6= j), A′ contains exactly
one edge candidate (u,v) such that u ∈ Vi(G) and v ∈ Vj(G) (The fact that A′
contains at least one candidate of each type follows since otherwise d would have
more than h points; the fact that it contains exactly one of each type follows by a
simple counting argument).

Now it suffices to prove that for each pair of vertex candidates u,v ∈ A′, we also
have (u,v) ∈ A′. To show this, first observe that there is a total of h+2(h+1) ·(h

2
)=

h3 = h·k voters from the first three groups that will give points to the newly added
candidates. Since each added candidate can have at most h points, it follows that
|A′| = k and each added candidate receives exactly h points. By the observations
regarding preference orders R(i, j) and R′(i, j), if u,v ∈ A′ but (u,v) ∉ A′, then
either some vertex candidate or some edge candidate would be ranked first by at
least two voters from the third group. If this were the case for an edge candidate,
then—including the votes from the second group—this candidate would have
more than h points and p would not be a winner. If this were the case for a vertex
candidate (and none of the edge candidates were ranked first by more than one of
the voters in the third group), then this vertex candidate would receive at least
h points from the voters in the third group and one point from the voters in the
first group. Again, p would not be a winner. Thus, it must be that for each pair
of candidates u,v ∈ A′ we have (u,v) ∈ A′. However, this proves that G has a
multicolored clique of order h.

We provide an example for the reduction described in the proof of Theorem 3.1.
The input graph is depicted in Figure 3.4 and we take h := 3. The constructed
election is presented in Table 3.3 and the election after we add the candidates:

v(1)
1 , v(2)

2 , v(3)
2 ,

(v(1)
1 ,v(2)

2), (v(1)
1 ,v(3)

2), (v(2)
2 ,v(3)

2),

(v(2)
2 ,v(1)

1), (v(3)
2 ,v(1)

1), (v(3)
2 ,v(2)

2),

44

v(1)
1 v(2)

1 v(3)
1

v(1)
2 v(2)

2 v(3)
2

Figure 3.4. The input graph considered in our example for Theorem 3.1.

corresponding to the vertices and edges of the multicolored clique {v(1)
1 ,v(2)

2 ,v(3)
2 },

is presented in Table 3.4.
We now consider the Veto-CCAC case, which, despite of having a relatively

simple modification of the last proof, is quite intriguing.

Theorem 3.2. VETO-CCAC, parameterized by the number n of voters, is W[1]-
hard.

Proof. One can use the same construction (and proof) as for the Plurality-CCAC
case (Theorem 3.1), but with the following modifications (note that the order
is important, that is, we perform the second modification only after we have
performed the first modification):

1) swap the occurrences of p and d in every vote, and

2) reverse each vote.

In effect, prior to adding candidates, p is vetoed by all but h voters and d is vetoed
by exactly h voters. It is easy to verify that if we add vertex candidates and edge
candidates that correspond to a multicolored clique, then every candidate in the
election is vetoed by exactly h voters and all the candidates are winners.

For the reverse direction, analogously as in the Plurality case (Theorem 3.1),
we note that we have to add exactly one vertex candidate of each color and exactly
one edge candidate for each (ordered) pair of colors (otherwise p would receive
more than h vetoes). To argue that for each pair of vertex candidates u and v that
we add, we also have to add edge candidate (u,v), we use the same reasoning as
in the Plurality case, but pointing out that if some candidate receives two vetoes
from the third group of voters, then some other one receives, altogether, fewer
than h vetoes and p is not a winner.

45

Table 3.3. The election constructed in the proof of Theorem 3.1 for our example,
that is, for the input graph depicted in Figure 3.4. The registered candidates
(typeset in bold) are d and p. The figure shows the specific voters, grouped by
the groups as defined in Theorem 3.1, and by the color(s) for which the voters
correspond to.

Group Color(s) Preference order

1 (1) v(1)
1 Â v(1)

2 ÂdÂ ·· ·
1 (2) v(2)

1 Â v(2)
2 ÂdÂ ·· ·

1 (3) v(3)
1 Â v(3)

2 ÂdÂ ·· ·
2 (1,2) (v(1)

1 ,v(2)
1)Â (v(1)

1 ,v(2)
2)Â (v(1)

2 ,v(2)
2)ÂdÂ ·· · (2 copies)

2 (2,1) (v(2)
1 ,v(1)

1)Â (v(2)
2 ,v(1)

1)Â (v(2)
2 ,v(1)

2)ÂdÂ ·· · (2 copies)

2 (1,3) (v(1)
1 ,v(3)

2)ÂdÂ ·· · (2 copies)

2 (3,1) (v(3)
2 ,v(1)

1)ÂdÂ ·· · (2 copies)

2 (2,3) (v(2)
1 ,v(3)

1)Â (v(2)
2 ,v(3)

2)ÂdÂ ·· · (2 copies)

2 (3,2) (v(3)
1 ,v(2)

1)Â (v(3)
2 ,v(2)

2)ÂdÂ ·· · (2 copies)

3 (1,2) v(1)
1 Â (v(1)

1 ,v(2)
1)Â (v(1)

1 ,v(2)
2)Â v(1)

2 Â (v(1)
2 ,v(2)

2)ÂdÂ ·· ·
3 (1,2) (v(1)

1 ,v(2)
1)Â (v(1)

1 ,v(2)
2)Â v(1)

1 Â (v(1)
2 ,v(2)

2)Â v(1)
2 ÂdÂ ·· ·

3 (2,1) v(2)
1 Â (v(2)

1 ,v(1)
1)Â v(2)

2 Â (v(2)
2 ,v(1)

1)Â (v(2)
2 ,v(1)

2)ÂdÂ ·· ·
3 (2,1) (v(2)

1 ,v(1)
1)Â v(2)

1 Â (v(2)
2 ,v(1)

1)Â (v(2)
2 ,v(1)

2)Â v(2)
2 ÂdÂ ·· ·

3 (1,3) v(1)
1 Â (v(1)

1 ,v(3)
2)Â v(1)

2 ÂdÂ ·· ·
3 (1,3) (v(1)

1 ,v(3)
2)Â v(1)

1 Â v(1)
2 ÂdÂ ·· ·

3 (3,1) v(3)
1 Â v(3)

2 Â (v(3)
2 ,v(1)

1)ÂdÂ ·· ·
3 (3,1) v(3)

1 Â (v(3)
2 ,v(1)

1)Â v(3)
2 ÂdÂ ·· ·

3 (2,3) v(2)
1 Â (v(2)

1 ,v(3)
1)Â v(2)

2 Â (v(2)
2 ,v(3)

2)ÂdÂ ·· ·
3 (2,3) (v(2)

1 ,v(3)
1)Â v(2)

1 Â (v(2)
2 ,v(3)

2)Â v(2)
2 ÂdÂ ·· ·

3 (3,2) v(3)
1 Â (v(3)

1 ,v(2)
1)Â v(3)

2 Â (v(3)
2 ,v(2)

2)ÂdÂ ·· ·
3 (3,2) (v(3)

1 ,v(2)
1)Â v(3)

1 Â (v(3)
2 ,v(2)

2)Â v(3)
2 ÂdÂ ·· ·

4 dÂ ·· · (3 copies)

4 pÂ ·· · (3 copies)

46

Table 3.4. The election from Table 3.3 with both the registered candidates
and the added candidates corresponding to picking the multicolored clique
{v(1)

1 ,v(2)
2 ,v(3)

2 } typeset in bold. The figure shows the specific voters, grouped by
the groups as defined in Theorem 3.1, as well as by the color(s) for which the
voters correspond to.

Group Color(s) Preference order

1 (1) v(1)
1 Â v(1)

2 ÂdÂ ·· ·
1 (2) v(2)

1 Â v(2)
2 ÂdÂ ·· ·

1 (3) v(3)
1 Â v(3)

2 ÂdÂ ·· ·
2 (1,2) (v(1)

1 ,v(2)
1)Â (v(1)

1 ,v(2)
2)Â (v(1)

2 ,v(2)
2)ÂdÂ ·· · (2 copies)

2 (2,1) (v(2)
1 ,v(1)

1)Â (v(2)
2 ,v(1)

1)Â (v(2)
2 ,v(1)

2)ÂdÂ ·· · (2 copies)

2 (1,3) (v(1)
1 ,v(3)

2)ÂdÂ ·· · (2 copies)

2 (3,1) (v(3)
2 ,v(1)

1)ÂdÂ ·· · (2 copies)

2 (2,3) (v(2)
1 ,v(3)

1)Â (v(2)
2 ,v(3)

2)ÂdÂ ·· · (2 copies)

2 (3,2) (v(3)
1 ,v(2)

1)Â (v(3)
2 ,v(2)

2)ÂdÂ ·· · (2 copies)

3 (1,2) v(1)
1 Â (v(1)

1 ,v(2)
1)Â (v(1)

1 ,v(2)
2)Â v(1)

2 Â (v(1)
2 ,v(2)

2)ÂdÂ ·· ·
3 (1,2) (v(1)

1 ,v(2)
1)Â (v(1)

1 ,v(2)
2)Â v(1)

1 Â (v(1)
2 ,v(2)

2)Â v(1)
2 ÂdÂ ·· ·

3 (2,1) v(2)
1 Â (v(2)

1 ,v(1)
1)Â v(2)

2 Â (v(2)
2 ,v(1)

1)Â (v(2)
2 ,v(1)

2)ÂdÂ ·· ·
3 (2,1) (v(2)

1 ,v(1)
1)Â v(2)

1 Â (v(2)
2 ,v(1)

1)Â (v(2)
2 ,v(1)

2)Â v(2)
2 ÂdÂ ·· ·

3 (1,3) v(1)
1 Â (v(1)

1 ,v(3)
2)Â v(1)

2 ÂdÂ ·· ·
3 (1,3) (v(1)

1 ,v(3)
2)Â v(1)

1 Â v(1)
2 ÂdÂ ·· ·

3 (3,1) v(3)
1 Â v(3)

2 Â (v(3)
2 ,v(1)

1)ÂdÂ ·· ·
3 (3,1) v(3)

1 Â (v(3)
2 ,v(1)

1)Â v(3)
2 ÂdÂ ·· ·

3 (2,3) v(2)
1 Â (v(2)

1 ,v(3)
1)Â v(2)

2 Â (v(2)
2 ,v(3)

2)ÂdÂ ·· ·
3 (2,3) (v(2)

1 ,v(3)
1)Â v(2)

1 Â (v(2)
2 ,v(3)

2)Â v(2)
2 ÂdÂ ·· ·

3 (3,2) v(3)
1 Â (v(3)

1 ,v(2)
1)Â v(3)

2 Â (v(3)
2 ,v(2)

2)ÂdÂ ·· ·
3 (3,2) (v(3)

1 ,v(2)
1)Â v(3)

1 Â (v(3)
2 ,v(2)

2)Â v(3)
2 ÂdÂ ·· ·

4 dÂ ·· · (3 copies)

4 pÂ ·· · (3 copies)

47

To see why this result is intriguing, let us consider the following voting rule,
that we call TrueVeto. Under TrueVeto, a candidate c is a winner if none of the
voters ranks c last. It is quite easy to see that TrueVeto-CCAC is NP-complete
(by a reduction from the SET COVER problem, for example), but it is also in FPT
(when parameterized by the number of voters; an algorithm similar to that for
Plurality-DCAC, based on our Signatures technique, works; see Section 3.3.4). If
a Veto election contained more candidates than voters, then at least one candidate
would never be vetoed and, in effect, the election would be held according to the
TrueVeto rule. This means that in the proof which shows that Veto-CCAC is
W[1]-hard, the election has fewer candidates than voters, even after adding the
candidates (and keep in mind that the number of voters is the parameter!). Thus,
the hardness of the problem lays in picking few spoiler candidates to add from a
large group of them. If we were adding more candidates than we had voters, the
problem would be FPT.

Now, we move on to the deleting candidates case. We will give a detailed proof
for Veto-CCDC (on the one hand, Plurality-CCDC is in FPT, and on the other
hand, it is instructive to see a detailed proof for the case of Veto). The proof still
follows the general ideas of the multicolored clique technique, but since we delete
candidates, we have to adapt the approach.

Theorem 3.3. VETO-CCDC, parameterized by the number n of voters, is W[1]-
hard.

Proof. We provide a parameterized reduction from the MULTICOLORED CLIQUE

problem. Let I = (G,h) be our input instance with graph G and an integer h, and
let the notation be as described in the introduction to the section. We form an
instance I ′ of Veto-CCDC as follows. Let the registered candidate set C consist of
all the vertex candidates plus all the edge candidates for G, plus the preferred
candidate p. We construct the following groups of voters (set H = 2

(h
2
)= h ·(h−1)):

1) For each color i, 1≤ i ≤ h, we introduce 2H− (h−1) voters with preference
order of the form

· · · Â p ÂVi(G).

2) For each pair of colors i, j (1≤ i, j ≤ h, i 6= j) we introduce 2H−1 voters with
preference order of the form

· · · Â p Â E(i, j).

48

3) For each pair of colors, i, j (1≤ i, j ≤ h, i 6= j) we introduce two voters, one
with preference order of the form

· · · Â p Â R(i, j),

and one with preference order of the form

· · · Â p Â R′(i, j).

4) We introduce 2H voters with preference order of the form · · · Â p.

We set the number k of candidates that can be deleted to |V (G)|−h+2|E(G)|−H
(with the intention that one should delete all the candidates except for p and
those corresponding to the vertices and edges of the multicolored clique of order h).
This completes the construction. Note that the total number of voters is

(2H− (h−1)) ·h+ (2H−1) ·H+H ·2+2H ·1= 2H · (H+h+1).

Since the input graph is connected and contains at least two vertices (which
means that the election has more than H+h+1 candidates), there is at least one
candidate, either a vertex candidate or an edge candidate, which has fewer than
2H vetoes. Thus, p is currently not a winner.

We claim that p can become a winner by deleting at most k candidates if and
only if I is a yes-instance. First, it is easy to see that if G contains an order-h
multicolored clique and Q is the set of h vertices that form such a clique, then we
can ensure that p is a winner. It suffices to delete all candidates from V (G)\Q
and all edge candidates except the ones of the form (u,v), where both u and v
belong to Q. In effect, each remaining candidate will have 2H vetoes and all the
candidates will tie for victory. To see this, note that after deleting the candidates,
p still receives 2H vetoes from the last group of voters. Now, for each color i,
1≤ i ≤ h, consider the remaining vertex candidate of color i (call this vertex v(i)).
This candidate receives 2H− (h−1) vetoes from the first group of voters. Further,
there are exactly h−1 voters in the third group that give one veto to v(i) each
(these are the voters that correspond to the edges that connect v(i) with the other
vertices of the clique). No other voter vetoes v(i). Now, for each pair of colors,
i and j, 1≤ i, j ≤ h, i 6= j, consider the two edge candidates, call them (u,v) and
(v,u), whose corresponding edges are incident to vertices of color i (candidate u)
and color j (candidate v). Both (u,v) and (v,u) still get 2H −1 vetoes from the
second group of voters. It is also easy to see that each of them receives one veto

49

from the third group of voters (for the case of (u,v), this veto comes from the first
voter corresponding to the color choice (i, j), and in the case of v, this veto comes
from the first voter corresponding to the color choice (j, i)).

Now we come to the reverse direction. Assume that it is possible to ensure p’s
victory be deleting at most k candidates. Prior to deleting any candidates, p has
2H vetoes and, of course, deleting candidates cannot decrease this number. Thus,
we have to ensure that each non-deleted candidate has at least 2H vetoes.

Consider two colors i and j, 1≤ i, j ≤ h, i 6= j. Each edge candidate (u,v) (where
the corresponding vertex u has color i and the corresponding vertex v has color j)
appears below p in 2H −1 votes from the second group of voters and in two
votes from the third one. If we keep two edge candidates, say (u′,v′) and (u′′,v′′)
(where u′,u′′ ∈Vi(G) and v′,v′′ ∈Vj(G)), then they are both ranked below p in the
same 2H −1 votes from the second group and in the same two votes from the
third one. If neither (u′,v′) nor (u′′,v′′) is deleted, then one of them will receive
fewer than 2H vetoes. This means that for each pair of colors i and j, we have to
delete all except possibly one edge candidate of the form (u,v), where u ∈Vi(G)
and v ∈Vj(G).

Similarly, for each color i, 1≤ i ≤ h, each vertex candidate from Vi(G) appears
below p in 2H− (h−1) votes from the first group of voters and in 2(h−1) votes
from the third group. Each two candidates of the same color are ranked below p
in the same votes in the first group. Thus, if two vertex candidates of the same
color were left in the election (after deleting candidates), then at least one of them
would have fewer than 2H vetoes.

In consequence, and since we can delete at most k = |V (G)|−h+2|E(G)|−H
candidates, which means that at least h+H candidates except p must remain in
the final election, if p is to become a winner, then after deleting the candidates
the election must contain exactly one vertex candidate of each color, and exactly
one edge candidate for each ordered pair of colors.

Assume that p is among the winners after deleting candidates and consider two
remaining vertex candidates u and v, u ∈Vi(G) and v ∈Vj(G) (i 6= j); they must
exist by the previous observation. We claim that edge candidates (u,v) and (v,u)
also must remain. Due to symmetry, it suffices to consider (u,v). Careful inspec-
tion of voters in the third group shows that if (u,v) is not among the remaining
candidates, then (using the observation regarding orders R(i, j) and R′(i, j))
we have that the two voters from the third group that correspond to the color
pair (i, j) either both rank u last or both rank the same edge candidate last. In
either case, a simple counting argument shows that either u has fewer than 2H
vetoes or the edge candidate corresponding to the ordered color pair (i, j) has

50

fewer than 2H vetoes. In either case, p is not a winner. This shows that the
remaining candidates correspond to an order-h multicolored clique.

Our final example of the application of the multicolored clique technique is for
t-Approval-Comb-DCAC for t ≥ 2. We use an approach very similar to the one
used in the preceding proofs, but since we are in the combinatorial setting, we use
the bundling function to ensure consistency between the added edge candidates
and the added vertex candidates. This is crucial since t-Approval-DCAC is FPT.

Theorem 3.4. For each fixed integer t ≥ 2, t-APPROVAL-COMB-DCAC is W[1]-
hard, parameterized by the number n of voters.

Proof. Given an instance I = (G,h) for the MULTICOLORED CLIQUE problem, we
construct an instance of t-Approval-COMB-DCAC. For the combinatorial setting,
it is more natural to create only one candidate for each edge, and not two “directed”
ones. We let the set of registered candidates be C = {p,d}∪D, where D is the
following set of dummy candidates:

D = {d{i, j}
z : i ∈ [h] 6= j ∈ [h], z ∈ [t−1]}

∪ {d(i)
z : i ∈ [h], z ∈ [t−1]}

∪ {e(i)
z : i ∈ [h], z ∈ [t−1]}.

Candidate d is the despised one whose victory we want to preclude. We let the
set of the additional (unregistered) candidates be

A =V (G)∪E(G).

That is, A contains all the vertex candidates and all the edge candidates. We set
the bundling function κ so that for each edge candidate e whose corresponding
edge is incident to u and v, we have κ(e)= {e,u,v}, and for each vertex candidate v
we have κ(v)= {v}. We introduce the following voters:

1) For each pair {i, j}⊂ [h], i 6= j, of distinct colors, we have one voter with the
following preference order, where we write E({i, j}) to mean an arbitrarily
chosen order over the edge candidates that link vertices of color i with
those of color j; the first occurrence of “· · ·” regards the candidates in
{d{i, j}

z : z ∈ [t−1]} only):

E({i, j})Â d{i, j}
1 Â ·· · Â d{i, j}

t−1 Â d Â ·· · .

51

Note that in the initial election, d gets a point from this voter, but it is
sufficient (and we will make sure that it is also necessary) to add one
candidate from E({i, j}) to prevent d from getting this point.

2) For each color i, 1 ≤ i ≤ h, we have a voter with the following preference
order (recall that Vi(G) consists of all vertex candidates that correspond
to the vertices of the same color i; the first occurrence of “· · ·” regards the
candidates in {d(i)

z : z ∈ [t−2]} only):

Vi(G)Â d(i)
1 Â ·· · Â d(i)

t−2 Â p Â d(i)
t−1 Â ·· · .

Note that in the initial election p gets a point from this voter, but if more
than one candidate from Vi(G) is added, then p does not gain this point.

3) For each number i ∈ [h], we have a voter with the following preference order
(the first occurrence of “· · ·” regards the candidates in {e(i)

z : z ∈ [t−1]} only):

d Â e(i)
1 Â ·· · Â e(i)

t−1 Â ·· · .

Note that, altogether, d gets h points from the voters in this group.

First, prior to adding any candidates, d has h+ (h
2
)

points while p has h points,
and each of the dummy candidates has one point. We show next that it is possible
to ensure that d is not a winner of this election by adding at most k := (h

2
)

(bundles
of) candidates if and only if G has a multicolored clique of order h.

An easy calculation shows that if there is a multicolored clique in G, then
adding the edge candidates corresponding to the edges of this clique ensures that
d is not a winner.

For the reverse direction, assume that it is possible to ensure that d is not
a winner by adding at most

(h
2
)

bundles. It is easy to see that p is the only
candidate that can reach a higher score than d this way. For this to happen,
d must lose all the points that d initially got from the first group of voters, and p
must still get all the points from the second group of voters. Moreover, adding
voters corresponding to vertices does not help. Thus, this must correspond to
adding

(h
2
)

edge candidates whose bundles do not add two vertices of the same
color. That is, these

(h
2
)

added edge candidates must correspond to a multicolored
clique of order h.

We conclude this section by mentioning that the following results also follow
by applying the Multicolored Clique technique. The proofs are available in the
appendix to this chapter.

52

Theorem 3.5. For each fixed integer t, t ≥ 2, t-APPROVAL-CCAC is W[1]-hard,
parameterized by the number n of voters.

Theorem 3.6. For each fixed integer t, t ≥ 2, t-VETO-CCAC is W[1]-hard, pa-
rameterized by the number n of voters.

Theorem 3.7. For each fixed integer t ≥ 1, t-VETO-CCDC is W[1]-hard, parame-
terized by the number n of voters.

Theorem 3.8. 2-APPROVAL-CCDC, parameterized by the number n of voters, is
W[1]-hard.

Theorem 3.9. For each fixed integer t, t ≥ 3, t-APPROVAL-CCDC is W[1]-hard,
parameterized by the number n of voters.

3.5. Cubic Vertex Cover Proof Technique

We now move on to the Cubic Vertex Cover proof technique. Specifically, we use it
to obtain the following results (again, all results are for the parameterization by
the number of voters):

1) Borda-CCAC and Borda-CCDC are NP-hard (this holds already for elections
with ten voters).

2) For each rational α, 0≤α≤ 1, Copelandα-CCAC and Copelandα-CCDC are
NP-hard (this holds already for elections with twenty and twenty-six voters,
respectively).

3) Maximin-CCAC is NP-hard (this holds already for elections with ten voters).

In other words, we use the Cubic Vertex Cover technique for all our non-
combinatorial Para-NP-hardness results. Right in this section we provide proofs
for the cases of Borda-CCDV and Maximin-CCAC, while the remaining ones are
given in the appendix to this chapter. The reason for doing so is that the proofs
for Borda-CCDV and Maximin-CCAC illustrate the essential elements of the tech-
nique (as applied both to an adding-candidates case and to a deleting-candidates
case, and both to a scoring rule and a Condorcet consistent rule).

Recall the NP-hard CUBIC VERTEX COVER problem [84].

53

CUBIC VERTEX COVER

Input: A 3-regular undirected graph G = (V (G),E(G)) and an
integer h.
Question: Is there a set of h vertices such that each edge is incident
to at least one vertex from the set?

The general idea behind the Cubic Vertex Cover technique is to prove Para-NP-
hardness via reductions from the CUBIC VERTEX COVER problem, using the fact
that cubic graphs can be encoded using a constant number of votes.

All the reductions in this section use the following common setup. Let I be an
instance of CUBIC VERTEX COVER with a graph G and an integer h. From the
classic result by Vizing [141], we know that there is an edge-coloring of G with
four colors (that is, it is possible to assign one out of four colors to each edge so
that no two edges incident to the same vertex have the same color). Further, it
is possible to compute this coloring in polynomial time [122]. This is equivalent
to saying that it is possible to decompose the set of G’s edges into four disjoint
matchings. Our reductions start by computing this decomposition. We rename
the edges of G so that these four disjoint matchings are:

E(1) = {e(1)
1 , . . . , e(1)

m1
},

E(2) = {e(2)
1 , . . . , e(2)

m2
},

E(3) = {e(3)
1 , . . . , e(3)

m3
},

E(4) = {e(4)
1 , . . . , e(4)

m4
}.

We set m′ = m1 +m2 +m3 +m4 = |E(G)| and n′ = |V (G)|. For each edge e of the
graph, we arbitrarily order its vertices and we write v′(e) and v′′(e) to refer to
the first vertex and to the second vertex, respectively. For each `, 1 ≤ `≤ 4, we
write E(−`) to mean E(G)\ E(`). We write V (−`) to mean the set of vertices that
are not incident to any of the edges in E(`).

The crucial point of our approach is to use the above decomposition to create
eight votes (two for each matching) that encode the graph. We will now provide

54

useful notation for describing these eight votes. For each edge e of the graph, we
define the following four orders over e, v′(e), and v′′(e):

P(e) : e Â v′(e)Â v′′(e),

P ′(e) : e Â v′′(e)Â v′(e),

Q(e) : v′(e)Â v′′(e)Â e,

Q′(e) : v′′(e)Â v′(e)Â e.

For each `, 1≤ `≤ 4, we define the following orders over V (G)∪E(G):

A(`) : P(e(`)
1)Â P(e(`)

2)Â ·· · Â P(e(`)
m`

),

A′(`) : P ′(e(`)
m`

)Â ·· · Â P ′(e(`)
2)Â ·· · Â P ′(e(`)

1),

B(`) : Q(e(`)
1)ÂQ(e(`)

2)Â ·· · ÂQ(e(`)
m`

),

B′(`) : Q′(e(`)
m`

)Â ·· · ÂQ′(e(`)
2)Â ·· · ÂQ′(e(`)

1).

Note that since each E(`) is a matching, each of the above orders is well-defined.
The first two of these families of orders (that is, A(`) and A′(`)) will be useful
in the hardness proofs for the cases of deleting candidates, and the latter two
(that is, B(`) and B′(`)) in the hardness proofs for the cases of adding candidates.
The intuitive idea behind orders A(`) and A′(`) (B(`) and B′(`)) is that, at a high
level, they are reverses of each other, but they treat edges and their endpoints
in a slightly asymmetric way (we will describe this in detail in the respective
proofs).

We are ready to show examples of applying the Cubic Vertex Cover technique.
We start with the case of Borda-CCDC, where we present the theorem and its
proof first, followed by an example of applying the reduction.

Theorem 3.10. BORDA-CCDC is NP-hard, even for elections with only ten voters.

Proof. We give a reduction from the CUBIC VERTEX COVER problem. Let I be
our input instance that contains graph G = (V (G),E(G)) and an integer h. We
use the notation introduced in the beginning of the section. We form an election
E = (C,V), where C = {p,d}∪V (G)∪E(G). We introduce the following ten voters:

55

1) For each `, 1≤ `≤ 4, we have the following two voters:

µ(`) : A(`)Â E(−`) ÂV (−`) Â d Â p,

µ′(`) : p Â d Â
←−−−
V (−`) Â

←−−−
E(−`) Â A′(`).

2) We have one voter with preference order p Â d ÂV (G)Â E(G) and one voter
with preference order

←−−−
E(G)Â←−−−

V (G)Â p Â d.

We claim that p can become a winner of this election by deleting at most
k := h candidates if and only if there is a vertex cover of size h for G.

Let us first calculate the scores of all the candidates:

1) Candidate p has 5(n′+m′)+6 points (that is, 4(n′+m′+1) points from the
first eight voters and n′+m′+2 points from the last two voters).

2) Each vertex candidate v has 5(n′+m′)+2 points (for each of the three pairs
of voters µ(`), µ′(`), 1≤ `≤ 4, such that v is incident to some edge in E(`),
v gets n′+m′ points; v gets n′+m′+1 points from the remaining pair of
voters in the first group and, additionally, n′+m′+1 points from the last
two voters).

3) Each edge candidate e has 5(n′+m′)+7 points (that is, n′+m′+3 points
from the pair of voters µ(`), µ′(`) such that e ∈ E(`), n′+m′+1 points from
each pair of the remaining three pairs of voters in the first group, and
n′+m′+1 points from the last two voters.

4) Candidate d has 5(n′+m′)+4 points (that is, 4(n′+m′+1) points from the
voters in the first group and n′+m′ points from the last two voters.

Clearly, prior to deleting any of the candidates, p is not a winner since the edge
candidates have higher scores. However, the score of p is higher than the score of
the vertex candidates and the score of d.

We now describe how deleting candidates affects the scores of the candidates.
Let v be some vertex candidate. Deleting v from our election causes the following
effects: the score of each edge candidate e such that v = v′(e) or v = v′′(e) decreases
by six; the score of each remaining candidate decreases by five. This means that
if we delete h vertex candidates that correspond to a vertex cover of G, then the
scores of p, d, and all the vertex candidates decrease by 5h, while the scores of

56

v1 v2

v3 v4

v5 v6

(1)

(1) (1)

(2)

(2)

(3) (3)
(4) (4)

Figure 3.5. The input graph for our example for Theorem 3.10. The numbers in
parentheses represent the colors of the edges according to an assumed partition
to four colors. For example, the edge {v1,v3} has the third color.

all edge candidates decrease by at least 5h+1. As a result, we have p as a winner
of the election.

For the reverse direction, assume that it is possible to ensure p’s victory by
deleting at most h candidates. Deleting candidate d decreases the score of p by
six, whereas it decreases the scores of every other candidate by five. Thus, we
can assume that there is a solution that does not delete d. Similarly, one can
verify that if there is a solution that deletes some edge e, then a solution that is
identical but instead of e deletes either v′(e) or v′′(e) (it is irrelevant which one)
is also correct. We conclude that it is possible to ensure p’s victory by deleting at
most h vertex candidates. However, by the discussion of the effects of deleting
vertex candidates and the fact that prior to any deleting each edge candidate has
one point more than p, we have that these at-most-h deleted vertex candidates
must correspond to a vertex cover of G. This completes the proof.

We provide an example for the reduction described in the proof of Theorem 3.10.
The input graph is depicted in Figure 3.5 and we take h := 4. We present the con-
structed election in Figure 3.6. The election that results from deleting candidates
{v1,v3,v4,v6} that correspond to a vertex cover is presented in Figure 3.7.

Let us now show an application of the Cubic Vertex Cover technique to the case
of adding candidates. Specifically, we consider Maximin-CCAC.

Theorem 3.11. MAXIMIN-CCAC is NP-hard, even for elections with only ten
voters.

Proof. We give a reduction from CUBIC VERTEX COVER (we use the notation
as provided at the beginning of this section). Given an instance I = (G,h) for

57

µ(1) : {v1,v2}Â v1 Â v2 Â {v3,v5}Â v3 Â v5 Â {v4,v6}Â v4 Â v6 Â
E(−1) ÂV (−1) Â d Â p

µ′(1) : p Â d Â
←−−−
V (−1) Â

←−−−
E(−1) Â

{v4,v6}Â v6 Â v4 Â {v3,v5}Â v5 Â v3 Â {v1,v2}Â v2 Â v1

µ(2) : {v3,v4}Â v3 Â v4 Â {v5,v6}Â v5 Â v6 Â
E(−2) ÂV (−2) Â d Â p

µ′(2) : p Â d Â
←−−−
V (−2) Â

←−−−
E(−2) Â

{v5,v6}Â v6 Â v5 Â {v3,v4}Â v4 Â v3

µ(3) : {v1,v3}Â v1 Â v3 Â {v2,v4}Â v2 Â v4 Â
E(−3) ÂV (−3) Â d Â p

µ′(3) : p Â d Â
←−−−
V (−3) Â

←−−−
E(−3) Â

{v2,v4}Â v4 Â v2 Â {v1,v3}Â v3 Â v1

µ(4) : {v1,v5}Â v1 Â v5 Â {v2,v6}Â v2 Â v6 Â
E(−4) ÂV (−4) Â d Â p

µ′(4) : p Â d Â
←−−−
V (−4) Â

←−−−
E(−4) Â

{v1,v5}Â v5 Â v1 Â {v2,v6}Â v6 Â v2

one voter: p Â d ÂV (G)Â E(G)

one voter:
←−−−
E(G)Â←−−−

V (G)Â p Â d

Figure 3.6. The election constructed in the proof of Theorem 3.10 for the input
graph depicted in Figure 3.5.

58

µ(1) : {v1,v2}Â��ZZv1 Â v2 Â {v3,v5}Â��ZZv3 Â v5 Â {v4,v6}Â��ZZv4 Â��ZZv6 Â
E(−1) ÂV (−1) Â d Â p

µ′(1) : p Â d Â
←−−−
V (−1) Â

←−−−
E(−1) Â

{v4,v6}Â��ZZv6 Â��ZZv4 Â {v3,v5}Â v5 Â��ZZv3 Â {v1,v2}Â v2 Â��ZZv1

µ(2) : {v3,v4}Â��ZZv3 Â��ZZv4 Â {v5,v6}Â v5 Â��ZZv6 Â
E(−2) ÂV (−2) Â d Â p

µ′(2) : p Â d Â
←−−−
V (−2) Â

←−−−
E(−2) Â

{v5,v6}Â��ZZv6 Â v5 Â {v3,v4}Â��ZZv4 Â��ZZv3

µ(3) : {v1,v3}Â��ZZv1 Â��ZZv3 Â {v2,v4}Â v2 Â��ZZv4 Â
E(−3) ÂV (−3) Â d Â p

µ′(3) : p Â d Â
←−−−
V (−3) Â

←−−−
E(−3) Â

{v2,v4}Â��ZZv4 Â v2 Â {v1,v3}Â��ZZv3 Â��ZZv1

µ(4) : {v1,v5}Â��ZZv1 Â v5 Â {v2,v6}Â v2 Â��ZZv6 Â
E(−4) ÂV (−4) Â d Â p

µ′(4) : p Â d Â
←−−−
V (−4) Â

←−−−
E(−4) Â

{v1,v5}Â v5 Â��ZZv1 Â {v2,v6}Â��ZZv6 Â v2

one voter : p Â d ÂV (G)Â E(G)

one voter :
←−−−
E(G)Â←−−−

V (G)Â p Â d

Figure 3.7. The election from Figure 3.6 with the candidates corresponding to the
vertex cover {v1,v3,v4,v6} deleted.

59

CUBIC VERTEX COVER, we construct an instance for Maximin-CCAC. We let the
registered candidate set C be {p}∪E(G), and we let V (G) be the set of unregistered
candidates. We construct the following ten voters:

1) For each `, 1≤ `≤ 4, we have the following two voters:

µ(`) : B(`)Â E(−`) ÂV (−`) Â p,

µ′(`) : p Â
←−−−
V (−`) Â

←−−−
E(−`) Â B′(`).

2) We have one voter with preference order E(G) Â p Â V (G) and one voter
with preference order

←−−−
E(G)Â p Â←−−−

V (G).

Let E be the thus-constructed election (including all registered and unregis-
tered candidates). We have the following values of the NE(·, ·) function (recall
that this function represents the results of the head-to-head contests):

1) For each vertex v ∈V (G), we have NE(p,v)= 6 (so NE(v, p)= 4).

2) For each edge e ∈ E(G), we have NE(p, e)= 4 (so NE(e, p)= 6).

3) For each vertex v ∈V (G) and each edge e ∈ E(G) we have the following: if
v is an endpoint of e, then NE(v, e)= 6 (so NE(e,v)= 4), and otherwise we
have NE(v, e)= 5 (so NE(e,v)= 5).

4) For each pair of vertices, v′,v′′ ∈V (G), NE(v′,v′′)= 5.

5) For each pair of edges, e′, e′′ ∈ E(G), NE(e′, e′′)= 5.

In effect, prior to adding the candidates, the score of p is four and the score of
each edge candidate is five. Adding a vertex candidate v to the election does not
change the score of p, but decreases the score of each edge candidate that has
v as an endpoint to four. Further, this added vertex candidate has score four as
well. Thus, it is easy to see that it is possible to ensure p’s victory by adding at
most h candidates if and only if there is a size-h vertex cover for G.

We conclude the section by mentioning that the following results, whose proofs
are given in the appendix to this chapter, also follow by applying the Cubic Vertex
Cover technique.

Theorem 3.12. BORDA-CCAC is NP-hard, even for elections with only ten voters.

60

Theorem 3.13. For each rational number α, 0 ≤ α ≤ 1, COPELANDα-CCAC is
NP-hard, even for elections with only twenty voters.

Theorem 3.14. For each rational number α, 0 ≤ α ≤ 1, COPELANDα-CCDC is
NP-hard, even for elections with only twenty-six voters.

3.6. Set-Embedding Proof Technique for
Combinatorial Variants

In this section, we present our Set-Embedding proof technique for the combi-
natorial variants of our control problems. Specifically, we prove the following
statements (again, all results are for the parameterization by the number of
voters):

1) For each fixed integer t ≥ 1 and for each voting rule R ∈ {t-Approval,
t-Veto, Borda, Copelandα (for 0≤α≤ 1), Maximin}, both R-COMB-CCDC
and R-COMB-DCDC are Para-NP-hard.

2) For each voting rule R ∈ {Borda, Copelandα (for 0 ≤ α ≤ 1)}, Maximin},
R-COMB-CCAC is Para-NP-hard.

3) For each voting rule R ∈ {Borda, Copelandα (for 0≤α≤ 1)}, R-COMB-DCAC
is Para-NP-hard.

That is, in this section we provide all our Para-NP-hardness results for the
combinatorial variants of our problems.

Recall the NP-hard SET COVER problem [84].

SET COVER

Input: A universe of elements X , a collection S of sets of elements
of X , and a budget h.
Question: Is there a subcollection S ′ ⊆S of sets such that |S ′| ≤ h
and

⋃
S∈S ′ S = X?

All proofs in this section follow by reducing the SET COVER problem to the
respective problem in a way which uses the bundling function to encode the sets
from the SET COVER instances (hence the name of the technique). We start by
providing some common notation and observations common to all of these results.

61

Let I = (X ,S ,h) be an input instance of SET COVER (which is NP-hard). We
construct elections with candidate sets that include the elements from X and the
sets from S . Specifically, for each element xi ∈ X , we introduce a candidate with
the same name, and for each set S j ∈S , we introduce a candidate named s j. We
denote the set of all element candidates by Xcand and denote the set of all set
candidates by Scand. Further, we will typically have candidates p and d. For the
constructive cases, p will be the preferred candidate while for the destructive
cases, d will be the despised one.

Unless stated otherwise, in each of our proofs we use a bundling function κ

defined as follows: for each set candidate s j, we have κ(s j) = {s j}∪ {xi : xi ∈ S j},
and for each non-set candidate c, we have κ(c) = {c}. We refer to this bundling
function as the set-embedding bundling function.

The general idea of our proofs is that to ensure p’s victory (for the constructive
cases) or d’s defeat (for the destructive cases), one has to add/delete all the
candidates from Xcand, and due to the bound on the number of candidates that
we can add/delete, this has to be achieved by adding/deleting the candidates
from Scand and relying on the bundling function.

With the above setup ready, we move on to proving our results. Most of the
proofs are available in the appendix to this chapter, but for each type of problem
(COMB-CCAC, COMB-CCDC, COMB-DCAC, COMB-DCDC) we give one sample
proof.

3.6.1. Constructive Control by Deleting Candidates
We start by looking at constructive control by deleting candidates since in this
case we obtain a very general hardness result that applies to all the voting rules
which satisfy the unanimity principle. A rule satisfies the unanimity principle if
in each election where a unique candidate c is ranked first by all the voters, this
candidate c is the unique winner.

Theorem 3.15. Let R be a voting rule that satisfies the unanimity principle.
R-COMB-CCDC is NP-hard, even for the case of elections with just a single voter.

Proof. Let the notation be as in the introduction to this section. Given an in-
stance I := (X ,S ,h) for SET COVER, we create an instance I ′ of R-COMB-CCDC
as follows. We construct an election E = (C,V) where C = {p}∪ Xcand ∪Scand and
where V contains a single voter with the following preference order:

Xcand Â p ÂScand.

62

We use the set-embedding bundling function. We claim that I is a yes-instance of
SET COVER if and only if it is possible to ensure p’s victory by deleting at most h
(bundles of) candidates.

On the one hand, if I is a yes-instance of SET COVER, then I ′ is a “yes”-instance
of R-COMB-CCDC. Indeed, if S ′ is a subfamily of S such that |S ′| ≤ h and⋃

S j∈S ′ S j = X , then it suffices to delete the candidates C′ that correspond to
the sets in S ′ from the election to ensure that p is ranked first (and, by the
unanimity of R, is a winner).

On the other hand, assume that I ′ is a yes-instance of R-COMB-CCDC. Since
R satisfies the unanimity property, the candidate ranked first by the only voter in
our election is always the unique winner. This means that if I ′ is a yes-instance
of R-COMB-CCDC, then there is a subset C′ of candidates such that p ∉ C′ and
X ⊆⋃

c∈C′ κ(c).
Without loss of generality, we can assume that C′ contains only candidates

from the set Scand (if C′ contained some candidate xi, we could replace xi with an
arbitrary set candidate s j such that xi ∈ S j). However, this immediately implies
that setting S ′ := {S j : s j ∈ C′} results in a set cover of size at most h. Therefore I
is a yes-instance of I.

As Plurality, Borda, Copelandα, and Maximin all satisfy the unanimity property,
we conclude the following.

Corollary 3.1. For each voting rule R ∈ {Plurality, Borda, Copelandα, Maximin},
R-COMB-CCDC is NP-hard, even for elections with only a single voter.

By applying minor tweaks to the above construction, we obtain the following
results (for the proofs see Section 3.8).

Theorem 3.16. For each fixed integer t ≥ 2, t-APPROVAL-COMB-CCDC is NP-
hard, even for elections with only a single voter.

Theorem 3.17. For each fixed integer t ≥ 1, t-VETO-COMB-CCDC is NP-hard,
even for elections with only a single voter.

3.6.2. Destructive Control by Deleting Candidates

While the very general proof for the combinatorial variant of constructive control
by deleting candidates is very simple, occasionally our set-embedding proofs
become slightly more involved.

63

For example, our proof that Maximin-COMB-DCDC is NP-hard, even for elec-
tions with only a few voters, requires a bit more care. Specifically, we need to
define some further candidates to achieve the desired score differences between
the current winner d and his defeater p.

Theorem 3.18. MAXIMIN-COMB-DCDC is NP-hard, even for elections with only
five voters.

Proof. Given an instance (X ,S ,h) for SET COVER, we construct an instance (E =
(C,V),k) for Maximin-COMB-DCDC. We construct an election E = (C,V) where
C := {p,d, e}∪ Xcand ∪Scand and where the voter set consists of the following five
voters:

one voter: p Â d Â Xcand Â e ÂScand,

two voters: d Â Xcand Â p Â e ÂScand,

two voters: e Â←−−−−
Xcand Â p Â d Â←−−−−

Scand.

We set k := h. We use the set-embedding bundling functions. We claim that I is a
yes-instance of SET COVER if and only if it is possible to ensure that d is not a
winner by deleting at most k = h (bundles of) candidates.

The values of the NE(·, ·) function are given in the table below (the entry for
row a and column b gives the value of NE(a,b), which stands for the number of
voters which prefer a to b in the election E; we assume i′ 6= i′′ and j′ 6= j′′).

p d e xi′ s j′

p - 3 3 1 5

d 2 - 3 3 5

e 2 2 - 2 5

xi′′ 4 2 3 2 or 3 5

s j′′ 0 0 0 0 2 or 3

We have the following scores of the candidates: p has one point (because of the
members of Xcand), d has two points (because of p), e has two points (because
of p, d, and the members of Xcand), the members of Xcand have two points each

64

(because of d), and the members of Scand have zero points each (because of all
other candidates).

It is easy to verify that if there is a set cover for I of size h, then deleting the
set candidates corresponding to the cover deletes all the members of Xcand and
ensures that p has three points, whereas d has only two. In effect, d certainly is
not a winner.

Now consider the other direction. Since deleting a candidate can never decrease
the score of any remaining candidate, the only way of making d lose is to increase
some remaining candidate’s score.

Since for each candidate other than p, at least three voters prefer d to this
candidate, only p has any chance of getting a higher score than d. For this to
happen, we need to ensure that all members of Xcand disappear. As in the previous
set-embedding proofs, this is possible to do by deleting at most h candidates only
if there is a set cover of size at most h for I.

For most of the other results it suffices to use proofs very similar to that for
Theorem 3.15. However, for the case of t-Approval-COMB-DCDC we have to
use either two voters (if t ≥ 2) or three voters (if t = 1 and we are dealing with
Plurality). The reason is that if we have a single voter and candidate d is a
t-Approval winner, then it is impossible to prevent d from winning by deleting
candidates (no matter what we do, d will still have the highest possible score,
one). A similar reasoning applies to the case of the Plurality rule with two voters.
The proofs of the following results are given in the appendix to this chapter.

Theorem 3.19. PLURALITY-COMB-DCDC is NP-hard, even for elections with
only three voters.

Theorem 3.20. For each fixed integer t ≥ 2, t-APPROVAL-COMB-DCDC is NP-
hard, even for elections with only two voters.

Theorem 3.21. For each fixed integer t ≥ 1, t-VETO-COMB-DCDC is NP-hard,
even for elections with only a single voter.

Theorem 3.22. BORDA-COMB-DCDC is NP-hard, even for elections with only
two voters.

Theorem 3.23. COPELANDα-COMB-DCDC is NP-hard, even for elections with
only three voters.

65

3.6.3. Constructive and Destructive Control by Adding
Candidates

For the case of combinatorial control by adding candidates, we give sample proofs
for the cases of the Borda rule.

Theorem 3.24. BORDA-COMB-CCAC and BORDA-COMB-DCAC are both NP-
hard, even for elections with only two voters.

Proof. We first show the NP-hardness result for Borda-COMB-CCAC and then
show how to modify the proof for Borda-COMB-DCAC.

Let the notation be as in the introduction to this section. Given an instance I :=
(X ,S ,h) for SET COVER with n′ := |Xcand|, we create an instance I ′ of Borda-
COMB-CCAC as follows. We construct the registered candidate set C = {d, p}∪D,
where D = {d1, . . . ,dn′ }. We construct the unregistered candidate set A = Xcand ∪
Scand. We construct two voters with the following preference orders:

one voter: d Â D Â p ÂScand Â Xcand Â ·· · ,

one voter: p Â←−−−−
Xcand Â d ÂScand Â←−

D Â ·· · .

We use the set-embedding bundling function. We claim that I is a yes-instance of
SET COVER if and only if it is possible to ensure p’s victory by adding at most
h (bundles of) candidates. Note that d gets n′ points more than p from the first
voter. Given a set cover of size h, we add the corresponding s j ’s to the election.
Simple calculation shows that in this case p and d tie as winners.

For the reverse direction, note that the relative scores of p and d in the first
vote do not change, irrespective of which candidates we add. The relative scores
of p and d, however, do change in the second vote in the following way: For each
unregistered candidate xi added to the election, p’s score increases by one but
d’s score remains unchanged. Thus, the only way to ensure that p is a winner is
by bringing all the candidates from Xcand to the election. Doing so by adding at
most h candidates is possible only if there is a size-h cover for I.

The construction for Borda-COMB-DCAC is the same, except that, first, we do
not want p to win but d to lose (that is, we define d to be the despised candidate,
and second, we define D to have only n−1 dummy candidates.

The proofs for the remaining results are available in the appendix to this
chapter. Note that, while technically similar Para-NP-hardness results already

66

follow from our discussion of the non-combinatorial variants, using the set-
embedding technique we can give proofs that use fewer voters.

Theorem 3.25. For each rational number α, 1 ≤ α ≤ 1, COPELANDα-COMB-
DCAC and COPELANDα-COMB-CCAC are NP-hard, even for elections with only
three voters.

Theorem 3.26. MAXIMIN-COMB-CCAC is NP-hard, even for elections with only
six voters.

3.7. Signature Proof Technique for
Destructive Control

We now move on to the Signatures technique for obtaining FPT algorithms.
Specifically, in this section we show the following results:

1) For each fixed integer t ≥ 1 and for each voting rule R ∈ {t-Approval, t-Veto},
R-DCAC is FPT.

2) Plurality-Comb-DCAC and Veto-Comb-DCAC are FPT.

3) For each fixed integer t ≥ 1 and for each voting rule R ∈ {t-Approval, t-Veto},
R-DCDC is FPT.

That is, we apply the technique to the case of destructive candidate control,
under t-Approval and t-Veto elections. The main idea of the Signature technique
is to identify certain properties of the candidates to be added or deleted that
allow us to treat some of them as being equivalent. We refer to these properties
as signatures and we build FPT algorithms based on the observation that the
number of different signatures (in a given context) is a function dependent only
on the number of voters.

The results from this section apply, in particular, to the cases of Plurality-
DCDC and Veto-DCDC. However, these problems are simple enough that direct
algorithms for them that are easier and faster; we provide such algorithms in
Section 3.8.

3.7.1. Destructive Control by Adding Candidates
Let us consider an instance of the destructive control by adding candidates
problem for the case of t-Approval and t-Veto (for now we focus on the non-

67

combinatorial variant). The instance consists of the set C of registered candidates,
the set A of unregistered candidates, the collection V of n voters, the despised
candidate d ∈ C, and an integer k, bounding the number of candidates that we can
add. We assume that d is a winner of the given election (C,V) (otherwise we can
trivially return True). The general scheme for our FPT algorithms (parameterized
by the number n of the voters) is as follows:

1) We guess a candidate p ∈ C∪ A \{d}. The role of p is to defeat d, that is, to
obtain more points than d. Altogether, there are |C|+ |A|−1 candidates to
choose from, and we repeat our algorithm for each possible choice of p.

2) For each choice of p, we “kernelize” the input instance. That is, we bound
the number of “relevant” candidates by a function dependent only on the
parameter n. Then, we search for an optimal solution, in a brute-force man-
ner, over this “kernel” (indeed, the Signature technique regards computing
this kernel).3

3) We return True if the best solution found adds at most k candidates, while
we return False otherwise.

We now describe how to perform the kernelization step. Let us consider the
registered candidates first. It turns out that it suffices to focus on a few relevant
ones only.

Definition 3.1 (Relevant registered candidates). Fix an integer t, t ≥ 1, and
consider an instance of t-Approval-DCAC. We call a registered candidate relevant
if this candidate receives at least one point. For the case of t-Veto-DCAC, we call
a registered candidate relevant if this candidate receives at least one veto. We
refer to those candidates that are not relevant as irrelevant.

3We mention that this kind of kernelization is called Turing kernelization. See the works of Binkele-
Raible et al. [16] and Schäfer et al. [135] for examples of this concept in the context of graph
problems.

68

For the case of t-Approval-DCAC, we can safely remove all the irrelevant
registered candidates. This is so for following two reasons. First, removing
an irrelevant candidate does not change the score of any other registered (or
later-added) candidate. Second, an irrelevant candidate can never obtain score
higher than the despised one since, on the one hand, initially this candidate has
score zero, and, on the other hand, under t-Approval, adding candidates never
increases the scores of those already registered.

For the case of t-Veto-DCAC, if there are some irrelevant candidates, then
we consider the following two possibilities. First, if d receives at least one veto,
then d is already not a winner (since the irrelevant candidates receive no vetoes
and, thus, defeat d). Second, if d does not receive any vetoes, then this will stay
so, irrespective of which candidates we add, and d will remain a winner in any
resulting election. Thus, in either case, we can immediately output the correct
answer.

Thus, from now on we assume that all the registered candidates are relevant.
Furthermore, it is clear that there are at most t ·n relevant candidates for each
instance of t-Approval-DCAC or t-Veto-DCAC with n voters.

To deal with the unregistered candidates, we introduce the notion of a {d, p}-
signature (recall that d is the despised candidate and p is a candidate whose
goal is to defeat d). Let c be some unregistered candidate. Each voter can rank
c in the following three different ways, relative to p and d: either this voter
rank c ahead of both p and d, or below both p and d, or between p and d. A
{d, p}-signature for c is a vector which indicates, for each voter, which of these
cases holds. Formally, we use the following definition.

Definition 3.2 ({d, p}-signature). Consider an election (C∪ A,V), a candidate
d ∈ C, and a candidate p ∈ C∪ A. Let n be the number of voters in V . A {d, p}-
signature of candidate c ∈ (C∪ A)\{d, p} is a vector~γ= (γ1,γ2, . . . ,γn) ∈ [3]n such
that, for each voter vi ∈V , it holds that:

γi =


3, if vi prefers c to both p and d,
1, if vi prefers both p and d to c,
2, otherwise.

The crucial observation, is that, for a given choice of p, it is enough to consider
only t candidates of the same {d, p}-signature.

Lemma 3.1. Consider an instance I := ((C,V), A,d ∈ C,k) of t-Approval-DCAC
(respectively, t-Veto-DCAC), with the despised candidate d, and with some arbi-
trarily selected candidate p ∈ C∪A. Let~γ be some {d, p}-signature for this election.

69

Adding t unregistered candidates with signature ~γ has the same effect on the
relative scores of p and d as adding more than t candidates with this signature.

Proof. We begin with the case of t-Approval-DCAC. Let n be the number of voters
in the instance I. We have~γ= (γ1, . . . ,γn). Consider the ith voter.

1) If γi = 3, then after adding t (or more) candidates with signature~γ, the ith
voter will give zero points to both p and d.

2) If γi = 1, then number of points that the ith voter will give to p and d does
not depend on the number of candidates with signature~γ that we add.

3) If γi = 2, then for each candidate c with signature~γ, the ith voter ranks c
between candidates p and d. We have the following two, quite similar,
cases to consider: either the ith voter has preference order p Â c Â d, or
the ith voter has preference order d Â c Â p. In the first case, adding t (or
more) candidates with signature~γ will ensure that the ith voter gives zero
points to d and gives the same number of points to p as prior to adding
these candidates. In the second case, the situation is the same, but with
the roles of p and d swapped.

Summarizing the above discussion, we see that adding t candidates with a given
signature~γ has the same effect on the relative scores of p and d as adding more
candidates of the same signature.

The arguments for the case of t-Veto-DCAC are analogous, and thus, omitted.

In effect, it suffices to keep at most t candidates with each signature. This
results in having at most t ·3n unregistered candidates. We can now formally
describe our kernelization process.

Theorem 3.27. For each fixed integer t, t ≥ 1, t-APPROVAL-DCAC and t-VETO-
DCAC admit Turing kernels of size O(t ·3n), where n is the number of voters.

Proof. Consider an instance I := ((C,V), A,d ∈ C,k) of t-Approval-DCAC (respec-
tively, t-Veto-DCAC). Let d be the despised candidate and let n be the number
of voters in the instance. As per our discussion above, we can assume that the
instances are non-trivial and that all the registered candidates are relevant.
Thus, there are at most t ·n registered candidates. By Lemma 3.1, for each choice
of p, it suffices to consider at most t candidates of the same {d, p}-signatures, and
there are at most 3n different {d, p}-signatures.

70

Altogether, for each choice of candidate p, we produce an instance of t-Approval-
DCAC (respectively, t-Veto-DCAC) with at most t ·n registered candidates and
with at most t ·3n unregistered ones (for each possible signature we keep up to t
arbitrarily chosen unregistered candidates); in each instance we allow to add
either the same number of candidates as in I (that is, k), or one less (that is,
k−1), if p needs to be added to the election as well.

Finally, it holds that it is possible to preclude d from winning if and only if it is
possible to do so in at least one of the produced instances.

Using a brute-force approach on top of the kernelization given in Theorem 3.27,
it is possible to solve both t-Approval-DCAC and t-Veto-DCAC in FPT-time:
straight-forward application of a brute-force search to each instance produced by
Theorem 3.27 results in running time O∗(

(t·3n

k
)
), where the O∗ notation suppresses

polynomial terms. It is easy to see that it never makes sense to add more than
t ·n candidates (intuitively, if we add more than t ·n candidates, then at least
one would be irrelevant, and thus, we could as well not add him). Thus we can
assume that k ≤ t ·n.

Therefore, we have that the straight-forward brute-force algorithm running on
top of Theorem 3.27 has running time O∗((t ·3n)t·n). However, we can improve
the time complexity by sacrificing the space complexity.

Theorem 3.28. PLURALITY-DCAC can be solved in O(m·n·2n) time, using O∗(2n)
space, where m is the total number of candidates and n is the number of voters.

Proof. Our algorithm uses a similar general structure as before. We assume that
we have a non-trivial instance, where all the registered candidates are relevant.
First, we guess a candidate p whose goal is to defeat d and from now on we focus
on a situation where we have both p and d, and the goal is to ensure that p gets
more points than d. (If p is an unregistered candidate, then we add p to the
election, decrease the number of candidates that we can add by one, and proceed
as if p was a registered candidate to begin with.)

We define a simplified notion of a candidate’s signature. A simplified-signature
for an unregistered candidate c is a binary vector ~τ = (τ1, . . . ,τn) ∈ {0,1}n such
that the following hold.

τi =
{

1, if vi prefers c to all registered candidates,
0, otherwise.

We define the simplified-signature ~τ of a set A′ of unregistered candidates
analogously: value one at a given position i means that some candidate from

71

A′ is ranked ahead of all the registered candidates while value zero means that
some registered candidate is ranked ahead of all the members of A′.

Let k be the number of candidates that we are allowed to add. Using the notion
of simplified-signatures, we maintain a table Z of size 2n, such that each entry
in this table corresponds to a simplified-signature~τ ∈ {0,1}n. Specifically, in the
~τ′s entry of the table Z , we will store the minimum number z~τ of unregistered
candidates, such that there is a subset A(~τ) ⊆ A \{p} of exactly z~τ (z~τ ≤ k) candi-
dates with the signature~τ (we use the value k+1 to indicate that there such set
does not exist).

To describe our algorithm for computing the table Z , we need the following
additional piece of notation. For each pair of simplified-signatures,~τ and~τ′, we
define a “merged” simplified-signature~τ⊕~τ′ = (max{τi,τ′i})i∈[n]. In other words,
we apply the coordinate-wise max operator.

We compute the table Z as follows (our algorithm is slightly more complicated
than necessary for the case of the Plurality rule since we will use it as a base for
more involved settings as well):

1) We initiate the table by setting z~τ := 1 if at least one unregistered candidate
with signature~τ exists, and we set z~τ := k+1 otherwise.

2) Iteratively, for each unregistered candidate a, we perform the following
operations:

a) We compute a’s simplified-signature~τa.

b) We compute a new table Z ′, with the entries z′
~τ
, by setting, for each

simplified-signature~τ:

z′~τ =min({z~τ}∪ {z~τ+1 :~τ=~τ′⊕~τa}∪ {k+1}).

c) We copy the contents of Z ′ to Z . (At this point, for each signature~τ,
we have that z~τ is the number of candidates in the smallest set (of
size up to k) which is composed of only the so-far processed candidates,
such that, jointly, have this simplified-signature, or is k+1 if no such
set exists.)

After we have computed the table Z as described above, we check whether
there is at least one simplified-signature ~τ for which the value z~τ is at most
k (recall that k is the number of candidates that we are allowed to add), and
such that adding the corresponding candidate set A~τ which implements this

72

simplified-signature~τ ensures that p has more points than d. It is easy to check
whether a simplified-signature ensured that p has more points than d: given a
simplified-signature~τ, if the ith component τi is zero, then the ith voter gives
one point to whomever this voter ranks first among the registered candidates;
otherwise, if τi is one, then the ith voter gives one point to a candidate from A~τ,
that is, neither to p nor d).

We first consider the algorithm’s running time. The most time-consuming
part of the algorithm is iteratively updating the contents of the table Z . If, in
each iteration, we first copy the then-current contents of Z to Z ′, and only then
perform the remaining updates, then the time we need is O(m ·n ·2n) (recall that
there are 2n simplified-signatures). This part dominates the running time of the
remaining parts of the algorithm.

Let us consider the correctness of the algorithm. Assume that we have guessed
the correct candidate p and that there is a subset of l ≤ k unregistered candidates
A′ = {a1, . . . , a`} such that, after we add the candidates from A′, p has more points
than d. If~τ is the simplified-signature of the set A′, then the algorithm indeed
computes a value z~τ ≤ `. Further, if the algorithm returns True, then it must
correspond to such set.

We can generalize the above ideas to the cases of t-Approval and t-Veto as well.
The proofs are given in the appendix to this chapter.

Theorem 3.29. For each fixed integer t ≥ 2, t-APPROVAL-DCAC can be solved
in min{O(m · (t ·3n)t·n),O(m ·n · t · (t+1)t·n)} time, where m is the total number of
candidates and n is the number of voters.

We can adapt the algorithms used for Theorem 3.28 and Theorem 3.29 in a
straight-forward way (basically, by reversing the signatures) to show analogous
results for the case of t-Veto-DCAC.

Corollary 3.2. For each fixed integer t ≥ 1, t-VETO-DCAC can be solved in
min{O(m · (t ·3n)t·n),O(m · n · t · (t+1)t·n)} time, where m is the total number of
candidates and n is the number of voters.

To conclude the discussion of the Signature technique for the case of destruc-
tive control by adding candidates, we consider the combinatorial variant of the
problem. The situation is more complicated since we should add bundles of candi-
dates instead of individual candidates. In effect, both for t-Approval-Comb-DCAC
and for t-Veto-Comb-DCAC), we cannot upper-bound the number of bundles to
add. This is so, since bundles with the same signature, but with different sizes,

73

may have different effects on the score difference between the despised candi-
date d and a specific guessed candidate p (indeed, t-Approval-Comb-DCAC is
W[1]-hard for t ≥ 2, as shown in Section 3.4). Yet, for the Plurality rule (for the
Veto rule), only the first (respectively, the last) position gets a point (respectively,
a veto). This structural observation allows us to generalize our non-combinatorial
algorithms.

Corollary 3.3. PLURALITY-COMB-DCAC and VETO-COMB-DCAC are fixed-
parameter tractable with respect to the number n of voters.

Proof. For the case of Plurality, it suffices to use, for example, the same algorithm
as in Theorem 3.28, but with the following changes:

1) For each choice of candidate p, we also consider each way of adding p to the
election if p were unregistered (p might belong to several different bundles
and we try each possibility).

2) Each unregistered candidate’s signature is replaced by the signature of the
set of candidates in his bundle.

Since under Plurality each voter gives a point only to whomever this voter ranks
first, this strategy suffices. The case of the Veto rule is handled analogously.

3.7.2. Destructive Control by Deleting Candidates

Let us now move on to the case of destructive control by deleting candidates. The
(Turing) kernelization approach from the previous section does not easily transfer
to the case of deleting candidates. The problem is that we cannot upper-bound (by
a function dependent only on the number n of voters) the number of candidates
that have to be deleted.

However, by applying our Signature technique, followed by casting the remain-
ing task as an integer linear program, we can show fixed-parameter tractability.
We present the proof of the following result in the appendix to this chapter (while
the proof is quite interesting technically, we believe that the previous proofs have
presented the Signatures technique sufficiently well).

Theorem 3.30. For each fixed integer t ≥ 1, both t-APPROVAL-DCDC and t-
VETO-DCDC can be solved in time O∗(m ·4n · (3n)3

n
), where m is the total number

of candidates and n is the number of voters.

74

3.8. Outlook

Several possible research directions, motivated by the work presented in this
chapter, are listed below.

• We still do not know the exact complexity of 2-Veto-Comb-DCAC. This open
question is marked by a question mark (?) in Table 3.1. It looks as if none
of the proof techniques developed in this chapter fits to this case, thus, it
might be that a new proof technique is needed for it.

• There are several NP-hardness results in this chapter which hold for con-
tant number of voters (that is, Para-NP-hardness results). Besides some
results which hold even when there is only one voter in the election, the
other reductions use 2, 3, and up to 26 voters. It is not clear where is the
borderline; one might try to find the lowest possible numbers for which the
respective problems are still hard, and then, hopefully, also find matching
algorithms for the other lower numbers.

• It is natural to consider an even more diverse set of voting rules. This might
allow for understanding our general techniques better, and might help in
devising new techniques as well. For example, it would be interesting to
consider the Bucklin rule: on the one hand, candidate control problems for
Bucklin are NP-complete [68] and, on the other hand, this rule can be seen
as an adaptive variant of t-Approval. Thus, it would be interesting to see
if our techniques can be applied to the case of the Bucklin rule (see, for
example, the paper by [68], for the formal definition of the Bucklin voting
rule).

• One might experiment with real-world elections to understand the practi-
cal relevance of our theoretical findings or heuristically solve our proven
intractable cases. One possible starting point for such an analysis would be
the experimental paper of Erdélyi et al. [69].

At least for the easier rules, such as the Plurality rule and the Veto rule,
there is quite some hope that our signature-based algorithms would prove
to be useful in practice. Then, one could try to extend the applicability of
these algorithms to the more complex rules, namely t-Approcal and t-Veto,
at least for small values of t. It would be also interesting whether these
algorithms could be extended to the combinatorial case, which is shown

75

in this chapter to be fixed-parameter tractable for the destructive case of
deleting candidates for both the Plurality rule and the Veto rule.

• It is interesting to consider some game-theoretic aspects of candidate con-
trol, where several agents perform the control actions. So far, doing this
even for the simplest rules such as the Plurality rule was hampered by
the fact that these control problems are NP-hard. Our (partial) tractability
results might help in overcoming this obstacle in a non-trivial way.

• It might be worthwhile to study the multimode control framework of Fal-
iszewski et al. [77] for the case of few voters. In multimode control one
can perform control actions of several types at the same time (for example,
one can add candidates and also delete voters). Faliszewski et al. expected
that combining two types of easy control actions would lead to a possibly
computationally hard multimode control problem, but they did not observe
such effects among natural voting rules. One possible explanation for this
fact is that they did not have enough easy control problems available to
combine. We have shown that many candidate control problems become
easy (FPT) when they are parametrized by the number of voters and, thus,
there are more opportunities for studying multimode control problems.

• Generally, we believe that the case of few voters did not receive sufficient
attention in the computational social choice literature and many other
problems can (and should) be studied with respect to this parameter. The
main two justifications for this kind of study are that, first, as discussed
in Section 3.2.1, it is very well motivated, and, second, in our control
problems we observe a rich (parameterized) complexity landscape, which
we hope might be observed in other voting problems.

76

Appendix for Chapter 3

We provide remaining results and proofs deffered from Chapter 3.

3.A. Deffered Proofs for the Multicolored Clique
Proof Technique

Theorem 3.5. For each fixed integer t, t ≥ 2, t-APPROVAL-CCAC is W[1]-hard,
parameterized by the number n of voters.

Proof. We use the same proof as in the case of Theorem 3.1, but for each voter we
introduce t−1 additional registered dummy candidates which this voter ranks
first (each voter ranks all the remaining dummy candidates last). In this way,
each dummy candidate has exactly one point. The reasoning for the correctness
proof works in the same way.

Theorem 3.6. For each fixed integer t, t ≥ 2, t-VETO-CCAC is W[1]-hard, pa-
rameterized by the number n of voters.

Proof. We use the same proof as in Theorem 3.2, but we introduce t−1 additional
registered dummy candidates whom every voter ranks last. In this way, each
dummy candidate receives exactly one veto from each voter, while p and d
receive the same number of vetoes as in the election constructed in the proof for
Theorem 3.2. The arguments from that proof apply here as well.

Theorem 3.7. For each fixed integer t ≥ 1, t-VETO-CCDC is W[1]-hard, parame-
terized by the number n of voters.

Proof. We use almost the same proof as in Theorem 3.3, but we add sufficiently
many dummy (padding) candidates to ensure that we can only delete vertex and
edge candidates. Let I = (G,h) be an input instance of MULTICOLORED CLIQUE.
Let E′ = (C′,V ′) be the election created by the reduction from the proof of Theo-
rem 3.3 on input I and set k := |V (G)|−h+2|E(G)|−H.

77

We modify this election by extending C′ to contain a set D of t dummy candi-
dates, D = {d1, . . . ,dt}, and modify the voter collection V ′ as follows (recall that
the number |V ′| of voters is polynomially upper-bounded by h; set n′ := |V ′|):

1) For each voter v in V ′ except the last group of voters, we modify v’s prefer-
ence order to rank the dummies d1, . . . ,dt−1 last and dt first.

2) For each voter v in the last group of V ′, we rank all candidates from D such
that v will have preference order of the form

dt Â ·· · Â (D \{dt})Â p.

3) We add n′ voters, all with preference order of the form

· · · Â p Â D.

One can verify that, for each 1≤ i ≤ t−1, each newly added candidate di has
2n′ vetoes and dt has n′ vetoes. Since we assume the input graph to be connected
and to have at least two vertices, at least one candidate from the edge and vertex
candidates receives fewer vetoes than p. Thus, p is not a winner initially.

We claim that p (the preferred candidate from the proof of Theorem 3.3) can
become a winner by deleting at most k candidates if and only if I is a yes-instance.

First, note that if we delete any of the new dummy candidates from D \ {dt},
then p certainly does not become a winner since p will have at least n′+2H vetoes
and dt will have exactly n′ vetoes. Second, if we delete dummy candidate dt, then
p will receive 2n′ vetoes, but there will be at least one remaining vertex or edge
candidate which is not vetoed by the last group of voters and, therefore, will have
less than 2n′ vetoes. It follows that no dummy candidate can be deleted. Thus,
none of the dummy candidates will have fewer vetoes than p and (ignoring the
dummy candidates) the election will behave as if it was held according to the
Veto rule. The remaining arguments from the proof of correctness in Theorem 3.3
hold.

Theorem 3.8. 2-APPROVAL-CCDC, parameterized by the number n of voters, is
W[1]-hard.

Proof. The proof is quite similar to that for the case of Veto-CCDC, but the
construction is more involved. Again, we give a parameterized reduction from
the MULTICOLORED CLIQUE problem. Let I = (G,h) be our input instance with

78

graph G and an integer h, and let the notation be as described in the introduction
to Section 3.4. Based on I, we form an instance I ′ of 2-Approval-CCDC, as follows.

We set T = |V (G)|+|E(G)| with the intended meaning that T is an integer larger
than the number of candidates that we can delete. We set H := 2

(h
2
)= (h−1) ·h.

We build our candidate set C as follows.

1) We introduce the preferred candidate p.

2) We introduce T candidates b1, . . . ,bT . These are the blocker candidates,
whose role, on the one hand, is to ensure that p will have to obtain a given
number of points and, on the other hand, is to prevent the possibility of
deleting too many candidates of other types.

3) For each vertex v ∈V (G), we introduce a candidate v.

4) For each edge {u,v} ∈ E(G), we introduce two candidates, (u,v), and (v,u).

5) We introduce two sets, D = {d1, . . .dh} and F = { f(i, j) : 1 ≤ i, j ≤ h, i 6= j}, of
dummy candidates.

The set of voters consists of the following groups (we write B to refer to the
arbitrary ordering of {b1,b2,bT }).

1) We have h+3H voters, each with preference order of the form

B Â ·· · Â p.

2) For each color i, 1≤ i ≤ h, we create 3H+1 voters, where the first of them
has preference order of the form

Vi(G)Â p Â B Â ·· · ,

and the remaining ones have preference order of the form

Vi(G)Â di Â B Â ·· · .

3) For each pair i, j of distinct colors (1≤ i, j ≤ h, i 6= j), we create 3H+h−1
voters, where the first of them has preference order of the form

E(i, j)Â p Â B Â ·· · ,

and the remaining ones have preference order of the form

E(i, j)Â f(i, j) Â B Â ·· · .

79

4) For each pair i, j of distinct colors (1 ≤ i, j ≤ h, i 6= j), we introduce two
voters with preference orders of the following forms

p Â R(i, j)Â B Â ·· · ,

p Â R′(i, j)Â B Â ·· · .

Note that the total number of constructed voters is polynomially bounded by h:

h+3H+ (3H+1) ·h+ (3H+h−1) ·H+2H = 2h+4H+4H ·h+3H2.

We set the number of candidates that can be deleted to k := |V (G)|−h+2|E(G)|−
H, with the intention that p can become a winner if and only if it is possible
to delete all vertex candidates and all edge candidates, except for the ones
corresponding to a multicolored clique of order h.

For the “if” direction, note that if G indeed contains an multicolored clique Q
of size h, then deleting all candidates in V (G)\Q and all edge candidates of the
form (u,v), where either u ∉Q or v ∉Q, indeed ensures that p is a winner (in this
case, p, and all the vertex and edge candidates, have h+3H points each, and all
the blocker candidates have at most h+3H points each).

For the “only if” direction, assume that it is possible to ensure p’s victory by
deleting at most k candidates and let C′ ⊆ C be a set of at most k candidates
such that p is a winner of E′ = (C \ C′,V). Note that k < T −1 and so there are at
least two blocker candidates that receive h+3H points each from the first group
of voters. The only voters that p can obtain points from, after deleting at most
k candidates, are the ones in the second and third group and there are exactly
h+H of them (h in the second group and H in the third group).

However, p can obtain the points from the second and the third groups of
voters without, at the same time, increasing the score of the highest-scoring
blocker candidate if and only if we delete all but one vertex candidate of each
color, and, for each pair i, j of distinct colors (1≤ i, j ≤ h, i 6= j), we delete all but
one edge candidate of the form (u,v), where u ∈Vi(G) and v ∈Vj(G). Indeed, this
means deleting exactly k candidates. Further, we claim that if p is a winner of
E′, then for each pair of vertex candidates u and v which were not deleted, it
must be the case that both edge candidates (u,v) and (v,u) remain in the election,
meaning that there is an edge between u and v in the original graph. It suffices
to consider the case of (u,v) (the case of (v,u) is symmetric). If, instead of (u,v),
the only remaining edge candidate for the pair of colors u and v is some edge
candidate (u′,v′) (where (u′,v′) 6= (u,v)), then one of the two following cases must

80

happen: either u and v would receive more than h−1 points from the fourth
group, therefore would have more than h+2

(h
2
)

points, causing p not to be a
winner, or (u′,v′) would receive more than one point from the fourth group, again
causing p to not be a winner. Thus, p can become a winner by deleting at most H
candidates if and only if G contains a multicolored clique of order h.

It is clear that the given reduction can be computed in polynomial time and
that it is a parameterized reduction.

Theorem 3.9. For each fixed integer t, t ≥ 3, t-APPROVAL-CCDC is W[1]-hard,
parameterized by the number n of voters.

Proof. Let E′ = (C′,V ′) be the election constructed in the proof for Theorem 3.8.
We use the same proof as for Theorem 3.8 except that now, for each voter vi ∈V ′,
we introduce a group of t− 2 new dummy candidates, d i

1,d i
2, . . . ,d i

t−2. These
dummy candidates are ranked first by their corresponding voter, and for each
such introduced group, we introduce two new dummies, ci

1 and ci
2, as well as

additional |V ′|−1 voters with preference order of the form (we write D i to refer
to the preference order d i

1 Â d i
2 Â . . .Â d i

t−2):

D i Â ci
1 Â ci

2 Â B Â ·· · .

These voters ensure that none of the new dummy candidates can be deleted
without increasing the score of the highest-scoring blocker candidate. If a score of
a highest-scoring blocker candidate increases, then the preferred candidate has
no longer any chance to win the election. If none of the new dummy candidates
can be deleted, then the correctness proof works the same as the one given for
Theorem 3.8.

The number of voters is still polynomially bounded by the clique order h.

3.B. Deffered Proofs for the Cubic Vertex Cover
Proof Technique

Theorem 3.12. BORDA-CCAC is NP-hard, even for elections with only ten voters.

Proof. We give a reduction from the CUBIC VERTEX COVER problem (we use the
notation as provided at the beginning of Section 3.5). Given an instance I = (G,h)
for CUBIC VERTEX COVER, we construct an instance for Borda-CCAC.

We let the registered candidate set C be {p,d}∪E(G), and we let V (G) be the
set of unregistered candidates. We construct the following voters:

81

1) For each `, 1≤ `≤ 3, we have the following two voters:

µ(`) : B(`)Â E(−`) ÂV (−`) Â d Â p,

µ′(`) : p Â d Â
←−−−
V (−`) Â

←−−−
E(−`) Â B′(`).

2) For `= 4, we have the following two voters:

µ(`) : B(`)Â E(−`) ÂV (−`) Â d Â p,

µ′(`) : d Â p Â
←−−−
V (−`) Â

←−−−
E(−`) Â B′(`).

3) We have two voters with preference orders

E(G)Â p Â d ÂV (G),

p Â←−−−
E(G)Â d Â←−−−

V (G).

We claim that it is possible to ensure p’s victory by adding k := h candidates if
and only if there is a vertex cover of size h for G.

Let m′ := |E(G)| be the number of edges in E(G). Note that initially, p has
5m′+5 points, d has 4m′+5 points, and each edge candidate has 5m′+6 points.
Thus, p is not a winner. Adding each unregistered vertex candidate v causes
the scores of all candidates to increase: for the edge candidates that include v
as an endpoint this increase is by five points, whereas for all other candidates
this increase is by six points. Note that the last two voters always prefer the
registered candidates to any vertex candidate. Thus, by simple counting, each of
these h vertex candidates may obtain at most 4m′+5h+7 points and will never
obtain more points than p as long as m′+h ≥ 2.

Thus, if we have a vertex cover of size h, then it is possible to ensure p’s victory
by adding all vertex candidates that correspond to this vertex cover. For the other
direction, assume that it is possible to ensure p’s victory by adding at most h
candidates and let S be such a set of candidates.

Now, if there would be an edge candidate e which is not covered by some vertex
candidate in S, then it would follow that the score of e is greater than the score
of p, Thus, S must correspond to a vertex cover in G.

Theorem 3.13. For each rational number α, 0 ≤ α ≤ 1, COPELANDα-CCAC is
NP-hard, even for elections with only twenty voters.

82

Proof. We give a reduction from the CUBIC VERTEX COVER problem (we use the
notation as provided at the beginning of Section 3.5). Given an instance I = (G,h)
of CUBIC VERTEX COVER, we construct an instance for Copelandα-CCAC. Let the
registered candidate set C be {p,d}∪E(G) and let V (G) be the set of unregistered
candidates. We introduce the following voters:

1) For each `, 1≤ `≤ 4, we construct four voters, two voters with the following
preference order:

B(`)Â E(−`) ÂV (−`) Â d Â p,

and two voters with the following preference order:

p Â d Â
←−−−
V (−`) Â

←−−−
E(−`) Â B′(`).

2) One voter with the preference order E ÂV Â d Â p, and one voter with the
preference order d Â p Â←−

E Â←−
V .

3) One voter with the preference order p ÂV Â E Â d, and one voter with the
preference order

←−
E Â d Â p Â←−

V .

We illustrate the results of head-to-head contests between the candidates in
Figure 3.8. We claim that there is a vertex cover of size at most h for G if and
only if p can become a winner of the election by adding at most k := h candidates.

During the proof, when we say that a vertex candidate and an edge candidate
are adjacent to each other, we mean that the corresponding vertex and edge are
adjacent to each other. Consider a situation where we have added some subset A′
of k candidates (k ≤ h; take k = 0 to see the situation prior to adding any of the
unregistered candidates). The candidates have the following scores:

1) p has score αm′+k (p ties head-to-head contests with all edge candidates
and wins all head-to-head contests with the vertex candidates).

2) d has score 1+αk (d wins the head-to-head contest with p and ties all
head-to-head contests with the vertex candidates).

3) Each added vertex candidate v has score 3+αk (v ties the head-to-head
contests with d and the remaining k−1 vertex candidates and wins the
head-to-head contests with the three edge candidates that are adjacent
to v).

83

E

d p

V
if v ∉ e

if v ∈ e

Figure 3.8. Illustration for the reduction used in the proof of Theorem 3.13. Each
vertex in the graph corresponds to a candidate or a set of candidates, and there
is an arc going from a vertex u1 to a vertex u2 if u1 beats u2 in a head-to-head
contest. Edges indicating ties are omitted. The main idea is that an edge
candidate beats a vertex candidate if and only if the vertex candidate is one of
the endpoints of the edge candidate.

4) Each edge candidate e has score αm′+k+1− c(e), where c(e) is the number
of vertex candidates from A′ that are adjacent to e (e ties head-to-head
contests with p and the remaining edge candidates and wins head-to-head
contests with d and all added vertex candidates except those that are
adjacent to e).

In effect, it is easy to see that p is a winner of the election if and only if A′
corresponds to a vertex cover of G.

Theorem 3.14. For each rational number α, 0 ≤ α ≤ 1, COPELANDα-CCDC is
NP-hard, even for elections with only twenty-six voters.

Proof. We give a reduction from CUBIC VERTEX COVER (we use the notation
as provided at the beginning of Section 3.5). Given an instance I = (G,h) for
CUBIC VERTEX COVER, we construct an instance for Copelandα-CCDC. The
candidate set contains the edge candidates, the vertex candidates, the preferred
candidate p, a dummy candidate d, and a set of additional dummy candidates
Z = {z1, . . . , zm′+n′ } (recall that m′ := |E(G)| denotes the number of edges in E(G)
and that n′ := |V (G)| denotes the number of vertices in V (G)). We construct the
following voters:

1) For each `, 1≤ `≤ 4, we construct two voters with preference order:

A(`)Â E(−`) ÂV (−`) Â Z Â d Â p,

84

E

d

Z

p

V
if v ∈ e

if v ∉ e

Figure 3.9. Illustration for the reduction used in the proof of Theorem 3.14. Each
vertex in the graph corresponds to a candidate or a set of candidates, and there
is an arc going from a vertex u1 to a vertex u2 if u1 beats u2 in a head-to-head
contest. Edges indicating ties are omitted. The main idea is that an edge
candidate beats a vertex candidate if and only if the vertex candidate is one of
the endpoints of the edge candidate.

and two voters with preference order:

p Â d Â←−
Z Â

←−−−
V (−`) Â

←−−−
E(−`) Â A′(`).

2) We also construct the following ten voters:

v1 : V Â E Â Z Â d Â p,

v′1 : p Â d Â←−
Z Â←−

V Â←−
E ,

v2 : V Â p Â d Â E Â Z,

v′2 :
←−
E Â←−

Z Â←−
V Â p Â d,

85

v3 : p Â Z Â d ÂV Â E,

v′3 :
←−
E Â←−

V Â p Â←−
Z Â d,

v4 : d Â E Â Z ÂV Â p,

v′4 : p Â←−
V Â←−

Z Â d Â←−
E ,

v5 : Z ÂV Â E Â d Â p,

v′5 : p Â d Â←−
E Â←−

Z Â←−
V .

Figure 3.9 illustrates the results of the head-to-head contests among the candi-
dates. Prior to deleting any of the candidates, we have the following scores:

1) each edge candidate e has m′+ n′+αm′+2 points (e wins head-to-head
contests against all candidates in Z due to voters v2 and v′2, wins head-to-
head contests against its “incident” vertex candidates due to the first group
of voters, and ties with p and the remaining edge candidates),

2) each vertex candidate u has α(n′−1)+m′−1 points (u wins head-to-head
contests against all edge candidates that are not “incident” to u due to
voters from the first group, and ties with the remaining vertex candidates),

3) each candidate z from Z has n′+1+α(m′+n′−1) points (z wins head-to-head
contests against all vertex candidates and d due to voters v3,v′3,v5,v′5, and
ties with the remaining candidates from Z),

4) d has m′ points (d wins head-to-head contests against all edge candidates
due to voters v4 and v′4), and

5) p has m′+ n′+αm′+1 points (p wins head-to-head contests against all
candidates from Z due to voters v3 and v′3, wins head-to-head contests
against d due to voters v2,v′2,v3,v′3, and ties with all edge candidates).

Thus, all edge candidates are co-winners, and p is not a winner since each edge
candidate has one point more than p. However, p has more points than any other
non-edge candidate. Note that in the input graph it holds that m′ = 3n′/2.

86

We claim that it is possible to ensure that p is a winner by deleting at most
k := h candidates if and only if there is a vertex cover of size h for G.

If there is a vertex cover for G of size h, then deleting the corresponding
h vertices ensures that p is a winner. To see why this is the case, note that after
deleting vertices corresponding to a vertex cover the score of p does not change,
but the score of each edge candidate decreases by at least one. The scores of other
candidates cannot increase, so p is a winner.

For the reverse direction, assume that it is possible to ensure that p is a winner
by deleting at most h candidates. Deleting candidates cannot increase p’s score,
so it must be the case that each edge candidate loses at least one point.

Observe that deleting candidates other than the vertex candidates will not
make the edge candidates lose more than one point than p. The only possibility
of deleting a candidate such that an edge candidate e loses a point but p does not
is by deleting one of the vertex candidates v′(e) or v′′(e).

Thus, if it is possible to ensure that p is a winner, then we must delete vertices
that correspond to a vertex cover.

3.C. Deffered Proofs for the Set-Embedding
Proof Technique

Theorem 3.16. For each fixed integer t ≥ 2, t-APPROVAL-COMB-CCDC is NP-
hard, even for elections with only a single voter.

Proof. We build upon the proof of Theorem 3.15, but add t−1 dummy candi-
dates. Specifically, given an instance I := (X ,S ,h) for SET COVER, we create
an instance I ′ of t-Approval-COMB-CCDC as follows. We construct an election
E = (C,V) where C = {p}∪ Xcand ∪Scand ∪D, where D = {d1, . . . ,dt−1}, and where
V contains a single voter with the following preference order:

D Â Xcand Â p ÂScand.

We use the bundling function as described in the introduction to Section 3.6. We
claim that I is a yes-instance of SET COVER if and only if it is possible to ensure
p’s victory by deleting at most h (bundles of) candidates.

To see the correctness of the argument, note that if there is a solution that
ensures p is a winner by deleting a specific number of candidates, then there
is also a solution that achieves the same and does not delete any of the dummy

87

candidates (it is always at least as useful to delete one of the set candidates
instead of a dummy one).

Theorem 3.17. For each fixed integer t ≥ 1, t-VETO-COMB-CCDC is NP-hard,
even for elections with only a single voter.

Proof. Let the notation be as in the introduction to Section 3.6. Given an in-
stance I := (X ,S ,h) for SET COVER, we create an instance I ′ of t-Veto-COMB-
CCDC as follows. We construct an election E = (C,V) with candidate set:

C = {p, z}∪ Xcand ∪Scand ∪D,

where D = {d1, . . . ,dt−1} is a set of dummy candidates (indeed, for t = 1, that is,
for Veto, D =;), and with the voter collection V containing a single voter with
the following preference order:

z Â Xcand ÂScand Â D Â p.

We use the set-embedding bundling function, with the added feature that
κ(z) = Scand. We claim that I is a “yes”-instance of SET COVER if and only
if it is possible to ensure p’s victory by deleting at most h+1 bundles.

Using similar reasoning as used in Theorem 3.16, it is easy to see that the only
way of ensuring that p is a winner is to let all the remaining candidates receive
no points at all. The only way to achieve this is to first delete up to h candidates
from {s1, . . . , sm} that correspond to a cover of the ground set and then to delete
z.

Theorem 3.19. PLURALITY-COMB-DCDC is NP-hard, even for elections with
only three voters.

Proof. Let the notation be as in the introduction to Section 3.6. Given an in-
stance I := (X ,S ,h) for SET COVER, we create an instance I ′ of Plurality-COMB-
DCDC as follows. We construct an election E = (C,V) where C = {p,d}∪ Xcand ∪
Scand, and where V contains three voters with the following preference orders:

Xcand Â p ÂScand Â d,

d Â Xcand Â p ÂScand,

p Â d Â Xcand ÂScand.

88

We use the set-embedding bundling function. We claim that the despised can-
didate d can be precluded from winning by deleting at most h (bundles of)
candidates if and only if there is a set cover of size h for I.

Prior to deleting any of the candidates, d, p, and one of the candidates from X
are tied as winners. Since deleting candidates cannot make any candidate
lose points and since deleting p will make d a unique winner, the only way of
defeating d is by ensuring that the first voter gives her point to p. This means
that all element candidates have to be removed from the election. By the same
argument as in the previous proofs, doing so by deleting at most h candidates is
possible if and only if I is a yes-instance of SET COVER.

Theorem 3.20. For each fixed integer t ≥ 2, t-APPROVAL-COMB-DCDC is NP-
hard, even for elections with only two voters.

Proof. Let the notation be as in the introduction to Section 3.6. Given an in-
stance I := (X ,S ,h) for SET COVER, we create an instance I ′ of t-Approval-
COMB-DCDC as follows. We construct an election E = (C,V) with candidate
set:

C = {p,d}∪ Xcand ∪Scand ∪D∪F,

where D = {d1, . . . ,dt−2} and F = { f1, . . . , f t−1} are two sets of dummy candidates
(note that D can be empty), and with the voter collection V containing two voters
with the following preference orders:

d Â Xcand Â D Â p ÂScand Â F and

p Â F Â d Â Xcand ÂScand Â D.

We use the set-embedding bundling function. We claim that I is a yes-instance of
SET COVER if and only if it is possible to preclude d from winning by deleting at
most h (bundles of) candidates.

Initially, both d and p are winners (as well as some members of Xcand ∪F).
Deleting p will make d gain one more point (from the second voter), making it
impossible for d to lose. The same holds for the dummy candidates from set F. In
other words, if we change the set of candidates that gain a point from the second
voter, then d will obtain two points and will certainly be a winner. This implies
that the only way of making d lose is to let either p or at least one candidate from
F gain one point from the first voter. By construction of the first voter’s preference
order, this is possible only for p if and only if we delete all members of Xcand.

89

As in the previous proofs, deleting them (through deleting at most h bundles of
candidates) is possible if and only if I is a yes-instance of SET COVER.

Theorem 3.21. For each fixed integer t ≥ 1, t-VETO-COMB-DCDC is NP-hard,
even for elections with only a single voter.

Proof. We use the same construction as used in Theorem 3.16 for t-Approval-
COMB-CCDC but we reverse the preference order and replace p with d, the
despised candidate:

Scand Â d Â Xcand Â D.

The crucial observation here is that with only one voter, the only way of
preventing d from winning is to rank her within the last t positions. This
means that all element candidates have to “disappear” from the election (one
could also try deleting the dummy candidates, but it is never a mistake to
“make disappear” the members of Xcand instead, through deleting the appropriate
candidates in Scand). Thus we can conclude that the set of deleted candidates
contains the set candidates only. Clearly, if d is to be precluded from winning
by deleting at most h candidates, this set must correspond to a set cover of size
h. Since we can assume that h < |Scand|, there is at least one set element not
deleted, and this will be a winner.

Theorem 3.22. BORDA-COMB-DCDC is NP-hard, even for elections with only
two voters.

Proof. Let the notation be as in the introduction to Section 3.6. Given an in-
stance I := (X ,S ,h) for SET COVER, we create an instance I ′ of Borda-COMB-
DCDC as follows. We construct an election E = (C,V) where C = {p,d, z}∪Xcand∪
Scand and where V contains two voters with the following preference orders:

d Â Xcand Â p ÂScand Â z and

p Â z Â d Â←−−−−
Xcand Â←−−−−

Scand.

We use the set-embedding bundling function. We claim that I is a yes-instance of
SET COVER if and only if it is possible to preclude d from winning by deleting at
most h (bundles of) candidates.

90

For convenience, we calculate the scores of all candidates:

1) d has 2|Scand|+2|Xcand|+2 points.

2) p has 2|Scand|+ |Xcand|+3 points.

3) Each element candidate xi has 2|Scand|+ |Xcand|+1 points.

4) z has |Scand|+ |Xcand|+1 points.

5) Each set candidate s j has |Scand| points.

Clearly, d has the highest number of points and, thus, is a winner.
Since both voters rank d ahead of the candidates in the set Xcand ∪Scand, no

member of this set can have the score higher than d, irrespective of which other
candidates we delete. Similarly, irrespective of which candidates we delete, z
will never have score higher than d. We conclude that candidate p is the only
candidate that has a chance of defeating d.

Since deleting candidates does not increase the scores of any of the remaining
candidates, to ensure that d is not a winner, we have to guarantee that he loses
at least |Xcand| points (relative to p). This means that it is possible to ensure that
d is not a winner if and only if it is possible to remove all candidates from Xcand.
However, this is possible if and only if I is a yes-instance of SET COVER.

Theorem 3.23. COPELANDα-COMB-DCDC is NP-hard, even for elections with
only three voters.

Proof. Let the notation be as in the introduction to Section 3.6. Given an in-
stance I := (X ,S ,h) for SET COVER, we construct an instance for Copelandα-
COMB-DCDC. Since our reduction will produce an instance with an odd number
of voters, the particular value of α is immaterial. We form the set of candidates:

C = {d, p}∪ Xcand ∪Scand.

We have three voters with the following preference orders:

p Â d Â Xcand ÂScand,

d Â Xcand Â p ÂScand,

←−−−−
Xcand Â p Â d Â←−−−−

Scand.

91

We use the set-embedding bundling function. We claim that I is a yes-instance
of SET COVER if and only if it is possible to preclude d’s victory by deleting at
most h (bundles of) candidates.

The initial scores are:

1) d receives |Scand|+ |Xcand| points (d wins head-to-head contests against all
other candidates but p).

2) p receives |Scand|+1 point (p wins head-to-head contests against d and all
the members of Scand).

3) Each member xi of Xcand receives at most |Scand| + |Xcand| (from head-
to-head contests with p, all members of Scand, and the other members
of Xcand).

4) Each member s j of Scand receives at most |Scand|−1 points (from head-to-
head contests with the other members of Scand).

Since deleting candidates cannot make any candidate gain more points, the only
way of ensuring that d is not a winner is to make sure that d’s score decreases
relative to some other candidate. By the above list of scores, it is easy to see that
the only candidate that may end up with a score higher than d is p. This happens
only if we remove all the members of Xcand. As in the previous proofs using the
set-embedding technique, doing so by deleting at most h candidates is possible if
and only if there is a set cover of size at most h for I.

Theorem 3.25. For each rational number α, 1 ≤ α ≤ 1, COPELANDα-COMB-
DCAC and COPELANDα-COMB-CCAC are NP-hard, even for elections with only
three voters.

Proof. Let the notation be as in the introduction to Section 3.6. Given an in-
stance I := (X ,S ,h) for SET COVER with n′ := |Xcand|, we construct an instance
for Copelandα-COMB-DCAC. Since our reduction will produce an instance with
an odd number of voters, the particular value of α is immaterial. We form the set
of registered candidates:

C = {d, p}∪D∪F,

where d is the despised candidate (and we will want to ensure that p wins
over d), and where D := {d1, . . . ,dn−2} and F := { f1, . . . , fn−1} are two sets of dummy

92

candidates. We let the set of unregistered candidates be A = Xcand∪Scand. Finally,
we construct three voters with the following preference orders:

d Â D Â p Â F Â Xcand ÂScand,

p Â←−
F Â←−−−−

Xcand Â←−
D Â d Â←−−−−

Scand,

Xcand Â d Â D Â F Â p ÂScand.

We use the set-embedding bundling function. We claim that I is a yes-instance of
SET COVER if and only if it is possible to preclude d’s victory by adding at most h
(bundles of) candidates.

Prior to adding any of the candidates, we have the following scores:

1) d receives 2n′−2 points (d wins head-to-head contests with all the remain-
ing registered candidates).

2) p receives n′−1 points (p wins head-to-head contests with the members
of F).

3) Every dummy candidate di ∈ D receives at most 2n′−3 points (di wins
head-to-head contests with all the members of F, with p, and—at most—all
remaining members of D).

4) Every dummy candidate f i ∈ F receives at most n′−2 points (f i wins head-
to-head contests with—at most—the remaining members of F).

It is easy to verify through simple calculation that if there is a set cover for I of
size at most h, then adding the members of Scand that correspond to the cover
ensures that d is not a winner (relative to d, p gets additional n′ points).

For the reverse direction, note that adding candidates to the election cannot
decrease the score of any existing candidate. Thus, in order to beat d, we must
add candidates to increase (relative to d) the score of some candidate. We make
several observations:

1) The candidates in Scand themselves do not contribute to the increase of a
score of any candidate relative to p since all other candidates (including d)
win head-to-head contests against them.

2) The scores of the members of D do not change relative to the score of d,
irrespective of which other candidates join the election.

93

3) By the first observation in this enumeration, the maximum possible in-
crease of a score of candidate is by n′ points (if this candidate defeats all
members of Xcand and members of Xcand join the election). Since all mem-
bers of set F have score at most n′−2, none of them can obtain score higher
than d, irrespective of which candidates we add.

As a conclusion, we have that the only candidate that can possibly defeat d
is p, and this happens only if all members of Xcand join the election. It is possible
to ensure that this happens by adding at most h bundles of candidates if and only
if there is a set cover for I of size at most h.

We use the same construction for the case of Copelandα-CCAC, except that now
p is the preferred candidate and we increase the size of D by one.

Theorem 3.26. MAXIMIN-COMB-CCAC is NP-hard, even for elections with only
six voters.

Proof. Let the notation be as in the introduction to Section 3.6. Given an in-
stance I := (X ,S ,h) of SET COVER with n′ := |Xcand|, we construct an instance
for Maximin-COMB-CCAC. We let the set of registered candidates be C := {p}∪D,
where p is the preferred candidate and where D := {d1, . . . ,dn′ } is a set of dummy
candidates. The unregistered candidate set is A := Xcand ∪Scand. We construct
six voters with the following preference orders:

v1 : p Â x1 Â d1 Â ·· · Â xn′ Â dn′ ÂScand,

v2 : p Â xn′ Â dn′ Â ·· · Â x1 Â d1 ÂScand,

v3 : x1 Â ·· · Â xn′ Â d1 Â ·· · Â dn′ Â p ÂScand,

v4 : dn′ Â ·· · Â d1 Â p Â xn′ Â ·· ·x1 ÂScand,

v5 : x1 Â ·· · Â xn′ Â d1 Â ·· · Â dn′ Â p ÂScand,

v6 : dn′ Â ·· · Â d1 Â p Â xn′ Â ·· · Â x1 ÂScand.

(Note that v3 and v5 have the same preference order and that v4 and v6 have
the same preference order.) We use the set-embedding bundling function. We
claim that I is a yes-instance of SET COVER if and only if it is possible to ensure
p’s victory by adding at most h (bundles of) candidates.

94

Prior to adding any of the candidates, p has two points and each candidate in D
has three points. All the voters rank the members of Scand last, so the presence
of these candidates in the election does not change the scores of p and members
of D. More so, members of Scand themselves receive zero points each. If some
candidate xi appears in the election, however, then we have the following effects:

1) This candidate’s score is at most two (since only voters v3 and v5 prefer xi
to p).

2) The score of di becomes at most two (since only voters v4 and v6 prefer di
to xi).

3) The score of p does not change (since already v1 and v2 prefer p to xi).

This means that if there is a set cover of size at most h for I, then adding the set
candidates that correspond to this cover will bring all members of Xcand to the
election and p will be among the winners.

First, note that it is impossible to increase the score of p by adding candidates,
and that for each di, the only way to decrease his score to at most two is to
bring xi into the election.

For the reverse direction, note that in order to let p win, we must add candidates
to the election to decrease the score of every element candidate xi, and the
only way of achieving this by adding at most k bundles is by adding the s j
corresponding to the set cover. This means that if it is possible to ensure p’s
victory by adding at most h candidates, then it must be possible to add all
members of Xcand into the election, and this means that there is a set cover of
size at most h.

3.D. Deffered Proofs for the Signature Proof
Technique

Theorem 3.29. For each fixed integer t ≥ 2, t-APPROVAL-DCAC can be solved
in min{O(m · (t ·3n)t·n),O(m ·n · t · (t+1)t·n)} time, where m is the total number of
candidates and n is the number of voters.

Proof. We have two ways to solve this problem. We can either run the brute-force
algorithm on top of Theorem 3.27, obtaining running time O(m · (t ·3n)t·n)), or we
can use a variant of the algorithm from Theorem 3.28. Below we describe how

95

to adapt the algorithm from Theorem 3.28, as it allows us to achieve a better
running time.

We use the same algorithm as in Theorem 3.28, but with a more involved
notion of a signature and with a more involved merging operator ⊕. Indeed, the
algorithm to be described next is a generalization of the algorithm described in
Theorem 3.28.

Since we have n voters, we define the unbounded-signature of a set A′ of
unregistered candidates to be a vector~τ with n entries, such that the ith entry
is a vector τi with t values, defined as follows. The jth entry of τi, for 1 ≤ j ≤ t
(and 1≤ i ≤ n), contains the number of candidates in A′ that the ith voter prefers
to all but j−1 registered candidates. Based on the definition of an unbounded-
signature, we define the bounded-signature (in short, a signature) of a set A′
as its unbounded signature where all entries greater than t are replaced by t.
Altogether, there are (t+1)t·n signatures.

Given two signatures,~τ′ and~τ′′, we define their merge,~τ=~τ′⊕~τ′′, as follows.
For each i, 1≤ i ≤ n, vector τi is computed by first calculating the component-wise
sum of vectors ~τ′ and ~τ′′, and then replacing with t each entry greater than
t. It is easy to see that, if A′ and A′′ are two disjoint sets of candidates with
signatures~τA′ and~τA′′ , then~τA′ ⊕~τA′′ is a signature of their union. (Note that in
our algorithm we apply the operator ⊕ to “signatures of disjoint sets of candidates”
only.)

It is straight-forward to verify that, given a signature of a subset A′ of unregis-
tered candidates, we can compute the scores of candidates p and d. This suffices
to describe our algorithm and to justify its correctness.

The running time is O(m ·n · t · (t+1)t·n) (it is calculated in the same way as
in the proof of Theorem 3.28, except that now we have more signatures and the
components of the signatures are t-dimensional vectors).

An example for the algorithm described above is provided next.

Example 4. Consider the following election.

v1 : dÂ c Â a Â eÂ b Âp

v2 : b Â c ÂpÂdÂ eÂ a

v3 : a Â c ÂdÂpÂ b Â e

96

The registered candidates are {d, p, e} and the unregistered candidates are
{a,b, c}. We consider 2-Approval (that is, t = 2), therefore d gets 3 points, p gets
2 points, and e gets 1 point.

We have the following signatures.

a’s signature:


0 1

0 0

1 0

 b’s signature:


0 0

1 0

0 0

 c’s signature:


0 1

1 0

1 0


Combining a and c together, we have the following signature.

(a’s signature)⊕ (c’s signature:)


0 1

1 0

2 0


Indeed, it can be computed from the above signature, that {a, c} is a solution,

causing p to win the election. 4
Theorem 3.30. For each fixed integer t ≥ 1, both t-APPROVAL-DCDC and t-
VETO-DCDC can be solved in time O∗(m ·4n · (3n)3

n
), where m is the total number

of candidates and n is the number of voters.

Proof. We begin with the case of the t-Approval rule and later explain how to
adapt the proof to apply to the case of the t-Veto. Let us fix a positive integer t
and let ((C,V),d,k) be an instance of t-Approval-DCDC, where V = (v1, . . . ,vn).

We guess a candidate p, whose role is to defeat the despised candidate d. For
each such candidate p we do the as follows. First, for each voter, we “guess” one
of at most four possible possibilities for the score that d and p would gain from
this voter, in the resulting election (after we delete the candidates):

1) First possibility: only d receives one point.

2) Second possibility: only p receives one point.

3) Third possibility: both candidates receive one point.

4) Fourth possibility: neither p nor d receive a point.

97

We record our guesses in the vector ~δ. Note that we do not consider some of the
possibilities: for example, the second possibility is not possible for a voter which
prefers d to p. For each guessed p and ~δ, we check whether giving the points
according to our guesses in ~δ guarantees that p has more points than d. If so,
then we run an integer linear program to find out whether it is possible to ensure
that every voter gives points to candidates p and d as described by the vector ~δ,
while respecting the budget.

To this end, for each signature ~γ ∈ [3]n, we create an integer variable x~γ,
representing the number of candidates of signature ~γ that we delete. For each
signature~γ, we add the following constraint:

x~γ ≤ z~γ,

where z~γ denotes the current number of candidates with signature~γ. We add a
budget constraint: ∑

l∈[3]n
xl ≤ k.

We now treat each voter vi individually, as follows. We have several cases to
consider, based on which possibility we guessed for vi.

We begin with the first and second possibility. That is, if, we guessed the first
or second possibility for vi (that is, if vi prefers d to p and we also guessed that
only d should gain a point from vi, or, if vi prefers p to d and we also guessed
that only p should gain a point from vi), then we add two constraints. The first
constraint is as follows: ∑

~γ:γi=3
(z~γ− x~γ)≤ t−1.

To understand this constraint, recall the definition of a {d, p}-signature; specifi-
cally, a candidate will have γi = 3 if vi prefers c to both p and d. This constraint
is added since, if we would add more than t−1 candidates which are preferred to
both p and d by vi, then neither p or d would gain a point from vi. The second
constraint is as follows: ∑

~γ:γi∈{2,3}
(z~γ− x~γ)≥ t−1.

To understand this constraint, recall the definition of a {d, p}-signature again;
specifically, a candidate will have γi = 2 if vi prefers one of {d, p} to c while c is
preferred to the other candidate from {d, p}. This constraint is added since, if we
would add less than t−1 candidates with this behavior, then p and d would both
gain a point from vi.

98

We continue with the third possibility. That is, if we guessed the third possibil-
ity for vi (that is, if both d and p should gain a point from vi), then we add the
following constraint: ∑

~γ:γi∈{2,3}
(z~γ− x~γ)+2≤ t.

Now, this constraint is added since, if we would add more than t candidates such
that, for each candidate c out of these t candidates, vi prefers c to at least one of
d or p, then at least one of d or p would not gain a point from vi.

We continue with the forth possibility. That is, if we guessed the fourth possi-
bility for vi (that is, if both d and p should not gain a point from vi), then we add
the following constraint: ∑

~γ:γi=3
(z~γ− x~γ)≥ t.

This finishes the description of the ILP and the description of the algorithm.
The running time is easy to verify: since we run an ILP for each choice of a

defeater candidate p and a possible way of giving p and d points, the running
time is O(m ·4n) multiplied by the cost of running the ILP. The running time then
follows by applying the result by Lenstra [104], and since that the number of
variables in the ILP is 3n variables.

For the case of the t-Veto rule, we use the same approach as described above
for the t-Approval rule, but we first reverse all preference orders and consider a
candidate as a winner if his score is the lowest (in essence, this is equivalent to
replacing “points” with “vetoes” in the above reasoning).

3.E. Remaining Results

In this section we present some remaining algorithms, showing membership in
XP, FPT, and P, for some cases. For XP and FPT membership, our algorithms
use a simple brute-force approach.

3.E.1. Fixed-Parameter Tractability Results

We now show simple, fast FPT algorithms for Plurality-CCDC, Plurality-DCDC,
and Veto-DCDC. The main idea for the algorithms in this section is to guess a
subset of voters that will give a specific candidate one point under the relevant
voting rule. The key observation is that, in the case of deleting candidates, after

99

guessing this subset of voters, it is trivial to find the set of candidates to delete to
realize this guess.

Theorem 3.31. PLURALITY-CCDC can be solved in O(m ·n ·2n) time, where m is
the total number of candidates and n is the number of voters.

Proof. Let I := ((C,V), p,k) be a Plurality-CCDC instance. If I is a yes-instance,
then after deleting at most k candidates, there must be a subset of voters, each
giving one point to candidate p, while no other candidate has more points than p.
Observe that, in order to let p gain one point from a voter, one has to delete all the
candidates this voter prefers to p. Our algorithm, based on these observations,
proceeds as follows.

We consider all 2n subsets of n voters. For each considered set V ′ we do the
following. For each voter v′ ∈V ′, we delete all candidates that v′ prefers to p. As
a result, all members of V ′ rank p first. Then, we keep deleting all candidates
that have more than |V ′| points (note that deleting some candidate that has more
than |V ′| points may result in some other candidate exceeding this bound).

If, at the end of this process, no candidate has more than |V ′| points and we
deleted at most k candidates, then we return True. Otherwise, we proceed to the
next subset of voters. If we did not return True for any of the subsets of voters,
then we return False.

It is straight-forward to see how to adapt the algorithm from Theorem 3.31
to the destructive case. In essence, it suffices to try all choices of a candidate p
whose goal is to defeat the despised candidate d and, for each such choice, guess
a subset of voters that are to give points to p. If after deleting the candidates that
these voters prefer to p (assuming that none of them prefers d to p) the despised
candidate d has fewer points than p, then we return True. In the destructive case
there is no need to have the additional loop of deleting candidates with higher
score than p.

Corollary 3.4. Plurality-DCDC can be solved in O(m2 ·n ·2n) time, where n is
the number of voters and m is the number of candidates in the input election.

We provide an analogous result for the Veto rule.

Theorem 3.32. VETO-DCDC can be solved in O(m ·n ·2n) time, where m is the
total number of candidates and n is the number of voters.

Proof. We use almost the same approach as for Theorem 3.31. First, we guess
candidate p whose goal is to have fewer vetoes than d. Deleting candidates can

100

only increase the number of vetoes that a remaining candidate has. Thus, our
algorithm proceeds as follows.

We consider every subset V ′ of voters that prefer p to d. For each subset V ′,
and for each voter v′ in the subset V ′, we delete all candidates that this voter
ranks below d (by choice of V ′, p is never deleted). If, as a result, d has more
vetoes than p, then we return True. Otherwise, we try the next subset of voters. If
we did not return True for any of the subsets of voters, then we return False.

3.E.2. XP Results

We now establish XP results for our W[1]-hard problems. Indeed, this implies
that, if the number of voters is a constant, then the problems are polynomial-time
solvable.
Theorem 3.33. For each fixed integer t, t ≥ 1, and for each control type K ∈
{CCAC,CCDC}, t-APPROVAL-K and t-VETO-K can be solved in time O(mtn ·m ·
n), where m is the total number of candidates and n is the number of voters.

Proof. We consider the CCAC and the CCDC cases jointly, in parallel for both
t-Approval and t-Veto. Our algorithm first guesses, for each voter, the set of
t candidates that this voter will rank first (for the case of t-Approval) or last (for
the case of t-Veto). There are O(mtn) possible different guesses.

For each guess, for each voter, we verify which candidates have to be added
(for the case of CCAC) or deleted (for the case of DCAC) to ensure that the voter
ranks the guessed t candidates on top. If it suffices to add or delete k candidates
to implement the guess, and, as a result of implementing the guess, the preferred
candidate is a winner, then we return True. Otherwise, we proceed to the next
guess. If we did not return True for any guess, then we return False.

Theorem 3.34. For each fixed integer t, t ≥ 1, and each control type K ∈ {CCAC,
DCAC}, t-APPROVAL-COMB-K and t-VETO-COMB-K can be solved in time
O(m2tn ·m ·n), where m is the total number of candidates and n is the number of
voters.

Proof. We use the same approach as described in the proof of Theorem 3.33, but
in addition to guessing the first t candidates for each vote, we also guess, for each
added candidate c, which bundle it belongs to. Guessing one bundle is enough
since, by guessing these bundles, we indeed guess the solution.

101

3.E.3. Polynomial-time Solvable Case
We show the last remaining case, of Maximin-COMB-DCAC, next. It turns out
that the polynomial-time algorithm for Maximin-DCAC, presented by Faliszewski
et al. [77], can be generalized for the combinatorial case.

Theorem 3.35. MAXIMIN-COMB-DCAC can be solved in O(m3 ·n) time, where
m is the total number of candidates and n is the number of voters.

Proof. It was shown by Faliszewski et al. [77] that Maximin-DCAC is polynomial-
time solvable. The same strategy can be applied for the combinatorial case as
well. To this end, let ((C,V), A,d,κ,k) be an instance of Maximin-COMB-DCAC.

The algorithm is simple and can be described as follows: we guess up to two
candidates, add their bundles to the election, and check whether the despised
candidate d is no longer a winner; if so, then we return True, and otherwise, we
return False.

To see why this simple algorithm is correct, consider a solution, that is, a set A′
of at most k unregistered candidates whose bundles are to be added. If A′ consists
of at most two candidates, then we are done. Otherwise, let us take a closer look
at the set A′.

It is clear that, in the resulting election E′ := (C∪κ(A′),V), d is not a winner.
Therefore, there must be at least one other candidate p that has higher score
than d. Consider the bundle bp of some candidate in κ(A′) such that bp includes p
(indeed, there might be several such candidates; we can choose any one of them
arbitrarily; it is also possible that p is present in the original election, in which
case we take bp to be an “empty” bundle). Further, consider some candidate
z in κ(A′) such that the Maximin score of candidate d in the election E′ is
exactly NE′ (d, z). There might be several such candidates and we choose one
arbitrarily. Finally, we choose an arbitrary candidate from A′ whose bundle bz
includes z (in fact, it is possible that z is present in the original election, in which
case we take bz to be an “empty” bundle).

It is clear that p defeats d in the election (C ∪κ(x, y),V) where x and y are
the candidates corresponding to the bundles bp and bz, respectively (if either of
these bundles is “empty”, then we simply disregard it). Thus, each yes-instance
of Maximin-COMB-DCAC has a solution that consists of at most two candidates
and, consequently, it is sufficient to guess and test at most two unregistered
candidates.

102

4. Combinatorial Shift Bribery
In this chapter, similarly to Chapter 3, we study the possibility of manipulating
an election which occurs on top of an underlying social network. In Chapter 3 we
consider manipulating a given election by adding or deleting groups of candidates
from the election. Here, however, we consider manipulating a given election by
changing the way groups of voters vote.

Technically, we study a combinatorial variant of the SHIFT BRIBERY problem
in elections. In the standard SHIFT BRIBERY problem, we are given an election
where each voter has a preference order over the set of candidates and where
an external agent, the briber, can pay each voter to rank the briber’s favorite
candidate a given number of positions higher. The goal is to ensure the victory of
the briber’s preferred candidate.

The combinatorial variant of the problem models settings where it is possible
to affect the position of the preferred candidate in multiple votes, either positively
or negatively, with a single bribery action. That is, there is some underlying
structure connecting the voters, such that whenever the external agent changes
the position of its preferred candidate in one of the votes, the position of the
briber’s preferred candidate is changed in some other (related) votes. This variant
of the problem is particularly interesting in the context of large-scale campaign
management problems (which, from the technical side, are modeled as bribery
problems).

We show that the combinatorial variant of the SHIFT BRIBERY problem is
highly intractable in general (that is, NP-hard, hard in the parameterized sense,
and hard to approximate), and also provide some parameterized algorithms and
approximation algorithms for natural restricted cases.

4.1. Illustrating Example
Consider the following example.

Example 5. Recall the group of people discussed in Section 3.1, the social net-
work representing their friendship relationships (Figure 3.1, and given also

103

Alice

BobCinderella David

Euclid

Figure 4.1. The social network used in the illustrating example.

Alice : Alice Â Cinderella Â David Â Bob Â Euclid

Bob : Euclid Â Bob Â David Â Alice Â Cinderella

Cinderella : Cinderella Â Alice Â David Â Bob Â Euclid

David : David Â Cinderella Â Euclid Â Alice Â Bob

Euclid : Cinderella Â David Â Euclid Â Alice Â Bob

Figure 4.2. The election used in the illustrating example.

in Figure 4.1 for convenience), and the election performed over their social net-
work (Figure 3.2, and given also in Figure 4.2 for convenience).

In Section 3.1, corresponding to the computational problem considered in Chap-
ter 3, we assume that Bob can choose one person from the group and persuade
him (or her) not to participate as a candidate in the election, and as a result, all
his (or her) friends would also not participate as candidates in the election.

Here, however, corresponding to the computational problem considered in this
chapter, we assume that Bob can persuade some people from the group to change
their ranking of Euclid. Specifically, a set of shift actions is given, and Bob can
choose some shift actions from this set. Each shift action results in shifting the
position of Euclid in the preference orders of several voters. A particular set of
shift actions is depicted in Figure 4.3 (for example, shift action f1 would result in
Euclid being shifted backwards by one position in the vote of Bob, while shifted
forward by one position in the vote of David and Euclid).

We ask the following question: “which shift actions shall Bob choose?”

104

effect on Alice

effect on Bob

effect on Cinderella

effect on David

effect on Euclid

:

:

:

:

:



1

−1

0

1

1





0

1

0

1

−1





0

−2

0

1

0





2

0

1

−1

0





0

−1

0

0

1


f1 f2 f3 f4 f5

Figure 4.3. The shift actions used in the illustrating example.

Alice : Alice Â Cinderella Â David Â Bob Â Euclid

Bob : Bob Â David Â Alice Â Euclid Â Cinderella

Cinderella : Cinderella Â Alice Â David Â Euclid Â Bob

David : Euclid Â David Â Cinderella Â Alice Â Bob

Euclid : Euclid Â Cinderella Â David Â Alice Â Bob

Figure 4.4. The resulting election.

In the current example, the answer is f1, f3, and f5. Indeed, the resulting
election would be as shown in Figure 4.4, and, under the Plurality voting rule,
we will have Euclid as the winner, exactly as desired by Bob. 4

4.2. Introduction

In this chapter we study a scenario of election campaign management, for the
case where campaign actions (such as airing a TV advertisement, launching a
web-based campaign, or organizing meetings with voters) may have large-scale
effects which affect multiple voters. Further, we are interested in settings where

105

these actions can have both positive effects (for example, some voters may choose
to rank the promoted candidate higher because they find arguments presented in
a given advertisement appealing) as well as negative ones (for example, because
some other voters find the advertisement too aggressive). Thus, in our setting,
the two major issues faced by a campaign manager are (a) choosing actions that
positively affect as many voters as possible and (b) balancing the negative effects
of campaigning actions (for example, by concentrating these negative effects on
voters who disregard the promoted candidate anyway).

Within computational social choice, the term campaign management (intro-
duced by Elkind et al. [61, 62]) is an alternative name for the bribery family of
problems (introduced by Faliszewski et al. [74]) for the case where one focuses on
modeling actions available during election campaigns: as a result of money spent
by a campaign manager, some of the voters change their votes. In this chapter, we
study campaign management through the SHIFT BRIBERY problem [27, 61, 62].
In the SHIFT BRIBERY problem, we have a candidate p whom we want to win, for
each voter v we have a price πv(i) for which this voter is willing to shift p forward
by i positions in her preference order (of course, this price does not necessarily
reflect a direct money transfer to the voter, but rather the cost of convincing the
voter to change his or her mind), and we ask for the lowest cost of ensuring that
p is a winner (see Section 4.2.1 for references to other campaign management
problems).

The SHIFT BRIBERY problem has one major drawback as a model for campaign
management: it is incapable of capturing large-scale effects of campaign actions.
In particular, if one puts forward a TV spot promoting a given candidate, then
some voters will react positively and rank the candidate higher, some will be
oblivious to it, and some will react negatively, by ranking the candidate lower. The
SHIFT BRIBERY problem cannot model such correlated effects. In this chapter we
study the COMBINATORIAL SHIFT BRIBERY problem, allowing campaign actions
to have effects, positive and negative, on whole groups of voters. Indeed, one
might think of these correlated effects as being dependent on some underlying
social network, connecting the voters.

We consider two voting rules, the Plurality rule (where we pick the candidate
who is ranked first by most voters) and the Borda rule (where each candidate c
gets from each voter v as many points as there are candidates that v prefers c to,
and we pick the candidate with the most points). These rules are chosen since
the Plurality rule is the most widespread rule in practice and since the Borda
rule is very well-studied in the context of campaign management.

106

We are interested in understanding how such a more realistic model of cam-
paign management affects the complexity of the problem. Indeed, the SHIFT

BRIBERY problem is, computationally, a very well-behaved problem. For exam-
ple, for the Plurality rule it is solvable in polynomial time and for the Borda
rule it is NP-complete [62], but there is a polynomial-time 2-approximation algo-
rithm [61, 62] and there are parameterized algorithms, either exact or capable of
finding solutions arbitrarily close to the optimal ones [27]. In this chapter, we ask
to what extent do we retain these good computational properties when we allow
large-scale effects. The results are surprising both positively and negatively:

1) COMBINATORIAL SHIFT BRIBERY becomes both NP-complete and W[1]-
hard even for the Plurality rule, even for very restrictive choice of parame-
ters, even if the correlated effects of particular campaign actions are limited
to at most two voters. Moreover, our hardness results imply that good,
general approximation algorithms do not exist when we allow negative
effects of campaign actions.

2) In spite of the above, it is still possible to derive relatively good (approxima-
tion) algorithms, both for the Plurality rule and for the Borda rule, provided
that we restrict the effects of the campaign actions to be only positive and to
either only involve few voters each, or to only involve groups of consecutive
voters (given an ordering of the voters).

Our results are summarized in Table 6.1. With the generality of our problem
and its combinatorial nature it is natural that we obtain many hardness results.
Yet, their extent and strength is surprising, and so is the fact that we also find a
non-trivial landscape of tractable cases.

4.2.1. Related Work
Our work builds on top of two main research ideas. First, on studying campaign
management and bribery problems, and, second, on studying combinatorial
variants of election problems (indeed, studying combinatorial variants of election
problems is partially the subject of Chapter 3 as well).

The study of the computational complexity of bribery in elections was initiated
by Faliszewski et al. [74], and continued by a number of researchers [75, 93,
115, 117]. Elkind et al. [61, 62] realized that the formalism of election bribery
problems is useful from the point of view of planning election campaigns. In
particular, they defined the SWAP BRIBERY problem and its restricted variant,

107

SHIFT BRIBERY. In the former, it is possible, at a given price, to swap any two
adjacent candidates in a given vote. In the latter, we are only allowed to shift
the preferred candidate forward. Various problems, modeling different flavors of
campaign management, have been studied, including, for example, the possibility
to alter the number of approved candidates [6, 80, 136].

Moreover, different (positive) applications of bribery problems have been re-
vealed. For example, in the MARGIN OF VICTORY view of the problem, the goal
of the briber is to prevent some candidate from winning; if it is possible to do
so at low cost, then this suggests that the election could have been tampered
with [38, 113, 133, 143].

From our point of view, the most related works are those of Elkind et al. [61, 62],
Bredereck et al. [27], and Dorn and Schlotter [56]. The former ones study the
SHIFT BRIBERY problem (with the work of Bredereck et al. [27] focusing on
parameterized complexity of SHIFT BRIBERY), which we generalize, whereas the
work of Dorn and Schlotter [56] pioneers the use of parameterized complexity
analysis for bribery problems.

Similarly to Chapter 3, the combinatorial variant considered in this chapter
is largely inspired by the work of Chen et al. [41], who introduced and studied
a combinatorial variant of voter control. Control is a very well-studied topic in
computational social choice, initiated by Bartholdi et al. [5]. Control problems,
especially those related to adding and deleting voters, are quite relevant to
issues of campaign management. Indeed, in Section 4.5 we do show a connection
between COMBINATORIAL SHIFT BRIBERY and (combinatorial) control by adding
voters [33] (control is the subject of Chapter 3; for a literature review on election
control, see Section 3.2.3).

We stress that our use of the term “combinatorial variants of election problems”
is different from the one used in the well-established line of work regarding
combinatorial candidate spaces (see the survey of Lang and Xia [101] and further
work, for example [17, 51, 115]; in short, we refer to the combinatorial structure
connecting the voters or the candidates of the given elections, while they refer to
voting in multi-issue domains, where the voters vote on combinatorial candidates).
In this chapter, we use the term “combinatorial” to refer to the “combinations” of
voters affected by each bribery action.

108

4.3. Specific Preliminaries
In this section, we first define the COMBINATORIAL SHIFT BRIBERY problem
in its full generality. Then, we describe why and how we simplify it for the
remainder of our study.

4.3.1. The Definition
Let R be some voting rule. The formal definition of R-COMBINATORIAL SHIFT

BRIBERY is somewhat involved, therefore we first define some necessary compo-
nents. We are given an election E = (C,V) and a preferred candidate p ∈ C. The
goal is to ensure that p is an R-winner of the election. To this end, we have a
number of possible actions to choose from.

Recall that m := |C| denotes the number of candidates in E and that n := |V |
denotes the number of voters in E. A shift action f is an n-dimensional vector
of (possibly negative) integers, f = (f (1), . . . , f (n)). In R-COMBINATORIAL SHIFT

BRIBERY we are given a family F = (f1, . . . , fζ) of shift actions. Each particular
shift action models a possible campaigning action, such as airing a TV spot or
organizing a meeting with the voters. The components of a given shift action
measure the effect of the corresponding campaigning action on the particular
voters. For a given subset F ′ ⊆ F of shift actions, we define the effect of F ′ on
voter vi (1≤ i ≤ n) as E (i)(F ′)=∑

f j∈F ′ f (i)
j . Further, each shift action f j (1≤ j ≤ ζ)

comes with a non-negative integer cost w(f j) for applying it.
Each voter vi (1 ≤ i ≤ n) has her individual threshold function πi : Z → Z

describing how shift actions affect this voter. We require that πi(0)= 0 and that
πi is non-decreasing. Let F ′ be a collection of shift actions. After applying the shift
actions from F ′, each voter vi (1≤ i ≤ n) shifts the preferred candidate p by t > 0
positions forward if (a) E (i)(F ′)> 0, and (b) πi(t)≤ E (i)(F ′)<πi(t+1). The shift is
by t > 0 positions back if (a) E (i)(F ′)< 0 and (b) πi(−t)≥ E (i)(F ′)>πi(−t−1).

Finally, we are given a non-negative integer B, the budget. We ask for the
existence of a collection F ′ ⊆ F of shift actions with total cost

∑
f j∈F ′ w(f j) at

most B and such that, after applying them, p will be an R-winner of the given
election. If this is the case, then we say that F ′ is successful. Consider the
following example.

Example 6. Consider the election below, where the set of candidates is C =
{a,b, c, p}, the set of voters is V = (v1,v2,v3), and p is the preferred candidate.
There are three available shift actions, each with the same unit cost (that is,
w(f1)= w(f2)= w(f3)= 1).

109

election shift actions

v1 : c Â b Â p Â a

v2 : b Â a Â c Â p

v3 : p Â a Â b Â c


2

4

0




6

0

−3




0

2

0


f1 f2 f3

The threshold functions are such that:

1) π1(−1)=−4, π1(0)= 0, π1(1)= 6, π1(2)= 100.

2) π2(0)= 0, π2(1)= 2, π2(2)=π2(3)= 100.

3) π3(−3)=π3(−2)=−100, π3(−1)=−3, π3(0)= 0.

We use the Borda rule. Candidates a, b, c, and p have, respectively, 4, 6, 4, and
4 points. It is easy to see that applying any single shift action does not ensure p’s
victory. However, applying shift actions F ′ = { f2, f3} results in p being a winner.
The total effect of these two shift actions is (6,2,−3). According to the threshold
functions, this means that p is shifted forward by one position in v1 and v2, and
is shifted back by one position in v3. After these shifts, the modified election looks
as follows:

election

v′1 : c Â p Â b Â a

v′2 : b Â a Â p Â c

v′3 : a Â p Â b Â c

That is, after we apply the shift actions F ′ = { f2, f3}, we have that candidate c
has 3 points, while all other candidates have 5 points each. Thus, a, b, and p are
tied as co-winners and F ′ is indeed a successful set of shift actions. 4

Formally, given a voting rule R, we define the R-COMBINATORIAL SHIFT

BRIBERY problem as follows.

110

R-COMBINATORIAL SHIFT BRIBERY

Input: An election E = (C,V), where C = {c1, . . . , cm} is the set of
candidates and V = (v1, . . . ,vn) is the collection of voters, a set F =
{ f1, . . . , fζ} of shift actions with costs w(f1), . . . ,w(fζ), threshold func-
tions π1, . . . ,πn, and a non-negative integer budget B. One of the
candidates is designated as the preferred candidate p.
Question: Is there a subset F ′ ⊆ F of shift actions with total cost at
most B such that, after we apply the shift actions from F ′, candidate p
is an R-winner of the resulting election?

While this definition is quite complicated, it captures some important features
of campaigning. For example, the use of threshold functions allows us to model
voters who are unwilling to change the position of the preferred candidate beyond
a certain range, irrespective of the strength of the campaign. The fact that
different shift actions have different costs models the fact that particular actions
(for example, airing TV spots or organizing meetings) may come at different costs.

In this chapter we study also the approximability of the COMBINATORIAL

SHIFT BRIBERY problem. Specifically, by approximate solution we mean a solu-
tion which causes p to be a winner of the election but possibly uses more budget
than given.

4.3.2. Relation to Standard Shift Bribery

It is important to discuss the relation between the COMBINATORIAL SHIFT

BRIBERY problem and its non-combinatorial variant, the SHIFT BRIBERY prob-
lem [61, 62]. If we restrict our shift actions such that each shift action has a
positive entry for exactly one voter, then—in effect—we obtain SHIFT BRIBERY

for the case of convex price functions [27]. This is a very general variant of the
SHIFT BRIBERY problem for which, naturally, all known NP-hardness results
hold, but nonetheless not the most general one (a more general variant would
allow for arbitrary prices). We decided not to complicate our definition further to
obtain a full generalization. As we will see below, doing so would obfuscate the
problem without visible gain.

4.3.3. A General Hardness Result

It turns out that the COMBINATORIAL SHIFT BRIBERY problem, as defined above,
is so general that it allows for the following, sweeping, hardness result. Note,

111

however, that we prove weak NP-hardness. That is, our result may not hold if
we assume that all occurring numbers are encoded in unary. In contrast, all
other hardness proofs in this chapter prove strong NP-hardness results and are
independent of such number encoding issues.

Theorem 4.1. For both the Plurality rule and the Borda rule, COMBINATORIAL

SHIFT BRIBERY is NP-hard even for five voters, two candidates, and no budget
constraints. For the Borda rule, COMBINATORIAL SHIFT BRIBERY is NP-hard
even for three voters and four candidates.

Proof. We reduce from the following (weakly NP-hard) variant of the SUBSET

SUM problem (it is an easy exercise to show its NP-hardness through a reduction
from the classic SUBSET SUM problem [84]):

SUBSET SUM (ZERO VARIANT)
Input: A set A := {a1, . . . ,an} of integers.
Question: Is there a non-empty set A′ ⊆ A such that

∑
ai∈A′ ai = 0?

Given an instance A = {a1, . . . ,an} of SUBSET SUM (ZERO VARIANT), we con-
struct an instance of Plurality-COMBINATORIAL SHIFT BRIBERY with two can-
didates. Since the Plurality rule and the Borda rule coincide for elections with
two candidates, our hardness result transfers to Borda-COMBINATORIAL SHIFT

BRIBERY (and, in fact, to almost all natural voting rules).
We construct the following election:

election shift actions

v1 : p Â d

v2 : p Â d

v3 : d Â p

v4 : d Â p

v5 : d Â p



a1

−a1

1

0

0


. . .



an

−an

1

0

0


f1 . . . fn

That is, for each element ai ∈ A, F contains one shift action f i with effect ai
on v1, effect −ai on v2, effect 1 on v3, and no effect on the other two voters.

112

The voter threshold functions are as follows. Candidate p is shifted to the last
position for v1 and v2 if the effect on these voters is negative (that is, we have
that π1(−1)=π2(−1)=−1). Candidate p is shifted to the top position for the third
voter if the effect is positive (that is, we have that π3(1)= 1). We set the cost of
each shift action to be one and we set our budget to be n. Thus the budget allows
us to pick any combination of the shift actions.

For the “if” direction, let A′ ⊆ A be a non-empty subset whose element-wise
sum equals zero. After applying F ′ := { f i : ai ∈ A′}, it holds that p is a winner:
since A′ sums up to zero, there is no effect on the first two voters. Moreover, the
effect on the third voter is positive, since A′ is non-empty. Thus, p is preferred by
three voters (out of five) and wins the election.

For the “only if” direction, let F ′ ⊆ F be a subset of shift actions that makes p
a winner. Then, F ′ must be non-empty since p does not win the initial election.
We claim that the element-wise sum of A′ := {ai : f i ∈ F ′} is zero. Towards a
contradiction, assume that

∑
ai∈A′ ai 6= 0. If the sum were negative, then there

would be a negative effect on the first voter, d would be preferred by three voters
out of five, and d would win the election. If the sum were positive, then we would
have the same effect with the second voter taking the role of the first one.

Using a very similar idea, we can show how to reduce SUBSET SUM (ZERO

VARIANT) to Borda-COMBINATORIAL SHIFT BRIBERY with three voters and four
candidates. Given the same input as before, we construct the following instance:

election shift actions

v1 : p Â d1 Â d2 Â d3

v2 : p Â d1 Â d2 Â d3

v3 : d1 Â d2 Â d3 Â p


a1

−a1

1

 . . .


an

−an

1


f1 . . . fn

That is, for each element ai ∈ A, F contains one shift action f i with effect ai
on v1, effect −ai on v2, and effect 1 on v3. Each voter vi has the same threshold
function πi(t) = t. In effect, p is shifted to the last position of the first and of
the second voter if the effect on these voters is negative, and is shifted to the
top position of the third vote if the effect there is positive. Each shift action
has the same unit cost, and we set the budget to n (specifically, we can pick any
combination of the shift actions).

113

Observe that d1 is the original winner of the election and obtains seven points,
whereas p obtains only six points.

For the “if” direction, let A′ ⊆ A be a non-empty subset whose element-wise
sum equals zero. If we apply the set of shift actions F ′ := { f i : ai ∈ A′} then p
becomes a winner: since A′ sums up to zero, there is no effect on the first two
voters. Moreover, the effect on the third voter is positive since A′ is non-empty.
Thus, p is the most preferred candidate for all voters and wins the election.

For the “only if” direction, let F ′ ⊆ F be a subset of shift actions that makes p
a winner. Then, F ′ must be non-empty since p does not win the initial election.
We show that the element-wise sum of A′ := {ai : f i ∈ F ′} is zero. Towards a
contradiction, assume that

∑
ai∈A′ ai 6= 0. If the sum were negative, then there

would be a negative effect on the first voter and p would obtain six points, whereas
d1 would obtain seven. If the sum were positive, we would have the same effect
with the roles of the first and the second voter switched.

Effectively, Theorem 4.1 shows that studying large-scale effects of campaign
actions through the full-fledged R-COMBINATORIAL SHIFT BRIBERY problem
leads to a hopelessly intractable problem: we have hardness even for elections
with both a fixed number of candidates and a fixed number of voters.

4.3.4. Restricted Variants of Combinatorial Shift Bribery

Given the hardness results from Theorem 4.1, throughout the remainder of this
chapter we focus on restricted variants of the COMBINATORIAL SHIFT BRIBERY

problem. We assume the individual threshold functions to be the identity func-
tions (that is, for each voter i and each integer t, we assume that πi(t) = t), we
assume each shift action to have the same unit cost, and we consider restricted
types of shift actions. All these assumptions require some additional discussion.

The restrictions on the threshold functions and on the costs of shift actions
seem to be very basic, and, in fact, are even satisfied by the instances built in
the proof of Theorem 4.1. The reason for assuming them is that, on the one
hand, it seems beyond point to study instances more involved than those from
Theorem 4.1, and, on the other hand, they interact with other restrictions, leading
to tractable cases. Having said this, they do have important consequences.

First, using identity threshold functions means that we model societies that are
prone to propaganda. With identity threshold functions we cannot differentiate
between voters based on their responsiveness to our actions. Second, assuming
that every shift action has the same unit cost models settings where the costs of

114

particular campaign actions are similar enough that small differences between
them are irrelevant; the actual number of actions we choose to perform is a
sufficiently good approximation of the real cost. This is true, for example, for the
case of organizing meetings with voters, which often have comparable prices. It is
also likely to be the case when shift actions model actions such as airing TV spots:
each spot has a similar cost to produce or to broadcast. The greatest disadvantage
of assuming unit costs is that we no longer can model mixed campaigns that use
actions of several different types (meetings with voters, TV spots, web campaigns,
etc.).

The restrictions on the types of allowed shift actions have even greater impact
on the nature of campaigns that we study. We study the following classes of shift
actions:

Unrestricted Shift Actions. Here we put no restrictions on the allowed shift
actions; this models the most general (and, naturally, the least tractable) setting.

Bounded-Effect Shift Actions. Here we consider a parameter Γ and require
that, for each shift action f = (f (1), . . . , f (n)), it holds that for each j (1≤ j ≤ n), we
have | f (j)| ≤ Γ. This is still a very general setting, where we assume that each
campaigning action has only a limited impact Γ on each voter.

Unit-Effect Shift Actions. This is a class of bounded-effect shift actions for
Γ = 1. For each given voter, applying a given shift action can either leave the
preferred candidate p unaffected or it can shift p one position up or down.

Interval Shift Actions. This a subclass of unit-effect shift actions that never
affect voters negatively, and where for each shift action there is an interval of
voters that are affected positively (the interval is with respect to an ordering of
the voters). This class of shift actions models, for example, campaigns associated
with a time window where certain voters can be reached or campaigns that are
local to given neighborhoods1 (for example, that include putting up multiple
posters, organizing meetings, etc.). We often speak of 1z-interval shift actions to
mean interval shift actions where each shift action affects at most z voters.
1In the neighborhood scenario, we take the simplified view that a society of the voters lives on a line.

Of course, it would be more natural to take two-dimensional neighborhoods into account. We view
this as an interesting direction for future research, but for the time being we consider as simple
settings as possible. In the time window scenario, a natural ordering of the voters is the point of
time when they cast their votes or can be affected by the campaign.

115

Unit-Effect on Two Voters Shift Actions. This is a subclass of unit-effect
shift actions that affect two voters at most. We focus on shift actions that
affect both voters positively, denoted as (+1,+1)-shift actions, and that affect one
voter positively and one voter negatively, denoted as (+1,−1)-shift actions. The
reason for studying these families is not because they model particularly natural
types of election campaigns, but rather to establish the limits of tractability for
our the COMBINATORIAL SHIFT BRIBERY problem. For example, we consider
(+1,−1)-shift actions to understand how intractable are shift actions that have
negative effects; (+1,−1)-shift actions are the simplest shift actions of this type
that may be useful in the campaign (one would never deliberately use a shift
action that only affects the preferred candidate negatively).

Figure 4.5 presents graphically the difference between bounded-effect shift
actions, unit-effect shift actions, unit-effect on two voters shift actions, and
interval shift actions. As we discuss in the next section, the type of allowed shift
actions has a huge impact on the complexity of our problem.

4.4. Overview of Our Results

We now provide a high-level overview of our results. It turns out that even
with rather strong restrictions in place (that is, the restrictions defined in Sec-
tion 4.3.4), COMBINATORIAL SHIFT BRIBERY is computationally hard in most
settings. What we present here is our quest for understanding the border between
tractability and intractability of COMBINATORIAL SHIFT BRIBERY. To this end,
we employ the following techniques and ideas.

1) We seek both regular complexity results (NP-hardness results) and pa-
rameterized complexity results (FPT algorithms, W[1]-hardness and W[2]-
hardness results, and XP algorithms).

2) We consider structural restrictions on the sets of available shift actions.

3) We seek approximation algorithms and inapproximability results (that is,
approximation hardness results).

For our parameterized complexity results, we consider the following parameters:
(a) the number n of voters, (b) the number m of candidates, (c) the budget B,
(d) the maximum effect Γ of a single shift action, and (e) the maximum number Λ

116

2

1 1

1

2

11

2

Γ= 2;Λ= 5

1

1 1

1

1

11

2

Unit-Effect

1

1

1

1

(+1,−1)

1

1

1

1

(+1,+1)

1

z

1z

Figure 4.5. Restrictions on the shift actions. We visualize (from left to right
and top to bottom) a shift action with maximum effect Γ= 2 of a single shift
action and maximum number Λ= 5 of voters affected by a single shift action; a
unit-effect shift action; a shift action with effect of +1 on one voter and effect
of −1 on another voter “(+1,−1)”; a shift action with effect of +1 on two voters
“(+1,+1)”; and a shift action with effect of +1 on an interval of size z “1z”. The
intended interpretation is that voters are listed vertically, from top to bottom.

of voters affected by a single shift action. All our discussions of (in)approximability
of COMBINATORIAL SHIFT BRIBERY regard the task of approximating the cost
of ensuring the preferred candidate’s victory (that is, we allow to exceed the
budget). This means that a 2-approximation algorithm has to decide if it is
possible to ensure the preferred candidate’s victory at all and, if so, it has to
output a successful set of shift actions whose total cost is at most twice as high as
the cost of the optimal one.

We summarize our results in Table 6.1. These results show that COMBINA-
TORIAL SHIFT BRIBERY is highly intractable. Theorem 4.3, Theorem 4.4, and
Theorem 4.5, show that the problem is computationally hard (in terms of NP-
hardness, W[2]-hardness, and inapproximability even by FPT algorithms) for
both the Plurality rule and the Borda rule, even for various very restricted forms

117

Table 4.1. Overview of our results. We show exact algorithms and approximation
algorithms for Plurality-COMBINATORIAL SHIFT BRIBERY and for Borda-
COMBINATORIAL SHIFT BRIBERY, for different restrictions on the shift actions
(see Figure 4.5). We consider parameterizations by the number n of voters, the
number m of candidates, and the budget B. Note that all variants considered
in this chapter are XP when parameterized by the budget B (Observation 4.1).

Shift actions Rule Exact complexity Approximability

Regular Plurality polynomial-time solvable ([62]) —

SHIFT BRIBERY
Borda NP-complete but FPT for B [27, 62]

2-approximable in poly. time [61, 62]

(convex prices) FPT-approximation scheme for n [27]

Unit effect Both
W[2]-h for B even if m = 2 (Thm. 4.3) inapproximable even in

XP for n (Prop. 4.1) FPT-time for B and m = 2 (Thm. 4.4)

(+1,−1)

Plurality FPT for n (Thm. 4.9) —

Borda W[1]-hard for n (Thm. 4.7)
inapproximable even in

FPT-time for n (Cor. 4.2)

Both
NP-h even if m = 2 (Thm. 4.5) inapproximable

W[1]-h for B and m combined (Thm. 4.6) even if m = 2 (Thm. 4.5)

(+1,+1)

Plurality FPT for n (Thm 4.9) —

Both W[1]-h for B and m combined (Thm. 4.6)
2-approximable

in poly. time (Thm. 4.11)

1z-intervals

Plurality FPT for n (Thm. 4.9) z-approximable in poly. time (Thm. 4.10)

Borda — 2z-approximable in poly. time (Thm. 4.10)

Both W[1]-h for B (Thm. 4.8) 2-approximable in mz time (Thm. 4.12)

118

of unit-effect shift actions, even for two candidates. This means that, in essence,
the problem is hard for all natural voting rules, since for two candidates all
natural voting rules boil down to the Plurality rule.

Further, Theorem 4.6 and Theorem 4.8 show that our problems are W[1]-hard
even if we take the number of candidates and the budget as a joint parameter,
even for extremely restricted shift actions. The problem remains hard (for the
case of the Borda rule) when parameterized by the number of voters, as shown
in Theorem 4.7. In contrast, for the case of Plurality we obtain tractability, when
parameterizing by the number n of voters.

We obtain several approximability results. In essence, these results are possible
only for the cases where shift actions do not have negative results. An intuitive
reason for this fact is that when shift actions have negative effects then it is
computationally hard to check whether the preferred candidate can win even
without any restrictions on the budget. Our approximability have one more
interesting feature: essentially all of them are based on results for the non-
combinatorial variant of the problem, due to Elkind et al. [61, 62]. Either we use
the non-combinatorial algorithm directly as a subroutine in our algorithms, or we
derive our results by plugging COMBINATORIAL SHIFT BRIBERY-specific blocks
into the framework described by Elkind et al. [61, 62].

4.4.1. Organization of this Chapter

The remainder of this chapter has the following structure. First, in Section 4.5,
we show a relation between Plurality-COMBINATORIAL SHIFT BRIBERY and the
problem of combinatorial control by adding voters, establishing quite general
hardness results (which already apply to unit-effect shift actions). Then, in Sec-
tion 4.6, we present a series of strong hardness results covering all the classes
of shift actions discussed in this chapter, for very restrictive sets of parameters
(for example, many of our results already apply to the case of two candidates).
Then, in Section 4.7 and in Section 4.8, we present some ways of dealing with our
hardness results. Some of our proofs are available in the appendix to this chapter
(either when a given proof relies on ideas already presented in other proofs, or—as
in the case of Theorem 4.7—when the proof is particularly involved).

119

4.5. Connection to Combinatorial Control
The study of combinatorial variants of problems modeling ways of affecting
election results was initiated by Chen et al. [33], who considered combinatorial
control by adding voters (COMBINATORIAL-CCAV), for the Plurality rule and
for the Condorcet rule. It turns out that for the Plurality rule we can reduce
the problem of (COMBINATORIAL) CCAV to that of (COMBINATORIAL) SHIFT

BRIBERY. For the non-combinatorial variants of these problems this does not
give much since both problems are easily seen to be polynomial-time solvable.
However, there are strong hardness results for Plurality-COMBINATORIAL-CCAV
which we can transfer to the case of Plurality-COMBINATORIAL SHIFT BRIBERY.
Formally, Plurality-COMBINATORIAL-CCAV is defined as follows [33].

PLURALITY-COMBINATORIAL-CCAV
Input: A set C of candidates with a preferred candidate p ∈ C, a
collection V of registered voters (having preference orders over C), a
collection W of unregistered voters (having preference orders over C),
a bundling function κ : W → 2W (for each w ∈W it holds that w ∈ κ(w)),
and a budget k.
Question: Is there a collection W ′ ⊆W of at most k voters such that
p is a winner of the modified election (C,V ∪⋃

w′∈W ′ κ(w′))?

Intuitively, for each unregistered voter w ∈W , we have her bundle, κ(w) (given
explicitly in the input), such that when we add w to the election (for example, by
somehow convincing her to vote), all the voters in her bundle also join the election
(for example, people choose to vote under an influence of a friend). Indeed, the
problem discussed in Chapter 3 is the analog of COMBINATORIAL-CCAV, when
we control the set of candidates in the election, and not the set of voters.

We next show a relation between COMBINATORIAL-CCAV and COMBINATO-
RIAL SHIFT BRIBERY.

Theorem 4.2. PLURALITY-COMBINATORIAL-CCAV is polynomial-time many-
one reducible to PLURALITY-COMBINATORIAL SHIFT BRIBERY. For an instance of
PLURALITY-COMBINATORIAL-CCAV with m candidates, the reduction outputs an
instance of PLURALITY-COMBINATORIAL SHIFT BRIBERY with m+1 candidates.

Proof. Consider an input instance of Plurality-COMBINATORIAL-CCAV with
candidate set C, collection of registered voters V , collection of unregistered
voters W, bundling function κ, preferred candidate p ∈ C, and a budget k. We
create an instance of Plurality-COMBINATORIAL SHIFT BRIBERY, as follows.

120

We form a candidate set C′ = C∪ {d}, where d is some new candidate. We form
the set of voters V ′ in the following way.

1) For each voter v ∈V , we include v in V ′, with the preference orders extended
to rank d last.

2) For each voter w ∈ W that ranks p first, we include in V ′ two voters: xw,
with preference order of the form d Â p Â ·· · , and x′w, with preference order
of the form p Â d Â ·· · .

3) For each voter w ∈ W that ranks some candidate c ∈ C \ {p} first, we in-
clude in V ′ voter xw with preference order p Â c Â ·· · , and voter x′w with
preference order d Â p Â ·· · .

4) We include 4|W ||C| voters in V ′ with preference orders such that: (a) for
each c ∈ C with a given score s(c) in election (C,V), we have that c is ranked
first by 4|W | + s(c) voters in V ′, and (b) d is ranked first by exactly 2|W |
voters in V ′. To achieve this, for each c ∈ C \ {p}, we include 4|W | voters
that rank c first, we include 3|W | voters that rank p first, and we include
|W | voters that rank d first.

For each voter w ∈W , we introduce a shift action fw with the following effects:
for each w′ ∈ κ(w), if w′ ranks p first then fw has effect 1 on xw′ (but not on x′w′)
and if w′ ranks some candidate in C \{p} first, then fw has effect −1 on xw′ and
effect +1 on x′w′ . This finishes the construction.

We provide the proof of correctness after the following example of the reduction.

Example 7. Consider the following input to Plurality-COMBINATORIAL-CCAV,
where the preferred candidate is p and the budget k is 1.

registered voters unregistered voters bundling function

v1 : p Â a

v2 : a Â p

v3 : a Â p

w1 : p Â a

w2 : a Â p

w3 : p Â a

κ(w1) = {w1,w3}

κ(w2) = {w2}

κ(w3) = {w2,w3}

The input for Plurality-COMBINATORIAL SHIFT BRIBERY which we construct
is depicted in Figure 4.6. (Note that the number of entries of each shift action is
33.)

121

election shift actions

v1 : p Â a Â d

v2 : a Â p Â d

v3 : a Â p Â d

xw1 : d Â p Â a

x′w1
: p Â d Â a

xw2 : p Â a Â d

x′w2
: d Â p Â a

xw3 : d Â p Â a

x′w3
: p Â d Â a

12 dummies : a Â ·· ·

9 dummies : p Â ·· ·

3 dummies : d Â ·· ·



0

0

0

1

0

0

0

1

0

0

0

0





0

0

0

0

0

−1

1

0

0

0

0

0





0

0

0

0

0

−1

1

1

0

0

0

0


fw1 fw2 fw3

Figure 4.6. The input for Plurality-COMBINATORIAL SHIFT BRIBERY which we
construct in Example 7. (Note that the number of entries of each shift action is
33.)

122

Note that adding the voter w1 to the input election for Plurality-COMBINATORIAL-
CCAV results in p being a winner of the election. Correspondingly, applying
shift action fw1 results in p being a winner of the input election for Plurality-
COMBINATORIAL SHIFT BRIBERY. 4

To see the correctness of the reduction, note that applying a shift action cor-
responding to a bundle of a voter w ∈W has the same effect on the differences
between the scores of the candidates in C as adding the bundle κ(w) has in
the original control instance. More specifically, disregarding the score of d for
now, we have the following. For each w′ ∈ κ(w) which ranks p first, we have an
increase of the score of p by one, while for each w′ ∈ κ(w) which ranks some candi-
date c ∈ C\{p} first, we have an increase of the score of c by one. Further, the score
of candidate d can never grow beyond 4|W | in our Plurality-COMBINATORIAL

SHIFT BRIBERY instance and the score of p can never fall below 4|W |. Therefore,
d can never prevent p from being a winner.

Thus, the reduction is correct. Furthermore, the reduction can be computed
in polynomial time and it outputs a Plurality-COMBINATORIAL SHIFT BRIBERY

instance with one candidate more than the input Plurality-COMBINATORIAL-
CCAV instance. We also observe that the output instance uses unit-effect shift
actions that affect at most twice as many voters as the largest bundle in the input
instance.

Based on the proof of Theorem 4.2 and results of Chen et al. [33], we obtain the
following result.

Corollary 4.1. Plurality-COMBINATORIAL SHIFT BRIBERY is W[2]-hard with
respect to the budget B even if m = 3, it is W[1]-hard with respect to B even for
shift actions with unit effect on up to 6 voters, and it is NP-hard even for shift
actions with unit effects on up to 4 voters.

Proof. The result follows by applying the reduction from the proof of Theorem 4.2
to the Plurality-COMBINATORIAL-CCAV instances produced in the reductions
from Theorem 2, Theorem 1, and Theorem 4, of Chen et al. [33], respectively.

4.6. Hardness Results

The results from the previous section show that we are bound to hit hard instances
for COMBINATORIAL SHIFT BRIBERY even in very restricted settings. In this

123

section we explore how restrictive these hard settings are. Our results are
organized by the type of shift actions allowed.

4.6.1. Results for General Unit-Effect Shift Actions
We start by considering unit-effect shift actions. If the allowed effects are positive
only, then we obtain NP-hardness and W[2]-hardness when parameterizing by
the budget B. If we allow also negative unit-effects, we go beyond any hope for an
approximation algorithm, even if the approximation algorithm were allowed to
run in FPT-time when parameterizing by the budget B. Quite strikingly, these
results hold even if we only have two candidates.

Theorem 4.3. Both for the Plurality rule and for the Borda rule, COMBINATO-
RIAL SHIFT BRIBERY is NP-hard and W[2]-hard for the budget B, even for two
candidates and even if each shift action has an effect of either +1 or 0 on each
voter.

Proof. We provide a reduction from the W[2]-complete SET COVER problem
parameterized by the solution size [57].

SET COVER

Input: A universe of elements X , a collection S of sets of elements
of X , and a budget h.
Question: Is there a subcollection S ′ ⊆S of sets such that |S ′| ≤ h
and

⋃
S∈S ′ S = X?

Let (S , X ,h) be an instance of SET COVER. We construct an instance of
Plurality-COMBINATORIAL SHIFT BRIBERY with two candidates. Note that, since
the Borda rule and the Plurality rule coincide on elections with two candidates,
our hardness result transfers to Borda-COMBINATORIAL SHIFT BRIBERY.

The construction is as follows. We have only two candidates, d and p. For each
element xi ∈ X , we create an element voter vi with preference order d Â p. We
create another set of n dummy voters, all with preference order d Â p. The set F
of shift actions contains, for each set S j ∈S , a function f j having an effect of +1
on the element voters corresponding to the elements of the set (that is, f j[i]= 1 if
xi ∈ S j and f j[i]= 0 otherwise).

Finally, we set the budget B to be h. This finishes the construction. Clearly, the
reduction can be computed in polynomial time. Consider the following example of
applying it.

124

Example 8. Let the input to SET COVER be such that X = {x1, x2, x3, x4, x5} and
S = {S1,S2,S3}, with S1 = {1,2,5}, S2 = {2,3}, S3 = {3,4}, and h = 2. We construct
the following input for Plurality-COMBINATORIAL SHIFT BRIBERY.

election shift actions

v1 : d Â p

v2 : d Â p

v3 : d Â p

v4 : d Â p

v5 : d Â p

5 dummies : d Â p



1

1

0

0

1

0





0

1

1

0

0

0





0

0

1

1

0

0


f1 f2 f3

Note that {S1,S3} is a set cover, and, analogously, choosing f1 and f3 results in
p being a winner of the election. 4

It remains to show that there is a set cover of size h if and only if there is a
successful set of shift actions of size h.

For the “if” direction, assume that there is a set cover S ′ of size at most h.
Then, applying F ′ = { f j : S j ∈S ′} makes p win the election: since S ′ is a set cover,
p will be the preferred candidate of all the element voters and, hence, a winner
of the election.

For the “only if” direction, assume that there is a set of shift actions F ′ ⊆ F
of size at most h whose application makes p win the election. Then, p must be
the preferred candidate of all the element voters in the bribed election, since no
shift action has effect on any dummy voter. Since there are n element voters and
n dummy voters, S ′ := {S j : f j ∈ F ′} is a set cover. Finally, since B = h, it follows
that S′ is of size at most h.

Allowing also negative (but unit) effects on the voters, we can adapt our reduc-
tion from Theorem 4.3 to show a strong inapproximability result. The inapprox-
imability result follows since in the corresponding reduction, for yes-instances,
the only correct solutions use the exact given budget. Notice that, in order to

125

get this inapproximability result, we allow negative effects and not only positive
effects, as we do in the last result.

Theorem 4.4. Assuming W[2] 6=FPT, COMBINATORIAL SHIFT BRIBERY is inap-
proximable, even in FPT-time with respect to the budget B, both for the Plurality
rule and for the Borda rule, even for elections with only two candidates and when
allowing only unit-effect shift actions.

Proof. We modify the reduction from Theorem 4.3 to show our inapproximability
result. Let (S , X ,h) be a SET COVER instance where S = {S1, . . . ,Sm} and X =
{x1, . . . , xn}. Without loss of generality, we assume that |S | > h. We construct
an instance of Plurality-COMBINATORIAL SHIFT BRIBERY with two candidates
as follows. (Since we have two candidates only, the proof applies to the case of
Borda-COMBINATORIAL SHIFT BRIBERY as well.)

For each element xi ∈ X , we create |S | element voters v1
i , . . . ,v|S |

i , each with
preference order d Â p, and for each set S j ∈ S we create a set voter v0

j with
preference order p Â d. We create |S | · |X |+ |S |−2h dummy voters, each with
preference order d Â p. The set F of shift actions contains, for each set S j, a shift
action f j having an effect of 1 on each element voter corresponding to an element
of the set and an effect of −1 on the set voter corresponding to the set. Finally,
we set the budget B to be h. This completes the construction, which is clearly
computable in polynomial time.

Next, we show that there is a successful set of shift actions of size h if and only
if there is a set cover of size h.

For the “if” direction, assume that there is a set cover S ′ of size at most h.
Then, F ′ = { f j : S j ∈ S ′} is a successful set of shift actions: since S ′ is a set
cover, p will be the preferred candidate of all |S | · |X | element voters and also
the preferred candidate for at least |S |−h set voters (corresponding to the sets
not from the set cover). Moreover, d will be the preferred candidate for all
|S | · |X |+ |S |−2h dummy voters and also the preferred candidate for at most h
set voters (corresponding to the sets from the set cover). Hence, either p wins or
p and d tie as winners.

For the “only if” direction, assume that there is a successful set of shift ac-
tions F ′ ⊆ F of size at most h. Then, p must be the preferred candidate for
all element voters in the bribed election: if there was an element voter with
d Â p, then there would be at least |S | −1 further element voters with d Â p
(the element voters corresponding to the same element). Thus, there would be
in total at most |S |(|X |−1) element voters and |S | set voters that prefer p, but
at least |S | · |X |+ |S |−2h dummy voters and |S | element voters that prefer d.

126

Since we assumed that |S | > h, this would mean that p is not a winner. Thus, it
must be that S ′ := {S j : f j ∈ F ′} is a set cover, and, due to the budget constraint,
it follows that |S ′| ≤ h.

Finally, we show that Plurality-COMBINATORIAL SHIFT BRIBERY is inapprox-
imable even in FPT-time when parameterized by the budget B. Assume, towards
a contradiction, that a successful set of shift actions F ′ ⊆ F with |F ′| > B ex-
ists. Then, in the bribed election, at least |S | · |X |+ |S |−2h dummy voters and
also |F ′| ≥ h+1 set voters prefer d, but at most |S | · |X | element voters and at
most |S |− (h+1) set voters prefer p. Thus, d is the unique winner. Hence, any
successful bribery action must be optimal with respect to the budget and any
FPT-algorithm for Plurality-COMBINATORIAL SHIFT BRIBERY (parameterized
by the budget B) would solve the W[2]-hard problem SET COVER (parameter-
ized by the solution size) in FPT-time; a contradiction to the assumption that
FPT 6=W[2].

4.6.2. Results for Shift Actions with Unit Effect on Two
Voters

In the previous section we did not limit the number of voters affected by each shift
action. Now we focus on the case where each unit-effect shift action can affect at
most two voters. First, we show that COMBINATORIAL SHIFT BRIBERY remains
NP-hard and hard to approximate for (+1,−1)-shift actions. Then, we provide
parameterized hardness results for both (+1,−1) and (+1,+1)-shift actions. The
proof of the next theorem is relatively similar to the one for Theorem 4.4 and so
we present it in the appendix to this chapter.

Theorem 4.5. Assuming P 6=NP, COMBINATORIAL SHIFT BRIBERY is inapprox-
imable (in polynomial time) both for the Plurality rule and for the Borda rule,
even for elections with only two candidates and when allowing only (+1,−1)-shift
actions.

As opposed to Theorem 4.4, the above result does not yield W[2]-hardness for
the parameter budget B. This is so since our proof uses a reduction from the
SET COVER problem in which the value of the budget is the size of the universe
set X . If we insist on parameterized hardness for unit-effects on two voters, then
we have to accept larger sets of candidates. This increase, however, is not too
large: below we show W[1]-hardness of COMBINATORIAL SHIFT BRIBERY jointly
parameterized by the budget and the number of candidates.

127

Theorem 4.6. Both for the Plurality rule and for the Borda rule, COMBINATORIAL

SHIFT BRIBERY is W[1]-hard for the combined parameter (m,B), even if we either
only allow (+1,−1)-shift actions or only allow (+1,+1)-shift actions.

Proof. We have four cases to consider. We begin with the Plurality rule and
(+1,+1)-shift actions and continue to the other cases.

The Plurality Rule with (+1,+1)-Shift Actions. We describe a reduction from
the W[1]-hard CLIQUE problem parameterized by the clique size [57].

CLIQUE

Input: An undirected graph G and an integer h.
Question: Is there a set of h pairwise adjacent vertices?

Let (G,h) be an instance of CLIQUE with V (G) = {u1, . . . ,un′ } and E(G) =
{e1, . . . , em′ }. We create the following instance of Plurality-COMBINATORIAL

SHIFT BRIBERY with (+1,+1)-shift actions, parameterized by (m,B). The set
of candidates we create is {p}∪ D, where D = {d1, . . . ,dh−1}. For each vertex
ui ∈ V (G), we create a vertex voter vi with preference order

−→
D Â p. Moreover,

we create n′ −2h dummy voters with preference order p Â −→
D each. For each

edge {ui,u j} ∈ E(G), we create a shift action f{ui ,u j} with effect 1 on the vertex
voters vi and v j, and effect 0 on all other voters. Finally, we set the budget to
B := (h

2
)
. This completes the construction, which is computable in polynomial time.

Consider the following example.

Example 9. We have the following graph, where we are looking for a clique of
size h = 3.

u1

u2 u3

u4

u5 u6

u7

We construct the following input for Plurality-COMBINATORIAL SHIFT BRIBERY.

128

election shift actions

v1 : d1 Â d2 Â p

v2 : d1 Â d2 Â p

v3 : d1 Â d2 Â p

v4 : d1 Â d2 Â p

v5 : d1 Â d2 Â p

v6 : d1 Â d2 Â p

v7 : d1 Â d2 Â p

1 dummy : p Â d1 Â d2



1

1

0

0

0

0

0

0





1

0

0

1

0

0

0

0





1

0

0

0

1

0

0

0





1

0

0

0

0

0

1

0





0

0

0

0

1

1

0

0





0

0

0

0

1

0

1

0


fu1,u2 fu1,u4 fu1,u5 fu1,u7 fu5,u6 fu5,u7

Note that (v1,v5,v7) form a clique of size 3 in the input graph for CLIQUE, and,
accordingly, applying the set of shift actions { fu1,u5 , fu1,u7 , fu5,u7 } results in p being
the winner of the election for Plurality-COMBINATORIAL SHIFT BRIBERY. 4

Without loss of generality, assume that d1 is ranked first in the (arbitrary but
fixed) order

−→
D . Observe that we have n′ vertex voters and h dummy voters which

rank d1 first. We also have n′−h dummy voters which rank p first. Hence, to
make p win the election, one needs h additional voters to rank p first (and, in
effect, not rank d1 first).

It remains to show that our constructed instance contains a successful set of
shift actions F ′ of size h if and only if (G,h) contains a clique of size h.

For the “if” direction, let H ⊆V (G) be a set of h vertices forming a clique and
let E′ ⊆ E(G) be the set of edges between the vertices from H. Then, observe
that F ′ = { f{ui ,u j } : {ui,u j} ∈ E′} is a successful set of shift actions: for each vertex
voter vi corresponding to a clique vertex ui ∈ H, candidate p is shifted h−1
positions forward. This means that, in total, we have h vertex voters rank p first
and p ties as a winner of the election.

For the “only if” direction, let F ′ be a successful set of shift actions. Since
dummy voters are not affected by any shift action, it follows that, in order to

129

make p a winner of the election, p must be shifted to the top position in at least h
vertex voters. That is, in total, p must be shifted h·(h−1) positions forward. Since
the size of F ′ is at most B = (h

2
)= h · (h−1)/2 and since each shift action affects

only two vertex voters, it follows that F ′ must be of size exactly
(h
2
)
, affecting

exactly h vertex voters. By construction, this implies that there are
(h
2
)

edges in G
incident to exactly h different vertices which is only possible if these h vertices
form a clique. This finishes the proof for the Plurality rule with (+1,+1)-shift
actions.

The remaining cases of the proof are, technically, more involved, but are quite
similar in nature, and we present them in the appendix to this chapter.

It is quite natural to also consider COMBINATORIAL SHIFT BRIBERY from
a different perspective. Instead of asking what happens for a small number
of candidates, we might ask about the complexity of COMBINATORIAL SHIFT

BRIBERY for a small number of voters (see Chapter 3, which concentrates on
such elections, for some motivation as to why looking at elections with few voters
is interesting). In this case we obtain hardness only for the Borda rule. Indeed,
later we will show that Plurality-COMBINATORIAL SHIFT BRIBERY is FPT for
this parameter. Quite interestingly, the complexity of the non-combinatorial
variant of Borda-SHIFT-BRIBERY, parameterized by the number of voters was
only recently settled by Bredereck et al. [23], which showed that the is W[1]-hard.
Bredereck et al. [27] show that there is an FPT approximation scheme for this
case, but do not give hardness result for it (however, they do show W[1]-hardness
of SHIFT-BRIBERY for the Copeland rule).

The proof of the next theorem is quite involved and we present it in the appendix
to this chapter. It builds upon a reduction from a variant of the MULTICOLORED

CLIQUE problem. It is worth mentioning that, while the reduction is quite
different from the reductions described in Section 3.4, it shares some common
ideas with those reductions, mainly the fact that we create a constant number of
voters for each color and for each color pair.

Theorem 4.7. Borda-COMBINATORIAL SHIFT BRIBERY is W[1]-hard with re-
spect to the number n of voters, even when there are no budget constraints and
even if we only allow (+1,−1)-shift actions.

The proof of Theorem 4.7 describes a reduction from the STRONGLY REGULAR

MULTICOLORED CLIQUE problem. Importantly, the reduction does not use
budget constraints. Thus, it follows that any approximation algorithm for Borda-
COMBINATORIAL SHIFT BRIBERY (running in FPT-time when parameterized by

130

the number of voters) would yield an FPT algorithm for STRONGLY REGULAR

MULTICOLORED CLIQUE, parameterized by the solution size. In effect, we have
the following corollary.

Corollary 4.2. Unless W[1] = FPT, Borda-COMBINATORIAL SHIFT BRIBERY

is inapproximable even in FPT-time for the parameter n, even for (+1,−1)-shift
actions.

4.6.3. Results for Interval Shift Actions

We conclude the discussion of the hardness results by considering COMBINA-
TORIAL SHIFT BRIBERY with interval shift actions. In the previous section we
allowed shift actions to have non-zero effects on two voters each, but these two
voters could have been chosen arbitrarily. Next we show a hardness result for the
case where we can positively affect multiple voters, but these voters have to form
a consecutive interval in the input election.

Theorem 4.8. Both for the Plurality rule and for the Borda rule, COMBINATORIAL

SHIFT BRIBERY is NP-hard even if we only allow interval shift actions.

Proof. We consider the Plurality rule first and give a many-one reduction from
the following variant of the strongly NP-hard NUMERICAL MATCHING WITH

TARGET SUMS problem.

131

RESTRICTED NUMERICAL MATCHING WITH TARGET SUMS

Input: Three sets of integers A = {a1, . . . ,at}, B = {b1, . . . ,bt}, and
X = {x1, . . . , xt}, where (1) the numbers are encoded in unary, (2) all
the 3t numbers are pairwise distinct, and (3) no two numbers that
are both from A or both from B sum up to any number in X .
Question: Can the elements of A and B be paired so that, for each
i ∈ [t], the sum of the ith pair is exactly xi?

The standard variant of the problem, as presented in the classic text of Garey
and Johnson [84], does not have any restrictions on the integers in sets A, B,
and X . We can assume that the numbers are encoded in unary since the problem
is strongly NP-hard. Further, Hulett et al. [99] have shown that the problem
remains NP-hard for the case where all the 3t integers are distinct. Finally, to
see that the third restriction does not change the complexity of the problem, it
suffices to consider the following transformation: given an instance (A,B, X) of
RESTRICTED NUMERICAL MATCHING WITH TARGET SUMS, we increment each
integer in B and in X by 2 ·max(A ∪B∪ X)+1. This produces an equivalent
instance where no two numbers, both from A or both from B, sum up to any
number in X .

The Plurality Rule. Let (A,B, X) be an instance of RESTRICTED NUMERICAL

MATCHING WITH TARGET SUMS and let y denote the largest integer in A∪B∪X .
We create an instance of Plurality-COMBINATORIAL SHIFT BRIBERY as follows.
The set of candidates is:

C := {p,d, ca
1, . . . , ca

t , cb
1 , . . . , cb

t , cx
1, . . . , cx

t }.

We create the following voters:

1) For each pair of integers ai ∈ A and x` ∈ X , we introduce:

a) One voter with preference order

ca
i Â p Â−−−−−−−→

C \{p, ca
i },

b) ai voters each with preference order

cx
` Â p Â−−−−−−−→

C \{p, cx
`},

132

c) 2y− (ai +1) voters each with preference order

d Â p Â−−−−−−−→
C \{p,d}.

These voters are called the (ai, x`)-voters and there are exactly 2y of them.
For each pair (ai, x`), we construct a shift action f x`

ai with effect 1 on exactly
the set of (ai, x`) voters.

2) For each pair of integers b j ∈ B and x` ∈ X , we introduce:

a) One voter with preference order

cb
j Â p Â

−−−−−−−→
C \{p, cb

j },

b) b j voters each with preference order

cx
` Â p Â−−−−−−−→

C \{p, cx
`},

c) 2y− (b j +1) voters each with preference order

d Â p Â−−−−−−−→
C \{p,d}.

These voters are called the (b j, x`)-voters and there are exactly 2y of them.
For each pair (b j, x`), we construct a shift action f x`

b j
with effect 1 on exactly

the set of (b j, x`) voters.

3) Let q := 4ty. We create sufficiently many dummy voters to ensure that,
altogether, the candidates have the following scores:

a) p has q points,

b) for each i, ca
i and cb

i have q+4ty+1 points each, and

c) for each ` ∈ [t], cx
`

has q+4ty+ x` points.

No shift action affects any of the dummy voters.

Finally, we set the budget B := 2t. This completes the construction. It is easy
to see that it is computable in polynomial time (since all numbers are encoded
in unary) and that we can order the voters so that each shift action affects a
consecutive interval of z := 2y voters.

133

It remains to show that our constructed instance of Plurality-COMBINATORIAL

SHIFT BRIBERY contains a successful set F ′ of shift actions of size at most 2t if
and only if (A,B, X) is a yes-instance of RESTRICTED NUMERICAL MATCHING

WITH TARGET SUMS.
For the “if” direction, let S := {(ai1 ,b j1), . . . , (ai t ,b jt)} be a solution for RE-

STRICTED NUMERICAL MATCHING WITH TARGET SUMS, that is, a set of integer
pairs such that each integer from A∪B occurs exactly once in S and such that
ai` + b j` = x` holds for each ` ∈ [t]. Observe that F ′ := { f x`

ai`
, f x`

b j`
: (ai` ,b j`) ∈ S}

is a successful set of shift actions: since each integer from A∪B occurs exactly
once in (some pair of) S, it holds that each candidate ca

i and each candidate cb
j

loses one point. Moreover, since ai` +b j` = x` for each ` ∈ [t], it holds that each
candidate cx

`
loses x` points. By construction, p gains 4ty points from any set of

shift actions of size 2t. Thus, p wins the election.
For the “only if” direction, let F ′ be a successful set of shift actions of size 2t (if

there was a successful set of shift actions of smaller size, then we could extend
it to size 2t since our shift actions do not have negative effects). After applying
the shift actions from F ′, p gains 4ty points. In order to make p a winner of the
election, each candidate ca

i and each candidate cb
j needs to lose one point, and

each candidate cx
`

needs to lose x` points. Thus, for each ai ∈ A, there is exactly
one f

x`i
ai ∈ F ′ and, for each b j ∈ B, there is exactly one f

x`i
b j

∈ F ′. Since all the
integers in A∪B∪ X are distinct and since no two integers both from A or both
from B sum up to any integer from X , it holds that, for each x` ∈ X , there is at
least one shift action f x`

ai`
with effect on ai` voters who prefer cx

l , and one shift
action f x`

b j`
with effect on b j` voters who prefer cx

`
. Since there are t candidates

cx
`

and since |F ′| = 2t, it follows that there are exactly two shift actions with effect
on some voters preferring cx

`
. Since cx

`
has to lose at least x` points, it holds that

ai` + b j` ≥ x`. In fact, by the pigeonhole principle, it holds that ai` + b j` ≥ x`.
Hence, if there is a successful set of 2t shift actions, then there is a solution for
our RESTRICTED NUMERICAL MATCHING WITH TARGET SUMS instance.

The Borda Rule. For the Borda rule, almost the same reduction works. Specifi-
cally, there still exists some integer q for which the set of requirements which
were required in the proof for the Plurality rule will now hold for the Borda rule
(with respect to a different q).

Importantly, since p is in the second position in the preference profiles of
all of the voters, it holds that the score differences, when applying some shift

134

actions, are similar for the Plurality rule and the Borda rule. Thus, the proof of
correctness for the Plurality rule transfers to the Borda rule.

4.7. Exact Algorithms
In spite of the pessimism looming from the previous section, in this section we
show two exact FPT and XP algorithms for R-COMBINATORIAL SHIFT BRIBERY.
Then, in Section 4.8, we present several efficient approximation algorithms.

We begin by observing that R-COMBINATORIAL SHIFT BRIBERY can be solved
in polynomial time, provided that we assume the budget B to be a constant. The
reason is that we need to choose at most B shift actions out of all the available
ones, but, clearly, the number of shift actions available is upper-bounded by the
input size.

Observation 4.1. Both Plurality-COMBINATORIAL SHIFT BRIBERY and Borda-
COMBINATORIAL SHIFT BRIBERY are XP when parameterized by the budget B.

If we restrict the instances to contain only bounded-effect shift actions, then
R-COMBINATORIAL SHIFT BRIBERY can be solved in polynomial time, provided
that the number n of voters is a constant.

Proposition 4.1. If the maximum effect of every shift action is upper-bounded by
some constant, then both Plurality-COMBINATORIAL SHIFT BRIBERY and Borda-
COMBINATORIAL SHIFT BRIBERY are XP when parameterized by the number n
of voters.

Proof. Let Γ be the value bounding, component-wise (that is, voter-wise), the
effect of each shift action. First, observe that there are at most (2Γ+1)n types
of different shift actions. Second, observe that once one knows the budget spent
on each type of shift actions, one can easily check whether a corresponding set
of shift actions makes p a winner of the election. Thus we use the following
algorithm: we try all possibilities of distributing the budget B among the (at
most (2Γ+1)n) possible types of shift actions and check whether one of them
makes p a winner. If so, then we return True; otherwise, we return False.

Proposition 4.1 holds even if each shift action comes at an individual cost and
also each voter has an individual threshold function, since we can, given some
budget, always assume that we select the cheapest set of shift actions of a given
type. Further, by expressing our problem as an integer linear program (ILP)

135

and by using a famous result of Lenstra [104], we can strengthen the above
XP-membership to FPT-membership, for the case of the Plurality rule.

Theorem 4.9. For bounded-effect shift actions (where we treat the bound as
a constant), PLURALITY-COMBINATORIAL SHIFT BRIBERY is fixed-parameter
tractable when parameterized by the number n of voters.

Proof. Given an instance of Plurality-COMBINATORIAL SHIFT BRIBERY with n
voters, our algorithm proceeds as follows. First, we guess a subset of the voters for
whom we will guarantee that p is ranked first (there are 2n guesses to try). For
each guessed set of voters, we test whether p would be a winner of the election
if p was shifted to the top position by the guessed voters and was not ranked first
by the remaining voters. For each such guessed subset V ′ of voters for which this
test is positive, we check whether it is possible to ensure (by applying sets of shift
actions whose cost do not exceed the budget) that the voters from V ′ rank p first.
We do so as follows.

Let Γ be the constant bounding, component-wise, the effect of each shift action.
Observe that there are at most (2Γ+1)n types of different shift actions. For each
shift action type z, we introduce a variable xz denoting the number of times a
shift action of type z is present in the solution. For each voter vi, we denote the
position of p in the original preference order of vi by svi (p). For each voter vi ∈V ′
we add the following constraint:∑

γ∈[−Γ,Γ]
(
γ

∑
{z: fz has an effect of γ on vi} xz

)≥ svi (p).

This ensures that p is indeed shifted to the top position in the preference list of
vi. We add the following budget constraint:∑

xz ≤ B,

ensuring that the solution respects the budget. Finally, for each shift action
type z we add a constraint ensuring that we use at most as many shift actions
of type z as there are shift actions of type z available in the input. This finishes
the description of the ILP. By a result of Lenstra [104], we can solve this ILP in
FPT-time, since we have at most (2Γ+1)n integer variables.

Roughly speaking, Theorem 4.9 is the reason why (the hardness proven in)
Theorem 4.7 does not apply to the Plurality rule; in this setting, Plurality-
COMBINATORIAL SHIFT BRIBERY is tractable. Note that Theorem 4.9 applies to
the case where each shift action has the same unit cost, that is, the case which

136

we focus on in this chapter. Nonetheless, it seems possible to lift Theorem 4.9
to the case where each shift action has its individual cost, by applying ideas
from Bredereck et al. [30].

4.8. Approximation Algorithms
We now explore the possibility of finding approximate solutions for COMBINA-
TORIAL SHIFT BRIBERY. We focus on approximating the cost of shift actions
necessary to ensure p’s victory (for example, a 2-approximate algorithm finds a
solution that ensures p’s victory whenever it is possible, and uses at most twice
as many shift actions as necessary). By Theorem 4.4 and Theorem 4.5, we know
that we cannot hope to find approximate algorithms for the cases of COMBINA-
TORIAL SHIFT BRIBERY where the shift actions can have negative effects. Thus,
in this section, we focus on unit-effect shift actions with only positive effects.
This also simplifies our situation in that we can always check if it is possible to
ensure p’s victory: it suffices to apply all available shift actions and check if p is
a winner (indeed, not being able to perform such a check is at the heart of our
inapproximability results from Section 4.6).

Essentially, all our approximation algorithms are based on the framework of
approximation algorithms for the non-combinatorial variant of SHIFT BRIBERY,
as described by Elkind and Faliszewski [61], Elkind et al. [62]: either by directly
using their framework (as a “black-box”), or by plugging some algorithms into
their framework. We begin by exploring the first possibility and then describe
the second.

Theorem 4.10. If each shift action has effects of either 0 or +1 on each voter,
then PLURALITY-COMBINATORIAL SHIFT BRIBERY can be Λ-approximated in
polynomial-time and BORDA-COMBINATORIAL SHIFT BRIBERY can be
2Λ-approximated in polynomial time, where Λ denotes the maximum number
of voters affected by a shift action.

Proof. The general idea of these approximation algorithms is to split each shift
action that affects some Λ′ ≤ Λ voters into Λ′ shift actions, each affecting a
single voter only. In effect, we construct a non-combinatorial instance of the
SHIFT BRIBERY problem that we solve exactly, for the case of Plurality rule, or
2-approximately, for the case of the Borda rule.

Specifically, our construction goes as follows. Let λ(i) denote the number of shift
actions affecting voter i. Given an instance of COMBINATORIAL SHIFT BRIBERY,

137

we create an instance of SHIFT BRIBERY that is identical, except that instead
of having shift actions, we have price functions for the voters: we set the price
function for each voter i in such a way which ensures that, for j ≤λ(i), shifting p
by j positions costs j, and for j > λ(i), shifting p by j positions costs (2B+1) j

(where B is the total number of shift actions available; note that the exponential
function (2B+1) j ensures that the price functions are convex and that we can
easily identify situations where one shifts p by more than λ(i) positions).2

Below we describe how to use this construction for the case of the Plurality
rule and for the case of the Borda rule.

The Plurality Rule. We first translate the input instance into the non-
combinatorial Plurality-SHIFT BRIBERY instance as described above. Then, we
apply the known, exact, polynomial-time algorithm for Plurality-SHIFT BRIBERY [62]
on this instance. Let s be the cost of the solution found for the non-combinatorial
instance. If s > B, then it is impossible to ensure p’s victory in the combinatorial
instance (since the number of available shift actions is insufficient).

If s ≤ B, then to obtain a solution F for the Plurality-COMBINATORIAL SHIFT

BRIBERY instance we do as follows. For each voter v that in the (non-combinatorial)
bribed election ranks p first, we select shift actions in the combinatorial instance
so that v ranks p first. Note that |F| ≤ s and that F is indeed a (combinatorial)
solution.

Towards a contradiction, assume that there is a successful set of shift actions F ′
with size smaller than |F|/Λ. It is easy to see, however, that such a set of
shift actions would correspond to a bribery of cost smaller than s for the non-
combinatorial instance. Since s is the cost of the optimal solution for the non-
combinatorial instance, this is a contradiction.

The Borda Rule. The case of Borda-COMBINATORIAL SHIFT BRIBERY follows
analogously, but instead of using the polynomial-time exact algorithm for the non-
combinatorial instance, we use the 2-approximation algorithm for Borda-SHIFT

BRIBERY [61, 62]. Let s be the cost of the solution found. If s > 2B, then it is
impossible to ensure p’s victory.

Otherwise, to obtain a solution F for the combinatorial instance, for each vote
v where the non-combinatorial solution shifts p by some t positions, we include t

2Strictly speaking, there is no need to ensure that the price functions are convex, but this is the
variant of SHIFT BRIBERY that we generalize in this chapter, so we consider this variant, for
consistency.

138

shift actions that affect this voter. Clearly, |F| ≤ s and F is a correct solution for
the combinatorial instance.

If there exists a solution F ′ for the combinatorial instance that used less than
|F|/(2 ·Λ) shift functions, then there would be a solution for the non-combinatorial
instance with costs smaller than |F|/2 ≤ s/2. Since we used a 2-approximate
algorithm for the non-combinatorial instance, this is impossible.

We mention that it might be possible to improve the approximation ratio given
in Theorem 4.10, at least for the Borda rule. The idea might be to cast the problem
as a variant of the SET MULTICOVER problem, which is a generalization of the
SET COVER problem where each element has its own covering requirement. Then,
one could use an approximation algorithm for the SET MULTICOVER problem (for
example, the one suggested by Rajagopalan and Vazirani [132]) and plug it into
the 2-approximation algorithm of Elkind and Faliszewski [61].

We can achieve better approximation guarantees for the Borda rule, when
we further restrict the allowed shift actions. To obtain these results, we again
use the framework of Elkind and Faliszewski [61], albeit in a different way. In
essence, they have shown the following: if, for a given variant of SHIFT BRIBERY,
either for the Plurality rule or for the Borda rule, one can provide a function that
computes how to obtain the highest number of points for the preferred candidate
given some budget B, then there is a 2-approximation algorithm for this variant of
SHIFT BRIBERY.3 Note that such an algorithm does not solve the SHIFT BRIBERY

problem. While it maximizes the score of p, it does not ensure that no candidate
receives higher score. Indeed, an optimal solution might increase the score of p
to a smaller extent, but at the expense of more dangerous opponents.

Theorem 4.11. Borda-COMBINATORIAL SHIFT BRIBERY is 2-approximable in
polynomial time when we allow only (+1,+1)-shift actions.

Proof. By the discussion preceding the theorem statement, it suffices to provide
a function that, given an instance of COMBINATORIAL SHIFT BRIBERY with
budget B, finds a set of shift actions that obtains the highest possible number of
points for the preferred candidate p without exceeding the budget.

The general idea of achieving this is to compute a maximum b-matching in an
auxiliary multigraph (multigraphs allow multiple edges between the vertices). A
b-matching of a multigraph G with respect to the function b : V (G)→N (called

3In fact, their result applies to all scoring rules, but in this chapter we only focus on the Plurality
rule and on the Borda rule.

139

a covering function) is an edge-induced subgraph of G such that each vertex u
has degree at most b(u). It is known that a b-matching can be computed in
polynomial time [83].

We construct the auxiliary multigraph G as follows. For each voter vi we create
a vertex ui. For each shift action with effect 1 on voter vi and effect 1 on voter v j,
we create an edge {ui,u j}. Then, we define a covering function b such that b(ui)
is the number of positions that p can be shifted forward in the preference order
of voter vi (that is, the position of p in the preference order of voter vi).

If G has a b-matching of size at least B, then it corresponds to a set of shift
actions that increase the score of p by 2B, which is the highest gain possible.
If G has a b-matching of size k < B, then we take the shift actions corresponding
to the edges of this b-matching (these shift actions maximize the number of points
that p can gain from shift actions that move p within two votes) and greedily
select more shift actions, such that each of them pushes p forward in one vote, to
use up the budget (at this point, every shift action can affect p in a single vote
only). Thus, for a given budget, our function computes the highest point gain
possible for p.

Next, we consider interval shift actions. That is, we fix some order of the
voters and restrict each shift action to have effect only on voters which comprise
intervals. Importantly, we also allow “holes” inside these intervals. Unfortunately,
the algorithm requires XP-time for the parameterization by the length of the
longest interval.

Theorem 4.12. Both for the Plurality rule and for the Borda rule, COMBINA-
TORIAL SHIFT BRIBERY can be 2-approximated in XP-time when we allow only
interval shift actions, provided that we take Λ, the upper bound on the number of
voters affected by each shift action, as the parameter.

Proof. As per the discussion preceding Theorem 4.11, it suffices to describe how
to find a set of shift actions which, under a given budget, maximizes the number
of points that the preferred candidate p gains.

To this end, we use a dynamic programming algorithm. Consider an input for
COMBINATORIAL SHIFT BRIBERY with election E = (C,V), preferred candidate
p, and budget B. Let m := |C| and let n := |V |. We have V = (v1, . . . ,vn). Our algo-
rithm uses the following table for partial results. For numbers x, y, s0, . . . , sΛ−1,
the table entry:

T[x, y, s0, s1, . . . , sΛ−1]

140

denotes the maximum number of additional points that candidate p can gain
from voters v1, . . . ,vx under the condition that (1) exactly y shift actions are
used, each of them affecting only voters from the set {v1, . . . ,vx}, and (2) for each
i ∈ {0, ...,Λ−1}, candidate p is shifted to position si in the preference order of
voter vx−i. In other words, we iterate over the voters and store the effect that the
applied shift actions had on the last Λ voters. The size of the table is n ·B ·mΛ+1.

Our algorithm is almost the same for the Plurality rule and for the Borda
rule. The only difference is in computing the scores of the candidates. Let
z, 0 ≤ z ≤ m−1, denote the position of p in the preference order of some voter
(position 0 means that p is ranked first). Then, by score(z) we mean the score that
p gains from this voter. Clearly, for the Plurality rule we have score(z)= 1 for z = 0
and score(z)= 0 otherwise. For the Borda rule we have score(zi)= m− zi −1. For
a set of voters and a vector z1, . . . , zt, for t ∈ [n] and where each zi in {0, . . . ,m−1})
denotes the positions of p in the preference orders of these voters, we write
score(z1, . . . , zt) to mean the score that p gains from these voters. That is:

score(z1, . . . , zt)=
∑
i∈[t]

score(zi).

Given this preparation, we are ready to describe our algorithm (jointly for the
Plurality rule and for the Borda rule).

Initialization. We initialize the entries T[Λ, y, s0, s1, . . . , sΛ−1] of the table as
follows. We check whether there is a set of y shift actions that have effects
only on voters from (v1, . . . ,vΛ) and such that applying this set of y shift actions
shifts candidate p to positions s0, . . . , sΛ−1 in the preference orders of the vot-
ers v1, . . . ,vΛ, respectively. If such set exists, then we set T[Λ, y, s0, s1, . . . , sΛ−1]
to score(s0, s1, . . . , sΛ−1). Otherwise, we set T[Λ, y, s0, s1, . . . , sΛ−1] to −∞. (We
explain how to check if such a set of shift actions exists at the end of the proof.)

Recursion Step. To compute the table entries T[x, y, s0, s1, . . . , sΛ−1] for x >Λ,
one has to find those subsets of i shift actions (for i ∈ [y]) whose last affected voter
is vx, that ensure—together with y− i shift actions whose last affected voter is
from the set {v1, . . . ,vx−1}—that, for each j, 0≤ j ≤Λ−1, it holds that p is shifted
to position s j in the preference order of vx− j.

More specifically, in the update phase we compute, for each x, Λ < x ≤ n,
each y, 0 ≤ y ≤ B, and each vector (s0, . . . , sΛ−1) ∈ {0, . . . ,m−1}Λ, the table entry
T[x, y, s0, s1, . . . , sΛ−1] as follows. We say that a vector (ŝ0, ŝ1, . . . , ŝΛ−1) ∈ {0, . . . ,m}Λ

141

is (x, i)-realizable for some i (0≤ i ≤ y), if there is a set of i shift actions whose last
affected voter is vx and such that for each j, 0 ≤ j ≤Λ−1, it shifts candidate p
by ŝ j positions in the preference order of voter vx− j. We write R(x, i) to denote
the set of vectors from {0, . . . ,m−1}Λ that are (x, i)-realizable (we describe how to
compute R(x, i) later). Then, we compute T[x, y, s0, s1, . . . , sΛ−1] as follows:

T[x, y, s0, s1, . . . , sΛ−1]=max
{
T[x−1, y− i, s∗, s0 − ŝ1, . . . , sΛ−1 − ŝΛ−1, s∗]

+score(s0, s1, . . . , sΛ−1)−score(s1 − ŝ1, . . . , sΛ−1 − ŝΛ−1) :

0≤ i ≤ y,0≤ s∗ ≤ m−1,(s0, ŝ1, . . . , ŝΛ−1) ∈ R(x, i)
}

Informally, for each “realizable total effect” of i shift actions whose last af-
fected voter is vx, the number of points that candidate p gains is the number
of additional points that candidate p gains by shift actions for which the last
affected voter is from (v1, . . . ,vx−1) plus the number of additional points that
candidate p gains by shift actions for which the last affected voter is vX (to avoid
double counting, this is expressed as the difference in the middle line of the above
formula).

We next show how to compute R(x, i). We try every vector (ŝ0, . . . , ŝΛ−1) ∈
{0, . . . ,m−1}Λ, and for each such vector, we check whether it is (x, i)-realizable.
Perhaps the easiest way to do this is to formulate this problem as an integer
linear program (ILP) with a constant number of variables, as we describe next.

Let (ŝ0, . . . , ŝΛ−1) be a vector for which we want to check whether it is (x, i)-
realizable. For each subset Q ⊆ {0, . . . ,Λ−1}, we say that a shift action is of
type Q if it affects exactly the voters vx−i with i ∈Q. For each such subset Q, we
introduce an integer variable xQ , denoting the number of shift actions of type Q
used in the (x, i)-realization of our vector. We solve the following ILP:∑

Q⊆{0,...,Λ−1}
xQ = i (4.1)

∑
Q⊆{1,...,Λ−1}

xQ∪{0} = i (4.2)

∑
j∈Q

xQ = ŝ j ∀ j : 0≤ j ≤Λ−1 (4.3)

(Note that the middle constraint ensures that the last affected voter is vx.)
Since the number of variables in this ILP is 2Λ, it follows, from a result of Lenstra

142

[104], that this ILP can be solved in XP-time with respect to the parameter Λ
(indeed, even in FPT-time). Note that, using the same ILP but without the
middle constraint, we can check which vectors (s0, . . . , sΛ−1) we can use in the
initialization step.

Coming back to our dynamic program, it is clear that finding how to obtain
the maximum score for p while respecting our budget can be found by taking the
maximum over the table entries T[n,B′, s0, s1, . . . , sΛ−1], for all possible values
of B′, 0≤ B′ ≤ B, and (s0, s1, . . . , sΛ−1) ∈ {0, . . . ,m−1}Λ.

While in this section we showed that it is indeed possible to achieve some
approximation algorithms for some special cases of the COMBINATORIAL SHIFT

BRIBERY problem, the settings for which our algorithms are efficient are quite
restrictive. This means that in practice one might want to seek good heuristics
and use our algorithms as a guidance for the initial search.

4.9. Outlook
We next state some of the research directions motivated by the results described
in this chapter.

• One immediate question is whether COMBINATORIAL SHIFT BRIBERY, both
for the Plurality rule and for the Borda rule, can be solved in polynomial-
time for (+1,+1)-shift actions or interval actions, under the assumption
that the number of candidates is a constant.

• We proved approximation guarantees for our approximation algorithms. It
might be interesting to perform experiments in order to check whether, in
practice, our approximation algorithms find better solutions than what we
could theoretically prove.

• Our results suggest studying further restrictions of the COMBINATORIAL

SHIFT BRIBERY problem. As an example, since parameterizing by the num-
ber of available shift actions immediately gives fixed-parameter tractability
results, a natural question is whether other natural parameterizations
exist which could also lead to positive results.

• Naturally, one might consider other voting rules as well. Most interesting
are Condorcet-consistent rules (which always select the Condorcet winner,
if it exists), such as the Copeland rule, since these rules tend to behave

143

rather differently than scoring rules (both the Plurality rule and the Borda
rule are scoring rules): for example, different behavior between scoring
rules and non-scoring rules is apparent in Chapter 3.

• It might also be interesting to consider domain restrictions regarding the
preferences of the voters (for example, single-crossing seems particularly
natural in the context of interval shift actions, since it means that each
shift action affects voters with somewhat similar preferences), as it is
well-demonstrated that restricting the domain of the voters can lead to
tractability (see, for example, [33, Theorem 10]). Pursuing this direction,
however, would require a careful discussion of which shift actions can be
applied: for example, it is not clear whether we should require single-
crossingness also from the bribed election.

144

Appendix for Chapter 4

We provide proofs missing from Chapter 4.

4.A. Proof of Theorem 4.5
Theorem 4.5. Assuming P 6=NP, COMBINATORIAL SHIFT BRIBERY is inapprox-
imable (in polynomial time) both for the Plurality rule and for the Borda rule,
even for elections with only two candidates and when allowing only (+1,−1)-shift
actions.

Proof. We provide a reduction from the W[2]-complete SET COVER problem
parameterized by the solution size [57].

SET COVER

Input: A universe of elements X , a collection S of sets of elements
of X , and a budget h.
Question: Is there a subcollection S ′ ⊆S of sets such that |S ′| ≤ h
and

⋃
S∈S ′ S = X?

Let (S , X ,h) be a SET COVER instance. We assume, without loss of generality,
that every element belongs to at least one set. We construct an instance of
Plurality-COMBINATORIAL SHIFT BRIBERY. We set the budget B to be |X |. The
candidate set is {p,d}, where p is the preferred candidate. We have an element
voter vi for each element xi, with preference order d Â p. We have a set voter vS

j
for each set S j, with preference order p Â d. We also have |X | + |S | −2h−1
dummy voters, each with preference order d Â p. For each element xi and each
set S j, if xi ∈ S j, then we construct a shift action f i

j with effect of +1 on vi and

effect of −1 on vS
j . This completes the construction. It is easy to see that the

reduction can be computed in polynomial time.
Next, we show that there is a successful set of shift actions (note that the size

of this set is not important, that is, we allow infinite budget) if and only if there
is a set cover of size h.

145

For the “if” direction, assume that there is a set cover S ′ of size at most h.
We show how to build a successful set of shift actions. We start with F ′ = ;
and, for each element xi, we choose an arbitrary set S j ∈S ′ which contains xi,
and add the corresponding function f i

j to F ′. After applying F ′, observe that
p becomes a winner: all |X | element voters and |S |−h set voters prefer p but
only |X |+ |S |−2h−1 dummy voters and h set voters prefer d.

For the “only if” direction, assume that there is a successful set of shift ac-
tions F ′ ⊆ F. Let h′ be the number such that, after applying the shift actions
from F ′, p is preferred by exactly |S|−h′ set voters (that is, shift actions in F ′
correspond to h′ sets from S). For p to be a winner, a majority of the voters (that
is, at least |X |+ |S |−h voters) must prefer p. Thus, after applying F ′, at least
X − (h−h′) element voters prefer p. This means that there is a collection of h′
sets from S that jointly cover at least |X |−(h−h′) elements. Since every element
belongs to some set, we can extend this collection to a set cover by adding at most
h−h′ sets (in the worst case, one set for each uncovered element). This proves
that there is a set cover for (S , X ,h).

Note that in the above argumentation we made no assumptions regarding the
size of F ′. Hence, finding any solution for our Plurality-COMBINATORIAL SHIFT

BRIBERY instance, including approximate solutions for any approximation factor,
implies finding a set cover of size at most h. This means that, unless P =NP,
Plurality-COMBINATORIAL SHIFT BRIBERY is inapproximable in polynomial
time.

4.B. Remaining Cases from the Proof of
Theorem 4.6

Theorem 4.6. Both for the Plurality rule and for the Borda rule, COMBINATORIAL

SHIFT BRIBERY is W[1]-hard for the combined parameter (m,B), even if we either
only allow (+1,−1)-shift actions or only allow (+1,+1)-shift actions.

The Borda Rule with (+1,+1)-Shift Actions. We can slightly modify the re-
duction used for the Plurality rule with (+1,+1)-shift actions. Specifically, we
describe a parameterized reduction from the W[1]-hard CLIQUE problem, param-
eterized by the solution size, to Borda-COMBINATORIAL SHIFT BRIBERY with
(+1,+1)-shift actions, parameterized by (m,B) .

146

Let (G,h) be an instance of CLIQUE with V (G) = {u1, . . . ,un′ } and E(G) =
{e1, . . . , em′ }. We create an instance of Borda-COMBINATORIAL SHIFT BRIBERY

as follows. The set of candidates is {p}∪D, where D = {d1, . . . ,dh−1}. We create
the following voters.

1) For each vertex ui ∈ V (G), we create a corresponding vertex voter vi with
preference order:

d1 Â ·· · Â dh−1 Â p.

2) We create n′−2h dummy voters, each with preference order:

p Â d2 Â ·· · Â dh−1 Â d1.

3) We create h dummy voters, each with preference order:

dh−1 Â p Â d2 Â ·· · Â dh−2 Â d1.

4) We create n′−h dummy voters, each with preference order:

p Â d1 Â ·· · Â dh−1.

5) We create n′−h dummy voters, each with preference order:

d1 Â p Â d2 Â ·· · Â dh−1.

For each edge {ui,u j} ∈ E(G), we create a shift action f{ui ,u j} with effect 1 on the
vertex voters vi and v j and effect 0 on all other voters. Finally, we set the budget
to B := (h

2
)
. This completes the construction, which is computable in polynomial

time.
The proof of correctness follows the same lines as the proof for the corresponding

proof for the Plurality rule with (+1,+1)-shift actions, but instead of counting the
number of approvals, we compute the Borda scores of the candidates. Indeed,
this is the reason for our additional dummy voters.

In particular, the construction ensures that d1 is the original winner of the
election and that the difference between the Borda score of p and the Borda score
of d1 is exactly h2. Furthermore, each shift action can increase the score of p
by at most two. Hence, to make p a co-winner one must increase the score of p
by h(h−1) and decrease the score of d1 by h. This is possible if and only if the
shift actions correspond to the edges of some clique of size h.

147

The Plurality Rule with (+1,−1)-Shift Actions. We still reduce from the W[1]-
hard CLIQUE problem, parameterized by the solution size, but the reduction is a
bit more involved.

Let (G,h) be a CLIQUE instance where the graph G has n′ := |V (G)| ver-
tices and m′ := |E(G)| edges. We construct a Plurality-COMBINATORIAL SHIFT

BRIBERY instance as follows. We let the set of candidates be {p,d}∪D, where
D := {d1, . . . ,dh−1}, and we create the following voters:

1) For each vertex vi, we create
(h
3
)

vertex voters v1
i , . . . ,v(h

3)
i corresponding to

vi, each with preference order:

d1 Â ·· · Â dh−1 Â p.

2) For each edge e j = {vi1 ,vi2 }, we create a corresponding edge voter w j with
preference order:

p Â d1 Â ·· · Â dh−1.

3) We create 2
(h
2
)+ (n′−2h)

(h
3
)−m′ dummy voters, each with preference order:

p Â d1 Â ·· · Â dh−1.

For each edge e j = {vi1 ,vi2 }, we construct 2
(h
3
)

shift actions, denoted by:

f 1
e j ,vi1

, . . . , f (h
3)

e j ,vi1
and f 1

e j ,vi2
, . . . , f (h

3)
e j ,vi2

,

where for each z ∈ [
(h
3
)
], we have that (a) f z

e j ,vi1
has effect of +1 on vz

i1
and effect

of −1 on w j, and (b) f z
e j ,vi2

has effect of +1 on vz
i2

and effect of −1 on w j. Finally,

we set the budget B := 2
(h
2
)(h

3
)
. This completes the construction. It is easy to see

that the reduction can be computed in polynomial time.
Observe that, initially, the edge voters and the dummy voters prefer p, while

the vertex voters prefer d1. Therefore, the initial score of p is 2
(h
2
)+ (n′−2h)

(h
3
)
,

while the initial score of d1 is n′(h
3
)
. We can assume, without loss of generality,

that it means that d1 is the winner of the election (instances not satisfying this
assumption can be solved in constant time).

It remains to show that our constructed instance contains a successful set of
shift actions F ′ of size at most h if and only if (G,h) contains a clique of size at
most B. The general idea is that, if we choose the shift actions corresponding

148

to the edges connecting the nodes of an h-size clique, then we will ensure that
p becomes the preferred candidate for h

(h
3
)

additional vertex voters, while mak-
ing d1 the preferred candidate for only

(h
2
)

additional edge voters. A more detailed
argumentation follows.

For the “if” direction, let H ⊆ V (G) be a set of h vertices which form a clique
in G and let E′ ⊆ E(G) be the set of edges connecting vertices from H. We choose
the following set of shift actions:

F ′ = {
f z

e j ,vi1
, f z

e j ,vi2
: e j = {vi1 ,vi2 } ∈ E′, z ∈ [

(
h
3

)
]
}
.

We show that F ′ is a successful set of shift actions. To this end, observe that for
each vertex voter vz

i with vi ∈V ′ and z ∈ [
(h
3
)
], candidate p is shifted h−1 positions

forward, therefore p becomes the preferred candidate for these voters. This means
that h

(h
3
)

additional vertex voters prefer p (and, thus, do not prefer d1 anymore).
Furthermore, p is shifted backwards only for the voters in {w j : e j ∈ E′}, that is,
d1 becomes the most preferred candidate for

(h
2
)

edge voters and p remains the
most preferred candidate for m′− (h

2
)

edge voters. Thus, p and d tie as winners.
For the “only if” direction, let F ′ be a successful set of shift actions. To make p

a winner of the election, p must be shifted to the top position for at least h
(h
3
)−(h

2
)

vertex voters (no other type of voters can be affected positively). By the pigeonhole
principle, these vertex voters correspond to at least h different vertices (there
are

(h
3
)

voters corresponding to each vertex). In effect, at least
(h
2
)

edge voters
must be effected negatively so that d1 becomes their most preferred candidate.
Thus, to make p win the election, p must be shifted to the top position for at
least h

(h
3
)

vertex voters. This implies that |F ′| ≥ (h−1) ·h · (h
3
)= 2

(h
2
)(h

3
)= B and,

hence, |F ′| = B. It follows that p is shifted backwards, making d1 the most
preferred candidate, for exactly

(h
2
)

edge voters and that p must be shifted to the
top position for exactly h

(h
3
)

vertex voters corresponding to exactly h different
vertices. By construction, this implies that these h vertices form a clique, and we
are done.

The Borda Rule with (+1,−1)-Shift Actions. For the Borda rule, the reduction
is, once again, a bit more involved, but the main idea is similar to that for the
Plurality rule.

Let (G,h) be an instance of the CLIQUE problem where the graph G has n′ :=
|V (G)| vertices and m′ := |E(G)| edges. We construct a Borda-COMBINATORIAL

149

SHIFT BRIBERY instance as follows. The set of candidates is {p,d}∪D, where
D := {d1, . . . ,dh−1}, and we create the following voters:

1) For each vertex vi, we create
(h
3
)

vertex voters, v1
i , . . . ,v(h

3)
i , corresponding

to vi, each with preference order:

D Â p.

2) For each edge e j = {vi1 ,vi2 }, we create a corresponding edge voter w j with
preference order:

d1 Â ·· · Â dh−2 Â p Â dh−1.

3) We define a value L :=
(h
2
)+ (n′(h

3
)+m′)(h−1)− (

(h
3
)
h2)−m′

h−1
. Without loss

of generality, we can assume that L is an integer (this requires only simple
modifications to the input clique instance). We create L dummy voters, each
with preference order:

p Â dh−1 Â ·· · Â d1.

For each edge e j = {vi1 ,vi2 }, we construct 2
(h
3
)

shift actions, denoted by

f 1
e j ,vi1

, . . . , f (h
3)

e j ,vi1
and f 1

e j ,vi2
, . . . , f (h

3)
e j ,vi2

,

where, for each z ∈ [
(h
3
)
], we have that (a) f z

e j ,vi1
has effect of +1 on vz

i1
and effect

of −1 on w j, and (b) f z
e j ,vi2

has effect of +1 on vz
i2

and effect of −1 on w j. Finally,

we set the budget B := 2
(h
2
)(h

3
)
. This completes the construction. It is easy to see

that the reduction can be computed in polynomial time. The proof of correctness
follows the same lines as the proof of correctness for the Plurality rule and, thus,
is omitted.

4.C. Proof of Theorem 4.7
Theorem 4.7. Borda-COMBINATORIAL SHIFT BRIBERY is W[1]-hard with re-
spect to the number n of voters, even when there are no budget constraints and
even if we only allow (+1,−1)-shift actions.

Proof. We reduce from the the following W[1]-hard problem [114, Lemma 3.2].

150

STRONGLY REGULAR MULTICOLORED CLIQUE

Input: Two integers, d and h, and an undirected graph G = (V ,E),
where each vertex has one of h colors in [h], and where each vertex is
adjacent to exactly d vertices of each color different from its own.
Question: Does there exist a clique of size h containing one vertex
from each color class?

Given an instance of STRONGLY REGULAR MULTICOLORED CLIQUE, we con-
struct an instance of COMBINATORIAL SHIFT BRIBERY, for the Borda rule. The
general idea of the reduction is as follows. The set of “important” candidates
consists of our preferred candidate p and the candidates that correspond to the
edges. For technical reasons, for each edge e = {v,v′}, we introduce two candidates,
e1 and e2; one of them is associated with “touching” the vertex v while the other
is associated with “touching” the vertex v′. (In fact, we will introduce more edge
candidates and some vertex candidates, but we will use them only to ensure
correct structure of the election and appropriate bribery behavior.) We build two
groups of voters, the vertex-selecting voters and the edge-electing voters. The
first group implements picking vertices for the clique (one vertex from each color),
while the second group implements picking edges (one edge for each pair of colors).
We ensure that, for any successful set of shift actions has any chance of being
successful, it must hold that h vertices and

(h
2
)

edges are picked. Importantly,
this property holds even in the unbribed election.

We make sure that p wins the election if and only if the picked voters and the
picked edges correspond to a clique (with vertices of each color). To this end, we
define the voters so that there are two numbers, α and β, such that:

1) There are h vertices picked by the vertex-selecting voters, each of a different
color. The vertex-selecting voters give α points to each edge candidate that
is associated with touching one of the selected vertices, and α+1 points to
all other edge candidates. This means that by picking a vertex we decrease
the score of the edge candidates for the edges that touch this vertex.

2) There are
(h
2
)

edges picked by the edge-selecting voters, one edge for each
pair of colors. The edge-selecting voters give β+1 points to each edge candi-
date that corresponds to a picked edge, and β points to all the remaining
edge candidates. This means that, by picking an edge, we increase the score
of the candidates corresponding to it.

3) Candidate p gets α+β+1 points, irrespectively of which shift actions we
apply.

151

Note that, in the unbribed election, every candidate gets at most α+β+2 points
and p always gets α+β+1 points. Thus, the challenge is to ensure that every
candidate gets exactly α+β+1 points. By the above description, this is possible
only if we pick the vertices and the edges that correspond to a clique of size h,
consisting of vertices with different colors. Indeed, if we select an edge e that
does not touch two selected vertices, then e1 and e2 would receive β+1 points
from edge-selecting candidates and at least one of them would receive α+1 points
from vertex-selecting voters. In effect, p would not be a winner.

Without loss of generality, we assume that the edges and the vertices which are
initially selected in the unbribed election do not form a clique (otherwise there
would be a trivial solution for the input problem).

Construction. We now formally describe the reduction. Then, we give an exam-
ple of applying it to a simple instance, and finally we prove the correctness of the
reduction. We illustrate some aspects of the correctness proof using our example.

Candidates. Our set of candidates is somewhat involved. Our important candi-
dates are the preferred candidate p and the sets of edge candidates, E1 and E2,
defined below.

Let E(G) = {e1, . . . , eµ} be the set of edges of graph G. We create two edge-
candidate sets: E1 = {e1

1, . . . , e1
µ} and E2 = {e2

1, . . . , e2
µ}. For each i ∈ [h], let ni be the

number of vertices in G with color i and let V i = {vi
1, . . . ,vi

ni
} be the set of these

vertices. For each color i and each vertex vi
j ∈ V i, we define the neighborhood

of vi
j as follows:

N(vi
j) := {e1

` : e` = {vi
j,v

i′
j′ } ∈ E∧ i < i′}

∪ {e2
` : e` = {vi

j,v
i′
j′ } ∈ E∧ i > i′}.

(This, perhaps a bit strange way of using color numbers to pick edge candidates
either from E1 or E2, is implementing the fact that for each edge e ∈ E(G) we
have two candidates, e1 and e2, associated with touching different endpoints of e.)

For technical reasons we need further candidates as follows. To adjust the
scores of all other candidates, we introduce a single dummy candidate d. We
create two further candidate sets, E0 = {e0

1, . . . , e0
µ} and E3 = {e3

1, . . . , e3
µ}, which

will act as “guards” for the edge-selecting voters. For each V i we create two

152

candidate sets, U i := {ui
j : vi

j ∈ V i} and U ′i = {u′i
j : vi

j ∈ V i}, with U := ⋃
1≤i≤h U i

and U ′ :=⋃
1≤i≤h U ′i, which will act as “guards” for the vertex-selecting voters.

Thus, our set of candidates is: C :=U ∪U ′∪E0 ∪E1 ∪E2 ∪E3 ∪ {p,d}.

Vertex-Selecting Voters. We now describe the vertex-selecting voters. For
each color i and each vertex vi

j, we define the following parts of preference orders
(for j = 1, we assume that ui

j−1 and u′i
j−1 are ui

ni
and u′i

ni
respectively):

A(vi
j) : ui

j Â
−−−−→
N(vi

j)Â u′i
j ,

B(vi
j) : ui

j−1 Â
−−−−→
N(vi

j)Â u′i
j−1.

For each color i we create three pairs of voters. The voters in the first pair,
wi and w′

i, have the following preference orders:

wi : p Â A(vi
1)Â A(vi

2)Â A(vi
3)Â ·· · Â A(vi

ni
)Â

−→
R i,

w′
i :

−→
R i Â B(vi

1)Â B(vi
ni

)Â B(vi
ni−1)Â ·· · Â B(vi

2)Â p,

where R i is the set of the remaining candidates, that is, R i := C \ ({p}∪U i ∪
U ′i∪N(vi

1)∪·· ·∪N(vi
ni

)). The voters in the second pair, qi and q′
i, have preference

orders that are the reverse of wi and the reverse of w′
i, respectively. Finally, the

voters in the last pair, q̄i and q̄′
i, have preference orders:

q̄i :
−−−−−−−−−−−−−→
C \ ({d}∪N(vi

1))Â d Â
−−−−→
N(vi

1),

q̄′
i :

←−−−−
N(vi

1)Â
←−−−−−−−−−−−−−
C \ ({d}∪N(vi

1))Â d.

In effect, the first two pairs of voters jointly give 2(|C|−1) points to each of the
candidates. The last pair gives |C|−1 points to the candidates in N(vi

1) and |C|
points to all other candidates (except d, who receives less than |C|−1 points).

Let α := h(2(|C|−1)+|C|)−1. Altogether, the vertex-selecting voters give the
following scores to the candidates: the candidates in N(v1

1)∪N(v2
1)∪·· ·∪N(vh

1)
receive α points, wile all other candidates, except d, receive α+ 1 points (d
receives less than α points). Thus, in the unbribed election, v1

1, . . . ,vh
1 are the

selected vertices.

153

For each color i, we introduce (ni −1) · ((h−1) ·d+2) shift actions with effect −1
on voter wi and effect +1 on voter w′

i. To understand where this number comes
from, we note that: (1) for each vertex vi

j, we have |N(vi
j)| = (h−1) ·d (each vertex

is connected with d vertices of each color different than its own), (2) in A(vi
j) and

in B(vi
j), the candidates from N(vi

j) are surrounded by two vertex candidates, and
(3) for an integer t, 1 ≤ t ≤ ni −1, applying t((h−1) ·d+2) of these shift actions
has the effect that the candidates in N(vi

1) gain one point (that is, vi
1 ceases

to be selected), the candidates in N(vi
t+1) lose one point (that is, vi

t+1 becomes
selected), and no other candidate changes his score (later we will argue that
applying numbers of such shift actions which are not multiples of ((h−1) ·d+2)
cannot ensure p’s victory).

Edge-Selecting Voters. For the edge-selecting voters, we need the following
additional notation. Let Ex,y denote the set of candidates representing edges
between vertices of color x and color y, that is,

Ex,y := {eq∈{0,1,2,3}
`

: e` = {vx
j ,v

y
j′ } ∈ E}.

We write nx,y to denote the number of edges between vertices of color x and
color y. By idx,y

z we refer to the index of the zth edge between vertices of color x
and y. For example, if e3, e7 and e57 are the only three edges between vertices of
colors 1 and 2, then n1,2 = 3, id1,2

1 = 3, id1,2
2 = 7, and id1,2

3 = 57.
For each pair {x, y} of distinct colors and each edge eidx,y

j
, we introduce the

following parts of preference orders (for j = nx,y, we assume that idx,y
j+1 = idx,y

1):

R(eidx,y
j

) : e0
idx,y

j
Â e1

idx,y
j

Â e2
idx,y

j
Â e3

idx,y
j

,

S(eidx,y
j

) : e0
idx,y

j+1
Â e1

idx,y
j

Â e2
idx,y

j
Â e3

idx,y
j+1

.

For each pair {x, y} of distinct colors we introduce three pairs of voters. The
voters in the first pair, wx,y and w′

x,y, have the following preference orders (where
Rx,y is the set of the remaining candidates, that is, Rx,y := C \ ({p}∪Ex,y)):

wx,y : R(eidx,y
1

)Â p Â R(eidx,y
2

)Â R(eidx,y
3

)Â ·· · Â R(eidx,y
nx,y

)Â−−→
Rx,y,

w′
x,y :

−−→
Rx,y Â S(eidx,y

nx,y
)Â S(eidx,y

nx,y−1
)Â ·· · Â S(eidx,y

2
)Â S(eidx,y

1
)Â p,

154

The voters in the second pair, qx,y and q′
x,y, have preference orders that are the

reverse of wx,y and the reverse of w′
x,y, respectively. Finally, the voters in the last

pair, q̄x,y and q̄′
x,y, have the following preference orders:

q̄x,y : e1
idx,y

1
Â e2

idx,y
1

Â d Â
−−−−−−−−−−−−−−−−→
C \ ({d, e1

idx,y
1

, e2
idx,y

1
}),

q̄′
x,y :

←−−−−−−−−−−−−−−−−
C \ ({d, e1

idx,y
1

, e2
idx,y

1
})Â e2

idx,y
1

Â e1
idx,y

1
Â d.

The first two pairs of voters jointly give 2(|C|−1) points to each of the candidates.
The last pair gives |C| points to both e1

idx,y
1

and e2
idx,y

1
, and |C|−1 points to all other

candidates (except d, who receives less than |C|−1 points).
Let β := 3

(h
2
)
(|C| − 1). Altogether, for each pair of distinct colors {x, y}, the

edge-selecting voters give β+1 points to candidates e1
idx,y

1
and e2

idx,y
1

. All other

candidates receive β points (except for d, who receives less than β points). Thus,
in the unbribed election, the selected edges are exactly “the first edges between
each pair of colors” (that is, edges of the form eidx,y

1
, for each pair of distinct colors

{x, y}).
For each pair {x, y} of distinct colors, we create 4(nx,y −1) shift actions with

effect −1 on voter wx,y and effect +1 on voter w′
x,y. The intuition behind these shift

actions is similar to the case of vertex-selecting voters. We make the following
observations: (1) for each edge eidx,y

`
, there are four candidates listed in R(eidx,y

`
)

and four candidates listed in S(eidx,y
`

), and (2) for an integer t, 1 ≤ t ≤ nx,y −1,

if we apply 4t such shift actions, then the candidates e1
idx,y

1
and e2

idx,y
1

lose one

point (edge eidx,y
1

ceases to be selected), the candidates e1
idx,y

t+1
and e2

idx,y
t+1

gain one

point (edge eidx,y
t+1

becomes selected), and the scores of all other candidates remain
unchanged (we will later argue that, if we apply a number of shift actions that is
not a multiple of 4, then p certainly is not a winner of the resulting election).

To conclude the construction, we set the budget B :=∞ (that is, we can use as
many shift actions as we like). It is easy to verify that the reduction is computable
in polynomial time and that it is a parameterized reduction, since the number of
voters in the resulting election is upper-bounded by a function dependent only
on h. Before proving the correctness of the construction, we consider the following
example (we will refer to it during the correctness proof as well).

155

v1
1

v1
2

v2
1

v2
2

v3
1 v3

2

e 1

e2

e3

e4
e5 e 6

V 1 = {v1
1,v1

2}, V 2 = {v2
1,v2

2}, V 3 = {v3
1,v3

2}, h = 3, d = 1

Figure 4.7. A 3-colored graph with six vertices where each vertex is adjacent to
one vertex from each of the color classes V 1, V 2, and V 3 (other than its own
color class).

Example 10. Consider the STRONGLY REGULAR MULTICOLORED CLIQUE in-
stance (d,h,G) with d = 1, h = 3, and the graph G from Figure 4.7. Our construc-
tion produces the following set of candidates:

C :=U ∪U ′∪E0 ∪E1 ∪E2 ∪E3 ∪ {p,d},

with
U = {u1

1,u1
2,u2

1,u2
2,u3

1,u3
2}, U ′ = {u′1

1 ,u′1
2 ,u′2

1 ,u′2
2 ,u′3

1 ,u′3
2 },

and
E i = {ei

1, ei
2, . . . , ei

6},0≤ i ≤ 3.

Furthermore, we have:

N(v1
1) := {e1

1, e1
2}, N(v1

2) := {e1
3, e1

6},

N(v2
1) := {e2

3, e1
4}, N(v2

2) := {e2
1, e1

5},

N(v3
1) := {e2

2, e2
5}, N(v3

2) := {e2
4, e2

6}.

156

For the vertex-selecting group of voters, we create the following voters. For
each color i, we create two voters wi and w′

i:

w1 : p Â u1
1 Â e1

1 Â e1
2 Â u′1

1 Â u1
2 Â e1

3 Â e1
6 Â u′1

2 Â
−→
R1,

w′
1 :

−→
R1 Â u1

2 Â e1
1 Â e1

2 Â u′1
2 Â u1

1 Â e1
3 Â e1

6 Â u′1
1 Â p,

w2 : p Â u2
1 Â e2

3 Â e1
4 Â u′2

1 Â u2
2 Â e2

1 Â e1
5 Â u′2

2 Â
−→
R2,

w′
2 :

−→
R2 Â u2

2 Â e2
3 Â e1

4 Â u′2
2 Â u2

1 Â e2
1 Â e1

5 Â u′2
1 Â p,

w3 : p Â u3
1 Â e2

2 Â e2
5 Â u′3

1 Â u3
2 Â e2

4 Â e2
6 Â u′3

2 Â
−→
R3,

w′
3 :

−→
R3 Â u3

2 Â e2
2 Â e2

5 Â u′3
2 Â u3

1 Â e2
4 Â e2

6 Â u′3
1 Â p,

with R i := C \ ({p}∪U i ∪U ′i ∪N(vi
1)∪·· ·∪N(vi

ni
)), 1≤ i ≤ 3. For each of these

voters we add a voter with reversed preferences. (This means that, so far, all
candidates get the same total score.) We finish this group of voters by creating,
for each color i, two voters, q̄i and q̄′

i, with preference orders:

q̄i :
−−−−−−−−−−−−−→
C \ ({d}∪N(vi

1))Â d Â
−−−−→
N(vi

1),

q̄′
i :

←−−−−
N(vi

1)Â
←−−−−−−−−−−−−−
C \ ({d}∪N(vi

1))Â d.

This ensures that, for each color i, all the candidates in N(vi
1) get α points, and

all other candidates get α+1 points (except d who gets less points). We create
4 shift actions with effect −1 on voter wi and effect +1 on voter w′

i.
For the second group of edge-selecting voters, recall that Ex,y denotes the set of

candidates representing edges between vertices of color x and color y. Specifically,
we have:

E1,2 :={e0
1, e1

1, e2
1, e3

1 e0
3, e1

3, e2
3, e3

3},

E1,3 :={e0
2, e1

2, e2
2, e3

2 e0
6, e1

6, e2
6, e3

6},

E2,3 :={e0
4, e1

4, e2
4, e3

4 e0
5, e1

5, e2
5, e3

5}.

157

For each pair {x, y} of distinct colors we create two voters, wx,y and w′
x,y, as

follows:

w1,2 : e0
1 Â e1

1 Â e2
1 Â e3

1 Â p Â e0
3 Â e1

3 Â e2
3 Â e3

3 Â
−−→
R1,2,

w′
1,2 :

−−→
R1,2 Â e0

1 Â e1
3 Â e2

3 Â e3
1 Â e0

3 Â e1
1 Â e2

1 Â e3
3 Â p,

w1,3 : e0
2 Â e1

2 Â e2
2 Â e3

2 Â p Â e0
6 Â e1

6 Â e2
6 Â e3

6 Â
−−→
R1,3,

w′
1,3 :

−−→
R1,3 Â e0

2 Â e1
6 Â e2

6 Â e3
2 Â e0

6 Â e1
2 Â e2

2 Â e3
6 Â p,

w2,3 : e0
4 Â e1

4 Â e2
4 Â e3

4 Â p Â e0
5 Â e1

5 Â e2
5 Â e3

5 Â
−−→
R2,3,

w′
2,3 :

−−→
R2,3 Â e0

4 Â e1
5 Â e2

5 Â e3
4 Â e0

5 Â e1
4 Â e2

4 Â e3
5 Â p,

where Rx,y := C \ ({p}∪E[x, y]). For each of these voters we add a voter with
reversed preferences. Further, for each pair {x, y} of distinct colors, we add two
voters, q̄x,y and q̄′

x,y, as follows:

q̄x,y : e1
idx,y

1
Â e2

idx,y
1

Â d Â
−−−−−−−−−−−−−−−−→
C \ ({d, e1

idx,y
1

, e2
idx,y

1
}),

q̄′
x,y :

←−−−−−−−−−−−−−−−−
C \ ({d, e1

idx,y
1

, e2
idx,y

1
})Â e2

idx,y
1

Â e1
idx,y

1
Â d.

Altogether, for each pair {x, y} of distinct colors, candidates e1
idx,y

1
and e2

idx,y
1

get β+1 points while all other candidates get β points (except d, which gets
less points). For each pair {x, y} of distinct colors, we create 4 shift actions with
effect −1 on voter wx,y and effect +1 on voter w′

x,y. 4

Properties of the Construction. We now discuss several properties of our con-
struction. These properties will play a significant rule in showing the correctness
of the reduction. To illustrate our arguments, we will come back to our example
from time to time. We begin by looking at the scores of the candidates.

Lemma 4.1. The following claims hold:

1) In the unbribed election, every candidate receives at most α+β+2 points
and every candidate from {p}∪U ∪U ′∪E0 ∪E3 receives exactly α+β+1.

158

2) In every bribed election, the score of p is exactly α+β+1.

3) After applying a successful set of shift actions, the score of p is α+β+1 and
the scores of all other candidates are at most α+β+1.

Proof. It is easy to see that the first claim holds, based on the discussion provided
throughout the construction. The second claim holds since applying every shift
action decreases the score of p by one point in one vote and increases it by one
point in another vote. Note that the number of shift actions is set such that
applying each shift action always moves p within the two votes on which the shift
action acts. The last claim follows directly from the second one. (Lemma 4.1) ä

Let us now consider the process of selecting vertices. In the description of
vertex-selecting voters we mentioned that, initially, for each color i, vertex vi

1
is selected, and if for some integer t, 1 ≤ i ≤ ni −1, we apply t((h−1) · d +2)
shift actions that affect voters wi and w′

i, then vi
1 ceases to be selected and vi

t+1
becomes selected. We now argue that, if we apply a number of these shift actions
that is not divisible by ((h−1) · d +2), then p is not a winner of the resulting
election.

To see that this is the case, recall that in the preference orders of voter wi
and w′

i there are exactly (h−1) ·d candidates from E1 ∪E2 between each pair of
candidates {ui

j,u
′i
j }. Furthermore, if p passes some candidate ui

j in the preference
order of voter wi (increasing ui

j ’s score by one), then it must also pass candidate ui
j

in the preference order of voter w′
i (decreasing ui

j ’s score by one): otherwise,
ui

j would end up with score α+β+2 and, by Lemma 4.1, p would not be a winner
(there are no possibilities of influencing the score of ui

j other than shifting p in
the preference lists of wi and w′

i). Hence, p also passes candidate u′i
j and all

candidates between ui
j and u′i

j in the preference lists of wi and w′
i. This, however,

means that if p is to be a winner of the election, then the number of applied shift
actions with effects on voters wi and w′

i is a multiple of ((h−1) ·d+2) (p passes
candidate ui

j, candidate u′i
j , and h ·d candidates in between). Figure 4.8 provides

an illustration of the above reasoning.
We next discuss selecting edges. As for the case of vertex-selecting voters, in

the description of our construction we have argued that (a) initially, for each
pair {x, y} of distinct colors, edge eidx,y

1
is selected and that (b) after applying 4t,

1 ≤ t ≤ nx,y −1, shift actions that affect voters wx,y and w′
x,y, eidx,y

1
ceases to be

selected and eidx,y
t+1

becomes selected. We now argue that, if we used a number of

159

Unbribed voters w2 and w′
2:

w2 : p Â u2
1 Â e2

3 Â e1
4 Â u′2

1 Â u2
2 Â e2

1 Â e1
5 Â u′2

2 Â
−→
R2

w′
2 :

−→
R2 Â u2

2 Â e2
3 Â e1

4 Â u′2
2 Â u2

1 Â e2
1 Â e1

5 Â u′2
1 Â p

Applying two shift actions with effect -1 on w2 and +1 on w′
2:

w2 : u2
1 Â e2

3 Â p Â e1
4 Â u′2

1 Â u2
2 Â e2

1 Â e1
5 Â u′2

2 Â
−→
R2

w′
2 :

−→
R2 Â u2

2 Â e2
3 Â e1

4 Â u′2
2 Â u2

1 Â e2
1 Â p Â e1

5 Â u′2
1

−2

+1 +1

+2

-1 -1

Applying (h−1) ·d+2= 4 shift actions with effect -1 on w2 and +1 on w′
2:

w2 : u2
1 Â e2

3 Â e1
4 Â u′2

1 Â p Â u2
2 Â e2

1 Â e1
5 Â u′2

2 Â
−→
R2

w′
2 :

−→
R2 Â u2

2 Â e2
3 Â e1

4 Â u′2
2 Â p Â u2

1 Â e2
1 Â e1

5 Â u′2
1

−4

+1 +1 +1 +1

+4

-1 -1 -1 -1

Figure 4.8. Illustration of bribery actions affecting the first voter group of our
running example (Example 10). Note that, in the unbribed election, every
candidate from U∪U ′ obtains α+β+1 points in total. For each color i, there is
only one type of shift actions which affects voter wi and w′

i: those shift actions
with effect −1 on voter wi and effect +1 on voter w′

i. No other shift action
can affect any voter from the first group. Applying a multiple of ((h−1) ·d+2)
shift actions with effect −1 on voter wi and effect +1 on voter w′

i ensures that
the candidates from U i ∪U ′i receive at most α+β+1 points in total, whereas
applying any other number of these shift actions implies that some candidate
from U i receives α+β+2 points and, hence, p cannot win. We illustrate this
with color 2 in our running example.

160

such shift actions that is not a multiple of four, then p certainly would not be a
winner of the election.

To see that this is the case, note that we designed the preference orders of wx,y
and w′

x,y so that the candidates e0
idx,y

j
and e3

idx,y
j

, for j ∈ {2, . . . ,nx,y}, follow p in

vote wx,y in the same order in which they precede p in w′
x,y. In effect, if we apply

a shift action that affects voters wx,y and w′
x,y a number of times that is not a

multiple of four, then one of these candidates obtains α+β+2 points. Since there
is no other way to affect the score of these candidates, by Lemma 4.1, it follows
that, in this case, p cannot be a winner. We illustrate this effect in Figure 4.9.

Solution for Example 10. Before we complete the correctness proof, let us
illustrate the solution for our example.

The unbribed election selects vertex v1
1, v2

1, and v3
1 and the edges e1, e2 and e4.

Hence, for example, candidate e2
4 receives α+β+2 points and p (who receives

only α+β+1 points) is not a winner.
By applying four shift actions with effect −1 on w2 and effect +1 on w′

2, we
select v2

2 instead of v2
1 to be the vertex of color 2 in our clique (as depicted at the

bottom of Figure 4.8). By applying four shift actions with effect −1 on w2,3 and
effect +1 on w′

2,3, we select e5 instead of e4 to be the edge between color 2 and
color 3 in our clique (as depicted at the bottom of Figure 4.9). Now, each candidate
from {e1

1, e1
2, e2

1, e2
2, e1

5, e2
5} receives β+1 points from the edge-selecting voters, but

only α points from the vertex-selecting voters. Every other candidate receives at
most α+1 points from the vertex-selecting voters and at most β points from the
edge-selecting voters. Hence, p (with α+β+1 points) is a winner. This solution
corresponds to the left 3-colored triangle in Figure 4.7.

Correctness. It remains to show that there is a successful set of shift actions
for the constructed Borda-COMBINATORIAL SHIFT BRIBERY instance if and only
if there is an h-colored clique in graph G.

For the “if” direction, assume that there is an h-colored clique H ⊆ V (G).
Without loss of generality, let H := {v1

z1
, . . . ,vh

zh
} and let EH := {{v,v′} : v,v′ ∈ H}.

Furthermore, let zx,y denote the index of the edge in Ex,y representing the edge
from EH between the vertex of color x and the vertex of color y. That is, zx,y = j
if and only if eidx,y

j
∈ EH . Then, it is easy to verify that the following set of shift

actions is successful:

161

Unbribed voters w2,3 and w′
2,3:

w2,3 : e0
4 Â e1

4 Â e2
4 Â e3

4 Â p Â e0
5 Â e1

5 Â e2
5 Â e3

5 Â
−−−→
R2,3

w′
2,3 :

−−−→
R2,3 Â e0

4 Â e1
5 Â e2

5 Â e3
4 Â e0

5 Â e1
4 Â e2

4 Â e3
5 Â p

Applying two shift actions with effect -1 on w2,3 and +1 on w′
2,3:

w2,3 : e0
4 Â e1

4 Â e2
4 Â e3

4 Â e0
5 Â e1

5 Â p Â e2
5 Â e3

5 Â
−−−→
R2,3

w′
2,3 :

−−−→
R2,3 Â e0

4 Â e1
5 Â e2

5 Â e3
4 Â e0

5 Â e1
4 Â p Â e2

4 Â e3
5

−2

+1 +1

+2

-1 -1

Applying four shift actions with effect -1 on w2,3 and +1 on w′
2,3:

w2,3 : e0
4 Â e1

4 Â e2
4 Â e3

4 Â e0
5 Â e1

5 Â e2
5 Â e3

5 Â p Â
−−−→
R2,3

w′
2,3 :

−−−→
R2,3 Â e0

4 Â e1
5 Â e2

5 Â e3
4 Â p Â e0

5 Â e1
4 Â e2

4 Â e3
5

−4

+1 +1 +1 +1

+4

-1 -1 -1 -1

Figure 4.9. Illustration of bribery actions affecting the second voter group of
our running example. Note that in the unbribed election, every candidate
from E0 ∪E4 obtains α+β+1 points in total. For each pair of colors x and y
there is only one type of shift actions which affects voter wx,y and w′

x,y: those
shift actions with effect −1 on voter wx,y and effect +1 on voter w′

x,y. No other
shift action can affect any voter from the second group. Applying a multiple
of 4 shift actions with effect −1 on voter wx,y and effect +1 on voter w′

x,y
ensures that the candidates from E0 ∪ E4 receive at most α+β+ 1 points
from these voters, in total, whereas applying any other number of these shift
actions implies that some candidate from E0 receives α+β+2 points and,
hence, p cannot win. We illustrate this with color pair 2 and 3 in our running
example.

162

1) For each color i ∈ [h], include (zi −1)((h−1) ·d+2) shift actions with effects
on voters wi and w′

i.

2) For each pair {x, y} of distinct colors, include 4(zx,y −1) shift actions with
effects on voters wx,y and w′

x,y.

In other words, we select the vertices and the edges corresponding to the clique.
In effect, the scores of all candidates is α+β+1 (except for d, who receives a
lower score). Thus, p is among the tied winners.

For the “only if” direction, assume that there is a successful set of shift actions
and consider the election after applying these shift actions. By construction, we
know that edge-selecting voters pick exactly one edge for each pair of distinct
colors. Hence, the graph induced by these edges contains vertices with h different
colors. If this graph contains only h vertices, then this graph must be an h-colored
clique (this graph cannot contain fewer than h vertices). Towards a contradiction,
let us assume that this graph contains more than h vertices. Thus, there are two
selected edges, e j and e j′ , incident to two different vertices, vi ∈ e j and vi′ ∈ e j′ ,
of the same color. By our construction (and the way vertex-selecting voters
work), for at least one of the sets N(vi) and N(vi′), each candidate in this set
receives α+1 points from the vertex-selecting voters. Since both e j and e j′ are
selected by the edge-selecting voters, however, these voters give β+1 points to
each of the candidates e1

j , e2
j , e1

j′ , and e2
j′ . Hence, at least one of these candidates

receives α+β+2 points in total and, by Lemma 4.1, p is not a winner. This
is a contradiction, and so the graph induced by the selected edges must be an
h-colored clique.

163

5. Anonymizing Elections

This chapter, similarly to Chapter 3 and Chapter 4, is about elections. The combi-
natorial problem discussed in this chapter is, however, not related to the possibil-
ity of manipulating elections, but to issues of privacy. We mention that Chapter 6
and Chapter 7 are also about privacy; not for data related to elections, however,
but for data related to social networks.

Consider a scenario where the preference orders of some voters participating
in an election are to be published. Specifically, we would like to publish all
preference orders, together with some additional information regarding each
voter (for example, name, occupation, etc.). It is clear that, in order to preserve
the privacy of the voters, any identifying information (for example, the names of
the voters) should be obfuscated before made public.

Obfuscating identifying information, however, is not enough for preserving
the privacy of the voters. To see this, consider an adversary which knows the
preference order of a specific voter whose vote is unique in the election. It is
clear that such an adversary might de-anonymize that voter, thus breaching its
privacy (and possibly learning some further private data which is associated to
that voter).

We deal with the above privacy issue by k-anonymizing the election. That is,
we are given an election, a voting rule, and a distance over elections (that is, a
metric, modeling how different two elections are from each other). The task is to
find an election which is not too far away from the original election (with respect
to the given distance) while preserving the election winner (with respect to the
given voting rule), and such that the resulting election will be k-anonymous; an
election is said to be k-anonymous if, for every voter in it, there are at least k−1
other voters with the same preference order. Indeed, an adversary as described
in the last paragraph cannot breach the privacy of the voters in a k-anonymous
election.

165

Alice : Alice Â Cinderella Â David Â Bob Â Euclid

Bob : Euclid Â Bob Â David Â Alice Â Cinderella

Cinderella : Cinderella Â Alice Â David Â Bob Â Euclid

David : David Â Cinderella Â Euclid Â Alice Â Bob

Euclid : Cinderella Â David Â Euclid Â Alice Â Bob

Figure 5.1. The election used in the illustrating example.

We consider the problem of k-anonymizing elections for the Plurality rule
and for the Condorcet rule, for the Discrete distance and for the Swap distance
(formally defined in Section 5.3). We show that the (parameterized) complexity
landscape of this problem is diverse, with cases ranging from being polynomial-
time solvable to Para-NP-hard.

5.1. Illustrating Example
Consider the following example.

Example 11. Recall the group of people discussed in Section 3.1 and the election
performed over their social network (Figure 3.2; for convenience, given also
in Figure 5.1).

The corresponding examples in Section 3.1 and in Section 4.1 consider actions
available for Bob in order to manipulate the election. Here, however, corre-
sponding to the computational problem considered in this chapter, we assume
that there is some identifying information attached to each voter participating
in the election (for example, the age of each voter), and that we would like to
make the election publicly available, while preserving the privacy of the voters
participating in the election.

As a first step, we might want to obfuscate the names from the election, to
arrive to the election-related data presented in Figure 5.2 (for example, Euclid’s
name has been obfuscated to be “E”, while his real age (27) has been revealed).

Let us assume that an adversary wants to know the real age of Euclid. By
simply looking at this published election-related data, it cannot distinguish Euclid

166

A (47) : Alice Â Cinderella Â David Â Bob Â Euclid

B (14) : Euclid Â Bob Â David Â Alice Â Cinderella

C (41) : Cinderella Â Alice Â David Â Bob Â Euclid

D (70) : David Â Cinderella Â Euclid Â Alice Â Bob

E (27) : Cinderella Â David Â Euclid Â Alice Â Bob

Figure 5.2. The obfuscated election-related data.

from the other voters. However, if the adversary knows that the preference order
of Euclid is

Cinderella Â David Â Euclid Â Alice Â Bob,

then it can de-anonymize Euclid, since Euclid is the only voter with this prefer-
ence order. Thus, we conclude that the above published election-related data does
not preserve the privacy of the voters.

Hence, we require that each preference order would appear at least two times
in the published election-related data. If this property, namely 2-anonymity,
would hold, then the adversary discussed above will not be able to breach the
privacy of the voters. In order to achieve the 2-anonymity property we allow
swapping a few pairs of consecutive candidates.

In the current example, the minimum number of such swaps is eleven, and we
reach the election-related data depicted in Figure 5.3 (specifically, we swapped
Cinderella and Alice in the vote of C, David and Cinderella in the vote of D, and
another nine swaps in the vote of B).

Indeed, in the resulting election-related data, each preference order appears at
least twice. 4

5.2. Introduction
In this chapter, we consider privacy issues when publishing preferences-related
(or, election-related) data. Assume being given data consisting of a set of records,
where each record (corresponding to a human or an agent) contains preferences-
related information as well as some private (side) information. The task is to

167

A (47) : Alice Â Cinderella Â David Â Bob Â Euclid

B (14) : Alice Â Cinderella Â David Â Bob Â Euclid

C (41) : Alice Â Cinderella Â David Â Bob Â Euclid

D (70) : Cinderella Â David Â Euclid Â Alice Â Bob

E (27) : Cinderella Â David Â Euclid Â Alice Â Bob

Figure 5.3. The resulting 2-anonymized election-related data.

publish this data (for example, to let researchers analyze it) while preserving the
privacy of the entities in it.

Two of the most well-studied approaches for achieving privacy when publishing
information are differential privacy (see, for example, Dwork and Roth [59]) and
k-anonymity (see, for example, Sweeney [138] and Machanavajjhala et al. [111]).
Here, we follow the k-anonymity framework. Our main reason for following the
k-anonymity framework is the fact that it allows for a deterministic combinatorial
study, whereas differential privacy is a probabilistic method (see Clifton and Tassa
[47] for a recent comparison between these two approaches). We mention that
in Chapter 6 and in Chapter 7), as well, we follow the k-anonymity framework,
but for anonymizing data related to social networks and not to elections.

We say that an election is k-anonymous if each preference order in it appears
at least k times. Given an input election, the goal is to generate an election which
is k-anonymous but still preserves some properties of the original election.

It is natural to consider the distance between the original election and the
resulting anonymized election. To this end, we consider the following distances
over elections. We study the Discrete distance (where each preference order
can be transformed into any other preference order at unit cost) and the Swap
distance (where each two consecutive candidates can be swapped at unit cost), as
these are the most basic and well-studied distances defined on elections (see, for
example, [64]). Indeed, we can view these distances also as defining the allowed
operations (the Discrete distance allows to arbitrarily change a preference order
while the Swap distance allows to swap two consecutive candidates). The idea
is that, if the distance is small, then the anonymized election does not differ too

168

much from the original election; this is, arguably, more apparent in the Swap
distance.1

Besides requiring that the original election and the resulting k-anonymized
election will be close (with respect to the considered distance), we would like to
preserve some specific properties of the original election.2 Specifically, we require
the winner of the election to be preserved. To this end, we need to consider
voting rules. We study two voting rules, the Plurality rule and the Condorcet
rule, as these are the most basic and well-studied voting rules, which are also
good representative rules: the Plurality rule, albeit simple, can be seen as a
representative rule for scoring rules, while the Condorcet rule can be seen as
a representative rule for tournament-based rules (tournament-based rules are
rules which depend on the tournament graph defined by pairwise comparisons
between the candidates; see, for example, the book of Laslier [103] for more
information).

In what follows, we study the parameterized complexity of k-anonymizing
elections, under the Plurality rule and under the Condorcet rule, for the Discrete
distance and for the Swap distance. We consider the two fundamental election-
related parameters: the number of voters and the number of candidates; and
an anonymity-related parameter: the anonymity level k. We show that the
parameterized complexity landscape of our problem is diverse, with cases ranging
from being polynomial-time solvable to Para-NP-hard.

In a way, this chapter can be seen as bringing the well-studied field of vot-
ing systems and social choice to the well-studied field of k-anonymity, with the
hope of better understanding complexity issues of preserving privacy when pub-
lishing election-related data. Similarly, this chapter might serve as a bridge
between Chapter 3 and Chapter 4, discussing election manipulation, to Chapter 6
and Chapter 7, discussing anonymization. We view our definition of k-anonymity
for elections as being a natural adaptation of the concept of k-anonymity for
tables and graphs to preferences-related (or, election-related) data.

5.2.1. Related Work

There is a big body of literature on security of elections and on preserving privacy
of voters participating in (digital) elections. Chaum [40], Nurmi et al. [127],

1We mention that it is also possible to define the problems considered in Chapter 6 and in Chapter 7
through distances, albeit distances over graphs.

2Indeed, similar goals are also set in Chapter 6. There, specific properties of the original graph, such
as the connectivity, the relative distances, and the diameter, are to be preserved.

169

and Cuvelier et al. [52], among others, considered cryptographic mechanisms to
encrypt the votes, while Chen et al. [43], among others, considered differential
privacy. Ashur and Dunkelman [4] showed how to breach the privacy of voters
for the Israeli parliament when an adversary has access to the publicly-available
nation-wide election statistics. This work is of some relevance to us as it considers
privacy with respect to (publicly-available) published data.

Sweeney [138] introduced the concept of k-anonymity as a way to preserve
privacy over published data, after demonstrating how to identify many individu-
als by mixing publicly-available medical data with publicly-available voter lists
(interestingly, to some extent, Sweeney [138] already focuses on election-related
data, specifically on the party affiliation; informally speaking, party affiliation
corresponds to the Plurality rule, since only the first choice counts, while for the
Condorcet rule we would need the complete preference orders publicly available).
Much work has been done on k-anonymizing tables (for example, Meyerson and
Williams [121], Bredereck et al. [25], and Bredereck et al. [29]; some of these
concentrate on parameterized complexity) and on k-anonymizing graphs (for a
literature review on k-anonymizing graphs we refer the reader to Section 6.2.1).

Here, we consider neither general tables nor graphs, but instead we consider
elections. Indeed, elections can be described as tables, but here we require also to
preserve the winner and allow different, election-specific, operations. Specifically,
while the Discrete distance might be natural also for general tables, this is not
the case for the Swap distance.

5.3. Specific Preliminaries

Considering distances over elections, we follow some of the notation used by Elkind
et al. [64].

5.3.1. Elections and Distances

Given a set V ′ of preference orders, we say that a function d : V ′×V ′ →N is a
distance function over preference orders if it is a metric over preference orders.
Given a distance function over preference orders d and two elections (over the
same set of candidates), E = (C, (v1, . . . ,vn)) and E′ = (C, (v′1, . . . ,v′n)), the above
definition of a distance function over preference orders can be naturally extended
to a distance function over elections by (1) fixing an arbitrary order for the voters
of E, that is, [v1, . . . ,vn], (2) considering all possible permutations for the voters

170

of E′, that is, [v′
π(1), . . . ,v

′
π(n)], and (3) defining the d-distance between E and E′ to

be d(E,E′)=minπ∈Sn

∑
i∈[n] d(vi,v′π(i)), where Sn is the set containing all possible

permutations of [n]. We define the following distance functions.

• Discrete distance. ddiscr(v1,v2)= 0 if and only if v1 = v2, while otherwise
ddiscr(v1,v2) = 1. Indeed, for two elections, E = (C, (v1, . . . ,vn)) and E′ =
(C, (v′1, . . . ,v′n)), it holds that ddiscr(E,E′)= |{i : vi 6= v′i}|.

• Swap distance. dswap(v1,v2) = |{(c, c′) ∈ C × C : c Âv1 c′ ∧ c′ Âv2 c}|.
Indeed, the swap distance dswap(v1,v2) (also called the Dodgson distance3)
is the minimum number of swaps of consecutive candidates needed for
transforming the preference order of v1 to that of v2.

Clearly, both the Discrete distance and the Swap distance are distance func-
tions.

5.3.2. Anonymization

A group of voters with the same preference order is called a block. Using this
notion, we have that an election is k-anonymous if and only if each block in it is
of size at least k. We denote the number of voters in block B by |B| and say that a
block is bad if 0< B < k (as it is not yet anonymized in this case). Since all voters
in a block have the same preference order, it is valid to consider the preference
order of the voters in the block. Specifically, a block of c-voters is called a c-block.

In order to make an election anonymous, we change the way some voters vote.
When we say that we move a voter from one block to another, we mean that we
transform the vote of the voter to be similar to the preference order of the other
block.

5.3.3. Main Problem and Overview of Our Results

The main problem we consider in this chapter is defined as follows.

R-d-ELECTION ANONYMIZATION (R-d-EA)
Input: An election E = (C,V) where C = {c1, . . . , cm} is the set of
candidates and V = (v1, . . . ,vn) is the collection of voters, anonymity
level k, and a budget s.

3Named after Charles Dodgson, better known as Lewis Carroll.

171

Table 5.1. Parameterized complexity of ELECTION ANONYMIZATION. The param-
eters considered are the number n of voters, the number m of candidates, and
the anonymity level k.

Discrete distance Swap distance

Plurality rule P [Theorem 5.1]

NP-h even when n = k = 4

[Theorem 5.3]

FPT wrt. m [Theorem 5.5]

Condorcet rule

NP-h [Theorem 5.2]
NP-h even when n = k = 4

[Theorem 5.3]
para. comp. wrt. k is open

FPT wrt. n [Theorem 5.4]

FPT wrt. m [Theorem 5.5] FPT wrt. m [Theorem 5.5]

Question: Is there a k-anonymous election E′ such that R(E) =
R(E′) and d(E,E′) ≤ s (where R is a voting rule, d is a distance
function over elections, and an election is said to be k-anonymous if
for each voter in it there are at least k−1 other voters with the same
preference order)?

We study the (parameterized) complexity of R-d-ELECTION ANONYMIZATION,
where we consider both the Plurality rule and the Condorcet rule as the vot-
ing rule R, and where we consider both the Discrete distance and the Swap
distance as the distance d (that is, we consider the following four variants:
PLURALITY-DISCRETE-EA, CONDORCET-DISCRETE-EA, PLURALITY-SWAP-EA,
and CONDORCET-SWAP-EA). Our results are summarized in Table 5.1.

172

5.4. Results
Intuitively, from all variants considered in this chapter, PLURALITY-DISCRETE-
EA should be the most tractable, as the Plurality rule is conceptually simpler than
the Condorcet rule and the Discrete distance is conceptually simpler than the
Swap distance. This intuition is correct: it turns out that PLURALITY-DISCRETE-
EA is polynomial-time solvable, while all other variants are NP-hard. We begin
by describing a polynomial-time algorithm, based on dynamic programming, for
PLURALITY-DISCRETE-EA.

Theorem 5.1. PLURALITY-DISCRETE-EA is polynomial-time solvable.

Proof. We describe an algorithm based on applying dynamic programming twice,
in a nested way. To understand the general idea, consider a candidate c with
his corresponding c-voters. We have two cases to consider with respect to the
solution election: either (1) some of the c-voters are transformed to be c′-voters
(for some, possibly several, other candidates c′ 6= c), or (2) some c′-voters (for
some, possibly several, other candidates c′ 6= c) are transformed to be c-voters.
The crucial observation is that, with respect to anonymizing the c-voters, we
do not need to remember the specific c′-voters discussed above, but only their
number. Therefore, we define a first (outer) dynamic program, iterating over the
candidates, and computing the most efficient way of anonymizing the c-voters,
while considering all possible values for those numbers of c′-voters, and while
making sure that the initial winners of the election stay winners. For each
candidate c, in order to compute how to anonymize the c-voters, we define a
second (inner) dynamic program, considering the c-blocks one at a time. For
each c-block, the inner dynamic program decides whether to make the respective
c-block empty (with zero voters) or full (with at least k voters), by considering the
possible ways of transforming other c-voters or other c′-voters, similarly in spirit
to the first (outer) dynamic programming. A full description of the algorithm
follows.

We begin by guessing the end score of p, denoted by end(p), where p denotes
the current winner (for simplicity, we assume that there is only one winner, but
the algorithm works similarly for several initial winners). Since it is sufficient to
consider only the number of voters from each block, the following notation will be
useful.

For i ∈ [m], let Ci denote the number of ci-voters, let ni denote the number of
ci-blocks, and for j ∈ [ni], let C j

i denote the number of ci-voters in the jth block of
the ci-voters. In particular, we have that

∑
j∈[ni] C j

i = Ci holds for any i ∈ [m]. In

173

other words, we order the voters by their most preferred candidate, group them
by their blocks, and consider only the size of each block, to arrive at the following
sequence representation of the instance:

[C1
1, . . . ,Cn1

1 ,C1
2, . . . ,Cn2

2 ,. . .,C1
m, . . . ,Cnm

m].

We iterate over the blocks, sorted as above, in a dynamic programming fashion.
Specifically, we define a first (outer) dynamic programming table T such that

T(i, z1..i),

for i ∈ [m] and −n ≤ z1..i ≤ n (indeed, z1..i is just a symbol), represents the
minimum number of operations needed in order to k-anonymize the voters corre-
sponding to the first i candidates, that is, to anonymize the subsequence

[C1
1, . . . ,Cn1

1 ,C1
2, . . . ,Cn2

2 ,. . .,C1
i , . . . ,Cni

i],

while fulfilling the following requirements:

• Respecting the guessed end score of p. That is, we make sure that no
candidate c 6= p receives a greater score than end(p), which is the guessed
end score of p.

• Respecting the value of z1..i. Specifically, if z1..i < 0, then this means
that we should import exactly −z1..i voters. That is, we assume that we have
a set of z1..i voters, all of which are originally ci2 -voters, for some i2 > i, and
all these voters should end-up being ci1 -voters, for some, possibly different,
i1 ≤ i. In a similar way, if z1..i > 0, then this means that we should export
exactly z1..i voters. That is, we assume that we have a set of z1..i voters, all
of which are originally ci1 -voters, for i1 ≤ i, and such that these voters will
end-up being ci2 -voters, for some, possibly different i2 > i.

As we want to k-anonymize all voters, we return True if and only if we have that
T(m,0)≤ s, which means that it is possible to anonymize the blocks corresponding
to all candidates while performing at most s operations.

Before we describe how to compute each T(i, z1..i), we define, for each i ∈ [m], a
second (inner) dynamic programming table Q i such that

Q i(j, z1.. j
i),

174

for j ∈ [ni] and −n ≤ z1.. j
i ≤ n (indeed, z1.. j

i is just a symbol), represents the
minimum number of operations needed in order to k-anonymize the voters corre-
sponding to the ci-voters, that is, to anonymize the subsequence

[C1
i , . . . ,Cni

i],

while fulfilling the following requirement:

• Respecting the value of z1.. j
i . Specifically, if z1.. j

i < 0, then this means
that we should import exactly −z1.. j

i voters. That is, we assume that we
have a set of z1.. j

i voters, all of which are originally not voters from the
first j blocks of the ci-voters, and all these voters should end-up being in
the first j blocks of the ci-voters. In a similar way, if z1.. j

i > 0, then this
means that we should export exactly z1.. j

i voters. That is, we assume that
we have a set of z1.. j

i voters, all of which are originally voters from the first
j blocks of the ci-voters, and such that these voters should end-up being
not in the first j blocks of the ci-voters.

We describe now how to compute each Q i(j, z1.. j
i) using our dynamic program-

ming recursion. We consider all possible ways of anonymizing the jth block of the
ci-voters. Recall that the number of (ci-)voters in the jth block of the ci-voters is
denoted by C j

i , and let us denote the corresponding value in the solution, that is,
the number of (ci-)voters in the (same) jth block of the ci-voters by C′ j

i . Since the
number of voters is n, and due to the anonymization constraint, it follows that
the possible values for each C′ j

i are either zero or some value between k and n
(including); that is, we have that C′ j

i ∈ {0}∪ [k,n]. We consider all possible ways of
anonymizing the jth block of the ci-voters, that is, we consider the cost of achiev-
ing each possible value for C′ j

i . Specifically, we have the following recurrence
relation:

Q i(j, z1.. j
i)= min

C′ j
i∈{0}∪[k,n]

Q i(j−1, z1.. j
i − (C′ j

i −C j
i))+|C′ j

i −C j
i |.

Note that, given any value for z1..ni
i , the minimum number of operations needed

in order to anonymize all ci-voters, is given by Q i(ni, z1..ni
i).

We describe now how to compute each T(i, z1..i) using our dynamic program-
ming recursion. We consider all possible ways of distributing the z1..i im-
port/export voters to ci-blocks and to ci1 -blocks, for i1 < i. Specifically, if z1..i > 0,

175

then we consider all possible ways of exporting some voters from the ci-blocks
while the others are exported from ci1 -blocks, for, possibly different, i1 < i, and if
z1..i < 0, then we consider all possible ways of importing some voters to ci-blocks
while the others are imported to ci1 -blocks, for, possibly different, i1 < i. We have
the following recurrence relation:

T(i, z1..i)= min
−n≤z

1..ni
i ≤n

T(i−1, z1..i − z1..ni
i)+Q i(ni, z1..ni

i).

For the proof of correctness, consider a yes-instance. It holds that, for each i,
there is a correct value z1..i such that in the solution, the number z1..i represents
the number of import/export voters with respect to the ci-voters. This number z1..i
will be identified by the outer dynamic programming, since it tries all possibilities
for this number. Further, for each i and for each j, there is a correct value C′ j

i
such that in the solution, the number C′ j

i represents the number of voters in
the jth block of the ci-voters. This number C′ j

i will be identified by the inner
dynamic programming, since it tries all possibilities for this number. Finally, if
the instance is a no-instance, then such numbers will not be identified by the
algorithm.

The running time is clearly polynomial. Specifically, there are O(mn) entries
in the outer dynamic programming table T, since there are m candidates and
2n+1 possible values for z1..i. For each entry of T we consider 2n+1 possibilities
for z1..ni

i . There are m inner dynamic programming tables Q i. Each inner
dynamic programming table has O(n2) entries, since there are n voters and 2n+1
possible values for z1..ni

i . For each entry of each Q i we consider at most n values
for C′ j

i . In total, we have running time of O(m ·n3).

For the Condorcet rule, still considering the Discrete distance, we show that
ELECTION ANONYMIZATION is NP-hard, by a reduction from a restricted variant
of the EXACT COVER BY 3-SETS problem.

Theorem 5.2. CONDORCET-DISCRETE-EA is NP-hard.

Proof. We reduce from the NP-hard problem RESTRICTED EXACT COVER BY

3-SETS [86], defined as follows.

RESTRICTED EXACT COVER BY 3-SETS

Input: Collection S = {S1, . . . ,Sn} of sets of size 3 over a universe
X = {x1, . . . , xn} such that each element appears in exactly three sets.

176

Question: Is there a subset S ′ ⊆S such that each element xi occurs
in exactly one member of S ′?

We assume, without loss of generality, that{
{x1, x2, x3}, . . . , {xn−2, xn−1, xn}

}= {
{x3l−2, x3l−1, x3l} : l ∈ [n/3]

} 6⊆S ,

and that n = 0 (mod 3). Given an instance of RESTRICTED EXACT COVER BY

3-SETS, we create an instance for CONDORCET-DISCRETE-EA, as follows.
We create two candidates, p and d. For each element xi ∈ X , we create a

candidate xi, such that the set of candidates is {X , p,d}. We create a set of
n/3 voters, called jokers, such that the ith joker (for i ∈ [n/3]) has preference
order x3i−2 Â x3i−1 Â x3i Â p Â d Â X \{x3i−2, x3i−1, x3i}. For each set S j, we create
k voters, each with preference order S j Â p Â d Â S j. We refer to these voters
as the set voters. We create another set of (n−6)k+ ((n/3)−2) voters, each with
preference order d Â X Â p, called the init voters. Finally, we set s to n/3 and k to
(n/3)+2. This finishes the construction. Consider the following example of the
reduction.

Example 12. Consider the following instance of RESTRICTED EXACT COVER BY

3-SETS. We have a universe X = {1, . . . ,9} and a collection of sets S = {S1, . . . ,S9},
where:

S1 = {1,2,5}, S2 = {1,3,6}, S3 = {1,4,5},

S4 = {2,6,7}, S5 = {2,8,9}, S6 = {3,5,9},

S7 = {3,6,7}, S8 = {4,7,8}, S9 = {4,8,9}.

Note that n = 9 and that the collection S ′ = {S1,S7,S9} forms an exact cover.
The election E = (C,V) created by the reduction described above is such that the
set of candidates is C = {x1, . . . , x9, p,d}, the collection of voters is
V = {jokers,set voters, init voters}, and we have that the jokers are:

(joker 1) 1 voter with: 1Â 2Â 3Â p Â d Â 4Â 5Â 6Â 7Â 8Â 9,

(joker 2) 1 voter with: 4Â 5Â 6Â p Â d Â 1Â 2Â 3Â 7Â 8Â 9,

(joker 3) 1 voter with: 7Â 8Â 9Â p Â d Â 1Â 2Â 3Â 4Â 5Â 6,

177

the set voters are:

(set voter block 1) 5 voters with: 1Â 2Â 5Â p Â d Â 3Â 4Â 6Â 7Â 8Â 9,

(set voter block 2) 5 voters with: 1Â 3Â 6Â p Â d Â 2Â 4Â 5Â 7Â 8Â 9,

(set voter block 3) 5 voters with: 1Â 4Â 5Â p Â d Â 2Â 3Â 6Â 7Â 8Â 9,

(set voter block 4) 5 voters with: 2Â 6Â 7Â p Â d Â 1Â 3Â 4Â 5Â 8Â 9,

(set voter block 5) 5 voters with: 2Â 8Â 9Â p Â d Â 1Â 3Â 4Â 5Â 6Â 7,

(set voter block 6) 5 voters with: 3Â 5Â 9Â p Â d Â 1Â 2Â 4Â 6Â 7Â 8,

(set voter block 7) 5 voters with: 3Â 6Â 7Â p Â d Â 1Â 2Â 4Â 5Â 8Â 9,

(set voter block 8) 5 voters with: 4Â 7Â 8Â p Â d Â 1Â 2Â 3Â 5Â 6Â 9,

(set voter block 9) 5 voters with: 4Â 8Â 9Â p Â d Â 1Â 2Â 3Â 5Â 6Â 7,

and the init voters are:

(init voters) 16 voters with: d Â 1Â 2Â 3Â 4Â 5Â 6Â 7Â 8Â 9Â p.

Finally, the budget s is set to 3, and the anonymity level k is set to 5.

Corresponding to the exact cover S ′ = {S1,S7,S9}, we move joker 1 to set voter
block 1, joker 2 to set voter block 7, and joker 3 to set voter block 9. As a result,
the election becomes k-anonymized. 4

Let us first compute the winner of the input election. Note that the set voters
and the jokers prefer p to d, while the init voters prefer d to p. As there are kn
set voters and n/3 jokers, but only (n−6)k+ ((n/3)−2) init voters, p defeats d.
Consider an element xi. Exactly one joker which prefers xi to p and exactly
three set voters prefer xi to p (as xi appears in exactly three sets). Besides
these voters, all the init voters prefer xi to p, while all other voters prefer p
to xi. In total, there are (n/3)− 1+ k(n− 3) voters which prefer p to xi and
1+3k+ (n−6)k+ ((n/3)−2)= (n/3)−1+k(n−3) voters which prefer xi to p, so p
and xi are tied (we use the weak-Condorcet criterion, but the reduction can be
modified to apply for the strong-Condorcet criterion as well). Moreover, it is not
hard to see that d defeats xi. Summarizing the above computations, we see that

178

p is the winner of the input election. Thus, in an anonymized solution election,
p shall be the winner as well.

Given an exact cover S ′, we move all jokers to the set voters corresponding to
the exact cover, that is, we move all jokers such that, for each set S ∈S ′, we will
have one joker in the block of set voters corresponding to S. Note that initially
the jokers form an exact cover. Note further that they still form an exact cover
in the solution, as we moved them to blocks of set voters corresponding to the
sets of S ′. Importantly, as a result, the relative score of p and the xi ’s has not
changed; thus, p is still the winner. Finally, it is not hard to see that the election
is anonymized.

For the other direction, note that the jokers are not anonymized (that is, their
blocks are bad; specifically, each joker forms its own block) while all other blocks
are anonymized. It is not possible to anonymize the jokers by moving other voters
(or other jokers) to their blocks, as the budget is too small for that. Therefore, in
a solution, all jokers should move to other blocks. There are two possibilities for
each joker, either to move to the init voters or to move to some set voters. It is
not a good idea to move jokers to the init voters, as the init voters prefer X to p.
More formally, if in a solution, some jokers move to the init voters, then we can
instead move them to an arbitrarily-chosen set voter, while keeping p the winner
and the election anonymized. Therefore, we can assume that, in a solution, all
jokers move to set voters. If the jokers move to set voters in a way that does not
correspond to an exact cover, then at least one xi would win over p (as at least
one xi would be covered twice, that is, at least two jokers would move to set voters
preferring xi to p; therefore, the relative score between xi and p would change
in such a way that xi would win over p in a head-to-head contest). Therefore, a
solution must correspond to an exact cover, and we are done.

Moving further to the Swap distance, we show that ELECTION ANONYMIZA-
TION is NP-hard for both voting rules considered, even for elections with only four
voters (indeed, also for elections with anonymity level four; note that any input
with k > n is a trivial no-instance). Technically, in the corresponding reduction,
from KEMENY DISTANCE, we set both n and k to four. We mention that Theo-
rem 5.3 actually holds for all unanimous voting rules (a voting rule is unanimous
if for any election where all voters prefer the same candidate c, it selects this
preferred candidate c; see, for example, [64]).

Theorem 5.3. For R ∈ {Plurality,Condorcet}, R-SWAP-EA is NP-hard even if the
number n of voters is four and the anonymity level k is four.

179

Proof. We reduce from the KEMENY DISTANCE problem.

KEMENY DISTANCE

Input: An election E′ = (C′,V ′) and a positive integer h.
Question: Is the Kemeny distance of E′ = (C′,V ′) at most h (where
the Kemeny distance is the minimum total number of swaps of neigh-
boring candidates needed to have all voters vote the same; such a
vote is called a Kemeny vote)?

KEMENY DISTANCE is NP-hard already for four voters [14, 60]. Given an
input election for KEMENY DISTANCE, we create an instance for ELECTION

ANONYMIZATION, as follows.

We initialize our election E = (C,V) with the election given for KEMENY DIS-
TANCE and create another candidate c (that is, we set C = C′∪ {c}). For each
voter in the election, we place c as the first choice of the voter, that is, for each
voter v′ ∈V ′, we create a voter v ∈V with the same preference order as v′ while
preferring c to all other candidates. We set the anonymity level k to n (such that,
in particular, all voters shall vote the same) and the budget s to h. This finishes
the construction. Consider the following example of the reduction.

Example 13. Consider the following instance of KEMENY DISTANCE. We have
an election E′ = (C′,V ′) with C′ = {a′,b′, c′,d′} and V ′ = {v′1,v′2,v′3,v′4}, where

v′1 : a′ Â b′ Â c′ Â d′,

v′2 : b′ Â a′ Â c′ Â d′,

v′3 : a′ Â c′ Â b′ Â d′,

v′4 : a′ Â b′ Â d′ Â c′.

It is easy to see that a Kemeny vote of E′ is a′ Â b′ Â c′ Â d′ and that the
Kemeny distance of E′ is 3.

180

The election E = (C,V) created by the reduction described above is such that the
set of candidates is C = {a′,b′, c′,d′, c}, the collection of voters is V = {v1,v2,v3,v4},
and we have that:

v1 : c Â a′ Â b′ Â c′ Â d′,

v2 : c Â b′ Â a′ Â c′ Â d′,

v3 : c Â a′ Â c′ Â b′ Â d′,

v4 : c Â a′ Â b′ Â d′ Â c′.

Finally, the anonymity level k is set to 4, therefore in a solution all voters
should vote the same. The budget s is set to 3, and it is easy to see that this
can be achieved most efficiently (that is, with the minimum number of swaps of
consecutive candidates), when all voters vote as c Â a′ Â b′ Â c′ Â d′. 4

It is clear that originally c is the winner of the election (both under the Plurality
rule and under the Condorcet rule; indeed, for Theorem 5.3, we only require the
rule to be unanimous; see, for example, [64]).

The crucial observation is that there is no need to swap the new candidate c;
this follows since all voters already agree on him, as they place him first in their
preference orders. More formally, as k is set to n, it follows that if in a solution c
is swapped in some voters, then he must be swapped in all voters. Therefore, we
can simply “unswap” these swaps to get a cheaper solution.

Finally, since k is set to n, it follows that all voters should vote the same in the
resulting k-anonymous solution election. Thus, the best way to anonymize the
election is by finding a Kemeny vote, and transforming all voters to vote as this
Kemeny vote. Therefore, the election can be k-anonymized by at most s swaps if
and only if the Kemeny distance of the input election is at most h.

With respect to the parameter number n of voters, the situation for the Discrete
distance is different than the situation for the Swap distance. Specifically, it
turns out that CONDORCET-DISCRETE-EA is FPT with respect to n.

Theorem 5.4. CONDORCET-DISCRETE-EA is fixed-parameter tractable with
respect to the number n of voters.

181

Proof. The crucial observation is that there is no need to create new blocks,
besides, perhaps, one arbitrarily-chosen p-block (recall that a p-block is a block
of p-voters). To see this, consider a solution that adds a new block B which is not
a p-block. Change the solution by moving the voters in B to a new arbitrarily-
chosen p-block (instead of the block B). While using the same budget, the election
is still anonymized and p is still a Condorcet winner. In effect, by applying the
above modification extensively, we have shown that for each solution, there exist
a solution which do not use any new blocks, besides, perhaps, one arbitrarily-
chosen p-block. It follows that no new blocks, besides, perhaps, one additional
arbitrarily-chosen p-block, are needed. We mention that an additional p-block
might be needed when there are no p-voters (and, therefore, no p-blocks) in the
input election.

The above observation suggests the following simple algorithm. We begin by
guessing whether we need a new p-block. Then, for each voter, we guess whether
(1) it will not change, (2) it will move to some other original block (out of the
possible n−1 other original blocks), or (3) it will move to the new p-block (if we
guessed that such a new block p-block exists). This completes the algorithm.

Correctness follows by the observation above and by the brute-force nature of
the algorithm. Fixed-parameter tractability follows since, for each voter (out of
the n original voters), we guess where it will end up (out of n or n+1 possibilities);
thus, the running time is O(m ·nn).

Still considering the parameter number n of voters, we mention that it seems
possible to also obtain a problem kernel for CONDORCET-DISCRETE-EA. The
idea would be to reduce the number of candidates to be upper-bounded by the
parameter n. This could be done by performing the following modification to each
block B of c-voters: introduce a new candidate cB, and replace the votes in the
block B to prefer c and then cB. This is plausible since it is enough to keep the
initial winners and to preserve the initial blocks.

We move on to consider the number m of candidates. Similarly to numerous
other problems in computational social choice (for example, see Theorem 4.9), all
variants of ELECTION ANONYMIZATION considered in this chapter are FPT with
respect to this parameter. This follows by applying a famous result of Lenstra
[104] after formulating the problem as an integer linear program where the
number of variables is upper-bounded by a function dependent only on the number
m of candidates.

Theorem 5.5. For R ∈ {Plurality, Condorcet} and d ∈ {Discrete, Swap}, R-d-EA
is fixed-parameter tractable with respect to the number m of candidates.

182

Proof. The crucial observation is that the number of different preference orders
is m!, thus, in particular, upper-bounded by a function depending only on the
parameter. We enumerate the set of m! different preference orders and, for
each i, j ∈ [m!], we create a variable xi, j, with the intended meaning that xi, j
will represent the number of voters with preference order i in the input and
preference order j in the solution.

We add the following budget constraint:∑
i, j∈[m!]

xi, j ·d(i, j)≤ s.

(Note that we can precompute all the distances, in polynomial time.)
For preference order i, we denote the number of voters with preference order i

in the input by starti and the number of voters with preference order i in the
solution by endi. For each i, it holds that:

endi = starti +
∑

j∈[m!]
x j,i −

∑
j∈[m!]

xi, j.

We guess a set Z ⊆ [m!] of preference orders with the intent that these will be
the preference orders that will be present in the solution. For each preference
order i ∈ Z we add a k-anonymity constraint, and, similarly, for each preference
order i ∉ Z we require that its endi will be 0, as follows:

∀i ∈ Z : endi ≥ k,

∀i ∉ Z : endi = 0.

Differently for the Plurality rule and the Condorcet rule, we add more con-
straints to make sure that the winner of the input will not change in the solution
election, as follows.

For the Plurality rule, we guess the highest score z in the solution (that is, the
winning score), and we check that the initial winner p gets exactly z points, by
adding the following constraint: ∑

i∈[m!] and p is at the first position of i
endi = z.

Similarly, for each non-winning candidate c 6= p, we add a non-winning con-
straint:

183

∑
i∈[m!] and c is at the first position of i

endi ≤ z.

For the Condorcet rule, for the initial Condorcet winner p (if it exists), we check
that he indeed beats all other candidates in the solution:

∀c 6= p :
∑

i∈[m!] and pÂi c
endi >

∑
i∈[m!] and cÂi p

endi.

Since the number of variables and the number of constraints is upper-bounded
by the parameter, fixed-parameter tractability follows by applying a famous result
by Lenstra [104].

5.5. Outlook
There are numerous opportunities for future research regarding the work pre-
sented in this chapter, some of which we briefly discuss next.

• As Table 5.1 suggests, there is one open question left, considering the
parameterized complexity of ELECTION ANONYMIZATION for the Discrete
distance, under the Condorcet rule, when parameterizing by the anonymity
level k. One might also consider other parameterizations for ELECTION

ANONYMIZATION, the most natural yet-unstudied parameter being the
solution size (that is, the budget) s.

• Theorem 5.3 shows hardness of Plurality-SWAP-EA and Condorcet-SWAP-
EA for elections with only four voters. It would be interesting to know
whether these problems are tractable for elections with only three voters.
We mention that the related problem of winner-determination for Kemeny
voting is open (that is, it is not known whether finding the Kemeny voter
for elections with only three voters is NP-hard).

• While the algorithm presented in the proof of Theorem 5.4 shows fixed-
parameter tractability of Condorcet-DISCRETE-EA, it’s running time is
O(m ·nn). It might be possible to devise a different algorithm, with better
running time, which might be better in practice.

• It is natural to extend this line of research to some other voting rules. In-
deed, some of the results described in this chapter can be extended to other

184

rules. For example, it was already stated before that the reduction showing
Para-NP-hardness with respect to the combined parameter number n of
voters and anonymity level k actually works for any unanimous voting
rule. As another example, we mention that the algorithm showing fixed-
parameter tractability with respect to the number of candidates m can be
extended to any rule that can be expressed via integer linear program. It
is not clear, however, whether the other results presented in this chapter
can be extended to other rules. For example, one may ask whether the
polynomial-time algorithm presented in Theorem 5.1 can be extended to
the Borda rule.

Even further, one might consider Approval voting, where each voter chooses
a subset of candidates which she approves. Stretching a bit further, one
might also consider multi-winner rules, where the goal might be to anonymize
the election while preserving the same winning committee.

• Another natural extension of this work is to consider other distances besides
the Discrete distance and the Swap distance (see, for example, the distances
considered by Elkind et al. [63]). On a similar note, we mention that it
seems natural to also consider anonymization by making total orders into
partial ones.

• While we consider a minsum approach, as we compute the distance between
two elections as the sum of distances between their voters (and allow
to permute the voters), it might also be interesting to study a minmax
approach; in a minmax approach, intuitively, we would not allow any
individual voter to change her vote by too much, but we would not care
about the total changes summed over the voters. This could be of particular
interest as it might preserve the original election more closely.

• More generally, it is worth studying how to preserve more properties of the
original election; while we only require to preserve the winner, one might
require to preserve the full relative ranking of the candidates (that is, fixing
some scoring rule, and considering two candidates c′ and c′′, such that c′ is
achieving a higher score than c′′ in the original election, we might require c′
to achieve a higher score than c′′ in the resulting election as well).

Another type of properties that one might want to preserve relates to
domain restrictions. For example, assuming that the input election is
single-peaked, one might require the anonymized solution election to be

185

single-peaked as well (for an introduction to domain restrictions in general,
and to single-peaked in particular, see, for example, the book by Arrow et al.
[2]).

• One might consider stronger notions of k-anonymity. A natural notion to
consider would be the notion of l-diversity [111], which might be interesting
to explore in the context of elections.

• The NP-hardness, and even Para-NP-hardness, of some of the variants of
ELECTION ANONYMIZATION considered here suggest trying to approximate
the corresponding variants. To this end, one might either sacrifice the
anonymity level or the solution size.

186

6. Degree Anonymization by
Vertex Addition

In this chapter, similarly to Chapter 5, we consider privacy issues when publishing
data. Here (as well as in Chapter 7), however, we do not consider publishing data
related to elections, but we consider publishing data related to social networks.

Specifically, assuming an adversary which knows the degrees of some of the
vertices of an input graph (which represents the social network that is to be
published), we would like to make the graph k-anonymous; a graph is said to be
k-anonymous if, for each vertex in it, there are at least k−1 other vertices with
the same degree. Indeed, such an adversary as described above cannot breach
the privacy of the vertices in a k-anonymous graph.

In contrast to Chapter 7, where the way to achieve anonymity is by performing
few graph contractions, the way to achieve anonymity in this chapter is by adding
few new vertices, together with some incident edges.

Similarly to Chapter 5, where we are interested in preserving some properties of
the given election (specifically, the winner of the election), here we are interested
in preserving some properties of the given graph. We explore three variants of
vertex addition, differentiated by the restrictions imposed on the allowed new
edges, making sure that some properties of the input graph will hold also in the
anonymized solution graph.

We derive some intractability results, even for very restricted cases (including
trees and bounded-degree graphs) and obtain some encouraging fixed-parameter
tractability results.

6.1. Illustrating Example
Consider the following example.

Example 14. Recall the group of people discussed in Section 3.1 and the social
network representing their friendship relationships (Figure 3.1, and given also
in Figure 6.1 for convenience).

187

Alice

BobCinderella David

Euclid

Figure 6.1. The social network used in the illustrating example.

A (47)

B (14)C (41) D (70)

E (27)

Figure 6.2. The obfuscated social network.

The corresponding example in Section 5.1 considers privacy issues when mak-
ing some election-related data publicly available. Here, however, corresponding
to the computational problem considered in this chapter, we assume that some
identifying information is attached to the social network (for example, the age
of each person), and that we would like to publish the social network, while
preserving the privacy of the people comprising it.

We might obfuscate the names from the social network, to arrive at the social
network presented in Figure 6.2 (for example, Euclid’s name has been obfuscated
to be “E”, and his real age “27” is revealed). Let us assume that an adversary
wants to know the real age of David. Simply by looking at this obfuscated social
network, it cannot distinguish David from the others. However, if the adversary
knows how many friends David has (that is, the degree of David), then it can
de-anonymize David, since David is the only person in this social network with
exactly three friends. In this sense, the above obfuscated social network is not
preserving the privacy of the persons comprising the social network.

Hence, we would like to have that, in the published social network, each vertex
degree would appear at least twice. If this property, namely 2-anonymity, would
hold, then the adversary discussed above would not be able to breach the privacy
of the persons comprising the social network. In order to achieve the above
property, we would like to find the minimum number of new vertices (that is, new
“dummy” people) that we can insert to the social network.

188

A (47)

B (14)C (41) D (70)

E (27) F (99)

Figure 6.3. The resulting 2-anonymized social network.

In the current example, we can 2-anonymize the social network by adding only
one new vertex, to reach the social network depicted in Figure 6.3 (specifically,
we added one person, F, and connected him to both E and B).

Indeed, in the resulting social network, each vertex degree appears at least
twice. 4

6.2. Introduction

This chapter is concerned with making an undirected graph k-anonymous, that
is, transforming it (at “low cost”) into a graph where every vertex degree occurs
either zero or at least k times. This graph modification scenario is motivated by
data privacy requests in social networks; it focuses on degree-based attacks on
identity disclosure of network nodes.

There is good reason why vertex addition may be preferred to other graph
modification operations when aiming at k-anonymity. The central point here is
the “utility” of the anonymized graph. For instance, in the edge addition scenario,
inserting a new edge always destroys distance properties between vertices and
indeed may introduce undesirable and misleading “fake relations”. Adding new
vertices and connecting them to some of the vertices of the original graph could
avoid this problem and gives at least a better chance to preserve essential graph
properties such as connectivity, shortest paths, or diameter. For example, adding a
new vertex and connecting it to only one existing vertex does not change distances
between any existing vertices. Chester et al. [44] further discussed the benefits
of vertex addition.

189

6.2.1. Related Work

The general problem of degree anonymization has been studied, both theoretically
and practically, for several graph modification operations. Liu and Terzi [107]
(see also Clarkson et al. [46] for an extended version) pioneered degree-based
identity anonymization in graphs, and gave a heuristic, based on dynamic pro-
gramming, for k-anonymizing an input graph by adding as few edges as possible.
Lu et al. [109] proposed another heuristic for the same problem, based on a
greedy approach. Hartung et al. [91] studied the parameterized complexity of
degree anonymization by edge additions. The main result there is an algorithm
which runs in FPT-time when parameterizing by the maximum degree in the
input graph. The problem of k-anonymizing an input graph by performing as
few edge modifications as possible, that is, edge switchings, edge deletions, and
edge additions, was studied by Casas-Roma et al. [39], which gave a heuristic
solution for it. Bredereck et al. [24] considered degree anonymization by vertex
deletion, again from a parameterized complexity point-of-view. Anonymization by
adding new vertices was studied by Chester et al. [44], which gave a non-optimal
algorithm with some approximation guarantees for the problem. We follow this
last line of research, and provide a more thorough computational complexity
analysis of degree anonymization by vertex addition.

6.2.2. Model Discussion

The basic decision version of the vertex addition problem we study is as follows
(see Figure 6.4 for a simple example).

DEGREE ANONYMIZATION (VA)
Input: A simple undirected graph G = (V ,E) and k, t ∈N.
Question: Is there a k-anonymous graph G′ = (V ∪V ′,E∪E′) such
that |V ′| ≤ t and E′ ⊆ {

{u,v}⊆V ∪V ′ : u ∈V ′∨v ∈V ′}?

It is important to note that Chester et al. [44] studied a slightly different model,
with decisive consequences for computational complexity: Their model gets as
input a simple undirected graph G = (V ,E), integers t and k, and also a vertex
subset X ⊆V , and the task is to k-anonymize the degree sequence (that is, the
vertex degrees sorted in ascending order) of X ∪V ′ and the degree sequence
of X . In contrast, we consider the simpler model where X =V , and we require to
k-anonymize only the degree sequence of X ∪V ′ (=V ∪V ′).

190

To better understand the difference in the models, consider the example de-
picted in Figure 6.5. In this example, the minimum solution size for the model
of Chester et al. [44] is four, while the minimum solution size for our model is two.
The crucial difference is that in the solution for our model, the new vertex and the
old vertex of degree five together will form a 2-anonymized “block”. Nevertheless,
we conjecture that our results (both positive and negative) extend to the model of
Chester et al. [44].

6.2.3. Overview of Our Results
Partially answering an open question of Chester et al. [44], we show that DEGREE

ANONYMIZATION (VA) is weakly NP-hard for a compact encoding of the input.
We provide several (fixed-parameter) tractability results, exploiting parame-

terizations by the maximum vertex degree of the input graph, the number of
added vertices, and the maximum number of (implicitly) added new edges. The
tractability result regarding the parameter maximum number of (implicitly)
added new edges is given by developing a bikernelization [1, 100] to a closely
related number problem. This is one of the most technical results in this chapter.

We consider several variants of degree anonymization by vertex addition,
differentiated by the which edges we allow to introduce to the input graph.

DEGREE ANONYMIZATION (VA): Here we allow to insert edges which are inci-
dent to the new vertices.

DEGREE ANONYMIZATION (VC): Here we only allow “cloned” vertices to be
added1 (that is, identical copies of existing vertices with exactly the same
neighborhood; see Figure 6.6 for an example).

Π-PRESERVING DEGREE ANONYMIZATION (VA): Here we explicitly demand the
preservation of some desirable features of the input graph (expressed by Π)
such as distance properties. For these practically interesting variants, we
prove computational hardness already for very restricted cases (for instance
even on trees).

Table 6.1 surveys most of our results, and some open questions.

1The cloning operation is frequently studied in the context of privacy, see, for example, the work
by Bilge et al. [15]. It is also studied in the context of social choice: for example, the work by Elkind
et al. [66] studied manipulating elections by cloning candidates.

191

Figure 6.4. DEGREE ANONYMIZATION (VA): The input graph on the left is not
2-anonymous. The graph on the right is a possible solution for anonymizing by
vertex addition. The new vertex (black) is arbitrarily connected to some other
vertices.

Figure 6.5. An example showing the difference between our model and the model
of Chester et al. [44]. In this example, k = 2 and X = V . The input graph on
the left is not 2-anonymous. The graph in the middle is a minimum solution
for our model, using only one additional vertex, while the graph on the right is
a minimum solution for the model of Chester et al. [44], using four addition
vertices.

Figure 6.6. DEGREE ANONYMIZATION (VC): The input graph on the left is not
2-anonymous. The graph on the right is a possible solution for anonymizing by
vertex cloning. The two added vertices (black) are clones of the middle vertex.
Note that it is not possible to 2-anonymize the graph by adding only one clone.

192

Table 6.1. Overview of our results. Each column represents a different prob-
lem variant, where VC (respectively Π, VA) stands for DEGREE ANONYMIZA-
TION (VC) (respectively Π-PRESERVING DEGREE ANONYMIZATION (VA), DE-
GREE ANONYMIZATION (VA)). The first row refers to standard complexity
analysis, while the remaining rows show parameterized complexity results
with respect to several parameters. Here, ∆ denotes the maximum degree of
the input graph, k is the degree of anonymity, s is the maximum number of
added edges, and t is the maximum number of added vertices.

Parameter VC Π VA

- NP-h [Th. 6.1] NP-h [Th. 6.3] weakly NP-h [Th. 6.6]

∆ Para-NP-h [Th. 6.1] open open

k Para-NP-h a [Th. 6.2] NP-ha [Th. 6.3] open

s open W-hb [Th. 6.4] FPT [Th. 6.10]

t W-h [Th. 6.2] W-h [Th. 6.3] XPc [Th. 6.7]

(∆,k) open open FPT [Th. 6.9]

(∆, t) open open FPT [Th. 6.8]

(k, t) W-h [Th. 6.2] W-h [Th. 6.3] XPc [Th. 6.7]

aEven on trees.
bOnly for Π=Distances.
cOpen whether FPT.

193

6.2.4. Organization of this Chapter

Problem definitions are given in Section 6.3. In Section 6.4, we consider degree
anonymization by vertex addition, where there are some specific constraints
on the allowed edges connecting the newly added vertices (including degree
anonymization by vertex cloning). Here, we give strong hardness results (some-
times, even on trees). Then, in Section 6.5, we move on to consider degree
anonymization by vertex addition, without constraints on the allowed edges con-
necting the newly added vertices. Here, we solve some easy cases in Section 6.5.1,
then we give a hardness result in Section 6.5.2, accompanied by some tractable
cases in Section 6.5.3. We conclude in Section 6.6.

6.3. Specific Preliminaries

DEGREE ANONYMIZATION (VA) allows to add vertices and edges incident to the
new vertices. For a given solution of a yes-instance, we denote the actual number
of new vertices by t′ and the total number of newly inserted edges by s′ (indeed,
0≤ t′ ≤ t and 0≤ s′ ≤ s).
Π-PRESERVING DEGREE ANONYMIZATION (VA) defines some constraints on

the new edges. The idea is to preserve some desirable properties of the input
graph. A general definition reads as follows.

Π-PRESERVING DEGREE ANONYMIZATION (VA)
Input: An undirected graph G = (V ,E) and k, t ∈N.
Question: Is there a k-anonymous graph G′ = (V ∪V ′,E∪E′) such
that |V ′| ≤ t, E′ ⊆ {

{u,v}⊆V ∪V ′ : u ∈V ′∨v ∈V ′}, and Π is preserved?

We now discuss what “Π is preserved” means for three properties we consider
here. First, we say that the connectedness remains preserved if any pair of
disconnected vertices in G remains disconnected in G′. As introducing vertices
and edges cannot disconnect vertices, this property can be formalized as:

∀u,v ∈V : distG(u,v)=∞ ⇐⇒ distG′ (u,v)=∞.

Second, we say that the distances remain preserved if, for any pair of vertices
in G, their distance is the same in G and G′, formally:

∀u,v ∈V : distG(u,v)= distG′ (u,v).

194

Third, we say that the diameter remains unchanged if the diameter of G and G′
is the same, formally:

max
u,v∈V

distG(u,v)= max
u,v∈V∪V ′ distG′ (u,v).

Note that the diameter property also considers paths between newly added
vertices, whereas this is not the case for the first two properties. The reason for
this is that the diameter is naturally defined as a single number, whereas the
other properties store information for each pair of vertices.

A further restricted variant of DEGREE ANONYMIZATION (VA) is to use vertex
cloning for modifying the graph. Here, cloning a vertex v means to introduce a
new vertex v′ and make v′ adjacent to all neighbors of v. Formally, we arrive at
the following problem:

DEGREE ANONYMIZATION (VC)
Input: An undirected graph G = (V ,E) and k, t ∈N.
Question: Can G be transformed into a k-anonymous graph by at
most t vertex cloning operations?

We remark that there are two different cloning variants: consider two adjacent
vertices u and v. If both u and v are cloned, then although the clone u′ is adjacent
to v and the clone v′ is adjacent to u, the clones u′ and v′ may or may not be
adjacent depending on the variant. If the clones are inserted simultaneously at
the same time, then u′ and v′ are not adjacent. If the clones are inserted one
after the other, then u′ and v′ are adjacent (no matter in which order they are
inserted). Our results for DEGREE ANONYMIZATION (VC) (Theorems 6.1 and 6.2)
hold for both variants.

6.4. Constrained Degree Anonymization

Cloning is a natural and well-motivated modification operation for social networks.
Unfortunately, we face computational intractability even on very restricted input
graphs with maximum degree three. The corresponding parameterized reduction
is from CUBIC INDEPENDENT SET.

Theorem 6.1. DEGREE ANONYMIZATION (VC) is NP-hard, even on graphs with
maximum degree three.

195

Proof. We provide a reduction from the CUBIC INDEPENDENT SET problem
which remains NP-hard even on cubic graphs (that is, 3-regular graphs) [84].

CUBIC INDEPENDENT SET

Input: An undirected 3-regular graph G and an integer h.
Question: Is there a set of h pairwise non-adjacent vertices?

Let G = (V ,E) be a cubic graph. First, we construct the incidence graph G′ =
(V ′,E′) of G, where G′ is a bipartite graph with the two vertex sets V and E and
for each edge e = {u,v} ∈ E, we have {u, e}, {v, e} ∈ E′. Then, we add n+2(h+3)2

triangles (K3) and (h+3)2 cliques of order four (K4). Finally, we set t := h and
k := n+4(h+3)2 +4h.

It remains to show that G has an independent set of size at least h if and only
if G′ can be k-anonymized by cloning at most t vertices.

For the “if” direction, let I ⊆ V denote an independent set of size h. Denote
by G′′ the graph that results from cloning all vertices of I in G′. We show that G′′
is k-anonymous. First, observe that G′ contains exactly n+4(h+3)2 vertices of
degree three and 1.5n+3(n+2(h+3)2) vertices of degree two. Cloning a vertex
of I in G′ increases the degree of three degree-two vertices by one and introduces
one degree-three vertex. Furthermore, as I is an independent set, the degree of
no vertex is increased to four. Hence, G′′ contains n+4(h+3)2 +4t = k degree-
three vertices and more than 3(n+2(h+3)2) > k degree-two vertices and thus
is k-anonymous.

For the “only if” direction, let G′′ be the k-anonymous graph obtained from
cloning t vertices in G′. First, observe that cloning t vertices in G′ can increase
the maximum degree by at most t. Thus, ∆G′′ ≤ 3+ t. Next, we show that G′′
contains no vertex of degree four or more. Assume towards a contradiction
that there exists a vertex v of degree four or more. As cloning one vertex u
can introduce at most ∆G′′ + 1 vertices of degree degG′′ (v) (namely u and its
neighbors) and since there are no degree-degG′′ (v) vertices in G′, there are at
most t(∆G′′ +1)≤ h(h+4)< k vertices of degree degG′′ (v). This is a contradiction
to the assumption that G′′ is k-anonymous. Hence, all vertices in G′′ have degree
at most three.

Observe that cloning a vertex e ∈ E ⊆V ′ or any vertex in one of the K4’s creates
degree-four vertices and, hence, no such vertex is cloned to obtain G′′. Cloning two
vertices (or one vertex twice) of a triangle creates a vertex of degree four. Hence,
at most one vertex of each triangle is cloned, creating exactly two degree-three
vertices. Since cloning a vertex v ∈V ⊆V ′ introduces at most four degree-three

196

vertices and G′′ has to have at least 4t degree-three vertices more than G′, it
follows that only vertices in V are cloned to obtain G′′. Furthermore, as cloning
two vertices that are adjacent in G or one vertex twice introduces a degree-four
vertex, it follows that the cloned vertices form an independent set of size t = h
in G.

Also from the viewpoint of fixed-parameter algorithms, we have no good news
with respect to the standard parameter “solution size” t, even on trees. The
corresponding parameterized reduction is from SET COVER.

Theorem 6.2. DEGREE ANONYMIZATION (VC) is NP-hard and W[2]-hard with
respect to the maximum number t of clones, even if the anonymity level k is two
and the graph is a tree.

Proof. We provide a reduction from the W[2]-complete SET COVER problem
parameterized by the solution size [57].

SET COVER

Input: A universe of elements X , a collection S of sets of elements
of X , and a budget h.
Question: Is there a subcollection S ′ ⊆S of sets such that |S ′| ≤ h
and

⋃
S∈S ′ S = X?

Given a SET COVER instance I = (S , X ,h), we construct a graph G = (V ,E) as
follows. For each xi ∈ X , we define f (xi) := (h+3)i+m. First, for each element x ∈
X , we add a star with f (x) leaves (a K1, f (x)) whose center-vertex is denoted by vx.
Next, for each set S ∈ S , we add a star K1,2|S| and a set gadget consisting of a
tree of depth three. The root of the tree is vS with 2|S| child vertices, partitioned
into |S| parts with two vertices each. The two vertices of each part correspond to
one element x ∈ S and have f (x)−2 degree-one child vertices each and, thus, a
degree of f (x)−1. Finally, we set t = h and k = 2.

It remains to show that I has a set cover of size h if and only if G can be
k-anonymized by cloning at most t vertices. To this end, first observe, that the
vertices vx, for x ∈ X , are the only vertices violating 2-anonymity. We denote the
set containing all these vertices by VX .

For the “if” direction, let S ′ ⊆S be a set cover of size h. We show that cloning
all vertices in the set VC := {vS : S ∈S ′} (containing the vertices corresponding to
the sets in S ′) results in a 2-anonymous graph. Since S ′ is a set cover, for every
vertex vx ∈VX , there exists a corresponding pair of vertices in a set-gadget whose

197

degree is increased from f (x)−1 to f (x) due to the cloning. Furthermore, no new
degrees are introduced, as each neighbor v of a cloned vertex corresponds to an
element x and degG(v)= f (x)−1.

For the “only if” direction, let VC , |VC | ≤ t, denote the set of cloned vertices and
let G′ be the resulting 2-anonymous graph. For each set S ∈S , CS denotes the
set of all child vertices of vS . Define CS :=⋃

S∈S CS . Furthermore, set VS := {vS :
S ∈S }. Observe that, for each x ∈ X , the only vertices in G whose degrees differ
by at most t from vx are vertices in CS . Furthermore, note that, by construction,
cloning a vertex from V \ VS introduces at most one vertex having the same
degree as a vertex from VX . As cloning a vertex in VS neither decreases the
size of any block to one nor introduces a block of size one, and since every vertex
in CS has a neighbor in VS , we can assume that VC ⊆ VS (otherwise, we can
replace vertices in VC \ VS with vertices in VS). Next, observe that, for each
vertex vx ∈VX , there has to be another vertex in G′ having the same degree as vx.
Thus, the vertices in VC ⊆VS correspond to a set cover of size at most t = h.

We can adjust the reduction from Theorem 6.2 to also work for Π-PRESERVING

DEGREE ANONYMIZATION (VA), by constructing the graph in such a way that
there are only few possibilities to connect the newly added vertices to the remain-
ing graph.

Theorem 6.3. For Π ∈ {Distances, Diameter, Connectivity}, Π-PRESERVING DE-
GREE ANONYMIZATION (VA) is NP-hard and also W[2]-hard with respect to the
maximum number t of added vertices, even if the anonymity level k is 2. For
Π ∈ {Distances, Connectivity}, this is also true on trees.

The proof of Theorem 6.3 is deferred to the appendix to this chapter.

We strengthen parts of Theorem 6.3 (using a reduction from the W[1]-hard
problem CLIQUE) by also showing that the problem remains intractable with
respect to the typically larger parameter number s of added edges. For simplicity,
we consider s as part of the input.

Theorem 6.4. ForΠ=Distances,Π-PRESERVING DEGREE ANONYMIZATION (VA)
is W[1]-hard with respect to the maximum number s of new edges.

Proof. We give a reduction from the W[1]-complete CLIQUE problem parameter-
ized by the clique size [57].

CLIQUE

Input: An undirected graph G and an integer h.
Question: Is there a set of h pairwise adjacent vertices?

198

Given a CLIQUE instance I := (G,h), we construct a graph G′ = (V ′,E′) such
that G has a clique of size h if and only if G′ can be k-anonymized by adding at
most t new vertices and at most s new edges, that is, an instance I ′ := (G′,k, t, s).
For each z ∈ [t+1], we define f (z) := (t+1)(h−1)+z(t+3), and add a star K1, f (z) with
center vertex vz to G′. For each z ∈ [t+1] and for each edge e i ∈ E = {e1, . . . , em},
we add a vertex (denoted by vz,i), and we say that e i is the corresponding edge
of vz,i.

For each pair z1, z2 ∈ [t+1] and for each pair of edges e i1 and e i2 , we connect
vz1,i1 and vz2,i2 by a path of length two if the corresponding edges e i1 and e i2

share a common vertex as an endpoint. We add some new leaves to each vz,i
such that the degree of each vz,i is changed to f (z)−2. We add some safety
gadgets for the new vertices to safely fall into their block: Specifically, we cre-
ate k stars K1,(t+1)(h−1). Finally, we set k = (h

2
)+1, t = h, and s = 2(t+1)

(h
2
)
.

It remains to show that I is a yes-instance if and only if (G,k, t) is a yes-instance.

For the “if” direction, given a clique of size h in G, we add one new vertex for
each clique vertex v connecting it to all vz,i where the corresponding edge e i is
incident to v and inside the clique. We show that this operation is permitted, as
we do not violate Π. Indeed, it holds that each pair vz,i1 ,vz,i2 whose corresponding
edges e i1 , e i2 share a common vertex already had distance two.

We now show that the graph is k-anonymous. First, note that the only vertices
that need to be anonymized are the vz ’s. The degree of each vz,i whose corre-
sponding edge is inside the clique was incremented by exactly two, and since
there are exactly

(h
2
)

such edges, the vz ’s are now anonymized. We can assume
that m ≥ k+ (h

2
)

(as this case can be easily dealt with), and, therefore, no new
blocks were introduced. Finally, the new vertices fall into the block anonymized
by the safety gadgets.

For the “only if” direction, consider a new vertex w, a pair z1, z2 ∈ [t+1], and a
pair of edges e i1 , e i2 . The vertices vz1,i1 and vz2,i2 cannot both be connected to w,
since the original distance between them was at least four and would be changed
to two if both were connected to w.

Now, assume that (G,k, t, s) is a yes-instance. As only t new vertices are added,
there exists a z′ ∈ [t+1] such that no new vertex has the same degree as vz′ . Since
there is a gap of t+1 above vz′ , it must be anonymized from below. The only
possible vertices to use are the vz′,i. At least

(h
2
)

of the vz′,i must reach the degree
of vz′ and since we can associate an original vertex to each new vertex, it follows
that they correspond to a clique.

199

6.5. Plain Degree Anonymization

In this main section of this chapter, we study the unrestricted problem DE-
GREE ANONYMIZATION (VA), without any restrictions on how to connect the
new vertices to the input graph. This freedom might raise hope to find solu-
tions more efficiently. Indeed, settling the computational complexity of DEGREE

ANONYMIZATION (VA) turns out to be tricky in that, on the one hand, we observe
that several cases are fairly easy to solve, but we are not aware of any polynomial-
time algorithm solving the problem in general. On the other hand, we can only
prove weak NP-hardness for a number version of the problem.

In terms of fixed-parameter tractability, however, it turns out that the DE-
GREE ANONYMIZATION (VA) problem is more accessible. We obtain some fixed-
parameter tractability results regarding, amongst others, certain (combined)
parameters (for example, s, (∆,k), and (∆, t)), for some of which we proved the
cloning and property-preserving problem variants to be W-hard.

6.5.1. Easy Cases

We start by analyzing the complexity of DEGREE ANONYMIZATION (VA) with
respect to the two input values degree k of anonymity and number t of added
vertices. Figure 6.7 provides a two-dimensional map indicating those combina-
tions of k and t for which the problem is polynomial-time solvable or even trivial.
In the following, we briefly state the corresponding results, starting with the
following easy observation.

Observation 1. Let I = (G,k, t) be an instance of DEGREE ANONYMIZATION (VA)
with G being an n-vertex graph. If k > n+ t, then I is a no-instance.

This holds as there are not enough vertices to make the graph anonymous, even
if all vertices are in the same block, that is, the resulting graph is regular. For
the other two solvable cases in Figure 6.7, we use the following result by Erdős
and Kelly [71].

Theorem 6.5 (Erdős and Kelly [71]). Let G = (V ,E) be a graph with n vertices,
maximum degree ∆, and minimum degree δ. Let d ≥∆ be some integer and let
ξ= ∑

v∈V (d−deg(v)). Then, there exists a d-regular graph H with n+ t vertices
containing G as an induced subgraph if and only if:

1) td ≥ ξ,

200

t

k
k = n+ t

n

n

n/2

NO

YES

?

∈P

Figure 6.7. Visualization of our knowledge about the complexity of DEGREE

ANONYMIZATION (VA) depending on the degree k of anonymity, the number n
of vertices in the input graph, and the maximum number t of added vertices.
The NO-cases follow from Observation 1, the YES-cases are due to Proposi-
tion 6.1, and the polynomial-time solvable cases follow from Proposition 6.2.
For values inside the “?-area”, the complexity is open for the graph problem
(the number version is shown to be weakly NP-hard, see Theorem 6.6).

201

2) t2 − (d+1)t+ξ≥ 0,

3) t ≥ d−δ, and

4) (t+n)d is even.

We remark that the proof given by Erdős and Kelly [71] is stated for the
case d =∆ but actually proves this more general result. We also remark that the
proof is constructive (indeed, it uses a result of Erdős and Gallai [72], which has
a corresponding constructive version due to Hakimi [89] and Havel [92]).

First, it follows from Theorem 6.5 that if we are allowed to add enough new
vertices (that is, at least n), then it is always possible to construct a regular graph
(which is also clearly anonymous), as shown next.

Proposition 6.1. Let I = (G,k, t) be an instance of DEGREE ANONYMIZATION (VA)
with G being an n-vertex graph. If k ≤ n+ t and t ≥ n, then I is a yes-instance.

Proof. We use Theorem 6.5 to show that for t ≥ n there always exists a∆- or (∆+1)-
regular supergraph H with n+ t vertices containing the input graph G as induced
subgraph. To this end, we check Conditions (i) to (iv) of Theorem 6.5. First,
observe that ξ≤ n ·d ≤ t ·d and, thus, Condition (i) is satisfied for d =∆ and d =
∆+1. Second, as ∆≤ n−1 in each graph, it follows that, for d =∆ we have that

t2 − (d+1)t+ξ≥ t(t− (n−1+1))+ξ= ξ≥ 0,

and for d =∆+1 we have that

t2 − (d+1)t+ξ≥ t(t− (n+1))+ξ≥ ξ−n ≥ 0,

as in the case of d =∆+1 it follows that ξ≥ n. Third, we have that

t ≥ n ≥∆+1≥ d ≥ d−δ.

Fourth, observe that either (n+ t)∆ or (n+ t)(∆+1) is even. Hence, if we are given
a DEGREE ANONYMIZATION (VA) instance with t ≥ n, then it is always possible
to create a regular graph with n+ t vertices. Thus, if t ≥ n, then the DEGREE

ANONYMIZATION (VA) is a yes-instance if and only if k ≤ t+n.

We can also use Theorem 6.5 algorithmically, as follows.

Proposition 6.2. DEGREE ANONYMIZATION (VA) is polynomial-time solvable
for 2k > (n+ t).

202

Proof. Let I = (G = (V ,E),k, t) be an instance of DEGREE ANONYMIZATION (VA)
with 2k > (n+t). By Observation 1 and Proposition 6.1, we can assume that k ≤ n+
t < 2k and t < n. Observe that in this case any solution (if it exists) transforms G
into a regular graph. Hence, the question is whether there is a regular graph H
with at most n+ t vertices containing G as induced subgraph.

Our algorithm is as follows. First, we guess in O(n2) time the number t′ ≤ t of
vertices that we will add and the degree d of the final regular graph H. Then, we
reduce to Theorem 6.5, that is, we compute ξ=∑

v∈V d−deg(v) and check the four
inequalities.

6.5.2. (Weak) NP-Hardness
In Figure 6.7, we left open the computational complexity of
DEGREE ANONYMIZATION (VA) for instances with 2k ≤ n+ t. We now par-
tially settle this question by proving that a closely related number version of the
problem is weakly NP-hard. To this end, note that since we are not allowed to add
any edges between old vertices, the actual structure of the input graph G becomes
negligible and we only need to store the information of how many vertices of
which degree it contains (that is, its block sequence B(G)):

Observation 2. Let G and G′ be two graphs with identical block sequences,
that is, B(G) = B(G′). Then, for the DEGREE ANONYMIZATION (VA) instances
I := (G,k, t) and I ′ := (G′,k, t), it holds that I is a yes-instance if and only if I ′ is a
yes-instance.

Based on Observation 2, we can now define a closely related number version of
DEGREE ANONYMIZATION (VA).

BLOCK SEQUENCE ANONYMIZATION (VA)
Input: A realizable block sequence B and k, t ∈N.
Question: Is there an undirected graph G with block sequence B
such that (G,k, t) is a yes-instance of DEGREE ANONYMIZATION (VA)?

Note that BLOCK SEQUENCE ANONYMIZATION (VA) is a pure number problem
(that is, its input consists only of numbers). This helps us to develop a polynomial-
time reduction from a weakly NP-hard version of the SUBSET SUM problem.
An NP-hard problem is weakly NP-hard if it can be solved in polynomial-time
provided that the input is encoded in unary. We obtain the following theorem.

Theorem 6.6. BLOCK SEQUENCE ANONYMIZATION (VA) is weakly NP-hard.

203

Proof. We reduce from the weakly NP-hard CHANGE MAKING problem [110].

CHANGE MAKING

Input: Integers a1, . . . ,an and integers m and b.
Question: Are there non-negative integers x1, . . . , xn such that
Σi∈[n]xi ≤ m, and Σi∈[n]xiai = b?

We can assume, without loss of generality, that ∀i 6= j : |ai −a j| ≥ m3. If this
property does not hold, then we simply multiply all numbers by m3, that is, we
set ai to be m3 ·ai and set b to be m3 ·b. It is easy to verify that this new instance
is a yes-instance if and only if the original instance is a yes-instance.

We now create an equivalent BLOCK SEQUENCE ANONYMIZATION (VA) in-
stance (B,k, t), with t := m and k := t(b+n+5t+1). The realizable block sequence B
is the block sequence of a graph G, which is defined as follows. We introduce
several gadgets, that is, subgraphs of G with distinguished vertices of specific
degrees which play an important role in the correctness proof. In the following,
we only specify the degrees of these proper vertices. To build these gadgets, we
add an appropriate number of degree-one neighbors. Our construction ensures
that, when k-anonymizing G by adding t vertices, the degree-one vertices will
always keep their degree. The construction works as follows.

Add a b-gadget consisting of 5t base vertices of degree n+ t, add b count vertices
of degree n+ 2t− 1, and add k − b − 5t b-catch vertices of degree n+ 2t. For
each i ∈ [n], add one ai-gadget consisting of one ai-vertex of degree ai +n+4t+1
and k−1 ai-catch vertices of degree ai +n+5t+1. Finally, add a dummy gadget
consisting of one dummy vertex of degree n+4t+1 and k−1 dummy catch vertices
of degree n+ 5t+ 1. This completes the construction. See Figure 6.8 for an
illustration.

We show that (a1, . . . ,an,m,b) is a yes-instance of CHANGE MAKING if and only
if (B,k, t) is a yes-instance of BLOCK SEQUENCE ANONYMIZATION (VA).

For the “if” direction, assume that there are integers x1, . . . , xn such that
Σi∈[n]xi ≤ m and Σi∈[n]xiai = b. We construct a k-anonymous graph G′ by adding
t new vertices to G as follows. For each i ∈ [n], add xi new solution vertices
and connect them with ai count vertices such that the degree of each count
vertex is increased by one. (Note that this is possible since Σi∈[n]xiai = b.) If
d := t−Σi∈[n]xi > 0, then add d further new auxiliary vertices. Connect each of
the new vertices (solution and auxiliary vertices) to each ai-vertex, i ∈ [n], to the
base vertices, and to the dummy vertex.

We now claim that G′ is k-anonymous: First, observe that all new vertices are k-
anonymous: The auxiliary vertices are of degree n+5t+1 together with k further

204

degree

#vertices

5t
b

k−b−5t

1

k−1

1

k−1

n+ t

n+2t−1

n+2t ai +n+
4t+1

ai +n+5t+1

a j +n+
4t+1

a j +n+5t+1

degree

#vertices
k k

k−b−5t

k−5t

k

n+2t ai +n+5t+1 a j +n+5t+1

Figure 6.8. The reduction used in Theorem 6.6. The construction (corresponding
to a CHANGE MAKING input) is depicted on top, while an anonymized solution
(corresponding to a CHANGE MAKING solution) is depicted at the bottom. The
plots show the number of vertices in each block (that is, of each degree).

205

vertices from the dummy gadget. Each solution vertex is of some degree ai +n+
5t+1, i ∈ [n], together with k−1 ai-catch vertices and one ai-vertex. Second, the
original vertices are also k-anonymous: All k vertices from the dummy gadget
get degree n+5t+1 since we connected the dummy vertex to all t new vertices
and the degree of each dummy catch vertex remains unchanged. All k vertices
from the b-gadget get degree n+2t since we connected each base vertex to all t
new vertices, each count vertex with exactly one new vertex, and the degrees
of the b-catch vertices remain unchanged. For each i ∈ [n], all k vertices of the
ai-gadget get degree ai+n+5t+1 since the degree of each ai-catch vertex remains
ai +n+5t+1 and each ai-vertex gets degree ai +n+5t+1 since we connected it
to all t new vertices. Thus, G′ is k-anonymous.

For the “only if” direction, assume that there is a vertex set V ′ := {v1, . . . ,vt′ }, t′ ≤
t, and a set of edges E′ such that the graph G′ := (V ∪V ′,E∪E′) is k-anonymous.
We show that y1, . . . , yn with yi = |{v ∈V ′ : degG′ (v)= ai +n+5t+1}| is a solution
for (a1, . . . ,an,m,b). First, we show that, for each proper original vertex from V ,
the degree in G′ is already determined by the construction of G. To this end,
recall that we can only increase the degree of each original vertex by at most t.
We say two original vertices are close enough if their degrees in G differ by at
most t. Consider some proper vertex from the b-gadget, from an ai-gadget, or
from the dummy gadget, and observe that only proper vertices from the same
gadget are close enough. Moreover, since, even together with t potential new
vertices from V ′, each gadget contains less than 2k proper vertices, it follows that
all vertices from the same gadget must end up with the same degree in G′. More
precisely, all vertices from the b-gadget must have degree n+2t in G′: adding V ′
must increase the degree of each base vertex by t to n+2t, which is already
the original degree of the b-catch vertices. All vertices from the dummy gadget
must have degree n+5t+1 in G′: adding V ′ must increase the degree of the
dummy vertex by t to n+5t+1, which is already the original degree of the dummy
catch vertices. For each i ∈ [n], all vertices from the ai-gadget must have degree
ai +n+5t+1 in G′: adding V ′ must increase the degree of each ai-vertex by t to
ai +n+5t+1, which is already the original degree of the ai-catch vertices.

Second, observe that each new vertex from V ′ must have degree ai +n+5t+1
for some i ∈ [n] or degree n+5t+1: Clearly, as we have already seen, adding V ′
increases the degree of all 5t base vertices, of all n ai-vertices, and of the dummy
vertex by t. Thus, each new vertex has degree at least n+5t+1. Since we have
at most t < k new vertices, each new vertex must have the same degree in G′ as
some proper original vertex.

206

Third, observe that each (non-proper) degree-one vertex from V will keep degree
one in G′: only other degree-one vertices are close enough and the degree-one
vertices also cannot reach the degree of any new vertex. Thus, if some original
degree-one vertex has degree at least two in G′, then at least k original degree-one
vertices must have degree at least two in G′. Then, since k = t(b+n+5t+1), at
least one new vertex would have degree at least b+n+5t+1 in G′. This is not
possible since no proper original vertex can reach this degree.

Finally, recall that yi, i ∈ [n], denotes the number of new vertices from V ′ that
have degree ai +n+5t+1 in G′. Since adding V ′ must increase the degree of
each of the b count vertices by exactly one, there are exactly b edges between
new vertices and count vertices. Furthermore, let ` denote the number of edges
between new vertices. It holds that b+`/2=Σi∈[n] yiai. More precisely,

`

2m3 = Σi∈[n] yiai

m3 − b
m3

must be an integer since each ai, i ∈ [n], and b are divisible by m3. Since
0 ≤ ` < (t

2
) < m2, this is possible only if ` = 0. Thus, there are no edges be-

tween new vertices in E′ but there exist some y1, . . . , yn such that Σi∈[n] yiai = b.
Hence, y1, . . . , yn is indeed a solution for (a1, . . . ,an,m,b).

6.5.3. Tractability Results
While it remains open whether DEGREE ANONYMIZATION (VA) is NP-hard,
the weak NP-hardness result for BLOCK SEQUENCE ANONYMIZATION (VA)
(Theorem 6.6) lets us conjecture that also the graph problem may be hard to
solve. Hence, a parameterized approach solving DEGREE ANONYMIZATION (VA)
is reasonable. Notably, we provide several (fixed-parameter) tractability results
contrasting the hardness results for the constrained problem versions considered
in Section 6.4.

A natural parameter to consider is the solution size t. Unfortunately, we do
not know whether DEGREE ANONYMIZATION (VA) is fixed-parameter tractable
with respect to t; we can only show that DEGREE ANONYMIZATION (VA) is
polynomial-time solvable when t is a constant.

Theorem 6.7. DEGREE ANONYMIZATION (VA) parameterized by the maximum
number t of added vertices is XP.

Proof. Let us denote the number of edges that a new vertex ti has to old ver-
tices by dold(ti). We first guess t′ (in O(t) time), and dold(ti), for each new vertex ti

207

(in O(nt) time). We also guess the subgraph induced by the new vertices
(in O(2t2

) time). Then, we use a modified version of a dynamic program used
by Liu and Terzi [107].

The first modification is needed since we have to satisfy the guessed degrees
of the new vertices when we k-anonymize the old vertices. Specifically, we
k-anonymize the combined degree sequence containing the original degrees of the
old vertices, and also the guessed degrees of the new vertices, with the exception
that the new vertices’ degrees are fixed (that is, cannot be changed, as they are
already guessed). The second modification is needed to make sure that we can
realize the overall increases of degrees by using exactly the guessed degrees
of the new vertices. Specifically, we maintain a vector of size t′ with entries
upper-bounded by the guessed dold(ti), where each entry in the vector contains
the number of edges already used for the corresponding new vertex (the vector is
initialized to contain only zeros). These modifications give a multiplicative factor
of O(nt) to the running time of the dynamic programming, resulting in an overall
time complexity of O(2t2 ·k ·nt).

We can “improve” containment in XP (as shown in Theorem 6.7) to fixed-
parameter tractability with respect to the combined parameter (t,∆). Before
proving the corresponding theorem, we introduce some notation and a helpful
lemma.

For a set A of vertices whose addition (together with the addition of edges)
transforms a graph G = (V ,E) into a k-anonymous graph, we call A an addition
set and we write G + A for the k-anonymous graph. Furthermore, the edges
in G + A having at least one endpoint in A (the “added” edges) are denoted
by E(A). Hence, G+ A = (V ∪ A,E∪E(A)).

Clearly, for an addition set A of size t, all vertices in G+ A, except those in A,
have degree at most ∆+ t where ∆ is the largest degree in G. It may happen that
the degree of some (potentially all) vertices from A in G+A is larger than ∆+ t. In
this case, there are full blocks in G+ A of degree larger than ∆+ t consisting only
of vertices from A, implying that t ≥ k. We call blocks corresponding to degrees
greater than ∆+ t large-degree blocks. Lemma 6.1 shows that we may assume
that there are at most two large-degree blocks which are, in terms of their degree
values, not “too far away” from each other.

Lemma 6.1. Let (G,k, t) be a yes-instance of DEGREE ANONYMIZATION (VA).
There is an addition set A of size at most t such that in G+ A there are at most

208

two large-degree blocks. Furthermore, if there are two large-degree blocks, then
their degrees differ by exactly one.

Proof. Let (G,k, t) be a yes-instance of DEGREE ANONYMIZATION (VA) and let A
be a corresponding addition set. Assume that there are at least two large-degree
blocks Bi and B j in G+A with | j− i| > 1. We restructure E(A) to obtain a solution
as desired. To this end, we introduce some notation. Let AL = {a1, . . . ,a`} denote
the set of vertices in the large-degree blocks. Observe that ` ≥ 2k. For any
vertex v ∈ (V ∪ A) \ AL, denote by degL(v) the number of neighbors of v in AL,
formally: degL(v) := |NG+A(v)∩ AL|.

The idea is to restructure the graph such that each old vertex will be adjacent to
the same number of new vertices, but the new vertex degrees will be closer to each
other. We achieve this by a round-robin method. Specifically, the restructuring
is done as follows: first, remove all edges that have at least one endpoint in AL.
Let v1, . . . ,vn+|A|−` be an arbitrary ordering of vertices in (V ∪ A)\ AL. Then, we
add edges in several steps such that in step i, vertex vi ∈ (V∪A)\AL gets degL(vi)
incident edges, that is, overall the degree of vi will remain unchanged. For
every a ∈ AL, denote by degL

i (a) the degree of a before step i. Then, let X i denote
the degL(vi) vertices in AL having the smallest value degL

i (a). In step i, we
make vi adjacent to all vertices in X i. Observe that, since degL(vi)≤ `, in each
step it holds for all j, j′ ∈ {1, . . . ,`} that |degL

i (a j)−degL
i (a j′)| ≤ 1. Hence, after the

last step, there are at most two large-degree blocks Bd and Bd+1 whose degrees
differ by at most one.

It remains to ensure that |Bd | ≥ k and |Bd+1| ≥ k. If |Bd | is even, then add a
perfect matching on the vertices in Bd resulting in one large block of size `≥ 2k.
Otherwise, if |Bd | < |Bd+1|, then set d′ := d +1 and add edges to introduce a
Hamilton cycle in G[Bd], increasing the degree of every vertex in Bd by two.
If |Bd | ≥ |Bd+1|, then set d′ := d. Now, add a matching between vertices in Bd′
such that after adding these edges it holds that 0≤ |Bd′ |−|Bd′+1| ≤ 2. Observe that
this is always possible as |Bd′ | ≥ |Bd′+1|. We claim that |Bd′ | ≥ k and |Bd′+1| ≥ k.
Suppose towards a contradiction that |Bd′+1| < k. Since |Bd′+1| ≤ |Bd′ | ≤ |Bd′+1|+2
and |Bd′+1|+ |Bd′ | = `≥ 2k, it follows that `= 2k, |Bd′+1| = k−1, and |Bd′ | = k+1.
Furthermore, as we already handled the case where |Bd | was even, it follows
that |Bd′ | and |Bd′+1| are odd and k is even. Also, observe that we started with
the assumption that there is a solution with at least two large blocks Bi and B j.
Since `= 2k, there are exactly two large blocks in this solution. Thus, the sum
of the degrees of all vertices in AL is |Bi| · i+ |B j| · j which is an even number
as |Bi| = |B j| = k is even. However, as |Bd′ | and |Bd′+1| are odd, the sum of

209

all degrees of vertices in AL after the restructuring is |Bd′ | ·d′+|Bd′+1| · (d′+1)
which is odd as either d′ or d′+1 is odd. This is a contradiction to the fact that
our restructuring did not change the degrees of vertices in (V ∪ A)\ AL and our
operations (edge deletions and insertions) do not change the parity of the sum of
the degrees of the vertices in AL.

Using Lemma 6.1, we can now prove fixed-parameter tractability for the pa-
rameter combination (t,∆); however, the result uses Lenstra’s result about the
fixed-parameter tractability of integer linear programs [104].

Theorem 6.8. DEGREE ANONYMIZATION (VA) is fixed-parameter tractable with
respect to the combined parameter (t,∆), where t is the number of new vertices and
∆ is the maximum degree.

Proof. Our algorithm consists of three phases. First (Phase I), we guess what
the solution looks like, specifically guessing the degrees of the good blocks, and
the degrees of the new vertices, while respecting the guessed degrees of the good
blocks. Then (Phase II), we use a bottom-up “lazy” method to solve the instance
for the old vertices, respecting the guessed degrees of the new vertices. Finally
(Phase III), we use an integer linear program to solve the instance for the new
vertices. A detailed description follows.

Phase I. We guess the subgraph induced by the new vertices (in O(2t2
) time).

We know, from Lemma 6.1, that the number of possible blocks in the solution is
upper-bounded by ∆+t+2=O(∆+t). We guess the degrees of the two large-degree
blocks (in O(n+ t) time). Then, we guess, for each block, whether it is empty or
full (in O(2∆+t)). Finally, we guess the degree of each new vertex (in O(∆+ t)t

time). Phase I runs in O
(
(n+ t) ·2t2 ·2∆+t · (∆+ t)t

)
=: O ((n+ t) · f1(t,∆)) time.

Phase II. We perform the following bottom-up lazy method. For ease of presen-
tation, in what follows, we say that we move a vertex up, meaning that we connect
it to some new vertices, thus changing its degree and moving it to a different
block of some desired degree. Further, we can choose which new vertices to use in
a round-robin way, subject to their guessed degrees; specifically, each new vertex
participates in this round-robin procedure until it reaches its guessed degree.

We start with the lowest degree block, and work all the way up to the highest
degree block. If the current block Bi is guessed to be empty, then we move its
vertices up, to the first block above it which is guessed to become full (if there is a

210

gap greater than t to such a block, then we move to the next iteration). Otherwise,
if it is guessed to be full, then we distinguish between the following two cases: if
the number of old vertices in the block plus the number of new vertices guessed
to be in this block is at least k, then we do nothing since it means that this block
is already anonymized, and continue with the next block. Otherwise, Bi has a
shortage of some zi many vertices to become full, so we find the maximum j < i
such that the number of old vertices in B j plus the number of new vertices
guessed to be in B j is greater than k (specifically, equals k+ z j for some z j spare
vertices in B j; if the gap i− j is greater than t, then we continue with the next
iteration since Bi cannot be k-anonymized). We move min(zi, z j) spare vertices
from B j to Bi. If, after moving these spare vertices, Bi still needs some more
vertices (that is, if zi > z j), then we repeat this step once more, looking for the
maximum j′ < j such that the number of old vertices in B j′ plus the number of
new vertices guessed to be in B j′ is greater than k, until we have enough vertices
in the current block. If at the end of this phase all of the blocks are anonymized,
then we continue with the next phase. The overall time cost of Phase II is in
O(∆+ t)3 =: O(f2(t,∆)).

Our approach is lazy since we are performing the minimum amount of changes
to make the old vertices anonymous. First, we use the spare vertices from the
closest full block below the current one. Second, we move the minimum number
of vertices to make the blocks anonymized for the old vertices, that is, we only
make the bad blocks full, but never overfull (in other words, we do not introduce
blocks with strictly more than k vertices in them).

Phase III. We check whether each new vertex reached its guessed degree. If
so, then we return True. If there are new vertices which did not yet reach their
guessed degrees, then we still have some hope of reaching these degrees (due to
the laziness of Phase II) so we try to move up some more old vertices, until we
reach the guessed degrees, while not destroying the anonymity of the blocks. To
this end, denote the number |Bi|−k of spare vertices in each full block Bi by zi.
Note that we can move any number of up to zi vertices from this block, to any
full block above it, and no other moves are possible. Now, our problem reduces to
the following integer linear program.

Input: Integers {z′1, . . . , z′n′ }, an n′ × m′ matrix A = ai j, and an
integer Z.

211

Task: Maximize
∑

i∈[n′]
∑

j∈[m′] ai j xi j such that
∑

i∈[n′]
∑

j∈[m′] ai j xi j ≤
Z and ∀ j :

∑
i∈[n′] ai j ≤ z j.

Specifically, we set n′ and m′ to be the number of full blocks (that is, n′ = m′ ∈
O(∆+ t)). For each full block, we set z′i to be zi and ai j to be the gap between
the jth full block and the ith full block. We set Z to be equal to the overall
sum of differences of guessed degrees of the new vertices and their degrees after
Phase II. Note that any solution to the integer linear program is realizable as
each ai j is upper-bounded by the number of spare vertices z j. Moreover, the
number of variables is upper-bounded by the number of full blocks squared, that
is, by O((∆+ t)2). By a famous result of Lenstra [104], it follows that the time cost
of this phase is poly(n, t) · f3(t,∆), for some computable function f3.

We now prove the correctness of the algorithm. As the algorithm only performs
permitted operations (that is, adds up to t new vertices and connects them such
that each edge is incident to at least one new vertex), it follows that if the input
is a no-instance, then the algorithm returns False. Otherwise, if the input is a
yes-instance, then at least one set of guesses from Phase I will be correct. Any
solution must at least move the vertices that are moved in Phase II, and then the
problem reduces to the integer linear program presented in Phase III.

The question whether fixed-parameter tractability also holds for the parame-
ter t along or for the parameter ∆ alone remains open. Nevertheless, we find that
fixed-parameter tractability also holds for the combined parameter (∆,k).

Theorem 6.9. DEGREE ANONYMIZATION (VA) is fixed-parameter tractable with
respect to the combined parameter (∆,k), where ∆ is the maximum degree and k is
the anonymity level.

Proof. It follows, from Theorem 6.8 that if t ≤ (∆k+k) · (∆+1)2, then we are done;
therefore, we assume that t > (∆k+ k) · (∆+1)2. If ∆ = 0, then the input graph
is already anonymized; therefore, we assume that ∆> 0. If k ≥ n, then we can
solve the input instance in polynomial time by Observation 1, Proposition 6.1,
and Proposition 6.2. Hence, we assume k < n.

Consider the following method for k-anonymizing the graph, showing that we
can return True for any remaining instance. For each block Bi, if |Bi| <∆k+ k,
then we connect each vertex in Bi to ∆+1− i new vertices such that the degree of
each old vertex in Bi becomes ∆+1 and the degree of each new vertex becomes
one. If |Bi| ≥∆k+k, we do the same, but only for ∆k arbitrarily chosen vertices
in Bi.

212

The resulting graph has exactly two non-empty blocks: B1 containing all of the
new vertices (and only them) and B∆+1 filled with all of the old vertices (and only
them). Since k < n = |B∆+1|, the block B∆+1 is good.

Let t′ := |B1| denote the number of new vertices added by our method. There
are at most ∆+1 blocks in the original graph and we move at most ∆k+k vertices
from each block by at most ∆+1. Therefore, t′ ≤ (∆k+k) · (∆+1)2 ≤ t. If there are
no blocks of size greater than ∆k+k in the original graph, then t′ ≥ n > k since
we moved all of the old vertices. Otherwise, if there is at least one block of size
greater than ∆k+ k, then t′ ≥∆k ≥ k since we moved at least ∆k vertices from
this block by at least one block.

Contrasting the W[1]-hardness, established in Theorem 6.4, forΠ-PRESERVING

DEGREE ANONYMIZATION (VA) parameterized by the maximum number s of
new edges, we conclude this chapter with showing fixed-parameter tractability
for DEGREE ANONYMIZATION (VA) with respect to s. We again assume that s is
given as part of the input.

Theorem 6.10. DEGREE ANONYMIZATION (VA) is fixed-parameter tractable
with respect to the maximum number s of newly inserted edges.

To prove Theorem 6.10, we define the problem of anonymizing a general (not
necessarily realizable) block sequence by vertex addition. Indeed, the fixed-
parameter tractability of DEGREE ANONYMIZATION (VA) directly follows by
providing a so-called bikernelization to this new problem (informally, a bikernel-
ization is a kernelization to a different problem).

A general block sequence is a tuple B = (b0, . . . ,bd) of non-negative integers
bi ≥ 0. We say that bi denotes the size of the block of degree i ∈ {0, . . . ,d} and
we denote the length of B by |B|. We consider tuples of integers x = (x0, . . . , xd),
where 0≤ xi ≤ bi for all i ∈ {0, . . . ,d}, and as we usually think about these tuples
as corresponding to the new vertices that we add in the anonymization process,
we call such a tuple a vertex. For a tuple of integers x = (x0, . . . , xd), we write x ≤B

to mean that 0≤ xi ≤ bi for all i ∈ {0, . . . ,d}. We define now what it means to add
the vertex x to the general block sequence B. Intuitively, for each x = (x0, . . . , xd),
xi denotes the number of degree-i vertices to which the “newly added vertex” x
is connected. We denote the resulting general block sequence by B⊕ x. Before
giving the definition, we make a technical disclaimer: whenever we use an index i
that is not contained in B (that is, i > d), then we implicitly assume that B is
extended to length i by appending the corresponding number of zero entries to B.

213

The general block sequence B⊕x is generated out of B by iteratively performing
the following operations, for each i ∈ {0, . . . ,d}: decrease bi by xi and increase bi+1
by xi. These replacements correspond to increasing the degrees of the specified
number of original vertices that are connected to the new vertex by one. Moreover,
in order to insert the new vertex, let δ(x) :=∑|x|

i=0 xi be its degree and increase bδ(x)
by one. Note that the number of added edges equals δ(x). For a sequence of
vertices (x1, . . . , xt) such that x j ≤ ((B ⊕ x1) . . .)⊕ x j−1 holds for all 1 ≤ j ≤ t, we
define B⊕(x1, . . . , xt) := ((B⊕x1) . . .)⊕xt. Note that the order of adding the vertices
does make a difference, as it might be that some orderings are possible while some
other orderings are not. The total number of added edges then equals

∑t
j=1δ(x j).

We define the problem of anonymizing a general block sequence as follows.

GENERAL BLOCK SEQUENCE ANONYMIZATION (VA)
Input: A general block sequence B and k, t, s ∈N.
Question: Are there vertices x1, . . . , xt′ , t′ ≤ t, with

∑t′
j=1δ(x j) ≤ s

such that B′ :=B⊕ (x1, . . . , xt′) is k-anonymous, that is, either b′
i ≥ k

or b′
i = 0 holds for each b′

i in B′?

Note that this definition ensures that any DEGREE ANONYMIZATION (VA)
instance (G,k, t, s) is a yes-instance if and only if ((|B0|, . . . , |Bn−1|),k, t, s) is a
yes-instance of GENERAL BLOCK SEQUENCE ANONYMIZATION (VA). Therefore,
in order to prove Theorem 6.10, it is sufficient to show that GENERAL BLOCK

SEQUENCE ANONYMIZATION (VA) is fixed-parameter tractable with respect to s.
To this end, we give a kernelization algorithm.

Lemma 6.2. GENERAL BLOCK SEQUENCE ANONYMIZATION (VA) admits a
problem kernel with respect to the maximum number s of newly inserted edges.
The kernel is of size sO(s) and can be computed in linear time.

To prove Lemma 6.2, we will introduce several polynomial-time data reduction
rules. We give an overview of these rules now. First, we upper-bound the
anonymity level k (Reduction Rule 6.1). Then, we upper-bound the maximum
block size, that is maxi(bi) (Reduction Rule 6.2). After that, we upper-bound the
number t of added edges (Reduction Rule 6.3), followed by upper-bounding the
number of bad blocks, that is, the number of blocks that have strictly less than
k vertices, but also strictly more than 0 vertices (Reduction Rule 6.4). We then
upper-bound the number of non-empty blocks (Reduction Rule 6.5), and finally,
upper-bound the overall number of blocks (Reduction Rule 6.6). We mention here

214

that all our reduction rules can be easily seen to be polynomial-time computable,
therefore we only prove their correctness.

We are ready to delve into the details. In order to prove the correctness of some
of these reduction rules, we need the following simple lemma, which states that a
sequence (x1, . . . , xt) of vertices that can be added to a general block sequence B

can also be added to another general block sequence B′ of equal length if each
entry in B′ has value of at least

∑t
j=1δ(x j).

Lemma 6.3. Let B = (b0, . . . ,bd) be a general block sequence and let x1, . . . , xt

be a sequence of vertices such that x j ≤ ((B⊕ x1) . . .)⊕ x j−1 holds for all 1 ≤ j ≤ t.
Further, let s := ∑t

j=1δ(x j) and let B′ = (b′
0, . . . ,b′

d) be a general block sequence
with b′

i ≥min{bi, s} for all i ∈ {0, . . . ,d}.
Then, also x j ≤ ((B′⊕ x1) . . .)⊕ x j−1 holds for all 1≤ j ≤ t.

Proof. Let I := {i : s ≤ b′
i < bi} be the set of indices where B′ is strictly less

than B but at least s. Note that for all other indices i, we have b′
i ≥ bi. Moreover,

note that, for each i ∈ {0, . . . ,d}, it holds that
∑t

j=1 x j
i ≤ s, and thus, clearly, also

x j
i ≤ s−∑ j−1

l=1 xl
i holds for each j ∈ {1, . . . , t}.

We prove the lemma by induction on j. For j = 1, by assumption, we have x1
i ≤

min{bi, s}≤ b′
i for all i ∈ {0, . . . ,d}, and thus x1 ≤B′. Now, for j ≥ 2, let B′(j−1) :=

B′⊕ (x1, . . . , x j−1)= (b′
0(j−1), . . . ,b′

q(j−1)) for some q ∈N. This is well-defined by
the inductive hypothesis. Note that for all i ∈ {0, . . . , q}\I, we have b′

i(j−1)≥ bi(j−
1)≥ x j

i . For each i ∈ I, it holds b′
i(j−1)≥ s−∑ j−1

l=1 xl
i ≥ x j

i . Hence, x j ≤B′(j−1).

Let us now specify the reduction rules. The first reduction rule upper-bounds
the degree k of anonymity linearly in s.

Reduction Rule 6.1. Transform an instance ((b0, . . . ,bd),k, t, s) of GENERAL

BLOCK SEQUENCE ANONYMIZATION (VA) to the instance ((b′
0, . . . ,b′

d),k′, t, s),
where k′ :=min{k,2s+1} and, for i ∈ {0, . . . ,d}, set:

b′
i :=

{
bi − (k−k′), bi ≥ k− s,
bi, else.

Lemma 6.4. Reduction Rule 6.1 is correct.

The proof of Lemma 6.4 is deferred to the appendix to this chapter.

The next reduction rule upper-bounds the maximum block size by k+ s.

215

Reduction Rule 6.2. Transform an instance ((b0, . . . ,bd),k, t, s) of GENERAL

BLOCK SEQUENCE ANONYMIZATION (VA) to the instance ((b′
0, . . . ,b′

d),k, t, s),
where, for i ∈ {0, . . . ,d}, set b′

i =min {k+ s,bi}.

Lemma 6.5. Reduction Rule 6.2 is correct.

The proof of Reduction Rule 6.2 is deferred to the appendix to this chapter.

Next, we upper-bound the number t of new vertices in s and k.

Reduction Rule 6.3. Transform an instance (B,k, t, s) of GENERAL BLOCK

SEQUENCE ANONYMIZATION (VA) to the instance (B,k,min{t,k+2s}, s).

Lemma 6.6. Reduction Rule 6.3 is correct.

The proof of Reduction Rule 6.3 is deferred to the appendix to this chapter.

The next two reduction rules upper-bound the number of non-zero entries in
the block sequence. First, we identify those blocks whose sizes need to be changed.
Recall that a block is said to be bad if it contains less than k but more than zero
vertices.

The general idea for these two reduction rules is to keep all blocks of degree
at most 2s (since new vertices may end up in the first s blocks and an already
existing vertex with degree at most s can reach degree at most 2s), the bad blocks
(since we have to fix them), some good blocks close to the bad blocks (to allow
movement of vertices to or from bad blocks), and also some further good blocks
(to set the correct degrees of the newly added vertices).

Our next reduction rule transforms the instance into a trivial no-instance if
there are more bad blocks than one could fix by adding at most s edges. Each new
edge introduced by a new vertex x with xi > 1 can fix at most three bad blocks,
namely bi, bi+1, and bδ(x). Note that other block sizes are not affected by the
edges corresponding to xi.

Reduction Rule 6.4. Let (B,k, t, s) be an instance of GENERAL BLOCK SE-
QUENCE ANONYMIZATION (VA) with B = (b0, . . . ,bd). If B contains more than
3s entries bi with 0< bi < k, then return a trivial no-instance.

The correctness proof of Reduction Rule 6.4 can be easily seen, and thus, omitted.

In order to upper-bound the number of good blocks, the decisive observation is
that adding two edges to good blocks cannot be considered to be independent. We
first explain the intuition behind.

216

For example, adding an edge to a vertex from a degree-i block of size k may only
be possible if one also adds an edge to a vertex from a degree-(i−1) block—one
vertex moves from the degree-i block to the degree degree-(i+1) block (causing it
to be momentarily bad) and one moves from the degree-(i−1) block to the degree-i
block and block i ends up with size k.

The idea now is to consider consecutive blocks where operations on one block
have influence on operations on the next block. Fortunately, the number of
operations influencing each other is upper-bounded by the total number s of
added edges. More formally, we use the concepts of “scope” and “chain”. Let
B = (b0, . . . ,bd) be a general block sequence. The scope of a position z > s in B

is the sequence of positions (z− s, . . . , z). The scope fingerprint Fz of z is the
subsequence Fz := (bz−s, . . . ,bz). Let (x1, . . . , xt) be a sequence of vertices. A chain
with respect to (x1, . . . , xt) is a pair (y, z) of positive integers with y< z such that
∀i ∈ {y, . . . , z−1} : ∃x j : x j

i > 0 (that is, every degree in the chain is moved). A
chain (y, z) is maximal if (y−1, z) and (y, z+1) are no chains.

Note that a chain has length at most s, that is, z− y≤ s, since the total number
of added edges is at most s. That is, every (maximal) chain (y, z) is “fully contained”
in the scope of z.

We are now ready to formulate our most technical reduction rule which upper-
bounds the number of good blocks which are not empty. It will iteratively mark
positions in B corresponding to blocks that have to be kept and finally set the
entries in B at all non-marked positions to zero.

Reduction Rule 6.5. Let (B,k, t, s) be an instance of GENERAL BLOCK SE-
QUENCE ANONYMIZATION (VA) with B = (b0, . . . ,bd).

1) Mark the positions 0, . . . ,2s.

2) Mark all positions i with ∃z : |z− i| ≤ s∧0< bz < k.

3) Iteratively do the following starting with j := 0.

a) Find the next non-marked position z > j.

b) Compute the scope fingerprint Fz and set j := z.

c) If Fz has been computed before less than 2s2 + s times, then mark the
positions z− s, . . . , z.

4) For each 0 ≤ i ≤ d, set b′
i := bi if position i is marked, and set b′

i := 0
otherwise.

217

Return (B′ = (b′
0, . . . ,b′

d),k, t, s).

Lemma 6.7. Reduction Rule 6.5 is correct.

The proof of Lemma 6.7 is deferred to the appendix to this chapter.

It remains to upper-bound the largest degree by some function in s. To this end,
observe the following with respect to high-degree blocks. First, by adding at most
s edges, no new vertex can end up in a block of vertices with degree larger than s.
Second, by adding some vertices and at most s edges, we cannot decrease the
degree of any original vertex and we can only increase the degree of an original
vertex by at most s.

Based on the observations above, we introduce the concept of “high-degree large
gaps” as follows. Let (B = (b0, . . . ,bd),k, t, s) be an instance of GENERAL BLOCK

SEQUENCE ANONYMIZATION (VA). We say that a pair of positive integers (`, r)
describes a high-degree large gap of B if

1) s < `< r,

2) r−`> s, and

3) ∀i ∈ {`, . . . , r} : bi = 0.

Our final reduction rule shrinks the high-degree large gaps in a general block
sequence.

Reduction Rule 6.6. Transform an instance (B,k, t, s) of GENERAL BLOCK

SEQUENCE ANONYMIZATION (VA) with some high-degree large gap (`, r) in B, to
the instance (B′,k, t, s), where B′ is constructed from B by removing the entries
b`+s, . . . ,br.

Lemma 6.8. Reduction Rule 6.6 is correct.

The proof of Lemma 6.8 is deferred to the appendix to this chapter.

For proving Lemma 6.2, it remains to show that the above reduction rules
indeed yield a problem kernel with respect to s.

Proof (of Lemma 6.2). Let I := (B,k, t, s) be an arbitrary GENERAL BLOCK SE-
QUENCE ANONYMIZATION (VA) instance. Our kernelization algorithm first ap-
plies to I Reduction Rules 6.1, 6.2, and 6.3, in that order. Let I ′ := (B′,k′, t′, s) be

218

the instance achieved after that. Clearly, we have k′ ∈O(s), maxi b′
i ≤ k′+s ∈O(s),

and also t′ ≤ k′+2s ∈ O(s). Thus, all numbers in I ′ are upper-bounded by s. In
order to upper-bound the maximum degree in s, we apply Reduction Rules 6.4
and 6.5 once, and then apply Reduction Rule 6.6 exhaustively to I ′. We denote the
resulting instance by I ′′ := (B′′,k′, t′, s). After application of Reduction Rule 6.4, I ′′
either is a constant-size no-instance, or B′′ contains at most 3s bad blocks. Now,
consider the number of marked positions in each step of Reduction Rule 6.5.
In Step 1, we mark 2s+1 positions. Step 2 marks at most 3s(2s+1) positions,
whereas in Step 3 we mark at most (2s2 + s)s positions for each possible scope
fingerprint. The number of possible scope fingerprints is (maxi b′

i +1)s ∈ sO(s).
Thus, the total number of non-zero blocks in B′′ is bounded by a function in s.

Finally, after exhaustive application of Reduction Rule 6.6 there are no more
large-degree gaps in B′′, hence, the number of degree-zero blocks in B′′ is at
most s times the number of non-zero blocks, which is again bounded in s. The
correctness is guaranteed by Lemmas 6.4 to 6.8. Clearly, this process can be done
in linear time since each reduction rule is applied at most a linear number of
times and runs in linear time. The size of the kernel is governed by the number
of possible chains, therefore upper-bounded by sO(s). Finally, since each reduction
rule can be carried-out in polynomial time, it follows that the kernelization can
be performed in polynomial time.

6.6. Outlook

We state some ideas for future research.

• This chapter provides a step towards properties-preserving degree anonymiza-
tion, that is, anonymizing a graph while preserving some of its properties.
The set of properties considered in this chapter (that is, connectivity, pair-
wise distances, and diameter) is certainly not an exhaustive set of properties
one might try to preserve.

Specifically, there are other properties which could be more natural to
consider in the context of social networks. As two immediate examples
we mention the density and the clustering coefficient; the computational
complexity of Π-PRESERVING DEGREE ANONYMIZATION (VA) with respect
to these properties is unexplored so far.

219

• It is not clear what are the practical consequences of the algorithmic results
presented in this chapter. We believe that, by carefully implementing
the algorithms presented in the proofs of Theorem 6.8, Theorem 6.9, and
Theorem 6.10, these algorithms might prove to be quite efficient for real-
world instances.

• It turns out that most of the cases considered in this chapter are intractable,
and even some of the positive algorithmic results obtained in this chapter
are of high complexity. Thus, a deeper investigation of approximation
algorithms may be beneficial, possibly following the route taken by Chester
et al. [44] and by Chester et al. [45]. We refer the reader to Section 7.7
for a more elaborate discussion of approximation algorithms for degree
anonymization problems.

• Finally, and naturally, studying more ways of anonymizing graphs by per-
forming different graph modification operations (as done in Chapter 7, for
example; there, for graph contractions) is of interest.

220

Appendix for Chapter 6

We provide proofs missing from Chapter 6.

6.A. Proof of Theorem 6.3
Theorem 6.3. For Π ∈ {Distances, Diameter, Connectivity}, Π-PRESERVING DE-
GREE ANONYMIZATION (VA) is NP-hard and also W[2]-hard with respect to the
maximum number t of added vertices, even if the anonymity level k is 2. For
Π ∈ {Distances, Connectivity}, this is also true on trees.

Proof. The proof is based on extending ideas from the proof of Theorem 6.2. We
provide a reduction from the W[2]-complete SET COVER problem parameterized
by the solution size [57].

SET COVER

Input: A universe of elements X , a collection S of sets of elements
of X , and a budget h.
Question: Is there a subcollection S ′ ⊆S of sets such that |S ′| ≤ h
and

⋃
S∈S ′ S = X?

Given a SET COVER instance I = (S , X ,h), we construct a Π-PRESERVING

DEGREE ANONYMIZATION (VA) instance as follows. First, we set k = 2 and
t = h. Next, for notational convenience, we define a helper function f (i, z) :=
(t+1)n+ (z−1)n(t+2)+ i(t+2). Now we construct a graph G = (V ,E) as follows.
For each element xi, we define an element gadget containing, for each z ∈ [t+1],
a star K1, f (i,z) with center vertex vi,z. For technical reasons, we further add
an element safety gadget for each element xi, containing two stars K1, f (i,z)−1 for
each z ∈ [t+1]. We also define, for each set S j, a set gadget containing, for each
element xi ∈ S j and for each z ∈ [t+1], a star K1, f (i,z)−1 (its center denoted v j,i,z).
The general idea is that the element gadgets can be anonymized by connecting
the set gadgets to some new vertices such that each new vertex corresponds to
a set which contains the element corresponding to the element gadget. For the

221

new vertices, in order to be k-anonymous, we add a safety gadget consisting of k
stars K1,d for each d ∈ [(t+1)n].

The various gadgets are connected differently, depending on the property Π.
The idea is to ensure that no new vertex can be connected to element gadgets
corresponding to elements of different sets, by forcing such a connection to violate
the property. For Π ∈ {Distances, Diameter, Connectivity} and a fixed S j, we
introduce a new vertex v j and connect it to v j,i,z for each xi ∈ S j and each
z ∈ [t+1]. We further add degree-one vertices connected to v j to fill up its degree
to f (n, t+2).

For Π ∈ {Distances, Diameter}, we introduce another new vertex u, and con-
nect u to all of the v j. Again, we fill up its degree to f (n, t+2) by connecting new
degree-one vertices to u.

For Π=Diameter, we add two new vertices v′1 and v′m. We connect v′1 to v1
and v′m to vm by a path of length 5. For each j ∈ [m−1], we connect v j to v j+1 by a
path of length t+8. We connect u to each v j by a path of length d((t+8)m+1)/2e.

It remains to show that I is a yes-instance if and only if (G,k, t) is a yes-instance.
For the “if” direction, given a set cover S ′, we add one new vertex w j for each

S j ∈ S ′ and connect it to all of the v j,i,z for each xi ∈ S j and each z ∈ [t+1].
We next show that this operation is permitted, as we do not violate Π. Indeed,
consider any S j together with any pair of elements xi1 , xi2 ∈ S j and any pair
z1, z2 ∈ [t+1]: for Π=Connectivity, it holds that v j,i1,z1 and v j,i2,z2 were already
connected; for Π ∈ {Distances, Diameter}, it holds that v j,i1,z1 and v j,i2,z2 already
had distance two, therefore the shortest path of no pair of vertices has been
changed. Furthermore, the maximum distance in the new graph is still attained
by the distance between v′1 to v′m, therefore the diameter did not change as well.

We now show that the graph is k-anonymous. First, note that the only vertices
that need to be anonymized are the vi,z. Since S ′ is a set cover, for each i
and for each z, the degree of at least one v j,i,z is incremented by one, thus
anonymizing the corresponding vi,z. Also, the element safety gadgets ensure that
we introduced no new bad blocks, and the safety gadget ensures that the new
vertices are anonymized.

For the “only if” direction, consider a new vertex w, two different sets S j1 ,S j2 ∈
S and z1, z2 ∈ [t+1]. We show that v j1,i1,z1 and v j2,i2,z2 cannot both be connected
to w: for Π=Connectivity, this is true since they are not connected; for Π =
Distances, this is true since the distance between them is four, and would
change to two; for Π=Diameter, this is true since this would decrease the diameter
(specifically, the distance between v′1 and v′m) by more than t, and also creating a
shortcut between the paths of length t+8 does not help.

222

Now, assume that (G,k, t) is a yes-instance. As only t new vertices are added,
there exists an integer z′ ∈ [t+1] such that no new vertex has the same degree
as vi,z′ for any xi ∈ X . Note that there is a gap of t+1 above each vi,z′ . Hence, it
must be anonymized from below. The only possible vertices to use are the v j,i,z′
and the centers of the stars in the element safety gadgets. We can assume,
without loss of generality, that every element xi is contained in at least one set S j
(as we can easily check if this is not the case, and return True). Therefore, if some
vertex from an element safety gadget is used, we can always use another v j,i,z′ to
anonymize vi,z′ . We can then associate a unique set S j with every newly added
vertex, and since all of the vi,z′ are anonymized, we get a set cover.

6.B. Proofs of Reduction Rules for Lemma 6.2

We provide proofs of correctness for the reduction rules used in Lemma 6.2.

6.B.1. Proof of Lemma 6.4

Lemma 6.4. Reduction Rule 6.1 is correct.

Proof. The general intuition behind this rule is that if k is very large (with
respect to s), then any small block must be somehow “fixed” (either by moving
some vertices into it, or by moving all of the vertices in it to some other blocks).
Therefore, for these blocks, the actual k could be just slightly larger than their
sizes. Moreover, for any large block, not all of the vertices of this block can be
moved to another block. Therefore, k and their sizes can be decreased.

More formally, we have to show that I := (B = (b0, . . . ,bd),k, t, s) is a yes-
instance if and only if I ′ := (B′ = (b′

0, . . . ,b′
d),k′, t, s) is a yes-instance. Clearly,

this is true for k′ = k since this implies I = I ′. Thus, we can assume that k′ =
2s+1< k. Therefore, b′

i ≥min{bi,k−s−(k−k′)}=min{bi,k′−s}≥min{bi, s} holds
for each i ∈ {0, . . . ,d}. Let (x1, . . . , xt′), for t′ ≤ t, be a sequence of vertices with∑t′

j=1δ(x j)≤ s such that

B(t′) :=B⊕ (x1, . . . , xt′)= (b0(t′), . . . ,bq(t′))

is well-defined. Then, by Lemma 6.3, also

B′(t′) :=B′⊕ (x1, . . . , xt′)= (b′
0(t′), . . . ,b′

q(t′))

223

is well-defined. Now, for i ≤ q such that i > d, we have b′
i(t

′)= bi(t′) since these
values only depend on (x1, . . . , xt′). Also, for all i ≤ d with bi = b′

i, it clearly
holds that b′

i(t
′) = bi(t′). Finally, for the remaining indices i, we have bi(t′) > 0

since bi ≥ k− s > s+1, and also b′
i(t

′) > 0 since b′
i ≥ k− s− (k− k′) = k′− s = s+1.

Moreover, it holds that:

b′
i(t

′)−b′
i = bi(t′)−bi ⇐⇒

b′
i(t

′)− (bi − (k−k′))= bi(t′)−bi ⇐⇒

b′
i(t

′)−k′ = bi(t′)−k.

Hence, b′
i(t

′)≥ k′ if and only if bi(t′)≥ k. Consequently, B(t′) is k-anonymous if
and only if B′(t′) is k′-anonymous showing that I is a yes-instance if and only
if I ′ is a yes-instance.

6.B.2. Proof of Lemma 6.5
Lemma 6.5. Reduction Rule 6.2 is correct.

Proof. The general idea of this rule is that the size of any very large block can be
decreased. The basic reason is that we cannot use more than s vertices of any
block, including these large blocks.

More formally, let I := (B,k, t, s) be an input instance and let I ′ := (B′,k, t, s)
denote the transformed instance. Note that b′

i ≥min{bi, s} for each i ∈ {0, . . . ,d}.
Let (x1, . . . , xt′), for t′ ≤ t, be a sequence of vertices with

∑t′
j=1δ(x j)≤ s such that

B(t′) :=B⊕ (x1, . . . , xt′)= (b0(t′), . . . ,bq(t′))

is well-defined. Then, again, by Lemma 6.3, also

B′(t′) :=B′⊕ (x1, . . . , xt′)= (b′
0(t′), . . . ,b′

q(t′))

is well-defined. Clearly, for any i with bi > k+s, we have bi(t′)> k and also b′
i(t

′)≥
k since b′

i = k+ s. For all other i, it holds b′
i(t

′)= bi(t′). Hence, I is a yes-instance
if and only if I ′ is a yes-instance.

6.B.3. Proof of Lemma 6.6
Lemma 6.6. Reduction Rule 6.3 is correct.

224

Proof. The general idea of this rule is that in any solution which uses a lot of
new vertices, most of these new vertices must be isolated (that is, of degree 0).
However, a solution does not need a lot of new isolated vertices, therefore, we can
reduce t.

More formally, let t∗ := min{t,k + 2s}. For t∗ = t, there is nothing to show.
Thus, assume that t∗ = k+2s < t. If I := (B,k, t, s) is a no-instance, then, clearly,
also I ′ := (B,k, t∗, s) is a no-instance since t∗ < t. Thus, let I be a yes-instance
and let t′ = t0 + t1 ≤ t be the number of newly added vertices, where t0 denotes
the number of added degree-zero vertices and t1 denotes the number of added
vertices of degree at least one (by saying the degree of the vertex we mean,
naturally, the total sum of the elements in the vertex vector). Let (x1, . . . , xt′)
be the added vertices with

∑t′
j=1δ(x j) ≤ s and note that we can assume that

the t0 first vertices x1 = . . .= xt0 = (0, . . . ,0) are the degree-zero vertices. Moreover,
note that t1 ≤ s holds. Let µ := min{t0,k+ s}. We show that adding the µ+ t1 ≤
k+ s+ s = t∗ vertices (x1, . . . , xµ, xt0+1, . . . , xt′) is a solution for I ′. This is clearly
true for µ= t0, hence we can assume that µ= k+ s < t0. First, we have to show
that B⊕ (x1, . . . , xµ, xt0+1, . . . , xt′) is well-defined. Trivially, B⊕ (x1, . . . , xµ) is well-
defined. Let B(µ) := B⊕ (x1, . . . , xµ) and let B(t0) := B⊕ (x1, . . . , xt0). Note that
we have b0(µ) = b0 +µ ≥ s and, for all i > 0, we have bi(µ) = bi(t0) = bi. Thus,
since by assumption B(t′) :=B(t0)⊕ (xt0+1, . . . , xt′) is well-defined, it follows from
Lemma 6.3 that also B∗ :=B(µ)⊕ (xt0+1, . . . , xt′) is well-defined. Note also that
the total number of added edges does not change.

It remains to show that B∗ is k-anonymous. This is true since b∗
i = bi(t′) holds

for each i > 0, and b∗
0 ≥ k holds since b0(µ)≥ k+ s.

6.B.4. Proof of Lemma 6.7

Lemma 6.7. Reduction Rule 6.5 is correct.

Proof. The general idea of this rule is that, besides the first 2s blocks (which are
important because the old vertices and the new vertices can reside in them at
the end), and besides the chains corresponding to bad blocks, all other chains can
be used only in order to let the new vertices achieve some desired degree. As we
have only a limited number of such possible chains, and as they are used only by
the new vertices, we can upper-bound the number of such useful chains.

More formally, first, assume that there is a solution (x̄1, . . . , x̄t′), t′ ≤ t, such that
B′⊕ (x̄1, . . . , x̄t′) is k-anonymous. It is easy to verify that B⊕ (x̄1, . . . , x̄t′) is also
k-anonymous.

225

Second, assume that there is a solution (x1, . . . , xt′), t′ ≤ t, such that B ⊕
(x1, . . . , xt′) is k-anonymous. We show how to adjust (x1, . . . , xt′) to obtain a so-
lution (x̄1, . . . , x̄t′) such that B′⊕ (x̄1, . . . , x̄t′) is k-anonymous. Intuitively, we show
that every maximal chain (y, z) with respect to (x1, . . . , xt′) can either be realized
equivalently with respect to (x̄1, . . . , x̄t′) or else we show a replacement ensuring
k-anonymity.

We construct (x̄1, . . . , x̄t′) as follows. First, we initialize x̄ j = (0, . . . ,0) of the
same length as x j for each 1≤ j ≤ t′. For each maximal chain (y, z) with respect
to (x1, . . . , xt′), we distinguish two cases:

Case 1. ∀i ∈ {y, . . . , z} : bi = b′
i. In this case, we set x̄ j

i := x j
i for all j ∈ {1, . . . , t′},

i ∈ {y, . . . , z}, that is, this chain can be realized equivalently.

Case 2. ∃i ∈ {y, . . . , z} : bi ≥ k but b′
i = 0. This case is only possible since not all

positions between y and z have been marked by the reduction rule. Hence,
the scope fingerprint Fz of z must have been computed more than 2s2 + s
times before.

In the following, we say that the scope of z is touched by a sequence of
vertices (x1, . . . , xt′) if ∃ j ∈ {1, . . . , t′} : ∃i ∈ {z− s, . . . , z} : x j

i > 0.

We show that there is at least one position z′ with fingerprint Fz′ = Fz whose
scope is neither touched by (x1, . . . , xt′) nor by (x̄1, . . . , x̄t′) as constructed
so far. Note that each edge touches at most s+1 scopes (as each scope
is basically an interval of size s). Moreover, there are at most s edges in
(x1, . . . , xt) and, until now, at most s−1 (possibly different) edges in (x̄1, . . . , x̄t)
have been introduced. Altogether, at most (2s− 1) · (s+ 1) = 2s2 + s− 1
scopes (with any fingerprint) have been touched. In particular, there is one
scope (z′− s, . . . , z′) with scope fingerprint Fz that is not touched so far by
(x̄1, . . . , x̄t) and that is also not touched by (x1, . . . , xt).

Finally, we use the scope of z′ to realize (y, z) by setting x̄ j
i−z+z′ := x j

i for all
j ∈ {1, . . . , t′}, i ∈ {y, . . . , z}.

By construction of (x̄1, . . . , x̄t′), the number of newly added edges is:

t′∑
j=1

δ(x̄ j)=
t′∑

j=1
δ(x j).

More precisely, it even holds that the degrees of the newly introduced vertices
remain unchanged, that is:

∀ j ∈ {1, . . . , t} : δ(x̄ j)= δ(x j).

226

Now, let B̂ := (b̂0, . . . , b̂d)=B′⊕(x̄1, . . . , x̄t′) and B̌ := (b̌0, . . . , b̌d)=B⊕(x1, . . . , xt′).
It remains to show that B̂ is k-anonymous. To this end, consider an arbitrary
index h in B̂.

Case 1. h is neither in a maximal chain with respect to (x1, . . . , xt′) nor with
respect to (x̄1, . . . , x̄t′). By construction of (x̄1, . . . , x̄t′), this solution introduces
the same number of new vertices with degree h as the solution (x1, . . . , xt′)
does. Thus, b̂h = b̌h and (b̌h = 0)∨ (b̌h ≥ k).

Case 2. h is in a maximal chain (y, z) with respect to (x1, . . . , xt′), and in a maxi-
mal chain (y′, z′) with respect to (x̄1, . . . , x̄t′). By construction of (x̄1, . . . , x̄t′),
it holds that y′ = y, z′ = z, and ∀ j ∈ {1, . . . , t′} : ∀i ∈ {y, . . . , z} : x̄ j

i := x j
i . Fur-

thermore, (x̄1, . . . , x̄t′) introduces the same number of new vertices with
degree h as (x1, . . . , xt′) does. Hence, b̂h = b̌h and (b̌h = 0)∨ (b̌h ≥ k).

Case 3. h is in a maximal chain (y, z) with respect to (x1, . . . , xt′), but not in a
maximal chain with respect to (x̄1, . . . , x̄t′). In this case, we claim that
δ(x j) 6= h (and thus, also δ(x̄ j) 6= h) holds for all j ∈ {1. . . , t′}, and prove this
as follows. Assume towards a contradiction that there is a new vertex x j

with degree δ(x j) = h. Then, h ≤ s. However, all positions up to 2s have
been marked in Step 1 of the reduction rule. In particular, all positions
between y and z have been marked and, hence, by construction of (x̄1, . . . , x̄t′)
the pair (y, z) would also be a maximal chain with respect to (x̄1, . . . , x̄t′).
This contradicts the assumption of Case 3, and hence z > 2s and h > s, and
there is no new vertex with degree h. Analogously, h does not correspond
to a bad block since then all positions between y and z would have been
marked in Step 2 of the reduction. Thus, b̂h = b′

h and (b′
h = 0)∨ (b′

h ≥ k).

Case 4. h is not in a maximal chain with respect to (x1, . . . , xt′), but in a maximal
chain (ȳ, z̄) with respect to (x̄1, . . . , x̄t′). This is only possible if there is a
position z with the same scope fingerprint as z′ such that (z− (z̄− ȳ), z) is a
maximal chain with respect to (x1, . . . , xt′) and:

∀ j ∈ {1, . . . , t′} :∀i ∈ { ȳ, . . . , z̄} : x̄ j
i := x j

i−z̄+z.

Furthermore, neither (x1, . . . , xt′) nor (x̄1, . . . , x̄t′) introduce new vertices
with degree h since all positions up to 2s have been marked in Step 1
of the reduction, and hence, z > 2s. That is, b̂h = b̌h−z̄+z and (b̌h−z̄+z =
0)∨ (b̌h−z̄+z ≥ k).

Hence, B̂ is indeed k-anonymous.

227

6.B.5. Proof of Lemma 6.8
Lemma 6.8. Reduction Rule 6.6 is correct.

Proof. The general idea of this rule is that the size of any such high-degree large
gap can be reduced, as no vertex can cross-over this gap.

More formally, we first observe that the entries b`+s, . . . ,br are all 0-entries
in B. Moreover, in any B j :=B⊕(x1, . . . , x j), inserting at most s edges to B, these
entries b`+s, . . . ,br are all 0-entries.

First, assume that there is a solution (x1, . . . , xt′), t′ ≤ t, such that B⊕(x1, . . . , xt′)
is k-anonymous. Then, obtain x̄ j from x j by removing the entries x j

`+s, . . . , x j
r for

each 1 ≤ j ≤ t′. (Note that these entries must be 0-entries.) It is easy to verify
that B′⊕ (x̄1, . . . , x̄t′) is k-anonymous.

Second, assume that there is a solution (x̄1, . . . , x̄t′) such that B′⊕ (x̄1, . . . , x̄t′) is
k-anonymous. Then, obtain x j from x̄ j by inserting r−`− s 0-entries between
x̄ j
`−1 and x̄ j

`
. It is easy to verify that B⊕ (x1, . . . , xt′) is k-anonymous.

228

7. Degree Anonymization by
Graph Contractions

In this chapter, similarly to Chapter 6, we study the computational complexity of
k-anonymizing a given graph by performing as few graph modification operations
as possible (recall that an undirected graph is k-anonymous if, for every vertex in
it, there are at least k−1 other vertices with the same degree).

In this chapter, however, we do not allow adding new vertices (as we do in Chap-
ter 6), but we allow to perform graph contractions (for example, edge contractions).
Graph contractions are natural operations in the context of social networks and
they are studied, for example, in the context of clustering algorithms. Moreover,
some graphs can be anonymized more efficiently (in terms of the number of
operations performed) by performing graph contractions than by adding vertices
(a simple example for this phenomenon is given in Figure 7.6).

We show that the problem of degree anonymization by graph contractions is
NP-hard even for some very restricted inputs, and, in general, it seems to be com-
putationally harder than the problem of degree anonymization by adding vertices
(studied in Chapter 6). Finally, we identify some fixed-parameter tractable cases.

7.1. Illustrating Example

Consider the following example.

Example 15. Recall the group of people discussed in Section 3.1 and the social
network representing the friendship relationships between them (Figure 3.1, and
given also in Figure 7.1 for convenience).

The corresponding example in Section 6.1 considers anonymizing the social
network by adding new vertices. Here, however, corresponding to the computa-
tional problem considered in this chapter, we do not allow vertex additions, but
we allow graph contractions. Consider the obfuscated social network described in
the corresponding example in Section 6.1, which is given here, in Figure 7.2, for

229

Alice

BobCinderella David

Euclid

Figure 7.1. The social network used in the illustrating example.

completeness (for example, Euclid’s name has been obfuscated to be “E”, and his
real age (27) is revealed).

A (47)

B (14)C (41) D (70)

E (27)

Figure 7.2. The obfuscated social network.

We want to find the minimum number of edge contractions that would make
the graph 2-anonymous. In the current example, it is enough to contract only one
edge to reach the social network depicted in Figure 7.3 (specifically, we contracted
B and D together).

A (47)

C (41) B ⊕ D (42)

E (27)

Figure 7.3. The resulting 2-anonymized social network (“B ⊕ D” stands for the
resulting vertex from contracting “B” and “D” together.

Indeed, in the resulting social network, each vertex degree appears at least
twice (in fact, four times). 4

230

7.2. Introduction

As in Chapter 6, the task in this chapter is to preserve the privacy of the vertices,
assuming an adversary which knows the degrees of some vertices. Importantly,
even if we hide the identifying information from each vertex (for example, the
name of the person corresponding to the vertex), the adversary might be able to
de-anonymize some vertices. The task is to preserve the privacy of the entities
comprising the given social network, while not modifying it too much. We refer the
reader to Chapter 6 for a more thorough introduction of degree anonymization.

Here, in order to k-anonymize the input graph, we allow performing as few
graph contractions as possible. That is, the set of our allowed operations is (sev-
eral variants of) graph contractions. Studying graph contractions in the context
of degree anonymization is interesting for several reasons. First, some variants
of contractions can preserve original properties of the input graph (for example,
connectivity). Second, vertex contraction (where also non-adjacent vertices can be
contracted), is the inverse operation of vertex cleaving (as defined by Oxley [128,
Chapter 3]; inverse in the sense that vertex cleaving splits vertices while vertex
contraction merges them), which is studied in Chapter 6 (there, called vertex
cloning). We mention also the importance of graph contractions to community
detection in social networks and to clustering (see, for example, Delling et al.
[54]).

7.2.1. Related Work

This chapter can be seen as complementing the line of research regarding degree
anonymization (such as done in Chapter 6) by considering graph contractions, as
a natural graph modification operation. For a literature review on anonymizing
graphs, we refer the reader to Section 6.2.1.

This chapter also complements research done on the following problem. Given
an input graph G = (V ,E) and a family F of graphs, the task is to find a subset
of edges E′ ⊆ E of minimum size, such that after contracting the edges in E′,
G would be in the family F . Indeed, in our case, F is the family of all k-
anonymous graphs. Asano and Hirata [3] defined a set of conditions on F , which
are sufficient for NP-hardness (that is, they showed that, if some conditions on
F hold, then this problem is NP-hard), while others studied the complexity of
this problem for some specific graph classes (acting as F). Planar graphs were
considered by Golovach et al. [85], bipartite graphs and paths were considered
by Heggernes et al. [94], and trees were considered by Guillemot and Marx [87].

231

Figure 7.4. A path-star of degree 6 and length 2.

Most relevant to our work is the work done by Belmonte et al. [8], who considered
the parameterized complexity of transforming a graph, by performing as few as
possible edge contractions, such that the resulting graph would respect some
degree constraints, such as being d-regular. Their work is of particular interest,
as the concept of k-anonymity is a generalization of the notion of regularity (in
particular, it is clear that a graph with n vertices is n-anonymous if and only if it
is regular).

7.3. Specific Preliminaries

Graphs. Given a non-simple undirected graph G = (V ,E), which may have self-
loops and parallel edges, we denote the degree of a vertex v ∈ V by deg(v), and
define

Bd := {v ∈V : deg(v)= d}

to be the set of vertices of degree d (called the block of degree d). As usual, we
define the degree of a vertex v with x neighbors and y self-loops to be x+2y (in
particular, we count a self-loop twice).

We define a path-star of degree d and length l to be the graph consisting of
one center vertex, connected to d disjoint paths of length l each. As an example,
consider the path-star depicted in Figure 7.4. Recall that a caterpillar-tree is a
tree for which removing the leaves and their incident edges leaves a path graph
(where a path graph can be defined as a tree that has no vertices of degree larger
than 2).

Contractions. Given an undirected graph G = (V ,E) and two adjacent vertices,
u and v, contracting the vertices u and v (usually referred to as contracting the
edge e = {u,v}), means removing u and v from V , replacing them by one new

232

vertex (denoted by u⊕v), and connecting this new vertex to exactly those vertices
that were adjacent to at least one of u and v. The resulting graph is denoted by
G/e.

More generally, given a set of edges F ⊆ E, we denote by G/F the graph obtained
from G after contracting all edges in F. An undirected graph G = (V ,E) is said
to be contractible to an undirected graph G′ = (V ′,E′) if there is a set of edges
F ⊆ E, such that G/F =G′. Equivalently, G = (V ,E) is contractible to G′ = (V ′,E′)
if and only if there exists a witness structure V =V1 ∪ . . .∪V|V ′|, where each Vi is
called a witness set, such that for each Vi (1≤ i ≤ |V ′|) the subgraph of G induced
by Vi is connected, and, for each pair of witness sets Vi and Vj (1≤ i 6= j ≤ |V ′|),
we have that

{Vi,Vj} ∈ E′ ⇐⇒ ∃vi ∈Vi,v j ∈Vj : {vi,v j} ∈ E

(indeed, the vertices in each witness set Vi are contracted such that, together,
they form a single vertex). We define deg(Vi) to denote the resulting degree of the
vertex corresponding to the contraction of the witness set Vi and we refer to the
graph G′ as the witness graph. An example is given next.

Example 16. Consider the following graph G = (V ,E):

v1 v2

v3 v4

v5 v6

and the following graph G′ = (V ′,E′):

v1 ⊕v3

v5

v2 ⊕v4 ⊕v6

and notice that G is contractible to G′, since G/F =G′, where

F = {{v1,v3}, {v2,v4}, {v4,v6}} .

Equivalently, this fact is also apparent by considering the witness structure
{V1,V2,V3}, where the witness sets are: V1 = {v1,v3}, V2 = {v5}, and
V3 = {v2,v4,v6}. 4

233

Variants of Contractions. We also define the closely related operation of vertex
contraction, which is defined similarly to edge contraction, with the only difference
that, in vertex contraction, we allow to contract non-adjacent vertices as well
(indeed, the vertices consisting a witness set of a vertex contracted graph are not
assumed to be connected).

It is clear that a graph contraction operation can sometimes introduce self-loops
and parallel edges. We define the following three variants of edge contractions
and vertex contractions, differing by the way in which self-loops and parallel
edges are treated.

• Simple Contraction: both self-loops and parallel edges are removed.

• Hybrid Contraction: self-loops are removed but parallel edges are kept.

• Non-Simple Contraction: both self-loops and parallel edges are kept.

For the Hybrid and Non-Simple variants, we allow the input graph to be
non-simple. See Figure 7.5 and Figure 7.6 for some examples.

7.3.1. Main Problem
Given an undirected input graph G, we are interested in k-anonymizing it by
performing at most c edge contractions. Recall that an undirected graph is said to
be k-anonymous if every vertex degree in it occurs at least k times; equivalently,
if, for each block Bi, it holds that |Bi| = 0∨|Bi| ≥ k.

DEGREE ANONYMIZATION BY GRAPH CONTRACTIONS

Input: An undirected graph G = (V ,E), an anonymization level k ∈N,
and a budget c ∈N.
Question: Can G be made k-anonymous by performing at most c
contractions?

As we consider several variants of graph contractions, we consider the following
specific variants of DEGREE ANONYMIZATION BY GRAPH CONTRACTIONS.

• DEGREE ANONYMIZATION BY SIMPLE EDGE CONTRACTIONS,
abbreviated as SEC-A.

• DEGREE ANONYMIZATION BY HYBRID EDGE CONTRACTIONS,
abbreviated as HEC-A.

234

v1 v2

v3

v4

(a)

v1 ⊕v2

v3

v4

(b)

v1 ⊕v2

v3

v4

(c)

v1 ⊕v2

v3

v4

(d)

Figure 7.5. Examples for the different variants of graph contractions considered
in this chapter. The original graph is depicted in (a) while the resulting graph
by contracting v1 and v2 is depicted: in (b) for simple contractions; in (c) for
hybrid contractions; and in (d) for non-simple contractions. Note that, for the
case of non-simple contractions, the sum of degrees of v1 and v2 equals the
degree of the newly created vertex v1 ⊕v2.

• DEGREE ANONYMIZATION BY NON-SIMPLE EDGE CONTRACTIONS,
abbreviated as NEC-A.

• DEGREE ANONYMIZATION BY SIMPLE VERTEX CONTRACTIONS,
abbreviated as SVC-A.

• DEGREE ANONYMIZATION BY HYBRID VERTEX CONTRACTIONS,
abbreviated as HVC-A.

• DEGREE ANONYMIZATION BY NON-SIMPLE VERTEX CONTRACTIONS,
abbreviated as NVC-A.

Interestingly, it is not always possible to anonymize an undirected graph by
performing only graph contractions, mainly since performing c contractions on an
input graph with n vertices results in a graph with n− c vertices. As an example,

235

v1 v2

v3

v4

v5

(a)

v1 v2

v3

v4

v5

(b)

v3

v4

v5v1 ⊕v2

(c)

v2

v3

v4

v1 ⊕v5

(d)

Figure 7.6. Example of 2-anonymizing an input graph. The input graph is
depicted in (a), an optimal 2-anonymized graph with respect to edge addition
is depicted in (b), an optimal 2-anonymized graph with respect to simple
edge contraction or hybrid edge contraction is depicted in (c) (by contracting
v1 and v2), and an optimal 2-anonymized (indeed, even 4-anonymous) graph
with respect to non-simple vertex contraction is depicted in (d) (by contracting
v1 and v5). Note that there is no solution with respect to non-simple edge
contraction.

consider n-anonymizing a complete graph which has one missing edge: as the
input graph is not n-anonymized, at least one edge needs to be contracted. As
a result, the number of remaining vertices will be strictly less than n, thus the
graph cannot become n-anonymous. This stands in contrast to the case of degree
anonymization by edge addition, as any graph can be made n-anonymous by
adding all missing edges to it.

It is interesting to note, however, that some graphs can be anonymized more
efficiently (in terms of the number of graph modification operations needed) by
using edge contractions than by using edge additions. A simple example of this
phenomenon is shown in Figure 7.6. This gives some motivation for anonymizing
by graph contractions, as it, presumably, can lead to k-anonymous graphs that do

236

Table 7.1. Parameterized complexity landscape of DEGREE ANONYMIZATION BY

GRAPH CONTRACTIONS. Rows and columns correspond to parameters, such
that each cell corresponds to the combination of the corresponding parameters.

Solution size c Anonymization level k Maximum degree ∆

c
W-ha [Th. 7.3] W-ha [Th. 7.3]

FPT [Th. 7.5]
XP [Obs. 7.1] XP [Obs. 7.1]

k Para-NP-ha [Th. 7.3] FPTb [Th. 7.1]

∆ Para-NP-ha [Th. 7.4]

aOnly for SEC-A and HEC-A (open for the other variants).
bOnly for NVC-A (open for the other variants).

not differ by much from the original graph, thus preserve a lot of the structure
from the input graph.

7.3.2. Overview of Our Results

We study the parameterized complexity of degree anonymization by graph contrac-
tions, considering the solution size c, the anonymity level k, and the maximum
degree ∆ as parameters. Being the most natural parameters, these are also
studied in Chapter 6. From the variants defined in Section 7.3.1, we consider
SEC-A and HEC-A as these are based on the most common operations (see,
for example, Diestel [55, Chapter 1.7] and Wolle and Bodlaender [142]), and we
consider NVC-A as it is equivalent to the underlying number problem (as defined
in Section 7.4). Next, we state some important points of our work.

• Even the underlying number problem (NVC-A) is NP-hard. This stands in
contrast to the case of degree anonymization by edge addition, for which
the underlying number problem can be solved, in polynomial time, by
dynamic programming [91]. This also stands in some contrast to the case of
degree anonymization by vertex addition, which is considered in Chapter 6,
where NP-hardness is proven only for a related problem. Moreover, SEC-A,

237

HEC-A, and NVC-A are NP-hard even on very restricted graph classes,
such as trees and caterpillar trees.

• Parameterizing by either the solution size c, the maximum degree ∆, or the
anonymity level k, does not help for tractability. This stands in contrast to
anonymization by edge addition, which is fixed-parameter tractable with
respect to the maximum degree ∆ [91]. However, combining ∆ with the
solution size c does help for tractability.

• Combining the maximum degree ∆ with the anonymity level k helps for
tractability for some variants of the problem. For some other variants, we
show some evidence suggesting hardness.

Table 7.1 provides an overview of our results.

7.4. NP-Hardness Results
We begin by considering NVC-A, which is equivalent to a certain number problem,
which we call the underlying number problem. Recall that, in NVC-A, we allow
to contract any two vertices, even if they are not connected by an edge. Moreover,
since we keep all self-loops and parallel edges, we have that the degree of a
new vertex, corresponding to some witness set, equals the sum of the degrees
of the vertices in the witness set; thus, the degree sequence of the resulting
graph after performing some contractions only depends on the original degrees of
the contracted vertices. Therefore, we do not care about the exact connections
between the vertices in the graph, but only care about the degrees. It follows that
NVC-A is equivalent to the following number problem. Therein, a multiset of
integers is k-anonymous if each integer in it occurs at least k times.

NVC-A (NUMBER VERSION)
Input: A set V = {d1, . . . ,dn} of n integers (∀i : 0 ≤ di ≤ ∆) and two
integers, k and c.
Question: Is there a partition V =V1∪V2∪·· ·∪Vz (where Vj1∩Vj2 =;
for 1 ≤ j1 6= j2 ≤ z) such that the multiset S = {

∑
di∈Vj di : j ∈ [z]} is

k-anonymous and
∑

j∈[z](|Vj|−1)≤ c?

Example 17. As an example, consider the following graph as an input to NVC-A,
with anonymity level k = 2 and budget c = 1.

238

v1 v2

v3

v4

v5

Since in NVC-A we consider non-simple vertex contractions, we can, informally
speaking, disregard the graph structure, and concentrate only on the sequence of
the degrees. Specifically, we have the following input to the equivalent formula-
tion of NVC-A. The set V of integers is just the sequence of degrees of the input
graph: V = {v1,v2,v3,v4,v5}= {1,3,3,3,2}. The anonymity level k is still 2 and the
solution size is still 1. A solution partition is given by:

V1 = {v1,v5},

V2 = {v2},

V3 = {v3},

V4 = {v4},

since, for each j ∈ [4], it holds that
∑

di∈Vj di = 3 (that is, in fact, the resulting
sequence is 4-anonymous). 4

Informally, the above number problem lies within the heart of the graph
anonymization problem (for this reason we call it the underlying number problem).
Interestingly, contrary to the situation for other operations (such as edge addition,
where the underlying number problem can be solved in polynomial time by a
simple algorithm based on dynamic programming [91]), here the underlying
number problem is intractable.

Theorem 7.1. NVC-A is NP-hard even on caterpillar trees.

Proof. We provide a reduction from the following strongly NP-hard problem [84]:

STRICTLY THREE PARTITION

Input: A set of integers S = {a1, . . . ,a3m} such that
∑

ai∈S ai = mB
and ∀i ∈ [3m] : B/4< ai < B/2.
Question: Are there m disjoint sets S1, . . . ,Sm, each of size 3, such
that ∀ j ∈ [m] :

∑
ai∈S j ai = B?

239

Given an instance of STRICTLY THREE PARTITION, we create an instance of
NVC-A. Intuitively, the idea is to create a set of 3m vertices, such that each
number ai would have a corresponding vertex whose degree is proportional to ai.
Then, we will add a distinguished vertex with degree proportional to B, making
sure that the only way of anonymizing the block containing this distinguished
vertex is by contracting m triplets of vertices corresponding to triplets of numbers,
such that each of them sums to exactly m.

Specifically, we first scale the input numbers, that is, we define a′
i := ai ·mB

and B′ := B ·mB. For each number a′
i, we create a node va′

i
and connect it to a′

i
paths of length c+1 (consisting of new vertices), such that deg(va′

i
)= a′

i holds for
each i (that is, for each a′

i, we create a path-star of degree a′
i and length c+1). We

add a path-star of degree B′ and length c+1. We set k := m+1 and c := 2m. This
finishes the construction, which can be computed in polynomial time. Indeed, the
construction as specified above results in a forest. To strengthen the result, we
can transform it to be a caterpillar tree by placing all va′

i
’s on a path together

with the path-star of degree B′, adjusting the number of additional new vertices
connected to each va′

i
accordingly. An example follows.

Example 18. We provide an example for explaining the general idea underlying
the reduction, but, for clarity of presentation, we omit some technical issues, such
as the assumption of strictness (that is, that ∀i : B/4< ai < B/2). Moreover, we do
not scale the numbers, and instead of path-stars, we create regular stars. Thus,
while the reduction as shown next is not formally correct, it conveys the general
idea.

Consider the following set of integers S = {1,2,3,4,5,7} as an input to STRICTLY

THREE PARTITION. We create the graph depicted in Figure 7.7.
The star of degree (1+2+3+4+5+7)/2= 11, and only it, needs to be anonymized.

All other stars correspond to the original integers from S, therefore their degrees
are {1,2,3,4,5,7}, that is, equivalent to the integers from S. A possible way of
anonymizing the graph is by contracting the stars of degree 1, 3, and 7, together,
to create a star of degree 1+3+7 = 11, and also to contract the stars of degree
2, 4, and 5, together, to create another star of degree 2+4+5= 11. As a result,
we would have three stars of degree 11, and the graph would be 3-anonymized.
Indeed, this solution corresponds to the partition {1,3,7}∪ {2,4,5}= {1,2,3,4,5,7}
of the original STRICTLY THREE PARTITION.

As mentioned above, it is possible to transform the graph into a caterpillar
tree. Considering the current example, we can construct the graph depicted

240

11

4 5 7

1 2 3

Figure 7.7. The graph used in Example 18.

in Figure 7.8, which is a caterpillar tree. Specifically, we connected the stars to
form a path, and adjust the degrees by removing some of the vertices which used
to be adjacent to the stars. 4

Given a partitioning of S into triplets of integers, such that each triplet sums
exactly to B, it is possible to anonymize the graph by contracting each triplet of
vertices va′

i
, corresponding to a triplet of integers a′

i in the partitioning of S, into
a single vertex. Note that we need two contractions for each triplet and that the
resulting graph is k-anonymous, as it has m new vertices of degree B′, and no
other new vertices.

For the other direction, note that, due to the strictness constraint (that is, since
∀i : B/4 < ai < B/2), we have that any witness set of size other than three will
have degree which is far away from B′. Combining this observation with the fact
that we multiplied each ai by mB, it holds that, if there is no partitioning of S
into triplets, then, in any partitioning, there exists at least one triplet such that
the difference between its degree and B′ is at least mB.

We conclude that the above way cannot be used in order to anonymize the
block containing the distinguished path-star. Moreover, contracting the path-star
itself will not anonymize it, as it can decrease its degree by at most c, which is
not enough for it to fall to any other degree block. Therefore, any solution must

241

11

4 5 7

1 2 3

Figure 7.8. The modified caterpillar tree used in Example 18.

introduce at least m new vertices of degree B′, each corresponding to a triplet.
Thus, a solution must correspond to a correct partitioning of S into triplets.

Finally, the reduction can be computed in polynomial-time, since the STRICTLY

THREE PARTITION problem is NP-hard in the strong sense [84], and therefore
NP-hard even when the input is given in unary.

The other variants of DEGREE ANONYMIZATION BY GRAPH CONTRACTIONS

considered in this chapter are NP-hard as well. Specifically, we show NP-hardness
on trees for SEC-A and HEC-A.

Theorem 7.2. Both SEC-A and HEC-A are NP-hard even on trees.

Proof. We provide a reduction from the following strongly NP-hard problem [84]:

NUMERICAL MATCHING WITH TARGET SUMS

Input: Three sets of integers A = {a1, . . . ,an}, B = {b1, . . . ,bn}, and
C = {c1, . . . , cn}.
Question: Can the elements of A and B be paired such that, for
each i ∈ [n], ci will be equal to the sum of the ith pair?

The variant where all 3n input integers are distinct is also known to be NP-
hard in the strong sense [99]. Without loss of generality, we assume that all input

242

a1 a1 a1 a2 a2 a2 a3 a3 a3

b1 b2 b3 b1 b2 b3 b1 b2 b3

c1 c2 c3

Figure 7.9. Example for the reduction used in the proof of Theorem 7.2. Specifi-
cally, the reduction is shown for the following instance of NUMERICAL MATCH-
ING WITH TARGET SUMS: A = {3,5,6}, B = {7,8,4}, and C = {10,11,12}. All
drawn edges, except for the edges from ai ’s to b j ’s, represent paths of length
c+1= 4.

integers are greater than three. Given an instance of NUMERICAL MATCHING

WITH TARGET SUMS, we create an instance of SEC-A and HEC-A (the same
instance for both), as follows. Intuitively, the idea is to create a set of k−1 vertices
for each ci and a pair of vertices for each pair of ai and b j, such that the only
possibility of anonymizing the vertices corresponding to the ci ’s is to contract the
correct pairs of ai ’s and b j ’s. Details follow.

We set the anonymity level k to n−1 and the budget c to n. We construct some c-
gadgets: for each ci, we create k−1 path-stars of degree ci−2 and length c+1. We
construct some ab-gadgets: for each pair of integers, i ∈ [n] and j ∈ [n], we create
two path-stars, one of degree ai and another of degree b j, both of length c+1,
and connect them by an edge (indeed, the construction as such is a forest; we
can transform it into a tree by arbitrarily connecting each pair of disconnected
components by a path of length c+1). See Figure 7.9 for a visualization of the
reduction.

Given a correct pairing of A and B, it is possible to anonymize the input
graph by contracting the corresponding ab-gadgets: we will have n−1 remaining
vertices for each ai and b j, as well as k−1+1 vertices for each ci.

For the other direction, note that all c-gadgets must be anonymized in a
solution, by contracting some ab-gadgets (it is not a good idea to contract c-
gadgets together, since we can assume that each ci is greater than all ai ’s and
b j ’s; to see this, add the maximum integer to all ai ’s and b j ’s and add it twice to
all cl ’s). Further, contracting two ab-gadgets sharing the same ai (or the same
b j) would result in de-anonymizing the block of degree ai (or of degree b j), which

243

cannot be further anonymized. Therefore, a solution must correspond to a correct
pairing.

Finally, the reduction can be computed in polynomial-time, since the NUMERI-
CAL MATCHING WITH TARGET SUMS problem is NP-hard in the strong sense [84],
and therefore NP-hard even when the input is given in unary.

7.5. General Graphs
Following the NP-hardness results from Section 7.4, we continue our quest for
tractability by considering parameters. We begin by considering the number c
of contractions (that is, the solution size) and the anonymity level k. First, we
observe that for constant values of the solution size c, for all variants of DEGREE

ANONYMIZATION BY GRAPH CONTRACTIONS considered in this chapter, we can
simply enumerate all possible solutions, thus concluding the following.

Observation 7.1. DEGREE ANONYMIZATION BY GRAPH CONTRACTIONS is XP
with respect to the solution size c.

There is no hope, however, for fixed-parameter tractability with respect to
the parameter solution size c, as even combining it with the anonymity level k
does not yield fixed-parameter tractability. Note that, in the corresponding
parameterized reduction, the anonymity level k is a constant.

Theorem 7.3. Both SEC-A and HEC-A are NP-hard and W-hard with respect
to the solution size c, even for anonymity level k = 2.

Proof. For SEC-A, we provide a reduction from the following W[2]-hard problem,
parameterized by the solution size [57]:

SET COVER

Input: A universe of elements X = {x1, . . . , xn}, a collection S =
{S1, . . . ,Sm} of sets over the universe, and a budget h.
Question: Is there a subcollection S ′ ⊆S of sets such that |S ′| ≤ h
and

⋃
S∈S ′ S = X?

Given an instance of SET COVER, we create an instance of SEC-A, as follows.
We set k := 2 and c := h. For each xi we create a vertex x′i. For each S j we
create two vertices, S′

j and S′′
j , and connect them by an edge. Each S′

j and
S′′

j (corresponding to a set S j) are connected to all x′i ’s which correspond to

244

elements xi ∈ S j. We add several paths of length c+1 to each x′i such that the
degree of each x′i will be f (i) := i(c+1)+2. Similarly, we add several paths of
length c+1 to each S′

j and S′′
j , such that the degree of each S′

j and S′′
j will be

f (n+1). For every i ∈ [n] and z ∈ [h], we add a path-star of degree f (i)− z and
length c+1, called a landing gadget. We add k path-stars of degree f (n+1) and
length c+1 in order to anonymize the vertices corresponding to the sets.

Given a set cover, that is, a subcollection S ′ ⊆S which covers the universe, it
is possible to anonymize the input graph as follows. For each S j ∈S ′, contract
together the corresponding pair of vertices S′

j and S′′
j . As a result, the degrees

of each vertex x′i, corresponding to a universe element xi, will decrease by the
number of sets covering it. Recalling the landing gadgets, we have that the graph
would become anonymized as a result.

For the other direction, note that all of the xi ’s need to be anonymized, and we
can only decrease their degree to achieve this. Therefore, by a simple exchange
argument, a solution must correspond to a set cover.

For HEC-A, we provide a reduction from the following W[1]-hard problem,
parameterized by the solution size [57]:

MULTICOLORED CLIQUE

Input: An undirected graph whose vertices are colored in h colors
and an integer h.
Question: Is there a set of h pairwise adjacent vertices such that
each vertex is of different color?

We assume, without loss of generality, that there are no monochromatic edges
(a monochromatic edge is an edge connecting vertices of the same color). Cai [36]
showed that MULTICOLORED CLIQUE remains hard even on regular graphs.

Given an instance of MULTICOLORED CLIQUE, we create an instance of HEC-A.
We define the following function, f (i)= 2i ·2(h

2
)
, whose domain is the set of colors

(that is, i ∈ [h]). We set k := 2 and c := h−1. We denote the color of vertex v
by color(v) ∈ [h]. For every vertex v, we add (f (color(v))−deg(v)) paths of length
c+1, such that the degree of each vertex colored in color i ∈ [h] is f (i). We
construct k+1 copies of this modified graph. We add k−1 path-stars of degree
((

∑
i∈[h] f (i))−2

(h
2
)
) and length c+1.

Given a multicolored clique of size h, it is possible to contract the vertices of
the clique into one vertex: the degree of the new vertex will be equal to the degree
of the k−1 path-stars, resulting in an anonymized graph, due to the k+1 copies.

For the other direction, note that contracting edges of a path-star does not
change its degree. Moreover, as there are no monochromatic edges, we can

245

ve

vu′ vu′′ vv′ vv′′

Figure 7.10. Gadget used for the reduction in the proof of Theorem 7.4 (for
SEC-A). Specifically, the construction is shown for two vertices, u and v, which
are connected by the edge e = {u,v} (indeed, as the input graph for the reduction
is cubic, the vertices vu′ ,vu′′ ,vv′ ,vv′′ all have degree five, and not three, as is
depicted here). Note that contracting vu′ and vu′′ (or vv′ and vv′′) decreases the
degree of ve.

only contract edges of different colors. Due to the way we defined f (i), the only
possible way of reaching the degree of the path-star (that is,

∑
i∈[h] f (i)−2

(h
2
)
) is

by contracting a multicolored clique, since all colors are needed for the first part
(that is,

∑
i∈[h] f (i)) and all edges between the colors are needed for the second

part (that is, 2
(h
2
)
).

7.6. Bounded-Degree Graphs
We go on to consider the maximum degree ∆ of the input graph. It is known that
degree anonymization by edge addition is fixed-parameter tractable with respect
to ∆, and there is even a polynomial kernel with respect to this parameter [91].
In contrast to this, we next show that in case of edge contractions, the parameter
maximum degree ∆ alone does not help for tractability, as both SEC-A and
HEC-A are NP-hard even for constant values of this parameter.

Theorem 7.4. Both SEC-A and HEC-A are Para-NP-hard with respect to the
maximum degree ∆.

Proof. For SEC-A, we provide a reduction from the following NP-hard problem
(where an undirected graph is said to be cubic if it is 3-regular) [84]:

246

CUBIC VERTEX COVER

Input: A 3-regular undirected graph G = (V (G),E(G)) and an
integer h.
Question: Is there a set of h vertices such that each edge is incident
to at least one vertex from the set?

Given an instance of CUBIC VERTEX COVER, we create an instance of SEC-A,
as follows. We set k := |E|+1 and c := h. For every edge e ∈ E, we create a new
vertex ve. For every vertex v ∈ V , we create a pair of new vertices v′v and v′′v ,
and connect each such pair by an edge. For every edge e = {u,v}, we connect
ve to the four vertices v′u, v′′u, v′v, and v′′v . We also connect each v′v and v′′v to a
path of length c+1 each. We add k path-stars of degrees 1, 2, 3, and 5, all with
length c+1. See Figure 7.10 for an example.

The general idea is that contracting the two vertices v′v and v′′v corresponding
to a vertex v, would decrease the degrees of the vertices ve corresponding to all of
its incident edges e. That is, given a vertex cover, we contract each pair of v′v and
v′′v corresponding to a vertex v in the given vertex cover: as a result, the degree of
each vertex ve is decreased from 4 to either 3 or 2, k-anonymizing the graph.

For the other direction, note that the block of degree four needs to be anonymized.
However, there is no way of increasing the degree of the vertices in this block
(since any contraction would decrease their degree) and no way of increasing the
degrees of other vertices to fall into their blocks; thus, their degree decreases in
any solution. For an edge e = {u,v}, the only possibility of decreasing the degree
of ve is by contracting either the pair v′u and v′′u or the pair v′v and v′′v . By a simple
exchange argument, we get that a solution must correspond to a vertex cover.

For HEC-A, we reduce from the following problem, which was shown to be
NP-hard even on 4-regular graphs by van Rooij et al. [140]:

4-REGULAR PARTITION INTO TRIANGLES

Input: An undirected 4-regular graph G = (V ,E).
Question: Can V be partitioned into sets S1, . . . ,S|V |/3, such that
each Si consists of three vertices which form a triangle in G?

Given a 4-regular input graph G for 4-REGULAR PARTITION INTO TRIANGLES,
we create an input graph G′ for HEC-A. We initialize G′ by G and add a path of
length c+1 to each vertex (consisting of new vertices). We create a path-star of
degree nine and length c+1. We set k := n/3+1 and c := 2n/3 (we assume, without
loss of generality, that n = 0 mod 3). This finishes the construction, which can be
computed in polynomial time. An example follows.

247

Example 19. Consider the following 4-regular graph, given as an input to 4-
REGULAR PARTITION INTO TRIANGLES.

v1 v2

v3 v4

v5 v6

We construct the following (unconnected) graph as an input to HEC-A.

v1 v2

v3 v4

v5 v6

9

Contracting v1, v3, and v5 together, as well as contracting v2, v4, and v6
together, will result in another two stars of degree nine. As a result, the graph
would become 3-anonymous, as it would consist of three stars, each of degree
nine. 4

Given a partition of G into triangles, it is possible to contract the vertices of
each triangle together: the degree of the resulting vertex would be nine, therefore
the graph will be k-anonymous. For the other direction, note that the path-star
of degree nine needs to be anonymized, its degree cannot decrease or increase,
and the only way of introducing other vertices of degree nine is by contracting
triangles. Finally, as we need n/3 triangles, a solution must correspond to a
correct partitioning of G into triangles.

Contrary to the above hardness results, combining the maximum degree ∆
together with the solution size c does help for tractability, for all variants of
DEGREE ANONYMIZATION BY GRAPH CONTRACTIONS considered in this chapter.

Theorem 7.5. DEGREE ANONYMIZATION BY GRAPH CONTRACTIONS is FPT
with respect to (∆, c), where ∆ is the maximum degree and c is the solution size.

248

Proof. Consider a yes-instance I of DEGREE ANONYMIZATION BY GRAPH CON-
TRACTIONS. Since I is a yes-instance, it means that there exists a set E′ of at
most c edges such that contracting them would make G k-anonymous.

Consider the set V ′′ containing all vertices whose degree might change as a
result of contracting the edges in E′. Consider the set V ′ of vertices containing
all the endpoints of the edges in E′, including also all their neighbors. That
is, we define V ′ := N[{u,v : {u,v} ∈ E′}] (recall that the closed neighborhood of a
vertex v ∈V is N[v] := {v}∪ {u : {u,v} ∈ E}, and that the closed neighborhood of a
set of vertices V ′ ⊆V is N[V ′] :=∪v′∈V ′ N[v′]). Since each edge has two endpoints
and each vertex has at most ∆ neighbors, it follows that |V ′| ≤ 2c(∆+1). Moreover,
and most importantly, it holds that V ′′ ⊆V ′.

The main point now is that it is enough to find the subgraph induced by V ′. To
this end, we consider all possible graphs H containing at most 2c(∆+1) vertices.
For each such graph H, we consider all possible sets C of at most c edges to be
contracted. For each such pair of graph H and set C, we compute the degree
changes in H, incurred by contracting the edges in C. If these degree changes
make the graph k-anonymous, then we try to find this graph H as a subgraph in G.
Indeed, we are looking for a subgraph whose number of vertices is upper-bounded
by the parameters, inside a graph whose maximum degree is upper-bounded by
the parameters; this problem is known to be fixed-parameter tractable, as shown
by Cai et al. [37, Theorem 1].

We consider now the combined parameter ∆ and k. From a technical point
of view, the situation here is more involved. Moreover, we can only show fixed-
parameter tractability for NVC-A, while for SEC-A and HEC-A, we show some
evidence suggesting otherwise. We begin by showing that, for NVC-A, the
solution size c can be upper-bounded by a function dependent only on the values
of the parameters ∆ and k. Then, we will be able to use Theorem 7.5 to obtain
fixed-parameter tractability for NVC-A, with respect to the combined parameter
∆ and c.

Lemma 7.1. For any yes-instance (V ,k, c) of NVC-A it holds that (V ,k, c′),
with c′ = k · (∆ ·∆!)∆+1, is also a yes-instance.

Proof. Let (V ,k, c) be a yes-instance of NVC-A. Denote by copt ≤ c the smallest
number such that (V ,k, copt) is still a yes-instance. Moreover, let the partition
P = {V1, . . . ,Vi} of V be a solution which corresponds to copt (in other words, let P
be the witness structure corresponding to a solution of (V ,k, copt)).

249

In what follows, we define two operations on P, with the property that whenever
at least one of them is applicable, applying it would result in another solution
with less contractions. We will also show that, as long as copt > k · (Δ ·Δ!)Δ+1, at
least one of them is applicable. This implies that copt ≤ k · (Δ ·Δ!)Δ+1, thus proves
Lemma 7.1.

To formally describe our operations, we associate with each witness set Vi a
witness vector #»vi ∈NΔ with #»vi[j] being equal to the number of vertices of degree j
in the witness set Vi. Recall that the degree of a witness set is defined to be the
sum of the degrees of the vertices in the witness set (that is, the degree of the
vertex corresponding to contracting all the vertices in the witness set).

Operation 1. This operation is applicable to P if there are at least k witness
sets in P, all of equal degree, such that in each of them, say Vi, there is at least
one j with #»vi[j] ≥Δ!. If there exists such a collection of witness sets, then consider
such a collection P ′ ⊆ P which is maximal with respect to containment, and do
the following: for each witness set Vi in P ′ choose any integer j with #»vi[j] ≥Δ!,
remove (Δ!/ j)-many vertices of degree j from Vi (note that Δ!/ j is always an
integer), and form a new witness set containing these vertices. This finishes the
description of the operation.

Note that we introduced at least k new witness sets, all of degree exactly Δ!.
Moreover, we decreased the degree of each of the initial witness sets by the same
number Δ!. Since there are at least k such witness sets, it follows that performing
this operation results in a partition of V that is still a solution for (V ,k, copt)
which requires less edge contractions than P requires.

Operation 2. This operation is applicable to P if there is a collection of at least k
witness sets in P, such that the witness sets in this collection all have the same
witness vector, and the Hamming weight of this witness vector is at least 2 (that
is, these witness sets are not singletons). If such a collection exists, then choose
an arbitrary integer j occurring in this same witness vector and do the following:
for each witness set Vi in this collection, remove one vertex of degree j from Vi,
and form a new witness set containing only this vertex of degree j (that is, form a
new singleton witness set). This finishes the description of the operation.

Note that there are at least k witness sets, where rom each of them, a vertex of
the same degree j is being cut out. Therefore, the resulting partition is a solution
for (V ,k, copt) which requires less edge contractions than P requires.

250

Applicability. It remains to argue that, as long as copt > k · (∆ ·∆!)∆+1, at least
one of the two operations described above is applicable. First, assume that P
contains a witness set Vi of degree at least (∆ ·∆!). Then, since P is k-anonymous,
it holds that there are at least k witness sets of the same degree, which is at
least (∆ ·∆!). It follows, by the pigeon-hole principle, that each of these witness
sets must contain at least one integer j which occurs at least ∆! times in it. Thus,
Operation 1 is applicable.

So, let us assume now that the degree of each witness set in P is at most (∆ ·∆!).
Then, there can be at most (∆ ·∆!)∆ different witness vectors, such that none of
these witness vectors is of degree greater or equal to (∆ ·∆!). It follows, by the
pigeon-hole principle, that if P contains at least k · (∆ ·∆!)∆ witness sets of size at
least two, then Operation 2 is applicable.

Finally, a solution for which copt > k · (∆ ·∆!)∆+1 edge contractions have been
performed either contains a set of size at least (∆ ·∆!) or it contains at least
k · (∆ ·∆!)∆ witness sets of size at least two.

We can combine the results of Theorem 7.5 and Lemma 7.1 to show the following
fixed-parameter tractability result.

Corollary 7.1. NVC-A is FPT with respect to (∆,k), where ∆ is the maximum
degree and k is the anonymity level.

Proof. For a given instance (V ,k, c) of NVC-A we decide the instance
(V ,k,min{c,k · (∆ ·∆!)∆+1}) using the FPT-algorithm with respect to (∆, c) (as
described in Theorem 7.5). By Lemma 7.1, it follows that these two instances are
equivalent and the corresponding running time proves fixed-parameter tractabil-
ity with respect to (∆,k).

We mention that, since we perform a series of operations (Operation 1 and
Operation 2), and each of them decrease the size of the graph, the general idea
resembles kernelization. In fact, if we would have a kernel for NVC-A, when
parameterized by the combined parameter (∆, c), then we would also have a
kernel for NVC-A, when parameterized by the combined parameter (∆,k). It is
not clear, however, how to obtain a kernel for NVC-A, when parameterized by the
combined parameter (∆, c), since Theorem 7.5 is based on a branching algorithm.

We do not know whether SEC-A and HEC-A are fixed-parameter tractable
with respect to the combined parameter ∆ and k. We can, however, rule out the
possibility of a similar proof technique as used in the proof for NVC-A (in Corol-
lary 7.1) for these variants. The reason is that, contrary to Lemma 7.1, both for

251

z := (n−2) / 3

Figure 7.11. An input for SEC-A and HEC-A with small maximum degree ∆= 3
and small anonymity level k = 3, but where the solution size c cannot be upper-
bounded by a function dependent only on ∆ and k. The small nodes are there
to represent a lot of nodes (specifically, z−2 on each path). The marked region
represents an optimal solution, that is, contracting all of the vertices in the
marked region together results in a 3-anonymized graph, as the corresponding
vertex would have degree 2.

SEC-A and for HEC-A, there are instances for which the maximum degree ∆ is
small, the anonymity level k is small, but the solution size c is large.

Proposition 7.1. There are instances for SEC-A and HEC-A for which the
solution size c cannot be upper-bounded by a function dependent only on the
maximum degree ∆ and the anonymity level k.

Proof. Consider the instance depicted in Figure 7.11. There, the maximum
degree ∆ is 3. If we set the anonymity level k to 3, then the graph is certainly
not anonymous. The only way of anonymizing it is by contracting a big part of
the graph, specifically, the minimum c for which the instance is a yes-instance is
c = 2z+1. Therefore, in this graph, the solution size c is Ω(n).

To see this, note that by contracting the marked region (in Figure 7.11), the
graph becomes 3-anonymous. Moreover, note that there is no way of introducing
further vertices of degree 3, and that the only way of transforming the odd-degree
vertices to be of even degree is by contracting them to be in the same witness set,
as shown in the marked region (in Figure 7.11). Specifically, contracting together
all the vertices in this marked region would result in a new vertex of degree 2.

Following Proposition 7.1, we conclude that, for SEC-A and HEC-A, either
a different proof technique is needed to prove fixed-parameter tractability with

252

respect to the combined parameter ∆ and k, or, as we conjecture, these variants
are not fixed-parameter tractable for the combined parameter (∆,k).

7.7. Outlook

We state several possibilities for future research, motivated by the work presented
in this chapter.

• There are several open questions, as can be identified by looking at Table 7.1.
The most intriguing question is whether the FPT algorithm presented
in Corollary 7.1 can be extended to the other variants of contractions
considered in this chapter.

• An immediate extension of the work presented in this chapter is to iden-
tify and study other parameters. Some of the parameters, naturally, will
not help for tractability. For example, most of the hardness reductions in
this chapter do not require large witness sets; thus, the parameter “maxi-
mum size of a witness set” does not look promising for tractability. Surely,
however, other parameters might help for tractability.

Of most interest are parameters, such as the average pairwise distance and
the diameter, which are known to be small in certain social networks [124].

• It is natural to consider other graph operations which are related to graph
contractions. Some examples are structure contraction (contracting a whole
subgraph at the cost of one operation), edge twisting (see [128, Chapter
3]), and vertex dissolution (see [128, Chapter 3] and the work done by van
Bevern et al. [12]).

• It is also natural to combine several operations. For example, as each graph
contraction causes the number of vertices to be decreased by one, it might
be useful in some scenarios to "compensate" for this by also adding vertices:
one way to achieve this is to require that the resulting graph would have
the same number of vertices as the input graph, and to allow both graph
contractions and vertex additions to be performed on the input graph.

• As mentioned in the introduction to this chapter, some graphs, for some k’s,
can be k-anonymized more efficiently by contracting edges than, say, by
adding edges (in terms of the number of graph modification operations

253

needed). A better understanding of the conditions for this type of phenom-
ena is of interest: a k-anonymized graph obtained by performing few graph
contractions might preserve more of the structure of the original graph than,
say, a k-anonymized graph obtained by adding a lot of edges. Of course,
one might also compare the efficiency of degree anonymization by graph
contractions to the operation of vertex addition, discussed in Chapter 6,
and to other graph modification operations of interest.

• Bazgan and Nichterlein [7] studied graph anonymization with edge dele-
tions and vertex deletions from the viewpoint of approximation algorithms.
They mainly obtained inapproximability results when the goal of the ap-
proximation algorithm is to minimize the number of edit operations. One
possible way of extending this line of research would be to study whether
their results transfer to edge contractions and to other operations. A
further line of research might be to study different notions of approxima-
tions. As examples, consider the following types of approximations (indeed,
this discussion about approximation applies also to the problem of degree
anonymization by vertex addition, discussed in Chapter 6).

1) Partial anonymization: the goal here is to partially anonymize an
input graph. In other words, the task is to maximize the number of
vertices which are anonymized, that is, the number of vertices for
which at least k−1 vertices of the same degree exist.

2) Rough anonymization: the goal here is to roughly anonymize an
input graph. In other words, the task is to have, for each vertex, at
least k−1 other vertices of roughly the same degree; specifically, to
minimize the value of α such that, for each vertex of degree d, there
will be at least k−1 other vertices whose degree is at least k−α and
at most k+α.

254

8. Outlook and Conclusion

This final chapter begins, in Section 8.1, with some ideas for future research
motivated by this thesis, and ends, in Section 8.2, with some concluding remarks.

8.1. Outlook

When taking a general perspective on the contents of this thesis, some orthogonal
ingredients of the study presented here can be revealed. Specifically, it stands out
that the computational problems considered here can be, abstractly, described as
follows:

“an agent,
towards its goal,

can perform a small number of operations
from a set of predefined operations”.

This view suggests some routes for future research.

The set of allowed operations. Recall that, while the goal of the agent in
both Chapter 3 and Chapter 4 is to make its preferred candidate win the
election, its set of allowed operations is different for each of these chapters
individually. Specifically, in Chapter 3 the agent is able to change the set of
candidates in the election, while in Chapter 4 the agent is able to change
some votes. It is natural to consider different sets of operations, for example,
the operation of changing the set of voters in the election.

Similarly, recall that, while the goal of the agent in both Chapter 6 and Chap-
ter 7 is to k-anonymize the social network, its set of allowed operations is
different for each of these chapters individually. Specifically, in Chapter 6
the agent is allowed to add new vertices, while in Chapter 7 the agent is
allowed to perform graph contractions. It is natural to consider different
sets of operations, for example, performing vertex dissolutions.

255

More generally, it makes sense to combine some operations, that is, to
allow the agent to perform several types of operations. For example, one
might combine the candidate control operation considered in Chapter 3
together with the shift bribery operation considered in Chapter 4. As an-
other example, one might combine the vertex addition operation considered
in Chapter 6 together with the graph contraction operation considered
in Chapter 7.

The agent’s goal. As mentioned above, the goal of the agent in both Chapter 3
and Chapter 4 is to make its preferred candidate win the election. One
might consider further goals. For example, the agent’s goal could be to
have a specific ranking of the candidates in the resulting election. This
makes sense, for example, in the context of multi-winner elections, where
the agent might want a specific set of (possibly ranked) candidates to win
the election.

Similarly, as mentioned above, the goal of the agent in both Chapter 6
and Chapter 7 is to k-anonymize the social network. One might consider
further goals. For example, the agent’s goal could be to have that each vertex
will have at least k−1 other vertices with the same neighborhood structure.
As another example, one might require from the agent to preserve some
properties of the social network. Indeed, this is done to some extent in Chap-
ter 6, by requiring pairwise distances, connectivity, and the diameter of the
graph to be preserved. This is also done to some extent in Chapter 5, by
requiring the winner of the election to be preserved. Naturally, one might
consider further properties to be preserved.

On a different note, it is natural to require from the agent to only approx-
imate its goal. That is, while there are some approximation algorithms
in this thesis, devising more approximation algorithms for the problems
considered here is a natural direction for future research.

Assuming stronger adversaries, pursuing harder goals, and allowing different
sets of operations, might help in bridging the modeling gap between real-world
problems and their mathematical abstractions. That is, pushing the goals of our
agents and allowing them to perform more complex operations might render the
algorithms to be developed for these problems more practical and useful.

256

We now take a different general perspective on the contents of this thesis,
concentrating on the topics which were studied. Specifically, the aim of the study
conducted here can be, abstractly, described as follows.

“bringing the study of manipulating elections to social networks
and

bringing the study of anonymizing social networks to social choice”.

This view suggests some further routes for future research.

From social choice to social networks. One of the main goals of Chapter 3
and Chapter 4 is to lift the existing research on control and bribery in
social choice to a more general (and, therefore, more applicable) scenario;
specifically, to a scenario where an elections is held over an underlying
social network.

Indeed, the models suggested in Chapter 3 and in Chapter 4 only scratch
the surface of understanding the complexity of manipulating elections over
social networks. Two orthogonal ingredients come to play here: (1) the
mathematical structures modeling the interactions between the entities
participating in the elections, and (2) how these mathematical structures
define the interactions between these entities.

The mathematical structures. In Chapter 3 and Chapter 4, the mathemat-
ical structures studied are basically sets of voters or candidates that, to
some extent, behave similarly. One future research direction is then to
expand this research to additional mathematical structures. The most
natural structures are maybe graphs, that is, general graphs or different
graph classes. As another example, it might also be interesting to consider
hypergraphs: hypergraphs are more general than graphs, and can model
the well-motivated scenario where groups of voters or candidates interact
with other groups of voters or candidates.

The interactions. In Chapter 3, each candidate is associated with a set
of candidates, such that whenever a candidate is added to the election,
each candidate in his associated set of candidates is also added to the
election. This is, perhaps, the simplest way of defining interactions between
candidates, based on these sets of candidates. A more complex type of
interaction might be, for example, to assume that whenever a candidate is
added to the election, each candidate in his associated set of candidates is
added to the election with a certain probability.

257

Further, if some candidates are indeed added as a result, then the can-
didates in their associated sets are added to the election, with a certain,
possibly diminishing, probability. More generally, it is worth studying how
actions which manipulate elections propagate through social networks. For
example, assume that a diffusion process begins whenever a voter changes
her vote. This study is closely related to the study of diffusion in social
networks, but where the information which is propagated is related to a
given election.

From social networks to social choice. One of the main goals in Chapter 5
is to lift the existing research on anonymizing social networks to a different
scenario; specifically, to a scenario where data regarding an election is to be
published. Indeed, privacy is well-studied in the context of social networks,
but less studied in the context of elections and social choice. As elections
are interesting and important structures, there is certainly more room for
research on privacy in elections.

Another example where a concept from social choice is used in the context
of social networks is the study of degree anonymization by vertex cloning,
described in Chapter 6: the concept of cloning is used quite extensively in
social choice.

Indeed, bringing more concepts from social choice to the study of social networks
and vice versa might be fruitful.

Finally, we take a last general perspective on the contents of this thesis, con-
centrating on the methods. This thesis is mainly concerned with parameterized
algorithms and (to a smaller extent) approximation algorithms. It is natural
to further investigate the approximability of the problems considered here. An-
other route to take is to consider randomized algorithms, which might sometimes
return a wrong answer, or might have only probabilistic running time guarantees.

A further research direction is to study game-theoretic aspects of the problems
considered here. The computational problems studied here assume only one agent,
and concentrate on the hardness of achieving the goals of this agent. It might be
interesting to assume several agents, and so, to study games of manipulation and
anonymization in social choice and social networks.

258

8.2. Concluding Remarks
My aim in this thesis was to devise efficient algorithms and understand the com-
putational complexity of some combinatorial problems regarding manipulation
and anonymization in social choice and social networks. My goal was always
two-fold: to devise efficient algorithms and to gain a better understanding of the
structure of these problems.

It turned out that most of the computational problems I considered in this
thesis are NP-hard (and sometimes even hard to approximate). Most of the
times, in order to cope with this intractability, I considered parameterizations
of these problems. Using the framework of parameterized complexity, I could
devise parameterized algorithms for some special cases and gain an even better
understanding of the structure of these problems.

From this point of view, each chapter can be seen as a quest for tractability;
specifically, as a quest for finding special cases and parameters for which the prob-
lems considered become tractable, with the goal of devising efficient algorithms
for these special cases and parameterizations.

Indeed, the framework of parameterized complexity fits well with the problems
I considered. First, there are several natural parameters, motivated by real-
world scenarios, for most of the problems. Second, most of these problems are of
high intractability (indeed, some are even non-approximable), but some of them
“break-down” when certain parameters are assumed to be small.

The combinatorial problems I considered are mathematical abstractions of
real-world problems related to social choice and social networks. Social choice
and social networks provide a fertile ground for scientific exploration, among
other fields, also in the study of algorithms and computational complexity.

Hopefully, this thesis might serve as a bridge between research done on so-
cial choice (specifically on manipulating elections) and research done on social
networks (specifically on anonymizing social networks) and might stimulate
interesting future research.

I hope that this thesis also sheds light on the border between tractability and
intractability for some interesting combinatorial problems regarding social choice
and social networks, and that the results give some hope for efficient and exact
algorithms, even for problems that seem highly intractable at first sight.

259

Bibliography

[1] Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders
Yeo. Solving MAX-r-SAT above a tight lower bound. Algorithmica, 61(3):
638–655, 2011. (cited on 191)

[2] K. Arrow, A. Sen, and K. Suzumura, editors. Handbook of Social Choice
and Welfare. Elsevier, 2002. (cited on 19, 186)

[3] Takao Asano and Tomio Hirata. Edge-contraction problems. Journal of
Computer and System Sciences, 26(2):197–208, 1983. (cited on 231)

[4] Tomer Ashur and Orr Dunkelman. Poster: On the anonymity of Israel’s
general elections. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security (CCS ’13), pages 1399–1402. ACM,
2013. (cited on 170)

[5] John J. Bartholdi, III, Craig A. Tovey, and Michael A. Trick. How hard is
it to control an election. Mathematical and Computer Modelling, 16(8–9):
27–40, 1992. (cited on 28, 31, 32, 35, 108)

[6] Dorothea Baumeister, Piotr Faliszewski, Jérôme Lang, and Jörg Rothe.
Campaigns for lazy voters: Truncated ballots. In Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS ’12), pages 577–584. IFAAMAS, 2012. (cited on 108)

[7] Cristina Bazgan and André Nichterlein. Parameterized inapproximability
of degree anonymization. In Proceedings of the 9th International Sympo-
sium on Parameterized and Exact Computation (IPEC ’14), volume 8894 of
LNCS, pages 75–84. Springer, 2014. (cited on 254)

[8] Rémy Belmonte, Petr A. Golovach, Pim van’t Hof, and Daniël Paulusma.
Parameterized complexity of three edge contraction problems with degree
constraints. Acta Informatica, 51(7):473–497, 2014. (cited on 232)

261

[9] Nadja Betzler and Johannes Uhlmann. Parameterized complexity of candi-
date control in elections and related digraph problems. Theoretical Com-
puter Science, 410(52):5425–5442, 2009. (cited on 32, 35, 38)

[10] Nadja Betzler, Jiong Guo, and Rolf Niedermeier. Parameterized compu-
tational complexity of Dodgson and Young elections. Information and
Computation, 208(2):165–177, 2010. (cited on 32)

[11] Nadja Betzler, Robert Bredereck, Jiehua Chen, and Rolf Niedermeier.
Studies in computational aspects of voting—a parameterized complexity
perspective. In The Multivariate Algorithmic Revolution and Beyond,
volume 7370 of LNCS, pages 318–363. Springer, 2012. (cited on 32)

[12] René van Bevern, Robert Bredereck, Jiehua Chen, Vincent Froese, Rolf
Niedermeier, and Gerhard J. Woeginger. Network-based vertex dissolution.
SIAM Journal on Discrete Mathematics, 29(2):888–914, 2015. (cited on
253)

[13] René van Bevern, Jiehua Chen, Falk Hüffner, Stefan Kratsch, Nimrod
Talmon, and Gerhard J. Woeginger. Approximability and parameterized
complexity of multicover by c-intervals. Information Processing Letters,
115(10):744–749, 2015. (cited on xii)

[14] Therese Biedl, Franz J. Brandenburg, and Xiaotie Deng. On the complexity
of crossings in permutations. Discrete Mathematics, 309(7):1813–1823,
2009. (cited on 180)

[15] Leyla Bilge, Thorsten Strufe, Davide Balzarotti, and Engin Kirda. All
your contacts are belong to us: automated identity theft attacks on social
networks. In Proceedings of the 18th International Conference on World
Wide Web (WWW ’09), pages 551–560. ACM, 2009. (cited on 191)

[16] Daniel Binkele-Raible, Henning Fernau, Fedor V. Fomin, Daniel Loksh-
tanov, Saket Saurabh, and Yngve Villanger. Kernel(s) for problems with no
kernel: On out-trees with many leaves. ACM Transactions on Algorithms,
8(4):38, 2012. (cited on 68)

[17] Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos,
and David Poole. CP-nets: A tool for representing and reasoning with
conditional ceteris paribus preference statements. Journal of Artifical
Intelligence Research, 21:135–191, 2004. (cited on 32, 108)

262

[18] S. Brams and P. Fishburn. Voting procedures. In K. Arrow, A. Sen, and
K. Suzumura, editors, Handbook of Social Choice and Welfare, Volume 1,
pages 173–236. Elsevier, 2002. (cited on 8)

[19] Felix Brandt, Markus Brill, Edith Hemaspaandra, and Lane A. Hemas-
paandra. Bypassing combinatorial protections: Polynomial-time algorithms
for single-peaked electorates. In Proceedings of the 24th AAAI Conference
on Artificial Intelligence (AAAI ’10), pages 715–722, 2010. (cited on 31)

[20] Felix Brandt, Paul Harrenstein, Keyvan Kardel, and Hans Georg Seedig.
It only takes a few: On the hardness of voting with a constant number of
agents. In Proceedings of the 2013 International Conference on Autonomous
Agents and Multiagent Systems (AAMAS ’13), pages 375–382. IFAAMAS,
2013. (cited on 28, 32)

[21] Robert Bredereck and Nimrod Talmon. NP-hardness of two edge cover
generalizations with applications to control and bribery for approval voting.
Information Processing Letters, 2015. (cited on xi)

[22] Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, and Nimrod Talmon.
Large-scale election campaigns: Combinatorial shift bribery. Journal of
Artifical Intelligence Research, . (cited on xiii)

[23] Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, and Nimrod Talmon.
Complexity of shift bribery in committee elections. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI ’16), . (cited
on 130)

[24] Robert Bredereck, Sepp Hartung, André Nichterlein, and Gerhard J. Woeg-
inger. The complexity of finding a large subgraph under anonymity con-
straints. In Proceedings of the 24th International Symposium Algorithms
and Computation (ISSAC ’13), volume 8283 of LNCS, pages 152–162.
Springer, 2013. (cited on 190)

[25] Robert Bredereck, André Nichterlein, and Rolf Niedermeier. Pattern-
guided k-anonymity. Algorithms, 6(4):678–701, 2013. (cited on 170)

[26] Robert Bredereck, Jiehua Chen, Piotr Faliszewski, Jiong Guo, Rolf Nie-
dermeier, and Gerhard J. Woeginger. Parameterized algorithmics for com-
putational social choice: nine research challenges. Tsinghua Science and
Technology, 19(4):358–373, 2014. (cited on 19)

263

[27] Robert Bredereck, Jiehua Chen, Piotr Faliszewski, André Nichterlein,
and Rolf Niedermeier. Prices matter for the parameterized complexity
of shift bribery. In Proceedings of the 28th AAAI Conference on Artificial
Intelligence (AAAI ’14), pages 1398–1404, July 2014. (cited on 32, 106, 107,
108, 111, 118, 130)

[28] Robert Bredereck, Vincent Froese, Sepp Hartung, André Nichterlein, Rolf
Niedermeier, and Nimrod Talmon. The complexity of degree anonymization
by vertex addition. In Proceedings of the 10th International Conference on
Algorithmic Aspects in Information and Management (AAIM ’14), volume
8546 of LNCS, pages 44–55. Springer, 2014. (cited on viii, x, xii)

[29] Robert Bredereck, André Nichterlein, Rolf Niedermeier, and Geevarghese
Philip. The effect of homogeneity on the computational complexity of
combinatorial data anonymization. Data Mining and Knowledge Discovery,
28(1):65–91, 2014. (cited on 170)

[30] Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, Piotr Skowron,
and Nimrod Talmon. Elections with few candidates: Prices, weights, and
covering problems. In Proceedings of the 4th International Conference
on Algorithmic Decision Theory (ADT ’15), volume 9346 of LNCS, pages
414–431. Springer, 2015. (cited on xi, 137)

[31] Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, and Nimrod Talmon.
Large-scale election campaigns: Combinatorial shift bribery. In Proceedings
of the 2015 International Conference on Autonomous Agents and Multiagent
Systems (AAMAS ’15), pages 67–75. IFAAMAS, 2015. (cited on vii, ix)

[32] Robert Bredereck, Vincent Froese, Sepp Hartung, André Nichterlein, Rolf
Niedermeier, and Nimrod Talmon. The complexity of degree anonymization
by vertex addition. Theoretical Computer Science, 2015. (cited on xii)

[33] Laurent Bulteau, Jiehua Chen, Piotr Faliszewski, Rolf Niedermeier, and
Nimrod Talmon. Combinatorial voter control in elections. Theoretical
Computer Science, 589:99–120, 2015. (cited on xi, 28, 33, 108, 120, 123,
144)

[34] Laurent Bulteau, Stefan Fafianie, Vincent Froese, Rolf Niedermeier, and
Nimrod Talmon. The complexity of finding effectors. In Proceedings of the

264

12th Annual Conference on Theory and Applications of Models of Compu-
tation (TAMC ’15), volume 9076 of LNCS, pages 224–235. Springer, 2015.
(cited on xi)

[35] Laurent Bulteau, Vincent Froese, and Nimrod Talmon. Multi-player diffu-
sion games on graph classes. In Proceedings of the 12th Annual Conference
on Theory and Applications of Models of Computation (TAMC ’15), volume
9076 of LNCS, pages 200–211. Springer, 2015. (cited on xi)

[36] Leizhen Cai. Parameterized complexity of cardinality constrained opti-
mization problems. The Computer Journal, 51(1):102–121, 2008. (cited on
245)

[37] Leizhen Cai, Siu Man Chan, and Siu On Chan. Random separation: A new
method for solving fixed-cardinality optimization problems. In Proceedings
of the 2nd International Workshop on Parameterized and Exact Compu-
tation (IPEC ’06), volume 4169 of LNCS, pages 239–250. Springer, 2006.
(cited on 249)

[38] David Cary. Estimating the margin of victory for instant-runoff voting.
Presented at the 2011 Electronic Voting Technology Workshop/Workshop
on Trustworthy Elections, 2011. (cited on 108)

[39] Jordi Casas-Roma, Jordi Herrera-Joancomartí, and Vicenç Torra. An
algorithm for k-degree anonymity on large networks. In Proceedings of the
2013 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM ’13), pages 671–675. ACM, 2013. (cited on
190)

[40] David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981. (cited on
169)

[41] Jiehua Chen, Piotr Faliszewski, Rolf Niedermeier, and Nimrod Talmon.
Combinatorial voter control in elections. In Proceedings of the 39th Inter-
national Symposium on Mathematical Foundations of Computer Science
(MFCS ’14), volume 8635 of LNCS, pages 153–164. Springer, 2014. (cited
on xi, xiii, 32, 108)

[42] Jiehua Chen, Piotr Faliszewski, Rolf Niedermeier, and Nimrod Talmon.
Elections with few voters: Candidate control can be easy. In Proceedings

265

of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI ’15),
pages 2045–2051, 2015. (cited on vii, ix, xiii)

[43] Yiling Chen, Stephen Chong, Ian A. Kash, Tal Moran, and Salil Vadhan.
Truthful mechanisms for agents that value privacy. In Proceedings of the
14th ACM Conference on Electronic Commerce (EC ’13), pages 215–232.
ACM, 2013. (cited on 170)

[44] Sean Chester, Bruce M. Kapron, Ganesh Ramesh, Gautam Srivastava,
Alex Thomo, and S. Venkatesh. Why Waldo befriended the dummy? k-
anonymization of social networks with pseudo-nodes. Social Network
Analysis and Mining, 3(3):381–399, 2013. (cited on 189, 190, 191, 192, 220)

[45] Sean Chester, Bruce M. Kapron, Gautam Srivastava, and S Venkatesh.
Complexity of social network anonymization. Social Network Analysis and
Mining, 3(2):151–166, 2013. (cited on 220)

[46] Kenneth L. Clarkson, Kun Liu, and Evimaria Terzi. Towards identity
anonymization in social networks. In Link Mining: Models, Algorithms,
and Applications, pages 359–385. Springer, 2010. (cited on 190)

[47] Chris Clifton and Tamir Tassa. On syntactic anonymity and differential
privacy. In Proceedings of the 29th International Conference on Data
Engineering Workshops (ICDE Workshops ’13), pages 88–93. IEEE, 2013.
(cited on 168)

[48] Vincent Conitzer. Should social network structure be taken into account in
elections? Mathematical Social Sciences, 64(1):100–102, 2012. (cited on 32)

[49] Vincent Conitzer. The maximum likelihood approach to voting on social
networks. In Proceedings of the 51st Annual Allerton Conference on Com-
munication, Control, and Computing (ALLERTON ’13), pages 1482–1487.
IEEE, 2013. (cited on 32)

[50] Vincent Conitzer, Tuomas Sandholm, and Jérôme Lang. When are elections
with few candidates hard to manipulate? Journal of the ACM, 54(3):14,
2007. (cited on 28)

[51] Vincent Conitzer, Jérôme Lang, and Lirong Xia. How hard is it to control
sequential elections via the agenda? In Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence (IJCAI ’10), pages 103–108.
AAAI Press, 2009. (cited on 108)

266

[52] Edouard Cuvelier, Olivier Pereira, and Thomas Peters. Election verifiability
or ballot privacy: Do we need to choose? In Proceedings of the 18th
European Symposium on Research in Computer Security (ESORICS ’13),
volume 8134 of LNCS, pages 481–498. Springer, 2013. (cited on 170)

[53] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel
Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameter-
ized algorithms, 2015. (cited on 14)

[54] Daniel Delling, Robert Görke, Christian Schulz, and Dorothea Wagner.
Orca reduction and contraction graph clustering. In Proceedings of the
5th International Conference on Algorithmic Aspects in Information and
Management (AAIM ’09), volume 5564 of LNCS, pages 152–165. Springer,
2009. (cited on 231)

[55] Reinhard Diestel. Graph Theory. Springer, 2010. (cited on 17, 237)

[56] Britta Dorn and Ildikó Schlotter. Multivariate complexity analysis of swap
bribery. Algorithmica, 64(1):126–151, 2012. (cited on 32, 108)

[57] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013. (cited on 14, 15, 22, 23, 40, 124, 128, 145, 197,
198, 221, 244, 245)

[58] Bhaskar Dutta, Matthew O. Jackson, and Michel Le Breton. Strategic
candidacy and voting procedures. Econometrica, 69(4):1013–1037, 2001.
(cited on 30)

[59] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential
privacy. Theoretical Computer Science, 9(3-4):211–407, 2013. (cited on 168)

[60] Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. Rank
aggregation methods for the web. In Proceedings of the 10th International
Conference on World Wide Web (WWW ’01), pages 613–622. ACM, 2001.
(cited on 29, 180)

[61] Edith Elkind and Piotr Faliszewski. Approximation algorithms for cam-
paign management. In Proceedings of the 6th International Workshop On
Internet And Network Economics (WINE ’10), volume 6484 of LNCS, pages
473–482. Springer, 2010. (cited on 106, 107, 108, 111, 118, 119, 137, 138,
139)

267

[62] Edith Elkind, Piotr Faliszewski, and Arkadii Slinko. Swap bribery. In
Proceedings of the 2nd International Symposium on Algorithmic Game
Theory (SAGT ’09), volume 5814 of LNCS, pages 299–310. Springer, 2009.
(cited on 106, 107, 108, 111, 118, 119, 137, 138)

[63] Edith Elkind, Piotr Faliszewski, and Arkadii Slinko. Distance rationaliza-
tion of voting rules. Social Choice and Welfare, pages 1–33, 2010. (cited on
185)

[64] Edith Elkind, Piotr Faliszewski, and Arkadii Slinko. On the role of dis-
tances in defining voting rules. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS ’10),
pages 375–382. IFAAMAS, 2010. (cited on 168, 170, 179, 181)

[65] Edith Elkind, Piotr Faliszewski, and Arkadii Slinko. Cloning in elections:
Finding the possible winners. Journal of Artificial Intelligence Research,
42:529–573, 2011. (cited on 35)

[66] Edith Elkind, Piotr Faliszewski, and Arkadii Slinko. Clone structures
in voters’ preferences. In Proceedings of the 13th ACM Conference on
Electronic Commerce (EC ’12), pages 496–513, 2012. (cited on 191)

[67] Gábor Erdélyi, Markus Nowak, and Jörg Rothe. Sincere-strategy
preference-based approval voting fully resists constructive control and
broadly resists destructive control. Mathematical Logic Quarterly, 55(4):
425–443, 2009. (cited on 32)

[68] Gábor Erdélyi, Michael R. Fellows, Jörg Rothe, and Lena Schend. Control
complexity in Bucklin and fallback voting: A theoretical analysis. Journal
of Computer and System Sciences, 81:632–660, 2014. (cited on 31, 75)

[69] Gábor Erdélyi, Michael R Fellows, Jörg Rothe, and Lena Schend. Con-
trol complexity in Bucklin and fallback voting: An experimental analysis.
Journal of Computer and System Sciences, 81:661–670, 2014. (cited on 31,
75)

[70] Gabor Erdélyi, Edith Hemaspaandra, and Lane A. Hemaspaandra. More
natural models of electoral control by partition. In Proceedings of the 4th
International Conference on Algorithmic Decision Theory (ADT ’15), volume
9346 of LNCS, pages 396–413. Springer, 2015. (cited on 32, 33)

268

[71] Paul Erdős and Paul Kelly. The minimal regular graph containing a given
graph. American Mathematics Monthly, 70:1074–1075, 1963. (cited on 200,
202)

[72] Paul Erdős and Tibor Gallai. Graphs with prescribed degrees of vertices
(in Hungarian). Matematikai Lapok, 11:264–274, 1960. (cited on 202)

[73] Piotr Faliszewski and Jörg Rothe. Control and bribery in voting. In
Felix Brandt et al., editor, Handbook of Computational Social Choice,
chapter 7. Cambridge University Press, 2015. To appear. (cited on 28, 31)

[74] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. How
hard is bribery in elections? Journal of Artificial Intelligence Research, 35:
485–532, 2009. (cited on 106, 107)

[75] Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra, and
Jörg Rothe. Llull and Copeland Voting Computationally Resist Bribery
and Constructive Control. Journal of Artificial Intelligence Research, 35:
275–341, 2009. (cited on 28, 32, 35, 38, 107)

[76] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra.
Using complexity to protect elections. Communications of the ACM, 53(11):
74–82, 2010. (cited on 28, 31)

[77] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra.
Multimode control attacks on elections. Journal of Artificial Intelligence
Research, 40:305–351, 2011. (cited on 28, 32, 35, 38, 76, 102)

[78] Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg
Rothe. The shield that never was: Societies with single-peaked preferences
are more open to manipulation and control. Information and Computation,
209(2):89–107, 2011. (cited on 31)

[79] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. The
complexity of manipulative attacks in nearly single-peaked electorates.
Artificial Intelligence, 207:69–99, 2014. (cited on 35)

[80] Piotr Faliszewski, Yannick Reisch, Jörg Rothe, and Lena Schend. Complex-
ity of manipulation, bribery, and campaign management in Bucklin and
fallback voting. In Proceedings of the 13th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS ’14), pages 1357–1358.
IFAAMAS, 2014. (cited on 108)

269

[81] Michael R. Fellows, Danny Hermelin, Frances Rosamond, and Stéphane
Vialette. On the parameterized complexity of multiple-interval graph
problems. Theoretical Computer Science, 410(1):53–61, 2009. (cited on 22)

[82] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer,
2006. (cited on 14, 15)

[83] Harold N. Gabow. An efficient reduction technique for degree-constrained
subgraph and bidirected network flow problems. In Proceedings of the
15th Annual ACM Symposium on Theory of Computing (STOC ’83), pages
448–456. ACM, 1983. (cited on 140)

[84] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, 1979. (cited on 15, 22,
23, 53, 61, 112, 132, 196, 239, 242, 244, 246)

[85] Petr A. Golovach, Pim van’t Hof, and Daniël Paulusma. Obtaining planarity
by contracting few edges. Theoretical Computer Science, 476:38–46, 2013.
(cited on 231)

[86] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster
distance. Theoretical Computer Science, 38:293–306, 1985. (cited on 22,
176)

[87] Sylvain Guillemot and Dániel Marx. A faster FPT algorithm for bipartite
contraction. Information Processing Letters, 113(22):906–912, 2013. (cited
on 231)

[88] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem
kernelization. ACM SIGACT News, 38:31–45, 2007. (cited on 17)

[89] Louis S. Hakimi. On realizability of a set of integers as degrees of the
vertices of a linear graph. Journal of the Society for Industrial & Applied
Mathematics, 10(3):496–506, 1962. (cited on 202)

[90] Sepp Hartung and Nimrod Talmon. The complexity of degree anonymiza-
tion by graph contractions. In Proceedings of the 12th Annual Conference
on Theory and Applications of Models of Computation (TAMC ’15), volume
9076 of LNCS, pages 260–271. Springer, 2015. (cited on viii, x, xii)

270

[91] Sepp Hartung, André Nichterlein, Rolf Niedermeier, and Ondřej Suchỳ. A
refined complexity analysis of degree anonymization in graphs. Information
and Computation, 243:249–262, 2015. (cited on 190, 237, 238, 239, 246)

[92] Vaclav Havel. A remark on the existence of finite graphs. Časopis pro
Pěstování Matematiky, 80(477-480):1253, 1955. (cited on 202)

[93] Noam Hazon, Raz Lin, and Sarit Kraus. How to change a group’s collective
decision? In Proceedings of the Twenty-Third International Joint Confer-
ence on Artificial Intelligence (IJCAI ’13), pages 198–205. AAAI Press, 2013.
(cited on 107)

[94] Pinar Heggernes, Pim Van’t Hof, Benjamin Lévêque, Daniel Lokshtanov,
and Christophe Paul. Contracting graphs to paths and trees. Algorithmica,
68(1):109–132, 2014. (cited on 231)

[95] Edith Hemaspaandra, Lane Hemaspaandra, and Jörg Rothe. Anyone but
him: The complexity of precluding an alternative. Artificial Intelligence,
171(5–6):255–285, 2007. (cited on 31, 32, 35)

[96] Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Hybrid
elections broaden complexity-theoretic resistance to control. Mathematical
Logic Quarterly, 55(4):397–424, 2009. (cited on 31)

[97] Lane A. Hemaspaandra, Rahman Lavaee, and Curtis Menton. Schulze and
ranked-pairs voting are fixed-parameter tractable to bribe, manipulate, and
control. In Proceedings of the 2013 International Conference on Autonomous
Agents and Multiagent Systems (AAMAS ’13), pages 1345–1346. IFAAMAS,
2013. (cited on 28, 32)

[98] Danny Hermelin, Judith Kubitza, Nimrod Talmon, Dvir Shabtay, and
Gerhard J. Woeginger. Scheduling two competing agents when one agent
has significantly fewer jobs. In Proceedings of the 10th International
Symposium on Parameterized and Exact Computation (IPEC ’15), 2015.
(cited on xii)

[99] Heather Hulett, Todd G. Will, and Gerhard J. Woeginger. Multigraph
realizations of degree sequences: Maximization is easy, minimization is
hard. Operations Research Letters, 36(5):594–596, 2008. (cited on 132, 242)

271

[100] Stefan Kratsch. Recent developments in kernelization: A survey. Bulletin
of the EATCS, 113:58–97, 2014. (cited on 17, 191)

[101] Jérôme Lang and Lirong Xia. Voting in combinatorial domains. In Fe-
lix Brandt et al., editor, Handbook of Computational Social Choice, chap-
ter 9. Cambridge University Press, 2015. To appear. (cited on 108)

[102] Jérôme Lang, Nicolas Maudet, and Maria Polukarov. New results on
equilibria in strategic candidacy. In Proceedings of the 6th International
Symposium on Algorithmic Game Theory (SAGT ’13), volume 8146 of LNCS,
pages 13–25. Springer, 2013. (cited on 30)

[103] Jean-Francois Laslier. Tournament Solutions and Majority Voting.
Springer, 1997. (cited on 169)

[104] Hendrik W. Lenstra. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8:538–548, 1983. (cited on 16, 99,
136, 143, 182, 184, 210, 212)

[105] Hong Liu and Daming Zhu. Parameterized complexity of control problems
in maximin election. Information Processing Letters, 110(10):383–388, 2010.
(cited on 32)

[106] Hong Liu, Haodi Feng, Daming Zhu, and Junfeng Luan. Parameterized
computational complexity of control problems in voting systems. Theoretical
Computer Science, 410(27):2746–2753, 2009. (cited on 32)

[107] Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs. In
ACM SIGMOD International Conference on Management of Data (SIGMOD
’08), pages 93–106. ACM, 2008. (cited on 190, 208)

[108] Andrea Loreggia, Nina Narodytska, Francesca Rossi, Brent K. Venable,
and Toby Walsh. Controlling elections by replacing candidates: Theoretical
and experimental results. In Proceedings of the 8th Multidisciplinary
Workshop on Advances in Preference Handling, 2014. (cited on 35, 38)

[109] Xuesong Lu, Yi Song, and Stéphane Bressan. Fast identity anonymization
on graphs. In Proceedings of the 23th International Conference on Database
and Expert Systems Applications (DEXA ’12), volume 7446 of LNCS, pages
281–295. Springer, 2012. (cited on 190)

272

[110] George S. Lueker. Two NP-complete problems in nonnegative integer
programming. Technical report, Computer Science Laboratory, Princeton
University, 1975. (cited on 23, 204)

[111] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthu-
ramakrishnan Venkitasubramaniam. l-diversity: Privacy beyond k-
anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD
’07), 1(1):3, 2007. (cited on 168, 186)

[112] Krzysztof Magiera and Piotr Faliszewski. How hard is control in single-
crossing elections? In Proceedings of the 21st European Conference on
Artificial Intelligence (ECAI ’14), pages 579–584. IOS Press, August 2014.
(cited on 31)

[113] Thomas R. Magrino, Ronald L. Rivest, Emily Shen, and David Wagner.
Computing the margin of victory in IRV elections. Presented at the 2011
Electronic Voting Technology Workshop/Workshop on Trustworthy Elec-
tions, 2011. (cited on 108)

[114] Luke Mathieson and Stefan Szeider. Editing graphs to satisfy degree
constraints: A parameterized approach. Journal of Computer and System
Sciences, 78(1):179–191, 2012. (cited on 150)

[115] Nicholas Mattei, Maria Silvia Pini, Brent K. Venable, and Francesca Rossi.
Bribery in voting over combinatorial domains is easy. In Proceedings of
the 11th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS ’12), pages 1407–1408. IFAAMAS, 2012. (cited on 107,
108)

[116] Nicholas Mattei, Maria Silvia Pini, Francesca Rossi, and Brent K. Venable.
Bribery in voting with CP-nets. Annals of Mathematics and Artificial
Intelligence, 68(1-3):135–160, 2013. (cited on 32)

[117] Nicholas Mattei, Judy Goldsmith, Andrew Klapper, and Martin Mund-
henk. On the complexity of bribery and manipulation in tournaments with
uncertain information. Journal of Applied Logic, 2015. (cited on 107)

[118] Reshef Meir, Ariel D. Procaccia, Jeffrey S. Rosenschein, and Aviv Zohar.
Complexity of strategic behavior in multi-winner elections. Journal of
Artificial Intelligence Research, 33:149–178, 2008. (cited on 31)

273

[119] Curtis Menton. Normalized range voting broadly resists control. Theory of
Computing Systems, 53(4):507–531, 2013. (cited on 32)

[120] Curtis Menton and Preetjot Singh. Control complexity of Schulze voting. In
Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence (IJCAI ’13), pages 286–292. AAAI Press, 2013. (cited on 31, 32)

[121] Adam Meyerson and Ryan Williams. On the complexity of optimal k-
anonymity. In Proceedings of the Twenty-third ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pages 223–228.
ACM, 2004. (cited on 170)

[122] Jayadev Misra and David Gries. A constructive proof of Vizing’s theorem.
Information Processing Letters, 41(3):131–133, 1992. (cited on 54)

[123] Elchanan Mossel, Joe Neeman, and Omer Tamuz. Majority dynamics and
aggregation of information in social networks. Autonomous Agents and
Multi-Agent Systems, 28(3):408–429, 2014. (cited on 33)

[124] Mark Newman. Networks: An Introduction. Oxford University Press, 2010.
(cited on 8, 253)

[125] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Uni-
versity Press, 2006. (cited on 14)

[126] Rolf Niedermeier. Reflections on multivariate algorithmics and problem
parameterization. In Proceedings of the 27th International Symposium on
Theoretical Aspects of Computer Science (STACS ’10), pages 17–32, 2010.
(cited on 15)

[127] Hannu Nurmi, Arto Salomaa, and Lila Santean. Secret ballot elections in
computer networks. Computers & Security, 10(6):553–560, 1991. (cited on
169)

[128] James G. Oxley. Matroid Theory. Oxford University Press, 2006. (cited on
231, 253)

[129] David C. Parkes and Lirong Xia. A complexity-of-strategic-behavior com-
parison between Schulze’s rule and ranked pairs. In Proceedings of the 26th
AAAI Conference on Artificial Intelligence (AAAI ’12), pages 1429–1435,
2012. (cited on 31)

274

[130] Maria Polukarov, Svetlana Obraztsova, Zinovi Rabinovich, Alexander Krug-
lyi, and Nicholas R. Jennings. Convergence to equilibria in strategic
candidacy. In the 2nd Workshop on Exploring Beyond the Worst Case in
Computational Social Choice. Held as part of the 14th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2015), 2015.
(cited on 30)

[131] Ariel D. Procaccia, Nisarg Shah, and Eric Sodomka. Ranked voting on
social networks. In ijcai15, 2015. (cited on 32)

[132] Sridhar Rajagopalan and Vijay V. Vazirani. Primal-dual RNC approxima-
tion algorithms for set cover and covering integer programs. SIAM Journal
on Computing, 28(2):525–540, 1998. (cited on 139)

[133] Yannick Reisch, Jörg Rothe, and Lena Schend. The margin of victory in
Schulze, Cup, and Copeland elections: Complexity of the regular and exact
variants. In Proceedings of the Seventh European Starting AI Researcher
Symposium (STAIRS ’14), volume 264 of Frontiers in Artificial Intelligence
and Applications, pages 250–259. IOS Press, 2014. (cited on 108)

[134] Jörg Rothe and Lena Schend. Challenges to complexity shields that are
supposed to protect elections against manipulation and control: a survey.
Annals of Mathematics and Artificial Intelligence, 68(1–3):161–193, 2013.
(cited on 31)

[135] Alexander Schäfer, Christian Komusiewicz, Hannes Moser, and Rolf Nieder-
meier. Parameterized computational complexity of finding small-diameter
subgraphs. Optimization Letters, 6(5):883–891, 2012. (cited on 68)

[136] Ildikó Schlotter, Piotr Faliszewski, and Edith Elkind. Campaign manage-
ment under approval-driven voting rules. In Proceedings of the 25th AAAI
Conference on Artificial Intelligence (AAAI ’11), pages 726–731, 2011. (cited
on 108)

[137] Michael Sipser. Introduction to the Theory of Computation. Cengage
Learning, 2012. (cited on 1)

[138] Latanya Sweeney. k-anonymity: A model for protecting privacy. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
10:557–570, 2002. (cited on 168, 170)

275

[139] Nimrod Talmon. Privacy in elections: k-anonymizing preference orders. In
Proceedings of the International Symposium on Fundamentals of Compu-
tation Theory (FCT ’15), volume 9210 of LNCS, pages 299–310. Springer,
2015. (cited on viii, ix, xiii)

[140] Johan M. M. van Rooij, Marcel E. van Kooten Niekerk, and Hans L. Bod-
laender. Partition into triangles on bounded degree graphs. Theory of
Computing Systems, 52(4):687–718, 2013. (cited on 23, 247)

[141] Vadim G. Vizing. Critical graphs with a given chromatic class. Metody
Diskretnogo Analiza, 5(1):9–17, 1965. (cited on 54)

[142] Thomas Wolle and Hans L. Bodlaender. A note on edge contraction. Tech-
nical report, Technical Report UU-CS-2004, 2004. (cited on 237)

[143] Lirong Xia. Computing the margin of victory for various voting rules. In
Proceedings of the 13th ACM Conference on Electronic Commerce (EC ’12),
pages 982–999. ACM Press, 2012. (cited on 108)

[144] Lirong Xia and Vincent Conitzer. Strategy-proof voting rules over multi-
issue domains with restricted preferences. In Proceedings of the 6th Inter-
national Workshop on Internet and Network Economics (WINE ’10), volume
6484 of LNCS, pages 402–414. Springer, 2010. (cited on 32)

Schriftenreihe Foundations of computing
Hrsg.: Prof. Dr. Stephan Kreutzer, Prof. Dr. Uwe Nestmann, Prof. Dr. Rolf Niedermeier
ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

01: Bevern, René van: Fixed-Parameter
Linear-Time Algorithms for NP-hard
Graph and Hypergraph Problems Arising
in Industrial Applications. - 2014. - 225 S.
ISBN 978-3-7983-2705-4 (print) EUR 12,00
ISBN 978-3-7983-2706-1 (online)

02: Nichterlein, André:
Degree-Constrained Editing of
Small-Degree Graphs. - 2015. - xiv, 225 S.
ISBN 978-3-7983-2705-4 (print) EUR 12,00
ISBN 978-3-7983-2706-1 (online)

03: Bredereck, Robert: Multivariate
Complexity Analysis of Team Management
Problems. - 2015. - xix, 228 S.
ISBN 978-3-7983-2764-1 (print) EUR 12,00
ISBN 978-3-7983-2765-8 (online)

Al
go

rit
hm

ic
 A

sp
ec

ts
 o

f M
an

ip
ul

ati
on

 a
nd

 A
no

ny
m

iza
tio

n

in
 S

oc
ia

l C
ho

ic
e

an
d

So
ci

al
 N

et
w

or
ks

Universitätsverlag der TU Berlin

Universitätsverlag der TU Berlin

Foundations of computing Volume 4

Nimrod Talmon

Algorithmic Aspects of Manipulation and Anonymization
in Social Choice and Social Networks

This thesis presents a study of several combinatorial problems related to social choice and
social networks. The main concern is their computational complexity, with an emphasis on
their parameterized complexity. As most of these problems are computationally intractable
(that is, NP-hard or even hard to approximate), some restricted cases and parameterizations
for these problems are considered. The goal is to devise exact algorithms for these problems,
which are efficient for considered special cases or when the considered parameters are small,
or to prove that, under widely-accepted assumptions, such algorithms cannot exist. This kind
of study allows the exploration of some boundaries between tractability and intractability.
One type of problems studied in this thesis is about manipulating elections which occur on
top of underlying social networks, connecting either the voters participating in these elections
or the candidates that the voters vote on. The other type of problems studied in this thesis is
concerned with preserving the privacy of the entities of a social network, when the structure of
the network is to be published, or the privacy of the voters of an election, when the preferences
of the voters are to be published.

N

im
ro

d
Ta

lm
on

4

Algorithmic Aspects of Manipulation and Anonymization
in Social Choice and Social Networks

http://verlag.tu-berlin.de

ISBN 978-3-7983-2804-4 (print)
ISBN 978-3-7983-2805-1 (online)

9 783798 328044
I S B N 9 7 8 - 3 - 7 9 8 3 - 2 8 0 4 - 4

Umschlag_Talmon_.FOC_4_jan 2016.indd 1 29.01.2016 13:55:44

	Frontcover
	Title page
	Imprint
	Zusammenfassung
	Abstract
	Preface
	Contents
	1 Introduction
	1.1 Gentle Introduction
	1.2 Not-So-Gentle Introduction

	2 Preliminaries
	2.1 General Notations
	2.2 Parameterized Complexity
	2.3 Graphs and Social Networks
	2.4 Elections and Control
	2.5 Some Useful Computational Problems

	3 Candidate Control
	3.1 Illustrating Example
	3.2 Introduction
	3.3 Specific Preliminaries
	3.4 Multicolored Clique Proof Technique
	3.5 Cubic Vertex Cover Proof Technique
	3.6 Set-Embedding Proof Technique for Combinatorial Variants
	3.7 Signature Proof Technique for Destructive Control
	3.8 Outlook
	Appendix

	4 Combinatorial Shift Bribery
	4.1 Illustrating Example
	4.2 Introduction
	4.3 Specific Preliminaries
	4.4 Overview of Our Results
	4.5 Connection to Combinatorial Control
	4.6 Hardness Results
	4.7 Exact Algorithms
	4.8 Approximation Algorithms
	4.9 Outlook
	Appendix

	5 Anonymizing Elections
	5.1 Illustrating Example
	5.2 Introduction
	5.3 Specific Preliminaries
	5.4 Results
	5.5 Outlook

	6 Degree Anonymization by Vertex Addition
	6.1 Illustrating Example
	6.2 Introduction
	6.3 Specific Preliminaries
	6.4 Constrained Degree Anonymization
	6.5 Plain Degree Anonymization
	6.6 Outlook
	Appendix

	7 Degree Anonymization by Graph Contractions
	7.1 Illustrating Example
	7.2 Introduction
	7.3 Specific Preliminaries
	7.4 NP-Hardness Results
	7.5 General Graphs
	7.6 Bounded-Degree Graphs
	7.7 Outlook

	8 Outlook and Conclusion
	8.1 Outlook
	8.2 Concluding Remarks

	Bibliography
	Backcover

