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Abstract

Nowadays, data visualization plays an important role in geo-spatial data investigations, specifically

in the context of visual exploration at interactive frame rates. Geo-spatial data typically include

geographic information in form of a set of gridded or un-gridded points, where each point identifies a

location on the earth’s surface. A variety of projection methods are in use to re-produce the location

of a specific data point. For example, in contrast to the longitude/latitude projection system, the

UTM (Universal Transverse Mercator) system provides a conformal projected location of the earth

based on a non-linear scaling in both easting and northing. In this work, geo-spatial data such as

terrain or ocean floor data are represented as 2D coordinates, e.g., longitude/latitude, and a number

of associated attributes of measured information such as depth or height, backscattering, sub-bottom

profile information, etc.

Both main and graphical memory capacities are steadily increasing, but so are data sizes. Hence,

current and future storage capacities still lack the ability to handle the targeted enormous data sizes

with proper efficiency. To allow for interactive exploration, the number of rendered objects in most

dynamic approaches is obligated to be below a certain complexity at run time. Fulfilling such goals

requires several techniques to be integrated in our data exploration approach. View-dependency,

LOD (level of detail) representations, and multi-resolution methods form the basis to tackle the

objects redundancy, dynamic data updates, and simplification.

Existing approaches can be classified into two main groups, the ones that operate on irregular

triangular meshes and the ones that operate on regular grids. While irregular triangular meshes

can provide better adaptivity, regular grids can be handled more efficiently. Our approach is to

decouple mesh and data representations such that data management is performed efficiently on

regular grids while mesh rendering is executed using a fixed adaptive triangular mesh in parameter

plane. The triangular mesh is optimized with respect to the projected triangle sizes and shapes.

During interaction we update the mesh by merely adjusting the vertices’ heights, which are queried

from an underlying multi-resolution grid structure. The triangular mesh and the multi-resolution

grid structure are precomputed and cached on the GPU. A tiling strategy is employed for the grid

structure. We are able to generate very high frame rates using triangles with optimized shape in a
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high-quality rendering.

Our approach is applied to different data types as inputs such as terrain data and bathymetry

data. Terrain data include heightfield and color information that is acquired using aerial instruments.

From the given data, hierarchies are generated in a pre-processing step. Bathymetry data are

acquired using multibeam sonar. The measured data include information on the structure and

nature of the ocean floor and gas maps underneath the ocean surface. Data exploration, ocean floor

rendering, and further data visualization methods are employed in an interactive system. Our work

provides highperformance algorithms and evaluates them utilizing synthetic as well as real data

from both terrain and bathymetry measurements. Our contribution in the terrain or ocean floor

rendering field is providing a new and fast method for heightfield exploration and rendering with

frame rates exceeding those of most state-of-the-art approaches while providing optimal triangle

shapes. In particular, using a fixed mesh, some interactive operations do not require data updates.

Moreover, the interactive visual system comprises visualization of backscatter and water column

data incorporated in the final rendering scene, which is a novel visualization task that has not yet

been tackled by the existing 3D visualization systems for bathymetry data such as Fledermaus.



Chapter 1

Introduction

The intellectual takes as a starting point his self and relates the world to his own sen-

sibilities; the scientist accepts an existing field of knowledge and seeks to map out the

unexplored terrain.

Daniel Bell

Geo–spatial information has become ubiquitous and is being used by a large population, e.g.,

via on-line services and geographical information systems. In here, visualization provides important

tools for geo–spatial information analysis and emphasizes the productive communication between

user’s interfaces and the format of the provided information that can be driven from distinct data

sources. Thus, visualization tools allow the users to access and manipulate data for the purpose of

exploration and investigation. In geosciences the visualization tasks include providing methods to

solve some issues such as:

• Identifying the ocean floor characteristics including rocks, minerals, oil, and gas.

• Terrain data rendering with understanding the remote sensing images.

• Representing the uncertainty and the fuzziness of geo–spatial data in which the challenges

could be focused and tackled.

• Introducing tools for interactive analysis purposes.

However, geo–spatial information belongs to a wide field of visualization for different applications.

1



2 1.2. DATA GATHERING

1.1 Geo–spatial Data

The prominent sources of geo–spatial data are embedded in a variety of institutions’ depository

libraries. The majority of those organizations have critical purposes concerning both government

and academic aspects as follows:

• The observation of predestined geographical locations. In here, the essential focus is on the

elevation information implying:

– Landscape planning (plant modeling, city building, and urban).

• The prediction of the natural resources in which the focus is mostly on the depth information.

Thus, ocean floor is the interest of associations as:

– Fishery agencies and organizations for fishing habitat investigation and improvement

where the ocean floor data support the targeted data such as water–column data.

– Offshore drilling companies who are deemed to possess the information of ocean floor

surfaces and sub–surfaces. Those information are the base of any extraction approach of

natural oil, gas, and suchlike minerals.

1.2 Data Gathering

There are a lot of data acquisition methods to gather geo–spatial data including remote sensing

and on–site measurements. In this context, we focus on two applications: terrain data from remote

sensing and ocean data from on–site measurements using multibeams. Therefore, a set of instruments

have been used. The necessity of mapping large swaths of seabed for sediment features and living

organisms as a fundamental step in every scientific benthic management system introduced the

advent of Multibeam Sonar Survey (MSS) systems that are reckoned to be one of the recent acoustic

tools. In principle, MMS technologies stem from a SOund Navigation And Ranging (SONAR)

technique that measures the distance from an object in seabed via sending an acoustic signal,

known as ping, see Figure 1.1 (b), through the water utilizing a transducer that is attached to the

bottom of the vessel. Single Beam Echo Sounders (SBES) measure the amplitude in beams within

a narrow swath. Multibeam Echo Sounders (MBES) systems are used to measure and analyze the
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energy of the returned signals from the ocean floor or any other objects. MBES systems transmit

acoustic waves using transducers that are attached to the hull of the vessel. The transmitted signals

are formed in a fan shape, i.e, a swath. This fan covers an area of the seabed with a range which

is determined depending on the water depth underneath the vessel. Usually, the coverage range

is taken as two to four times the water depth. A set of receivers are also prepared to detect the

returned signals. Mainly, MBES systems measure and record the traveling time of the transmitted

acoustic signals to reach the receivers.

In comparison with SBES, MBES provide an array of sound signals to cover a wide swath, see

Figure 1.1 (a). Thus more accurate sampling at higher resolution is gained.

(a) (b)

Figure 1.1: A wide swath is the result of an MBES technique [14] (a), and for each swath an array
of pings are detected [59] (b).

Data acquisition using SBES relies on the incident of transducers’ pulse emissions on the seabed

and the measurements of the reflected sounds. The reflections provide a variety of data attributes

by recording the amplitude of returning energy.

For example Backscatter (BS) reflections are used to collect the acoustic energy of the received

signals. In this way, one can obtain data by measuring the BS reflection intensity which describes

the ocean floor properties as a thin layer of the ocean bed is penetrated by acoustic signals.
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The resulting data draw the seafloor roughness, i.e., discovering if the bottom has either a rocky

structure or gravels.

In addition to the seabed structure the strength of the reflected energy can recognize the bottom

nature and it distinguishes between soft (such as muddy or sandy) and hard (such as rocky) flat

areas if they have the same roughness.

For analyzing sediments beneath the seafloor surface low–frequency acoustic pulses are sent.

Hence, transmitted signals penetrate seafloor strata. Thus, the reflections of sub–surfaces are re-

ceived by a Sub–Bottom Profiling (SBP) system that produces data sets concerning sediment

structure, or the existence of solid minerals beneath the seafloor surface, see Figure 1.2.

(a) (b)

Figure 1.2: In sub–bottom profiling, an acoustic signal is directed into the seafloor bottom. The
receiver records the energy that is reflected by different layers beneath the surface. Illustration of
seismic reflection profiling [57] (a). Chirp sub–bottom profile of sedimentary layers in Bear Lake,
Idaho-Utah, from data collected September 2002 (USGS Open-File Report 03-150) [66] (b).

SBP systems represent the mapping of the geographical strata of the seabed. This mapping is

meaningful for several applications such as the investigation for the solidity of the seabed to construct

oil platforms.

Water–column data represent another type of reflections which are used for generating global
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information nets based on pre–fetched seafloor characteristics. For instance, if gas seeps are detected

a net for all seep holes is registered and a water column for every location is generated to record the

reflections of gas particles that flow from the seafloor surface upwards, see Figure 1.3.

Figure 1.3: A perspective of the seafloor showing preliminary results of gas seeps detected by NOAA
Ship Okeanos Explorer multibeam sonar in vicinity of Biloxi Dome in Northern Gulf of Mexico.
Gas seep locations are shown as blue dots and are overlaid on the seafloor bathymetry that was
collected [56].

Regarding terrain data, the typical acquisition is presented using a remote sensing technique

which provides us with information without any contact requirements. In this context, one can

refer to the aerial sensors technologies as a new trend for earth sciences including height fields

and agricultural fields. Several instruments are available for remote sensing data acquisition using

satellite, aircraft, spacecraft, and ships.

Such instruments are dedicated to geographic information systems (GIS) that are concerned with

geographical information at an earth’s surface location which is attached to the relative shapes of

features and characteristics. GIS tackles such information as a set of layers including the required

data to fulfill the spatial analyst questionnaire. These layers must contain at least one geo–layer

for determining the geographical location, i.e., longitude/latitude, and another attribute–layer to

incorporate some features of that indicated location. Hence, a Digital Elevation Model (DEM)

arises as one of the most commonly used models to register the height feature of either the terrain

surface alone or considering objects on the terrain as in a Digital Surface Model (DSM). Hence,
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satellite and aerial imagery provide natural color aerial photography for a variety of phenomena of

an area.

1.3 Data Representation

Geo–spatial data are given in multiple formats of information that are acquired by different instru-

ments. Basically, such data can be organized in a set of layers that are composed to represent the

final geo–spatial locations. Every layer captures a specific geographical information with a different

given resolution which means that the layers could not be mapped directly to one map. Thus, using

such layers as input, our work is based on a framework of information layers where those layers are

caching different information but are sampled over one parameter plane.

Our framework presents a definition for the parameter plane as S ∈ R2 where S is an abstract

set of samples. Every sample is defined as {xi; i = 0, ..., n− 1} where n is the number of samples’s

information and let L ∈ R2 where L represents a set of longitude/latitude coordinates, a given

mapping projection function Π : R2 7→ R2 can be defined as: Π(long, lat) = (x0, x1) where long, lat ∈

L , i.e., the first two tuples identify the geometry coordinates layer in R2 space. We consider the

rest of the tuples {xi; i = 2, ..., n} attributes of the geometry location (x0, x1).

In this work, our framework accepts three layers over the parameter plane. The first layer is

for heightfield including both height values in terrain data and depth values in bathymetry data.

The second layer is for color information from satellite images in terrain data or for backscatter

intensity in bathymetry data. In here it is worth mentioning that the original dataset is given in a

gridded format or an ungridded format. For ungridded data resampling and interpolation processes

are requires to make the input of this layer. As the scatter data interpolation technique is part

of our system the original dataset is used directly as input. Another data type for gas seeps, i.e.,

water–column data, is considered in which our goal is visualizing the density distribution of the gas.

1.4 Data Visualization Technologies

Once the data are gathered, a bunch of issues arise in two main aspects: On–demand data loading

at optimal frame rates and detecting the required storage capacity.
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The task of heightfield visualization (or terrain rendering) includes the visual challenges of height-

fields representation that concern mainly producing high–quality of renderings where it is important

to obtain interaction at high frame rates. If the heightfield is rendered using triangulation the ge-

ometries that need to be rendered should be reduced without losing the high–quality rendering. In

here the reduction can be restricted by using a tolerance of a screen–space error. In addition an

optimization for the shapes of the triangles is required to eliminate the possible artifacts. However,

the main challenge for most heightfield navigation systems is the huge amount of data in which each

sample could have additional attributes.

Existing systems can be classified into two categories: grid–based and mesh–based approaches.

Grid–based approaches typically operate on regular quadrilateral grids, which allow for an efficient

data management, as both the parameterization and the neighborhood information are given implic-

itly. All information is stored in form of 2D array–like data structure. Such structures map well to

textures, which makes the grid–based approaches both time– and memory–efficient. As the amount

of data is too large to meet the memory constraints, adaptive grids have been employed that are

generated by applying view–dependency to level–of–detail hierarchies. Handling transitions between

different levels becomes the main issue of these so–called semi–regular approaches. Common schemes

use quadtrees (e.g. [60]) or bintrees (e.g. [20]). A comprehensive survey of these methods and recent

advances is given by Pajarola and Gobbetti [61]. However, all these visualizations are restricted to

samples at regular positions.

Mesh–based approaches, typically, allow for sample points at any location and for any connectiv-

ity between the samples. Thus, they are highly flexible and amend to any feature. Irregular meshes

can produce a minimum complexity model when applying view–dependency. Common schemes are

based on progressive meshes (e.g. [37]), triangular irregular nets (e.g. [13]), and multi–tessellation

(e.g. [27]). However, one needs to explicitly store the locations of the points in the parameter plane

and the connectivity (or neighborhoods) and the information should be captured efficiently in which

it can directly be mapped to graphics hardware. Also, the generation of level–of–detail hierarchies

and handling of adaptive refinement requires more effort.

Our contribution in the field of geo–spatial data visualization is achieved by exploiting several

techniques to introduce interactive visualization and exploration system. The main contribution is
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to visualize heightfields with high quality at highly interactive frame rates. The view–dependency

is integrated in our system to minimize the number of rendered triangles efficiently. The height-

field is also cached in pyramids for LOD representation. As we propose a hybrid approach such

that both mesh and grid are used our main contribution is decoupling the mesh and the heightfield

representations. One of the major features of our approach is that the generated triangular mesh

has fixed structure that is computed depending on an efficient view–dependent layout. Such com-

putations concern optimal triangles in size and shape when the triangles are mapped to the screen

space. Thus, the mesh is sent to the GPU once and it does not change its structure at rendering

time. Furthermore, our approach has another main feature which is the performance such that our

algorithm is fast if it is compared to other approaches with similar quality. In comparison to the

approaches with similar frame rates we are producing lower screen-space error and the shapes of the

triangles are improved.

Our work is also presented to explore and visualize terrain data and bathymetry data interac-

tively. Thereby this system allows:

• The visualization of an additional attribute such that the color mapping of the surface is

integrated with respect to a given texture at almost no cost. Regarding the multibeam data, we

are the first to integrate a volume visualization of water columns in the heightfield visualization

framework.

• The interactive exploration of the data.

• The uncertainty visualization of the height values.

1.5 Outline

In this work, we propose a hybrid approach that uses both meshes and grids by decoupling the

mesh and the heightfield representation. A fixed mesh structure is computed such that the triangles

when mapped to screen space have optimal size and shape. This mesh is kept during rendering and

never changes its structure. The only modification that the mesh undergoes is the change of the

height values at its vertices. The height value updates are governed by the underlying heightfield.

The heightfield, however, is not stored in the mesh structure, but in a multiresolution hierarchy of
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regular grids (stored as textures). During rendering, the proper level of detail is determined by the

size of the triangle.

The proposed approach involves a pre–processing step that generates the optimized mesh struc-

ture and the grid hierarchy. Those preparation steps are described in Chapter 3 and Chapter 4. As

the mesh generation only depends on the ratio of the triangle size to the pixel size of the display

screen, it can be created once, stored in a file, and generally used for all data sets. The grid hierarchy

needs to be created once for each data set. During runtime, the prepared structures can be used to

efficiently and accurately visualize the heightfield data. The runtime steps and the description of

the implementation on the graphics processing unit (GPU) are explained in Chapter 5. Our system

also supports a tiling concept that splits the data into tiles of manageable size and loads the proper

tiles when requested. Our results and experiments are presented and discussed in Chapter 6.

Furthermore, we present our techniques for the visualization of terrain data in Chapter 7 and

for interactive visual analysis of bathymetric data in Chapter 8.

Several visualization techniques are presented and show the ability of our algorithm to exploit

new graphics card features. The implementation results of the presented visualization techniques

show the desired performance. Furthermore, our work can visualize interactively different data of

the same seafloor region in one rendering pass in contrast to existing systems such as the Fledermaus

software. The system design of this work is shown in Figure 1.4.
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Figure 1.4: System design represented in two major steps exploiting both CPU and GPU features.
Mesh generation and data processes in blue color are done in preprocessing step. Vertex texture
fetching in red color is achieved on GPU at run–time step. Mesh vertices are loaded in Vertex Buffer
Object (VBO) and textures are cached in texture memory, both in yellow color, are transmitted to
GPU memory.



Chapter 2

Related Work

This section focuses on the related approaches for heightfield visualization in both surface approx-

imation and data management fields. Heightfield visualization deals with the 3D rendering of data

over a 2D parameter plane using surface models. Sometimes this constellation is also referred to as a

2.5D rendering. In literature, two main streams of work can be reported, namely the ones operating

with irregular surface meshes and the ones operating over a regular grid structure.

In grid–based approaches a grid is considered in a given space and the heightfield is sampled

equidistant. The sample points identify positions that are called nodes. These nodes are the guide

of determining the location of the vertices that are used to generate connected polygonal faces for

surface adaptation. To allow the flexible sampling at any location of the targeted surface mesh–

based approaches presented solutions for generating polygonal meshes such that the sample points

are not building a regular pattern, i.e., the mesh is irregular. Irregular means that the mesh has

faces of varying number of edges and/or vertices with changing valence. Both grid–based approaches

and mesh–based approaches use the concept of view–dependency such that the amount of rendered

geometry is adapted to the size of the geometric primitives (typically triangles) when being projected

onto the screen.

The surface renderings are typically based on rendering polygons, i.e., using an explicit surface

representation. In the ray-casting approaches, the surface is rendered by intersecting viewing rays

with the implicitly defined surface. The implicit representation is given in form of the result of

an interpolation method applied to the heightfield. For heightfields over regular grids, bilinear

interpolation is being used for a piecewise bilinear surface representation.

11



12 2.1. SURFACE APPROXIMATION

2.1 Surface Approximation

Most terrain visualization algorithms are based on triangular meshes for approximating a surface

optimally as it had been examined by Garland et al. [29] and Rossignac et al. [69]. The optimization

of triangular meshes, e.g. [36,75], is distinguished amongst a variety of methods. Regular, irregular,

and semi–regular structures are the primary methods in this context.

2.1.1 Regular Methods

The foremost structure of regular meshes was named a quadtree by Finkel and Bentley [25]. Es-

sentially, the advantages of quadtrees are exploited in an endeavor embedding the hierarchical rep-

resentation. Pajarola [60] attempted to find a solution for displaying the entire targeted scale of

heightfield by adding some extra triangles. This produces a difficult way to convert simple 2D

quadtree to the 3D restricted pattern as it was presented in [76].

Lindstrom [48] presented a restriction using a dependency graph that is built on a regular grid.

Within this graph a set of vertices are created where each vertex depends on two vertices of the

same or the next higher level in the hierarchical quadtree. The main advantage of this dependency is

avoiding a common issue of triangulation subdivision which is cracks. Cracks arise when one of two

triangles that share a common edge is subdivided by inserting a vertex on the edge and if the newly

inserted vertex does not happen to lie on the edge. The newly inserted vertex is, then, referred to

as a hanging node or a T-junction, see Figure 2.3. Thus, the used dependency [48] prevents cracks

by consistently restricting the selected points to attain a matching triangulation. Pajarola [60] used

the dependency graph to construct the restricted quadtree. Here, the points selection is determined

according to an error approximation within a threshold. The approximation error is define by the

vertical distance between the vertices of merged qaudtree nodes to the average elevation of the

vertices of the related parent such that the vertices of each node are its corners.

Another view on the advantages of regular meshes are presented by Gu et al. [31] first, the

sampling where no vertex indices issue rise; second, for more efficient reduction of the geometry

rendering. The cumbersome process at run–time is alleviated via a contribution of parameterized

maps that have suitable structures for involving the graphical parallelism virtue. In this approach the

surface is cut into a set of topological disks. For every disk a 2D image, that is called a 2D map with
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an arbitrary shape, is defined to capture the geometry. The smooth matching of the reconstructed

surface necessitates using the parametrization on the boundary of every image. Hence, cracks are

avoided.

However, Gu et al.’s algorithm met a critical situation of sharp features approximation, see

Figure 2.1, and hence re–meshing approaches are required for tackling the disturbing visual effects.

Such visual effects are often difficult to be integrated in the main algorithm without producing extra

objects.

(a) (b)

Figure 2.1: Sharp features issue presents one of the obstacles of regular mesh–based approaches
as described in Gu et al. [31] (a). Re–meshing approach is one of the possible solutions for sharp
features issue (b).

Lee et al. [46] used parameterized maps (e.g. height fields of terrain) in association with regular

control meshes for achieving efficient simplifications of displaced surfaces, see Figure 2.2.

The undesired visual effect is avoided in our work by optimizing the size of each triangle in

preprocessing stage. This optimization is left to a view–dependent layout that uses a screen resolution

as an estimation factor of sufficiently small triangle size. Moreover, efforts spent on restrictions

regarding cracks and T–junctions issues, see Figure 2.3, are not necessary in the pre–created static
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(a) (b) (c)

Figure 2.2: Control meshes (a) are involved as a tool over a given smooth surface (b) to produce
the more detailed surface (c) that is able to be stored in a compacted parameterized map.

mesh.

Figure 2.3: The common issues of regular meshes are represented as cracks (left), and T–Junction
(right).

Real–time Optimally Adapting Meshes (ROAM) have been presented by Mark Duchaineau et

al. [20] and uses two priority queues to drive split and merge operations; thus, holding the continuous

triangulation was accomplished. The split/merge operations start with a regular mesh and are based

on a binary tree with diodes of right triangles (indicated as A and B in Figure 2.4) as a core where

the fine level of the triangular mesh Li results from the next–coarser level Li−1 using a trivial base

bisection process, see Figure 2.4.

Therefore, two priority queues were utilized to optimize the triangular mesh and to do this task

an error metric is computed for each triangle’s vertex within a bounding volume wedge, as shown

in Figure 2.5. The wedge depends on the comparison between the height value of the screen–space
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Figure 2.4: Split and merge operations over a binary tree, where A and B are the basic diamonds
in all levels [20].

projection and the approximated value of non–optimized triangular mesh.

Figure 2.5: ROAM wedges principle [20]: each vertex v has a position correction geometrically
through a comparison of triangular mesh approximation and screen–space projection.

This process grants the ROAM algorithm the smooth transitions between adjacent triangles

of different levels. Thus, ROAM involves advantages such as frame coherence, that was introduced

earlier in [73], and least number of split/merge operations against optimal mesh albeit the per–vertex

memory requirement is still expensive in the comparison with alike approaches [70]. Moreover, the

aggregate number of triangles is still beyond the planned optimized mesh due to the splitting mission.

Such a mesh structure is a simple enough to present fast rendering but it is worth mentioning
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that in this approach the triangles are sent to the graphics card one by one instead of using more

efficient structure in which the triangles can be sent once to the graphics card. Our approach in

contrast has optimized the number of the well–shaped triangles and send them only once to the

graphics card.

2.1.2 Irregular and Semi–Regular Methods

Irregular triangulation showed advantages of mesh adaptation to avert extra triangles. Irregular

meshes were first used in Triangulated Irregular Nets (TIN) that were introduced by Peucker et

al. [64]. Isenburg et al. [41] implemented TIN using a Delaunay triangulation [13, 34], which re-

quired managing the memory storage efficiently. In semi–regular surface representations a variety of

arbitrary regular polygons are utilized where the polygons vary in shapes to produce semi–regular

meshes with a collection of regular and irregular, i.e., close to regular polygons. Constructing semi–

regular meshes are typically evaluated based on a parameterization map that simplifies the remeshing

stages and facilitates implementing smooth level of detail transitions. The most recent survey of

semi–regular approaches was shown by Pajarola and Gobbetti in [61].

While the irregular meshes minimize the amount of primitives that need to be rendered, the

required approximation error is still concerned with the complexity of data management which has

to produce accurate results but not expensive CPU usage. Therefore, a bunch of techniques were

used to validate the desired advantages of irregular and semi–regular patterns.

2.2 Levels Of Detail (LOD) Techniques

View–dependency builds upon the concept of a level–of–detail (LOD) representation, where the

underlying heightfield is represented at different resolutions. Thus, fulfilling the goal of producing

a triangular mesh with required detail. Basically, the view–dependent concept is that for a given

viewing point the distant objects are rendered in a coarser representation than objects close to

viewing point. Hence, different levels of resolution of the rendered scene are required where one can

store them in a hierarchy for LOD representation. The LOD concept is the fundamental medium to

sustain the interaction over geoscience data exploration as introduced by Clark [10] and Luebke [15].
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A variety of applications borrowed LOD as intrinsic part of their algorithm [3,5,6,9,35,45,54,55,

62,67,74,83]. Lindstrom et al. [48] utilized an LOD algorithm that is based on bottom–up/top–down

strategies to alleviate the complexity of a terrain model by using one large triangle strip. While

the bottom–up traverse of quadtree is made to produce fine triangles for generating more detailed

terrain the top–down traverse is used to merge triangles if the reduction of the accuracy is not

noticeable. Thereby, a decision to subdivide or to merge every mesh’s node with its adjacent nodes

is obtained. This LOD used a screen–space error metric to add more detail until the projected

distance between adjacent vertices becomes smaller than a predefined pixel threshold. However, the

large triangle strip that made the terrain rendering fast and easy meets difficulties as all levels of

detail are created from one quadtree with a complex data structure.

Moreover, along the continuous changing of the viewing pose, the bottom–up strategy suffers

from the perpetual tackling of the visual popping issue which occurs when changing the level of

detail. Thus, a fast geo–morphing algorithm, which uses smoothly animated transitions, is needed

as introduced by Hoppe [37, 38]. Surveys of LOD approaches that are based on regular and semi–

regular geometrical data structures are introduced by [26, 61]. In addition, Tierny et al. [79] made

use of LOD which based on the topological and geometrical analysis aspects to construct the desired

3D meshes.

2.2.1 LOD Transitions Issues

The introduced solutions of LOD strategies are still not enough to support the desired results of

height fields rendering at run–time. Lindstrom et al. [47] proposed a solution, which is called

Continuous Levels of Detail (CLOD), to smooth the transition between the used levels. Basically, the

CLOD algorithm tackles the common issues of LOD based heightfield rendering in order to truncate

the extra objects that result from granularity procedure. Furthermore, to avoid the exhaustive check

for billion of vertices cases extra constraints were involved to focus on each patch solely. Indeed the

patches borders are tackled for both: fast appropriate level of detail detection at run–time as well as

the fidelity matching between adjacent patches whereupon the visual popping effects are eliminated

between the consecutive frames just like in Hoppe’s work [37,38].

LOD and CLOD have yet to incorporate more improvements for avoiding the complexity at
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run–time.

To simplify the rendering, Pajarola [60] captured the heightfield in a long triangle strip instead of

organizing it in a tree that has to be traversed during rendering. However, this necessitates adding

a lot of complexity to the computational aspect.

In comparison, the independency between surface approximation and heightfield representations

is one of the major advantages of our approach in which it contributes to split the complexity of

mesh and heightfield issues, and consequently a simplification of the interactive rendering process

at run–time is achieved.

All view–dependent LOD algorithms focus on the design of the hierarchical structure and the

way of selecting the LOD efficiently. Erikson et al. [24] investigated a way of multiple objects scene

performing a hierarchical design of the scene globally where each object has its own traditional LOD

structure. This approach gained the efficiency in which its static structure can be easily delivered

to the rendering engine and the ability of choosing between high quality or a constant frame–rate.

However, the decision of switching between LODs is still a big challenge for the rendering algo-

rithms as they should invoke either a simple solution for LOD switching and thus visual popping,

T–junctions, and cracks issues will result, or a complex one that requires respectable efforts to avoid

any probable bottlenecks cases.

Moreover, the work of Pajarola [60] employed as well LOD to various patches of the visible quota

of the partitioned scene. Thus, a dynamic scene concept is implemented to the targeted data. In

this approach, the heightfield is stored on hard disk as one file. Accordingly, a complex searching

technique is used to retrieve on-demand data.

On the contrary, our approach prevents such time wasting by caching heightfield in textures that

represent an immediate mediator for data rendering and data exploration.

2.3 Simplification Approaches

View–dependency was proposed as a fundamental feature in the hierarchical LOD design to simplify

the complexity of rendered geometry. Basically, one of the most common works in this field was

the imposters approach that was introduced by Maciel et al. [53]. They attempt to involve several

factors underlying the view–dependency as intrinsic measurement to reduce the objects’ number of



SIMPLIFICATION APPROACHES 19

the rendered scene at a constant frame rate and in an adequate image quality.

The entire scene in the imposters approach is a compound of a set of objects which each has an

LOD in association with texture maps of pre–defined viewpoints. The finite number of viewpoints

are captured via a hemisphere around the entire objects of the scene. This approach depends on the

orthographic projection technique. Thus, producing objects’ images and imposters were achieved at

each viewing direction (i.e. at each sample point). The accuracy was based on an image comparison

and used as an important parameter to build the hierarchical LOD design.

Losasso and Hoppe [50] showed the reliability of rendering large terrain in a given viewpoint upon

a group of predefined clipmaps. The clipmaps are created simply utilizing the viewing distance as

a world–space parameter so that the LOD can be selected over nested regular grids. Depending on

the computation of the screen–space error metric introduced by Cohen [11] Dick et al. [19] create a

threshold in order to choose the appropriate LOD at a specific view–port scene.

Basically, the simplification techniques that have been used in different approaches [1, 12,15,16,

23,33,40,42,43,45,51,52,55,74,80,82] focus on irregular meshes to achieve the desired approximation

without losing neither the targeted frame rate nor the best rendering quality. Hence, an auxiliary

aid can be considered (e.g. texture objects such as in [4,7,53,71,77,81]) to minimize the number of

rendered mesh vertices.

With quadric error metrics validation, Garland and Heckbert [30] achieved worthy simplification

of an irregular mesh model. As in the regular mesh approaches, semi–regular meshes exploit the

parameterized maps to gain the desired adjustable surfaces (e.g. Guskov et al. [32]). Arbitrary

meshes are aimed at in most exploration algorithms, e.g. [17,22,31]. These meshes use an acceptable

error threshold for the coarse mesh pattern in order to speed up the final rendering model.

Progressive Meshes (PM) presented by Hoppe [37] describe a representation of an arbitrary

mesh cM that results from coarser mesh M0 along with a set of n detail records of information

regarding the collapse operation of vertices, see Figure 2.6. PM could be achieved using one mesh

transformation and its inverse instead of applying three mesh transformations: collapse, split, and

swap were presented by Hoppe et al. [39] to minimize an energy function. For efficient visualization,

PM representation used geomorphs to avoid the visual discontinuities between followed meshes.

Afterward, an optimization of PM was introduced in Hoppe’s work [40] to prove that the superiority
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of irregular meshes can be maintained if extra criteria based on viewing (i.e. view frustum, surface

orientation, and screen–space geometric error) are considered over the standard PM transformations.

Moreover, Sander et al. [71] developed the standard PM with the share of a set of textures that are

organized in a pre–defined atlas. Hence, the given mesh is partitioned into charts which are filled

by 2D textures through an appropriate mapping function.

(a) (b) (c) (d)

Figure 2.6: Progressive mesh representation (PM) from a base mesh (a) to the finest mesh (d) [37].

2.4 Mip–mapping Technique

The motivation of several approaches highlighted caching media as an intrinsic challenge of out–

of–core issues which is now mainly based on GPU architecture. Accordingly, texture objects are

being used excessively for offering a straightforward mechanism to directly process the heightfield

values on GPU with interactive manipulation ability. As a consequence, Losasso and Hoppe [50]

organized the terrain in a hierarchical pyramid of textures with trivial power–of–two decimated

maps that followed the LOD principle. Each map is an indicator for one level of detail that is

generated as a uniform 2D grid that facilitates the fast rendering of the triangular mesh. The mesh

vertices are indexed and cached in a strip that is based on an efficient structure for supporting

GPU performance. To render the triangular mesh, a nesting of the pre–constructed maps is applied

according to a given view–point, see Figure 2.7. However, to avoid the visual discontinuity effect,

as in Figure 2.8 (a), between adjacent nested levels’ borders, each map has to consider blending on

both aspects: geometries, see Figure 2.8 (b), and textures, see Figure 2.8 (c), by using the L–Shape

morphing method. The calculation of a view–dependent parameter is the required step to morph
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vertices and texels on GPU. Yet, the algorithm suffers from extra triangles generation especially in

flat areas due to the extreme utilization of uniform primitives through the error analysis step.

Figure 2.7: Clipmaps algorithm representing the advantages of textures on GPU with nested grides
in a given view point [50].

(a) (b) (c)

Figure 2.8: The problem of visual effects between levels (blue regions) (a). The solution for
geometry discontinuity (b) is achieved by texture blending that uses the L–Shape method for a
morphing process (c) [50].

Improvements of the clipmaps algorithm were defined as a set of heuristic parameters in the

hybrid approach that was introduced by Amman et al. [2]. The major parameter is a viewing

threshold to switch between a rendering using triangular mesh approximation and a rendering using

a ray–casting approach.
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Basically, such mapping concept had already been provoked by Tanner et al. [77] in a dynamic

texture management system that addressed a collection of solutions for the common issues of earth

surface rendering in real–time. Hence, the so–called mipmap textures were organized in a pre–defined

hierarchical pyramid.

(a) (b) (c)

Figure 2.9: Different locations of view point over mipmap textures pyramid.

By considering different cases of viewing–point location including near, far, and oblique, see

Figure 2.9, view–dependency technique was exploited to minimize the caching requirements as the

number of the potential accessed texels is reduced when the clipping process truncates the pyramid

according to a logical limit of memory size. Boer [7] exploited the standard mipmapping method to

achieve the rendering of a fast 3–dimensional huge number of objects. However, the storage capacity

is still insufficient against the enormous data in loading and updating processes even with the aid

of GPU incorporations.

2.5 Tiling Technique

Tiling is the process of splitting terrain data to 2D patches. Those patches are similar and able to

be reconnected with smooth appearance. Therefore, mipmaping approaches have been used along

with the advantages of tiling technique where they could tackle each map independently. Hence,

out–of–core data are made on–demand through spreading any huge size of heightfield maps over

tiles that require then merely the algorithm’s authorization to stich tiles in a seamless visual effect

of continuous surface rendering at the real–time of data explorations.

Splitting terrains into independent tiles is used in most region–based approaches (e.g. the virtual

GIS system introduced by Koller et al. [44]) to serve out–of–core data issues. The chunked LOD

algorithm in [81] was introduced in pursuit of organizing the data in a set of LODs and hold them in
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static textures to be reused for similar viewpoints. Various common techniques are also used to settle

issues such as visual popping. Therefore, GPU computations were integrated in the context of using

view–dependency to reduce the computations efforts over CPU and thus supporting the streaming

of out–of–core data. However, the great deal of managing the data in a quadtree structure addressed

the main challenge in the chunked LOD algorithm, see Figure 2.10.

Figure 2.10: Chunked LOD algorithm is embodied in a hierarchy based on quadtree structure [81].

Bösch et al. in their RASTeR approach [8] introduced trade–offs of several common techniques

such as the bintree, the hierarchical quadtree, and the view–dependent error metric computations

for tiling terrains. They first exploit the contribution of the GPU features and second enable out–

of–core data streaming. The fulfilling is achieved using two new concepts K–patches and M–blocks.

K–patches stem from the generation of a bintree semi–regular triangulation as a set of triangle

clusters that is independent from heightfield structure. M–blocks are created as a regular heightfield

quadtree grid. The correlation between K–patches and M–blocks structures, see Figure 2.11, allows

for the integration of GPU computations to use texture objects efficiently. However, the tackling of

the T–junction issue between patches forced the approach to propagate undesirable extra triangles.

Hence, the proposed solution required a consideration of view–dependent error metric computations.

Dick et al. [19] incorporated a GPU coding method to achieve tiling and to avoid the increment

of triangles number and to solve mainly the problem of data streaming for hard disk and memory

accesses. Essentially, the method is based on creating different strips of restricted quadtree meshes

in a compression model that provides a 8–9 factor of reduction in the memory requirements. In
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Figure 2.11: The matching between K–patches bintree structure and M–blocks quadtree heightfield
structure.

a pre–processing step, the heightfield is organized in a hierarchical pyramid that simply contains

power–of–two LODs. The entire domain is created by utilizing a tiling technique where each tile has

a size of 513× 513. However, each tile is meshed separately and thus skirts around the boundary in

each tile are implemented to prevent the occurrence of T–junction cases, see Figure 2.12.

Figure 2.12: T–junction issue is solved using boundary skirts [19].
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2.6 Ray Casting Approaches

The main advantage of ray casting approaches, that is the high quality rendering, becomes the

major challenge for the interactive rendering of terrain data sets. Due to the need of huge efforts for

tackling an accurate rendering and an interactive visualization of large terrain data sets the GPU

becomes the means to accelerate the ray casting algorithms.

Recently Dick et. al. [18] had realized that utilizing an efficient LOD simplifies the combination

of a view–dependency technique and the ray–casting algorithm for sampling the terrain that is

represented as a set of tiled textures. The rays traverse every tile’s bounding box where the rendering

is performed for the back faces of the tile. They used back faces rendering to avoid dealing with

special cases when the viewer stands inside the bounding box. All tiles are rendered in front–to–

back order. Using textures for heightfield tiles allows them to perform the ray casting algorithm on

the GPU. The intersections of the ray casting determine the sampling locations of the texture of

the tile. This technique still suffers from the redundancy of the ray casting steps. Tevs et al. [78]

introduced as well a method for GPU ray–casting intersections over a view–dependent mesh–based

surface rendering. However, developments were added by Dick et al. [18] to implement terrain tiling

in which a large–scale validation of data was performed.

To optimize the ray casting approach Dummer [21] presents a Cone Step Mapping (CSM) tech-

nique based on pre–computed circular cones for performing the heightfield intersections. The maxi-

mum angle of those cones guarantes that there will be no intersections with the heightfield. A cone

is built for every pixel where the tip of the cone is touching the heightfield. Thus, the ray can skip

several steps depending on the cone’s size. The main disadvantage of CSM is using a huge storage

of the hard disk. Therefore, Policarpo and Oliveira [65] replace the CSM technique by the Relaxed

Cone Stepping (RCS) technique to relax the constrains of every cone using a cone map. The cone

map is a depth map that caches the width/height ratios of the cones. The idea of RCS is that the

radius of the cone is extended as long as the ray inside the cone is not intersecting the heightfield

more than once.

However, in all ray casting approaches the complexity is either in the computations or in the huge

storage due to the extreme dependency of the heightfield intersections. Such a problem is avoided

in our work as we made the heightfield optimization independent from the surface approximation.
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The ray casting technique is exploited in our work in the context of virtual mapping to generate an

optimized mesh in both the rendering quality and the storage requirements. The main features of

our approach are the high image quality and the high performance for heightfield rendering and the

interactive visualizations.

2.7 Geo-scientific Data Visualization System

To render, visualize, and analyze geoscience data a set of systems are commonly used for terrain data

and bathymetry data applications (e.g. Fledermaus software and a set of softwares that are produced

by the Computer Aided Resource Information System (CARIS) company). These softwares are very

important tools for geologists and hydrographic surveyors to map multibeams data. The software

of CARIS is used to create charts and maps for specific hydrographic applications which are beyond

the scope of our work and thus we focus on the Fledermaus software.

Fledermaus is a 3D data visualization software for a variety of applications including topographic

and bathymetric data analysis and measurements. It provides a sophisticated tool for interactive

data preparation, analysis, and presentation. This tool allows the user to add images, vertical

imagery, ASCII points and lines, and Electronic Nautical Charts (ENCs), 3D models, Economic and

Social Research Institute (ESRI) shape–files to create a nice scene. Users can navigate the scene

using a 3–button mouse or a 3D navigation device (3DConnexion Space Navigator) in mono– or

stereoscopic mode.

However, there are several limitations in Fledermaus that had been addressed in our work in-

cluding the following:

I. The total performance is enhanced by transmitting most of the work to the GPU and exploit

new graphics card features.

II. Integrating time–sampled bathymetric data (e.g. backscatter, water–column data) in the ren-

dered height/depth scene and supporting interactive visual exploration of the data.

III. Interactive visualization of gas seeps using direct volume rendering.



Chapter 3

Mesh Generation

Our system presents a novel approach based on a decoupling of data management and mesh rep-

resentation. We handle the two aspects individually and optimize both in preparation steps. At

runtime, we bring the components together in an efficient manner.

A triangular mesh is generated relying on a view–dependent layout that is based on perspective

projection. Such a virtual projection is presented by Livny et al. [49] but we do not have the persistent

mapping at each frame. We achieve the projection merely once and at the view–dependent layout

creation which provides one pre–computed mesh. Moreover, to gain a better rendering quality our

approach targets equilateral triangles which are optimized due to circular shape of our layout instead

of squared ones introduced by Losasso and Hoppe [50]. This chapter presents all requirements of

the preprocessing step to generate a constant planar mesh. We show the generation of our view–

dependent layout in detail. Depending on this layout we present the steps of creating a 2D triangular

mesh with well–shaped triangles. Our objective of generating those triangles of (nearly) equilateral

shape is to avoid stretched triangles which may lead to visual artifacts when employing linear

interpolation, e.g., in the rasterization and shading step.

3.1 View–dependent Layout

Our contribution is targeted to generate a view–dependent spherical model in which a flat mesh–

based surface is projected on a spherical surface with unified resolution. Hence, the triangles that

27
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are built using the perspective projection scheme are projected to equilateral triangles of same size

in screen space. As our model creation is done with respect to a flat model, it is independent

of the heightfield data the created mesh does not need any regeneration at run–time. Thus, the

exploration of all regions around viewer location is provided without performing a triangle projection

continuously onto screen space.

3.2 Layout Model Creation

In our work we do the virtual projection that is based on perspective projection by building a view–

dependent spherical model where the viewer is located at the center of this sphere. Hence, the entire

surface of the lower hemisphere is covering all possible views that are surrounding the viewing point

when assuming a flat surface. In this model for every view the screen is at the lower hemisphere

surface. Thus, the generated triangular mesh of the entire landscape has approximately equilateral

triangles when they are projected onto such screens.

To fulfill the layout model creation we suppose that a viewer is located at position V of a given

world–coordinate system. The viewer will be located in the center of a virtual sphere in order to use

the projection only for the lower hemisphere of the model. Thus, we can generate a set of concentric

circles around point S with minimum inclination angle = 0◦ to maximum inclination angle of ≈ 90◦,

see Figure 3.1

The layout model has a parameter plane P that is located at a predefined distance X from

the viewer and the projection plane P ′ is located at a distance x from the viewer, see Figure 3.2.

Assuming that the viewer changes his/her viewing direction and that the distance to the plane P

stays constant, the plane P is a tangential plane to a sphere with radius z around the viewer.

To mimic the perspective projection via two planes P and P ′ a set of viewing rays are sent from

the view point V at constant spacing in spherical coordinates. Hence, we obtain rays separated

by a constant angle ∆(θ) in the inclination angle. In the azimuth direction, we have a continuous

representation to obtain a circle. Later we sample this circle at certain positions when generating

the triangles. Consequently, the rays hit the plane P ′ at the computed osculation points. Those

points identify the concentric circles such that all vertices of the generated triangles lie on the circles
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Figure 3.1: The emulation of perspective projection in our design: it starts with emitting viewing
rays from a viewpoint V and are separated by constant angles θ.

that are perpendicular to the axis connecting the poles.

We assume that the axis connecting the poles is perpendicular to the parameter plane of the

heightfield. When the circles are projected into the projection plane P ′, they generate concentric

circles with radii z = x tan(θ). Those circles generate rings of increasing size due to the distortion

that is the result of the projection of spherical surface. In here, a set of different versions of triangular

meshes can be created in advance on the parameter plane P depending on a simple perspective

projection through the projection plane P ′ and according to the requirements of the targeted data

set.

Note that the viewing rays are not sampling rays as in [49] but they are only used to produce
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Figure 3.2: The concentric circles on the parameter plane maintain their characteristics when mapped
onto the projected (or screen) plane that is parallel to the parameter plane.

the projected circles of the view–dependent layout. The circumferences of those consecutive circles

determine the given samples for our triangulation method.

3.3 Triangular Mesh Generation Using View–dependent Lay-

out

What remains to be done, is to fill the rings with triangles. the rings are formed by two consecutive

concentric circles. To generate approximately equilateral triangles, we start with the first degenerate

one that consists of only one circle and its midpoint. This degenerate ring can be filled with six

equilateral triangles as shown in Figure 3.3 (a) (blue).
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The subsequent ring already has fix vertices on the inner circle, while the vertices on the outer

circle can still be chosen freely. We use the concept of placing for each edge of the inner circle a

vertex on the outer circle that has the same distance to both endpoints of the edge. Those endpoints

of the edge are, then, connected to the new vertex on the outer circle to form a new triangle, see

Figure 3.3 (a) (green). In this way, we generate the same amount of triangles on the current ring that

we had on the preceding ring. As the rings are growing in size, it is necessary to successively increase

the number of triangles per ring. Starting from the already generated triangles on the current ring,

we use the criterion that a new vertex is created, if the angle φ between the edges of two neighboring

newly generated triangles is larger than a given threshold λ. For our implementation, we chose

λ = 90◦.

Hence, each angle is only split once. The new vertex is placed on the outer circle of the current

ring such that it has the same distance to the neighboring vertices on the outer circle. Subsequently,

it is connected with its neighboring vertices on the outer circle and the corresponding vertex on

the inner circle of the current ring, see Figure 3.3 (a) (orange). The resulting triangular mesh is

watertight and uses triangles with a desirable shape, see Figure 3.3 (b).

(a) (b)

Figure 3.3: Triangular mesh construction: The innermost (degenerate) ring is filled with six equi-
lateral triangles (blue) (a). For any other ring, we generate isosceles triangles that match the
next–inner ring’s triangles (green) and fill the space between those triangles with further triangles
(orange). Whether one or two triangles are fitted, depends on an angle criterion: φ is checked versus
a threshold λ. A watertight mesh with triangles of a desirable shape (b).
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3.4 Discussion and Results

The view–dependent layout model guarantees the generation of triangular mesh versions with a set

of advantages involving:

(a) The concept of view–dependent principle is integrated easily which allows us to generate the

minimal number of rendered primitives.

(b) A watertight triangular mesh which is 100% free from any T–junction and cracks issues as the

subdivision scheme is implemented on a 2D mesh version. Thus, no more simplifications are

required at run–time process even after heightfield updates.

(c) The generated triangles (i.e. a well–shaped isosceles triangles) are always close to equilateral

triangles and not producing long isosceles triangles and not even right triangles. A trian-

gle quality parameter RQ is computed to proof the achieved improvements against the right

triangles that are basically used in quadtrees triangulation approaches.

RQ =
ri
ro

(3.4.1)

where ri denotes the radius of the incircle and ro the radius of the circumcircle of a triangle.

Given a triangle ∆ with sides a, b, and c and an area A(∆), we derive that

A(∆) =
1

4

È
4a2b2 − (a2 + b2 − c2)2 ,

ri =
2A(∆)

a+ b+ c
,

ro =
abc

4A(∆)
,

and, consequently, that

RQ =
ri
ro

=
8A(∆)2

(abc)(a+ b+ c)
.

The optimal ratio RQ is obtained for an equilateral triangle with a = b = c = x. The optimal

ratio is computed to

RQ =
8A(∆)2

3x4
= 0.5 .

For the 2D mesh, almost all triangles have a ratio RQ that goes from ≈0.44 to 0.5.
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To compare this finding to the state of the art, we consider semi–regular schemes using

quadtrees or binary triangle subdivision. All those schemes produce (almost) exclusively right

triangles. For a right triangle with a = b = x and c =
√

2x, we obtain the ratio RQ ≈ 0.41.

Hence, the triangles we generate have a better quality than the ones generated by state–of–

the–art semi–regular schemes.

(d) A non–dynamic simple triangular mesh structure allows for an efficient caching of all vertices

on GPU merely once for all frames at run–time instead of the continued manipulating of the

mesh all over the entire frames as it is in Livny et al. work [49].
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Chapter 4

Data Preparation

This chapter is presenting all steps for preparing the given data in a preprocessing stage.

So far, a triangular mesh has been generated independently of the data. It is mapped to the

parameter plane P . Let the vertex position in plane P be defined by the x– and y–components.

During runtime, the z–component of the mesh’s vertices shall be updated using height values of the

data.

4.1 Assumption

For our approach, we assume that the heightfield is given over a parameter plane that is sampled

equidistantly, i.e., the sample locations form a uniform quadrilateral grid. If this is not the case, the

data can be re–sampled to such a structure. As we support a multi–resolution representation, the

re–sampling could be done at a high sampling rate.

4.2 Data Sampling

When achieving sampling process, one can distinguish two main types of the acquired heightfield

data, the structured field which has been already sampled with a given resolution that will be the

finest resolution our algorithm can use, and the unstructured field with raw data that will allow our

algorithm to determine simply the finest resolution.

35



36 4.3. SCATTERED DATA INTERPOLATION

The sampling structure is provided in either a regular grid form or in form of irregular samples

that imply the necessity of re–sampling stage over a regular grid that covers the data domain. The

finest resolution grid is computed by applying a scattered interpolation method.

4.3 Scattered Data Interpolation

Basically, a variety of interpolation methods can be implemented over regularly gridded heightfield

data and the purpose of choosing a specific method is based on the quality and the complexity

requirements of any data exploration algorithm. Accordingly, our algorithm applied the implemen-

tation of high quality data interpolation in an efficient and coherent mechanism of a sophisticated

interpolation technique as introduced by Park et al. [63].

4.3.1 Discrete Sibson Interpolation (DSI)

DSI is the discrete version of the Sibson Interpolation (SI). SI is used for scatter samples to interpolate

any location utilizing the nearby samples, i.e., the natural neighbors. The natural neighbors of any

sample are those samples that are created by Voronoi cells or the result of the connected sides of

Delaunay triangles, more detail of Voronoi diagrams and Delaunay triangles had been presented by

Fortune [28]. For example, in a 2D partition space the SI is computed over a set of sites xi ∈ X as

follows:

F (x) =

X
i

ai F (xi)X
i

ai

where ai is the shared area of the Voronoi cell V (xi) when computing the Voronoi diagram for

X and the Voronoi cell V (x) when computing the Voronoi diagram over X ∪ {x}.

In DSI [63] the computations are simplified where the kdtree is used to get the closest site instead

of using the complex structure of a Voronoi diagram. The efficient computations are done over a

rasterized domain by using a sphere around a raster position i such that the radius of the sphere

is the distance between i and the closest site. To compute the interpolation function value at i all

values of every closest region are accumulated and averaged by the accumulated values number.
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We used DSI to exploit the advantage of smooth surface interpolation using a kd–tree structure

to store the data set. The DSI method is applied in our algorithm at every empty cell of the created

grid. Hence, a set of overlapping circles are depicted with centers ci at every empty cell pi with radii

ri that are determined depending on the distance from the center ci to the nearest filled cell value

ni using a kd–tree. Accordingly, ni is then assigned to each cell within the related circle ci. Let’s

pni be the accumulated value of the filled cell utilizing circle ri and then the accumulated value is

pni = 1
N

mX
i=1

ni where m is the number of overlapping ni values of circle ci and N is the number of

accumulated values, see Figure 4.1.

Figure 4.1: The implementation of DSI method on our algorithm where the colored disks are created
with centers that are located at empty cells and radii that depict the distance from the empty cell to
the nearest filled cell using kdtree search; non–gray dots are the filled cells, gray dots are the empty
cells of the sampled grid; red, blue, green, and yellow dots on the circles’ perimeters are the nearest
filled cell.

Basically, in our work the data set is tiled such that the interpolation scheme is implemented

on all tiles. For large number of tiles the interpolation is implemented on individual tiles. Thus,



38 4.3. SCATTERED DATA INTERPOLATION

we could get not well–stitched tiles. To avoid the occurrence of such problem one can apply the

interpolation process not just to the tile but rather to the tile including all neighborhood tiles that

are touching the tiles’s borders. However, in this context other local simple interpolation methods

are still required in this work.

4.3.2 Inverse Distance Weighting (IDW)

IDW interpolation method is vastly acknowledged for providing such local solution. Indeed, IDW

interpolation method depends only on the influence of the distance parameter to compute the inter-

polation function, e.g. Shepard’s method does the interpolation as follows:

F =
mX
i=1

wi fi (4.3.1)

where m is the number of data points that are used to get the interpolation function value F at

a point of interest, fi are the function values at the data points, and wi is the distance weighting

function that is computed as follows:

wi =
di
−2

mX
j=1

dj
−2

where di is the distance of the i–th data point to the point of interest from the point being interpolated

such that

mX
i=1

wi = 1

However, The IDW interpolation depends on one factor, i.e., the distance function whereas

different other aspects can be involved within the interpolation process to get more confident impacts.

4.3.3 Kriging Interpolation

Kriging interpolation is one of the major techniques that has more sophisticated properties than

those methods that are merely based upon the neighborhood distances from the point being inter-

polated such as in the IDW interpolation method. Essentially, kriging interpolation is synonymous
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with optimal predication and it predicts the unknown value from an observed data at known loca-

tions. The supreme step in the kriging interpolation process is utilizing a variogram that reveals

the spatial variation of a given data set. The predicted values are estimated via their own spatial

distribution and subsequently any eventual error in the prediction operations is minimized.

In comparison to the IDW, kriging is:

1. Similar to (IDW) in considering the distance of the neighbors but with significant investigation

involving:

I) The orientation of the samples that surround the focused node.

II) Releasing different weighting functions for perfect smoothing.

2. Different to IDW in which the samples can be in the manner of clustered data points.

On the one hand, kriging interpolation method exploits the distance property of the IDW method

to emphasize that the influence of close points to the interpolated point is higher than the influence

of far points. On the other hand, it covers the lack information in IDW methods that appears

when a set of points fall on the same searching radius but with different influences based on their

distribution around the target point.

The main step of kriging interpolation is using a variogram model in order to get the variogram

function that will be used in the interpolation equation. The variogram model is chosen from a set of

mathematical functions that describe the spatial distribution of a given data set. To select the model

of best matching one should compare the shape of the curve of a generated experimental variogram

and the shape of the curve of a mathematical function. Therefore, one needs to generate first an

Experimental Variogram (EV). The goal of creating an EV is measuring the similarity degree

between two different variables in spatial context. As a trivial presentation of such a measurement

to the variogram can not be provided, an auxiliary technique is incorporated in this step which is

called the variance analysis process. For a given set of data points X defined with function values

F (X) the semi–variance is computed as:

Γ∗(hj) =
1

2 ·N(hj)

NX
i=1

(F (xi + hj)− F (xi))
2 (4.3.2)
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where N(hj) is the number of observed data points at a delay time that is called lag where

lag = hj . The semi–variance Γ∗(hj) is actually half of the variance 2 · Γ∗(hj). However, the semi–

variance at lag = 0 is solely the correlation since the variance will be computed for the point against

itself.

The following step is the representation of the semi–variogram in a 2D plot with the X–axis

depicting the lags distances and the corresponding calculated semi–variances values on the Y–axis.

The achieved EV characterizes a desired curve to fit the plotted variations with best smoothing

parameters : sill=c, range=r, and nugget effect=n, that are the identifiers of the candidate model

function of the variogram version that is used at an interpolation process. Sill is the location where

the variogram leaves off the model, see Figure 4.2 (blue curve), and has overall scale from 0.0 to 1.0

and it is depicted as 1.0−n. Basically, the semi–variances start with lag = 0 at value zero. However,

due to some error measurements a close to zero variance value results at lag distance lag = 0. Hence,

a nugget effect is often incorporated in the variogram parameters. The lag distance at value c is

the range r which means the distance when the semi–variance becomes constant.

Figure 4.2: A 2D graph representing the variogram of spherical model with X–axis as the lag
distances that uses meters as units and Y–axis as the semi–variance values depicted as the squared
differences and it goes from 0.0 to 1.0 which expressed the parameter Sill = c. c is the value when
the model (blue curve) leaves off and it could have 1.0 value or 1.0− n where Nugget effect = n.
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Variogram and Kriging Interpolation. The parameters r, c, and n are then used in the

variogram model function that is concluded from the experimental variogram. However, the function

is one of the following types:

Nugget: Γ∗hj =

(
0 if |hj | = 0

c Otherwise

Exponential: Γ∗hj = c ·
�

1− e
−3hj

r

�

Spherical: Γ∗hj =

8<: c ·
�

1.5
�
hj

r

�
− 0.5

�
hj

3

�3
�

if |hj | ≤ r

c Otherwise

Gaussian: Γ∗hj = c ·
�

1− e
−3h2

j

r2

�

Power: Γ∗hj = c · htj where 0 < t < 2

Once the variogram is determined, kriging interpolation can be applied using the concluded Γ∗hj

function for every data sample Pi as follows:

Pi =
NX
j=1

(Γ∗hj · Pj) (4.3.3)

where N is the number of samples that used for interpolating Pi sample and

NX
j=1

Γ∗hj = 1 (4.3.4)
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4.4 Hierarchy Pyramid

We assume that the data are given in form of 2n·k× 2n·l height values, where k, l, and n are natural

numbers. The exponent n indicates the number of hierarchy levels. The numbers k× l is the size of

the coarsest level.

Starting from the finest level with 2n·k × 2n·l samples, we take groups of 2× 2 samples’ cells and

compute the height values utilizing the numbers of real values in each cell as:

Hk =
PN,N

i=1,j=1(nij ·Hij) where k is the level number; N = 2k is the number of the cells in one

direction of the highest resolution grid; nij is the number of real values of the cell with index ij; and

Hij is a height value that is taken from the highest resolution level. The new height value is then

used for the next–coarser level. The coarsening step is applied simultaneously to all samples such

that we create 2(n−1)·k × 2(n−1)·l samples. This procedure is iterated until we get to the coarsest

level. Note that no adaptive data refinement is necessary for our approach. Moreover, the data

representation is that of a piecewise constant height function.

4.5 Tiling Technique

The tiling technique is implemented in our approach in order to divide the huge heightfield domain

to different tiles and store them on the hard disk. Our tiling model organizes the prepared tiles in

a squared matrix in which the center of the tiles will be loaded to the GPU memory and the next

frame of tiles will be loaded to the main memory. The rest of the tiles will stay on the hard disk

until they are queried at run–time.

4.5.1 Tiling Model

The model is designed as a square matrix of tiles T(m,n) which is expressed as T = [tij ]m×n where

i = 1, ...,m is the index of the tiles on rows and j = 1, ..., n is the index of the tiles on columns and

m = n. For instance a matrix T(m,n) with m = 7 and n = 7 is depicted as follows:
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T =

GPU+Mainz }| {266666666666664

t00 t01 t02 t03 t04 t05 t06

t10 t11 t12 t03 t04 t15 t16

t20 t21 t22 t23 t24 t25 t26

t30 t31 t32 t33 t34 t35 t36

t40 t41 t42 t43 t44 t45 t46

t50 t51 t52 t53 t54 t55 t56

t60 t61 t62 t63 t64 t65 t66

377777777777775
(4.5.1)

Matrix T consists of two main components; one is a matrix TGPU [tij ]3×3 which is the inner part

of the matrix T that is colored in green; and the other one is the outer frame of the matrix T which

is colored in blue. Once the matrix T is loaded to the main memory, TGPU is cached in the GPU

memory leaving an opportunity for preceding loading of on–demand queried tiles from hard disk

storage space. The default location of the viewing point Pv is in the center of the matrix TGPU and

in this context the element TGPU [tij ]3×3 for i = 3 and j = 3 is used in Equation 4.5.1. For that

reason, the viewing spot occupies an area within the tile t33 wherein the starting state is a vertical

top–view above the rendered data. To allow for a fast navigation through the tiles and avoid stalling

due to GPU–main memories transmissions, the set of tiles tij with i, j ∈ [2, 4] that form a frame

surrounding the tile t33, are cached on the GPU memory at the start state as well.

4.6 Discussion and Results

As the targeted data could be provided in both types gridded and un–gridded, we can create in more

flexible situation the desired resolution over a grid of un–gridded data and the work will be restricted

to the given resolution over a gridded data. However, as the interpolation process is included in

the preparation stage of our algorithm, different interpolation methods could be utilized either

regardless the consumption time and focusing on the quality (e.g DSI interpolation technique), or

medium quality (e.g IDW interpolation method), or acknowledging the efficiency in time and quality

simultaneously (e.g kriging interpolation method). Figure 4.3 shows the result of the experimental

variogram and different fitting curves to extract the best approximation function (in this example

Gaussian curve) for the final variogram and kriging interpolation.
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Figure 4.3: An experimental variogram of Black See Ereğli data (pink) as example with different
approximation functions to show the best curve that fits the semivariance smoothly. Nugget effect
is depicted in gold color, exponential function curve in blue color, spherical function curve in cyan
color, Gaussian function curve in green, and power function curve in coral color.

Moreover, the layers in the hierarchy pyramids constructing stage are made up ever of the highest

resolution layer with the real number of data points and hence any produced smoothing does not

involve the effect from previous constructed layers.



Chapter 5

Interactive Visualization of
Gridded Heightfield Using
Pre–computed Mesh

In the runtime stage, the decoupled mesh and data representations are brought together. We always

render the same mesh with varying height values. Hence, the x– and y–parameter plane positions

of the vertices never change, nor changes the mesh connectivity. This approach entails various

advantages.

I. We always have a continuous, watertight mesh representation.

II. The triangle shapes are well–behaved (unless we have sudden dramatic changes in the height

values, where long, stretched triangles cannot be avoided when using a parameterization over

a plane; this issue is discussed in more detail in Section 5.8).

III. The triangles can be stored on the GPU, effectively avoiding CPU–GPU transition.

IV. The translations in different viewer positions over the captured data in GPU memory are free

from heightfield loading processes.

V. Multiple data sources are implemented in one rendering pass.

VI. Different tiles are generated for the given heightfield domain. Those tiles are stitched smoothly

and one can navigate upon the view–dependent constant mesh with all possible views without

the need of implementing subdivision schemes to achieve the desired heightfield adaptation.
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In order to achieve heightfield updates, we start with organizing the heightfield domain in different

tiles and generate a hierarchical pyramid for every tile. Those pyramids are well–suited for texture

objects. Therefore, we cache the pyramids in texture memories and send few of them to GPU

considering the limitation of the GPU storage. The stored height values on GPU are accessible

utilizing shader programs. Moreover, the constant generated triangular mesh caches its vertices in

a Vertex Buffer Object (VBO) that may be transmitted to GPU as well. Once the VBO is on the

GPU, no CPU–GPU transformations are needed because we do not change the structure of our mesh

at run–time and height updates are achieved by a Vertex Shader (VS) program using the Vertex

Texture Fetch (VTF) technique. VTF is a shader feature of GPU and it allows the VS to read data

from textures. Essentially, such a feature is very useful in our approach as our work is concern with

the update of the heightfield per vertex. However, CPU–GPU transfers are executed for heightfield

updates which require height values that are not available in GPU memory.

5.1 The Design of Hierarchy Pyramids Caching

To gain an optimized rendering process, pyramids of hierarchies are cached in memory entities of

appropriate capability to produce fast and simple CPU–GPU transitions at run–time. Since levels

of each pyramid can be represented by a 2D array, texture object memory is the most suitable media

for capturing our pyramids.

Pyramid levels are 2D grids that include the information that could be cached in a texture

memory. Therefore, in our algorithm the hierarchical levels are mapped to 2D textures exploiting

their incredible benefits including first, the ability to retrieve data from textures at run–time without

extra CPU–GPU invokes; second, the flexible manipulation of texture parameters and environment

such as filtering approaches, border modes, etc. third, switching on/off the automatic mipmapping.

The standard mipmapping technique is fast and free of the aliasing effects but every map has values

that are the result of smoothing all values through the previous levels of the pyramid. To avoid

such smoothing and build every level from only non–smoothed values we always create every level

depending on the finest level of detail. In here, the built–in mipmapping is turned off and replaced

by a manual handling in which we implement linear interpolation between different levels of detail

in each pyramid.
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Once the levels of the hierarchies are mapped to 2D textures and the height/normal and/or

extra information at different levels of resolution are efficiently cached on the GPU, the pyramids

are readily available as texture lookup tables. Those tables are used always for retrieving height

values and are not reloaded unless the viewer enters new heightfield areas.

The only information that needs to be sent from the CPU to GPU is the viewing information

unless tiles need to be swapped. For a given viewpoint, the distance to the parameter plane is

derived. This distance determines what area is covered by each triangle, see Figures 3.2. Then,

the appropriate level of the hierarchy is determined by comparing the triangle’s size s∆ against the

screen pixel’s size sp as: If s∆ ∈ [2i−1sp, 2
isp], we pick the data value from a level with resolution

2n−i×2n−i, where i ∈ {0, . . . , n} and n denotes the highest resolution in the pyramid. In pursuance

of selecting the levels of detail, our work incorporates a GPU–based technique to fulfill this task via

integrating the graphics parallelism.

5.2 Vertex Texture Fetch (VTF)

In the VTF feature of the GPU the triangle sizes of the created triangular mesh is optimized against

a given screen pixel size efficiently through considering a ratio factor

R =
#P

#T
(5.2.1)

where #P is the number of screen pixel, and #T is the number of mesh’s triangles. Factor R shows

how many pixels are permissible to lie within one triangle which provides its height as a length

to be compared to the level’s pixel width for determining which level is requested. The decision of

selecting which level of detail is required is done per triangle. The vertices of the triangle are updated

following either the same level of detail if they lie on one circle in a ring of the view–dependent layout

model or different levels for different circles per ring. Basically, the triangles are ordered starting

with the center of the view–dependent layout outwards in the counterclockwise manner through

the rings such that every triangle stores its size in its vertices before going to the next triangle.

Once the vertex has been informed about one triangle size it always uses it for the update process.

Since the provided triangular mesh is constant the triangle size information can be cached in the

vertex attributes that are accessible to the Vertex Shader program (VS). In the VS 2D samplers are
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performed using tex2Dlod function to access the textures lookups.

5.3 Implementing Vertex Texture Fetch (VTF)

Basically, the major part when implementing the VTF is the lookup function tex2Dlod(...) with a

manual mipmapping property. The following snippet shows this function in the VS program.

(Vertex Shader Program )

sampler2D tex;

...

void main(void)

{
...

HeightUpdate =tex2Dlod( tex, t,0 );

% where t : refers to the selected level

% 0, referes to switching off the automatic mipmapping

...

}

The previous snippet example presents the lookup function asHeightUpdate = tex2Dlod(tex, t, 0)

which accepts three parameters p1 = tex, p2 = t, p3 = 0 as inputs and returns one value V =

HeightUpdate as retrieved value. In general, a uniform variable is a global variable that is passed to

the shader program and not changed within one rendering call. From the different types of uniform

variables we used Sampler2D for parameter p1 that is used to pass a 2D texture. Parameter p2

identifies the (x, y) location within texture tex to retrieve the height value and store it in V . Pa-

rameter p3 is set to zero to switch off the automatic mipmapping and do our method to select the

level of detail.
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The following snippet shows the VS code for retrieving the height value:

(Vertex Shader Program )

attribute float h;

uniform sampler2D Texture0;

uniform mat4 ProjectionModelviewMatrix;

vec2 TexCoord;

float GetLevel(float Height);

void main()

{
vec4 texel, newVertex;

% Read the texture offset. Offset in the z direction only

li = GetLevel(h);

if( li ==0)

{
texel = texture2DLod(Texture0, TexCoord, 0.0);

}
% else is used for the rest of the levels

% such that li = 1...N

newVertex = gl Vertex;

newVertex.z += texel.x;

gl Position = ProjectionModelviewMatrix * newVertex;

}

To accomplish implementing the VTF a bunch of settings are required for both the VS program

and textures on the OpenGL client.
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5.3.1 Textures and VS Settings

The respective height values are obtained by a texture lookup of the texture that stores the deter-

mined resolution. The texture lookups are set on the OpenGL client as the following snippet:

(OPENGL )

GLuint vertextexture;

glGenTextures(1, &vertex texture);

glBindTexture(GL TEXTURE 2D, vertex texture);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER,

GL NEAREST);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MIN FILTER,

GL NEAREST);

glTexImage2D(GL TEXTURE 2D, 0, GL LUMINANCE32F ARB,

width, height, 0,GL LUMINANCE, GL FLOAT, data);

As our data representation is a piecewise constant one, a nearest–neighbor interpolation is applied

during the texture lookup. However, the issue of linear interpolation at texture borders that caused

via incorporating invalid data from outside borders could be solved through extending each tile

borders one pixel from surrounding tiles. Hence, no discontinuities result, see Figure 5.1, and it

requires adding some commands for setting the suitable parameters as follows:

(OPENGL )

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER,

GL NEAREST);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MIN FILTER,

GL NEAREST);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP S,

GL CLAMP TO EDGE);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP T,

GL CLAMP TO EDGE);
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(a) (b)

Figure 5.1: The comparison between our results using Black See Ereğli data without edge extension
showing the discontinuity between adjacent tiles (a), and with edge extension solution (b) that shows
removing this problem.

The data tiles of the gazed regions have to be loaded to textures, transmitted to GPU memory,

and put in the active mode to be accessible to the vertex shader program as follows:

(OPENGL )

glActiveTexture(GL TEXTUREi);

glBindTexture(GL TEXTURE 2D, vertex texture);

Note that fetching values from textures within the vertex shader program imposes using a suitable

NVIDIA graphics card of series Gf 8 or higher that allows the running mode to occur on GPU and

not as software emulation mode. Therefore, there are a specific texture internal formats available

for this task which are GL LUMINANCE32F ARB and G RGBA32F ARB.

5.4 Level of Detail Selection

Here, we derive the level of detail that is selected utilizing the optimized triangle’s size at run–time.

Suppose that we have an optimized triangle size for a screen resolution M × N with pixel size
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Ps ×Ps. By utilizing Equation 5.2.1 we can get the approximation number of screen pixels that are

covered by an optimized triangle and represented as:

Ns = dRe (5.4.1)

In any created triangular mesh our triangles have triangle shapes ranging from equilateral triangle

to well–shaped isosceles triangle. Thus, the height h of the triangle ∆i could be extracted from the

distance between two consecutive rings of the predefined mesh layout. Each pixel side in the highest

resolution level of detail Pl0 can be computed using Equation 5.4.1 as follows:

Pl0 = d
p
Nse · Ps (5.4.2)

Hence, from Equation 5.4.2 we can determine the side length of the appropriate level of detail

pixel Pli as following:

Pli =

8><>:
= Pl0 if F (h) ≤ 1

= dF (h)e · Pl0 if F (h)− bF (h)c ≥ 0.5 and F (h) > 1

= bF (h)c · Pl0 if F (h)− bF (h)c < 0.5 and F (h) > 1

(5.4.3)

where F (h) = h
Pl0

. Eventually, which level li is calculated utilizing Equations 5.4.2 and 5.4.3

as follows:

li = b
b Pli

Pl0
c

2
c (5.4.4)

5.5 Retrieving Height Values

Suppose that the created 2D mesh is centered at vc = (xc, yc, zc) with a vertical pivot of the 2D

mesh that passes through the viewing point Pv. Thus, the update is achieved at every mesh vertex

vm = (xm, ym, zm) by adding the retrieved height values to the z–coordinate of mesh vertices.

Hence, x–coordinate and y–coordinate are used to calculate the corresponding coordinates within

the candidate texture.

Depending on the layout model all mesh vertices lie on the centered circles and are depicted in

terms of parametric variables of the circle equation as:
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xm(t) = rk · cos(t) + xc

ym(t) = rk · sin(t) + yc
(5.5.1)

with k = 1, ...,M , where M is the number of the farthest circle from vc, radius rk, and parameter

t ∈ [0, 2π].

The updated vertex belongs to a region within a tile such that tiles numbering starts with the

upper left corner of the tile and it goes to rightwards/ downwards as it is presented in Section 4.5.

The pixel indices within each tile are analogous the those of matrix T.

Since the vertices of the 2D mesh start with the center vc(xc, yc, zc) to outward radial directions

we get the index of the candidate tile as:

I = xm

N−1 + N−1
2

J = ym

N−1 + N−1
2

(5.5.2)

where N ×N is the tile resolution and M ×M matrix of tiles with indices start with the upper left

corner of the tile as lij for i, j = 0, 1, 2, ...,M ·N − 1. Hence, the pixel index (Pi, Pj) within the tile

of index (I, J) is:

Pi = xm−(l00+I·N)
N

Pj = ym−(l00+J·N)
N

(5.5.3)

Equation 5.5.3 can be written as linear function:

Pi = ax · xm − bx
Pj = ay · ym − by

(5.5.4)

Where ax = ay = 1
N and bx = (l00+I·N)

N and by = (l00+J·N)
N

Basically, the pixel index in Equation 5.5.3 or 5.5.4 is the textures coordinates that define the

location of the height value h that should be retrieved to be added to the z–coordinate zm leading

to vertex vm = (xm, ym, zm + h).

5.6 Height Update

The update process is achieved on the GPU within the Vertex Shader (VS). The VS processor inputs

a triangle size Zi and one of the triangle’s vertices vm = (xm, ym, zm). Then, Zi is tested against
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the pixel’s size of the projection screen using the given ratio. This request is sent to retrieve the

appropriate height value h from the respective texture by implementing the VTF for VS 3.0 GPUs.

Thus, h is added to the z–component zm of the vertex vm by the following look up function:

h = texture2DLod(TextureID, xm, ym, LoDID)

where texture2DLod is a lookup function of the mipmapping, TextureID is a texture sampler, and

LoDID is the index of the current level of detail. As an output, we obtain vm = (xm, ym, zm) with

zm = h.

Due to the fact that the triangular mesh generation is based on the properties of perspective

projection, view–dependency is already encoded in the mesh and the triangular mesh structure is

static. Thus, the exploration processes of changing the viewpoint forth/back and left/right can be

achieved without any modification of the triangle’s size. Nevertheless, an adaptation is required

when performing a zooming operation. In this case, we need to retrieve the height value from a

different level of detail and need to adapt the viewer distance accordingly. The updated triangle’s

size is computed as

Zi =
Xj

xk
· zi

for i = 0, . . . , n, where n is the number of triangles, j = 0, . . . , l, where l is the number of viewing

updates, and k = 0, . . . , p, where p is a constant for a given mesh. Thus, a new triangle’s size Zi

results from the previous size zi when the viewer changes its location to distance Xj from the 2D

mesh plane and the distance xk is the default viewer distance from the 2D mesh plane.

For more efficient rendering, the static triangular mesh is cached on the GPU through a Vertex

Object Buffer (VBO).

5.7 Translations and Rotations

When changing the viewing position, we distinguish between flying, rotation, and zooming oper-

ations. In a zooming operation, the distance to the parameter plane changes. Consequently, we

need to re–estimate the distance to the parameter plane. When the viewpoint gets closer to the

parameter plane, the triangle captures a smaller size of the terrain. A different level of resolution is
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required for the height computation but we stay in the same region of the tile that resides on GPU

which means we do not need any tile loading from CPU to GPU, see Figure 5.2.

Figure 5.2: Zooming operation changes the distance of the terrain to the viewer. The mesh’s triangles
capture smaller terrain areas. The height lookups need to be performed on the finest level of detail.

A flying operation does not change the z–coordinate of the viewpoint. Hence, the levels of

resolution stay the same. Still, all heights need to be updated, as each triangle captures a new area

of the terrain, see Figure 5.3.

Figure 5.3: Flying transmissions require the updates of the heights with respect to a shifted terrain
region. The used levels of resolution are the same.
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Figure 5.4: Rotation does not require any update.

When not changing the viewpoint but the viewing direction, the height values of the mesh’s

vertices do not change, see Figure 5.4. Hence, no update is necessary. Our approach targets the

creation of a fixed mesh with geometries that are transmitted to the GPU once. Accordingly, we

do not apply any view frustum considerations but rather update all vertex heights when zooming

or flying. When applying no view frustum, a rotation does not need to update any heights. Alter-

natively, we also implemented a version where only vertices within the view frustum get a height

update when zooming or flying. However, this did not improve the rendering performance.

5.8 Discussion and Results

The generation of the mesh optimized size and shape of triangles assuming a flat heightfield. Ad-

justing the heights according to the given heightfield data obviously affects the size and shapes of

the triangles. Thus, an updated triangle may cover more than the anticipated number of pixels.

However, this increase of triangle size can be determined beforehand by looking into the maximum

height difference between neighboring samples. Then, the ratio of triangle size to pixel size can be

adapted accordingly.

Suppose that S = {si} is a given data set over a grid with height values si where i = 1, 2, ..., N

and N is the number of samples of the entire data. For each sample with height value si we refer

to sj ∈ S as the set of height values of the neighboring samples. Accordingly, the Global Maximum
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Difference GMD is defined by:

GMD = maxN
i=1( maxM

j=1(|si − sj |)) (5.8.1)

GMD is then compared to the optimized size of the triangle. If it happens that GMD is too

far from the triangle size of the current prepared mesh version a new mesh is created with smaller

triangle size. The optimal frame rate is reduced when rendering more triangles but for all the

data sets we considered it is still higher than the state–of–the–art considering the continuous static

structure of the triangular mesh over all frames at run–time.

Moreover, when generating the grid hierarchy on the CPU, each level of a computed hierarchy

is stored in a 2D array whose cells accommodate the data information that beforehand has been

prepared in a preprocessing stage. The data preparation phase may include re–sampling to a grid (if

necessary) or normal computation. For the examples provided in this work, each cell stores a height

value and a surface normal. Color or surface texture values could be easily added, if provided.

We exploit the texture memory on the GPU, in which each hierarchy caches its levels in 2D

textures whose texels capture the relevant data information.

However, one issue when utilizing the texture memory stems from the synchronous CPU–GPU

execution of processes. While data are transferred to a texture, any CPU execution process is

stopped, which leads to a stall every time the heightfield is updated. This becomes important in the

context of tiling. To overcome this issue, we employed a Pixel Buffer Object (PBO) as an alternative

memory storage concept utilizing the advantage of asynchronous CPU–GPU steps for efficient data

storing and transferring.

The dependence on a fixed mesh and the decoupling from the heightfield optimization address

our main contribution of presenting a fast method that produces a high rendering quality at run–

time. In this method we can generate an optimal mesh using a ratio that performs a perfect quality

with sub–pixel errors. The adjustment of such ratio can be achieved to speed up the whole approach

when accepting a few larger triangles.
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Chapter 6

Results and Discussion

Our results are based on one synthetic data set and several real data sets. The synthetic data set

is just a sampling of a repetitive pattern using trigonometric functions. This data set has mainly

been used to create arbitrarily many tiles, which are then used to test the performance of our

tiling algorithm. There are two of the real data sets that come from our motivating application to

visualize ocean floor data and bathymetric data that are obtained using multibeam sonar scans. This

scanning technique is a common one and provides unstructured data of a specific area of the ocean

bed. Several real data sets are used one of them represents the Soquel Canyon with 1,457,778 sample

points [68] and another is the Monterey Bay Canyon with 5,136,690 sample points [68]. Although

the data represent depth values, it is not uncommon to visualize the data interpreting the values

as heights [68]. The visualizations we present here follow this visual exploration concept. Since the

obtained data is unstructured, we applied a data preparation step that re-sampled the data to a

regular grid that consists of 50×50 tiles where each tile is of size 1024×1024. Next, we constructed

the grid hierarchy levels and we cached them in 2D textures as described above.

The tested UTAH data is 790GB covering a landscape of 460 km× 600 km with 5m heightfield

resolution and 1m satellite image resolution and for screen resolution of ≈ 2megapixel our algorithm

shows performance of 60 fps when the satellite images are used and 90 fps if they are not used.

Dick et al. [18] are reporting high performance such that they used a better hardware of an NVIDIA

GeForce GTX 280 graphics card with 1024 MB of local video memory. The achieved performance

is high during flying operations as long as the viewer is flying over tiles of the heightfield that are

already stored on GPU. When loading tiles from CPU to GPU the performance slightly drops to be
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in the range between ≈ 57 fps and ≈ 60 fps.

Notice that the 1024 × 1024 resolution governs the finest level for each hierarchical pyramid of

one tile, i.e., the finest resolution of the entire data set equals n×1024×1024, where n is the number

of tiles. Moreover, the data set size does not affect the performance.

Figures 6.1 and 6.2 show some visualization results when applying our approach to the Monterey

Bay Canyon (a) and the Soquel Canyon (b).

(a)

(b)

Figure 6.1: Our height field visualization of Monterey Bay Canyon (a), and Soquel Canyon (b).
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Figure 6.2: Zoomed–in view on the Soquel Canyon using our approach with a decoupling of mesh
and data representations.
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Figure 6.3 shows our results for synthetic data exploiting the new features of the NVIDIA Gf 8

graphic cards for implementing an anti–aliasing technique in which we can use the 16xQ CSAA

quality with tiny unnoticeable difference in performance and high quality. More detail on the

16xQ CSAA method is presented in an NVIDIA white paper [58].

6.1 Ratio of Pixel Size to Triangle Size

As all our triangles are supposed to be projected to the same size which is a global constant. However,

the constant can be adjusted globally.

We optimized the triangular mesh against different display screens using the computation of the

ratio factor R as

R =
#P

#T

where #P is the number of pixels of the display screen and #T is the number of rendered

triangles. Hence, this parameter describes how many pixels are covered, on average, by a triangle.

Basically, we use the GMD that is presented in Section 5.8 to determine the bound of the triangles

number in a triangular mesh. However, if the bound is unfeasible we can find a global R for

generating an optimal triangular mesh. It is worth mentioning that the GMD may be very high, if

there is a sudden jump in the heightfield (like a cliff). However, any heightfield visualization has a

problem with rendering such cliffs which is an inherent problem with representing the data over a

2D parameter plane. In case of existence of such cliffs, it makes sense to adjust the R to a more

suitable value.

Figure 6.4 shows a comparison of three visualizations that we obtained when applying it to a

zoomed–in version of one of the canyon data sets and using the ratios R ≈ 2.8, R ≈ 3.4, and

R ≈ 5.3. As expected, the rendering quality decreases with increasing ratio R. In particular, it

can be observed that the visualization for R ≈ 5.3 does not reflect all the details that are visible

in the visualization using ratios R ≈ 2.8 and R ≈ 3.4. However, at a certain point, the rendering

quality does not increase further when decreasing ratio R. Moreover, the ratio R also influences

the performance: The smaller the ratio, the more triangle need to be rendered, i.e., the lower is the

performance. Hence, the aim is to pick the largest R that produces optimal renderings. We observe
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(a)

(b) (c)

Figure 6.3: Synthetic data with different levels of detail that are encoded in different colors and show
up as concentric rings (a). Covering–Sampled Anti–Aliasing (16xQCSAA) of NVIDIA graphics card
with series Gf 8 is implemented in our work to get rid of jagged silhouette as in (b) and to produce
high quality smoothing within a desired performance (c).
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that the rendering quality does not increase when going from R ≈ 3.4 to R ≈ 2.8. The ratio R ≈ 3.4

seems to be the optimal choice, as reducing the ratio further does not increase visualization quality

while increasing the ratio does significantly reduces the quality.

It is worth mentioning that ratio R is independent of the size of the rendering window. Hence,

our findings can be applied generally.

R=2.8 R=3.4 R=5.3

Figure 6.4: The comparison between three different ratios to estimate the best number of triangle
in preprocessing stage.

6.1.1 Triangle Shapes

Next, we want to evaluate the quality of our triangles with respect to their shape. As a quality

measure we use the ratio as presented in Section 3.4. Figure 6.5 shows the distribution of the

quality measures for all rendered triangles using our scheme. The figure compares the triangle

qualities without the height update with the triangle quality after the height update. A resulting

triangular mesh (before the height updates) was shown in Figure 3.3 (b). When updating the heights

according to the synthetic dataset, the ratio stays more or less the same. This observation is mainly

due to the smooth function that is being used for the synthetic data.
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Figure 6.5: The evaluation of the triangular mesh quality. Three data sets are involved in this
experiment, Monterey Bay Canyon Data (red), Soquel Canyon Data (green), and Synthetic Data
(orange). Most of triangles have a quality ratio RQ between ≈ 0.44 to 0.5. Our subdivision scheme
survive triangles to capture the appropriate ratio again. View–dependent layout showed an optimal
mesh before (blue) and after adaptation processes.

6.2 Performance

Table 6.1 reports the frame rates we achieved for different sizes of the rendering output window

and different ratio R (directly affecting the number of rendered triangles). All experiments were

processed on a PC with a 2.66 GHz Intel(R)Xeon(R) processor, 3.25 GB main memory, and an

NVIDIA Geforce 8800 GTX graphics card with 768 MB video memory.

For the targeted ratio R, we achieve frame rates of 90 fps for rendering output windows of a size

up to 1000 × 1000 pixels. When using an output size of 1600 × 1200, the frame rates are still at

60 fps. When using a larger ratio R, frame rates go up to 133 fps and 90 fps, respectively, at the

expense of a lower–quality rendering. When using a smaller ratio R, frame rates go down to 60 fps

and 30 fps, respectively, without any gain in quality for the considered data.

Next, we made experiments to figure out whether the texture lookups to update the height values

of the vertices is a bottleneck of our pipeline. We implemented two versions of our approach: The

first version updates the heights of all vertices at each frame, the second version updates only the
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Ratio R ≈ 2.8 R ≈ 3.4 R ≈ 5.3

700 1000 1600 700 1000 1600 700 1000 1600

#P × × × × × × × × ×

700 1000 1200 700 1000 1200 700 1000 1200

#T/s (K) 10,800 22,040 20,400 13,050 26,600 34,200 12,236 24,970 33,300

fps 60 60 30 90 90 60 133 133 90

Table 6.1: Frame rates (in fps) and triangles per second (#T/s) for different ratios R and different
output sizes (number of pixels #P) when applied to the Soquel Canyon and Monterey Bay Canyon
data sets. The optimal ratio is R ≈ 3.4.

heights of the visible vertices (at the expense of checking visibility, which is a simple test though).

Both versions reported the same frame rates. Even when not doing any height updates, the frame

rates did not go up. Hence, the texture lookups are not a bottleneck.

The tiling approach is tested using synthetic data set and two real data sets. In our first experi-

ments, we observed a short delay when loading new tiles. We have modified our implementation by

spreading the loading procedures over a few frames.

Basically, when the pyramids are being cached on the texture memory of the GPU, an automatic

mipmapping does the task of the interpolation between the levels of detail. However, as we are

replacing our manual mapping by the automatic mipmapping we do linear interpolation between

every two followed levels of detail within the VS program.

To summarize the findings, the comparison with the state of the art delivers the following in-

sight. We considered the most recent advances of mesh-based approaches [18] and raycasting ap-

proaches [19]. Recent mesh–based approaches operate on regular grids and use compression for a
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fast throughput of geometry submissions to the GPU. Regular meshes outperform irregular meshes,

as the processing of the latter typically involves computations on the CPU. For the UTAH data set,

compression of regular meshes was applied quite successfully and frame rates of about 200 fps on av-

erage were reported on a 1280×1024 viewport [18]. However, on higher–resolved surfaces scans, the

compression rates are significantly lower and frame rates drop to about 20 fps on average, see [19].

The raycasting approach is, in general, slower and only gives frame rates of 40–50 fps for the UTAH

data set (with a 1280×1024 viewport). However, the frame rates are independent of the complexity

of the terrain, as just the heightfield values (and no geometry) are being sent to the GPU. The same

is true for our approach, and we achieved higher frame rates on the UTAH data set when compared

to the raycasting approach. We achieve frame rates of 90 fps when just rendering the heightfield

and 60 fps when adding texture information (see next chapter) on older (and thus slower) hardware

than the one used in [18, 19] with a viewport of 1000× 1000. The triangle quality is higher for our

approach (RQ mainly between 0.44 and 0.5) when compared to regular grids (RQ of about 0.41). For

irregular meshes the triangle quality depends on the given sample distribution, while the criterion

does not apply for the raycasting approach that is not using triangles. The screen–space error of all

mentioned approaches have been chosen to be in the subpixel range for the reported performances.
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Chapter 7

Applications to Terrain Data

In this chapter we will present the application of our algorithm to terrain data. Mainly, terrain

information involve heightfield information plus additional attributes. Therefore, we propose a

framework of several layers and initiate them in a preprocessing step.

To explain such a framework suppose that each sample consists of a range of values pj for

j = 0, 1, .., N where N is the number of values, including height values and color values. The

number N is also the number of layers in our framework such that pj ∈ R2 for j = 0. p0 indicates

the location in parameter plane coordinates as (x, y) if pj is undergone a GIS manipulation process

that maps the earth location on a grid. Essentially, if the coordinates of the location are provided

as (longitude, latitude) and not mapped to a grid we apply the required transformations and map

them onto our grid. The sampled parameter plane identifies the basic layer of our framework which

is the parameterization layer. The rest of the information layers includes height and color values.

Our algorithm considers the height values as the second layer and the aerial photography, i.e., color

information as the third layer.

7.1 Aerial Imagery Data

Basically, imagery data is created by aerial photography techniques that rely on space–based cameras

in remote sensing. The term space–based may correspond to taking images from a position on

the landscape at a highly elevated surface via platforms that are fixed onto aircrafts, helicopters,

balloons, blimps, etc. With the advancement in the world of the technology and the huge size of the
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required surveyed data, satellite imagery, which is synonymous with ariel photography, is used to

detect images in different types of resolution. However, the quality of the resulting images depends

on the given resolution that is determined by both the used instrument and the altitude of the

satellite orbit.

Because our interest is in spatial data and related attributes, satellite images are incorporated

as a layer that captures the nature of the height surface. While the trend of our concerns is beyond

presenting more detail in the detection process, we focus on UTAH data as it has been implemented

in this work.

Our tiles used UTAH imagery data that were acquired within the National Agriculture Imagery

Program (NAIP). NAIP is a program for providing the governmental agencies of the U.S.A with

updated data in one year starting with the season of growing agricultures. All images are digital

releases of ortho–photography with 1m sampling and color format as (R,G,B) natural color. The

available formats are (R,G,B) natural color and (CIR) infrared color displayed in 4–band TIFF

images as in Figure 7.1.

(RGB) (CIR)

Figure 7.1: UTAH imagery data color format for displaying data as TIFF images using natural
(R,G,B) color (left), and (CIR) infrared color format (right).

Our algorithm receipts such data as RGB natural color format images for the third layer in

which each sample values are composed of three color channels that are transferred to a texel on

the texture memory where the format does not need any extra transformation. The VTF can

access the color value from this layer and assign it to the correspond location on the triangular

mesh. Notwithstanding, these images are not ready to be incorporated directly to our grid pyramids

because these images are tiles in the format Digital Ortho Quarter Quad DOQQs tiles. In format

DOQQs the areas correspond to U.S. Geological Survey (USGS) topographic quadrangles. Briefly,
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each tile of DOQQs format has four quadrangles representing east, west, north, and south areas that

are presented in the USGS topographic maps in which a set of longitude/latitude lines are created

and through the intersections a location on a Universal Transverse Mercator (UTM) grid could be

determined. Hence, we create our UTM grid by reading the header file parameters in each DOQQs

format tile. To get the UTM geographic coordinates we use the following conversion equation with

a, d, b, e, c and f parameters:

xutm = (a · cn) + (b · rn) + c

yutm = (d · cn) + (e · rn) + f
(7.1.1)

where a is the pixel width in the x–direction; d is the rotation around the y–axis; b is the rotation

around the x–axis; e is the pixel width in the y–direction; c is the x–coordinate of the pixel center

(upper left); and f is the y–coordinate of the pixel center (upper left).

7.2 Discussion and Results

The layers of our algorithm framework are applied to UTAH data heights tiles and color imagery

tiles. Regarding UTAH data imagery tiles, (2006, Natural ColorImagery) is selected with 1m

resolution and every tile has parameters: (a = 1.0, d = 0.0, b = 0.0, e = −1.0) and (c, f) =

(longitudeij , latitudeij) at location ij of the given DOQ quadrangle. For height data we used

UTAH tiles of (2006, 5Meter Auto− CorrelatedElevationModel (DEM)) with 5m resolution.

To use such data tiles we generate a UTM grid that covers landscape of 460 km× 600 km. The

grid is sampled at 5m resolution for height tiles which is the same resolution as given by the DEM

tiles. To get the same resolution in imagery tiles we do resolution down–sampling to gain imagery

tiles with 5m resolution from given imagery tiles with 1m resolution. Every cell in UTM grid is

computed using Equation 7.1.1. Every UTM grid’s cell consists of a height value and a color value.

Eventually, the UTM grid is tiled to tiles with 1024×1024 resolution that are loaded to two layers of

textures. Tiles of both layers are made accessible to the VS program when they are on GPU memory

space. It is worth mentioning that both height values and color values are loaded to textures in

the same manner such that the tiles can be swapped easily for on–demand information. However,

the high performance of rendering just heightfield will be affected by adding extra information,
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i.e., reading height and color information instead of just height information per vertex (e.g. the

performance of 90 fps in our experiment for UTAH data heightfield rendering becomes 60 fps if

extra textures are used to capture the agriculture information). Figure 7.2 shows the final results of

our algorithm using UTAH data where the output resolution is 1000× 1000.

Figure 7.2: Four different views of our implementation on UTAH data using two layers of our
framework, one for the height information and the other for satellite imagery data.



Chapter 8

Application to Bathymetry Data

We developed an interactive visual analysis system for bathymetry data, which is based on the

heightfield visualization approach described in Chapter 5 which includes a number of additional

features. Those features include backscatter data visualization, water column data visualization,

and a number of useful interaction methods. However, our supposed layered framework as it is

presented in Chapter 7 is similar with regards to the applied procedure to the first and second layers

in which height information is replaced by depths.

Our system is also dealing with a specific data format that requires to be visualized in an

efficient method to give the geologists an important information about the surface characteristics of

the investigated ocean floor. Mainly, most popular ocean floor characteristics are backscatter data,

water–column data, and subbottom–profile data.

The interactive visualization system consists of interactive visualization and exploration methods

such as probing and coordinates views, a backscatter data visualization using color mapping, an

uncertainty visualization using opacity mapping, and a visualization of gas seep data using an

efficient density volume visualization. These methods provide the heightfield visualization with

interesting and valuable tools that make use of some important analysis aspects of geo–spatial data.

8.1 Probing and Coordinated Views

Our developed system can explore and visualize bathymetry data interactively with the guide of

intrinsic tools to probe the related information of every location within the current view. During
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heightfield explorations our system allows the user to recognize the viewer location of the entire data

within an overview rendering. In this rendering one can get a response of the user selection, i.e., a

mouse click on the surface within the current view as a visual sign. All information that are related

to the selected location are retrieved and displayed at run–time.

Once the user clicks on the surface the system detects the mouse position that is in the screen

space as 2D position X = (x, y) and then the position X is projected to 3D location in the object

space as X ′ = (x′, y′, z′). Corresponding to the position X ′ the longitude and latitude of X ′ can

be computed and the indices of the heightfield tile and its texel of X ′ can be determined where we

can retrieve and display information such as longitude, latitude, height or depth, backscatter, and

color values. Figure 8.1 shows our probing tool where the data rendering (left) is coordinated by a

prepared view (right) interactively. The view is created by using a 2D image of a top–overview of

the entire data. Such a view is telling the user over which area of the data set he/she is flying if

he/she clicks on a location of the surface. Hence, the clicking is showing that location as a black dot

on two sides.

8.2 Visualizing Backscatter Data

Recently, the advantages of multibeam sonar sensors are not limited to map only the wide high–

resolution ocean floor area but it opens the door to study the seabed for different benthic researches

as well. In addition to gain depth information of all multibeam acoustics reflections the energy

density of the reflected waves can measure the fish habitats and the nature of the sediments.

To visualize the intensity of backscattered energy we map each given value in dB unit to an

(R,G,B) color value in a smoothly varying cyan–to–red color map where a low backscatter intensity

represents the more fine–grained sediments and a high backscatter intensity represents the more

coarse–grained sediments.

Our result is shown in Figure 8.1 where the backscatter data are mapped to colors that go from

cyan to red. We used HSV color model such that the luminance are constant and we set it to 0.8

and the saturation is set to 1.0 where the backscatter values are used for the channel H that is then

mapped to RGB color map using the color transition from cyan to read.
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Figure 8.1: Backscatter data visualization of Ereğli: we are showing an example of mouse click-
ing on a surface (on left) and the same location on the entire top–view of coordinated view (on
right). Different options of a toolbar allow us to get all information (longitude, latitude, depth, and
backscatter) of the clicked location (white dot).
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8.3 Uncertainty Visualization Using Opacity Mapping

An uncertainty visualization method is presented in our system in the context of real data distri-

bution. The goal of this method is the interactive presentation of the real data cluttering in the

interpolated surface. The visualization process is performed by combining the transparency and the

color values of the rendered surface such that the user is allowed to control the transparency range

via a slider that is created on a side toolbar.

In this technique every sample point of the heightfield has information about the distance to the

nearest neighbor that is used to interpolate that sample point. We represent such distance to define

the transparency of the color values. If the transparency of α is set to be a value between 0 and

1 we interpret mapping α to 0 as a non–visible color value of the interpolated sample points, i.e,

we are getting the rendering of the surface as a set of the real sample points. When α is mapped

to 1 we are getting the rendering of the entire surface as the interpolated samples are having fully

opaque color. For any value of α that is happened to be between 0 and 1 the rendered surface is

showing a translucent color values of the regions that contain only the interpolated sample points.

The transparency of the color value is high if the nearest neighbor that is used for interpolating this

sample point is far and vice versa.

The desired range of the transparency of α value can be set by utilizing a slider that is created

on the side toolbar, see Figure 8.2.

Figure 8.2: Three different α values are applied to visualize the uncertainty in data points. When
α = 0 we get only the point rendering of the real data set (left), α = 1 we get the surface rendering
(right), and for α is between 0 and 1 we get a transparency according to the cluttering of the points
in the interpolated surface (middle).
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8.4 Visualizing Gas Seeps Data

Through bathymetry data acquisition a set of water columns are specified to generate a gas map of

the investigated ocean floor area. In this context, one can show the distribution of water–column

data points by rendering them as point objects. This rendering gives unclear presentation of the data

set without visual understanding of their distribution due to visual clutter. Therefore, visualizing

the density distribution of the points would be a better option for an appropriate comprehension of

the data.

To visualize the density we developed a simple yet effective direct volume rendering technique

where the density is mapped to the opacity. Our approach is inspired by the splatting technique of

direct volume rendering, where each sample is convoluted with 3D kernel using a Gaussian function.

The volumetric contributions of all kernels need to be integrated in the viewing direction. Integrating

a 3D Gaussian kernel leads to a 2D Gaussian kernel which is referred to as a splat, see Figure 8.3.

Figure 8.3: Example of the used 2D image with 128× 128 resolution of an integrated 3D Gaussian
kernel leading to a 2D Gaussian kernel to visualize the density of the points in a simple and a fast
way. The 2D image is stored in a texture and used for all points.
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We use these splats to render water–column data points where the data point is located in the

center of the splat.

To render those splats, we use the pre–computed 2D footprint of the 3D kernel and store it in

a 2D texture. Several oriented quadrilaterals are used to which we map the 2D footprint textures.

The quadrilaterals are oriented orthogonal to the viewing direction, i.e., orthogonal to the ray from

the viewpoint to the respective data point that is convoluted with the kernel. The 2D textures define

opacity values while the RGB color information can be defined arbitrarily.

To achieve the RGBA values accumulation we render the oriented quadrilaterals in a front–to–

back order using alpha blending. Alpha blending allows us to understand the distribution of the

data points in each water column in which the blending is opaque when the points are grouped

tightly and the blending becomes transparent when the points spread further away. The degree of

transparency expresses the points density.

For multiple water–columns we use different color for every column. However, during interaction

in the exploration process viewing directions are changed and the data point sets need to be resorted

to keep the order manner front–to–back. To eliminate the need of resorting data sets at run–time

we store three copies of sorted data set pointers in x–, y–, and z–direction. Thus, when we change

our viewing position we change just the pointer direction.

Resorting the points at run–time depends on the number of points and costs time which is ≈ 12

sec for resorting about 95, 000 points of three water–columns in x– and y–directions using heap

sorting technique. To avoid such time costs we prepare three copies for every water–column, i.e., a

copy for sorting points in x–direction, a copy for sorting the points in y–direction, and a copy for

sorting the points in z–direction. Thus, the resorting is done free of time cost by just reversing the

reading order of the pointers using some extra memory storage.

8.5 Discussion and Results

Our application to bathymetry data focused on ocean floor data rendering and integrates the

backscatter data visualization and the water–column data. The integration of sub–bottom pro-

file is left for future work. For backscatter data we were able to visualize the backscatter reflections

using color mapping. Our approach allows the user to select any location on the rendered surface
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interactively. Backscatter, longitude, and latitude information of every selected location is shown

on a side toolbar. We used a coordinated view to render a top–view of the entire data with a color

map. Data from the Black Sea close to Ereğli in Turkey is used to show our results for backscatter

data visualization with interactive selection and displaying the retrieved values on a side toolbar,

see Figure 8.1. Figure 8.4 shows also our results using two different data sets from Black Sea close

to Ereğli in Turkey.

(a)

(b)

Figure 8.4: Backscatter visualization of two different Black See Ereğli data sets.
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The Ereğli data set is also used to show our result for the uncertainty visualization method using

the opacity mapping as shown in Figure 8.2.

We introduced another integration for water–column data set visualization. Our results used

three columns of gas seeps that are attached to the Ereğli data set. The first column consists of

23, 106 data points, the second column consists of 47, 174 data points, and the third column consists

of 23, 921 data points. Our approach uses Gaussian function to visualize the columns’ point density

that is accumulated in viewing direction. One 2D texture image of Gaussian function is used for

all points in the three columns. However, three different constant colors are used to distinguish the

overlapping of those columns’ points. Furthermore, different Gaussian functions can be implemented

at run–time using a slider on the side toolbar. Thus, the user is allowed to change width and height

of the applied Gaussian function interactively. Figure 8.5 shows our application results of gas seeps

visualization.

To do points sorting we choose Heap sorting algorithm because it provides cheap time complexity

in the order of O(n log(n)) concerning both Heap building and Heap sorting. In addition we exploit

more advantages such as stability, adaptivity, and complete binary shape.

However, water–column data visualization is missing the shading effect which may be supported

in the future plan for presenting better depth perception.
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a b

c d

Figure 8.5: Three water columns distinguished in red, green, and blue colors. Gas seeps density is
visualized by a novel fast direct volume rendering approach where every data point is rendered as a
splat with Gaussian kernel for transparency. All points are sorted from close location to the viewing
point further away. Thus, blending all points shows the density of all gas seeps for different viewing
poses and compare the points rendering (a and c) with our visualization method (b and d).
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Chapter 9

Conclusion and Future Work

We presented a visualization approach for heightfield rendering that decouples the mesh represen-

tation from the data representation. The data are stored in a grid–based multiresolution hierarchy

that is loaded to texture memory of the GPU. We used a tiling strategy to replace the hierarchies

in texture memory on demand. The mesh is an irregular triangular mesh that is precomputed us-

ing considerations of view–dependency (triangle sizes) and rendering quality (triangle shape). The

precomputed mesh also resides on the GPU. During the runtime stage, the two representations are

combined by doing texture lookups for all vertices of the mesh to update their height values in

each frame. Consequently, no geometry needs to be sent from the CPU to the GPU. We made

experiments to determine the optimal ratio of (projected) triangle size to screen pixel size. For the

optimal ratio, we reported frame rates of 90 fps for a rendering output window of size 1000× 1000

and 60 fps for size 1600× 1200. Moreover, we have shown that the triangles’ quality is higher than

that of state–of–the–art semi–regular approaches. Our decoupling strategy assures that we always

generate watertight meshes without any special handling of cracks (T–junctions) or tile stitching.

Several optional layers are added to the framework to visualize information of both terrain data

(i.e. heights) and bathymetry data (i.e. depths). Concerning terrains we had achieved landscape

exploration utilizing UTAH data size of 790 GB with textures of 1024× 1024 resolution for each tile

at finest level of detail and high performance of 60 fps.

Regarding bathymetric data we implemented several visualization techniques for depth data

83
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accompanied with backscatter, density, and water–column information. We showed our backscatter

visualization that is based on a color map by rendering the scene with the coordinated views to probe

and display the information of any selected location of the rendered surface. The other advantage

of the coordinated views is also providing a top–view of the entire data depths that are visualized

in a separated color map. Moreover, a set of interactions is provided using a side toolbar. On this

toolbar we can display all selected information and there are more options related to the density

information and the water–column data.

For water–column data we showed the ability of our algorithm of incorporating density visual-

ization of volumetric data sets in the same scene using Gaussian function as a kernel. Users can

easily change the used Gaussian function via a slider on the side toolbar.

However few limitations of our work could be presented as follows:

I. One of the major limitations of our work is texture memory capacity of the GPU. Therefore,

we limited the number of levels of detail in every pyramid to three levels starting with the level

of 1024× 1024 resolution as the finest resolution.

II. Another limitation addresses the size of the water–column data set where our approach is

rendering water–column data distribution on the CPU. Thus, the frame rate of the rendered

scene drops down as the number of water–column data sets increases. However, we had feasible

results using ≈ 95, 000 data points for three gas seeps columns.

Visualizing sub–bottom profile information of bathymetric data field will provide the geologists

with precious analysis of natural resources underneath the ocean floor. The major challenge in this

task is rendering the information of the sub–bottom profiles on the surface interactively with an

effective visualization method. Such task is still one of the interesting challenges for our work that

is left to the future work.

We achieved a beneficial visualization approach for water–column data density using the splatting

technique of direct volume rendering. Our future extension to this approach involves the integration

of data illuminations such as the approach that is presented by Sanftmann and Weiskopf [72].
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