

Approved, Thesis committee:
Prof. Dr. Peter Baumann, Chair
Jacobs University, Germany

Dr. Heinrich Stamerjohanns
Jacobs University, Germany

Prof. Dr. Peijun Du
Nanjing University, China

Towards a Specification-based Quality Guarantee

for Geo Raster Web Services

By Jinsongdi Yu

 A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Computer Science

Date of defense: January 11, 2012

School of Engineering and Science

 I hereby declare that this thesis has been written independently except
where sources and collaborations are acknowledged and has not been
submitted at another university for the conferral of a degree.

Abstract

Geo raster web services provide access to detailed and rich sets of geospatial

information used in multidisciplinary earth system science research, such as solar,

atmosphere, ocean, cryosphere, solid earth, and biosphere research. However, the

heterogeneity of services deployed in these disciplines tends to weaken the

interoperability of today’s highly multidisciplinary earth system science research.

Several syntactical and semantic approaches have been investigated, such as

similarity assessment, inconsistency resolution and standardization, to overcome this

heterogeneity obstacle. Among them, standardization is a promising approach, which

has the potential to achieve interoperability by combing methods of best practices and

making them generally accepted within communities at large. Families of geo service

standards have been developed and maintained by international organizations, such as

the Open Geospatial Consortium (OGC) and the International Standardization

Organization (ISO). To ensure the interoperability of implementations which claim to

adhere to those standards, conformance testing programs have been set up by some of

the standardizing bodies. For instance, the OGC has set up a conformance testing

program with open test for each OGC standard. This constitutes a more

comprehensive conformance testing in the field of geo web services than human

inspection and closed source approaches. The approach follows a specification-based

black box approach. This approach organizes specification requirements as assertions

and groups them by functional modules. However, there is no methodology to

coherently classify these assertions; neither the maturity of derived tests nor their

completeness can be proven based on this approach.

 The goal of this thesis is to establish a model to evaluate an existing standardization

approach and to evaluate the extent to which the specification itself supports the

evaluation of confidence in service implementations, tests and test results. We propose

a Request Parameter Relationship Analysis approach to master service testing

complexity and maturity. Deductive reasoning is used to address reference output

adoption according to the corresponding conditional statements and service facts. By

addressing the relations among individual conformance statements, we propose the

integrated dependency and goal model. We present a sequential evaluation schedule

and prove the stable status in an isolated testing environment. These approaches

provide a basis for analyzing service compliance, test maturity, and the validity of

global statements. As our study example, we use the OGC WCS standard series as it

offers a suitably formalized model for conformance testing. These approaches are

applied to a real-life application, concretely testing the OGC WCS 2.0 geo service

standard. The outcomes of this thesis contribute to the development of specifications,

services and test suites for several standards whose normative conformance tests are

specified using our approach. As a result, improved interoperation of geo raster web

services under evolving implementations is expected in the future.

Acknowledgments

I would like to express my gratitude to my Ph.D. supervisor, Dr. Peter Baumann,

whose expertise, understanding, and patience, added considerable support to my

research work. His guidance helped me during all the time of research and writing of

this thesis. I would like to thank the other members of my committee, Dr. Peijun Du

and Dr. Heinrich Stamerjohanns, for their encouragement and insightful comments.

My sincere thanks also goes to Dr. Klaus Grosfeld from Alfred-Wegener Institute

(AWI) for his kind guidance during the soft-skill training activities. A very special

thanks goes to Dr. Hairong Zhang, Dr. Junqin Lu and Dr. Jiuyun Sun for their

encouragement and spiritual backup. I would also like to thank my friends in the

Large-Scale Scientific Information Systems Research Group (LSIS), particularly Dr.

Angelica Garcia, Michael Owonibi, Salahaldin Juba, Constantin Jucovschi, Xia Wang

and Dimitar Misev, for our philosophical debates and exchanges of knowledge and

skills which helped enrich the experience. I would also like to thank my family for the

support they have provided me through my entire life and in particular, I must

acknowledge my wife Ruiju, without whose love, encouragement and logistical

support, I would not have finished this thesis.

 My thesis research has been supported by the European Space Agency (ESA)

through the HMA-FO project, China Scholarship Council (CSC) through a stipend

and the Helmholtz Earth Science System Research School (ESSReS). I would like to

express my gratitude to these agencies.

Contents
Abstract ... 5
Acknowledgments ... 7
Contents .. 9
1 Introduction .. 1

1.1 Motivation ... 1
1.2 Conformance test ... 3

1.2.1 Standardized conformance testing .. 4
1.2.2 General approaches for conformance testing .. 4
1.2.3 Suitable approaches for Web service conformance testing 5

1.3 Array and Raster Web Services ... 6
2 State of the Art ... 8

2.1 Test search space .. 8
2.2 Test oracles .. 8
2.3 Conformance statement evaluation ... 9
2.4 The derived quality model .. 10
2.5 Research objectives .. 12

3 Service testing complexities ... 14
3.1 Service Request Parameter Relationships ... 14
3.2 Service test request generation ... 15
3.3 Test maturity evaluation ... 19
3.4 Summary .. 20

4 Systematic reference outputs .. 21
4.1 Statement truth and three evaluation assumptions ... 21
4.2 Reference output adoption .. 22
4.3 Summary .. 23

5 Validity of global statements ... 24
5.1 Sub-goal and subordination .. 24
5.2 Integrated Dependency and Goal Model ... 24
5.3 Isolated testing environment ... 25
5.4 Global Validity ... 25

5.4.1 Fix-point in IDGM ... 27
5.4.2 False dead-locks and dead-lock initialization ... 35
5.4.3 Evaluation schedule ... 37

6 Real life study applications ... 40
6.1 OGC Web Coverage Service .. 41
6.2 Service interface conformance.. 44
6.3 Test maturity analysis ... 46
6.4 Global statement validity .. 59

6.4.1 Dependencies among requirements and requirement modules 59
6.4.2 A sequential evaluation schedule .. 60
6.4.3 Evaluate global statement validity based on 3A-TRE 63

6.5 Summary .. 67
7 Conclusions and contribution ... 68

References ... 70
Annex A 3A-TRE Syntax .. 77
Annex B Conformance statements ... 77

B.1 Statements with non-singular strongly connected components 77
B.2 Statements without non-singular strongly connected components 80

Annex C IDGM evaluation schedule algorithm ... 82
List of publications: ... 85
Standards (OGC): .. 85
Oral presentations:... 85
Contributions: ... 86
PhD graduate program: .. 86

1

1 Introduction

Geo raster web services provide access to detailed and rich sets of geospatial

information used in the multidisciplinary earth system science research, such as solar,

atmosphere, ocean, cryosphere, solid earth, and biosphere research. The use of

internet and related technologies for accessing such geospatial data, as well as for

performing basic queries and processing on these data, allows us to find, share,

combine and process geospatial information more easily. However, the heterogeneity

of services constitutes a barrier to service interoperability. To ensure better global

sharing of geospatial information in a heterogeneous world of geospatial web services,

a series of corresponding principles that have been applied to geo service standards

have been defined by international organizations such as the Open Geospatial

Consortium (OGC), in collaboration with ISO, which are currently the main driving

forces in open standards for interoperable geo services. The corresponding

conformance testing programs have been set up to ensure interoperability of

implementations that claim to adhere to the specifications. While such testing poses

challenges in itself, the extent to which the specifications themselves support testing

of implementations is also significant. For example, the designed test cases may be

too many or too few to test a specified requirement; the truth evaluation of a

conformance statement is undecidable when its dependency is unknown.

1.1 Motivation

Consider the following simple cutout retrieval. Assume that a request is sent to a geo

raster web service to obtain a subset area of a 2-D image (see Figure 1).

2

 The result is a cutout image in a specified encoding format. The question arises

how a machine can verify that the service does not misinterpret the corresponding

specifications and provides the data correctly. Obviously, a successful cutout

operation depends on the proper cutout action, format encoding and transfer. Unless a

test machine is intelligent enough to digest the underlying geospatial semantic, it will

accept images which actually are pseudo compliance results. For example, the above

image may represent a 2-D image of the same size as the request but in a different

spatial area, a rotated coordinate system, false pixel values or any other falsified

image result (see Figure 2).

Figure 1 Subset area obtained from a false color city image

(source: http://www.earthlook.org/)

3

 This scenario gives rise to the following questions:

• How much do you trust your services?

• How many tests are sufficient?

• How much do you trust the tests?

• Do they cover everything?

• How can you analyze your test results?

• How do you know you can trust the “Yes” or “No” results?

1.2 Conformance test

In software engineering, a rich variety of testing approaches has evolved, such as

traditional testing technologies, formal proof [26], the semi-formal approach [83] and

integration approaches [83]. Due to the inherent complexity of most systems, testing

can only examine certain aspects of all possible system behaviors, as stated by

?

(a) result of different area (b) result in a rotated coordinate system

 (c) result with wrong pixel intensities (d) otherwise wrong result

Figure 2 Pseudo compliance images

4

Dijkstra [21], “Program testing can be used to show the presence of bugs, but never to

show their absence.” Different testing approaches test software from different aspects.

Conformance testing determines whether a system meets specified requirements. The

aim is to gain confidence in the behaviors of the implementation with respect to

specified requirements. A conformance statement asserts which specific requirements

are met.

1.2.1 Standardized conformance testing

ISO 19105 [50] is a standard that provides the framework, concepts, and methodology

for conformance testing in the field of digital geographic information. Since

geographic information is complex and has many particular aspects such as spatial

reference systems as stated in ISO 19111 [51], metadata as stated in ISO 19115 [52]

and spatial characteristics of coverages as stated in ISO 19123 [53], this International

Standard specifies its framework based in part on ISO 9646-1, ISO 10303-31 and ISO

10641. ISO 9646-1 [54] describes conformance testing methodology and the

framework of Open Systems Interconnection (OSI). This standard specifies a general

methodology for testing the conformance of a product to OSI specifications which the

product claims to implement. ISO 10303-31 [55] describes conformance and testing

in industrial automation systems and integration. ISO 10641 [56] describes

conformance and testing for computer graphics and image processing.

1.2.2 General approaches for conformance testing

1.2.2.1 Formal correctness proof

Formal methods use rigorous proofs of correctness in which the conformance of an

implementation can be conclusively and exhaustively demonstrated [26]. For example,

array algebra [65] is used to define the unambiguous and operational semantics of

multi-dimensional raster operations by Gutierrez [2]. This mathematically-based

technique proves that if the input values satisfy certain constraints, the produced

values will satisfy certain properties. The mathematical method contributes to system

reliability and robustness. However, the agreement between formal proofs and

practical implementations still needs to be tested by the use of falsification testing.

5

1.2.2.2 Semi-formal methods

The semi-formal methods impose some formality and support refinement activities,

such as the use of semi-formal UML descriptions [83]. The symbols used in graphical

notations are mainly analogous to real-world objects as stated by Bauer et al. [40] and

Stenning et al [37]. This enables system requirements to be specified more naturally,

and thus promotes better understanding. Although a semi-formal method is easier to

understand and to apply, its semantics is always ambiguous without a precisely

defined translation to a formal language. As stated by Dong [28], the graphical

notations are sometimes imprecise, ambiguous, unclear and lack expressive strength.

1.2.2.3 Falsification testing

Falsification testing is a practical means of conformance testing [50]. Unlike the

formal correctness proof approach, the use of falsification testing does not guarantee

that the testing provides complete coverage of the requirements. It detects errors in an

implementation by running specific tests that test an implementation against its

relevant requirements. Therefore, it can only be used to conclude that an

implementation has not been implemented to conform to its corresponding

requirements.

1.2.3 Suitable approaches for Web service conformance testing

A web service is on the internet and makes data retrieval or processing available to the

general public. This means that the major challenges faced by the testers of web

services are different compared to traditional desktop applications. The distributed

nature of web services needs to be considered before exploring different types of

testing techniques as stated by Prazen [45]. While white-box testing and mutation

testing [77] are not recommended due to lack of source code knowledge, black-box

testing provides rapid functional testing that can be used across distributed services.

By leveraging the rich information presented in service descriptions, Yunus and

Rizwan [82] advocate that gray-box testing is ideal for detecting defects within a

Service Oriented Architecture (SOA) by considering the distributed nature of web

services. A number of different approaches, including their combination, can be used

6

for conformance testing as stated by Razali [83], the selected approaches depend on

the specified domain criteria. In this research, we deal with services which are tested

only with respect to their functional requirements. The internal structures of these

implementations are not accessible, therefore, we only use black-box conformance

testing. Usually, an implementation is evaluated based on its testing results.

Additional works, such as evaluations of test maturity and result validity, improve

confidence in testing results.

1.3 Array and Raster Web Services

In earth system research, raster data incorporate the use of arrays of arbitrary sizes

and dimensions, so-called Multi-dimensional Discrete Data (MDD), where a

geographic area is divided into array cells. Raster is a special case of geospatial

coverage as defined in ISO 19123 [53] that can be used to represent phenomena that

vary continuously over space. A coverage associates a position within a

spatiotemporal domain to a record of values of defined data types [53].

 Array algebra is a formal framework for describing arrays and their operations for

manipulating arrays. Research of Gutierrez and Baumann [2] shows that fundamental

geo raster operations can be derived according to array algebra. The derived

preconditions and post conditions provide a formal guarantee on pixel level

correctness of the corresponding applications, such as standardized raster services

[66].

 A set of formal algebra and calculus approaches have been done on array modeling

[65], such as AQL [39], AML [4], RAM [8], and array algebra [73]. Recently, more

raster data models have emerged in the field, such as SciDB [76], AQuery system [3],

Maier and Howe’s ADT/blob based model [10]. Baumann and Holsten [74] present a

set of mappings among these array models, such as mappings from AQL, AML and

RAM models to array algebra. The research shows that array algebra can express each

of these models by inspecting all relevant aspects of both data models and operations.

The research also shows that the inverse does not hold.

7

8

2 State of the Art

2.1 Test search space

Test search space is the set of all possible tests. Model-based testing, such as the

works done by Belinfante et al. [1] and Fraser et al. [24], creates flexible and useful

automation on test generation process. The model used describes the system under

test (SUT) as an abstract, partial representation of the desired SUT behavior. Tests

derived from such a model are functional ones at the same level of abstraction as the

model. When considering a structural model, an exhaustive search of all combinations

of all variables is trivial, but impossible if a continuous variable exists. A random test

generator may create many tests, but may fail to satisfy all specified requirements

without formal constraints as stated by Bin et al. [20]. Constraint programming [11]

can be used to select tests that satisfy specific constraints by solving a set of

constraints over a set of parameters. Under this approach, a solution found by solving

the set of constraint formulas can be served as tests. Furthermore, numerous works

have been done on equivalence class partitioning and boundary analysis [48][88] to

condense test search spaces, such as edit distance measurement [87], extreme values,

and structure similarities [33]. Each variable has its equivalence classes. To assemble

these separately partitioned results, the complexity of cross-product computing is

exponential. To design minimum necessary and specification-consistent test cases,

specification-consistent constraints, need to be used to reduce unnecessary cases.

2.2 Test oracles

In software engineering, a test oracle is a mechanism used by software testers and

software engineers to determine whether a test has passed or failed [80]. There are

many different test oracle approaches [16][17][18][80] that can be used to generate,

capture, and compare test results. Douglas describes classes of oracles for various

types of automated software verification and validation; these include true oracle,

stochastic oracle, heuristic oracle, sample oracle and consistent oracle [17]. “Different

9

oracles may be used for a single automated test and a single oracle may serve many

test cases” as stated by Douglas [17]. However, more specific domain knowledge

needs to be considered when testing a standardized service, such as types of geo

services. Limited by human processing capabilities, it is not satisfactory to have a

human to inspect machine-oriented messages in the automated testing of web services.

Obviously, machine-oriented oracles are more suitable for testing service

infrastructures on the fly. Based on these investigations, several suitable approaches,

such as model checking, consistency verification, feature sampling and test

combination, are preliminarily discussed by Yu [36]. However, how to adopt these

oracles without human intervention is still missing from these approaches. With some

suitably expressed specifications which can be digested by the machines, this process

can be automated without the participation of domain experts.

2.3 Conformance statement evaluation

Traditionally, conformance testing investigates whether a product or system adheres to

defined properties. Two-valued logic provides truth values indicating true and false

results. Finite-valued [41][30] or infinite-valued (e.g. fuzzy) logics [90] provide more

expressive capabilities for evaluation results. For example, Kleene’s three-valued logic

[42][43] can provide such expressiveness by adding a third truth value to address

unexplored facts. To derive global validity of conformance statements, statement

dependency relationships are needed to keep track of consistencies. On the overall

orchestration of conformance statements, so as to ensure global validity of testing

results, traditional graph theory approaches or Dependency Structure Matrix [63]

(DSM) helps to sequentialize the evaluation process. Among them, several projects

have been done on ordering the cycles in non-singular strongly-connected components.

For example, Kung et al. [15] remove a random edge to break cycles, and Le Traon et

al. [91], Tai and Daniel [38], Hewett et al. [81] and Briand et al. [34] deploy removal

strategies according to the number of incoming and outgoing edges. Kraft et al. [47]

remove edges according to a dependency weight function. These serializations lose

dependency information of the set of removal edges. These may introduce

10

inappropriate conclusions in the assessment of global validity of conformance

statements. Similar work in the 80's and early 90's is based on truth maintenance

systems (TMS). Dependency analyses in strongly-connected components (SCCs) were

performed, for instance, by Goodwin [31][32] to keep track of dependencies and detect

inconsistencies. However, the cases in which logically dependent relationships occur

are only considered in two-valued logic. Evaluation of validity of global conformance

statements among cross-platform services can substantially increase the confidence of

users, especially vendors and other information professionals, that specification-based

products provide reliable results.

2.4 The derived quality model

ISO 9126 provides an internationally standardized view for evaluating software

quality. ISO 9126-1 standard1 [58] classifies software quality in a structured set of

quality attributes. It provides a framework for organizations to define a quality model

for a software product. Based on this framework, more specific quality models can be

derived for specific tasks. To address the questions raised by our motivation in

Section 1.1, we consider the aspects of the provided services, designed test cases and

test results in the conformance assessment process. Respectively, we consider

functionality compliance, maturity and analyzability as their quality attributes. We

leave out the other aspects because measurements of these fit well with our research

objectives as stated in Section 2.5.

 By specifying target values for quality metrics, the degree of presence of quality

attributes can be measured. There are three metric categories for ISO 9126-1 quality

evaluation. Specifically, they are internal, external and quality in use metrics. The

internal metrics, which are specified in ISO 9126-3 [60], are used to measure the

quality of the intermediate deliverables and thereby predict the quality of the final

products. The external metrics, which are specified in ISO 9126-2 [59], are used to

measure the quality of the software products by measuring the system behaviors and

1 In March of 2011, ISO/IEC 25010 is released to supersede ISO/IEC 9126-1

.

11

can only be used during the testing stages or during any operational stages. The

quality in use metrics, which are specified in ISO 9126-4 [61], are used to measure

the effects of using the software products in specific context of uses.

A conformance assessment process, directly or indirectly determines that a process,

product, or service meets relevant specifications during the testing stages. The

external metrics [64], which are measured during such a process, quantitatively reflect

quality attributes as defined in ISO 9126-1. Therefore, we derive the external metrics

to measure the three quality attributes. The quality attributes are Functional

compliance, Test coverage, Audit trail capability (FTA). The metrics are

Functionality compliance Metric, Maturity Metric and Analyzability Metric (FMA).

These attributes and their metrics are detailed as below:

• Functionality compliance Metric - Functional compliance [59] is a metric

on how compliant the functionality of the product is to applicable regulations,

standards and conventions. The formula is as below:

X = A / B

where A is the number of the compliance requirements that have been

correctly implemented and B is the total number of compliance requirements

specified.

• Maturity Metric – Test coverage [59] is a metric on how many of the

required test cases have been executed during testing. The formula is

demonstrated as below:

Y= C / D

where C is the number of actually performed test cases representing operation

scenario during testing of a requirement and D is the total test case number

that is to be performed to cover the requirement.

• Analyzability Metric – Audit trail capability [64] is a metric for a user to

measure and identify specific operation which caused failure. The formula is

as below:

Z= E / F

where E is the number of data actually recorded during operation and F is the

12

number of data planned to be recorded, sufficient to monitor the status of the

software during operation.

We inherited the three metrics and used them in the conformance assessment

process (see Table 1). A functional compliance metric is used to measure the

functionality compliance of service interfaces. To test compliance items of service

interfaces, a set of test cases is designed for the tasks. A test coverage metric is used to

measure the maturity of designed tests. An audit trail capability metric is used to

measure the analyzability of test results.

Table 1 Derived external metrics

Quality
attribute

Metrics Formula Parameter description

Functionality
compliance

Functional
compliance

X = A / B A is the number of the compliance
requirements as specified that have been
correctly implemented during testing and
B is the total number of compliance
requirements specified.

Maturity Test coverage Y = C / D C is the number of actually performed test
cases representing operation scenario
during testing the requirement and D is
the total test case number that is to be
performed to cover the requirement.

Analyzability Audit trail
capability

Z = E /F E is the number of data actually recorded
during operation and F is the number of
data planned to be recorded, enough to
monitor the status of software during
operation.

2.5 Research objectives

The main goal of the research presented in this dissertation is to investigate trust-

worthiness issues pertinent to ensuring conformance statements of implementations

that claim to adhere to the specifications. Specifically, these include functionality

compliance of implemented services, maturity of designed tests and analyzability of

test results. The goal gives rise to the following concrete research objectives:

1. Derive a quality model beyond the intrinsic properties of web service

13

conformance assessment process [50], such as repeatability, comparability and

auditability [50]. The model should be able to measure functional compliance

of specified compliance items, test coverage of test cases and audit trail

capability of corresponding test results.

2. Establish a method to allow evaluating how much the specification itself

supports testing the implementation. This gives rise to the further

sub-objectives:

2.1 How to establish a mechanism that allows evaluation of how many service

requests are needed to test the specification-based service interfaces;

2.2 How to establish a model that allows deriving the necessary reference

outputs for comparison against actual responses of the system under test to

enable automatic testing based on suitably expressed interface

specifications;

2.3 How to establish a model that allows addressing goals and dependency

issues among the declared requirement items;

2.4 How to establish an evaluate schedule that allows evaluation the validity

of global conformance statements.

3. Collect feedback for improving specifications, test suites and service

implementations.

 By addressing the above objectives, improved interoperation of geo raster web

services under evolving implementations is expected in the future.

14

3 Service testing complexities

In this section, we study how many service requests are needed to test a standardized

implementation and establish a mechanism that allows doing this. We assume that an

implementation service responds to an invalid request by returning an error message

and responds to a valid request by returning a valid item. A request consists of a set of

parameters. For each parameter, there is a set of valid inputs and a set of invalid

inputs. As the continuous variable is impossible for finite test generation, we treat

each equivalence class as a test input of the parameter. Valid equivalence classes make

up its search space of valid inputs and invalid equivalence classes make up its search

space of invalid inputs. Valid and invalid equivalence classes of a parameter comprise

a test search space of this parameter. Normally, an equivalence class is tested by one

of its instances. For a request with a single parameter, its equivalence classes

comprise its test search space. For a request with multiple parameters, an element of

its search space is a combination of separate equivalence classes of these parameters.

In a service test request, some parameters are independent from each other, while

others are not. We propose a Request Parameter Relationship Analysis (RPRA)

approach and differentiate between independent and dependent relationships among

the parameters.

3.1 Service Request Parameter Relationships

In this research, we distinguish two parameter types, Atomic Parameters (AP) and

Composite Parameters (CP). An atomic parameter can not be subdivided. A composite

parameter is a combination of parameters which are called direct children of the

parameter.

 A set of parameters is in an independent relationship if and only if each parameter

neither proves nor refutes any of the others. For a composite parameter with

independent direct children, an instance is valid if all instances of its direct children

are valid and is invalid if there is at least one invalid input. A valid instance of a

composite parameter is able to test � possible valid equivalence classe. An invalid

15

instance of a composite parameter can test only one invalid equivalence class as long

as the others are stubbed.

 A set of parameters is in a dependent relationship if and only if at least one

parameter can be proved by the other. If A depends on B, B is called a dependency of

A and A is called a dependent of B. We only consider the case of two parameters,

because both dependent and dependency can be composite parameters. Furthermore,

as the validity of the dependent can not be concluded if its dependency is invalid, we

only consider the case when the dependency contains only one valid input and the

dependent contains a set of valid and invalid inputs. A dependency contains multiple

inputs are not discussed here as the cases with different inputs can be treated as

alternative inputs for the parameter. For a composite parameter with its direct children

in a dependent relationship, an instance is valid if both the dependent and dependency

are valid and is otherwise invalid. A valid instance of the composite parameter can test

only one valid equivalence class of the dependent together with its valid dependency.

An invalid instance of the composite parameter can test only one invalid equivalence

class of the dependent together with its valid dependency.

3.2 Service test request generation

Based on separate equivalence classes of parameters, searched spaces of composite

parameters are assembled according to relationship constraints among their direct

children.

• Independent relationship (IR)

When ��, �� … , and �� are direct children of a composite parameter in an

independent relationship, parameter �� has a set of 	� valid equivalence classes

���
� , ���

� , … , ����

� � and a set of � invalid equivalence classes
���
� , ���

� , … , ����

� �,

��
� is the search space of valid inputs, ��

� is the search space of invalid inputs,

�� is the test search space of this parameter,

��	
� � ��

�, ��	
� � ��

�, �� �
���, ���, … , ��
������
�, ��	 � ��. Specifically,

16

��
� � ��

� � ��

��
� � ��

� � �

� ���� �, a list of direct children with cardinality � where 1 � � � �, is an

input of such a composite parameter. An instance of the composite parameter is

able to test � possible equivalence classes. To test valid retrievals, in the case of

cardinality �, the minimum required instance number of the composite parameter

is ceiling!
∑ ��

) if ceiling!

∑ ��

" # max !	�", otherwise, it is max !	�". The search

space of valid inputs is denoted as &� ���� �: (� �� � ���� � !)� � &��
�* + � �

�"*. The invalid retrievals need to be tested for each invalid equivalence class of

its direct children under the assumption that the other parameters are valid. An

instance of such a composite parameter tests only one invalid equivalence class of

its direct children. Therefore, to test invalid retrievals, the minimum required

instance number of the composite parameter is ∑ �. The search space of invalid

inputs is denoted as &� ���� �:)� �� � ���� � !)� � &��
�* + � � �"*.

 We derive some special cases in a real life service testing study [35]. When

� � 0, the list is empty and no valid or invalid equivalence class is tested.

However, the case tests a request with empty parameters and its validity depends

on its real use. When � � 1, the list has one element. Only one valid or invalid

equivalence class is tested in this case. The case can be treated as a substitution

among equivalence classes. When � � �, an instance of the composite parameter

is able to test � possible equivalence classes. Max !	�" instances of the

composite parameter are able to test � / max !	�" possible equivalence classes

of its direct children and are enough to cover all valid equivalence classes.

Furthermore, the direct child with max !	�" valid equivalence classes needs at

least max !	�" instances of the composite parameter to cover its search space of

valid inputs. Therefore, to test valid retrievals, the minimum required instance

number of the composite parameter is max !	�". The invalid retrievals need to be

tested for each invalid equivalence class of its direct children under the

17

assumption that the other parameters are valid. An instance of such a composite

parameter tests only one invalid equivalence class of its direct children. Therefore,

to test invalid retrievals, the minimum required instance number of the composite

parameter is ∑ �.

• Dependency relationship (DR)

The mono-dependency, which is a singleton, has only one valid equivalence class.

Each equivalence class of the dependent is compared with the dependency for the

validity in such a circumstance. A dependency, which has � valid equivalence

classes, can be turn into � mono-dependencies.

 If 0, 1 are direct children of a composite parameter in a dependent

relationship, 0 is a mono-dependency, � � 0 , 1 has a set of 	 valid

equivalence classes &2�
�, 2�

�, … , 2�
�* and a set of invalid equivalence classes

2�
�, 2�

�, … , 2�
��, 1� is the search space of valid 1 inputs, 1� is the search

space of invalid 1 inputs,

1� � &2�
�, 2�

�, … , 2�
�*, 2� � 1�, 1� �
2�

�, 2�
�, … , 2�

��, 2� � 1�, 2 � 1 ,

� �, 2 � is an instance of such a composite parameter. An instance of the

composite parameter is able to test one equivalence class of 1. Therefore, to test

valid retrievals, the minimum required instance number of the composite

parameter is 	. To test invalid retrievals, the minimum required instance number

of the composite parameter is .

 We differentiate complex parameters based on a real life service testing study [35],

which are: Partial Elements Complex Parameter and Mono-Dependency Relationship.

Specifically, they are defined as:

• Partial elements complex parameter (PECP): a composite parameter in an

independent relationship with a cardinality of �, where 0 � � � �;

• Complex parameter with mono-dependency (MDCP): a composite

parameter in a dependent relationship between a mono-dependency and its

18

corresponding dependent.

 Accordingly, we design a query language, namely, Service Test Request Generation

Query Language (STRG-QL) to manipulate the generation of test search space. The

syntax is given as below:

STR : Parameter

M: Parameter: stubbed

Parameter:

 AP|M|CP|Parameter: random|Parameter: random_invalid

 |(Parameter)

ParameterList:Parameter|ParameterList, Parameter

CP : PECP|MDCP

PECP: IR(ParameterList): cardinality = m| random(low:high)

MDCP: DR(M,Parameter)

 Syntax rules are as follows [49] : underlined tokens represent literals which appear

“as is” (“terminal symbols”) and other tokens represent sub-expressions to be

substituted (“non-terminals”). A vertical bar (“|”) denotes alternatives. AP is an atomic

parameter, and M is a stubbed parameter. When a parameter is stubbed, it contains

only one valid input. CP is a complex parameter. IR means the parameters are in an

independent relationship. DR means the parameters are in a dependent relationship;

cardinality = m| random(low:high) indicates that a constant number m or a

random number of children participate in test requests. The random number is

constrained by the given low and high boundary. Parameter: stubbed indicates

that the parameter is stubbed. Parameter: random indicates that the parameter

uses a random input from its test search space. Parameter: random_invalid

indicates that the parameter uses a random invalid input from its search space of

invalid inputs.

 More special cases are derived according to real uses. These include: Empty

19

Complex Parameter, Single Element Complex Parameter, Random Element Complex

Parameter and All Elements Complex Parameter. These are detailed as below:

• Empty complex parameter (ECP): is a composite parameter in an

independent relationship with a cardinality of 0; its syntax is denoted as:

ECP: IR(ParameterList): cardinality = 0

• Single element complex parameter (SECP): is a composite parameter in an

independent relationship with a cardinality of 1; its syntax is denoted as:

SECP: IR(ParameterList): cardinality = 1

• Random elements complex parameter (RECP): is a composite parameter in

an independent relationship with a random cardinality; its syntax is denoted

as:

RECP:IR(ParameterList): cardinality = random(low:high)

where cardinality is a random integer bounded by a pair of low and high

values.

• All elements complex parameter (AECP): is a composite parameter in a

dependent relationship with a cardinality of n; its syntax is denoted as:

AECP:IR(ParameterList): cardinality = n

3.3 Test maturity evaluation

In our quality model, the test coverage is used to measure test maturity as mentioned

in Section 2.4. When 3 is an equivalence class of an atomic parameter, � is an

instance of the equivalence class, ����4�53!3, �" mean � is an instance of 3, the

equivalence classes with no empty instances are denoted as

&3: |&�: ����4�53!3, �"*| � 0*. Correspondingly, test coverage [59] can be measured as

Y= C / D, where C is the number of equivalence classes with no empty instances and

D is the total equivalence class number.

20

For a composite parameter, the test coverage is measured by test coverages of its

direct children. We assume that each equivalence class of its direct children is

equally-weighted. Specifically, they are discussed below:

• Independent relationship evaluation

When 5�, 5� … , 5� are test coverages on valid inputs of its direct children,

5�
� , 5�

� , … , 5�
� are test coverages on invalid inputs, 	�, 	� … , 	� are valid

equivalence class numbers of its direct children, �, � … , � are invalid

equivalence class numbers, the test coverage on valid inputs of the composite

parameter is ∑ ��� ��

∑ ��
�
���

�
��� and the test coverage on invalid inputs of the composite

parameter is ∑ ��� ��

∑ ��
�
���

�
��� .

• Dependency relationship evaluation

1 is mono-dependent on 0, and 0 has only one valid equivalence class. 1 has

	 valid equivalence classes and invalid equivalence classes. When 5� is test

coverage on valid inputs of 1, 5�
� is test coverage on invalid inputs of 1, the test

coverage on valid inputs of the composite parameter is 5� and the test coverage

on invalid inputs of the composite parameter is 5�
� .

3.4 Summary

We have discussed the minimally necessary and specification-based test request based

on the dependent and in dependent relationships. Accordingly, we have designed

STRG-QL for the generation of test search spaces. We have also discussed test

maturity evaluations based on these relationships. The result can help to evaluate the

existing tests.

21

4 Systematic reference outputs

In this section, we study how to establish a model that allows adopting the necessary

reference outputs. Based on suitably expressed interface specifications, the process

can be automated without manual intervention. Often, such a conceptualization is

described by conditional statements. A conditional statement contains a set of

preconditions and a set of post conditions. Preconditions are always associated with a

set of facts which are extracted during operational stages. To deduce adopt reference

outputs in accordance with post conditions, preconditions need to be satisfied.

4.1 Statement truth and three evaluation assumptions

We define a statement as a truth-bearer proposition. We distinguish three possible

truth values of a statement, namely T, F, and U, following a three-valued logic [43].

We differentiate between atomic and composite statements. In logic, an atomic

statement is a logic statement which cannot be broken down into smaller statements; a

composite statement is a logic statement having two or more statements connected by

logical conjunction (“ + ”) and disjunction (“ 7 ”) operators. We express such a

statement by a logical expression. Syntactically, it is represented by this grammar:

TS: ";"|"<"|"="

CDOP: " + "|" 7 "

TRE: TS|"!"TRE"""|TRE CDOP TRE

where TS is a truth status and TRE is a logical truth result expression. This kind of

expression is similar to the AND/OR graph as used in software engineering.

 We distinguish three evaluation assumptions to evaluate unknown features: open

world assumption (OWA), closed world assumption (CWA) [14] and stub assumption

(SA). The open world assumption (OWA) states that the truth value of a statement

that is not included in or inferred from the knowledge explicitly recorded in the

system shall be considered unknown. The closed world assumption (CWA) is the

assumption that any statement that is not known to be true is false. We distinguish yet

22

another case in software testing. Frequently, there are test stubs which simulate the

behaviors of the dependent test modules. In this case, the dependent test modules are

always assumed to be true when their results are not available. We call this a stub

assumption (SA).

 In Kleene's logic [42], a conjunction produces a value of T if both of its operands

are T, an F if one of its operands is F, and otherwise U. Disjunction delivers a value of

T if one of its operands is T, an F if both of its operands are F, and otherwise a U.

Obviously, Kleene’s approach [42] is an open world assumption. We extend this

approach and evaluate traditionally logical expressions under the three assumptions

(see Table 2). The corresponding syntax, namely 3A-TRE, is detailed in Annex A.

Table 2 Logic assumptions on unknown results

Assumption Operand Result

CWA U F

OWA U U

SA U T

4.2 Reference output adoption

We use deductive reasoning [78] to deduce suitable reference outputs for a single test.

According to the law of detachment, also called modus ponens [46], when a

conditional statement is made and a hypothesis (P) is stated as true, the conclusion (Q)

is deduced from the hypothesis and the statement. The format is:

conditional statement: P→Q

where P is the hypothesis and Q is the conclusion. The adopted reference outputs

depend on the hypothesis that must be met. When P is evaluated as true, the

actions in Q are carried out.

We model both P and Q with logical expressions (see Section 4.1). The

conceptualization, which is always explicitly or implicitly specified, for example

included in specifications as default tacit knowledge, is modeled by conditional

statements. The set of extracted facts are used to evaluate the truth value of the

23

hypothesis as stated in P. With proper evaluation (see Section 4.1), we can conclude

the adopted reference outputs. The corresponding example is in Section 6.2.

4.3 Summary

For automatic testing, having good reference outputs is indispensable. Systematic

generation of tests and their outputs is one way to meet this requirement. In order to

address reference output adoption, we propose using deductive reasoning based on

specifically expressed conditional statements.

24

5 Validity of global statements

In this section, we propose the integrated dependency and goal model (IDGM) to

address dependency issues among service components under a test process. We prove

the conditions of stable results and provide the corresponding evaluation schedule.

5.1 Sub-goal and subordination

A goal is a result that an activity is trying to achieve. Subgoals are lesser goals that

form part of a greater goal. Sometimes several subgoals must be achieved to claim

success of the greater goal. This establishes a logical “and” prerequisite condition.

Sometimes, at least one subgoal must have been achieved; for example, at least one

service protocol must have passed the test before the service as such can be assessed.

This leads to a logical “or” combination. Therefore, we treat a goal as a logical

statement as stated in Section 4.1.

 Subordination is a relationship in which one or more statements are dependent on

each other. Sometimes a goal contains subordinates. An unknown or false subordinate

will introduce an over-optimistic or wrong result. Therefore, such a goal’s subordinate

can be treated as a subgoal which needs to be evaluated for consistency. A goal that is

defined by the conjunction of its subgoals and subordinates is called a well-designed

goal (WDG).

5.2 Integrated dependency and goal model

A well-designed goal depends on both its subgoals and subordinates. We model

dependence between two statements with a directed edge. We now develop the model

based on the directed graph for tracing dependencies between statements. We start

with a directed dependency graph G=(V,E). The vertex set V contains statements as

vertices, the edge set E consists of dependencies; an edge e = (s1,s2) denotes that

vertex s1 depends on vertex s2. s2 is said to be a direct successor of s1 while s1 is said

to be a direct predecessor of s2. Generally, if a path in G is made up one or more

successive edges leading from vertex s1 to vertex s2, then s2 is said to be a successor

25

of s1 and s1 is said to be a predecessor

return path from s2 to s1, then

component (SCC) [89] is a maximal strongly

well-designed goal, its result is evaluated according to its direct successors,

specifically, subgoals and subordinate

and dependency model (IDGM)

each of its statements represented as a

subgoal1 �� and subgoal2 �

well-designed goal is denoted as

5.3 Isolated testing environment

An isolated testing environment

to be tested and a test with

external environment. The partial

����

where S is the set of test inputs, the test returns

false if the input is in set Y; otherwise,

5.4 Global Validity

To ensure global validity of conformance statements

results. Dependencies among

predecessor of s2. If there is a path from s1 to s2 and also a

hen s1 and s2 are strongly connected. A strongly-c

is a maximal strongly-connected subgraph of G. To evaluate a

result is evaluated according to its direct successors,

subgoals and subordinates in a logical expression. The integrated

odel (IDGM) is a model for handling such logical statements

represented as a well-designed goal. For example, a goal has

�� as its sub goals, and a dependency �; its corresponding

is denoted as �� � �� � � (see Figure 3).

Figure 3 Sample IDGM

5.3 Isolated testing environment

solated testing environment is an environment that consists of a decidable system

with a partial test function that has no interaction with its

partial test function f is defined as:

���� � 	
 ���� ��

���� � �
 ���� ��

� � � � � � 	�� � �
 ���� ��

is the set of test inputs, the test returns true if the input is in set X, and

otherwise, it returns an unknown result.

ensure global validity of conformance statements, it is necessary to obtain stable

ependencies among statements may introduce evaluation deadlock

���� �� � �� �

and also a

connected

To evaluate a

result is evaluated according to its direct successors,

ntegrated goal

statements with

a goal has

its corresponding

decidable system

has no interaction with its

and returns

it is necessary to obtain stable

deadlocks. For

� �

26

example, let us assume that statement s1 depends on s2 and s3, s3 depends on s4 and s4

depends on s1. This means that s1, s3 and s4 are strongly-connected as shown in Figure

4. The cycle introduces a deadlock in the evaluation process.

Figure 4 Sample deadlock

 An evaluation action is an evaluation of a statement by its corresponding logical

expression. The integration of goals and subordinates avoids inconsistent results

which may be introduced when a statement’s subgoals and subordinates are evaluated

separately.

 When ��, ��, … , and �� are statements, ��, ��, … , and �� are the corresponding

evaluation actions of these statements, 	�, 	�, … , and 	� are truth values of these

statements. An evaluation step is a sequential or concurrent execution of a set of

evaluation actions; a concurrent evaluation is an evaluation step, which consists of a

set of concurrent evaluation actions; a sequential evaluation is an evaluation step,

which consists of a set of sequential evaluation actions; an evaluation process is a

recursive evaluation step. The step takes the previous result as an input and it is

denoted as
����: � � , where � � � and � � �	�, 	�, … , 	�� . The process is

terminable if there exists a fixpoint such that � �
�������; an evaluation schedule of a

terminable process is a terminable schedule, otherwise, it is an interminable schedule.

�� � �� � ��

�� � �	

�	 � ��

27

5.4.1 Fixpoint in IDGM

We prove that a set of stable results exists, including statements in non-singular

strongly-connected components. We set up three confidence levels for a statement.

Specifically, they correspond to three decreasing confidence degrees which are T

(true), U (unknown) and F (false), respectively. We use an ordering relation of

confidence and denote it as x1 > x2. Consequently, the confidence precedence order is

defined as T > U > F.

Table 3 Extended truth table of the logic operations for Kleene's logic with CWA and
SA

P Q P and Q

(CWA)

P and Q

(Kleene's logic,

OWA)

P and

Q

(SA)

P or Q

(CWA)

P or Q

(Kleene's logic,

OWA)

P or Q

(SA)

T T T T T T T T

T U F U T T T T

T F F F F T T T

U T F U T T T T

U U F U T F U T

U F F F F F U T

F T F F F T T T

F U F F F F U T

F F F F F F F F

 We define the truth table of conjunction and disjunction operations with open world

assumption (OWA), closed world assumption (CWA) and stub assumption (SA) (see

Table 3). Then, we prove that each evaluation action, each according to its logical

expression, is order preserving with respect to certain constrains and the logical

precedence below. The proof steps are:

• Conjunction: � � � implies �������� � �������� , where �������� is a

conjunction clause that contains any occurrence of variable �, with the others

28

hold constant;

• Disjunction: � � � implies �������� � �������� , where �������� is a

conjunction clause that contains any occurrence of variable �, with the others

hold constant;

• DNF: � � � implies ��	
��� � ��	
���, where ��	
��� is a conjunction

clause that contains any occurrence of variable � , with the others hold

constant;

 The expression which can be expressed by a formula in DNF, satisfies the order

preserving property. Hence, each evaluation action is order preserving. An evaluation

action, which contains a set of variables, is order preserving:

• DNF: �� � �� implies ��	
���� � ��	
���� , where � 	
 , � � ���, ��, … , ��� and ��	
��� is a conjunction clause that contains any

occurrence of variables ��, ��, … and ��.

 If xi is a statement evaluation result and e is the evaluation result of the evaluation

step ����:
 �
, where � 	
 and � � ���, ��, … , ���, the set of all inputs E is a

complete lattice. A complete lattice [23] is a partially-ordered set [25] in which all

subsets have both a supremum and an infimum. This proof is:

• Firstly, we prove that E is partially ordered along the confidence precedence

relation:

o Reflexivity, ���, ��, … , ��� � ���, ��, … , ��� , where xi is the truth

value of conformance statement si;

o Antisymmetry, if ���, ��, … , ��� � ���, ��, … , ��� and ���, ��, … , ��� � ���, ��, … , ��� , ���, ��, … , ��� � ���, ��, … , ��� ,

where xi and yi is are corresponding truth values of conformance

statement si;

o Transitivity, if ���, ��, … , ��� � ���, ��, … , ��� and ���, ��, … , ��� � ���, ��, … , ��� , ���, ��, … , ��� � ���, ��, … , ��� ,

29

where xi, yi and zi are the corresponding truth values of conformance

statement si.

• Secondly, we prove that each subset T of the partially-ordered set E has both a

supremum and an infimum:

o If t is an element of T, �� � ��
�

� , �
�

� , … , ��

��; �
�

� is the truth value of

statement si of evaluation ��;

T = { t1, t2, …, tm}

 = {���

� , ��

� , … , ��
��,

 ���

� , ��

� , … , ��
��,

 … ,

 ���

� , ��

� , … , ��
��};

 low���

� , ��

� , … , ��

�� is a lower bounder of xi;

 the lower bounder of T is � = (low���

� , ��

� , … , ��

��,

 low���

� , ��

� , … , ��

��,

 …,

 low���
� , ��

� , … , ��
��);

o Then, we can derive that:

1. ���� � �)
2. ������� � �� � � � ��), where e is an element of E;

3. infimum (T) = �;

o Similarly, we can derive:

 supremum (T) = (high���

� , ��

� , … , ��

��,

30

 high���

� , ��

� , … , ��

��,

 …,

 high���
� , ��

� , … , ��
��);

o Therefore, each subset T of the partially-ordered set E has both a

supremum and an infimum.

• Therefore, E is a complete lattice.

 The Knaster–Tarski theorem [22] states that there is a set of fixpoints of f in E if E

is a complete lattice and �:
 �
 is an order preserving function. A fixpoint of �

in E is denoted as � � ����.

 However, there are dependent relationships among variables x�, x�, … and x� .

This will result in the case of neither non-decreasing nor non-increasing if these

statements are not properly evaluated. Specifically, they are discussed in the below

subsections.

5.4.1.1 Concurrent evaluation

A concurrent evaluation simultaneously executes several evaluation actions in an

evaluation step. However, the concurrent evaluation is not always an order preserving

function due to the oscillating results in non-singular strongly-connected components;

such as the example shown in Table 4. Oscillation is the repetitive variation among

different states. The oscillating results will result in an interminable evaluation

process.

 Table 4 Concurrent evaluation on nodes of a non-singular strongly-connected
component

statement logical

expression

initial value step1 step2 …

s1 s2 T F T …

s2 s1 F T F …

31

5.4.1.2 Sequential evaluation

A sequential evaluation sequentially executes several evaluation actions in one

evaluation step. An improper sequence, in which a statement evaluation is scheduled

prior to its dependencies, may result in oscillating results. Thus, the sequential

evaluation is not an order preserving function in this case, such as the example shown

in Table 5.

Table 5 Sequential evaluation of a non-singular strongly-connected component with
an improper sequence

statement logical

expression

initial value step1 step2 …

s1 s2 T F T …

s2 s3 F T F …

s3 s1 T F T …

 Therefore, we consider a serialized sequence, in which each dependency is

scheduled prior to a statement itself. An IDGM can either be a directed acyclic graph

(DAG), a non-singular strongly-connected component, or a directed graph with

non-singular strongly-connected components. For a non-singular strongly-connected

component, if there is only one path from each node in the non-singular

strongly-connected component to every other node without crossing itself, the

component is a simple non-singular strongly-connected component; otherwise, it is a

complex non-singular strongly-connected component. In a serialized sequence, the

evaluation is an order preserving function. The proof is:

(1) For a directed acyclic graph (DAG), a topological sorting [89] avoids an

improper evaluation sequence; the evaluation step can be equivalently defined as a

sequence of functions as:

� �: �� � �� �: ���, ��� � �� …�: ���, ��, … , ����� � �� �

32

where �� is the initial input.

We can derive that:

1. Each evaluation action is order preserving; therefore, � is order

preserving because each evaluation action feeds its result to its next action

and shares the same order preserving property; and such an evaluation

result is stable and can be derived in one evaluation step;

2. If the fixpoint derivation is defined as a function ��������: �� � �, where �� is the initial input and � is the fixpoint, the function is order

preserving.

(2) For a simple non-singular strongly-connected component, the deadlock can be

disentangled by initiating one of its nodes. If �� is an evaluation step, the

evaluation step can be equivalently defined as a sequence of functions as:

���
�� ��� : ��

�� � ��

�� �� � 1� ��� : ���

�� , ��

��� � ��

�� �� � 1� …��� : ���

�� , ��

�� , … , ����

�� � � ��
�� �� � 1���� : ���

�� , ��

�� , … , ��
��� � ��

�� �� ! 1�
�

where ��

�� is the initial input.

We can derive that:

1. Each evaluation action is order preserving; therefore, ��� is order

preserving because each evaluation action feeds its result to its next action

and share the same order preserving property.

2. If the fixpoint derivation is defined as a function ��������: ��

�� � �, where

��

�� is the initial input and � is the fixpoint, the function is order

preserving.

3. ��

�� 	 "#, $, %&; hence, � � ������� can be derived in three steps, where

33

� � ���, ��, … , ��). Only one fixpoint can be derived for an initial input.

However, this fixpoint may be different for a different initialization.

(3) For a complex non-singular strongly-connected component, one of its nodes is

initialized by a given input �
�

���
�

. This way, the node is disentangled from its

dependencies. In the rest of the component, the non-singular strongly-connected

components are condensed to atomic nodes. This makes a directed acyclic graph

(DAG).

 When '�� , '�� , … , and '�� are the derived nodes, including the initial node '�� ,
��� , ��� , ��� , … are evaluation steps, �

�

���
� , �

�

���
� , … , and ��

���
�

 are the corresponding

evaluation results, a evaluation step, which consists of a set of evaluation actions

of these nodes, and can be equivalently defined as a sequence of functions as

below:

���
�
��� ���

� : �
�

���
� � �

�

���
� �� � 1� ���

�: ��+
�

��
� , �

�

��
�� � �

�

���
� �� � 1� …���

� : ��
�

���
� , �

�

���
� , … , �+

���

��
� � � �+���� �� � 1����

� : ��
�

���
� , �

�

���
� , … , ��

���
�� � �

�

���
� �� ! 1�

�

where ��

���
�

 is the initial input of '�� . If each node evaluation action is order

preserving, we can derive that:

1. ���
� is order preserving because each evaluation action feeds its result to

its next action and shares the same order preserving property;

2. If the fixpoint derivation is defined as a function ��������: ��

���
� � �,

where ��

���
�

 is the initial input and � is the fixpoint, the function is order

preserving;

3. ��

���
� 	 "#, $, %& ; hence, �� � �������� can be derived in three steps,

where �� � ���
� , ��

� , … , ��
�). One and only one fixpoint can be derived for

34

an initial input and this fixpoint may be different for a different

initialization.

However, if a derived node is a deadlock, its evaluation result is not stable. Thus,

its order preserving is impossible. Further initialization is needed to disentangle

this deadlock. In this case, the derived node’s evaluation can be defined as

���
� : ��

�

���
� , �

�

���
� , … , �

���

���
� , �

�

����
�� � �

�

���
� �� � 1, , � - ! 1� , where �

�

����
�

 is the

initial input of a node of ���. Hence, we define the set of sequential evaluation

action functions as:

���
�
��� ���

� : ��
�

���
� , ��

����
� � � �

�

���
� �� � 1� ���

� : ��+
�

��
� , �

�

���
� , ��

����
� � � �

�

���
� �� � 1� …���

� : ��
�

���
� , �

�

���
� , … , �+

���

��
� , ��

����
� � � �+���� �� � 1����

� : ��
�

���
� , �

�

���
� , … , ��

���
�� � �

�

���
� �� ! 1�

�

where �
�

����
�

 is the initial input of node ���. If each evaluation result is stable, the

fixpoint derivation ��������: �
�

���
� � � is order preserving because each

evaluation action feeds its result to its next action and shares the same order

preserving property. According to (1), if node ��� is an atomic node, its evaluation

result is stable with truth values of �
�

���
� , �

�

���
� , … , and �

���

���
�

 which hold constant.

According to (2), if ��� is a simple non-singular strongly-connected component,

its evaluation result, which is initialized by �
�

����
�

, is stable with truth values of

�
�

���
� , �

�

���
� , … , and �

���

���
�

 which hold constant. According to (3), if the node is a

complex non-singular strongly-connected component, further initialization,

disentanglement and condensation are needed. These need to be repeated

recursively until only atomic nodes or simple non-singular strongly-connected

components can be found. Hence, the stable status is derived by recursive

initializations. Obviously, this can be achieved in finite steps.

35

 Therefore, for a given initialization of deadlocks of non-singular

strongly-connected components, the stable result can be derived through a serialized

schedule. The evaluation in a serialized sequence with respect to the given

initialization is order preserving.

5.4.2 False deadlocks and deadlock initialization

Actually, we do not need to recursively evaluate all non-singular strongly-connected

components. In a serialized sequence evaluation schedule, some truth values of a

non-singular strongly-connected component are determined by one or more elements

of its dependencies. For example, when ��. is a logical expression, # / ��. will

always return T even the truth value of ��. is unknown. A node with such a constant

truth value disentangles the deadlock. This results in a false evaluation deadlock.

Furthermore, a $ / ��. will not return an F result. In this case, the statement can

only be valued as either T or U.

 A possible truth list (PTL) is a list of possible truth values for a given statement. We

distinguish these initialization patterns in Table 6.

Table 6 Possible truth lists of specific initialization patterns

case Possible truth list

/ ��. #

% 0 ��. %

$ / ��. #, $

$ 0 ��. $, %

% / ��. #, $, %

0 ��. #, $, %

��. / ��. #, $, %

��. 0 ��. #, $, %

36

 Here are truth tables to evaluate a possible truth list under open world assumption

(see Table 7), closed world assumption (see Table 8) and stubbed assumption (see

Table 9).

Table 7 Possible truth lists under open world assumption

OWA � � � �, � �, � �, �, � �, � � � � �, � �, � �, �, � �, �

� � � � �, � �, � �, �, � �, � � � � � � � �

� � � � � �, � �, � �, � � � � �, � � �, � �, �

� � � � � � � � � � � �, � �, � �, �, � �, �

�, � �, � � � �, � �, � �, �, � �, �, � � �, � �, � �, � �, � �, � �, �

�, � �, � �, � � �, � �, � �, � �, � � � �, � �, � �, � �, �, � �, �, �

�, �, � �, �, � �, � � �, �, � �, � �, �, � �, �, � � �, � �, �, � �, � �, �, � �, �, � �, �, �

�, � �, � �, � � �, �, � �, � �, �, � �, � � �, � �, � �, � �, �, � �, �, � �, �

Table 8 Possible Truth Lists under closed world assumption

CWA � � � �, � �, � �, �, � �, � � � � �, � �, � �, �, � �, �

� � � � �, � � �, � �, � � � � � � � �

� � � � � � � � � � � �, � � �, � �, �

� � � � � � � � � � � �, � � �, � �, �

�, � �, � � � �, � � �, � �, � � �, � �, � �, � �, � �, � �, �

�, � � � � � � � � � � � �, � � �, � �, �

�, �, � �, � � � �, � � �, � �, � � �, � �, � �, � �, � �, � �, �

�, � �, � � � �, � � �, � �, � � �, � �, � �, � �, � �, � �, �

37

Table 9 Possible truth lists under stubbed assumption

SA � � � �, � �, � �, �, � �, � � � � �, � �, � �, �, � �, �

� � � � � �, � �, � �, � � � � � � � �

� � � � � �, � �, � �, � � � � �, � �, �

� � � � � � � � � � � � �, � �, � �, �

�, � � � � � �, � �, � �, � � � � � � � �

�, � �, � �, � � �, � �, � �, � �, � � � �, � � �, � �, � �, �

�, �, � �, � �, � � �, � �, � �, � �, � � � �, � � �, � �, � �, , �

�, � �, � �, � � �, � �, � �, � �, � � � �, � � �, � �, � �, �

 Syntactically, a possible truth result expression (PTRE) is represented as given by

this grammar:

PTL: "#"|"$"|"%"|"#, $"|"$, %"|"#, $, %"|"#, %"|"�"PTL"�"
CDOP: " 0 "|" / "
PTRE: PTL|"�"PTRE"�"CDOP"�"PTRE"�"

where PTL is a list of possible truth values, PTRE is a logical possible truth list

expression. We use PTRE to calculate a statement possible truth list.

 If the possible truth list cardinality ; � 1, statement truth value can be derived

directly. Therefore, this kind of statement is always used to initiate a deadlock.

5.4.3 Evaluation schedule

To provide a serialized schedule, the dependencies need to be scheduled prior to the

node itself. However, non-singular strongly-connected components of an IDGM will

always cause deadlocks. Therefore, we contract each such component in to a

condensed node, making the resulting graph a directed acyclic graph. Then we

initialize the contracted non-singular strongly-connected component and recursively

apply the contraction and initiation until no further non-singular strongly-connected

38

components can be found. The stable result is derived for each non-singular

strongly-connected component according to its initialization. The schedule algorithm

is detailed in Annex C. The algorithm traverses an entire graph, taking O(|V| + |E|)

time where V is the number of vertices, and E is the number of edges.

 We apply the schedule algorithm to the example in Figure 5. We detect one

non-singular strongly-connected component which consists of '� and '� and

another which consists of '� and '� . Then we condense the non-singular

strongly-connected components to vertices in the IDGM and apply the schedule

algorithm on the derived DAG. Finally, we arrive at the evaluation schedule (see

Table 10).

Table 10 Sample IDGM schedule result

 Schedule with cycle dependencies

IDGM V = {'�, '�, '�, '�, '�, '�, '� }, E = {('�, '�), ('�, '�), ('�, '�),

('�, '�), ('�, '�), ('�, '�), ('�, '�), ('�, '�)

DAG V ={ <�|{'�, '�}, <�|{'�}, <�|{'�, '�}, <�|{'�}, <�|{'�}}, E =

{(<�, <�), (<�, <�), (<�, <�), (<�, <�)}

Result '�, '�, '�, �=�, '��, �=�, '��, ('�, '� are initial nodes of the

deadlocks)

 Atomic nodes, such as '�, '� and '�, can be evaluated independently. Thus, these

nodes are put in the front of the evaluation queue. To derive stable results of the

deadlocks, an initial input is given to '�. Then, '� is evaluated according to '� 0 '�. '� is reevaluated according to the derived '�. The recursive process stops if the stable

result is derived. Similarly, we initiate '� and get the stable result of the deadlock.

 To initiate a node, initialization patterns, such as % 0 ��. and # / ��., are used

to calculate lists of possible truth values and reduce unnecessary recursions. However,

possible truth list cardinality is not always “1”. In this case, logical assumptions are

taken to initiate the starting nodes of deadlocks. When SA is applied, dependencies,

which are unknown, are always assumed to be true. In this case, evaluation

independency is achieved; however, the result is overly optimistic. When CWA is

39

applied, any unknown state is treated as false and the set of completely credible truth

results can be traced; while OWA is applied, any unknown state is treated as unknown.

In this case, the set of completely credible statements, the set of unknown statements,

and the set of false statements can be distinguished.

5.4 Summary

We have investigated evaluating conformance statements against complex

specifications consisting of requirements with manifold subordinations and

dependencies. Our novel contribution is to establish the integrated dependency and

goal model (IDGM) to help in setting up a correct conformance statement evaluation

schedule. This is based on graph theory and a three-valued logic properly taking into

account open world assumption (OWA), closed world assumption (CWA) and stub

assumption (SA). We have proven that the serialized evaluation is stable in an isolated

testing environment. When a fixed logic assumption strategy is adopted for initiating

nodes of deadlocks, the fixpoint location is unique. However, this fixpoint location is

always indeterminable since the logic assumptions are not always explicit during the

evaluation process. The logic assumption-based evaluation helps to distinguish the

fully credible, questionable, and completely non-credible statements.

�� � �� � ��

�� � �� � �	

�
 � �� � ��

�� � �
 � ��

Figure 5 Sample IDGM sequential schedule

40

6 Real life study applications

Services providing geospatial information play an increasingly important role in the

Web service landscape. A wide range of information is provided in what we subsume

as geo services for the purpose of this research – satellite imagery, in-situ sensor

measurements, map data, climate and ocean simulation data, and many more. These

are used not only by scientists, but to a large and growing extent by agencies and

citizens in general. Concrete tasks range from simple route planning using satellite

imagery as backdrop to managing cadastral information to international disaster relief

management like in Haiti in 2010 [64]. At least with the last category of use - crisis

information and situational awareness - it becomes clear that correctness and

reliability are fundamental requirements.

Testing is one important practical means that contributes to assessing to correctness

of a service implementation. As usual, services under test are required to undergo

some specific verification and validation procedures. However, the complexity of geo

services establishes additional problems; one of them, which we address in this work,

is related to dependency issues. Such dependencies often already exist within one

specification against which a service is to be assessed. Moreover, specifications

themselves often refer to other specifications – either because some pre-existing

specifications are used, as in the case of relying on standards, or because the

specification on hand is itself modularized into different documents between which,

consequently, logical relationships exist. Further problems include interface

conformance evaluation, test maturity evaluation, global validity evaluation, and the

question of how to craft specifications in a way which eases rigid testing. One use

case for conformance testing where this becomes particularly apparent is the Web

Coverage Service (WCS) 2.0 Interface Standard issued by the Open Geospatial

Consortium (OGC).

41

6.1 OGC Web Coverage Service

A coverage is formally defined by ISO 19123 [53] as a function f: D → R where D,

the coverage’s domain, represents the spatiotemporal extent in which coverage values

can be queried and R, the coverage’s range, specifies the values which can be

associated with coverage locations. Actually, the coverage definition in ISO 19123

[53] only gives an abstract model and it is further refined to become a practical usable

encoding, such as the work which has been done on different GML coverage

encodings [13][84][85][67]. The standards make geospatial raster interchangeable

across OGC web services and improve the interoperability of geo raster services

[27][6][68].

To support retrieval of raster data as a geospatial “coverage” [53], WCS defines

three operations to probe information from both metadata and data levels. These are

detailed as:

• GetCapabilities retrieves an overview which is normally about server

functionalities and a list of available coverages as defined in the Service

Metadata model [7][69].

• DescribeCoverage retrieves a comprehensive description of the offered

coverage [67] such as spatial boundaries and attribute descriptions.

• GetCoverage retrieves the whole or part of an identified coverage,

including both space/time and attribute information. In this way, WCS

gives access to multi-dimensional coverage data, rather than rendering

images as it is done, e.g., with Google Maps and OGC WMS [29].

The WCS Core [69] relies on the GML Application Schema for Coverages [67]

which contains standardized attribute descriptions [5]; the Core itself, which defines

service functionalities mandatory for every implementation claiming to conform with

the WCS standard, consists of 42 requirements which are often logically connected.

Extension standards add further data structures, functionality, or usage requirements.

Currently, three extensions have been adopted as standards and about ten more are in

the pipeline of the standards working group. Core and extension documents internally

42

contain requirements classes as modularization units [79]; WCS choose to have,

whenever possible, only one requirements class in the Core for reasons of simplicity.

Application Profiles, finally, bundle the Core plus a custom set of extensions into

packages targeted at particular application domains. The Earth Observation

Application Profile candidate standard [75] is an example. Figure 6 gives an overview

of the WCS suite structure [68].

Figure 6 WCS 2.0 Core and extensions [68]

43

Data model extensions: This category of extensions focuses on extending or

refining coverage-related data models, such as “nil” representation and domain

models.

Service model extensions: This category of extensions focuses on adding

further service capabilities, such as coverage scaling, editing and online

processing.

Format encoding extensions: This category of extensions focuses on

providing further encodings support for the transfer of coverage, such as HDF,

NetCDF and GeoTIFF.

Protocol extensions: This category of extensions focuses on providing

client/server communication support through existing internet transformation

protocols, such as HTTP GET/KVP, HTTP POST/XML[71] and SOAP[72].

Usability extensions: This category of extensions focuses on usability of the

overall service, such as a multi-lingual support.

Every specification document contains an Annex with an Abstract Test Suite (ATS)

consisting of one test specification for each requirement. In sync with the

requirements classes, these tests are grouped into conformance test classes. These

tests are formulated abstractly in the sense that they only give a high-level description;

a concrete Executable Test Suite (ETS), which is developed in Compliance Test

Language [12], represents the executable counterpart of the ATS. OGC’s Test,

Evaluation, and Measurement (TEAM) Engine runs this ETS and tests corresponding

implementations.

Any implementation of the WCS 2.0 standard must mandatorily use the Core and

can add requirements classes from extensions, thereby achieving an individual, yet

interoperable functionality package; alternatively, an implementation can choose to

implement one of the pre-packaged Application Profiles. Whatever set of

conformance classes a service implements is announced to the client in the response

to a GetCapabilities request.

44

 WCS 2.0 was the first OGC standard to rigorously follow this so-called Core/Ext-

ension paradigm adopted by OGC to achieve more modular specification sets. WCS

design, therefore, often had to explore pathways on the best use in face of complex

dependencies. The final WCS 2.0 Core was adopted in August 2010 together with a

first slate of extensions. Several extension specifications and the application profile

mentioned above are currently under work.

Due to the inherent complexity of WCS 2.0, it is excellently suited to look at the

problems arising in testing implementations against modular specifications, such as

interface compliance, test maturity and the manifold dependencies among

requirements.

6.2 Service interface conformance

To evaluate the compliance metrics of service interfaces, it is import to deduce the set

of requirements which need to be tested. Core WCS specifies a set of abstract

requirements on WCS domain knowledge. This core is a dependency of a set of

extensions, such as communication protocols and encoding formats. To test such a

core, at least one protocol and one encoding format are required. Furthermore, each

protocol needs at least one encoding support and each encoding needs at least one

protocol support.

 We use ".�& to denote the set of supported communication protocols, "��& to

denote the set of supported encoding formats, c to denote the core, .
�

�� to denote the

protocol .� with encoding format �� support, �
�

�� to denote the encoding format ��
with protocol .� support, and >��,�� to denote the core with .� and �� supports.

 Assumed is that ".�|1 � � � ,& and "��|1 � - � ?& are the declared supported

protocol sets and encoding format sets. Then, each protocol can be tested against the

declared formats and each format can be tested against the declared protocols.

Respectively, these tests are denoted as "��'��.
�

���|1 � � � ,, 1 � - � ?& and

45

{ ��'���
�

���|1 � � � ,, 1 � - � ?& . Furthermore, the core should be respectively

tested by the declared formats and protocols. These are denoted as {��'��>��,���|1 �
� � ,, 1 � - � ?&. We denote the declared protocol and encoding format supports as:

".�, .�, .�, … , .�&, "��, ��, ��, … , ��&
The conditional statement is denoted as:

.� 0 �� � ��'��.
�

��� 0 ��'���
�

��� 0 ��'��>��,���

Therefore, the adopted tests are denoted as:

"��'��.
�

���|1 � � � ,, 1 � - � ?&,

"��'���
�

���|1 � � � ,, 1 � - � ?&

and "��'��>��,��
�|1 � � � ,, 1 � - � ?&

Without considering dependency relationships, the certification processes are denoted

as:

��'�@�'A;��.
�

�� , #� � >�@�����.
�

���

��'�@�'A;���
�

�� , #� � >�@������
�

���

��'�@�'A;��>��,�� , #� � >�@�����>��,���

However, to declare global validity, dependencies should be considered. Then, the

certification processes should be denoted as:

 ��'�@�'A;��.
�

�� , #� 0 ��'�@�'A;���
�

�� , #� � >�@�����.
�

���

 ��'�@�'A;���
�

�� , #� 0 ��'�@�'A;��.
�

�� , #� � >�@������
�

���

 ��'�@�'A;��>��,��
, #� 0 ��'�@�'A;��.

�

�� , #� 0 ��'�@�'A;���
�

�� , #� � >�@�����>��,���

46

 If ��'��>��,��� consists of m requirements tests, ��'��.
�

��� consists of n

requirements tests and ��'���
�

��� consists of k requirements tests, to certify >��,��,
the number of requirements which need to be implemented is m + n + k. Its

corresponding compliance metric can be derived accordingly as x/(m + n + k), where x

is the number of conformant requirements.

6.3 Test maturity analysis

We address the core WCS2.0 functionalities in this application and evaluate the

maturity of the designed tests. This is based on the approach as proposed in Section 3.

 In the core WCS 2.0, there are requirements on different functionalities such as

general service and data models, service requests, service responses, information

coherence, and exception cases. One implementation of the requirements is

designating the server as a black box to the test agent which does not have access to

source code. In this case, these functionalities can only be validated by the test agent

via sending a set of service requests and checking the corresponding responses.

Therefore, to derive the set of minimal necessary service test requests which matches

the specified requirements, it is of critical importance to design comprehensive tests.

 ISO’s rules for the structure and drafting of International standards [57] states that

“expression in the content of a document conveying criteria to be fulfilled if

compliance with the document is to be claimed and from which no deviation is

permitted”. This kind of statement uses verbal forms, “shall” and “shall not” to

indicate requirements that strictly followed in order to conform to the document and

from which no deviation is permitted. WCS 2.0 requirements are specified in such

normative statements. To aid in the understanding and precise communication of the

criteria, further non-normative explanatory presentations are used to paraphrase or

supplement requirements, for example, informal natural language statements, tables,

semi-formal UML diagrams, XML schemas and XML schematrons. To safeguard

against potential internal inconsistencies resulting from design errors, precedence is

47

set up in the standard [69], specifically, that when multiple representations of the

same information are given in a specification document, the rules specified in the

machine-oriented XML schema take precedence over all others. However, the

employed UML models, XML schemas and XML schematrons are structural and have

limited power to express parameter relationships within a service request. Although

these constraints can be manually derived from natural language descriptions and

applied in test design, the process is not publicly observable and auditable. Hence, the

test maturity evaluation is not available. Therefore, we use the approach as stated in

Section 3.2 to express parameter relationships and discuss the correspondingly

minimal necessary service test requests. We chose two sample requirements to

demonstrate this type of evaluation. They are detailed as follows:

o Case 1: OGC 09-110r3 A.1.26

Requirement: “The id parameter value in a GetCoverage request shall be equal to

the identifier of one of the coverages offered by the server addressed.”

Abstract Test Suite: “Send valid GetCoverage requests to server under test

addressing existing and non-existing coverages, resp. Check if appropriate results

or exceptions, resp., are delivered.”

Table 11 Valid and invalid parameter inputs for the studied case 1

Input Service: stubbed Version: stubbed id

Valid Stubbed Stubbed id

Invalid - - id_bogus

 A minimal valid GetCoverage request consists of a Service parameter, a

Version parameter and an id parameter, where Service is the service type,

Version is the service version and id is the identified coverage. Although auxiliary

parameters are not specified in the requirement, these inputs are mandatory and

should be valid for testing the specified id parameter. Otherwise, the service under

48

test will respond with an exception even when an existing coverage is identified.

Therefore, Service and Version inputs are stubbed. Accordingly, inputs of id

are partitioned into the cases of addressing existing and non-existing coverages (see

Table 11). The query for generating both valid and invalid service test requests is

given as:

STRG-QL: IR(Service: stubbed, Version: stubbed, id):

cardinality = 3

where id parameter is assumed to be independent of Service and Version

parameters. Its search space is given in Table 12.

Table 12 Corresponding service test requests for the Studied Case 1

Search space Service: stubbed Version: stubbed id

Valid Stubbed Stubbed id

Invalid Stubbed Stubbed id_bogus

o Case 2: OGC 09-110r3 A.1.28

Requirement: “Every dimension value in a GetCoverage request shall be

equal to one of the axisLabels dimension names specified in the

gml:SRSInformationGroup of the coverage’s gml:Envelope , unless the

server offers a WCS CRS extension which overrides this requirement.”

Abstract Test Suite: “If a CRS extension is implemented by the server under a

test which overrides this requirement, do nothing. Otherwise, send otherwise valid

GetCoverage requests with all dimension values appearing in the axisLabel

of the coverage addressed, with some of the dimension values appearing there,

and with none of the dimension names provided appearing there. Verify that

coverage response is returned if and only if dimension occurring in the

axisLabel attribute are used, and an exception is reported otherwise.”

49

 A valid GetCoverage request without specifying a dimension retrieves the whole

coverage; otherwise, a GetCoverage request retrieves a partial coverage. Each

dimension indicates a subsetting operation which may be either a trim or slice. A valid

coverage trim (see Figure 7) is a geometric cutout in one dimension given by a pair of

valid low and high boundaries. A valid coverage slice (see Figure 8) is a geometric

cutout by a slicePoint.

 Without a CRS extension which overrides the requirement, these dimension values

Original low Original high

x

y

 slice result

slicePoint

Figure 7 Trim on earth cloud
(source: http://www.earthlook.org/)

Original low Original high

x

y

trim result

trimHigh trimLow

Figure 8 Slice on earth cloud
(source: http://www.earthlook.org/)

50

are extracted from the axisLabel of the coverage addressed. To test such a request,

we create inputs for each parameter. Although auxiliary parameters are not specified

in the requirement, these inputs are mandatory and should be valid for testing the

specified dimension parameter. Otherwise, the service under test will respond with

an exception even when correct dimensions are identified. Therefore, Service ,

Version , id and subsetting inputs are stubbed. Accordingly, dependence and

independent relationships among these inputs are modeled. Inputs of dimension

parameter are partitioned into the cases of addressing existing and non-existing

dimensions (see Table 13). We use d i to address the coverage dimension values.

The queries for generating service test requests are given as below:

STRG-QL:

o This query is used for generating the valid GetCoverage request with none of

the dimension values appearing in the axisLabel of the coverage

addressed:

IR(Service: stubbed,

 Version: stubbed,

 id:stubbed): cardinality = 3

where id parameter is assumed to be independent of Service and Version

parameters. Its search space is given in Table 14.

o This query is used for generating the valid GetCoverage request with some of

the dimension values appearing in the axisLabel of the coverage

addressed:

IR(Service: stubbed,

 Version: stubbed,

 MD(

 id: stubbed,

51

 IR(MD(d 1: stubbed,

 IR(

 MD(

TrimL 1: stubbed,

TrimH 1: stubbed

): stubbed,

 SlicePoint 1: stubbed

): cardinality = 1

): stubbed,

 MD(d 2: stubbed,

 IR(

 MD(

TrimL 2: stubbed,

TrimH 2: stubbed

): stubbed,

 SlicePoint 2: stubbed

): cardinality = 1

): stubbed,

 …,

 MD(d n: stubbed,

 IR(

 MD(

TrimL n: stubbed,

TrimH n: stubbed

52

): stubbed,

 SlicePoint n: stubbed

): cardinality = 1

): stubbed,

): cardinality = random(1: n-1)

): stubbed

): cardinality = 3

where id parameter is assumed to be independent of Service and Version

parameters, id parameter is assumed to be the dependency of dimension

subsettings, dimension subsettings are assumed to be independent from each other

on each dimension, dimension parameter is assumed to be the dependency of

the trim or slice input and TrimL parameter is assumed to be the dependency of

TrimH . cardinality=random(1: n-1) means the number of dimension

subsettings is less than n-1 but larger than 1. Its search space is given in Table

14.

o This query is used for generating the valid GetCoverage request with all

dimension values appearing in the axisLabel of the coverage addressed:

IR(Service: stubbed,

 Version: stubbed,

 MD(

 id: stubbed,

 IR(MD(d 1: stubbed,

 IR(

 MD(

TrimL 1: stubbed,

53

TrimH 1: stubbed

): stubbed,

 SlicePoint 1: stubbed

): cardinality = 1

): stubbed,

 MD(d 2: stubbed,

 IR(

 MD(

TrimL 2: stubbed,

TrimH 2: stubbed

): stubbed,

 SlicePoint 2: stubbed

): cardinality = 1

): stubbed,

 …,

 MD(d n: stubbed,

 IR(

 MD(

TrimL n: stubbed,

TrimH n: stubbed

): stubbed,

 SlicePoint n: stubbed

): cardinality = 1

): stubbed,

54

): cardinality = n

): stubbed

): cardinality = 3

where id parameter is assumed to be independent of Service and Version

parameters, id parameter is assumed to be the dependency of dimension

subsettings, dimension subsettings are assumed to be independent from each other

on each dimension, dimension parameter is assumed to be the dependency of

the trim or slice input and TrimL parameter is assumed to be the dependency of

TrimH parameter. Cardinality = n means the number of dimension

subsettings is n. Its search space is given in Table 14.

o The query for generating the invalid GetCoverage request with some of the

dimension values not appearing in the axisLabel of the coverage

addressed is given as below:

IR(Service: stubbed,

 Version: stubbed,

 MD(

 id: stubbed,

 IR(IR(d 1,

 IR(

 MD(

TrimL 1: stubbed,

TrimH 1: stubbed

): stubbed,

 SlicePoint 1: stubbed

): cardinality = 1

55

): cardinality = 2,

 IR(d 2,

 IR(

 MD(

TrimL 2: stubbed,

TrimH 2: stubbed

): stubbed,

 SlicePoint 2: stubbed

): cardinality = 1

): cardinality = 2,

 …,

 IR (d n,

 IR(

 MD(

TrimL n: stubbed,

TrimH n: stubbed

): stubbed,

 SlicePoint n: stubbed

): cardinality = 1

): cardinality = 2,

): cardinality = random(1: n)

): random_invalid

): cardinality = 3

where id parameter is assumed to be independent of Service and Version

56

parameters, id parameter is assumed to be the dependency of dimension

subsettings, dimension subsettings are assumed to be independent from each other

on each dimension, dimension parameter is assumed to be independent of the

trim or slice input and TrimL parameter is assumed to be the dependency of

TrimH parameter. Cardinality = random(1: n) means the number of

dimension subsettings is less than n but larger than 1. random_invalid means

only one random invalid request is adopted. Its search space is given in Table 14.

Table 13 Valid and invalid parameter inputs for the studied case 2

Input

Service Version id d1 TrimL 1 TrimH 1

Valid Stubbed Stubbed stubbed d1 stubbed stubbed

Invalid - - - d_bogus - -

Input

SlicePoint 1 d2 TrimL 2 TrimH 2 SlicePoint 2

Valid Stubbed d2 stubbed stubbed Stubbed

Invalid - d_bogus - - -

Input … dn, when

n>=2

TrimL n TrimH n SlicePoint n

Valid … dn stubbed stubbed stubbed

Invalid … d_bogus - - -

57

Table 14 Corresponding service test requests for the studied case 2

Search

space

Service Version id dimensions (TrimL,

TrimH) or

SlicePoint

Valid stubbed stubbed stubbed - -

Valid stubbed stubbed stubbed some valid

dimension

values

stubbed

Valid stubbed stubbed stubbed all valid

dimension

values

stubbed

Invalid stubbed stubbed stubbed a list of

dimensions

with one

invalid value

stubbed

 To evaluate the test request maturity we designed, we used STRG-QL results which

meet the specified criteria according to the specifications studied and compared them

with hard-coded, random, and exhaustive approaches.

 The hard-coded approach sends a constant number of requests with hard-coded

parameters to the service entries. The random approach sends a constant number of

requests with random valued parameters to the service entries and the exhaustive

approach sends requests of exponential complexity to the service entries.

 To assess the maturity metrics [59] of the requests considered, we distinguish three

maturity levels:

o immature means the designed test requests are always less than needed;

o over-mature means the designed test requests meet all specified criteria, but

58

are more than needed;

o fitting means the designed test requests meet all specified criteria and the

number of requests is minimal.

 If c1 is the number of valid requests of the hard-coded approach, c2 is the number of

invalid requests of the hard-coded approach, r1 is the number of valid requests of the

random approach, r2 is the number of invalid requests of the random approach, n is

the number of atomic parameters, xi is the number of inputs for each atomic parameter,

v1 is the number of valid requests of STRG-QL results, and v2 is the number of invalid

requests of STRG-QL results, we compared the numbers of generated tests of these

approaches in Table 15.

Table 15 Comparison on the numbers of generated test requests

 Approach

EQC

Hard-coded Random

approach

Exhaustive

approach

RPRA

approach

Valid c1 r1
n

i
i

x∏

v1

Invalid c2 r2 v2

 The hard-coded inputs may match the specified criteria. However, it is easy to

create false service messages to pass the test. Random approach makes such forged

activities impossible. However, such a testing is either immature when only a small

number of requests are generated or over-mature when a large number of requests are

generated. By coincidence, the designed tests match the requirement exactly.

Exhaustive approach is always over mature due to trivial inputs. The fitting case is

hard to achieve. Request Parameter Relationship Analysis (RPRA) uses STRG-QL to

generate a search space which contains the minimally necessary requests which, at the

same time, are specification consistent.

59

6.4 Global statement validity

6.4.1 Dependencies among requirements and requirement modules

We derive 103 conformance statements from the WCS Core [69], the GML

Application Schema for Coverages [67] and the three protocol extensions

[70][71][72]. In these specifications, beyond the explicit dependencies among

requirements, there are some implicit dependencies. As stated in the specification

model [79] of OGC, a requirements class is an aggregation of all requirement modules

that must all be satisfied to satisfy the corresponding conformance test class; a

requirements module is an aggregation of requirements and recommendations of a

specification. Therefore, a goal which declares conformance of a requirements class,

contains subgoals which are to declare conformance of its corresponding requirement

modules. A goal which declares conformance of a requirements module, contains

subgoals which are to declare conformance of its corresponding requirements.

Recommendations, which consist of non-testable and non-mandatory statements, are

not considered in this study case.

 There are explicit and implicit dependencies among requirements. These include

dependencies between requirements of service requests and responses, dependencies

between service contents and their models and dependencies between service

operations and their communication protocols. Dependencies are considered as

statement subordinations. We model these by IDGM. Firstly, we derive atomic

conformance statements for each requirement; secondly, we derive composite

conformance statements for each requirement module and each requirement class;

thirdly, we treat each conformance statement as a test goal and derive well-designed

goals by integrating logical subordinations (See Figure 9 and Annex B.1 for the

results).

60

Figure 9 IDGM of the study case

6.4.2 A sequential evaluation schedule

We condense the non-singular strongly-connected components to vertices in the

IDGM and apply the schedule algorithm on the derived DAG (see Figure 11 Annex

B.2 for their logical relationships). To detect these strongly-connected components,

we apply the Kosaraju algorithm [89] in the IDGM. There are two non-singular

strongly-connected components found in the IDGM (see Figure 10 and Table 16).

61

Figure 10 Non-singular strongly-connected components (NSC) of the studied case

Table 16 Non-singular strongly-connected components (NSC) of the studied case

NSC Vertices

1 19, 18, 46, 59, 39, 51, 60, 38, 37, 36, 31, 41, 28, 27, 25, 30,

17, 3, 24, 26

2 82 81 80 78

NSC1

NSC2

62

Figure 11 Condensed DAG of the study case

 To disentangle the non-singular strongly-connected components, we apply the

domain knowledge to initiate the starting vertices. For example, conformance

statements about requests of the three respective WCS operations and WCS service

capabilities should be evaluated before evaluating further conformance statements. In

this way, we sequentialize the schedule. Firstly, we initiate the corresponding

conformance statements 24, 25, 26, 27, 28, 30 and 41 in NSC1 (see Figure 12).

Secondly, we disentangle the NSC1 according to the possible truth result expression

in Section 5.4.2. Then, we find that statements of 51 and 60 form a false deadlock

when CS36 is evaluated as true (see Figure 12). Therefore, we initiate statement 60

and schedule it ahead of statement 51. In NSC2, we initiate statement 78 as its

outdegree is larger than statement 80, 81 and 82. The result is shown in Table 17.

CS105

CS104

63

Figure 12 False deadlock of the study case

Table 17 Topological sorting results

 Output

DAG 101 102 103 11 29 34 35 40 45 48 49 61 62 63 64 65 66

67 68 69 70 71 72 73 74 77 79 99 44 43 47 104 105 98

97 96 95 94 93 92 89 88 87 86 85 76 57 56 55 54 53 32

23 21 20 16 15 14 12 10 9 13 100 90 83 8 6 52 7 91 84

75 42 2 58 22 5 4 1

NSC1(104) 24 25 26 27 28 30 41 36 19 18 17 60 39 37 3 59 51 46

38 31

NSC2(105) 78 80 81 82

6.4.3 Evaluate global statement validity based on 3A-TRE

 We implement 3A-TRE language to evaluate validity of global statements (see

Annex A). For example, conformance statement CS1 is evaluated by

OWA: CS2 ∧ CS3 ∧ CS4 ∧ CS5

and CS2 is evaluated by

CWA: CS6 ∧ CS7 ∧ CS8

Then, CS1 is evaluated by

OWA: (CWA: CS6 ∧ CS7 ∧ CS8) ∧ (OWA: CS3 ∧ CS4 ∧ CS5)

An iteration process on compound statements will find all statements which are

necessary to be evaluated. If the actual derived statement result number is m and the

necessary result number is n, the audit trail capability can be measured by m/n.

6.4.4 A statement validity evaluation case

As a thread of OGC Web Services, Phase 8 (OWS-8) Interoperability Initiative

��60 � CS36 � ��51

64

activity, Observation Fusion thread combines the OGC WCS

architecture with the results

ETS. Meanwhile, Rasdaman,

implements this standard. The

approach. The implementation and the test suite, which are derived from the same

standards suite, are developed in parallel and promote each other in a conformance

testing round (see Figure 12).

Figure 13

 In a round of conformance

conformant with the declared requirements

modeled IDGM, in which each statement is valued as

validity evaluation is carried out based on this IDGM.

results are visualized by Graphviz

of the conformance testing

round are shown in Figure 14

WCS 2.0 entries

, Observation Fusion thread combines the OGC WCS 2.0 standard and

 of the recent OGC development of WCS 2.0

Rasdaman, the Scalable Multi-Dimensional Array Analytics Server

The development of the test suite follows a cross

The implementation and the test suite, which are derived from the same

standards suite, are developed in parallel and promote each other in a conformance

).

13 A conformance testing round example

conformance testing, the test tests whether the implementation is

conformant with the declared requirements. Test results are used to instantiate the

modeled IDGM, in which each statement is valued as T, U or F. Then, statement

validity evaluation is carried out based on this IDGM. Test results and evaluation

Graphviz, T as green, U as yellow and F as red. We

conformance testing rounds to illustrate this application. Test results of this

Figure 14 .

WCS 2.0 entries

 test

feedback

Test, Evaluation,

And Measurement (TEAM) Engine

standard and

2.0 ATS and

Dimensional Array Analytics Server,

development of the test suite follows a cross-testing

The implementation and the test suite, which are derived from the same

standards suite, are developed in parallel and promote each other in a conformance

testing, the test tests whether the implementation is

to instantiate the

Then, statement

Test results and evaluation

We use one

esults of this

65

Figure 14 Test results of

 CWA, OWA and SA evaluations are carried out

schedule algorithm (see Annex C)

Figure 15 and Figure 17.

non-credible statements are distinguish

Test results of a conformance testing round

WA and SA evaluations are carried out based on the sequential evaluation

schedule algorithm (see Annex C). The results are specifically shown in Figure

17. The fully credible, questionable, and completely

distinguished accordingly.

equential evaluation

Figure 15,

and completely

66

 Figure

 Figure

 Figure

Figure 16 CWA evaluation result

Figure 16 OWA evaluation result

Figure 17 SA evaluation result

67

6.5 Summary

Our study example is geo service standardization, specifically: geo raster services

based on OGC WCS 2.0. The Executable Test Suite (ETS) which has become the

conformance test suite of WCS in OGC’s Compliance and Interoperability Testing

Initiative (CITE) program in 2011 as decided by OGC. The theoretical results

described in the earlier sections form the basis to generate the evaluation schedule of

the validity of the corresponding conformance statements. The fixpoint in Section

5.4.1 proves that it is safe to have mutual dependencies among requirements with

proper evaluation schedule. However, these mutual dependencies may result in

different fixpoint locations according to different initial statements. These may

introduce extra testing and implementation work when truth values of dependencies

are reversed. Therefore, it is important to have domain experts involved and indentify

these initial statements. When the corresponding starting statements are stable, the

following works, implementations, testing or specification revisions can continue as

scheduled. When service implementations and test suites are fixed, the evaluation

schedule can help to distinguish the fully credible, questionable and completely

non-credible statements. A completely non-credible statement means the

corresponding service implementation and test suite need to be coherent; a

questionable statement means that the corresponding requirement or test suite is not

complete and needs further works to cover the untouched constraints; and a fully

credible statement means the corresponding requirement, service implementation and

test suite are coherent. Obviously, conformance statements generation is important in

this process. This requires that the corresponding well-designed goals, which are

modeled by domain experts, should match the specified requirements and their

corresponding modules and dependencies.

68

7 Conclusions and contribution

We have investigated testing Web services against complex specifications consisting

of requirements with manifold dependencies among them. Here are our novel

contributions.

● A specification-based quality model has been derived to address service

interface compliance, test maturity and global conformance statement validity.

Functional compliance is used to measure the compliance items of the service

interfaces. To measure the maturity of the designed tests, a metric of test

coverage based on RPRA is proposed to evaluate the test coverage of the

design tests. To analyze the test results, 3A-TRE, a three-valued logic

expression, was modeled to evaluate the validity based on the proposed

integrated dependency and goal model (IDGM).

● Based on the modeled parameter relationships, a RPRA-based search space

generation approach is proposed to derive minimal necessary and

specification-consistent service test requests. The approach is also applied to

evaluate the maturity of the designed tests.

● Based on the oracle study, a deductive reasoning approach is proposed to

address reference output adoption.

● Proof has been provided, based on fixpoint theory, that the serialized evaluation

is stable in an isolated testing environment. When a fixed logic assumption

strategy is adopted for initiating nodes of deadlocks, the fixpoint location is

unique. However, this fixpoint location is always indeterminable since the logic

assumptions are not always explicit during the evaluation process. The

evaluation helps to distinguish the fully credible, questionable and completely

non-credible statements.

● A method has been established to create a correct sequence for checking the

conformance statements of a given specification. This is based on a

three-valued logic, properly taking into account open world assumption (OWA),

closed world assumption (CWA) and stub assumption (SA).

69

 We feel, however, that these results transcend geospatial service testing and allow

improved and more efficient Web service testing in general based on specifications

which make their interdependencies explicit. From this perspective, our research also

considers the question of how to craft specifications – and, hence, standards – in a

way which eases rigid testing. Request Parameter Relationship Analysis (RPRA) helps

to identify relationships among parameters and can be used to generate

specification-consistent test requests. The proposed deductive reasoning approach,

which helps to adopt suitable reference outputs according to the corresponding service

facts, should be adopted to certify proper service capabilities. Integrated dependency

and goal model (IDGM), which identifies well-designed goals and provides global

validity conformance statements, should be used to model relationships among

requirements and their corresponding modules. The derived quality model can be used

to assess these approaches. However, there is still work to be done for an even more

trustworthy interoperable service environment, for example, semantic-based

parameter relationship extraction, systematic reference outputs ordering and

concurrent evaluation of multi-source conformance statements under a distributed

testing environment.

70

References

[1] A. Belinfante, L. Frantzen and C. Schallhart, Tools for Test Case Generation.
In Model-Based Testing of Reactive Systems (LNCS 3472), M. Broy, B.
Jonsson, J. Katoen, M. Leucker, A. Pretschner, Eds. Berlin Heidelberg:
Springer-Verlag, pp. 391-438 (2005)

[2] A.G. Gutierrez and P. Baumann, Modeling Fundamental Geo-Raster Operations
with Array Algebra. In Proceedings of the Seventh IEEE International
Conference on Data Mining Workshops (ICDMW '07). IEEE Computer Society,
Washington, DC, USA, 607-612. DOI=10.1109/ICDMW.2007.66
http://dx.doi.org/10.1109/ICDMW.2007.66 (2007)

[3] A. Lerner and D. Shasha, AQuery: query language for ordered data,
optimization techniques, and experiments. In Proceedings of the 29th
international conference on Very large data bases - Volume 29 (VLDB '2003),
Freytag J.C, Lockemann P.C, Abiteboul S, Carey M.J, Selinger P.G, and Heuer
A (Eds.), Vol. 29. VLDB Endowment 345-356 (2003)

[4] A.P. Marathe and K. Salem, A Language for Manipulating Arrays. In
Proceedings of the 23rd International Conference on Very Large Data Bases
(VLDB '97), M. Jarke, M.J. Carey, K.R. Dittrich, F.H. Lochovsky, P.
Loucopoulos, and M.A. Jeusfeld (Eds.). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 46-55 (1997)

[5] A. Robin (ed.), OGC SWE Common Data Model Encoding Standard, OGC
08-094 (2010)

[6] A. Whiteside and J.D. Evans (eds.), OGC Coverage Service (WCS)
Implementation Standard, OGC 07-067r5 (2007)

[7] A. Whiteside and J. Greenwood, OGC Web Services Common(OWS)
Standard, OGC 06-121r9 (2010)

[8] A. van Ballegooij, Ram: A multidimensional array dbms. In EDBT Workshops,
Lindner W, Mesiti M, Türker C, Tzitzikas Y, and Vakali A(eds.). Volume3268
of Lecture Notes in Computer Science, pages 154–165. Springer-Verlag,
London, UK (2004)

[9] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order. Cambridge
University Press, Cambridge (2005)

[10] B. Howe and M. Maier, Algebraic manipulation of scientific datasets. In
Proceedings of the Thirtieth international conference on Very large data bases
- Volume 30 (VLDB '04), Nascimento M.A, Özsu M.T, Kossmann D, Miller
R.J, Blakeley J.A, and Schiefer K.B(Eds.), Vol. 30. VLDB Endowment
924-935 (2004)

[11] B.M. Smith, I.F. Rossi, P.van Beek, and T. Walsh (eds.), Handbook of

71

Constraint Programming, Chapter 11, pages 377-406. Elsevier (2006)

[12] C. Morris, OGC Compliance Test Language (CTL) Best Practice, OGC
06-126r2 (2006)

[13] C. Portele (ed.), OpenGIS Geography Markup Language (GML) Encoding
Standard, OGC 07-036r1(2007)

[14] C.V. Damásio, A. Analyti, G. Antoniou, and G. Wagner, Supporting open and
closed world reasoning on the Web. In Proceedings of the 4th International
Workshop on Principles and Practice of Semantic Web Reasoning (PPSWR).
149-163 (2006)

[15] D.C. Kung, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen, On Regression
Testing of Object-Oriented Programs, The Journal of Systems and Software.
Vol.32(1), 21-40 (1996)

[16] D. Coppit and J. Haddox-Schatz, On the Use of Specification-based
Assertions as Test Oracles, Proc. SEW '05 Proceedings of the 29th Annual
IEEE/NASA on Software Engineering Workshop, pp 305-314 (2005)

[17] D. Hoffman, A taxonomy for test oracles, QualityWeek ’98, Available:
www.softwarequalitymethods.com/Papers/OracleTax.pdf (1998)

[18] D. Richardson, S. Leif Aha, and T. O'Malley, Specification-based Test
Oracles for Reactive Systems, Proc. 14th Int'l. Conf.on Software Engineering,
pp. 105–118 (1992)

[19] D. Zwillinger (ed.), Affine Transformations, §4.3.2 in CRC Standard
Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 265-266
(1995)

[20] E. Bin, R. Emek, G. Shurek, A. Ziv, Using a constraint satisfaction
formulation and solution techniques for random test program generation. In
IBM Systems Journal, IBM Corp. Riverton, NJ, USA, vol. 41, no. 3, pp.
386-402 (2002)

[21] E.W. Dijkstra, Notes on Structured Programming. In: Structured
Programming by O.J. Dahl, E.W. Dijkstra and C.A.R. Hoare, Academic Press,
London (1972)

[22] F. Echenique, A Short and Constructive Proof of Tarski’s Fixed-point
Theorem. Int J Game Theory 33: 215–218 (2005)

[23] G. Birkhoff, Lattice Theory, 3rd ed, Vol. 25 of AMS Colloquium

Publications. American Mathematical Society (1967)

[24] G. Fraser, F. Wotawa and P.E. Ammann, Testing with model checkers: a
survey, in Software Testing, Verification and Reliability, New York: Wiley, pp.
215–261 (2009)

72

[25] H. M. MacNeille, Partially Ordered Sets, Transactions of the American

Mathematical Society, Vol. 42, No. 3, pp. 416–460 (1937)

[26] I. Sommerville, Software Engineering (8th Edition), Addison-Wesley. ISBN

0-321-31379-8 (2007)

[27] J.D. Evans (ed.), OGC Web Coverage Service (WCS), OGC 03-065r6 (2003)

[28] J. Dong, UML Extensions for Design Pattern Compositions. In: Journal of
Object Technology, 1(5), pp. 151-163.(2002)

[29] Jeff de la Beaujardiere (ed.), OGC Web Map Service (WMS) Implementation
Specification, OGC 06-042r2 (2006)

[30] J. Garcia-Duque, M. Lopez-Nores, J. Pazos-Arias, A. Fernandez-Vilas, R.
Diaz-Redondo, A. Gil-Solla, Y. Blanco-Fernandez, M. Ramos-Cabrer: A
Six-valued Logic to Reason about Uncertainty and Inconsistency in
Requirements Specifications. Journal of Logic and Computation 16(2),
227–255 (2006)

[31] J. Goodwin, An improved algorithm for non-monotonic dependency net
update, Research report MAT-R-82-23, Linköping university (SE) (1982)

[32] J. Goodwin, A theory and system for non monotonic reasoning, Linköping
studies in science and technology 165 (1987)

[33] J. Tekli, R.Chbeir and K.Yétongnon, An overview on XML similarity:
Background, current trends and future directions. Computer Science Review
3(3): 151-173 (2009)

[34] J.-Y. Béziau, What is many-valued logic? Proceedings of the 27th
International Symposium on Multiple-Valued Logic. IEEE Computer Society,
Los Alamitos, 117–121 (1997)

[35] J. Yu, P. Baumann and X. Wang, RPRA: A Novel Approach to Mastering
Geospatial Web Service Testing Complexity, ICSDM2011&IWGIS2011
(2011)

[36] J. Yu and P. Baumann, On the Systematic Generation of Reference Output for
Geo Image Services, 19th International Conference on Geoinformatics (2011)

[37] K. Stenning and J. Oberlander, A Cognitive Theory of Graphical and
LinguisticReasoning: Logic and Implementation. Cognitive Science, 19, pp.
97-140 (1995)

[38] K. Tai and F. Daniels, Interclass test order for object-oriented software, J.
Object-oriented Prog., 18-35 (1999)

[39] L. Libkin, R. Machlin, and L. Wong, A query language for multidimensional

73

arrays: design, implementation, and optimization techniques. SIGMOD Rec.
25, 2 (June 1996), 228-239. DOI=10.1145/235968.233335
http://doi.acm.org/10.1145/235968.233335 (1996)

[40] M. Bauer, and P. Johnson-Laird, How Diagrams Can Improve Reasoning,
Psychological Science, 4, pp.372-378 (1993)

[41] M. Belguidoum, F. Dagnat, Dependency Management in Software
Component Deployment. FACS 2006. Electr. Notes Theor. Comput. Sci. 17-32
(2007)

[42] M. Fitting, Kleene’s Logic, Generalized. Journal of Logic and Computation
1(6), 797–810 (1991)

[43] M. Fitting, Kleene’s Three-valued Logics and Their Children. Fundamenta
Informaticae 20, 113–131 (1994)

[44] M. Forsberg, A. Ranta, The User Manual for BNF Converter, available at:
http://www.cse.chalmers.se/alumni/markus/BNFC/LBNF-report.pdf (2005)

[45] M.L. Prazen, Web services testing, Web Services (2006)

[46] M.M. Dagli, Modus Ponens, Modus Tollens, and Likeness, retrieved March

20, 2011, available at: http://www.bu.edu/wcp/Papers/Logi/LogiDagl.htm

(2011)

[47] N.A. Kraft, E.L. Lloyd, B.A. Malloy and P.J. Clarke, The implementation of
an extensible system for comparison and visualization of class ordering
methodologies. J. Syst. Softw. 79(8), 1092-1109 (2006)

[48] N. Kosmatov, B. Legeard, F. Peureux, and M. Utting, Boundary Coverage
Criteria forTest Generation from Formal Models, ISSRE ’04, pp. 139–150.
IEEE (2004)

[49] n.n, Hypertext Transfer Protocol — HTTP/1.1, IETF RFC 2616 (1999)

[50] n.n, Geographic information — Conformance and Testing, ISO 19105:2000
(2000)

[51] n.n, Geographic information — Spatial referencing by coordinates (OGC
Abstract Specification Topic 2, Spatial referencing by coordinates) ISO
19111:2003 (2003)

[52] n.n, Geographic information — Metadata, 19115:2003 (2003)

[53] n.n, Geographic Information - Schema for Coverage Geometry and Functions,
ISO 19123:2005 (2005)

[54] n.n, Information technology — Open Systems Interconnection —
Conformance testing methodology and framework — Part 1: General concepts,

74

ISO/IEC 9646-1:1994 (1994)

[55] n.n, Industrial automation systems and integration — Product data
representation and exchange — Part 31: Conformance testing methodology and
framework: General concepts, ISO 10303-31:1994 (1994)

[56] n.n, Information technology — Computer graphics and image processing --
Conformance testing of implementations of graphics standards, ISO/IEC
10641:1993 (1993)

[57] n.n, Rules for the structure and drafting of International Standards, ISO
Directives Part 2, (2004)

[58] n.n, Software engineering — Product quality — Part 1: Quality model,
ISO/IEC 9126-1:2001 (2001)

[59] n.n, Software engineering — Product quality — Part 2: External metrics,
ISO/IEC TR 9126-2:2003 (2003)

[60] n.n, Software engineering — Product quality — Part 3: Internal metrics,
ISO/IEC TR 9126-3:2003 (2003)

[61] n.n, Software engineering — Product quality — Part 4: Quality in use
metrics, ISO/IEC TR 9126-4:2004 (2004)

[62] N. Pippenger, The shortest disjunctive normal form of a random Boolean
function. Random Struct. Algorithms, 22(2), 161-186.(2003)

[63] N. Sangal, E. Jordan, V. Sinha, D. Jackson, Using dependency models to
manage complex software architecture. In OOPSLA, 167-176 (2005)

[64] OGC, http://www.ogcnetwork.net/networks/haiti (2010)

[65] P. Baumann, A Database Array Algebra for Spatio-Temporal Data and
Beyond. The Fourth International Workshop on Next Generation Information
Technologies and Systems (NGITS '99), July 5-7, 1999, Zikhron Yaakov, Israel,
Lecture Notes on Computer Science 1649, Springer Verlag, pp. 76 – 93 (1999)

[66] P. Baumann, Beyond Rasters: Introducing The New OGC Web Coverage
Service 2.0, Proc. ACM SIGSPATIAL GIS, pp. 320 - 329 (2010)

[67] P. Baumann (ed.), OGC GML Application Schema – Coverages, OGC
19-146r1 (2010)

[68] P. Baumann (ed.), WCS 2.0 Overview: Core and Extensions, OGC 19-153
(2010)

[69] P. Baumann (ed.), OGC WCS 2.0 Interface Standard - Core, OGC 19-110r3
(2010)

[70] P. Baumann (ed.), OGC Web Coverage Service 2.0 Interface Standard -KVP
Protocol Binding Extension, OGC 19-147r1 (2010)

75

[71] P. Baumann (ed.), OGC Web Coverage Service 2.0 Interface Standard
-XML/POST Protocol Binding Extension, OGC 19-148r1 (2010)

[72] P. Bauman (ed.), OGC Web Coverage Service 2.0 Interface Standard
-XML/SOAP Protocol Binding Extension, OGC 19-149r1 (2010)

[73] P. Baumann, On the Management of Multidimensional Discrete Data. VLDB
Journal 4(3), 1994, Special Issue on Spatial Database Systems, pp. 401-444
(1994)

[74] P. Baumann, S. Holsten, A comparative analysis of array models for
databases. Technical report, Jacobs University Bremen (2010)

[75] P. Baumann, S. Meissl, J. Yu (eds.), OGC® Web Coverage Service 2.0
Interface Standard -Earth Observation Application Profile, OGC 10-140
(2011)

[76] P. Cudre-Mauroux, H. Kimura, K.-T Lim, J. Rogers, R. Simakov, E. Soroush,
P. Velikhov, D.L. Wang, M. Balazinska, J. Becla, D. DeWitt, B. Heath, D.
Maier, S. Madden, J. Patel, M. Stonebraker, and S. Zdonik, A demonstration of
SciDB: a science-oriented DBMS. Proc. VLDB Endow. 2, 2 (August 2009),
1534-1537 (2009)

[77] P.G. Frankl, S.N. Weiss, and C. Hu. All-uses versus mutation testing: An
experimental comparison of effectiveness. Journal of Systems and Software,
38, pp. 235-253 (1997)

[78] P.N. Johnson-Laird, DEDUCTIVE REASONING. Annual Review of
Psychology, 50, pp.109-135 (1999)

[79] Policy SWG, The Specification Model — A Standard for Modular
specifications. OGC 08-131r3 (2009)

[80] R. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools,
chapter 18, Object Tech nologies, pp. 943-951, first ed. Addison Wesley
(1999)

[81] R. Hewett, and P. Kijsanayothin, Automated Test Order Generation for
Software Component Integration Testing. In Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering
(ASE '09). IEEE Computer Society, Washington, DC, USA, 211-220 (2009)

[82] R. Mallal and M. Yunus, SOA Testing using Black, White and Gray Box
Techniques, Crosscheck Networks,
http://www.crosschecknet.com/resources/white_papers/SOA_Testing_Techniq
ues.pdf (2006)

[83] R. Razali, Usability of Semi-formal and Formal Methods Integration -
Empirical Assessments, PhD thesis, University of Southampton (2008)

[84] S. Cox, P. Daisey, R. Lake, C. Portele, and A. Whiteside (eds.), “OpenGIS

76

Geography Markup Language (GML) Encoding Standard,” OGC 02-023r4
(2002)

[85] S. Cox, P. Daisey, R. Lake, C. Portele, and A. Whiteside (eds.), “OpenGIS
Geography Markup Language (GML) Encoding Standard,” OGC 03-105r1
(2004)

[86] S.G. Krantz, Discrete Sets and Isolated Points, §4.6.2 in Handbook of
Complex Variables. Boston, MA: Birkhäuser, pp. 63-64 (1999)

[87] S.V. Rice, H. Bunke, and T.A. Nartker, Classes of Cost Functions for String
Edit Distance, Algorithmica, 18(2), pp. 271-280 (1997)

[88] S. Weißleder and B.-H. Schlingloff, Quality of Automatically Generated Test
Cases based on OCL Expressions, ICST 2008. pp.517-520. IEEE (2008)

[89] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to
Algorithms, Second Edition. MIT Press and McGraw-Hill. Section 22,
540–557 (2001)

[90] V. Le, Q. Tran, A Fuzzy Logic Based Method for Analyzing Test Results.
ASEAN Journal on Science and Technology for Development, Vol.23(3),
217-222 (2006)

[91] Y. Le Traon, T. Jeron, J.-M. Jezequel, and P. Morel, Efficient object-oriented
integration and regression testing, IEEE Transactions on Reliability, Vol.49(1),
12-25 (2000)

77

Annex A 3A-TRE Syntax

See the corresponding description in Section 4.1

For example, the result of CWA:T � U is F

EASumExpUnary. ASUMExp ::= ASUM ":" TRE;

EASumExpParenthesis. TRE ::= "(" ASUMExp ")" ;

ETREBinary. TRE ::= TRE OP TRE;

ETREParenthesis. TRE ::= "(" TRE ")" ;

ETREUnary. TRE ::= TS ;

EASumOWA. ASUM ::= "OWA";

EASumSA. ASUM ::= "SA";

EASumCWA. ASUM ::= "CWA";

ESTrue. TS ::= "T" ;

ESFalse. TS ::= "F";

ESUnknown. TS ::= "U";

EOPAnd. OP ::= " �";

EOPOr. OP ::= " �";

Annex B Conformance statements

B.1 Statements with non-singular strongly-connected components

See the corresponding description in Section 6.4.1

CS1= CS2 ∧ CS3 ∧ CS4 ∧ CS5

CS2= CS6 ∧ CS7 ∧ CS8

CS3= CS17 ∧ CS18 ∧ CS19

CS4= CS20 ∧ CS21 ∧ CS22 ∧ CS23 ∧ CS58

CS5= CS57 ∧ CS58 ∧ CS59

CS6= CS9 ∧ CS10 ∧ CS11 ∧ CS60

CS7= CS12 ∧ CS13

CS8= CS14 ∧ CS15 ∧ CS16

78

CS9= CS26 ∧ CS36 ∧ CS51

CS10= CS26 ∧ CS36 ∧ CS51

CS11= CS26 ∧ CS36 ∧ CS51 ∧ CS60

CS12= CS26 ∧ CS28 ∧ CS51

CS13= CS26

CS14= CS26

CS15= CS26

CS16= CS24 ∧ CS26 ∧ CS30 ∧ CS41

CS17= CS24 ∧ CS30 ∧ CS41

CS18= CS24 ∧ CS30 ∧ CS41

CS19= CS24 ∧ CS30 ∧ CS41

CS20= CS24 ∧ CS25

CS21= CS29 ∧ CS30 ∧ CS31 ∧ CS32

CS22= CS40 ∧ CS41 ∧ CS42 ∧ CS43

CS23= CS28 ∧ CS36 ∧ CS51

CS24= CS3

CS25= CS26 ∧ CS27 ∧ CS28

CS26= CS24

CS27= CS26 ∧ CS101

CS28= CS26 ∧ CS30

CS30= CS3 ∧ CS25 ∧ CS29 ∧ CS34 ∧ CS35

CS31= CS36 ∧ CS37 ∧ CS38 ∧ CS39 ∧ CS59

CS32= CS30 ∧ CS102

CS36= CS30

CS37= CS36

CS38= CS36 ∧ CS60

CS39= CS36

CS41= CS3 ∧ CS25 ∧ CS31 ∧ CS40 ∧ CS44 ∧ CS45 ∧ CS46 ∧ CS47
∧ CS48 ∧ CS49 ∧ CS50

CS42= CS51 ∧ CS52 ∧ CS53 ∧ CS54 ∧ CS55 ∧ CS56 ∧ CS59

79

CS43= CS102

CS44= CS101

CS46= CS60

CS47= CS103

CS51= CS41 ∧ CS60

CS52= CS13 ∧ CS41

CS53= CS41

CS54= CS41

CS55= CS41

CS56= CS41

CS57= CS26

CS58= CS26 and (CS75 ∨ CS84 ∨ CS91)

CS59= CS26 ∧ CS60

CS60: (CS36 ∨ CS51) ∧ CS61 ∧ CS62 ∧ CS63 ∧ CS64 ∧ CS65 ∧ CS66
∧ CS67 ∧ CS68 ∧ CS69 ∧ CS70 ∧ CS71 ∧ CS72 ∧ CS73 ∧ CS74

CS75= CS76 ∧ CS77 ∧ CS78 ∧ CS79 ∧ CS80 ∧ CS81 ∧ CS82 ∧ CS83

CS76= CS26

CS78= CS24 ∧ CS30 ∧ CS41 ∧ CS80 ∧ CS81 ∧ CS82

CS79= CS26 ∧ CS78

CS80= CS30 ∧ CS78

CS81= CS41 ∧ CS78

CS82= CS41 ∧ CS78

CS83= CS32 ∧ CS43

CS84= CS85 ∧ CS86 ∧ CS87 ∧ CS88 ∧ CS89 ∧ CS90

CS85= CS26

CS86= CS26

CS87= CS24

CS88= CS30

CS89= CS41

CS90= CS32 ∧ CS43

80

CS91= CS92 ∧ CS93 ∧ CS94 ∧ CS95 ∧ CS96 ∧ CS97 ∧ CS98 ∧ CS99
∧ CS100

CS92= CS26

CS93= CS26

CS94= CS24 ∧ CS30 ∧ CS41

CS95= CS24 ∧ CS30 ∧ CS41

CS96= CS41

CS97= CS41

CS98= CS24 ∧ CS30 ∧ CS41

CS100= CS32 ∧ CS43

CS101

CS102

CS103

B.2 Statements without non-singular strongly-connected components

See the corresponding description in Section 6.4.2

CS1= CS2 ∧ CS4 ∧ CS5 ∧ CS104

CS2= CS6 ∧ CS7 ∧ CS8

CS4= CS20 ∧ CS21 ∧ CS22 ∧ CS23 ∧ CS58

CS5= CS57 ∧ CS58 ∧ CS104

CS6= CS9 ∧ CS10 ∧ CS11 ∧ CS104

CS7= CS12 ∧ CS13

CS8= CS14 ∧ CS15 ∧ CS16

CS9= CS104

CS10= CS104

CS12= CS104

CS13= CS105

CS14= CS104

CS15= CS104

81

CS16= CS104

CS20= CS104

CS21= CS29 ∧ CS104

CS22= CS40 ∧ CS42 ∧ CS43 ∧ CS104

CS23= CS104

CS32= CS102 ∧ CS104

CS42= CS52 ∧ CS53 ∧ CS54 ∧ CS55 ∧ CS56 ∧ CS104

CS43= CS102

CS44= CS101

CS47= CS103

CS52= CS13 ∧ CS104

CS53= CS104

CS54= CS104

CS55= CS104

CS56= CS104

CS57= CS104

CS58= CS75 ∧ CS84 ∧ CS91 ∧ CS104

CS75= CS76 ∧ CS77 ∧ CS79 ∧ CS83 ∧ CS105

CS76= CS104

CS83= CS32 ∧ CS43

CS84= CS85 ∧ CS86 ∧ CS87 ∧ CS88 ∧ CS89 ∧ CS90

CS85= CS104

CS86= CS104

CS87= CS104

CS88= CS104

CS89= CS104

CS90= CS32 ∧ CS43

CS91= CS92 ∧ CS93 ∧ CS94 ∧ CS95 ∧ CS96 ∧ CS97 ∧ CS98 ∧ CS99
∧ CS100

CS92= CS104

82

CS93= CS104

CS94= CS104

CS95= CS104

CS96= CS104

CS97= CS104

CS98= CS104

CS100= CS32 ∧ CS43

CS104= CS29 ∧ CS34 ∧ CS35 ∧ CS40 ∧ CS44 ∧ CS45 ∧ CS47 ∧ CS48
∧ CS49 ∧ CS61 ∧ CS62 ∧ CS63 ∧ CS64 ∧ CS65 ∧ CS66 ∧ CS67 ∧ CS68
∧ CS69 ∧ CS70 ∧ CS71 ∧ CS72 ∧ CS73 ∧ CS74 ∧ CS101

CS105= CS104

Annex C IDGM evaluation schedule algorithm

See the corresponding description in Section 5.4.3

Boolean Evaluation_Schedule (Node S, Graph G)

// G is a Directed Acyclic Diagram (DAG). S is the starting

node of G with an initial truth value. The function reevaluates

the truth value of S. The root S, which is disentan gled from

its dependencies, is the predecessor of all nodes o f the DAG

and needs to be reevaluated to check whether the de rived truth

value is consistent with the initial one.

{

Node P;

NodeQueue L;

//L is the queue (First-In-First-Out) of nodes with all of

their dependencies been explored.

L.Add(S);

//add the starting node into the queue

83

while not L.IsEmpty() Do

P = L.Pop();

//get the node at the front of the queue

// evaluate the node that have not yet been explored

If not P.IsCondensed()

evaluate(P);

//the function evaluates an atomic node according t o

its dependencies if it is not the root

Else

Graph G’ = V.GetGraph();

//derive the Graph from the condensed node

Node I = G’.GetInitalNode();

//get the initial node of the derived Graph

t = ini();

//get the initial truth value

I.truthValue = t;

//initiate the node with the given truth value

GetStableResult(t, I, G’);

//the function derives the stable result of the

derived Graph

EndIf

lable(P);

//label the node

For each V in P.GetNext();

// P.GetNext() retrieves unexplored nodes that have

all of their dependencies been explored

L.Add(V);

EndFor

L.Remove(P);

//remove P from the front of the queue

84

EndDo

Return root_evaluate(S);

// reevaluate the truth value of the root according to its

dependencies which are disentangled from S

}

Int GetStableResult (Boolean t, Node I, Graph G)

//G is a non-singular strongly-connected component and Node

I is one of its nodes, which is initialized by a gi ven truth

value t. The function evaluates the stable result o f the Graph

{

Graph G’ = G.Disentangle (I);

//disentangle node I from its dependencies and deri ve a new

graph

G’ = G’.Condense(G’);

//condense the graph to get a Directed Acyclic Grap h (DAG)

Boolean t’ = Evaluation_Schedule (I, G’);

//evaluate truth value of node I to check whether i t is

consistent with the initial input

If t’ == t

Return OK;

//if the derived result is consistent with the init ial

input, the stable result is derived

Else

t = t’;

GetStableResult(t, I, G);

//otherwise, the derived result is used to evaluate the

stable result

EndIf

}

85

List of publications:

J. Yu, X. Wang, P. Baumann: A Specification-Oriented Geospatial Coverage
Ontology Study. Proc. Ontology, Conceptualization, and Epistemology for
Information Systems, Software Engineering, and Service Science
(ONTOSE'2010), Hammamet, Tunisia, June 7 - 8, 2010, Lecture Notes in
Business Information Processing (LNBIP), Volume 62, Springer, pp. 63-74
(ISTP)

J. Yu, P. Baumann, X. Wang: RPRA: A Novel Approach to Mastering
Geospatial Web Service Testing Complexity, ICSDM2011&IWGIS2011, pp.
252-256, DOI: 10.1109/ICSDM.2011.5969042 (EI)

J. Yu, P. Baumann: On the Systematic Generation of Reference Output for
Geo Image Services. Geoinformatics 2011, pp. 1-6, DOI:
10.1109/GeoInformatics.2011.5980753 (EI)

X. Wang, J. Yu, and P. Baumann: A Web Coverage Ontology for Geospatial
Web Applications, Fifth IEEE International Conference on Semantic
Computing, September 19-21, Stanford University, Palo Alto, CA, USA, 2011
(EI)

J. Yu, P. Baumann: Specification-Based Geo Service Testing -Strategies for
Increasing Confidence in Geo Services (presentation and abstract). AGILE
14th PTB workshop, Utrecht, Netherland. April 18th, 2011

Standards (OGC):

P. Baumann, S.Juba. J.Yu, etc.: WCS 2.0 Core Interface Standard, OGC
09-110r2 (as a contributor)

P. Baumann, A.Aiordachioaie, J.Yu: GML 3.2 Application Schema for WCS 2.0,
OGC 09-146r1 (as a contributor)

P. Baumann, S. Meissl, J. Yu (eds.): OGC® Web Coverage Service 2.0
Interface Standard Earth Observation Application Profile, OGC 10-140 (as an
editor)

Oral presentations:

J.Yu: Semantic-based Quality of Service Availability for the Guarantee of Geo
Raster Processing. Workshop: Innovation in Geo Services: Challenges and

86

Prospects, Bremen, Germay, February 3rd, 2009.

J.Yu: Toward a Specification-based Quality Guarantee for Geo Raster Web
Services. 70th OGC Technical Committee, Darmstadt, Germany, October 1st,
2009.

J.Yu: A Specification-Oriented Geospatial Coverage Ontology Study. Proc.
ONTOSE, Hammamet, Tunisia, June 7 - 8, 2010

Contributions:

2009 OGC WCPS queries for CCIP2009 demo (see www.earthlook.org)

2010 Test scenarios by OGC WCPS in VAROS (ESA) project

2009-2010 Rasdaman system test patch (see www.rasdaman.org)

2009-2011 Conformance testing for geo raster web services in HMA-FO (ESA)

2011 OGC OWS-8 WCS 2.0 ATS&ETS

PhD graduate program:

2008-2011 graduate training programme offered at the Helmholtz Research
School on Earth System Science (ESSRES) directed by Alfred Wegener
Institute for Polar and Marine Research, the University of Bremen, and the
Jacobs University.

