
Network Coding and Wireless Physical-layer

Secret-key Generation: From Unequal

Erasure Protection (UEP) to Unequal

Security Protection (USP)

by

Apirath Limmanee

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in Electrical Engineering

Approved, Thesis Committee

Prof. Dr.-Ing. Werner Henkel
Prof. Dr. Jon Wallace
Prof. Dr.-Ing. Eduard Jorswieck

Date of Defense: September 29, 2011

School of Engineering and Science
Jacobs University



.



Acknowledgments

This thesis would not have been completed without the help of my supervisor, Prof. Dr.
Werner Henkel, as well as the advice from other two dissertation committee members,
Prof. Dr. Jon Wallace and Prof. Dr. Eduard Jorswieck. I have been financially supported
by Jacobs University, German National Science Foundation (Deutsche Forschungsgemein-
schaft, DFG), and the Bulgarian National Science Fund, and would therefore like to ex-
press my gratitude for them.

In addtion, I would like to thank some of my current and former colleagues for in-
valuable help and encouragement. These include Dr. Khaled Hassan, Dr. Fangning Hu,
Dr. Neele von Deetzen, Khodr Ahmad Saaifan, Oana Alexandra Graur, Humberto Neto,
and Alexandra Filip.

i



Abstract

The general abstraction of this thesis is the relationships between two seemingly unre-
lated topics, which are network coding and wireless physical-layer secret-key generation
(WPSG). As build-ups to such relationships, some specific aspects of each topic are dis-
cussed in detail at first. To begin with, network coding issues of unequal erasure protection
(UEP) and degree distribution distortion of LT-coded symbols are presented. After that,
the analysis regarding key length and security enhancement in WPSG is given. Towards
the end, relationships between network coding and WPSG are revealed in two aspects,
which are security protocols using network coding and scalable security based on the
weakly secure network coding concept.
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Chapter 1

Motivation and Overview

This thesis consists of a series of topics which are divided into three parts. We decide to

do so with the aim that each part will be self-contained, i.e., the reader may choose to

read or skip one part without any serious damage. For example, those who have sound

knowledge in communication systems and networks as well as network coding may skip

Part I, those who are interested solely in network coding may read only Part II, and those

who only wish to know the relationship between network coding and WPSG may read

only the last part.

This first part is the introductory part consisting of three chapters. Chapter 2 discusses

the basic knowledge of digital communication systems and networks. Chapter 3 discusses

some aspects of graph theory related to network coding, as well as network coding itself,

which is the major focus of this thesis.

At the beginning of the millennium, Ahlswede et al. [55] made a breakthrough in

information theory by inventing network coding, which significantly increased network

throughput by means of coding. The idea related information theory to graph theory,

providing a means to reach the graph-theoretic max-flow limit in data networks. It stated

that when many sources transmitted different data to many sinks, or when one source

transmitted the same data to many sinks (multicast), the maximum amount of data flow

(max-flow) could not be achieved by means of routing alone. Network coding was needed

to achieve the max-flow.

2



Chapter 1: Motivation and Overview 3

Many developments have followed. In 2003, Li et al. [69] showed that a simple class of

network coding, called linear network coding, sufficed to achieve the maximum flow. In the

same year, Koetter and Médard [59] proposed a greedy algorithm to find linear network

coding solutions to the multicast problem. However, Koetter and Médard’s algorithm was

based on the idealized assumption that the given network had no delay, lost no packet,

and had centralized knowledge of its topology, which was not the case in practice. Later,

some more practical algorithms were proposed.

In 2003, Chou, Wu, and Jain [51] simulated a distributed network coding scheme

using the network topologies of several internet service providers, which resulted in almost

optimal throughput. Moreover, several pioneering works from 2004 to 2007 [53,54,65,70,

83,84] introduced network coding to wireless communications. Even cryptography became

one of network coding applications with the introduction of secure network coding in

2002 [25,46] as well as a subsequent work in [29].

We, however, have maintained a critical stance on network coding. While network

coding brings several research opportunities to the field of digital communication, several

issues must be dealt with as one looks closely. We focus on the issue of erasures in the

network, which will be examined in Part II, consisting of Chapter 4 and 5. We do not

merely raise the issue, but also suggest the solutions.

Chapter 4 discusses unequal erasure protection (UEP) of network codes, suggesting

that a network code assignment has a strong impact on the quality of the received scalable

data for each receiver. Therefore, an assigment scheme based on the concept of equity

among sink nodes is proposed, together with a capitalist concept used to assign network

codes by means of an auction such that richer nodes get better data quality. After that,

Chapter 5 investigates the problem of degree distribution distortion of LT-coded symbols

when network coding is used and suggests a solution.

In Part III, We turn our attention to a cryptographic technique called wireless physical-

layer secret-key generation (WPSG). In Chapter 6, we investigate the extension of the

technique from a direct communication to a relayed one as well as a wireless network in
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general. In the latter case, the security of the technique relies on the network protocol

used for transmitting pilot symbols. It is shown that information mixing in a similar

manner to network coding can enhance the protocol security.

In Chapter 7, it is shown that the security of WPSG can be further enhanced by

means of key encoding, using the same concept of secret sharing as that in secure network

coding. In addition, a concept of scalable security or unequal security protection (USP)

is formally introduced and analyzed in the context of both secure network coding and

WPSG.

Finally, Chapter 8 gives the conclusion and discusses future research topics.



Chapter 2

Introduction to Digital

Communication Systems and

Networks

Although the objective of our investigation is communication networks in general, we

would like, at first, to introduce the elements of point-to-point digital communication in

Section 2.1, as well as the mathematical models of communication channels in 2.2. After

that, routing in communication networks is introduced in 2.3.

2.1 Basic Elements of A Secure Digital Communica-

tion System

In this section, we discuss those basic elements constituting a digital communication

system. When talking about any communication system in general, three basic elements

must certainly be there. They are transmitter, channel, and receiver. However, when

discussing a digital communication system in particular, we need to be specific about

what constitutes the transmitter and the receiver. According to Proakis [30], a basic

digital communication system can be shown in a block diagram in Fig. 2.1.

5



6 Chapter 2: Introduction to Digital Communication Systems and Networks

Channel

Binary
Source Encoder

Channel
Encoder Modulator

Binary
Sink DemodulatorDecoder

Channel
Decoder

Source

Source Digital

Digital

Figure 2.1: A basic digital communication system

To make the system secure, however, we need to insert two more blocks, which are

encryptor and decryptor, as shown in Fig. 2.2.

Channel

Binary
Source Encoder

Source

Binary
Sink Decoder

Source

Channel
Encoder Modulator

DemodulatorDecoder
Channel Digital

Digital

Decryptor

Encryptor

Figure 2.2: A secure digital communication system

A digital transmitter consists of four basic elements, which are a binary source, a

source encoder, a channel encoder, and a digital modulator, whereas a digital receiver is

composed of a digital demodulator, a channel decoder, a source decoder, and a binary

sink.

A binary source in the transmitter generates information to be transmitted, be it

audio, speech, or video data, in a binary representation. Usually, this representation

is not the most economical one possible, i.e., it is possible to squeeze it into a shorter

string of 0s and 1s without reducing the amount of information, or reducing only some

insignificant amount of it. The source encoder is made for this task. It transforms the

data into another binary representation with less redundancy. These two blocks, however,

are not the focus of this thesis.

Our concern in the thesis ranges from the third block, the encryptor, to the ninth block,

the decryptor. Although the encryptor in Fig. 2.2 locates right after the source encoder,

it is not necessarily the case when we consider some new cryptographic technologies, for

example, physical-layer security and physical-layer secret-key generation, which will be

discussed in detail in Part III.
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An encryptor provides security to the transmitted data. In cryptology, there are two

types of security, which are theoretical security and practical security. They are based

on different philosophies. Theoretical security, on the one hand, is based on theoretical

impossibility of ciphers being broken, necessitating mutual knowledge of a secret key

between transmitter and receiver. Practical security, on the other hand, is based on

practical difficulty of ciphers being broken, i.e., it takes too much time and labor to break

them. The questions regarding how these two types of security are implemented will be

dealt with in Part III.

A channel encoder introduces some redundancy to the input data so that the output

is immune to deteriorating effects, such as errors and erasures, from the channel. There

are numerous channel codes and several ways to classify them. They can be divided into

block codes and convolutional codes, fixed-rate and rateless codes, or linear and non-linear

codes. In this thesis, we will consider linear rateless codes called LT-codes in Chapter 5.

The purpose of a digital modulator is to map the binary representation after channel

encoding into electromagnetic waves that can be transmitted along the channel. The

simplest digital modulation is called binary modulation, which maps the binary digit 0

into a waveform so(t) and the binary digit 1 into s1(t). This means each bit is transmitted

in a separated waveform. In M -ary modulation (M > 2), however, M = 2m waveforms

si(t), i = 0, 1, ...,M − 1 are used to represent m bits [30].

The communication channel is the physical medium used for transmission, e.g., the

free space in wireless communication. In the design and analysis of digital communication

systems, communication channels are represented by channel models, which are mathe-

matical abstractions of these physical entities. We will discuss some channel models in

the next section.

A digital demodulator, a channel decoder, a decryptor, and a source decoder perform

reversed operations of a digital modulator, a channel encoder, an encryptor, and a source

encoder, respectively. Their overall purpose is to give the binary sink the data which is

as close as possible to that generated by the binary source.
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2.2 Channel Models

Since channel models are mathematical abstractions of physical channels, they can be

divided into several categories based on two factors, which are the nature of physical

channels and the levels of abstraction used. We will discuss four frequently used channel

models which suit the purpose of this thesis.

2.2.1 Binary Erasure Channel (BEC)

Being proposed in 1955 by Elias [52], binary erasure channels become practical for data

networks, especially after the emergence of the Internet. The model offers no possibility

of transmission errors. It assumes that the data is either received correctly or not received

at all. This assumption can only hold on network level of abstraction, where errors are

assumed to be corrected by the data link layer. In reality, erasures may be caused by

buffer overflows at intermediate routers, mismatching of packets’ internal check-sum, or

packets losing their ways [10].

The model can be illustrated by Fig. 2.3, in which X is the transmitted symbol and

Y is the received one. If the erasure probability is pe, the capacity C of the channel is

given by [73]

C = 1− pe. (2.1)

0

1

0

e

1

Y
X

1− pe

pe

1− pe

pe

Figure 2.3: Binary Erasure Channel
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2.2.2 Binary Symmetric Channel (BSC)

This model only allows received symbols to contain errors, but not to be erased. However,

the physical phenomena behind the transmission errors are not included in the model.

Therefore, this model is suitable for the data link level of abstraction. It can be illustrated

by Fig. 2.4, in which X is the transmitted symbol and Y is the received one. If the error

probability is ps, the capacity C of the channel is given by [73]

C = 1−H(ps), (2.2)

where

H(ps) = ps log2

1

ps
+ (1− ps) log2

1

1− ps
, (2.3)

1

00

1

X Y

1− ps

1− ps

ps

ps

Figure 2.4: Binary Symmetric Channel

2.2.3 Additive White Gaussian Noise (AWGN) Channel

This channel model, belonging to the physical level of abstraction, explains the transmit-

ted signal distortion as an adding effect of some noise n(t), as follows.

r(t) = s(t) + n(t), (2.4)

where r(t) is the received signal at time t, s(t) is the transmitted signal, and n(t) is the

noise which obeys the following Gaussian distribution.

pn(x) =
1√
2πσ

exp {−(x−mx)
2/2σ2}, (2.5)
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where mx is the mean of the distribution, which is zero in this case, and σ2 is the noise

variance.

The assumption of a Gaussian distribution is supported by the natural phenomenon

of thermal agitation of charge carriers inside an electrical conductor. The amplitude is

almost Gaussian distributed, and the frequency spectrum is almost white, thus the name

additive white Gaussian noise (AWGN) [30].

2.2.4 Rayleigh Fading Channel

The Rayleigh fading channel model is a physical abstraction of wireless channels, where

signal rays from the transmitter are scattered by obstacles in the environment, forming a

number of transmission paths to the receiver, who receives the summation of signals from

these paths. Therefore, the received band-pass signal may be expressed as follows [30].

r(t) =
∑
n

αn(t)s[t− τn(t)], (2.6)

where αn(t) is the attenuation factor for the signal received on the nth path and τn(t) is

the propagation delay of the nth path. Now, if the transmitted signal s(t) is expressed as

s(t) = <[sl(t)e
j2πfct], (2.7)

where sl(t) is the low-pass transmitted signal in complex base-band representation and fc

is the carrier frequency. The received low-pass signal in base-band can be written as

rl(t) =
∑
n

αn(t)e
−j2πfcτn(t)sl[t− τn(t)]. (2.8)

According to (2.8), the equivalent low-pass channel in base-band can be described by

the following time-variant channel impulse response

c(τ ; t) =
∑
n

αn(t)e
−j2πfcτn(t)δ[t− τn(t)]. (2.9)
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When the number of paths is large enough, the central limit theorem holds that the

channel impulse response behaves according to a zero-mean, complex-valued, Gaussian

distribution. If we denote the random variables of the real part, the imaginary part, and

the envelope of the impulse response by CR, CI , and CE, respectively, it follows that

CE =
√
C2
R + C2

I . (2.10)

If CR and CI are independent Gaussian-distributed random variables with zero mean

and a variance of σ2, the probability density function of CE can be expressed as

pCE
(r) =

r

σ2
exp−r2/2σ2. (2.11)

This distribution is called Rayleigh, giving rise to the name Rayleigh fading channel.

Note that when there are fixed scatterers or lines of sight in the channel, the zero-mean

assumption does not hold and the distribution is therefore not Rayleigh-distributed but

Ricean distributed. We, however, will not discuss the Ricean distribution in detail.

2.3 Routing in Communication Networks

In more complicated networks such as the Internet, there are more channels and other ele-

ments involved in transmission. These elements are situated between the transmitter and

the receiver and are often called intermediate nodes. Traditionally, there are three impor-

tant functions that these nodes may choose to perform to help packets reach the destina-

tion. These are store-and-forward, amplify-and-forward, and decode-and-forward. After

the emergence of network coding, the last two functions can be modified into amplify-and-

forward with network coding and decode-and-forward with network coding, respectively.

No matter how sophisticated the signal processing techniques are at the intermediate

nodes before packets are forwarded, the most important thing is that packets must be

forwarded in the right direction. Otherwise, they will not reach the destination or might
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take a decade to reach it. Therefore, in this section, we discuss the most basic operation,

store-and-forward, which is usually called routing. The nodes performing this function

are called routers.

2.3.1 Routing Protocols and Algorithms

A routing protocol specifies rules for communication among routers. A routing algorithm

is a part of the protocol that deals with route selection. Let us consider the Internet as an

example. The Internet can be seen as a collection of sub-networks, each of which having

its own specific protocol, connecting together. Since each sub-network is independent of

all others, it is often called an autonomous system (AS). A routing algorithm within an

AS is called an interior gateway protocol, whereas that used for routing between ASes is

called an exterior gateway protocol [7].

The assembly of sub-networks in the Internet is made possible by a mutually agreed

protocol, which is called the Internet Protocol (IP). As a network-layer protocol, IP

provides best-effort (not guaranteed) services to the transport layer, i.e., transporting

datagrams from source to destination, regardless of whether they are in the same network

or not. At present, IP version 4 (IPv4) is the dominant protocol, but IP version 6 (IPv6)

is also emerging.

Since the Internet is too big a scope to deal with in this thesis, we will now turn

our attention to routing inside a network, not between networks. There are two types of

routing algorithms, which are static algorithms and dynamic ones. Static algorithms, as

the name implies, do not base their routing decisions on measurements or estimates of

the current traffic and topology. One example of such algorithms is Dijkstra’s shortest-

path routing, which routes packets along the shortest path between the transmitter and

receiver. Another example is flooding, in which every incoming packet is sent out to every

line except the one via which it is received [7].

Despite the simplicity of static algorithms, modern computer networks generally use

dynamic algorithms which can adapt the routing decisions to current network topology
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and load. Two of the most popular dynamic algorithms are distance vector routing and

link state routing.

In distance vector routing, each router maintains a routing table containing one entry

for each of the other routers. The entry contains two parts, the preferred outgoing line

used for sending data to the router of that entry and the time or distance needed. The

metric used to select the outgoing line may take number of hops, time delay, or number of

packets queued along the path into account. Then, each router periodically transmits the

time or distance needed to reach other routers to its neighbors, who update their tables

accordingly.

The pitfalls of distance vector routing algorithm are that it does not take line band-

width into account and takes a long time to converge. Therefore, it was used in the

ARPANET only until 1979 before being replaced by link state routing. Unlike distance

vector routing, in which each router informs only its neighbors about the cost or delay

to all other routers, in link state routing, each router informs all others only about the

delay or cost to its neighbors. Then, every router can compute the path that minimizes

the cost [7].

Now, we would like to specifically introduce routing algorithms for broadcast and

multicast routing in wireline networks.

2.3.2 Broadcast and Multicast Routing in Wireline Networks

Broadcast Routing in Wireline Networks

There are four major algorithms used for broadcasting a packet to all routers.

1. Flooding

Flooding means that every incoming packet is sent out to every outgoing line except the

one on which it arrives. This generates vast numbers of duplicate packets. Three measures

can be taken to reduce such numbers. One of them is to keep a hop counter in the packet

header such that the packet is discarded when the number of hops reaches the tolerable

maximum. Another technique is to make sure that the same packet is not transmitted
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twice by the same router. The last one is called selective flooding, meaning that routers

only send the packets only along the lines going approximately to the right direction [7].

2. Multi-destination Routing

In this method, each packet contains either a list of destinations or a bit map indicating

the desired destinations. When a packet arrives at a router, the router calculates the

best route for each destination and determines the set of all output lines needed by all

calculated best routes. The router generates a copy of the packet for each output line and

includes, in the packet, a list of those destinations using the line. This process repeats

for every router along the best routes until every destination receives the packet [7].

3. Spanning Tree

A spanning tree is a subset of the subnet. It is a graph whose set of nodes comprises all

routers in the network. Every pair of nodes are connected by a sequence of edges but

there is no loop in the graph. Figure 2.5(b) gives an example of the spanning tree. In

this method, the router simply copies an incoming packet to all output lines belonging to

the spanning tree except the one on which the packet arrives [7].

4. Reverse Path Forwarding

This algorithm is an attempt to approximate the previous one, even when the routers

know nothing about the spanning tree. In this algorithm, when a packet arrives at a

router, the router checks to see if it arrives on the line normally used for sending packets

to the broadcasting source. If that is the case, there is a good chance that packet has

followed the best route from the source and is the first copy arrived at the router. The

router therefore copies the packet onto all lines except that on which the packet arrives.

However, if the packet arrives on a line other than the preferred one used for reaching the

source, the packet is discarded as a duplicate [7].

Multicast Routing in Wireline Networks

Multicasting requires group management so that packets are sent only to those interested

in it and authorized to see it. In multicast routing, each router computes a spanning tree
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covering all other routers in each group. In Fig. 2.5(a), we have two groups, 1 and 2. The

spanning tree for the leftmost router to all nodes is shown in Fig. 2.5(b). When a process

would like to multicast a packet to a group, the first router examines its spanning tree

and prunes it. Figures 2.5(c) and (d) show the pruned spanning tree for groups 1 and 2,

respectively. Multicast packets are forwarded only along the pruned multicast tree of the

desired destination group [7].

1,2

1,2

1
1

2

2 2

(a) (b)

1 12

22

1,2

1,2

1
1

(c) (d)

1
1

1

1

1

2

2

2

2
2

Figure 2.5: (a) A network. (b) A spanning tree for the leftmost router. (c) A multicast
tree of group 1. (d) A multicast tree of group 2



Chapter 3

Introduction to Graphs and Network

Coding

Since network coding relates graph theory to communication theory, an introduction to the

concept of a graph is important for a complete understanding of network coding. In this

chapter, after the introduction to graphs in Section 3.1, we explain the max-flow/min-cut

theorem in Section 3.2. Network coding is primarily the solution to the max-flow problem

in multicast application and will be introduced in Section 3.3. A general formulation of

network coding is given in Section 3.4, with a special case of linear network coding in

Subsection 3.4.1.

3.1 Graphs and Some Basic Definitions

A graph is a mathematical abstraction and simplification of many physical phenomena,

thus enabling us to solve real-world problems under the branch of mathematics called

graph theory. Graph theory is employed to tackle problems in such fields as communica-

tion engineering, computer science, physics, chemistry, biology, and sociology. Examples

of graph-theoretical problems which find many applications are the shortest-path problem,

the spanning tree problem, the max-flow problem, and the min-cost flow problem.

In general, a graph consists of only two essential sets of elements, which are the set V

16
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of nodes and the set E of edges. Therefore, a graph G is usually represented by the pair

of those two sets such that G = (V,E). Here, we give the following definitions of three

types of graphs relevant to our topic, which are simple graphs, multigraphs, and directed

graphs [17,79].

Definition 3.1 A simple graph GS consists of a node set V (GS) and an edge set E(GS),

where each edge is a pair (u, v) of nodes u, v ∈ V (GS). Each pair of nodes u and v in GS

is joined by at most one edge.

Definition 3.2 A multigraph GM consists of a node set V (GM) and an edge set E(GM),

where each pair of nodes u and v in GM may be joined by more than one edge. Thus,

each edge joining a pair of nodes u, v ∈ V (GM) is represented by (u, v)i, where i is the

index ensuring that the representation of each edge is distinct.

Definition 3.3 A directed graph GD consists of a node set V (GD) and an edge set E(GD),

where each edge is an ordered pair (u, v), that must be distinguished from (v, u), of nodes

u, v ∈ V (GD).

Figures 3.1 and 3.2 give examples of a simple directed graph and a multigraph, respec-

tively. Note that Fig. 3.1 is also a multigraph since, according to our definitions, every

simple graph is a multigraph, whereas Fig. 3.2 is neither a simple graph nor a directed

graph since three edges connect F and G and no direction is associated with each edge.

When a directed graph is used in practice, it is useful to introduce a variable that

measures the quantity flowing in each edge, such as the electric current in a circuit, or,

in our case, the data rate in a network. We simply call this quantity ”flow.” The flow

of (u, v) is denoted by a real number xuv. In practice, a positive xuv suggests that the

flow moves along the same direction of the arc in a directed graph, whereas a negative

flow moves in the opposite direction. The amount of the flow is limited by the capacity

in both directions such that buv ≤ xuv ≤ cuv, where cuv and buv are the capacities of (u, v)

in the forward and backward directions, respectively [17].

Now, we define the term “divergence,” which will be used later when considering the

max-flow problem [17].
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Figure 3.1: An example of a simple directed graph
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Figure 3.2: An example of a multigraph
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Definition 3.4 In a graph G, the divergence of the node i, denoted by yi, is the total flow

departing from the node i less the total flow arriving at it.

yi =
∑

{j|(i,j)∈E(G)}
xij −

∑

{j|(j,i)∈E(G)}
xji ; ∀i ∈ V (G) (3.1)

When there is an integer-number capacity associated with each edge in a graph repre-

senting a digital communication network, such a graph is usually a simple graph, whose

edges only denote connectivity among nodes. However, in some cases, the communication

capacity between each pair of nodes is indicated by the number of edges connecting them.

It follows that multigraphs are required in such cases. For examples, a multigraph in Fig.

3.2 may represent a communication network in which the capacity of the link FG is three

times of that belonging to BD.

Before proceeding to the max-flow/min-cut theorem, we would like to introduce some

more terms, which are paths, cycles, and acyclic graphs. These terms are important in

communication networks since, ideally, data transmission should follow a path from the

source to the destination, rather than being caught up in cycles. Therefore, an acyclic

graph is normally used as an abstraction of a communication network.

Definition 3.5 A path P from u to v is a sequence of nodes u0, u1, u2,..., uk obeying the

following properties.

1. u = u0 and v = uk.

2. An edge joins ui to ui+1, i ∈ 0, 1, 2, ..., k − 1.

3. All ui, i ∈ 0, 1, 2, ..., k, are distinct nodes.

The length of the path P is the number of edges used for connecting the nodes, which is

k [79].

Definition 3.6 A cycle C is a sequence of nodes u0, u1, u2,..., uk forming a u0uk path,

in which there is an edge joining uk and u0.
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The length of the cycle C is the number of edges used for connecting the nodes, which

is k + 1 [79].

Definition 3.7 An acyclic graph is a directed graph without any cycle.

3.2 The Max-Flow/Min-Cut Theorem

Now, we would like to introduce the max-flow problem in a digital communication network.

In this problem, we have a graph with two special nodes, the source S and the sink T .

This is an optimization problem whose objective is to maximize the amount of information

flowing from S to T . Speaking in terms of flows and divergences, the objective is to find

a flow vector that makes the divergences of all nodes other than S and T equal 0 while

maximizing the divergence of S. In [17], the max-flow problem is formulated as a special

case of the minimum cost flow problem. By adding an artificial arc from T to S, as

shown by the dashed line in Fig. 3.3, the max-flow problem becomes a minimum cost flow

problem when the cost coefficient at every edge is zero, except the cost of the feedback

edge TS, which is -1. In this case, the problem can be formulated in Definition 3.8 [17].

S T

Artificial feedback arc with cost coefficient of -1

Figure 3.3: Illustration of the max-flow problem as a special case of the minimum cost
flow problem [17]
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Definition 3.8 Max-flow Problem:

maximize xTS

subject to

∑

{j|(i,j)∈E(G)}
xij −

∑

{j|(j,i)∈E(G)}
xji = 0, ∀i ∈ V (G) with i 6= S and i 6= T, (3.2)

∑

{j|(S,j)∈E(G)}
xSj =

∑

{i|(i,T )∈E(G)}
xiT = xTS, (3.3)

bij ≤ xij ≤ cij, ∀(i, j) ∈ E(G) with (i, j) 6= (T, S). (3.4)

The Ford-Fulkerson algorithm can be used to solve the max-flow problem. The basic

idea is to recursively increase the flow by finding a path from S to T that is unblocked with

respect to the flow vector until we can verify that the maximum flow is achieved. Such

verification can be done by checking whether there exists a “saturated cut” separating S

from T [17]. The following four definitions explain the meaning of the term “saturated

cut.”

Definition 3.9 A cut Q in a graph G is a partition of the node set V (G) into two

nonempty subsets, a set C and its complement V (G)− C. We use the notation

Q = [C, V (G)− C]. (3.5)

Note that the partition is ordered such that the cut [C, V (G)−C] is distinct from [V (G)−
C, C]. For a cut [C, V (G)− C], using the notation

Q+ = {(i, j) ∈ E(G)|i ∈ C, j 6∈ C}, (3.6)

Q− = {(i, j) ∈ E(G)|i 6∈ C, j ∈ C}, (3.7)

we call Q+ and Q− the sets of forward and backward arcs of the cut, respectively.

Definition 3.10 The flux F (Q) across a cut Q = [C, V (G) − C] is the total net flow
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coming out of C such that

F (Q) =
∑

(i,j)∈Q+

xij −
∑

(i,j)∈Q−
xij. (3.8)

Definition 3.11 Given lower and upper flow bounds bij and cij for each edge (i, j), the

capacity C(Q) of a cut Q is

C(Q) =
∑

{j|(i,j)∈Q+}
cij −

∑

{j|(i,j)∈Q−}
bij. (3.9)

Definition 3.12 Q is said to be a saturated cut with respect to a set of flow if and only

if F (Q) = C(Q).

Using the Ford-Fulkerson algorithm, the first saturated cut that we find is called

the minimum cut or min-cut representing the network bottleneck. This saturated cut is

“minimum” in the sense that its flux is minimum among all possible saturated cuts. As

suggested by intuition as well as the following max-flow/min-cut theorem, the capacity

of the minimum cut equals the maximum flow of the network. The theorem is formally

proved in [17].

Theorem 3.1 Max-Flow/Min-Cut Theorem:

(a) If x∗ is an optimal solution of the max-flow problem, then the divergence out of S

corresponding to x∗ is equal to the minimum cut capacity over all cuts separating S from

T .

(b) If all lower arc flow bounds are zero, the max-flow problem has an optimal solution,

and the maximal divergence out of S is equal to the minimum cut capacity over all cuts

separating S from T .

Figure 3.4 illustrates the max-flow/min-cut theorem. We can see from (b) that the

capacity of the minimum cut is 5, equaling the maximum flow to T in (c).
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Figure 3.4: (a) A graph G with the associated edge capacities, (b) the minimum cut of
G, and (c) the maximum flow of G
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3.3 Introduction to Network Coding

In the paper ”Network Information Flow” published in July 2000, Ahlswede, Cai, and

Li, stated that ”Contrary to one’s intuition, our work reveals that it is in general not

optimal to regard the information to be multicast as a fluid which can simply be routed

or replicated. Rather, by employing coding at the nodes, which we refer to as network

coding, bandwidth can in general be saved [55].”

While traditional coding is performed at the transmitter, network coding is done by

routers, denoted by Ahlswede et al. as nodes. They proved in their paper that information

that was multicast from one transmitter, the source node, to a set of receivers, the sink

nodes, could achieve its maximum flow (throughput) by network coding, without which

this optimum might not be achieved [55].

1 1

1 1

1 1 1

1 1

C

D E

G

F

B

A

Figure 3.5: The butterfly network with edge capacities

To understand how network coding works, consider the graph in Fig. 3.5, which is

usually called the butterfly network. The graph consists of 7 nodes where the source node

A wishes to multicast some information to the sink nodes D and E via the 9 edges with

their capacities as labeled. The unit of the capacity here is bit per unit time.

Now consider Fig. 3.6, where b1 and b2 are multicast to D and E. (This means both D

and E will receive both b1 and b2.) We can see from Fig. 3.6(a) that D receives b1 via the
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path ABD and b2 via ACFGD, as well as from Fig. 3.6(b) that E receives b1 via ABFGE

and b2 via ACE. Since the edge FG is shared between sending b2 to D and sending b1 to

E, its capacity for each of them is halved. Therefore, the maximum flow in this multicast

session for D, without using network codes, is 1.5 bits per unit time (1 from the path

ABD and 0.5 from ACFGD). The maximum flow for E is also the same.

(a) (b)

A

B C

F

G

D E

A

B C

F

G

D E

b1 b2

b2

b1 b2

b2

b1 b2

b1

b1 b2

b1

Figure 3.6: Illustration of information flow within the butterfly network

However, network coding can help both D and E achieve the maximum flow of 2 bits

per unit time, as shown in Fig. 3.7. The node F does the simplest form of coding by

XORing b1 to b2. As a result, in one unit time, D receives b1 and b1 ⊕ b2 whereas E gets

b2 and b1⊕ b2, all of which can be easily decoded into b1 and b2. Note that the maximum

flow of 2 bits per unit time is the same as the maximum flow for each individual flow

in the absence of another, which constitutes the limit that no multicast flow can exceed,

according to Ahlswede et al. [55].

Since real communication networks are more complicated than the butterfly network,

we need a mathematical model to treat the general problems of network coding. This is

explained in the following section.
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Figure 3.7: Network coding in a butterfly network

3.4 Theory of Network Coding

For the sake of this section’s discussion, the source node will be depicted as a rectangle,

as shown in Fig. 3.8. In addition, each edge will represent the capacity of 1 data unit per

time unit. A data unit refers to one element of a base field F, for instance, F = GF (2),

which is the binary field. A message consists of ω data units and is therefore represented

by an ω-dimensional vector x, where x ∈ Fω [61]. Note that although the source may

send several messages, the data in each message can only be network-coded with that in

the same message.

For each non-source node U , I(U) denotes the set of its incoming edges and O(U)

denotes that of outgoing ones. |I(U)| and |O(U)| denote the number of incoming edges

and outgoing edges, respectively, at the node U . For a source node S, I(S) is a set of

imaginary edges, which terminate at S without any originating node, as shown by dashed

arrows in Fig. 3.8. We always have ω imaginary edges in a graph.

Although network coding in real networks can be performed at all nodes except the

sinks, in order to correctly decode, the sinks need not know how all intermediate nodes do

the coding. All they need to know is the accumulated effect that all network coding has

on the source messages. Chou, Wu, and Jain, suggest in the paper “Practical Network
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Figure 3.8: The butterfly network with imaginary edges

Coding” [51] that each intermediate node combines the network coding from the previous

nodes along the path with the coding of its own before writing the information about the

combined code on data packets’ headers and sending the packets downstream. Here, the

function of the combined code is called “global encoding mapping” whereas that of the

local code is called “local encoding mapping.” They are defined as follows.

Definition 3.13 Let F be a finite field and ω a positive integer. An ω-dimensional F-

valued network code on an acyclic communication network consists of a local encoding

mapping

k̃e : F|I(U)| → F (3.10)

for each node U in the network and each edge e ∈ O(U) [61].

Definition 3.13 tells us that the local encoding mapping k̃e for a specific outgoing

edge e of the node U maps the |I(U)|-dimensional vector F|I(U)|, each element of which

represents the data from a distinct incoming edge in the set I(U), into an outgoing data.

Definition 3.14 Let F be a finite field and ω a positive integer. An ω-dimensional F-
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valued network code on an acyclic communication network consists of a local encoding

mapping k̃e : F|I(U)| → F and a global encoding mapping f̃e : Fω → F for each edge e in

the network such that:

• For every node U and every channel e ∈ O(U), f̃e(x) is uniquely determined by

the global encoding mappings from incoming edges (f̃d(x), d ∈ I(U)), and k̃e is the

mapping via

(f̃d(x), d ∈ I(U)) → f̃e(x) (3.11)

• For the ω imaginary edges e, the mappings f̃e are the projections from the space Fω

to the ω different coordinates [61].

Definition 3.14 shows formally the difference between the local encoding mapping k̃e

and the global one f̃e. The former, on the one hand, relates the data from incoming edges

in the set I(U) to the outgoing data. The latter, on the other hand, maps the source

message x ∈ Fω to the data output at e. Moreover, (3.11) tells us that each node can

derive f̃e from its local encoding mapping k̃e and the global encoding mapping f̃d of the

incoming edges d ∈ I(U). This means any global encoding mapping computed by a node

and written on data packets’ headers will be used by successive nodes, together with their

local encoding mapping, to successively compute their global encoding mapping to be

further transmitted as headers. The process repeats until data packets reach the sinks,

which decodes them according to headers.

This work focuses on a class of network codes called linear network codes, which is

described in the next subsection.

3.4.1 Linear Network Codes

Linear network codes are those of which all local encoding mapping and global encoding

mapping are nothing more than dot-product of input vectors and mapping vectors. Linear

local and global encoding mapping are defined formally in definitions 3.15 and 3.16 [61].
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Definition 3.15 Let the ω-dimensional row vector x represent the message generated

by the source node S, a global encoding mapping f̃e(x) is called linear if there exists an

ω-dimensional column vector fe such that

f̃e(x) = x · fe . (3.12)

Definition 3.16 Let the |I(U)|-dimensional row vector y represent the data units re-

ceived at the node U , a local encoding mapping k̃e(y) is called linear if there exists an

|I(U)|-dimensional column vector k̂e = [k1,e k2,e ... k|I(U)|,e]T such that

k̃e(y) = y · k̂e . (3.13)

In Definition 3.17, the phrase “adjacent pair” is defined to facilitate definitions 3.18

and 3.19. Definition 3.18 defines the local encoding kernel matrix KU at the node U as

a concatenation of all the linear local encoding mappings k̂e at U . Definition 3.19 shows

that the vector fe in Definition 3.15, which is used for the global encoding mapping at

the node U to the outgoing edge e, can be derived from the global encoding mappings

fd of all the incoming edges d and the local encoding kernel KU. fe is now called global

encoding kernel.

Definition 3.17 A pair of edges (d, e) is called an adjacent pair if and only if there exists

a node U such that d ∈ I(U) and e ∈ O(U) [61].

Definition 3.18 Let F be a finite field and ω a positive integer. An ω-dimensional F-

valued linear network code on an acyclic communication network consists of a scalar kd,e,

called the local encoding kernel, for every adjacent pair (d, e). The local encoding kernel

at the node U means the |I(U)|× |O(U)| matrix KU, of which element at the dth row and

eth column is kd,e.

KU = [kd,e]d∈I(U),e∈O(U) (3.14)

Note that KU is a concatenation of all vectors k̂e, e ∈ O(U) in Definition 3.16 [61].
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Definition 3.19 Let F be a finite field and ω a positive integer. An ω-dimensional F-

valued linear network code on an acyclic communication network consists of a scalar kd,e

for every adjacent pair (d, e) in the network as well as an ω-dimensional column vector fe

for every channel e such that

fe =
∑

d∈I(T )

kd,e · fd (3.15)

where e ∈ O(T ). In addition, the vectors fe for the ω imaginary edges e ∈ I(S) form the

natural basis of the vector space Fω. The vector fe is called the global encoding kernel for

the channel e [61].

From (3.12) and (3.15), we can now write the linear global encoding mapping f̃e(x) in

the form of local encoding kernel’s elements and global encoding kernels from incoming

edges.

f̃e(x) = x · fe = x ·
∑

d∈I(T )

kd,e · fd =
∑

d∈I(T )

kd,e(x · fd) (3.16)

Example 3.1 Figure 3.9 shows all the global encoding kernels fe according to network

coding in Fig. 3.7. In this case, the message x is a 2-dimensional vector of the binary

field, x = [b1 b2].

We can see that for the edge AB,

f̃AB(x) = f̃AB(b1, b2) = [b1 b2] · [1 0]T = b1 (3.17)

Similarly, f̃BF (b1, b2) = b1, f̃AC(b1, b2) = f̃CF (b1, b2) = b2, f̃FG(b1, b2) = b1 + b2, and so

on. Now, considering the node F , we can see that, from (3.13),

k̃FG(y) = kFG(b1, b2) = [b1 b2] · k̂FG = b1 + b2. (3.18)

Therefore, k̂FG = [1 1]T and KF = [1 1]T since there is only one outgoing edge FG.

Similarly, k̂GD = k̂GE = [1] and KG = [1 1], which is the concatenation of k̂GD and

k̂GE.
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A

B C
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G

D E

[1 0]T [0 1]T

[1 0]T [0 1]T

[1 0]T [0 1]T

[1 0]T [1 1]T [0 1]T

[1 1]T [1 1]T

Figure 3.9: The butterfly network with global encoding kernels labelling all edges
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The emergence of scalable video coding standard means that some parts of transmitted

data should be better protected than others. This concept is called unequal error/erasure

protection (UEP). We will show in Chapter 4 that network coding inherently supports

this concept. However, this will inevitably leads to conflicts among receiving nodes in a

multicast session. We provide an economic analysis of the conflicts as well as an auction

algorithm to resolve them.

Rateless codes, such as LT-codes and Rapter codes, are originally designed to guaran-

tee that erasures in the network do not affect data recovery. This seems, at first thought,

to imply that they do not support UEP, since the recovery of every data priority seems

to be guaranteed. However, a subsequent work by Rahnavard, vellambi, and Fekri, shows

that UEP can still be implemented using a similar concept of unequal recovery time

(URT) [47]. Their technique ensures that, for an unlimited time, data of all priorities is

recovered, but for a specific time range, higher-priority data will be recovered before the

lower-priority one. This allows the receiving nodes to decide how long they want to spend

time receiving data, according to the number of priorities that they need.

However, when rateless codes are used in a network with network coding, another

problem arises. We call it the degree distribution distortion problem. This will make the

recovery time of every data priority longer than the normal case without network coding.

In Chapter 5, we investigate this problem in LT-codes with the simplest case of a butterfly

network and gives a solution.



Chapter 4

Unequal Erasure Protection (UEP)

in Network Coding

4.1 Introduction to Erasures and Unequal Erasure

Protection (UEP) in Network Coding

Recent works on network coding consider errors and erasures in networks [5, 58, 60, 82],

whereas earlier ones model networks as graphs in which each edge represents an erasure-

free channel with a unit capacity [14,61,63]. In this chapter, we consider each edge in the

network to represent the data transmission rate of one symbol per unit time in a binary

erasure channel (BEC), i.e., the edge capacity is reduced from 1 to 1− p, if p denotes the

erasure probability. We discuss this in the context of generalized networks in Section 4.2.

When data is of different importance, it is natural that one prefers to better protect

the high-priority data than the low-priority one against errors and erasures. This concept

is called unequal error/erasure protection (UEP).

Scalable video and image data, such as Scalable Video Coding (SVC) standardized by

JVT as an extension of H.264/AVC, consists of several layers of data [64]. Upper layers

represent fine details added to lower ones. As shown in Fig. 4.1, when the third layer

data is missing, the receiver can only recover the first two layers since the recovery of the

34
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last two layers depends on successful recovery of the third. Scalable data therefore asks

for unequal erasure protection (UEP), sometimes mentioned as unequal loss protection

(ULP), such that the parts of data with higher priority are better protected against

erasures.

m1

m2

m3

m4

m5 m5

m4

m3

m2

m1

m2

m1

Figure 4.1: Recovery of layered data with the third layer missing

UEP has been implemented in several components of digital communication systems.

UEP bit-loading for multi-carrier modulation was studied in [77], UEP coded modulation

in [50], UEP bit-loading for MIMO-OFDM (Multiple-Input Multiple-Output Orthogonal

Frequency Division Multiplexing) in [37], UEP Turbo codes based on puncturing and

pruning in [78], and UEP LDPC Codes based on irregular variable and/or check node

degrees in [41,68].

Unequal-erasure-protected network coding was proposed for the first time by us in [5].

We analyzed the effect of erasures on the recovery of scalable data when linear network

coding was applied. We found that global encoding kernels (GEKs) describing linear

network codes had different levels of built-in unequal-erasure-protecting (UEP) capability,

allowing better protection of high-priority data when GEKs were wisely assigned. UEP

in network coding is introduced in Section 4.3.

We define some related economic terms and concepts of scalable data in Section 4.4,

which allows us to give a mathematical expression of the expected utility of recovered

scalable data in the presence of erasures in Section 4.5. In Section 4.6, we quantitatively

show that linear network codes have built-in UEP mechanisms affecting the utility of the

recovered scalable data. Section 4.7 discusses a UEP network code assignment problem,

which will be simplified by a procedure described in Section 4.8 before being solved by

two strategies suggested in Section 4.9 and 4.10. The last section discusses the results
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and concludes the topic.

4.2 The Edge-Disjoint Path Model with Binary Era-

sure Channels for Network Coding

Figure 4.2 shows network coding in a network that is usually called the butterfly network,

where A aims to multicast two binary symbols b1 and b2 to D and E. In Fig. 4.2, we

can see that the node F encodes b1 and b2 together to achieve the multicast rate of 2 bits

per unit time, if each edge represents the capacity of one bit per unit time, D receives b1

from the path ABD and can recover b2 from the symbol b1 ⊕ b2 from ACFGD, whereas

E receives b2 from the path ACE and recovers b1 from the symbol b1⊕ b2 from ABFGD.

Had network coding not been there, only either b1 or b2 would have been able to pass the

bottleneck FG in one unit time, i.e., one receiver would have been unable to use one of

its possible transmission paths [55].

E

A

C

F

G

D

b1 b2

b1 b2

b1 b2

b1 ⊕ b2 b1 ⊕ b2

b1 ⊕ b2

B

Figure 4.2: Network coding in a butterfly network

By means of network coding, all receivers can use all of their possible paths at the

same time. In general, the multicast rate of ω suggests the existence of ω non-intersecting

paths from the source to each sink, which are called edge-disjoint paths by Jaggi et al. [63],
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although the paths destined to different receivers may share some edges.

If each edge is modeled as a binary erasure channel (BEC), the erasure probability of

an edge-disjoint path can be computed from erasure probabilities of all the edges belonging

to that path from the source to the sink. The loss of a symbol in each edge-disjoint path

does not affect the recovery in another. For example, the loss of b1 at the edge BF does

not affect the recovery of b2 at D via ACFGD.

Let pi,j,k represents the erasure probability of the kth edge belonging to the jth path of

the ith sink. The overall erasure probability of data symbols from the jth path belonging

to the ith sink, denoted by Pe,ij, becomes [5]

Pe,ij = 1−
|E(i,j)|∏

k=1

(1− pi,j,k) , (4.1)

where |E(i, j)| denotes the number of edges in the jth path of the ith sink.

4.3 UEP Issues in Network Coding

Let us consider Fig. 4.2 again and see what will happen if one symbol is received at each

sink whereas another one is erased. At D, if b1 ⊕ b2 is erased, D still obtains b1, but if b1

is erased, D obtains neither b1 nor b2. This means, for D, b1 is better protected than b2.

On the other hand, for E, b2 is better protected. In case b1 and b2 are equally important,

the network coding is fair. However, if b1 is more important than b2 and the erasure

probability of each symbol is the same, D is in favor because its more important symbol is

better protected. Thus, to achieve fairness and optimality, the network encoding function

of each edge-disjoint path should be carefully chosen [5].

The preferred choice of network codes for each receiver may vary depending on the

situation. Although, normally D has no reason to prefer the network coding pattern

shown in Fig. 4.2 to that in Fig. 4.3, it will change its mind if suddenly the link BD is

broken. Thus, clever choice of network codes can also provide insurance.

Since the problem of insurance and fairness in the distribution of wealth is an economic
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Figure 4.3: Another network coding pattern in a butterfly network

problem, so is our problem. Therefore, in the next section, we will formulate it using such

economic terms as utility, marginal value, and anticipation.

4.4 The Utility of Scalable Data

The “utility” is a numerical value representing the amount of satisfaction that a user

receives from an object. In our case, a “user” simply refers to a receiver, whereas the

term “object” deserves a careful consideration. If we define an object by a layer of scalable

data, it might appear at first that we now have several types of objects, since each layer of

data has different properties. However, for the sake of simplicity and orderliness, we will

treat all the layers as the same type of objects which are arranged in order of importance.

Moreover, each layer corresponds to an inseparable object, i.e., half a layer is considered

meaningless. Thus, the word “layer” to be considered here needs not be the same as the

one defined in any particular technical standard. It simply denotes an inseparable unit

of data symbols. In this way, our formulation will correspond to the following law of

diminishing marginal utility in economics [6].

Law 4.1 : Law of Diminishing Marginal Utility

1. The utility that each receiver gains from receiving scalable data depends on the number
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of received data layers.

2. The extra utility that a receiver gains from an increase in the number of received

layers, which is called a marginal utility, is less if the previously received number of layers

is greater.

According to Law 4.1, if any two receivers have exactly the same capability to extract

utility from the same amount of received data, it can be concluded that an unequal amount

of received layers between them will make the marginal utility of the one with privilege

less than the other. Conversely, if a given receiver have more capability to extract utility,

an equal distribution results in the larger marginal utility for that receiver.

The following definitions formally express the utility concept in scalable data. We

formulate, in Definition 4.1, the mapping of scalable data into a scalable message in

which each successive layer adds more details to the data. Therefore, each element in

the scalable message corresponds to the “object” of our interest. After explaining the

term “dependency level” in Definition 4.2, we define the “cumulative utility vector” and

“marginal utility vector” corresponding to the law of diminishing marginal utility in Def-

inition 4.3 and 4.4, respectively. Then, we define an “ordered set of scalable data” that

can be mapped into an “ordered scalable message” in Definition 4.5, which possesses an

interesting practical property obeying Law 4.1: The incremental quality obtained by each

recovered layer in the message is in a decreasing order. The ordered scalable message thus

always prefers more erasure protection in the preceding symbols than the subsequent ones.

Definition 4.1 For any S = {s1, s2, ..., sω}, representing a set of scalable data with pro-

gressively increasing quality from s1 to sω, the ith element si can be mapped into a prefix

vector Pi= [m1,m2, ...,mi] of a scalable message M= [m1,m2, ...,mω], which is an ω-

dimensional row vector of a finite field F. [3, 5]

si 7−→ [m1,m2, ...,mi] (4.2)
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Definition 4.2 A symbol mk belonging to the scalable message M = [m1,m2, ...,mω] has

a dependency level of λ(mk) = j if its significance depends on the successful recovery of

the symbols having the dependency level of j − 1 but not on those with larger dependency

level. A symbol of which significance does not depend on any symbol has the dependency

level of 1. [3, 5]

Definition 4.3 A functional vector Uk(S) = [uk(s1), uk(s2), ..., uk(sω)], k = 1, 2, ..., N ,

where N is the number of sink nodes in the network-coded multicast, is called the cumu-

lative utility vector assigned by the sink node k to the set of scalable data S described in

Definition 4.1 if each element uk(si), 1 ≤ i ≤ ω, is a non-negative real number represent-

ing the private utility that the sink node k assigns to the scalable data si. [3]

Definition 4.4 A functional vector ∆Uk(S) is called the marginal utility vector assigned

by the sink node k to the set of scalable data S described in Definition 4.1 if

∆Uk(S) = [∆1,∆2, ...,∆ω] (4.3)

= [uk(s1)− uk(s0), uk(s2)− uk(s1), ...

..., uk(sω)− uk(sω−1)], (4.4)

where uk(s0) = 0 and uk(si), 1 ≤ i ≤ ω, represents the element in the cumulative value

vector Uk(S) defined in Definition 4.3. [3]

Definition 4.5 The set of scalable data S is said to be ordered if and only if the two

following conditions are fulfilled.

λ(mu) ≥ λ(mv), 1 ≤ v < u ≤ ω (4.5)

∆i−1 ≥ ∆i, 1 < i ≤ ω (4.6)

where λ(mj) and ∆i denote the dependency level of the symbol mj and the ith element in

the marginal utility vector of S, respectively. A message M corresponding to an ordered

set S of scalable data is called an ordered scalable message. [3]
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4.5 Utility of Scalable Data as Probabilistic Objects

Since data transmission is a random process subject to probabilistic errors and erasures,

we need to add probabilistic aspects into our concept of an “object” according to the

following laws.

Law 4.2 : Laws of a Probabilistic Object

1. The concept of an “object” is extended to include the combination of objects with stated

probabilities. For example, if A and B are objects, a 30-70 chance of A or B is also an

object.

2. If the object A is preferred to the object B, and B to the object C, there will be some

probability combination of A and C such that the individual is indifferent between the

combination and B.

These probabilistic aspects are in accordance with Friedman and Savage’s “The Utility

Analysis of Choices Involving Risk [43],” since erasures and errors in our data transmission

can be considered as risks.

From Definition 4.4, if the prefix Pj−1 in the ordered scalable message M has already

been successfully recovered, the recovery of the symbol mj will increase the utility by

∆j. Now, since the transmission channels are assumed to be binary erasure channels, the

object obtained at each receiver is a probabilistic object in Law 4.2. This means, according

to Paragraph 1, that there are chances of receiving A, B, C, etc., which are data with

different qualities and probabilities. However, all of these can be considered as one object

with its own utility. Generalizing the law in Paragraph 2 with a linearity assumption, we

can derive the utility of such an object by the following expected value [3, 5].

E[Ui] =
ω∑
j=1

[
j∏

l=1

%i,l

]
·∆j (4.7)

=
ω∑
j=1

ρi,j ·∆j , (4.8)
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where %il and ρi,j represent the probabilities that the symbol ml and the prefix Pj are

recovered at the sink i, respectively. From (4.8), the quality improves if the term ρi,j

becomes larger, especially for a small j implying a large ∆j. This reaffirms the essence

of UEP, which is to better protect the high-priority preamble. ρi,j depends on the trans-

mission channels and our network codes, which will be investigated in the next section.

The equation (4.8) satisfies the paragraph 2 of Law 4.2 generalized by linearity as-

sumption, such that any two probabilistic objects having the same expected value, despite

being linearly-combined by different probabilistic proportion of data layers, are considered

economically equivalent.

4.6 Utility of Global Encoding Kernels (GEKs) for

Linear Network Codes

In the previous section, we consider scalable data as probabilistic objects and derive its

utility. In this section, after having a quick review of the meaning of global encoding

kernels (GEKs), we will see that the assignment of GEKs to the edges in the network is

analogous to assigning received symbols to the sinks in an erasure-free network. In case

there are erasures, we can identify the utility of GEKs based on erasure probabilities of

transmission channels just as we can identify the utility of scalable data.

Let us now revisit the global encoding kernel (GEK) defined in Chapter 3. For a

network that employs linear network coding, each of its edges in the graphical model,

such as Fig. 4.2, is used to transmit the linear combination of the source symbols. This

linear combination can either be represented locally as a linear function of symbols from

adjacent edges, which is called “a local encoding mapping,” or globally as a linear function

of source symbols, which is called “a global encoding mapping” [61]. The global encod-

ing mapping is described by a vector called ”a global encoding kernel (GEK),” which is

introduced in Definition 4.6.
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Definition 4.6 Let F be a finite field, ω a positive integer, and the ω-dimensional, F-

valued vector M the message generated by the source node S. A function fe(M) of the

edge e is said to be a linear global encoding mapping if there exists an ω-dimensional

F-valued column vector f e such that

fe(M) = M · fe. (4.9)

f e is called the global encoding kernel [61].

The assignment of the global encoding kernel fe to the edge e ∈ In(T ), where In(T )

is the set of all incoming edges of the sink T , determines which linear combinations of

symbols in the message M are received at T , when there is no erasure.

Since the symbols in the message have unequal utility, so do the combinations of them.

It then follows logically that GEKs also have unequal utility. Before determining the

utility of each GEK, we will classify the GEKs into levels based on the linear combination

it yields. The levels of GEKs will be used to calculate their utility later.

We only consider the problem of assigning, given some local constraints, a suitable

global encoding kernel for each edge according to the expected quality in (4.8), since the

local encoding mapping can be easily derived thereafter.

To relate ρi,j in (4.8) to network codes, we firstly define the UEP level of a global

encoding mapping as follows [5].

Definition 4.7 For a scalable message M, which is an ω-dimensional row vector of a

finite field F, a global encoding mapping γi(M) is of the ith UEP level, 0 < i ≤ ω, if there

exists an ω-dimensional, F-valued column vector Ci = [c1, c2, ..., ci, 0, 0, ..., 0]T , ci 6= 0,

such that

γi(M) = M ·Ci =
i∑

j=1

cj ·mj. (4.10)

Ci is then called an ith-UEP-level global encoding kernel.

Now, let us consider an ordered scalable message M = [m1,m2,m3], where m1, m2,

and m3 are binary symbols of the first, second, and third dependency level, respectively.
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According to Definition 4.7, there exist seven possible GEKs, one of the first UEP level,

two of the second level, and four of the third level, as shown in Table 4.1 [5].

Table 4.1: GEKs, their UEP levels, and the resulting network-coded symbols
.

UEP GEKs Resulting
Levels Network-Coded Symbols

1 [1 0 0]T m1

2 [0 1 0]T m2

[1 1 0]T m1 +m2

3 [0 0 1]T m3

[1 0 1]T m1 +m3

[0 1 1]T m2 +m3

[1 1 1]T m1 +m2 +m3

From Table 4.1, the prefix P2 = [m1,m2] can be recovered either from any two symbols

from the levels 1 and 2 or from any three symbols from the level 3. For an arbitrary

scalable message M= [m1,m2, ...,mω], we can state as a general rule that, in order to

recover the prefix Pi, we need either i network coded-symbols belonging to i linearly

independent GEKs of UEP levels not exceeding i, or more than i symbols in case some

UEP levels of GEKs exceed i [5].

The implication following from the analysis is that the GEKs at lower levels have

more utility than those in higher levels since they contribute more to the recovery of

high-priority bits. In order to determine the expected utility in the presence of erasures,

we now have to consider the erasure probability in each edge-disjoint path discussed in

Section 4.2.

Reconsidering Eq. (4.8), assuming that the kth edge-disjoint path of the sink i is used

to transmit the kth network-coded symbol to the sink i, the parameter ρi,j, which is the
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probability that the prefix Pj is recovered at the sink i, can be written as

ρi,j =
ω∏

k=1

µj,k · [1− Pe,ik] , (4.11)

where Pe,ik denotes the erasure probability of the path k used to transmit the kth network-

coded symbol to the sink i. µj,k = 1 if the kth network-coded symbol is needed to recover

the prefix Pj. Otherwise, µj,k = 0 [5].

Equations (4.8) and (4.11) show that, by changing the GEKs allocated to the edges,

the expected utility of received data varies. Therefore, if the receiver i is allowed to assign

a GEK to an edge or a set of edges, it can do so in such a way that its utility increases the

most, sometimes at the expense of other receivers. The more GEKs a node i is allowed to

choose, the better its satisfaction. This means there is a marginal utility associated with

each increase in the number of such permissions, which is defined as follows [3].

Definition 4.8 A functional vector Θi is called the marginal utility vector assigned by

the sink node i to the GEK allocation permissions if

Θi = [θ1, θ2, ..., θζ ] (4.12)

= [Ibi1 − Iwi1, Ibi2 − Iwi2, ...

..., Ibiζ − Iwiζ ], (4.13)

where ζ is the number of possible permissions. Ibij is the expected utility E[Ui] in (4.8)

when the sink i is allowed to allocate j GEKs, whereas Iwij is that when it is only allowed

to allocate j − 1 GEKs before one worst-case GEK is assigned to it in the jth allocation.

Thus, the difference between Ibij and Iwij reflects how important it is for i to receive the

jth allocation permission.
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4.7 The Problem of GEK Assignment

According to (4.8) and (4.11), the best option for the sink i is to make ρi,j large for small

j to satisfy the UEP requirements and optimize the scalable data quality. To do so, it

first sorts the erasure probability Pe,ik such that Pe,ik ≤ Pe,ir for any 1 ≤ k < r ≤ ω.

Then, we find that the ideal strategy is to allocate a first-UEP-level GEK to the path

with the index k = 1, such that we only need the path with the lowest erasure probability

to recover the most important prefix P1. In this case, ρi,1 = 1−Pe,i1, which is the highest

possible ρi,1. Next, we allocate a second-UEP level GEK to the path with next-to-the-

lowest erasure probability, i.e., k = 2, such that ρi,2 = (1− Pe,i1) (1− Pe,i2), which is the

highest possible ρi,2. We then keep allocating a qth level GEK to the path with the index

k = q until reaching the last path [5].

However, as earlier discussed in Section 4.3, this simple allocation scheme may not be

possible due to conflicts among sink nodes as well as linear independence and dependence

constraints of GEKs. Linear independence constraints ensure that the maximum infor-

mation flow is achieved at each node, whereas linear dependence represents topological

constrains, i.e., the GEK of any outgoing edge of the node i must be linearly dependent

on the GEKs of incoming edges [5]. These constraints will be discussed in detail in the

next section.

The conflicts among receiving nodes pose an economic problem of optimal distribu-

tion of goods, which is discussed countlessly in economic literature. The proper solution

depends on the nature of the problem as well as the camp to which the decision maker

belongs, i.e., whether he is a socialist, capitalist, or something in between. Although we

will not give arguments about economic philosophy in general, we propose two solutions

to our GEK assignment problem according to different standards of evaluation. The first

one in Section 4.9 is more socialist and the second in Section 4.10 more capitalist.

Before presenting the two solutions in Section 4.9 and 4.10, we explain how to reduce

the complexity of the problem in the next section.
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4.8 Subtree Decomposition Technique for Complex-

ity Reduction of the GEK Assignment Problem

CA
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Figure 4.4: Network example with scalable data multicast
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Figure 4.5: Line graph derived from Fig. 4.4

Consider the network in Fig. 4.4. The source S would like to multicast an ordered

scalable message M = [m1,m2,m3], of which elements m1, m2, and m3 have dependency

levels of 1, 2, and 3, respectively, to four sink nodes R1, R2, R3, and R4. Every edge in

the graph is capable of transmitting one symbol per time unit.

Before assigning a GEK to each edge, we can simplify the graph in Fig. 4.4, using
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Fragouli, Soljanin, and Shokrollahi’s approach [14]. Figure 4.4 is first transformed into a

line graph shown in Fig. 4.5, where each node represents an edge from Fig. 4.4. Any two

nodes in Fig. 4.5 are connected if the corresponding edges in Fig. 4.4 are adjacent.

The nodes in Fig. 4.5 are grouped into five subtrees, each of which is bounded by

dashed lines, such that the members in each subtree are forced by the topology to have

the same GEK. For example, in the subtree T1, SA and AD must have the same GEK,

since, according to Fig. 4.4, the node A has only one incoming edge SA and thus can do

nothing but copy the received symbols and forward the copies to all outgoing edges AR1,

AR2, AR3, and AD, hence the same GEK among them.

Accordingly, our problem of assigning GEKs to twenty-one edges is reduced to that

of assigning GEKs to five subtrees. The minimum subtree graph is shown in Fig. 4.6.

T3

T5

T2T1

T4

Figure 4.6: The minimum subtree graph derived from Fig. 4.5

In this case, the subtrees T1 = {SA,AD,AR1, AR2, AR3}, T2 = {SB,BD,BE,BR2},
T3 = {SC,CE,CR1, CR3, CR4}, T4 = {DF,FR1, FR3, FR4}, T5 = {EG,GR2, GR4}.

The edges connecting T1 and T2 to T4, as well as T2 and T3 to T5 in Fig. 4.6 imply

that the GEK of T4 must be derived from those of T1 and T2 whereas that of T5 must be

derived from those of T2 and T3, i.e., the sets of vectors {fT1 , fT2 , fT4} and {fT2 , fT3 , fT5},
where fTx denotes the GEK of the subtree Tx, must be linearly dependent.

In a similar manner, linear independence constraints can be represented by the sets

{fT1 , fT2 , fT3}, {fT1 , fT3 , fT4}, {fT1 , fT2 , fT5}, and {fT3 , fT4 , fT5}. The three GEKs in each set

must be linearly independent in order to ensure a full-rank system of linear equations

at each of the source and the sinks, when there is no erasure. For example, the source

S is connected to the subtrees T1, T2, and T3, hence the linearly independent constraint

{fT1 , fT2 , fT3}.
The next two sections show how to solve the problem under these constraints with

different optimization objectives. In Section 4.9, the objective is equity of received data
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quality among receiving nodes, whereas that of Section 4.10 is fair competition among

the nodes, i.e., the node who pays more receives better quality.

4.9 Minimax Assignment of Global Encoding Ker-

nels (GEKs)

In this section, we propose a strategy for assigning a GEK to each subtree. The ultimate

goal is equal data quality for every receiving node. To derive a solution that is as close as

possible to that goal, we use a minimax criterion, i.e., minimizing the maximum expected

degradation, which is equivalent to maximizing the expected data quality of the poorest

sink [5].

Since our example concerns allocating GEKs to five subtrees from a set of seven

available GEKs, as shown in Table I, the attempt to find the optimal solution at once is

impractical because it results in the search within the space of the size 75. Therefore, we

may adopt an iterative approach, in which at the iteration t, n(t) GEKs are allocated to

n(t) subtrees, resulting in the search within the space of the size 7n(t) [5].

The assignment of n(t) GEKs to n(t) subtrees at the tth iteration does not have the

same effect on every sink node. An individual sink may either 1) not be connected to

any of those subtrees and thus gain nothing more than the previous iteration, or 2) be

connected to certain subtrees but still cannot recover any other data than that received

in the previous iteration, or 3) be connected to certain subtrees and can recover some

more data. In the first and the second cases, the expected data quality of the sink does

not improve at the tth iteration, whereas, in the third case, it does.

In each iteration, we aim to ensure that the temporary minimax criterion is satisfied.

To do so, we first have to evaluate the temporary expected utility Et−1[Ui] from the

previous t − 1th iteration for the sink i. After that, we find the minimum Et[Ui] among

all i for every possible GEK assignment at the current tth iteration, and then select the

assignment that gives the maximum value of min Et[Ui] [5].
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The temporary expected utility Et[Ui] of the ith sink at the tth iteration is given by

Et[Ui] =
ω∑
j=1

φt,i,j ·∆j, (4.14)

where φt,i,j represents the probability that the prefix Pj can be recovered at the sink i

after the GEK assignment at the iteration t. φt,i,j equals ρi,j in Eq. (4.8) if Pj can be

recovered by the GEKs assigned so far up to the iteration t. Otherwise, it equals zero.

∆j denotes the incremental utility if Pj is recovered [5].

We suggest that the number n(t1) of GEKs assigned at the iteration t1 should be

greater than or equal to the number n(t2) at the iteration t2 if t1 < t2, i.e., it is better

to take larger search spaces into consideration during some first iterations, after which

things do not improve much.

In our network example, we assume that every edge-disjoint path has an erasure

probability of 0.1 and the utility vector ∆Uk = [∆1,∆2,∆3] = [1, 0.5, 0.25] for every sink

node Rk. If we let n(1) = 3 and n(2) = n(3) = 1, then the minimum temporary expected

data quality in the first iteration is maximized by allocating the GEKs [1 0 0]T to T3,

[0 1 0]T to T1, and [1 1 0]T to T5. The sink R1 now has the temporary expected utility

of E1[U1] = (0.9)(1) + (0.81)(0.5) = 1.305, since, by receiving [1 0 0]T from T3 with the

probability of 0.9, R1 can recover the first prefix, and by receiving both [1 0 0]T from T3

and [0 1 0]T from T1 with the probability of 0.81, it can recover the second prefix.

In the same manner, the temporary expected data qualities E1[U2], E1[U3], and E1[U4]

of R2, R3, and R4 become 1.305, 1.305, and 1.215, respectively. This gives the minimum

temporary expected data quality, min E1[Ui], of 1.215 at the sink R4, which is the maxi-

mum that one can find at this iteration.

Table 4.2 shows the resulting expected data qualities at all sink nodes and the mini-

mum one, after the third iteration finishes and all subtrees have obtained their GEKs.

Table 4.3 shows that, in our network example, the suggested strategy achieves the

global optimum. In addition, on average, a random GEK assignment results in the min-

imum expected quality that is closer to that of the worst case than the best one. Thus,
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Table 4.2: The resulting expected utilities of the recovered scalable data in the network
example when the suggested strategy is applied

.

E3[U1] 1.4873

E3[U2] 1.4873

E3[U3] 1.4873

E3[U4] 1.3973

min E3[Ui] 1.3973

a significant amount of quality can be saved if we take the UEP mechanism of network

codes into consideration and apply the suggested strategy.

Table 4.3: Comparison of minimum expected utilities of the received scalable data in the
network example for different strategies

.
The Best The Suggested The Average over All The Worst

Assignment Strategy Possible Assignments Assignment

1.3973 1.3973 1.3055 1.2757

4.10 An Ascending-bid Auction Algorithm for GEK

Allocation

Unlike the previous section, the objective of the GEK assignment algorithm in this section

is a fair competition among sink nodes. We assume that the source node is an auctioneer

and the sinks are participants who bid for the rights to choose GEK allocation. Since we

will not give a monopoly to any single sink node, the allocation problem is formulated as

a multiple-item auction. For this kind of auction, the dynamic counterpart of Vickrey’s

effective static design [80] has been proposed since 2004 by Ausubel [39], whose idea will

be used in our auction as follows. The source node calls a price, bidders respond with
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quantities, and the process iterates with increasing price until demand is not greater than

supply.

Although the supply is the total number of GEK allotments, it does not equal the total

number of edges, because, as discussed earlier, some edges are forced by the topology to

have the same GEK. Before the auction begins, the source node has to derive the minimum

subtree graph of the network, as explained in Section 4.8 [3].

Let T represent the set of all subtrees. The source wishes to allocate |T | GEKs to

|T | subtrees, not on its own but by means of a |T |-item auction. The sink i who wins xi

items is allowed to choose the allocation of xi GEKs to xi subtrees in order to maximize

its received utility. The source then distributes the data accordingly and informs the

intermediate coding nodes about the local encoding functions they have to use [3].

According to Ausubel’s idea, a bidder’s payment is not the product of its final quantity

and the final price. Rather, at the price ψ, the auctioneer sees if the aggregate demand

x\i of bidder i’s competitiors is less than the supply |T |. If so, |T |−x\i items are clinched

and awarded to the bidder i with the price ψ. Since the winner’s payment depends on

its competitors bids and not its own bids, every participant has an incentive to reveal

truthfully his or her value for the item. [39]

Our auction, however, requires some modification since each clinched item and the

resulting GEK allocation of a winning sink affects the demand of others. This is best

explained by an example.

Table 4.4: Preference order of GEK allocation
.
Sink Preference Order
R1 T4 T3 T1

R2 T2 T1 T5

R3 T1 T4 T3

R4 T5 T4 T3

Suppose that the source node S in Fig. 4.4 would like to multicast an ordered scalable

message M = [m1,m2,m3], of which each element mi has a dependency level of i, to four

sink nodes R1, R2, R3, and R4. We assume that Table 4.4 reflects the preference order



Chapter 4: Unequal Erasure Protection (UEP) in Network Coding 53

of GEK allocation, e.g., if R1 is allowed to allocate only one GEK, it will choose the best

one and assign it to T4. If two allotments are allowed, R1 will assign two GEKs to T4

and T3. The preference order relates to the erasure probability of each edge-disjoint path

discussed in earlier sections. Each sink’s main preference is to allocate the GEKs with

lower UEP levels to the paths with lower erasure probability. This means, according to

Table 4.4, the path from the source that reaches R1 via T4 has lower erasure probability

than those reaching R1 via T3 and T1.

Let each receiver’s estimate of its marginal values θ1, θ2, and θ3, as defined in Defini-

tion 4.8 be shown below.

Θ R1 R2 R3 R4

θ1 123 75 85 45

θ2 113 5 65 25

θ3 40 3 7 5

Now, let the auction start with the initial price of 10. At this price, R1 is happy

to buy three allotments, while R2 will buy only one, since the price exceeds the second

marginal value. Accordingly, the response from each receiver is shown in the first row of

Table 4.5.

Table 4.5: The sinks’ responses to the increasing price
.

Sinks R1 R2 R3 R4

Responses to 10 3 1 2 2
Responses to 25 3 1 2 1

Responses to 25+ε 3 1 1 1
Responses to 40 2 1 1 1

Since nobody clinches anything at this point, the source node raises the price. When

the price reaches 25, R4 has no profit to be gained from the second allotment, and therefore

changes its response, as shown in the second row of Table 4.5.

From R1’s perspective, the demand of all other bidders is four, while five allotments

are available. If other sinks bid monotonically, R1 is now guaranteed to win at least one

allotment. Thus, according to our rule, R1 clinches one allotment at the price of 25. It
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then chooses the first-level GEK to allocate to T4. This allocation affects the marginal

values of every sink except R1. They are updated as follows.

Θ R1 R2 R3 R4

θ1 123 75 85 45

θ2 113 4 6 3

θ3 40 2 - -

Due to the allocation of T4, R3 and R4’s last entries are removed since they now

have only (T1, T3) and (T5, T3), respectively, to bid for. At the next announced price

25+ε, R3’s response changes, as shown in the third row of Table 4.5.

Since R1 is now guaranteed to win two items, it is allowed to allocate one GEK to T3.

After that, the marginal values are updated again, as follows.

Θ R1 R2 R3 R4

θ1 123 71 62 42

θ2 113 3 - -

θ3 40 1 - -

At the price of 40, demand equals supply, as shown in the fourth row of Table 4.5, and

the market clears. Each of R2, R3, and R4 clinches one object at this price and assigns a

GEK to T2, T1, and T5, respectively.

The algorithm implementing the auction at the source node is shown as follows [3].

Algorithm 4.1 Problem: Allocate a GEK ft ∈ Fω to each t ∈ T such that the sets of

linear independence and dependence constraints are satisfied.

1. Initialize the number of available items NT = |T |, the cumulative clinches C = 0,

the cumulative quantity X = 0, the individual current clinches γi = 0 and individual

cumulative clinches Γi = 0 for the node i, i = 1, 2, ..., n. Set the current price ψ as the

initial price ψ0. Broadcast linear dependence and independence constraints to all sink

nodes.



Chapter 4: Unequal Erasure Protection (UEP) in Network Coding 55

2. At an appropriate time t+∆ti, where ∆ti is the time offset calculated from the distance

between the source and the sink i, send the current price ψ to the sink i and wait for

response.

3. Upon receiving the quantity xi from every sink i, update X, Γi, and γi as follows.

X =
n∑
i=1

xi (4.15)

x\i = X − xi (4.16)

Yi = Γi (4.17)

Z = C (4.18)

Γi =




|T | − x\i if |T | > x\i

0 otherwise
(4.19)

γi = Γi − Yi (4.20)

C =
n∑
i=1

Γi (4.21)

4. From 3, if C − Z > 0, go to 5. Otherwise, go to 10.

5. Find the index j ∈ K, K = {∀k|γk 6= 0} such that xj ≥ xi, for every i 6= j, i ∈ K. If

more than one xj are found, randomly select one of them.

6. Inform the sink node j about the individual current clinches γj. Wait for response.

7. If the response is negative, let xj = xj − 1 and go back to 3. In case the affirmative

response, together with the GEK fr that j chooses to allocate to the subtree r ∈ T , is

received, check if the allocation violates the linear dependence or independence constraints.

If so, randomly allocate a GEK satisfying the constraints to r. If not, allocate fr to r.

8. Broadcast the index of the allocated subtree in 7 and its GEK to all nodes.

9. Let Z = Z + 1, K = K − {j}, and NT = NT − 1. If NT > 0, go back to 4. Otherwise,

the algorithm ends.

10. Update the price such that ψ = ψ + ∆ψ. Go back to 2.

In Step 3, the cumulative clinches Γi for the sink i is computed as the difference between

the supply |T | and the aggregate demand x\i of its opponents. Yi is simply a variable used
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to store the previous Γi such that, after Γi is updated in (4.19), the individual clinches

γi at the current price can be computed from (4.20). In a similar manner, the variable Z

in (4.18) is used to count the previous cumulative clinches C, which will be updated in

(4.21).

In Step 4, if the updated cumulative number of clinches C is greater than the previous

one Z, we continue with Steps 5 to 8, which allow one GEK to be allocated. According

to Steps 5 and 6, when more than one sink node clinches some objects at a specific price,

the nodes which bid for higher quantity are allowed to choose the allocation prior to those

bidding for lower quantity.

Step 9 increases Z by 1 and checks whether there are still some items available. If

there are, we return to Step 4 to compare the increased Z with C. If C is still greater

than Z, we repeat Steps 5 to 9. Otherwise, no more item is clinched at this price and the

price is raised in Step 10 [3].

4.11 Conclusion

The proposed auctioning algorithm running at the source has a complexity that increases

linearly with the number of sinks n. Since, at every time an item is clinched, each sink node

needs to update the marginal values of GEK allocation permissions described in Definition

4.8, the computational complexity at each sink grows linearly with the number of subtrees

|T |. The auctioning algorithm has lower complexity than the minimax algorithm in

Section 4.9, whose complexity increases exponentially with the number of subtrees.

The distributed nature of the auctioning algorithm offers one clear advantage over a

centralized optimization algorithm: If a sink ends up buying an item at an inappropriate

price, it has done something wrong in the estimation of marginal values, thus having only

itself to blame. However, if the same thing occurs with an algorithm centralized at the

source, the source would easily be accused of being unfair.

One disadvantage of the distributed auctioning algorithm is that it requires communi-

cations between the source and the sinks which might be difficult if there is a congestion
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problem. In that case, a sealed bid auction is an alternative to the proposed open auction.



Chapter 5

Network Coding with LT Codes as

Erasure Codes

This chapter shows that Luby-transform (LT) encoding at the source node and network

coding at intermediate nodes cannot be applied together sequentially in binary erasure

channels (BECs) without significant receiver performance degradation due to the dis-

tortion of degree distribution in received LT-coded symbols. Two countermeasures are

discussed. The first one is wise assignment of network codes, which totally eradicates

the distortion in some specific, but not all cases. The second one, being more universal,

is a cooperation between the source and the relay nodes. The source introduces buffers

for temporarily storing LT-coded output prior to transmission. Each buffer is a first-in-

first-out (FIFO) queue associated with one output line from the source node. It is shown

that under some conditions related to the degree of a particular LT-coded symbol, it is

better to put that symbol into one buffer instead of another in order to keep the degree

distribution distortion low. In addition, we paradoxically discover that the relay node,

instead of always performing network coding, can improve the receiver performance by

discarding some LT-coded symbols with a certain probability, since this will reduce the

degree distribution distortion.

58
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5.1 Introduction and the System Model of Relay

Network Multicast with LT and Network Codes

LT codes or other rateless codes as a forward error correction (FEC) scheme are arguably

most useful in multicast applications in which its one-to-many nature makes the acknowl-

edgement scheme very unpleasant. LT codes can potentially generate an infinite stream

of encoded output symbols such that, even when some symbols are erased, the receiver

can recover k original symbols using any K received encoded symbols when K is only

slightly larger than k.

Like LT codes, network codes find their first and simplest application in multicast.

However, both types of codes have opposite aims. While LT codes increase redundancy

in the networks to compensate for erasures, network codes decrease it by means of coding

at the bottlenecks.

According to Fig. 5.1, where A wants to multicast two binary symbols b1 and b2 to D

and E, we can see that the node F encodes b1 and b2 together to achieve the multicast

rate of 2 bits per unit time, if each edge represents the capacity of one bit per unit time. D

receives b1 from the path ABD and can recover b2 from the symbol b1⊕b2 from ACFGD,

whereas E receives b2 from the path ACE and recovers b1 from the symbol b1 ⊕ b2 from

ABFGD. Had network coding not been there, only either b1 or b2 would have been able

to pass the bottleneck FG in one unit time, i.e., one receiver would have been unable to

use one of its possible transmission paths.

In this chapter, we assume that the source node generates LT-coded symbols which

are subsequently network coded by intermediate nodes along their ways to the receivers.

To make things more concrete, Fig. 5.2 displays a block diagram showing all encoding

and decoding processes as well as the buffer structure from the source to the destinations

in accordance with the network in Fig. 5.1.

One can observe a switch placed after the LT-encoder block and prior to two buffers.

While traditional network coding only requires that the switch turns to each buffer half of
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Figure 5.1: Network coding in a butterfly network
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Figure 5.2: Detailed system model including LT-encoding and decoding blocks as well as
the buffer structure
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the time, it is not the case in this chapter, in which the switching decision depends on the

degree of the current LT-encoding output. This is one major discovery in this chapter.

Despite having our own system shown in Fig. 5.2, we are aware of previous works

dealing with similar problems. Therefore, we present a short review of them in the next

section.

After that, Section 5.3 elaborates on important parts in our system, such as LT en-

coder and decoder. The most crucial function influencing the LT-decoder performance is

the degree distribution which must be carefully chosen by the encoder. Section 5.4, how-

ever, shows that the well-designed degree distribution can easily be distorted by network

coding in binary erasure channels (BECs), leading to a significant degradation in receiver

performance.

Section 5.5 provides a solution to the problem for some special cases by means of

wise assignment of network codes. In other cases, however, we need a cooperative scheme

proposed in Section 5.6 to improve the receiver performance, as shown in Section 5.7.

5.2 Related Literature

Although many recent works regarding network coding focus on two-way wireless relay

networks rather than relay network multicasts [15, 53, 83], it is suggested in [83] that

the problem of two-way relay networks, and of information exchange in general, can be

transformed into a multicast problem via some graph transformations. Thus, the study

of information multicast in this work might lead to further discoveries in more generalized

cases.

In addition, main components used in those systems are identical or similar to ours.

The decode-and-forward (DF) scheme used in [15] employs a channel encoder at each

transmitter and a network encoder at the relay, which is structurally identical to our

system. However, we use LT codes instead of Turbo codes and therefore need no decoder

at the relay. This is similar to distributed LT codes proposed in [67], but the receiver

in that system receives information only from the relay, whereas our sinks receive it via
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direct paths as well. Since LT codes are erasure codes, binary erasure channels (BECs)

are used in our model instead of Gaussian channels.

Like in our system, the buffering scheme is considered important and given careful

attention in [66,83].

5.3 LT and Network Encoding and Decoding

Three steps are needed to generate an LT-coded symbol. Firstly, a degree d is selected

from a degree distribution, which is a discrete probability density function mapping a

degree to the probability that the degree is selected. Secondly, d input symbols are

chosen uniformly at random. Finally, an output symbol is derived by XORing all chosen

symbols from the previous step [44].

In this thesis, we use a robust soliton distribution, which is constructed such that the

failure probability of the message-passing decoder is δ for a given number K = k+O(
√
k ·

ln2(k/δ)) of received symbols [44].

Definition 5.1 The robust soliton distribution (RSD) µ(i) is derived from the normal-

ization of two functions ρ(i) and τ(i) as

µ(i) =
ρ(i) + τ(i)

β
, 1 ≤ i ≤ k, (5.1)
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where

ρ(i) =





1/k, i = 1

1/(i(i− 1)), 2 ≤ i ≤ k,
(5.2)

τ(i) =





R/(i · k), 1 ≤ i ≤ (round(k/R))− 1,

(R ln(R/δ))/k, i = k/R,

0, otherwise,

(5.3)

R = c ·
√
k · ln(k/δ), (5.4)

β =
k∑
i=1

(ρ(i) + τ(i)). (5.5)

The paramater c in (7.4) is a suitable non-negative constant used in the design, whereas

δ is the failure probability mentioned earlier [44].

The robust soliton distribution with parameters k = 1000, c = 0.1, and δ = 0.5 is shown

in Fig. 3. We choose these parameters according to [67]. The most important observation

regarding the plot is that it has two peaks at 2 and 42.
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Figure 5.3: Robust soliton distribution with k = 1000, c = 0.1, and δ = 0.5

Now, let us consider the network in Fig. 5.1. Assume that node A would like to

multicast LT-coded outputs b1 and b2 with the robust soliton distribution shown in Fig. 5.3



64 Chapter 5: Network Coding with LT Codes as Erasure Codes

to D and E. After the node D receives b1 and b1 + b2, it first deducts b1 from b1 + b2

to obtain b2. We call this deduction “network decoding.” After that, both b1 and b2 are

LT-decoded by the message-passing algorithm, as described in [44], to obtain the original

message.

Unfortunately, when network coding is used in severe erasure channels, the well-

designed degree distribution can be distorted before LT-coded symbols reach the destina-

tion. The next section addresses this issue as well as the resulting receiver performance

deterioration.

5.4 Degree Distribution Distortion and Receiver Per-

formance Deterioration in Binary Erasure Chan-

nels

Suppose that the edge BD is a binary erasure channel having an erasure probability of 0.1

whereas other edges are erasure-free. Thus, on average, once every ten times the receiver

D does not have b1 to deduct from b1 + b2 to complete the network decoding process.

Instead, b1 + b2 enters directly into the LT decoding process. Therefore, on average, for

every ten symbols of b1 and ten of b2 transmitted, D receives nine b1, nine b2 (after network

decoding), and one b1 + b2 (which cannot be network-decoded). If b1 and b2 follow the

robust soliton distribution µ(i), the overall degree distribution becomes

ψ(i) =
18

19
µ(i) +

1

19
ϕ(i), (5.6)

where ϕ(i) is the degree distribution of b1 + b2.

It is precisely the ϕ(i) that alters the overall degree distribution ofD’s received symbols

from the robust soliton case. Since, in practice, the number k of LT input symbols is large,

we can assume that the LT-encoded symbols b1 and b2 are not made up of some common

original symbols. This allows us to approximate the overall degree distribution at D after
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network decoding as

ψ(i) ≈





18
19
µ(i), i = 1

18
19
µ(i) + 1

19

∑i−1
j=1 µ(j)µ(i− j), otherwise.

(5.7)

Figures 5.4 and 5.5 compare the plot of the robust soliton distribution µ(i) in the

erasure-free case with the distorted distribution due to erasures at BD obtained by the

analytical approximation ψ(i) in (5.7) and that obtained from simulation by counting the

degree of 107 symbols received at D around the two peaks at 2 and 42, respectively. We

can see that the steepness of the peaks is reduced in the distorted case. Moreover, an

unwanted peak is formed at 44.

Although the distortion of the degree distribution is small, its effect on the performance

is clearly visible. Figure 5.6 shows the histogram of the number of LT-coded symbols

needed to be transmitted until the original symbols can be recovered by D. Figure 5.7

makes a comparison between the number of symbols needed to be transmitted when

the erasure probability of BD is 0.1 in the network in Fig. 5.1 and that when the erasure

probability is 0.05 in normal point-to-point communication. Although the average erasure

probabilities in both cases are the same, the network coding case requires more symbols

due to the distortion of the degree distribution.

5.5 The First Solution: Wise Assignment of Network

Codes

In case erasures occur only along the edge BD with the erasure probability of 0.1, the

solution to the degree distribution distortion problem is very simple. We change our

network codes from those in Fig. 5.1 into those in Fig. 5.8. Since we now transmit b1 + b2

instead of b1 along BD, when b1 + b2 is erased, D only receives b1, yielding no distortion,

when b1 + b2 is not erased, D can network-decode and receive both b1 and b2, yielding no

distortion either.
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Figure 5.6: Histogram of the number of LT-encoded symbols needed to be transmitted in
an erasure-free case such that all original symbols are recovered
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This solution can be performed by the source alone. When the source A is informed

by B that there are severe erasures at BD, it simply transmits b1 + b2 instead of b1 to B

while other nodes just work as usual. In general, this solution is applicable when erasures

occur along a single edge, with the transmission pattern depending on which edge is

erasure-prone, as shown in Table 5.1.

Table 5.1: Recommended Transmission When An Edge is Erasure-prone
.

Erasure-prone edge Choices of
recommended transmission to (AB,AC)

AB or BF or GE (b1, b2), (b2, b1), (b1 + b2, b1), (b1 + b2, b2)
AC or CF or GD (b1, b2), (b2, b1), (b1, b1 + b2), (b2, b1 + b2)

BD (b1 + b2, b1), (b1 + b2, b2)
CE (b1, b1 + b2), (b2, b1 + b2)
FG (b1, b2), (b2, b1)

The next section deals with a more general case in which more than one edge is

erasure-prone.
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5.6 The Cooperative Solution Performed by the Source

and the Relay

As an example, consider the case when both the edges BD and CE are erasure-prone. In

this case, we cannot find a solution from the previous section that satisfies both receivers.

If A chooses to transmit (b1 + b2, b2) to (AB,AC), the receiver D is satisfied but E still

suffers from the degree distribution distortion.

It can be imagined that the ideal solution can be found such that, instead of trans-

mitting b1 and b2 with the robust soliton distribution, we use another degree distribution

ν(i) which, after being distorted by erasures, becomes the robust soliton distribution.

However, such a distribution is very difficult, if not impossible, to be found. Indeed, it is

proven in a similar work [67] that one cannot find a degree distribution ν(i) for b1 and b2

such that b1 + b2 follows the robust soliton distribution.

Since we cannot achieve this ideal solution, we will offer a cooperative scheme per-

formed by the source node A and the relay node F that corrects the degree distribution

distortion only in the positions that most affect the performance. Those positions are at

degrees 2, 4, 44, and 84.

The severe distortion at 4, 44, and 84 is due to the high probability that b1 and b2

have the degrees of 2 or 42, causing b1 + b2 to have the degree of 4, 44, or 84 with higher

probability than what is required, whereas the distortion at 2 is due to the fact that b1+b2

cannot have the degree 2 unless both b1 and b2 have the degree of 1, which is unlikely.

According to our cooperative scheme, the distortion at 44 and 84 is reduced by apply-

ing a buffering scheme at the source. The scheme arranges the LT-encoder output in such

an order that b1 and b2 with degrees of 2 and 42, 42 and 2, or 42 and 42 are not allowed

to be simultaneously transmitted and mixed at the relay thereafter, as implemented in

Step 4) of Algorithm 5.1. In addition, the distortion at 2 and 4 is corrected by selectively

discarding some symbols at the relay, i.e., when both b1 and b2 have the degree of 2, there

is a probability pc that the relay performs network coding and a probability 1 − pc that
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either b1 or b2 is transmitted while the other is discarded. This will relieve the excess

of symbols with degree 4 and the shortage of those with degree 2. The scheme is imple-

mented in Algorithm 5.2.

Algorithm 5.1 The buffering scheme performed by the source

Let

• Sl =





1 if the switch is pushed to the left buffer

0 if the switch is pushed to the right buffer
,

• λn be the LT-encoder output at the discrete time n = 0, 1, 2, ..., Nmax,

• d(λn) be the degree of λn,

• NB be the size of each buffer,

• Bl(m),m = 0, 1, 2, ..., NB−1 be the mth element in the left buffer such that Bl(m) precedes

Bl(m + 1),

• Br(q), q = 0, 1, 2, ..., NB − 1 be the qth element in the right buffer such that Br(q) precedes

Br(q + 1),

• πl, πr be the pointers of the left and the right buffer, respectively,

• and b1, b2 be the current symbol to be transmitted to the edges AB and AC, respectively,

1) Initialize

n := 0

Sl := 1

Bl(0) := λ0

πl := 1

πr := 0

{Bl(m)|m = 1, 2, ..., NB − 1} := ∅
{Br(q)|q = 0, 1, 2, ..., NB − 1} := ∅

2) n := n + 1

3) if Sl = 0 {
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Sl := 1

if πl < NB {
Bl(πl) := λn

πl := πl + 1 }}
4) while Sl = 1 {

if (d(λn), d(Bl(πr))) 6∈ {(2, 42), (42, 2), (42, 42)} {
Sl := 0

if πr < NB {
Br(πr) := λn

πr := πr + 1 }}
else {

if πl < NB {
Bl(πl) := λn

πl := πl + 1 }}}
5) if the channel access is allowed {

b1 := Bl(0)

b2 := Br(0)

Bl(m) := Bl(m + 1), m = 0, 1, 2, ..., NB − 1

Br(q) := Br(q + 1), q = 0, 1, 2, ..., NB − 1

πl := πl − 1

πr := πr − 1

Transmit b1 and b2. }
6) if n < Nmax − 1 {

Go back to 2). }
else {

Exit. }

Algorithm 5.2 The discarding scheme performed by the relay

Let

• b1, b2 be the current symbol received by F from the edges BF and CF , respectively,
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• d(bn) be the degree of bn, n = 1, 2

• and pc ∈ [0, 1] be a design parameter used as the probability that F performs network

coding.

1) if (d(b1), d(b2)) 6= (2, 2) {
Change the header and transmit b1 ⊕ b2 }.

else {
Generate a uniformly distributed random number r1 in the range [0,1].

if r1 < pc {
Change the header and transmit b1 ⊕ b2 }.

else {
Generate a uniformly distributed random number r2 from the set {0, 1}.
if r2 = 0 {

Transmit b1 }
else {

Transmit b2 }}}
2) Repeat 1) when new b1 and b2 arrive.

From Step 3) in Algorithm 5.1, we can see that when the previous switch position is

at the right buffer (Sl = 0), it will always be turned to the left one (Sl = 1) as the current

symbol arrives. On the other hand, in Step 4), the switch position will only change from

left to right only if this does not create the degree distribution pair we aim to avoid.

Note that the information regarding the linear combination of original symbols for

each LT-coded output is contained in the header. Therefore, in Algorithm 5.2, the header

must be changed if we transmit b1 ⊕ b2.

5.7 Results, Conclusions, and Future Works

Figure 5.9 compares the histograms of the number of symbols needed to be transmitted by

the source such that all original symbols are recovered in two cases, without the proposed
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algorithm and with Algorithm 5.1. We can see that Algorithm 5.1 reduces the variance

of the number of required symbols, thus making the histogram of the latter case more

concentrated near the middle at 1270. When both algorithms are applied, as shown in

Fig. 5.10, the histogram resembles a left-shifted version of that in Fig. 5.9 when only

Algorithm 5.1 is applied. Instead of simple histograms, Figure 5.11 plots normalized

cumulative histograms to clearly show that less symbols are needed to be transmitted

when both algorithms are applied. We can conclude that our cooperative scheme improves

the receiving performance, not only when the erasure probability at BD is 0.1, but also

when it is 0.2 and 0.05. The larger the erasure probability, the greater the improvement.

In a more complicated network, a node can act as both a relay for upstream nodes

and a source for downstream ones. Therefore, the subtree analysis as suggested in [14]

is needed to identify whether a given node’s buffering scheme should follow Algorithm

5.1, Algorithm 5.2, or a modified algorithm combining both of them. In addition, the

relationship between erasure probabilities in all edges and the suitable parameter pc used

in Algorithm 5.2 should be studied further. In this work, the value of pc is 0.7492.
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Contained in this part are two network-coding-related ideas used for security enhance-

ment of wireless physical-layer secret-key generation (WPSG). The first one employs

network-coding-like information mixing in the security protocol for pilot symbol transmis-

sion in WPSG. The second one adopts the secret sharing concept used in secure network

coding as the basis of what we call “physical-layer key encoding.” With this encoding,

the eavesdropper may correctly estimate some key symbols, yet knows nothing about the

secret message. These two points are discussed in Chapter 6 and 7, respectively.

Some other aspects of WPSG are also discussed. In Chapter 6, an information-

theoretic analysis of key generation, key extension in relay networks, and some other

security protocols are presented. In Chapter 7, the scalable security concept is formally

derived and applied to WPSG.

Chapter 8 summarizes all topics discussed so far and gives some ideas for further

research.



Chapter 6

Wireless Physical-layer Secret-key

Generation (WPSG) in Relay

Networks: Information Theoretic

Limits, Key Extension, and Security

Protocol

A physical-layer security scheme based on mutual channel-state information (CSI) [8], [71]

is discussed in this chapter. Before describing the recent development in our own research,

we find ourselves obliged to begin with the basic components of cryptosystems in general.

Section 6.1 discusses some general ideas and concepts in cryptology and introduces the

cryptosystem model of wireless physical-layer secret-key generation (WPSG). Section 6.2

gives some information-theoretic limits relevant to the key generation process in the case

of direct communication without relays as well as some simulation results. This includes

the consideration regarding the possibility that the enemy cryptanalyst can estimate some

parts of the key. After that, Section 6.3 extends our analysis regarding the amount of

generated key further to the cases in which relay nodes are located between transmitter

77
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and receiver. Then, Section 6.4 investigates the rate of key generation.

Empirical results from [33, 34] show that, for direct communication, the ratio of the

number of vulnerable key bits to the total number of generated key bits is low when there

are many wireless transmission paths and the eavesdropper is not within the distance of

one wavelength from the transmitter or the receiver. However, as described in Section

6.5, this ratio increases in relay communication. To keep the number of vulnerable key

bits as low as possible, some security protocols for relay communication are given in that

section.

6.1 Cryptosystem of Wireless Physical-layer Secret-

key Generation (WPSG)

Massey [31] suggests a model of a secret-key cryptosystem as shown in Fig. 6.1. Its

concept of security is based on Shannon’s idea of perfect secrecy, which means that, for a

plain text X and its cryptogram Y, P (X = x|Y = y) = P (X = x) for all possible plain

texts x = [x1, x2, ..., xM ] and cryptograms y. In this case, neither the knowledge of the

cryptogram y nor large computational power can help an enemy cryptanalyst to decrypt

the message x, unless he or she knows the secret key.

Message
Source

Encryptor Decryptor Destination

Randomizer
Enemy

Secure Channel

Key Source

Cryptanalyst

X Y X

R

Z

Z

Xe

Ze

Figure 6.1: A secret-key cryptosystem

In Massey’s generalized model, the encryptor mixes the plain text X with the random

message R and the secret key Z to achieve perfect secrecy. However, some systems, such

as the “one-time pad,” which will be discussed in the next chapter, do not require R. In

such cryptosystems, the major implementation difficulty lies in the secure distribution of
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the key.

The scope of this part is on the new idea of transforming wireless channel state in-

formation (CSI) into a secret key, which will be called wireless physical-layer secret-key

generation (WPSG) from now on. It is widely known that wireless channel coefficients,

characterized by their phases and amplitudes, depend heavily on the location, the environ-

ment, and the movement of transmitter and receiver to the extent that other terminals

except the two can predict almost nothing about their channel parameters, and hence

their secret key. The generation of the secret key consists of two steps, deriving the

channel estimates before quantizing them into secure key symbols. It is important to

distinguish WPSG from the term “physical layer security” used in [42], which requires

that the legitimate users’ channels have SNR advantages over those of eavesdroppers.

Channel estimates can be derived using a known pilot sequence, which is transmitted

back and forth between transmitter and receiver such that they can learn about channel

coefficients from the symbols distorted by the channel. The outcome of the channel

estimation process is a set of complex channel coefficients which must be quantized into

secret key symbols, as shown in Fig. 6.2. We can see that the secure channel in Fig. 6.1

is implemented by the key-generating channel in Fig. 6.2. The key source in Fig. 6.1 is

implemented by the combination of a channel estimator and a quantizer in Fig. 6.2. The

randomizer in Fig. 6.2 is shown by dashed lines to indicate that it may be needed or not

according to the encryptor used. The process of key generation is discussed in more detail

in [8, 34].

6.2 Information-Theoretic Limits of the Key Gener-

ation

This section studies the amount of key symbols expected to be generated from wireless

channels. When there is only one antenna, each for the transmitter and the receiver,

the channel is described as single-input single-output (SISO) or a scalar channel. When
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Figure 6.2: A secret-key cryptosystem based on mutual CSI

Figure 6.3: A generic communication system model

both the transmitter and the receiver have more than one antenna, secret keys can be

generated from more than one channel. These channels are said to be multiple-input

multiple-output (MIMO) or vector channels. A scalar channel can be considered as a

special case of vector channels.

Now let us consider a communication system model in Fig. 6.3. In this case, there

are three parties involved. Alice and Bob are a legitimate transmitter-receiver pair who

generate secret keys for their secure communication from reciprocal channel vectors ha

and ha′ , whereas Eve is an eavesdropper who tries to predict the secret key generated

by Alice and Bob by using information from channel vectors hb and hc. When Eve

is closely located to either Alice or Bob, there might be a correlation between hc and

ha′ or between hb and ha, respectively, enabling her to estimate some key. According

to [33, 34], when there are many scatterers, e.g., if the number of wireless paths between

each transmit-receive antenna pair is more than 10, the referred correlation is negligible

when the distance between Eve and Alice or Bob is larger than one wavelength. However,
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when there is only one or two paths, the correlation is significantly high.

In [34], two rigorous metrics have been developed for quantifying the information

theoretic limits of key generation in the scenario depicted in Fig. 6.3. Given the users have

noisy channel estimates, which are denoted by ĥa, ĥa′ , ĥb, and ĥc, we refer to the maximum

number of independent key bits that can be generated per channel observation as IK =

I(ha;ha′), where I(x; y) denotes the mutual information between x and y. Likewise, the

maximum number of independent key bits that can be generated and are secure from an

eavesdropper is given by ISK = I(ĥa, ĥa′|ĥb, ĥc) [76]. In [34], closed-form expressions for

IK and ISK are derived for correlated complex Gaussian vector channels. The generated

key bits that are not secure are called vulnerable key bits. The number of vulnerable key

bits is therefore IV K = IK − ISK .

To illustrate the key generation in Fig. 6.3, consider a simple scenario with scalar

channels. Alice sends a pilot signal x to Bob, who derives the channel estimate ĥa of the

channel ha from the received signal yb = hax + nb, where nb denotes complex Gaussian

noise on Bob’s side. After that, Bob sends x to Alice, who derives the estimate ĥa′ of ha′

in a similar manner. The number of available key bits IK per channel observation that can

be generated by Alice and Bob is given by IK = I(ĥa; ĥa′). If the time between Alice’s

transmission and Bob’s is short and the same frequency band is used, we can assume

reciprocity or ha = ha′ . Assuming further that ha is Rayleigh-distributed with a standard

deviation of 0.5, we obtain a simulation result in Fig. 6.4 showing the relationship between

IK and the signal-to-noise ratio, which is the ratio of the power of x to the Gaussian noise

power at Bob and Alice. We also compute the result when the key is derived from the

envelopes of channel parameters only, such that IK = I(|ĥa|; |ĥa′|) [76].

6.3 Possible Key Extensions

In a general wireless network, the length of the key can be extended by having it generated

from several transmission routes instead of only one. Although it is obvious that the total

key length is the summation of the lengths from all paths, the key length from each path
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Figure 6.4: A simulation result showing the mutual information between the channel
estimates of Alice and Bob, and between their channel envelope estimates

is not easily derived when there are relays in between. For instance, if there is one relay

in the path, as illustrated in Fig. 6.5, the channel parameter ha between the transmitter

and the receiver becomes haT = ha1 · ha2, which is the product of two complex Gaussian

random variables. If we let the real parts of haT , ha1, and ha2 be haTr, ha1r, and ha2r,

respectively, and the imaginary parts be haT i, ha1i, and ha2i, respectively, we have

haT i = ha1iha2r + ha1rha2i. (6.1)

If we denote the random variables representing the random processes that generate

haT i, ha1iha2r, and ha1rha2i by Z, X, and Y respectively, the probability density function

fZ(z) will be the convolution of fX(x) and fY (y).

fZ(z) =

∫ ∞

−∞
fX(z − y)fY (y)dy . (6.2)

In our case, X and Y have the same probability density function

fX(x) = fY (x) = 4
K0(4x)

π
, (6.3)
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Figure 6.5: A communication system model with one relay
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Figure 6.6: A simulation result showing the mutual information between the channel
estimates of Alice and Bob in two cases, direct communication and communication with
one relay

where K0(x) =
∫∞

0
cos(xt)√
t2+1

dt is a modified Bessel function of the second kind [20]. From

eqs. (6.2) and (6.3), we can derive the distribution of the imaginary part, which is the same

as that of the real one, of channel parameters in the one-relay case [76]. Our simulation

result in Fig. 6.6 shows that, due to the altered distribution of channel parameters, the

number of possible key bits in the one-relay case is less than the direct communication

case. Approximately, it takes 2 dB more pilot transmission power in the one-relay case in

order to generate the same amount of key bits as in the direct communication case. Note

that this is just the comparison between two exemplary cases. The mobility effect on key

generation rate is taken into account in the next section.
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6.4 Investigation of the Key Generation Rate

In a direct communication, if the transmitter and the receiver have not moved, no new key

can be generated since the channel is static. Therefore, the key generation rate depends

heavily on the movements of transmitter and receiver. Assuming that channel parameters

are sampled once every sampling time ts, the average key generation rate becomes

Rk = lim
n→∞

∑n−1
i=0 Ik(its)

nts
, (6.4)

where

Ik(its) = I
(
ĥa(its); ĥa′(its)

∣∣∣ ĥa((i− 1)ts), ĥa′((i− 1)ts), ..., ĥa(0), ĥa′(0)
)
. (6.5)

The mutual information in (6.5) depends on how far the transmitter and the receiver

can travel within ts. It is therefore related to the velocity and the mobility model if the

value is to be obtained by simulation [76].

Note that, when the key is generated according to the one-relay model in Fig. 6.5, the

key generation rate is improved by the relay movement, which causes variation in channel

parameters even when both transmitter and receiver are static. This compensates for the

key loss due to the altered distribution shown in Fig. 6.6.

6.5 Security Protocol

Wireless communication between two nodes in a multi-path, multi-hop network does not

require that the forward transmission path and the reverse one are the same. However, if

our wireless physical-layer security scheme is used, they at least have to make sure that

they use the same channels for secret-key generation. Some protocols are discussed in this

section to achieve that purpose.

In an arbitrary network having some routers between Alice and Bob, we need a secure

protocol for the transmission of pilot symbols for the key generation. To differentiate
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Figure 6.7: A fork-rake network

secure protocols from insecure ones, let us consider a simplified fork-rake network in

Fig. 6.7 as an example. Alice broadcasts a pilot packet x to all relays R1 to Rn within her

transmission range. Each relay Ri receives haix, where hai is the channel gain between

Alice and the relay and x is the pilot sequence. Using an amplify-and-forward scheme,

each relay Ri chooses whether to forward aihaix, where ai is the amplification gain to

Bob, or not. Then, Bob receives
∑

i∈F aihaihibx, where hib is the channel gain between

the relay Ri and Bob, whereas F is the index set of relays that choose to forward the pilot

packet. After that, assuming that the channel gain has not changed yet, Bob derives the

key and broadcasts x back such that every relay receives hibx. However, only the relay Ri

that has previously forwarded the packet to Bob will forward aihibx to Alice, who derives

the same key from
∑

i∈F aihaihibx [76].

We assume that no enemy is allowed to be too close to Alice or Bob such that its

channel parameters are uncorrelated to theirs. (If there are some correlations, the key

encoding scheme discussed in the next chapter can be applied.) Now, we will show that

the protocol security depends on the forwarding strategies of the relays. Three strategies

are shown in an ascending security order [76].

1. Only one route is taken, i.e., only one relay forwards the packet. This is insecure

because an enemy only needs to be close enough to that relay Ri to listen to aihaix sent

to Bob and aihibx sent to Alice. If it knows ai, it can derive aihaihibx as well as the key

with ease.

2. m routes are taken. This is insecure if there are k enemies and k ≥ m because each

of m out of k enemies can do the same as the single enemy does in 1. After that, they

meet and derive
∑

i∈F aihaihibx. The enemy gang has an additional difficulty, however,
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Figure 6.8: A two-relay fork-rake network with two enemies

since interference among relays may make it necessary for the gang to solve a set of linear

equations.

3. l routes 0 ≤ l ≤ n are taken at random at each time slot. To do so, each relay

chooses to forward the packet with a probability p. This is more secure than 2, especially

if the total number of relays nÀ k, since those k enemies do not know exactly where to

listen, although there can possibly be some flukes, which can be managed by key encoding

discussed in the next chapter.

6.5.1 Protocol Evaluation in a Scenario of a Two-Relay Fork-

Rake Network with Two Enemies

As a practical example, consider a two-relay fork-rake network shown in Fig. 6.8 with two

enemy cryptanalysts and the following assumptions:

1. The two relays are located far enough from each other so that ha1 is uncorrelated

to ha2 and h1b is uncorrelated to h2b.

2. The two relays are close enough to each other so that each of them can hear the

signal transmitted from the other.

3. Enemies E1 and E2 are located far enough from R1 and R2, respectively, such that

ha1, ha2, h1b, and h2b are uncorrelated to haE1, haE2, hE1b, and hE2b, respectively.

4. Alice transmits x in the first time slot to R1 and R2. If R1 or R2 will forward the

packet further to Bob, depending on its strategy, it will do so in the second time slot. Bob

transmits x back in the third time slot. Finally, those relays who forwarded the packet
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to Bob in the second time slot will do that to Alice in the fourth one.

5. Enemies E1 and E2 are located near enough to R1 and R2, respectively, so that, if

both relays forward x,

5.1 in the second time slot, E1 hears a1ha1x from R1 plus the interference a2ha2hR2,E1x

from R2, where hR2,E1 is the channel gain between R2 and E1.

5.2 In the same manner, E2 hears a2ha2x from R2 plus the interference a1ha1hR1,E2x

from R1, where hR1,E2 is the channel gain between R1 and E2.

5.3 In the fourth time slot, E1 hears a1h1bx from R1 plus the interference a2h2bhR2,E1x

from R2.

5.4 At the same time, E2 hears a2h2bx from R2 plus the interference a1h1bhR1,E2x from

R1.

These assumptions are realistic and will hold except in an unlikely situation where

either the relays or the eavesdroppers are only few wavelengths away from the transmitter

or the receiver. Now, we would like to evaluate the security of each strategy.

Strategy 1 of Section 6.5 is totally unsafe since, when only one route is taken, there is

no interference from another route according to 5.1-5.4, therefore, the enemy Ei closest

to the chosen route receives clear signal aihaix and aihibx and can derive
∑

i∈F aihaihibx

as well as the whole key.

Strategy 2 is more secure since there is some interference according to 5.1-5.4. Even

when both enemies help each other, it is not easy to derive
∑

i∈F aihaihibx if the interfer-

ence is strong and they do not know a1hR1,E2 and a2hR2,E1. (Of course, if they do know

a1hR1,E2 and a2hR2,E1, they simply have to solve a system of two linear equations.) An

interference cancellation scheme can be applied, but they still have some disadvantages

as compared with Alice and Bob. They may recover some, but not the whole key.

Strategy 3 with the forwarding probability of, let us say 0.5, is even more secure

since it is now impossible for each enemy to know whether it receives the desired signal

plus interference or merely the interference, especially if the interference is strong and

the enemies do not know a1hR1,E2 and a2hR2,E1. With some rational guesses, they may
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recover some parts of the key, though.

In conclusion, Strategies 2 and 3 use interference to make the protocol safer. This is

similar to the network coding approach discovered by Shimizu et al. [74]. If the enemies

can recover some, but not the whole key, we can apply the key encoding scheme discussed

in the Chapter 7 so that the enemies will have no idea at all about the encoded key.

6.5.2 RSF Protocol in Arbitrary Networks

The security protocol for a fork-rake network can be applied sequentially so that it can be

used for any multi-path multi-hop network in general. When Strategy 3 is adopted to a

more complicated network such that every router forwards the packet with a probability

p, it is even more secure. We call this “randomly selective flooding (RSF) protocol.”

The protocol is similar to that proposed in our Globecom paper [4]. The advantage of

this scheme is that it supports datagram networks in which the transmission route might

not be known in advance by the transmitter and the receiver. The transmitter and the

receiver always generate the secret key from the same channel without knowing from

which channel they do. This lack of explicit routing information makes life very hard for

the eavesdropper. Now, we will give an example of how the RSF protocol is applied to

an arbitrary network.

The scheme proceeds as follows. First, the transmitter broadcasts a pilot packet to

every next node on the way to the receiver. Each next node generates a uniformly random

real value in the range of zero to one. If the generated value is less than the designated

forwarding probability p, the node broadcasts the packet further to its neighbors, who

follow the same procedure until the packet reaches the receiver. The receiver uses the

packet to estimate channel parameters and derive the secret key. After that, a packet

with the same pilot sequence must be sent back along the same path. To do so, the

receiver broadcasts it to every neighbor, who, after reading the header, only sends the

packet further upstream if it belongs to the previous packet’s forward path from the

transmitter to the receiver. Again, this repeats until the transmitter gets the packet back
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Figure 6.9: A butterfly network

and derives the secret key accordingly.

To illustrate the scheme, let us consider the butterfly network in Fig. 6.9, where A

and D are transmitter and receiver, respectively. ACFGD can be randomly chosen by

intermediate nodes as a forward path from A to D according to the following scenario.

Forward:

1. A broadcasts a packet to C and B.

2. Only C randomly decides to forward the packet to F and E.

3. Only F randomly decides to forward the packet to G and B.

4. Only G randomly decides to forward the packet to D and E.

Reverse:

1. D broadcasts the packet to B and G.

2. After reading the header, B discards the packet, whereas G sends it to F

and E.

3. After reading the header, E discards the packet, whereas F sends it to B

and C.

4. After reading the header, B discards the packet, whereas C sends it to A

and E.
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Figure 6.10: The proposed pilot packet format for the RSF Protocol

5. After reading the header, E discards the packet, whereas A successfully

receives it, together with the correct channel information.

Apart from the randomness employed in the protocol, the RSF protocol is similar to

the ad hoc on-demand distance vector (AODV) algorithm used for routing in mobile ad

hoc networks (MANETs) in many aspects. One aspect is that both algorithms determines

a route to a destination only when someone wants to send a packet to that destination

[7, 13]. Therefore, we propose a pilot packet format in Fig. 6.10 which is similar to the

ROUTE REQUEST packet used for the AODV algorithm. The source address, which is

the transmitter’s address, together with the request ID, which is a counter incremented

whenever a pilot packet is sent, uniquely identify each pilot packet so that intermediate

nodes know whether the packet should be discarded. The destination address is the

receiver’s address. The source sequence number and the destination sequence number are

local counters updated by the transmitter and the receiver, respectively, for each pilot

packet transmission. The hop-count field is introduced so that flooding is limited to a

reasonably narrow region.



Chapter 7

Physical-layer Key Encoding for

Wireless Physical-layer Secret-key

Generation (WPSG) with Unequal

Security Protection (USP)

The previous chapter concerns mainly the process of secret key generation. It does not tell

how the encryptor uses the key. In this chapter, we discuss the one-time-pad encryptor

as well as a technique called “physical-layer key encoding” used to enhance security when

that kind of encryptor is used.

An information-theoretic analysis of physical-layer key generation given in the pre-

vious chapter states that there are vulnerable key symbols that might be estimated by

eavesdroppers. To protect those key symbols, we introduce physical-layer key encoding

in Section 7.1. After that, in Section 7.2, we provide necessary and sufficient conditions

on the code in order to achieve perfect secrecy as a function of the number of vulnerable

bits and derive the asymptotic code rate accordingly. This perfect secrecy is guaranteed

even when the eavesdropper knows the code. When the number of vulnerable symbols is

unknown but the ratio between the number of vulnerable key symbols and the total num-

ber of generated key symbols is given instead, we suggest an equivalent design parameter

91
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used to achieve perfect secrecy in Section 7.3.

However, perfect secrecy for the key encoding scheme may require key input that is

too long to be economical, especially if the number of vulnerable key bits is large. In the

case of scalable data, such as video data, perfect secrecy is not required for the whole

data. Even though low-priority parts in the data do not have perfect secrecy, the enemy

cryptanalyst will have no idea at all about the data if high-priority parts are properly

protected. From now on, we will call this concept “scalable security” or “unequal security

protection (USP).”

Previous research on scalable security is discussed in Section 7.4. After that, we pro-

pose a new framework in Section 7.5 to provide scalable security services to the application

layer. This framework allows the application layer to specify some design parameters ac-

cording to its scalable security requirements, which, as shown in Sections 7.6 and 7.7,

can be realized in the contexts of secure network coding and physical-layer key encod-

ing, respectively. In the end, Section 7.8 concludes the chapter and suggests some future

research.

7.1 Introduction to Physical-layer Key Encoding for

a One-Time-Pad Encryptor

As demonstrated in Sections 6.2 and 6.5 of Chapter 6, vulnerable key symbols that can be

estimated by an eavesdropper exist in high proportion if there are too few scatterers in the

environment, the eavesdropper is located near either the transmitter or the receiver, or,

in the case of relay communication, the pilot transmission protocol is insecure. Moreover,

although the eavesdropper is nowhere near the transmitter or receiver during transmission,

he or she may have been there before and it is possible that channel coefficients (especially

the amplitudes) do not change much. Therefore, assuming that he or she can correctly

predict some key symbols, we should try to find some countermeasures. To do so, we

adopt a similar concept to Shamir’s secret sharing [9] and Cai and Yeung’s secure network
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coding [46]. We call our scheme “physical-layer key encoding,” which is designed such that,

up to a certain threshold, partial knowledge of key symbols derived from the channel leaves

the encoded key completely undetermined. This is performed at the transmitter prior to

the one-time pad encryptor block in our wireless physical-layer secret-key cryptosystem

shown in Fig. 7.1.

In this section, we shall present physical-layer key encoding which generates “the

encoded key” Z = [Z1, Z2, ..., ZJ ] as a codeword from “an original quantized key”

K = [K1, K2, ..., KIK ] and feeds it into the one-time pad encryptor. The encoder aims at

protecting the secret key in case the enemy can correctly estimate some channel coeffi-

cients, and hence some original quantized key symbols. Three parameters, IK , ISK , and

IV K are of interest to the encoder. The first one, IK , is the number of symbols that can be

generated by the quantizer in Fig. 7.1. The second one, ISK , is the number of secure key

symbols that the enemy cannot correctly estimate, whereas the third, IV K , is the number

of vulnerable ones that he or she can correctly estimate, such that IK = ISK + IV K .

Physical-Layer
Key Encoder

Physical-Layer
Key Decoder

Channel
Estimator

Channel
Estimator

Key-Generating
Channel

Pilot-Sequence
Source

Pilot-Sequence
Source

One-Time Pad
Encryptor

Message
Source

One-Time Pad
Decryptor

Destination

Quantizer Quantizer

Enemy
Cryptanalyst

Xe

Ze

X XY

Z Z

K K

Figure 7.1: A modified secret-key cryptosystem based on mutual CSI with physical-key
encoding and decoding

The information-theoretic derivation of IK , ISK , and IV K is discussed in [34] but not

in this chapter, where we are more interested in the following questions: Given IK , ISK ,

and IV K , what is the important property of the physical-layer key encoding that ensures

perfect secrecy as well as efficiency? How can we choose the code rate? And how can we

derive the optimal code? Some questions will be answered by Theorems 7.1-7.3 proposed
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in the next section.

7.2 Perfect Secrecy in Physical-Layer Key Encoding

for a One-Time-Pad Encryptor

Consider a non-randomized cipher in which elements in the plaintext X = [X1, X2, ..., XM ],

ciphertext Y = [Y1, Y2, ..., YN ], and secret key Z = [Z1, Z2, ..., ZJ ] all take values in an L-

ary alphabet and J = N = M . Suppose that the key is chosen to be completely random,

i.e., P (Zi = z) = L−M , i = 1, 2, ...,M , for all possible values z of the secret key, and that

the enciphering transformation is

Yi = (Xi + Zi) mod L, i = 1, 2, ...,M. (7.1)

Since, for each possible choice xi and yi of Xi and Yi, respectively, there is a unique

zi such that Zi = zi satisfies (7.1), it follows that P (Y = y|X = x) = L−M for every

particular y = [y1, y1, ..., yM ] and x = [x1, x2, ..., xM ], no matter what the statistics of X

may be. Thus, X and Y are statistically independent, and hence this system provides

perfect secrecy [31]. The system is called a modulo-L Vernam system or one-time pad and

is used in our model in Fig. 7.1 to combine the message and the encoded key together.

Since, out of the total IK quantized key symbols, IV K symbols are vulnerable symbols,

we can see that, had a one-time pad encryptor been used without physical-key encoding,

IV K ciphertext symbols would have been decrypted by the eavesdropper. Thus, in order

to construct a secure Y1, we use the following linear combination for Z1.

Z1 = (K1 +K2 + ...+KIV K+1) mod L (7.2)

After substituting (7.2) into (7.1) using i = 1, we can see that even if the set of all

vulnerable key symbols is a subset of {K1, K2, ..., KIV K+1}, there is still one symbol that is

unknown to the eavesdropper. If every key symbol is statistically independent of others,
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perfect secrecy of Y1 is achieved.

Now, in order to construct Z2, Z3, and so on, we perform a linear combination of IV K

key symbols similar to (7.2). Therefore, our physical-layer key encoding can be defined by

a linear block code Cp transforming an IK-tuple K over GF (qIK ) of key symbols obtained

from the quantizer into an M -tuple codeword Z over GF (qM). We propose the following

theorem providing two necessary and sufficient conditions for perfect secrecy.

Theorem 7.1 If IV K out of IK physical-layer key symbols generated by the quantizer can

be correctly estimated by the eavesdropper, the cryptosystem in Fig. 7.1 still maintains

perfect secrecy if and only if each member in the IK-dimensional vector K is statistically

independent of one another and the physical-layer code Cp has the following properties. [4]

7.1.1. Every code symbol is a linear combination of at least IV K + 1 input symbols.

7.1.2. Every linear combination of any subset of code symbols results in a linear combi-

nation of at least IV K + 1 input symbols.

Proof From earlier discussion it should be clear that the first condition is necessary.

The necessity of the second condition can be proved by contradiction as follows. If the

combination of ν code symbols
∑ν

i=1 Zi yields a combination of IV K+1−δ input symbols,

where δ is a positive integer, the eavesdropper who calculates
∑ν

i=1 Yi may know the exact

value of
∑ν

i=1 Zi, since the number of input symbols in the combination does not exceed

the number of vulnerable symbols. If
∑ν

i=1 Zi is known, perfect secrecy is not achieved

because these ν encoded key symbols are not independent.

As for the sufficiency, we can also prove it by contradiction. Now, we have to prove

that if perfect secrecy is not achieved, either the condition 7.1.1 or 7.1.2 is not satisfied.

By definition, perfect secrecy in a one-time-pad system is not achieved only if either 1)

at least one Zi, i = 1, 2, ...,M is known or 2) any linear combination of some Zi is known

implying linear dependence among key symbols. Since 1) and 2) will not happen if the

condition 7.1.1 and 7.1.2 are, respectively, satisfied, the two conditions are sufficient.

Now, we focus our attention on the special case when K and Z are vectors of binary
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data and present the second theorem.

Theorem 7.2 If K ∈ GF (2IK ), in order to generate Z ∈ GF (2n), which is a codeword

of n encoded key bits providing perfect secrecy in our system, the following conditions on

IK are necessary and sufficient. [4]

7.2.1. If IV K + 1 is even,

IK ≥ (n+ 1)

2
(IV K + 1) (7.3)

7.2.2 If IV K + 1 is odd,

IK ≥ (n+ 1)

2
(IV K + 1) +

(n− 1)

2
(7.4)

Proof We prove this theorem by mathematical induction. We first demonstrate that the

theorem is valid for n = 1 and n = 2 before showing that if the theorem is valid for any

n, it will hold true for n+ 1. The case of n = 1 can be easily validated by substituting it

into (7.3) and (7.4) and observing that the resulting IK corresponds to that in Theorem

7.1.

Given Z1 in Eq. (7.2), when L = 2 and IV K + 1 is an even number. Let

Z2 = K 1
2
(IV K+3) ⊕K 1

2
(IV K+5) ⊕ ...⊕K 3

2
(IV K+1). (7.5)

Now, the generator matrix generating Z1 and Z2 can be written as follows.

Gp =




IV K+1︷ ︸︸ ︷
1 1 ... 1 1 1 ... 1

IK−IV K−1︷ ︸︸ ︷
0 0 ... 0 0 0 ... 0

0 0 ... 0︸ ︷︷ ︸
1
2
(IV K+1)

1 1 ... 1 1 1 ... 1︸ ︷︷ ︸
IV K+1

0 0 ... 0




T

= [g1 g2] (7.6)

such that

Z = [Z1, Z2] = K ·Gp, (7.7)

where

K = [K1, K2, ..., KIK ]. (7.8)
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When n = 2, i.e., only two encoded key bits are to be constructed, we can see from

(7.6) that IK = 3
2
(IV K + 1) original key bits from the quantizer are sufficient, i.e., the

zero padding after the 3
2
(IV K + 1)th is trivial. This sufficient value of IK holds for any

given g1 with Hamming weight of IV K + 1 because, in order to choose IV K + 1 rows of

g2 with 1-valued elements, we should have IV K+1
2

rows where those elements of g1 in the

same positions have the value 1. In other words, if we pile g2 up onto g1, at most IV K+1
2

positions of 1-valued elements may overlap. If there are more overlapping positions, the

second condition in Theorem 1 will be violated. If there are less overlapping positions,

no condition is violated, but it is not an economical use of original quantized key bits

because IK must now be greater than 3
2
(IV K + 1).

We can therefore conclude that with n = 2 and an even IV K + 1, IK ≥ (n+1)
2

(IV K + 1)

is a necessary and sufficient condition on IK . If we follow the same line of reasoning with

n > 2, we see that when each gi+1 is piled up onto the heap of gj, j = 1, 2, ..., i, the

most economical way in terms of the number of original quantized key bits used is still to

have IV K+1
2

1-valued elements in overlapped positions with any 1-valued elements in any

of those gj, j = 1, 2, ..., i. This means at least IV K+1
2

more original quantized key bits are

needed for each increment of n, thus completing the proof of 7.2.1.

A similar line of reasoning can be used to prove 7.2.2. With odd IV K + 1, Gp in (7.6)

becomes

Gp =




IV K+1︷ ︸︸ ︷
1 1 ... 1 1 1 ... 1

IK−IV K−1︷ ︸︸ ︷
0 0 ... 0 0 0 ... 0

0 0 ... 0︸ ︷︷ ︸
1
2
(IV K+2)

1 1 ... 1 1 1 ... 1︸ ︷︷ ︸
IV K+1

0 0 ... 0




T

= [g1 g2] (7.9)

With the overlapped positions reduced from IV K+1
2

in the even case to IV K

2
in the odd

case, the value of necessary IK for each n increases. One can verify Eq. (7.4) when n = 2

by looking at the Gp in (7.9). With n ≥ 2, at least IV K+2
2

more original quantized key

bits are needed for each increment of n, thus completing the proof of 2.2.

The next theorem concerns the asymptotic rate of the code.
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Theorem 7.3 The minimum asymptotic code rate of Cp as n→∞ is IV K+1
2

if IV K + 1

is even. Otherwise, it is IV K+2
2

. [4]

Proof The code rate is the ratio between the number of originial bits to that of

encoded ones. Therefore, the asymptotic code rate as n→∞ is derived by dividing (7.3)

and (7.4) by n and finding the limit of the results as as n→∞.

From the proof of Theorem 7.2, we have derived our generator matrix prototype of a

physical-layer key encoder for any value of IV K , when IV K +1 is even or odd in equations

(7.10) or (7.11), respectively.

Gp =




IV K+1︷ ︸︸ ︷
1 1 ... 1 1 ... 1

IK−IV K−1︷ ︸︸ ︷
0 ... 0 0 ... 0 0 0 ... 0

0 0 ... 0︸ ︷︷ ︸
1
2
(IV K+1)

1 ... 1 1 ... 1︸ ︷︷ ︸
IV K+1

0 ... 0 0 0 ... 0

...

0 0 ... 0 0 ... 0 0 ... 0 0 ... 0︸ ︷︷ ︸
IK−IV K−1

1 1 ... 1︸ ︷︷ ︸
IV K+1




T

(7.10)

Gp =




IV K+1︷ ︸︸ ︷
1 1 ... 1 1 ... 1

IK−IV K−1︷ ︸︸ ︷
0 ... 0 0 ... 0 0 0 ... 0

0 0 ... 0︸ ︷︷ ︸
1
2
(IV K+2)

1 ... 1 1 ... 1︸ ︷︷ ︸
IV K+1

0 ... 0 0 0 ... 0

...

0 0 ... 0 0 ... 0 0 ... 0 0 ... 0︸ ︷︷ ︸
IK−IV K−1

1 1 ... 1︸ ︷︷ ︸
IV K+1




T

(7.11)
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7.3 The Equivalent Number of Vulnerable Bits for

the Design of Physical-Layer Key Encoding

The analysis given in the last section is based on the assumption that the encoder knows

IV K . However, empirical results in [33, 34] show that the encoder normally can only

estimate the ratio IV K/IK instead of IV K alone. In this section, we derive an equivalent

number of vulnerable bits, denoted by I ′V K , as a design parameter that can substitute

IV K in the theorems discussed in the last section. To do so, we first propose a model of an

enemy cryptanalyst based on the ratio IV K/IK estimated by the legitimate transmitter.

According to Fig. 7.2 (a), the enemy is modeled to have almost the same structure

as the legitimate transmitter and receiver. However, since it can only estimate channel

coefficients from an imaginary channel which differs from the key-generating channel used

by the legitimate terminals, we propose an equivalent model in Fig. 7.2 (b). In the

equivalent model, the enemy does estimate the key-generating channel, but the quantized

key K is distorted by a binary symmetric channel (BSC), erring each estimated key bit

with a probability p. The legitimate transmitter has to guess this error probability p

based on its estimate of 1− (IV K/IK). For security, the estimated value p should not be

more than the estimated 1− (IV K/IK).

Based on the equivalent model, we can specify the relationship between the estimate

of p and the design parameter I ′V K needed for perfect secrecy in Theorem 7.4.

Theorem 7.4 If the enemy cryptanalyst behaves according to the model in Fig. 7.2 (b)

having p as the error probability of the binary symmetric channel, and the generator matrix

prototype in the form of equations (7.10) or (7.11) is used, when I ′V K + 1, being even or

odd, respectively, substitutes IV K + 1, the following conditions on I ′V K are sufficient for

perfect secrecy. [4]
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Figure 7.2: The model of an enemy cryptanalyst (a), and its equivalent (b)

7.4.1. If I ′V K + 1 is even,

I ′V K + 1 ≥




d− 2

log2(1−p)e , if d− 2
log2(1−p)e is even

d− 2
log2(1−p)e+ 1 , if d− 2

log2(1−p)e is odd.
(7.12)

7.4.2. If I ′V K + 1 is odd,

I ′V K + 1 ≥




d− 2

log2(1−p)e − 1 , if d− 2
log2(1−p)e is even

d− 2
log2(1−p)e , if d− 2

log2(1−p)e is odd,
(7.13)

where d− 2
log2(1−p)e is the smallest integer that is larger than − 2

log2(1−p) .

Proof For perfect secrecy, the probability that the enemy can successfully decrypt x

bits in the plaintext is at most (1
2
)x, which equals the success probability of a clueless

guess. Therefore, according to equations (7.10) or (7.11), if x = 1, the probability that

the enemy correctly predicts I ′V K + 1 original key bits, which is (1 − p)I
′
V K+1, must not

exceed 1
2
.

(1− p)I
′
V K+1 ≤ 1

2
(7.14)

I ′V K + 1 ≥ − 1

log2(1− p)
(7.15)
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Now, if x = n, which is the number of bits in the generated codeword as well as the

number of bits in the plaintext, and I ′V K + 1 is even,

(1− p)
n+1

2
(I′V K+1) ≤ (

1

2
)n (7.16)

For very large n, (7.16) becomes

lim
n→∞

(1− p)
n+1

2
(I′V K+1) ≤ lim

n→∞
(
1

2
)n (7.17)

(1− p)
n
2
(I′V K+1) ≤ (

1

2
)n (7.18)

I ′V K + 1 ≥ − 2

log2(1− p)
(7.19)

We can see that, as n increases, the minimal value of I ′V K + 1 that should be set also

increases. If we denote by d− 2
log2(1−p)e the smallest integer that is larger than − 2

log2(1−p) ,

the direct consequence of (7.19), when I ′V K + 1 is constrained to be an even number, will

be the condition 7.4.1.

In case I ′V K+1 is odd, we use the prototype in Eq. (7.11) and follow the same reasoning.

(1− p)
n+1

2
(I′V K+1)+n−1

2 ≤ (
1

2
)n (7.20)

lim
n→∞

(1− p)
n+1

2
(I′V K+1)+n−1

2 ≤ lim
n→∞

(
1

2
)n (7.21)

(1− p)
n
2
(I′V K+2) ≤ (

1

2
)n (7.22)

I ′V K + 1 ≥ − 2

log2(1− p)
− 1 (7.23)

This results in the condition 7.4.2. Therefore, with the same p, we can set I ′V K + 1 to

be smaller by 1 bit if it is odd, as compared with the even case.

In the last section, we have suggested two simple generating matrix prototypes for our

physical-layer key encoding for two specific cases, when IV K+1 is even and when it is odd,

where IV K is the number of vulnerable key bits. IV K + 1 is related to IK , the number of

original key bits needed from the quantizer, by Theorem 7.2. In case IV K +1 is unknown,
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we use Theorem 7.4 to derive I ′V K + 1 as an equivalent of IV K + 1 from the probability p

that the eavesdropper incorrectly estimates a key bit. For example, I ′V K + 1 is at least 5

when p is 0.25, yielding an asymptotic code rate of 3, as predicted by Theorem 7.3.

The next section discusses scalable security, which will be related to the physical-layer

key encoding in the end.

7.4 Literature Review of Scalability in Practical Se-

curity Domain

Scalable security has been previously investigated in [22,27,32,72] using selective encryp-

tion schemes. The basic idea of the scheme is to encrypt only some important parts of the

scalable data. These works consider several video coding standards, especially MPEG-I,

from which scalable video data is used to evaluate their encryption scheme.

MPEG encoding of a video sequence requires compression in two dimensions. In the

time dimension, a combination of blocked-based motion compensation is applied to re-

move inter-frame temporal redundancy. In the space dimension, discrete cosine transform

(DCT)-based compression is used to remove intra-frame spatial redundancy. After com-

pression, frames are formed by several compressed blocks. Then, a number of frames

are grouped together to form a random access unit, called a group of pictures (GOP),

so that the video can be viewed either forward or backward. Each GOP has little or no

dependence on other GOPs [27].

A GOP consists of three types of frames, which are intracoded frames (I-frames),

motion-estimated forward predicted frames (P-frames), and motion-estimated bidirec-

tional predicted frames (B-frames). The encoder of the I-frame uses the same scheme as

JPEG encoding of still frames. The I-frame is used as the motion-estimated reference

for the P- and B- frames. The P-frame is encoded with reference to the most recently

previous I- or P- frame, whereas the B-frame is encoded with reference to both the most

recently previous as well as the most immediately succeeding I- or P- frame [27].
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In [22, 32], a selective encryption scheme is used such that only the I-frames are en-

crypted. However, empirical evidence in [27, 72] shows that the scheme is insecure. The

authors of [27] suggest that improvements can be made if some more parts in the data

are encrypted. Although this is a good compromise, the basic idea is the same.

It is important to note that the encryption scheme used in these works, such as Data

Encryption Standard (DES) and Rivest, Shamir, and Adleman (RSA) algorithm, only

provides practical, but not theoretical security. Any cryptanalyst who posseses an in-

credibly large computing power can decrypt the secret data. Since we are interested in

theoretical security, our method used to achieve scalable security is different. The next

section provides the framework to our approach.

7.5 Scalability Framework in Theoretical Security

One normally thinks of a security concept as a dichotomy of being secure or insecure,

with nothing in between. In order to understand our framework, it is most important

to understand that absolute security and absolute insecurity are the two extremes of a

continuum of the guessing success probability.

Consider a piece of two-bit data, when we say that the data is absolutely secure, we

mean that the probability that the enemy can correctly guess the encrypted data is 0.25.

In contrast, it is absolutely insecure if such a probability, which will be called the guessing

success probability from now on, is 1.

Earlier frameworks based on selective encryption have only concepts of (practically)

absolute security and absolute insecurity. According to our example, any encryption

scheme providing the guessing success probability pg such that 0.25 < pg < 1 cannot be

incorporated into those frameworks.

When the concept of guessing is included in the scalable security framework, the

guessing success probability pg becomes one security benchmark so that the security levels

of encryption schemes can be measured and compared. n-symbol data is absolutely secure

if pg = ( 1
|F|)

n, where |F| is the field size of each symbol. It is absolutely insecure if pg = 1.
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Figure 7.3: An illustration of combinatorial weak security limit

It is weakly secure if 1
|F|n < pg < 1. This pg should be determined by the application layer

who has a better idea about how weak the data security in each priority class should be

allowed to be.

In our scalable security framework, the guessing success probability is not the only

benchmark, since, for a given data priority i having Ni data symbols, we are interested

in making sure that only up to a limited number ci of symbols are weakly secure with a

guessing success probability pg not exceeding a threshold pti, whereas the other Ni − ci

symbols are perfectly secure. Therefore, we propose in Definition 7.4 another benchmark

called the combinatorial weak security limit (CWSL) which provides the parameter ci for

each priority class. Prior to that, the concepts of a priority class, a priority classification

function, and an ordered scalable message are defined in Definitions 7.1-7.3, respectively.

A combinatorial weak security limit ci for each priority class i is illustrated in Fig. 7.3.

The smaller the i, the higher the priority and therefore the lower the proportion ci/Ni of

weakly secure symbols. Note that ci symbols do not need to stick together at the front of

the data, but can be arbitrarily distributed.

Definition 7.1 Given a scalable message M= [m1,m2, ...,mω], a set of symbols with

priority class i, i > 0, is given by Qi= {qi1, qi2, ..., qiυi
}, where each qik, 1 ≤ k ≤ υi, is a

distinct element in M. Each member in Qi is less important than any member in Qi−1

and may be useless without the recovery of some members in Qi−1.

Definition 7.2 π(mj) is a priority classification function of a scalable symbol mj belong-

ing to the scalable message M= [m1,m2, ...,mω] if and only if mj is of the priority class

π(mj) ∈ Z+, 1 ≤ j ≤ ω.
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Definition 7.3 A scalable message M= [m1,m2, ...,mω] classified by the vector Π(M) =

[π(m1), π(m2), ..., π(mω)] is said to be ordered if and only if π(mv) ≤ π(mu), 1 ≤ v < u ≤
ω.

Definition 7.4 A combinatorial weak security limit (CWSL) vector C= [c1, c2, ..., cψ]

associated with a guessing success probability threshold (GSPT) vector Pt= [pt1, pt2, ..., ptψ]

of an ordered scalable message M= [m1,m2, ...,mω] is a vector whose each element ci

represent the maximum number of weakly secure symbols permitted by the application layer

for the priority class i, such that the ordered scalable message M is considered insecure

if, for some i, at least one of the following conditions holds.

7.4.1. The eavesdropper can decrypt at least one set of symbols Nci
= {n1, n2, ..., nci}

belonging to the ith priority with the guessing success probability pg, where pg > pti ≥
( 1
|F|)

ci.

7.4.2. The eavesdropper can decrypt at least one set of symbols Nχi
= {n1, n2, ..., nχi

},
χi > ci, belonging to the ith priority with the guessing success probability pg > pti ·( 1

|F|)
χi−ci.

The first condition in Definition 7.4 states that, with a CWSL vector and a GSPT

vector given by the application layer, it is required that the encryption must not allow

the eavesdropper to decrypt ci symbols of priority i with the guessing success probability

exceeding pti. Therefore, the GSPT vector specifies the limit of weakness in our security

scheme.

The second condition in Definition 7.4 states that, beyond the limit of ci symbols of

priority i, it is required that the guessing success probability is reduced by the factor 1
|F|

for each symbol beyond the limit. In other words, we only allow weak security for any

arbitrary set of up to ci symbols. Any more symbols added to the set must be regarded

as perfectly secure.

This scalable security framework is mainly designed for cryptosystems using Shamir’s

concept of secret sharing. We will discuss two such systems, which are weakly secure

network coding and our physical-layer key encoding in a one-time pad cryptosystem in

Sections 7.6 and 7.7, respectively.
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Figure 7.4: Secure network coding in a butterfly network with (a) Shannon security and
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7.6 Weakly Secure Network Coding in the Scalable

Security Framework

Bhattad and Narayanan explain the difference between Shannon security and weak se-

curity in their work on weakly secure network coding [35]. They state that the source

information is Shannon secure if I(X;Y) = 0, where X = [x1, x2, ..., xr] is the source

information and Y is the set of messages to which an eavesdropper can listen. In the case

of Shannon security, the eavesdropper has no information about the source at all. On the

other hand, the source information is weakly secure if I(xi;Y) = 0, 1 ≤ i ≤ r.

The difference between two security concepts can be illustrated by secure network

coding in Fig. 7.4. The goal of secure network coding is to make sure that an eavesdropper

who has access to a limited number k of edges cannot decrypt the source information.

Figures 7.4 (a) and (b) are an example of secure network coding with k = 1. According

to the figures, the node F performs network coding by adding the symbol from the edge

BF to that from CF , yielding a symbol in FG. In Fig. 7.4 (a), the source symbol x1 is

mixed with a random symbol w, whereas in Fig. 7.4 (b), two source symbols x2 and x3

are mixed together. Observe that, for both figures 7.4 (a) and (b), the eavesdropper who

has access only to a single edge cannot decrypt x1, x2, or x3.
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Although the source symbols in both Fig. 7.4 (a) and (b) cannot be decrypted by

wiretapping a single edge, the degrees of security in the two figures differ. If we check

the definition of Shannon security and weak security, we find that secure network coding

in Fig. 7.4 (a) is Shannon secure since I(X = [x1];Y) = 0, where Y is the information

symbol at any single edge. However, that in Fig. 7.4 (b) is only weakly secure since,

although I(xi;Y) = 0, i = 2, 3, I(X = [x2, x3];Y) = log2 |F|, where |F| is the field size

of the symbols x2 and x3. (In this case, x2 and x3 can take their values from the Galois

field with the size of 5 or greater.)

Secure network coding in Fig. 7.4 can be seen as a special case of the scalable security

framework proposed in the previous section. We can see that, when the field size of x1,

x2, x3, and w is |F|, the guessing success probability pg of x1 is 1
|F| , and that of [x2, x3] is

1
|F| as well. The degree of security in Fig. 7.4 (b) is weaker since, with the same pg, two

symbols are decrypted as compared with one symbol in Fig. 7.4 (a).

The practical implication is that the high-priority symbols should be encrypted accord-

ing to Fig. 7.4 (a), whereas the low-priority ones may consider the encryption in Fig. 7.4

(b). For example, if we have an ordered scalable message M= [m1,m2,m3] such that

Π(M) = [1, 2, 2], the symbol m1 should be encrypted according to Fig. 7.4 (a), whereas

m2 and m3 may follow Fig. 7.4 (b), if the CWSL vector C= [1, 2] and the GSPT vector

Pt= [ 1
|F| ,

1
|F| ] are specified by the application layer. (See Definition 7.4.)

7.7 Physical-layer Key Encoding in the Scalable Se-

curity Framework

Scalable security can be realized in physical-layer key encoding by reducing the number

of 1-elements in (7.10) or (7.11) and shifting the groups of 1-elements to the left. This

will save the number of original key symbols needed. We will give an example problem

as follows.

Problem 7.1. The application layer requires that at most three data bits in the second
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priority class can be weakly secure with the eavesdropper’s guessing success probability

of 0.25. If the number of vulnerable key bits is 3, specify the generator matrix of the

physical-layer key encoding generating four encoded key bits.

Solution. In this problem, we start from the generator matrix in (7.10) for perfect secrecy

with parameters IV K = 3, and n = 4. The overlapping part of the groups of 1-elements

in two adjacent columns consists of two elements such that

Gp =




1 1 1 1 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 1 1 1 1




T

. (7.24)

For scalable security satisfying the conditions c2 = 3 and pt2 = 0.25, we reduce the

number of 1-elements in each column from 4 to 3. We also shift each row of the transpose

of the generator matrix to the left such that it becomes

Gp =




1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1




T

. (7.25)

Now, we will verify that this generator matrix results in weak security corresponding

to Definition 7.4. According to eqs. (7.1), (7.2), (7.7), (7.8), and (7.24), the ciphertext Yi

can be written as

Yi = Ki ⊕Ki+1 ⊕Ki+2 ⊕Xi, i = 1, 2, 3, 4. (7.26)

Next, we will check the first condition in Definition 7.4 where c2 = 3. The best way

for the eavesdropper to guess three symbols is to add together three adjacent ciphertext

symbols, for example,
3∑
i=1

Yi = K1 ⊕K3 ⊕K5 ⊕
3∑
i=1

Xi. (7.27)
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With the summation
∑3

i=1 Yi known by wiretapping, and K1 ⊕ K3 ⊕ K5 known if

K1, K3, and K5 are vulnerable symbols, the enemy knows the summation
∑3

i=1Xi. This

means, by guessing two bits out of three bits Xi, i = 1, 2, 3, correctly, the enemy knows

all the three bits. The probability of guessing two bits correctly is 0.25, corresponding to

the requirement pt2 = 0.25. We can see that there is no way to derive any three bits with

more guessing success probability than 0.25. Therefore, the first condition is not met,

meaning that our encryption will be considered scalably secure if the second condition is

not met either.

By checking every possible way for the enemy to derive all four plaintext bits Xi,

i = 1, 2, 3, 4, we see that the maximum guessing success probability is 0.125. Since

0.125 = pti · ( 1
|F|)

χi−ci = 0.25 · (1
2
)4−3, the second condition is not met and our encryption

is therefore scalably secure according to the requirement.

One may observe that, by using the given scalable security requirement instead of the

perfect secrecy requirement, we reduce the number of original symbols IK needed by 40%.

7.8 Conclusion and Future Research

We have proposed physical-layer key encoding for the WPSG cryptosystem with one-

time pad encryptor. Four theorems indicate the required properties of the codes in order

to achieve perfect secrecy of the secret data. After that, we discuss a scalable security

framework specifying the degrees of security weakness that can be allowed in lower-priority

data. Our framework applies to weakly secure network coding as well as our physical-

layer key encoding in a WPSG cryptosystem and, indeed, any key encoding schemes for

one-time pad cryptosystems having vulnerable key bits. We show that the number of

original key bits needed can be significantly reduced if weak security is allowed.

In future, we hope that some algorithms are developed such that, given any scalable

security requirement, the code can be systematically designed.



Chapter 8

Summary, Conclusion, and Future

Works

8.1 Summary and Conclusion

Physical key encoding has been presented in Chapter 7 as a means to protect security in

the presence of vulnerable key symbols. The encoded output key is shorter than the input,

thus sacrificing some key length for the sake of security. The counterpart of physical key

encoding is Slepian-Wolf coding, which adds some redundancy to the quantized key such

that legitimate receivers are protected against key mismatch due to channel estimation

error.

The relationship between physical key encoding and Slepian-Wolf coding in WPSG is

similar to source coding and channel coding in a communication system in such a way that

the latter expands what the former contracts. It is proved that optimality can be achieved

when the source coding and the channel coding in a communication perform their tasks

separately. It is yet to be proved whether such optimality holds with the separation of

physical key encoding and Slepian-Wolf coding in WPSG.

Just as channel coding has an unequal-error-protection (UEP) capability, physical key

encoding has an unequal-security-protection (USP) capability. The concept of USP or

scalable security has been previously discussed [22, 27, 32, 72], but it is more precisely

110



Chapter 8: Summary, Conclusion, and Future Works 111

defined in terms of generalized weak security in our work. Since weak security is also

inherent in secure network coding, it follows that secure network coding possesses USP

capability as well.

Secure network coding is a class of network coding used for cryptographic purposes.

The earlier purpose of network coding is to facilitate multicast transmission. Although

both deterministic and random network coding can improve the multicast rate, only de-

terministic network coding can guarantee max-flow transmission. Another advantage of

deterministic network coding is that we are better in control of the unequal-erasure-

protection (UEP) capability, as discussed in Chapter 4. This UEP property can lead to

conflicts among the multicast receivers in terms of received data quality. When the con-

flicts are considered as economic problems of resource distribution, an auction algorithm

can be used to resolve them, as proposed in Chapter 4. If they are considered as political

problems, a voting algorithm could be an interesting solution.

In practice, network coding will probably be used in a system in which channel coding

is present. A problem occurs when the channel coding performance depends on the degree

distribution of the codes, which may be affected by network coding and erasures in the

network. A particular problem in LT-codes is discussed in Chapter 5 and a cooperative

buffering scheme is proposed as a solution.

In conclusion, this thesis highlights several interrelationships among several subjects in

the fields of coding and cryptography. We pictorially summarize it in Fig. 8.1. Apart from

this, network protocol aspects are also considered for WPSG in generalized networks in

Chapter 6, showing that network coding can enhance the security of the WPSG protocol.

8.2 Future Works

In the following, we shortly address some possibilities for future research.
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Figure 8.1: Interrelationships among mentioned subjects

8.2.1 Network Coding for WPSG

Apart from our research project, there exists an important contribution on one-relay

WPSG made by Shimizu et al.. They show that network coding helps make one-relay

WPSG more secure [74]. Figure 8.2(b) gives an illustration of their scheme, which they call

“multiple-access amplify-and-forward (MA-AF),” as compared with the normal amplify-

and-forward scheme in Fig. 8.2(a). For simplicity, we do not consider the effect of noise

here and assume that the amplification factor at the relay is 1. The effects of these two

factors are discussed in detail in [74].

The normal amplify-and-forward scheme is the same as Protocol 1 in Section 2.2.10,

which is the least secure. The relay, after receiving the pilot packet x multiplied by the

channel gain from Alice in the first time slot, amplifies and forwards it to Bob in the

second one. The process repeats itself in the third and fourth time slot with the roles of

Alice and Bob interchanged.

In the first time-slot of the MA-AF scheme, Alice receives xhar whereas Bob receives

xhrb, where har and hrb are Alice-relay and relay-Bob channel gains, respectively. In the

second time slot, the signal from Alice and Bob adds together such that the relay receives

x(har + hrb). The relay then forwards this to Alice and Bob in the third time slot. Alice
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and Bob can then derive the overall channel gain harhrb from the signal they receive in

the first and the third time slots. Since the channel information sent out by the relay is

neither har nor hrb but a network-coded combination, which is har + hrb, the enemy will

find it more difficult to derive harhrb.

Investigation of Different Network Coding and Relaying Patterns

When Alice and Bob are within each other’s transmission range, the efficiency of key

generation can be enhanced as shown by our proposed scheme in Fig. 8.2(c). With an

extension by one time slot, Alice and Bob can now generate a secret key from two paths,

the direct one and the relayed one.

Apart from the triangular shape in Fig. 8.2(c), it is interesting to investigate the

graphs with other shapes, such as a quadrilateral or a polygon in general, and compare

the key generation efficiency. Also, one might design a scheme to generate secret keys not

only for Alice and Bob, but also for the relays. One may further ask such graph-theoretic

questions as how the convexity of the shape, or the completeness of the graph, affect key

generation. (A shape is convex if all the points along the straight line connecting any two

points within it lie inside. A graph is complete if every pair of nodes is connected by an

edge.)

Generalizing the MA-AF Scheme

When the distance between Alice and Bob is larger, we need more than one relay and

thus a generalized network coding scheme. The main question is whether a corresponding

scheme can be derived by using Shimizu’s procedure as a building block, and how.

Protocols for WPSG with Network Coding

If some local key is generated by the triangular geometry in Fig. 8.2(c), how can we make it

compatible with the key generation schemes using different geometry and network coding

patterns in other locations?
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8.2.2 Effects of Mobility on Key Extension, Regeneration Rate,

and Protocols

Key Extension and Regeneration Rate

Node mobility in a wireless network has profound effects on the key length and key regen-

eration rate due to two reasons. The obvious one is that the faster the nodes move, the

faster the change in channel parameters and therefore the higher the key regeneration rate.

The less obvious reason is that the mobility model affects the spatial node distribution.

According to Bettstetter, Resta, and Santi, the node distribution fx(x) of the random

way point (RWP) mobility model, where x = (x, y) is a coordinate in two-dimensional

space, consists of three components such that [12]

fx(x) = fs(x) + fp(x) + fm(x) . (8.1)

The nodes that remain static for the whole simulation time account for the static compo-

nent fs(x). Those who are pausing between their moves make up the pause component

fp(x), whereas those who are moving are responsible for the mobility component fm(x).

In the RWP model, the distribution eventually reaches the steady state after some simula-

tion time. The analytical expression of each component in the distribution is discussed in

detail in [12]. Figure 8.3 shows the mobility component normalized such that the integral

over the one-unit-squared region equals one.

We aim at deriving some empirical results from simulation regarding key regeneration

rate as well as the optimal channel sampling rate as functions of the node mobility.

Protocols

As the nodes move and the topology changes, some wireless channels used for key gener-

ation are disconnected and other channels are added to replace them. We therefore need

an adaptive protocol to determine the followings: 1) When will a channel be dropped

from being used for key generation? 2) Which nodes are authorized to drop it? 3) How
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Figure 8.3: The normalized mobility component of the spatial node distribution in the
RWP model

do other nodes know that the channel is dropped?

8.2.3 Economics of UEP Network Coding

The auction problem considered in our previous work [3] is only one specific economic

problem among many. There are two more problems that we would like to investigate,

the bargaining problem and the hierarchical network coding game.

The Bargaining Problem of UEP Network Coding

The bargaining problem is a non-zero-sum game which allows some cooperation among

players. Let us consider network coding in a butterfly network in Fig. 8.4(a). Our knowl-

edge about UEP network coding tells us that D obtains better data quality if b1 is of

higher priority than b2 and every edge has the same erasure probability. Indeed, D may

have won an auction over E to obtain this network coding pattern. However, D and E

may reach an agreement that, when the edge AB alone is failing or having lots of erasures,

the network coding pattern in Fig. 8.4(b) is used instead. This is beneficial for both D

and E.

We aim at exploring the conditions under which bargaining is beneficial as well as the

optimal bargain in numerical values for each receiver in a generalized network.
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The Hierarchical Network Coding Game

In more complicated networks, transmission paths from one source to certain sinks may

need to pass some intermediate nodes which are also information sources themselves, as

shown in Fig. 8.5. In such a case, network coding functions cannot be assigned by a single

source. Instead, every source plays in a Stackelberg game based on von Stackelberg’s

”Marktform und Gleichgewicht [24].” According to Fig. 8.5, the source node A is consid-

ered the leader in the game since it has to make the first decision about global encoding

kernels (GEKs) used for the edges AB and BC. After that, B and C can observe A’s

action and derive their optimal strategies.

Since more than one source node is considered, this game approach can be considered

as a generalization of our previous analyses in [3, 5].

8.2.4 Joint LT-Network Coding

We would like to extend, generalize, and synthesize our previous works in UEP network

coding [3,5] and joint LT-network coding [2]. We aim at finding joint LT-network coding

solutions in an arbitrary network instead of just a butterfly network, as well as introducing

the UEP concept into joint LT-network coding.
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