
Analysis of nonlinear subdivision and multi-scale transformsbyStanislav HarizanovA thesis submitted in partial ful�lmentof the requirements for the degree ofDoctor of Philosophyin MathematicsApproved, Thesis CommitteeProf. Dr. Peter OswaldChair, Jacobs University BremenProf. Dr. Lars LinsenJacobs University BremenProf. Dr. Johannes WallnerTechnische Universität GrazProf. Dr. Nira DynTel-Aviv UniversityDate of Defense: September 20, 2011School of Engineering and Science



ii



iiiAbstractAnalysis of nonlinear subdivision and multi-scale transformsbyStanislav HarizanovDoctoral Candidate of Philosophy in MathematicsJacobs University BremenProfessor Peter Oswald, ChairSubdivision is a process of recursively re�ning discrete data using a set of subdivision rules togenerate limits (curves, surfaces, height �elds, etc.) with desirable properties such as continuity,smoothness, reproduction of shape features, and many more. The wide range of applications aswell as the necessity of improving the performance of the existing algorithms lead to the inventionof a great variety of subdivision schemes. In many cases, such as preserving the data shape, usingnormal meshes for better compression rates, removing heavily-tailed noise, working with manifold-valued data, etc., linear multi-scale transforms give unsatisfactory results or cannot be applied atall, and nonlinear alternatives are necessary. There are still very few results about Lipschitz stabilityand Hölder regularity of nonlinear subdivision schemes and the associated multi-scale transforms,which is a very active research �eld with many open problems, that is driven by both theory andapplications.In this thesis we develop a general stability analysis of both univariate schemes and their asso-ciated multi-scale transforms in the nonlinear functional setting. We show that, unlike the linearsetting, convergence and stability analysis are no longer equivalent, and we derive numerical criteriafor the veri�cation of each of them. We extend the univariate convergence and stability results tothe multivariate regular setting via local approximation techniques.We establish a general theory for normal multi-scale transforms for curves, based on approxi-mating prediction operators. We propose a globally-convergent normal multi-scale transform, andbuild an adaptive algorithm based on it that de�nes a well-posed transform with smooth limits andhigh detail decay rates. We investigate several extensions of the classical setup for normal multi-scale transforms, namely we use another subdivision operator to generate the normal directions,the combined action of two di�erent subdivision operators for the prediction step, and nonlineargeometry-based predictors, respectively, and show that the properties of the normal multi-scaletransforms improve when such extensions are considered.



iv



vAcknowledgmentsThere are many people who deserve my gratitude: First, and foremost, I want to express my sincerethanks to my advisor, Peter Oswald, for providing me with this fruitful topic, and for his constantsupport, guidance, and patience.I also wish to thank Peter Binev, Nira Dyn, Philipp Grohs, Olof Runborg, Johannes Wallner,Andreas Weinmann, for the thoughtful and helpful mathematical discussions.Many thanks to my colleagues at Jacobs University Bremen for the easygoing and friendlyworking atmosphere, and their encouragement during the preparation of the thesis.During my work I have received �nancial support from Jacobs University Bremen, and theGerman Research Foundation (DFG) under the grant OS-122/3-1.



vi



CONTENTS
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Subdivision schemes and multiresolution . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Survey of the existing literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Main results and review of the content of the thesis . . . . . . . . . . . . . . . . . . 112. Univariate stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.1 Linear subdivision schemes and multi-scale transforms . . . . . . . . . . . . . . . . 162.2 Theoretical approach to the non-linear case. . . . . . . . . . . . . . . . . . . . . . . 172.2.1 Notation and preliminary facts . . . . . . . . . . . . . . . . . . . . . . . . . 182.2.2 Main stability theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.2.3 Nonlinear spectral radius conditions . . . . . . . . . . . . . . . . . . . . . . . 222.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292.3.1 Shape-preserving subdivision schemes . . . . . . . . . . . . . . . . . . . . . . 292.3.2 Median interpolating pyramid transform . . . . . . . . . . . . . . . . . . . . 312.3.3 Power-p Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363. Analysis of multivariate subdivision schemes via local maps . . . . . . . . . . . . . . . . . 413.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.3 Example: Convergence of bivariate Power-p subdivision schemes . . . . . . . . . . . 543.4 A note on semi-regular subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



Contents viii4. Normal MT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604.1 Introduction, mathematical formulation, and literature review . . . . . . . . . . . . 604.2 General analysis on normal MTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.2.1 Notation, de�nitions, and auxiliary results . . . . . . . . . . . . . . . . . . . 674.2.2 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724.3 Chaikin normal MT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754.4 Globally convergent normal MTs based on adaptivity . . . . . . . . . . . . . . . . . 814.4.1 Theoretical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844.4.2 Adaptive algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854.4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895. Improved normal MTs. Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945.1 Improving the regularity of the �ne-scale data via suitable choice of generalized normals 955.1.1 (Sp, Sq) normal MT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965.2 Improving the detail decay rate via additional pre-processing. Combined normal MTs 1065.2.1 (Sp, Sp−2, Tp) normal MT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075.3 Normal MT based on prediction via circle arcs . . . . . . . . . . . . . . . . . . . . . 1116. Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Appendix 128.1 Power-p schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129.1.1 Explicit construction for the instability argument for Sp, p > 4 . . . . . . . . 129.1.2 Some useful facts for the power-p schemes . . . . . . . . . . . . . . . . . . . 130.2 Normal multi-scale transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.2.1 Proof of Lemma 5.0.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.2.2 Alternative proof of Theorem 5.2.1 via explicit computations . . . . . . . . . 135



1. INTRODUCTION1.1 Subdivision schemes and multiresolutionSubdivision is a process of recursively re�ning discrete data using a set of subdivision rules togenerate limits (curves, surfaces, height �elds, etc.) with desirable properties such as continuity,smoothness, reproduction of shape features, and many more. It has numerous applications, suchas image reconstruction, design of curves and surfaces, shape preservation in data and geometricobjects, approximation of arbitrary functions, etc. On the other hand, subdivision lies in the coreof multiresolution analysis (MRA) and wavelet transforms, and thus plays a central role in datacompression, noise removal, and so on. The wide range of applications as well as the necessityof improving the performance of the existing algorithms lead to the invention of a great variety ofsubdivision schemes. Important mathematical issues to be investigated for a subdivision scheme areconvergence as the number of subdivision steps goes to in�nity, the smoothness of the limit objects,and the stability of the subdivision process and the associated multi-scale representations. In thelinear case, due to standard techniques [15, 31], there is a complete theory about convergence ofboth subdivision schemes and multi-scale transforms, as well as about determining the smoothnessof the �rst. Moreover, uniform convergence of the subdivision scheme also implies stability of thescheme, which in turn guarantees stability of the associated multi-scale transform.However, there are many cases in which linear multi-scale transforms give unsatisfactory results,and nonlinear alternatives are necessary. Tentatively, we can group the so-far proposed nonlinearsubdivision schemes and multi-scale transforms into four: schemes that are shape preserving orcapture singularities, normal multi-scale transforms, statistical and morphological pyramids, andmanifold subdivision. The �rst group consists of schemes that deal with Gibbs-type phenomenathat are typical for linear schemes near jump singularities in the data [64, 79, 95], or address shapepreservation (monotonicity, convexity, etc.) without loss of smoothness in the limit [73, 71]. Normalmeshes and multi-scale transforms [55] deal with the e�cient encoding of curves and surfaces, andnonlinearity in these schemes appears in the way details are computed, because they are of di�erenttype than the initial data. Examples from the third group have been proposed in connection withremoving heavily-tailed (Cauchy) noise, nonlinearity here results mainly from the use of nonlinearrobust estimators, such as the median [30]. The nonlinearity in the last group comes from therestriction of the control points to a nonlinearly constrained set in the ambient space such asa manifold, a surface, or a Lie group [89, 102]. Although most of the above references provideanalysis only in the univariate case, many of the schemes have natural multivariate analogues andhave been introduced with view towards multivariate applications.In the nonlinear case, there are still very few results about stability and smoothness. This is dueto the fact that many theorems from the linear setup can not be directly extended to the nonlinear



1. Introduction 2one, and that convergence and stability analysis are no longer equivalent. For example, there arenonlinear subdivision schemes such as the essentially non-oscillatory (ENO) scheme [21] which areuniformly convergent but not stable. Moreover, certain stable schemes, e.g., the dyadic median-interpolating scheme [85], do not possess a stable associated multi-scale transform. In summary,analyzing subdivision schemes and the associated multi-scale transforms is a very active research�eld with many open problems, that is driven by both theory and applications.Let us brie�y introduce some notions and �x notation. The presented de�nitions are withrespect to the so called functional setting we build most of our analysis on. In every subdivisionscheme, a family of �nested� grids Γj , j ≥ 0, is given (i.e., Γj ⊂ Γj+1, ∀j), the initial data v0 isa uniformly bounded sequence on the coarsest grid (v0 ∈ `∞(Γ0)), and the subdivision operators
S[j] : `∞(Γj−1) → `∞(Γj) map sequences corresponding to two consecutive grids into each other.The grids may be �nite or in�nite, and data can be arbitrary. We will denote by vj the data sequenceon Γj , generated by v0 after j subdivision steps. The subdivision process is local if the operators
S[j] are built from local rules, regular if the grids {Γj}∞j=0 are uniform, univariate if all the grids aretopologically equivalent to Z, and linear if all the operators S[j] are linear. Multiresolution, as de�nedby Harten in [63], is a multi-scale transform that, starting from �ne-scale data, constructs data oncoarser scales by restriction and so called �details� (analysis step), and conversely reconstructs theoriginal data from their coarse-scale part and the details (synthesis step). More precisely, for agiven J ∈ N in addition to the set of nested grid {Γj}J0 and the family of subdivision operators
{S[j]}J1 we de�ne a set of restriction operators R[j] : `∞(Γj) → `∞(Γj−1), j = 1, . . . , J , such that
R[j+1]S[j+1] = Ij, j = 0, . . . , J − 1, where Ij is the identity operator on `∞(Γj). From a given datasequence vJ ∈ `∞(ΓJ) we construct sequences on all coarser grids Γj , j = 1, . . . , J , via vj−1 := R[j]v

j.We also compute detail sequences dj ∈ `∞(Γj) that encode in a lossless way the di�erence betweenthe �ne-scale data vj and the data S[j]v
j−1, generated from the coarse-scale data vj−1 by the givensubdivision scheme. Thus, using {R[j]}J1 and {S[j]}J1 , one can uniquely decompose every sequence

vJ into its coarse-scale part v0 and a sequence of details {dj}J1 , such that there is a one-to-onecorrespondence
vJ ←→ {v0, d1, . . . , dJ}.Our work is mainly focused on univariate processes (i.e., multi-scale processing of data sampledfrom univariate functions or from curves) and there are several reasons for that. First of all, there arestill many unsolved problems in the univariate theory, and new types of nonlinearity that have notbeen completely understood. Second of all, the univariate case is a simpli�ed, but yet rich enoughsetting, where principles usually become clearer. Finally, the univariate analysis often providessu�cient guidance for the multivariate one, where many results are derived as proper extensionsof the corresponding 1D argument [57, 31, 22, 4, 87]. For the univariate case, we consider regular,local, shift-invariant subdivision schemes, and thus restrict the grids Γj to be r−jZ, where r ∈ N,

r ≥ 2. More precisely, we work mostly with dyadic transforms, where Γj = 2−jZ. Due to the shift-invariance, we perform our analysis on `∞(Z), and we additionally unify the subdivision operators
S[j] to a single one S : `∞(Z)→ `∞(Z). Hence from now on we drop the index [j] and talk about thesubdivision scheme S. Since S is local, changing the initial data at one place will have a local e�ecton the limit function, i.e., the new limit will di�er from the original one only in a neighborhoodof the initial point. As a welcome bene�t, the locality reduces the analysis of the scheme to a�nite-dimensional subspace of `∞(Z).



1. Introduction 3Our investigation on multi-scale transforms is related to the asymptotical behavior of the process,and we assume the number of scales J to be large enough. Moreover, we consider smooth geometricobjects and we do not allow discontinuities in the generated limit curve as J → ∞. Again, weunify the restriction operators R[j], drop the index, and write R : `∞(Z) → `∞(Z). In most ofthe applications the detail sequences {dj}, j ≤ J , and the multi-scale data {vj} are linked viathe coarse-to-�ne formula vj = Svj−1 + dj. Sometimes, however [24, 89], like in the normal multi-scale framework, the detail sequence cannot be simply added to the predicted data Svj−1 and themore general formulas vj = Svj−1 + Fdj or even vj = F (vj−1, dj) are introduced, where F isanother (possibly nonlinear) operator. For the purposes of the thesis, we concentrate only on a�coarse-to-�ne� analysis, for which the role of the restriction operator R is hidden in the action of
F . Therefore, we will not mention it further, and we will refer to the process as the multi-scaletransform associated to S. We denote its corresponding operator via M , and it is de�ned by theformula vj = Mvj−1 := Svj−1 + dj , provided the details are additive. Note that, although Mdepends on two sequences vj−1 and dj, we have chosen not to indicate the argument dj to keep theexposition as easy to follow as possible. M is linear if S is linear.All the norms that we use are in�nity-norms and hence we will simply denote them by ‖ · ‖.Whether the norm is on an operator, on a sequence, or on a function will be clear from the context.Denote by 4n : `∞(Z) → `∞(Z) the n-th order forward �nite di�erence operator, i.e. (∆v)i =
vi+1 − vi, and ∆n = ∆ ◦∆n−1. We say that a subdivision scheme S is uniformly convergent, if forany v0 ∈ `∞(Z), the piece-wise linear interpolants f j of the data vj = Sjv0 with respect to thegrid Γj = r−jZ uniformly converge to a continuous, nontrivial limit f . (Nontrivial means, that if
v0 is not the zero sample, f cannot be identically zero.) We de�ne Lipschitz stability of S, and itscorresponding multi-scale transform M as follows: There exists a constant C such that

‖SJv0 − SJ ṽ0‖ ≤ C‖v0 − ṽ0‖, (1.1.1)
‖MJv0 −MJ ṽ0‖ ≤ C

(
‖v0 − ṽ0‖+

J∑

j=1

‖dj − d̃j‖
)
, (1.1.2)for all J ∈ N and all sequences involved.The following example helps to better understand the above de�nitions. Consider the 4-pointsubdivision scheme Sc based on central Lagrange cubic interpolation. More precisely, let Γj =

2−jZ and de�ne Scv
j as follows: The values at the �old� grid points 2−jZ are inherited from thecorresponding entries of vj (i.e., Sc is interpolatory) while the value at �new� grid points is givenby pk(2

−(j+1)(2k + 1)), where pk is a cubic polynomial that interpolates vj at the four points
2−jl, l = k − 1, . . . , k + 2 neighboring it (Fig. 1.1a). The above procedure de�nes an operator
Sc : `∞(Z)→ `∞(Z). Direct computations lead to the following explicit formula

vj+1
2k = (Scv

j)2k = vjk

vj+1
2k+1 = (Scv

j)2k+1 = −
1

16
vjk−1 +

9

16
vjk +

9

16
vjk+1 −

1

16
vjk+2.

(1.1.3)Recall that vjk is the value of f j at 2−jk for every j, k. Sc is linear and local, since the entries of
vj+1 are �nite linear combinations of those of vj ; univariate and regular, because the grids {Γj} areequidistant subsets of R; stationary and shift-invariant, as the coe�cients in (1.1.3) do not depend
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(a)
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vj+1
2k+1

vj
k+1

vj
k+2

−5 −4 −3 −2 −1 0 1 2 3 4 5

(b)

Fig. 1.1: (a) The action of Sc, (b) The range of the dependence of v00 after two subdivision steps.on the subdivision level j and the position k; and dyadic, because of the dilation factor two. Due tothe locality and the shift-invariance of Sc, the action of the subdivision operator can be describedby a single �nitely supported sequence a, called mask, such that
(Scv)K =

∑

k

aK−2kvk, K ∈ Z. (1.1.4)The only nonzero entries of a are a−3 = a3 = − 1
16
; a−1 = a1 = 9

16
; a0 = 1. Fig. 1.1b showsthat changing the data entry v00 a�ects the limit function only in the interval [−3, 3]. On the otherhand, in order to globally characterize the limit f , generated via Sc from a v0 ∈ `∞(Z), it su�cesto analyze the behavior of f only in the interval [0, 1]. But f |[0,1] depends solely on the initial data

v0 at positions I0 = {−2,−1, 0, 1, 2, 3}, meaning that one can build the whole analysis of Sc overthe set of �nite initial sequences v0|I0.Examples of nonlinear subdivision schemes and multi-scale transforms, and a discussion on boththe di�culties and the progress of their analysis are included in the next section, together with thehistorical references of the papers, where those processes, resp. results, were �rst introduced.1.2 Survey of the existing literatureIn the context of image (curve, surface) representation as well as in the context of numericallycomputing weak solutions of nonlinear conservation laws, piecewise smooth data with jump discon-tinuities appear. Due to the Gibbs phenomena, a linear multi-scale transform cannot simultaneouslylocalize these discontinuities and provide smooth approximation to the initial function away fromthe singularities. Another problem is that convexity preserving interpolatory linear subdivisionschemes are at most C1 smooth. These drawbacks motivate the investigation of non-linear subdi-vision schemes and their usage in nonlinear multi-scale transforms.Several schemes have been introduced and analyzed so far. Harten et al. [64] proposed the essen-tially non-oscillatory (ENO) subdivision scheme, which uses not only central cubic interpolation like
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Sc but also its left and right shifts (i.e., the interpolating nodes are shifted by one once to the left,and once to the right, respectively). If we denote by plk, pck, and prk the corresponding interpolatingpolynomials, then for vj+1

2k+1 we use the value at 2−(j+1)(2k + 1) of the least oscillatory one amongthem (Fig. 1.2a). This process is uniformly convergent [21], behaves like Sc away from singularities,and prevents the Gibbs phenomena around them. Unfortunately, small perturbations of the datamay change the choice of the interpolating polynomial, and thus ENO is unstable. Therefore, theweighted ENO (WENO) subdivision scheme has been suggested [79], where instead of taking onlyone of the interpolating polynomials for the imputation step, the authors use a convex combination
pk = α1p

l
k + α2p

c
k + α3p

r
k, α1 + α2 + α3 = 1; α1, α2, α3 ≥ 0,of all the three polynomials with data-dependent weights {αi}31. Extensions of these schemes bytensor-product techniques to 2D edge-adaptive image representations have been considered andnumerically investigated in [2, 3, 19, 20]. Both ENO and WENO are built on linear subdivisionrules, but the data-dependence of these rules is what makes the whole process nonlinear. In [21]Cohen et al. analyze the convergence, smoothness, and stability of a larger class of so called quasi-linear data-dependent subdivision schemes, de�ned by an operator-valued map Φ, such that

Sv = Φ(v)v, ∀v ∈ `∞(Z), (1.2.1)and Φ(v) : `∞(Z)→ `∞(Z) is linear for every v. Using the theory they developed, the authors provestability of the WENO scheme. However, due to the form of the weights {αk}31, the constant Cfrom (1.1.1) heavily depends on a �xed parameter ε and is not uniformly bounded when ε→ 0. Amore general smoothness analysis has been performed in [82], while a more general stability analysishas been developed in [61, 41]. Based on the setup from [7, 21] and the framework of our paper[61], another theoretical paper [44] has recently appeared. It is devoted to Lipschitz-linear, insteadof quasi-linear subdivision schemes S, and the stability results are extended to `p norms, as well.The scope of their `∞ analysis is broader than the one in [21], and narrower than the one in [61].However, their stability criteria is numerically simpler than the one in [61] and may be veri�ed ina more e�cient way.The accent in the papers [64, 79] is on the smooth linear subdivision operator Sc, and howthis operator to be (nonlinearly) adapted in the presence of discontinuities, so that the Gibbsphenomenon does not appear. A di�erent approach is to build the desired nonlinear scheme onthe simplest linear subdivision rule - the midpoint-interpolating operator S1, de�ned by (S1v)2k =
vk, (S1v)2k+1 = (vk + vk+1)/2, and to perturb it away from singularities so that the smoothness ofthe limit increases. Two classes of subdivision schemes, based on that idea, which in addition aremonotonicity [73] and convexity [71] preserving have been introduced. The most exploited memberof the second class is the piecewise polynomial harmonic (PPH) scheme, introduced also in [42].The PPH scheme is interpolatory and dyadic with

(SPPHv)2k+1 =
vk + vk+1

2
− 1

8
H(∆2vk−1,∆

2vk), (1.2.2)where H : R2 → R is the harmonic mean de�ned by
H(x, y) =

{ 2xy
x+y

, xy > 0

0, otherwise
. (1.2.3)
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(a) ENO
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Fig. 1.2: (a) ENO algorithm: the three candidates for imputation, and the less oscillatory choice; (b) onestep of PPH and the limit function.PPH is a second order perturbation of S1, i.e., SPPHv = S1v + F (∆2v), where F is a nonlinearoperator. On the other hand, PPH can be viewed as a perturbation of Sc, as well, since
(Sc)2k+1 =

vk + vk+1

2
− 1

8
A(∆2vk−1,∆

2vk),with A(x, y) = (x+ y)/2 being the arithmetic mean. The latter formula relates the �S1 approach�to the Sc one, indicating that both the ideas lead to the construction of similar subdivision schemesat the end. In [8] stability of PPH and the corresponding multi-scale transform is proven. Proof forstability of a large subclass of the schemes proposed in [71], including PPH, can be found in [74]. In[7] a bivariate scheme, based on PPH and constructed via tensor product techniques is introducedand analyzed in terms of convergence and stability. More recent results in this direction can befound in [22, 4, 6, 5].Experimentations with the ENO method have indicated several practical drawbacks, thereforea new class of reconstruction procedures, the Power ENO methods, has been introduced in [95].These schemes are based on replacing H(·, ·) in (1.2.3) by an extended class of limiterspowerp(x, y) = (x+ y)

2

(
1−

∣∣∣x− y

x+ y

∣∣∣
p)
,reduce smearing near discontinuities, provide good resolution of corners and local extrema, andcontain both WENO and PPH (take p = 2 in the powerp mean) as members. Moreover, a newweighted ENO method (Weighted Power-ENO5) is proposed in [95], which has the highest possibleorder of polynomial reproduction - six. The convergence of these methods and their extensions to2D are subject of [22].Normal meshes and multi-scale transforms (MTs) for curves and surfaces is a recent conceptin e�cient geometry representation based on local data-dependent coordinate systems that are
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(a) Normal multiresolution
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(b) Median interpolation
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Fig. 1.3: (a) Normal multi-scale transform using the midpoint-interpolating subdivision scheme. (b) Onestep of the dyadic median-interpolating subdivision schemeadapted to tangential and normal directions. In the curve setting, as illustrated on Fig. 1.3a for thenormal MT based on mid-point interpolation, the predictor S is usually a linear univariate operator,applied componentwise to the 2D data vj. However, the detail coe�cient dj+1
2k+1 is the signed distancebetween the predicted point Svj2k+1 and the newly inserted point Mvj2k+1, obtained via intersectingthe normal line through Svj2k+1 and orthogonal to ∆vjk with the initial curve. The di�erent natureof data (vector-valued) and details (scalar-valued), and the detail (nonlinear) dependance on thecoarse-scale data make the process nonlinear. Hence, instead of having Mv = Sv + d we have

Mv = Sv + Fd, where F is nonlinear. More precisely, for the considered example we compute
(Mvj)2k+1 = (Svj)2k+1 + (σjd

j+1
nj)k, (Mvj)2k = vjk, vj = (xj , yj) ∈ `∞(Z)× `∞(Z),where nj =

∆vj,⊥

|∆vj |
:= (−∆yj ,∆xj)

|∆vj |
is the unit normal vector. This idea has been originally introducedby Guskov et al. in [55], and for the curve setting, it will be elaborated in detail in Chapter 4. Amore substantial review of the existing literature on the topic is also presented there.In signal processing, linear multiresolution is a promising approach for successfully removingGaussian noise. However, linear transforms perform poorly in the presence of strongly non-Gaussiannoise, typically witnessed in analogue telephony, radar signal processing, and laser radar imaging.Indeed, classical statistical models show that maximum likelihood estimators are often linear inthe Gaussian case, but highly nonlinear when Cauchy noise appears. The remedy is to use robustestimators. In [30] a class of nonlinear, triadic subdivision schemes based on median interpolationhas been introduced. One of its members, the quadratic median-interpolating scheme Smed,3, allowsfor a closed-form representation and is the main object of investigation in [30]. Its dyadic version

Smed,2 [85] is computationally easier to deal with, and although it does not have the same denoisingproperties as the original triadic scheme, it can be used for the mathematical analysis.Let f be a real-valued continuous function on a bounded interval I with positive Lebesguemeasure (m(I) > 0). Then the median of f on I is de�ned by
med(f ; I) := sup

{
α : m({x : f(x) < α}) ≤ 1

2
m(I)

}
. (1.2.4)
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Smed,2 uses the coarse-level information on three consecutive intervals to construct the quadraticpolynomial p that has the same medians in this intervals as the given data. Then the grid is re�nedand the central interval is split into two. Finally, Smed,2 uses the medians of p on those intervalsto impute the data on the next level (Fig. 1.3b). Smed,3 does absolutely the same with the onlyexception that every coarse-scale interval is subdivided into three �ne-scale intervals, instead oftwo. In [30] uniform convergence and Hölder-α regularity for Smed,3 is proved with α > 0.0997.The smoothness result has been improved to α > 0.8510 in [85], before the optimal α > 1 − εwas established in [109], which is exactly the critical Hölder exponent for Smed,3, as conjectured in[30]. The median-interpolating multi-scale transform, associated to Smed,3 has been developed andanalyzed in [30]. There are several distinguishable features in their construction. Firstly, unlike theso far mentioned transforms, the process is cell-centered and it is better to associate a piece-wiseconstant function to the sequence vj ∈ `∞(Z) rather than the linearly interpolating one (Fig. 1.3b),i.e.,

gj(·) =
∑

k∈Z

vjk1Ij,k(·), Ij,k = [k2−j, (k + 1)2−j).Secondly, Smed,3 is triadic and non-interpolatory, thus its transform is expensive. Finally, therestriction operator (taking the discrete median of the values at the three �ne-level intervals) isnonlinear. Despite all these �oddities�, the median-interpolating pyramid transform satis�es thetypical properties of a wavelet transform, such as coe�cient localization, coe�cient decay, andGaussian-noise removal. In the same time, it removes Cauchy noise with the same e�ciency asGaussian one.In [45, 46] a general theory for constructing linear as well as nonlinear pyramid and waveletdecomposition schemes for signal analysis and synthesis has been presented. The main assumptionscorrespond to the Harten approach and are: �perfect reconstruction�, which states that subdivisionfollowed by restriction returns the original signal, and nestedness of the scale grids. The proposedtheory unites di�erent tools for constructing multi-scale signal decomposition transforms, such aspyramids, wavelets, morphological skeletons and granulometries, and gives a complete characteri-zation of both the restriction and the subdivision operators between two adjacent levels.The necessity of considering manifold-valued data arises from real-life examples like: headings,orientations, rigid motions, deformation tensors, distance matrices, projections, subspaces, etc. Ifthe control points of a subdivision process are restricted to a certain manifold, surface, or a Liegroup, then, due to these restrictions, even when the original scheme is linear, its modi�cationbecomes nonlinear. The questions about how to modify the linear subdivision scheme and whichof its properties can be inherited by the associated manifold-valued scheme are discussed in theworks of Wallner et al. [102, 101, 105, 103, 52, 104], Grohs [47, 48, 50, 51, 49], and Yu et al.[110, 111, 112, 113]. The analysis of manifold-valued subdivision is based on its proximity to thelinear scheme it is derived from. This general principle has been used before, e.g. in the analysis ofnon-stationary linear [36], and stationary nonlinear [24, 109, 110] schemes, respectively.In [89] a generalized wavelet analysis on manifold-valued data is introduced. It is analogousto the wavelet analysis in R, but like in normal multi-scale transforms, there is an importantstructural distinction between the coarse-scale information, which belongs to the manifoldM andthe �ne scale information (i.e., the details) which consists of tangent vectors toM. The main ideaof the authors' approach is to project the manifold-valued data onto a tangent space Tp0(M) via



1. Introduction 9the Exp map, where p0 ∈ M is suitably chosen, then to apply the corresponding real-valued linearsubdivision scheme, and �nally to go back on M via the Log map. This procedure works onlylocally, i.e., when the data p(k) (this is the part of p which is necessary for obtaining p2k+1), andthe imputed point p2k+1 can be mapped onto a single tangent plane. Due to di�erent applications,both �point-concentrated� (based on the 4-point scheme Sc) and �interval-concentrated� (based on�average interpolation�) pyramids are considered. This approach is shown to work well on varioustest and real-life examples, but no mathematical proofs are given in [89].In [102] proximity conditions are de�ned, and general theorems for convergence and C1 smooth-ness of a nonlinear scheme T that satisfy proximity condition with an a�ne-invariant, interpolatory,linear, univariate subdivision scheme S are proved. Then, since S can be expressed in terms of re-peated a�ne averages avα(x, y) := (1− α)x+ αy, α ∈ R,the authors suggest in order to restrict the data to a manifold either to substitute the a�ne averagesby geodesic ones or to project them onto the manifold. Finally, it is proved that (under some localrestrictions) for a given S all the analogous geodesic schemes (both for a surface and for a matrixgroup of constant velocity), and all the analogous projecting schemes ful�l proximity conditions,and hence inherit the C0 and C1 smoothness of S. The paper [101] is a continuation of [102], wherethe proximity analysis is extended and applied for studying Ck smoothness, k ∈ N. Again, onlythe univariate case is considered, and the geodesic and projective constructions from the previousarticle are shown to inherit C2 smoothness, as well. The general framework from [101] leads toconvergence and smoothness (up to C2) results for the log-exponential and projection analogues oflinear subdivision schemes on particular manifolds [103, 52, 112, 110, 48, 104]. Finally, [47] extendsthe theory from [102] to the multivariate case. It is proved that the proximity conditions aresatis�ed for a large class of nonlinear multivariate schemes, namely the bivariate geodesic-averageand projection-average analogues (de�ned in [102]), the �closest point projection� as well as the Log-Exp analogue (de�ned in [52]). Thus, (under some local restrictions on the initial data) the aboveproximity schemes, de�ned on an arbitrary abstract Riemannian manifold or an arbitrary abstractLie group have the same smoothness (up to C1) as the underlaying linear subdivision scheme S.Apart from smoothness analysis, general stability theory for manifold-valued subdivision schemeshas been established [51], and used for verifying approximation order properties of the schemes[49, 113].The subdivision schemes, considered so far have been de�ned in the functional setting, i.e., thedata has always been assigned to an underlying grid and interpreted as a function on it. However,shape-preservation, normal multi-scale transforms, and manifold-valued subdivision are related tothe geometric properties of the data, as well. There are also examples of geometry-based subdivisionschemes and multi-scale transforms in the literature. In contrast to the functional setting, evenunivariate geometric schemes operate on vector data (vertex points, edge, and normal vectors ofpolygonal lines), and in a way that prevents us from analyzing them componentwise, i.e.,
S

(
x
y

)
6=
(

Sx
Sy

)
.A simple example are the circle-interpolating subdivision operators [41], where the newly generatedpoints are taken from circular arcs through the corresponding old points.



1. Introduction 10Up to our knowledge, all the investigated geometric subdivision schemes can be interpreted asversions of the interpolatory 4-point scheme with tension parameter [38]
(Sv)2k+1 = −w(vk−1 + vk+2) + (

1

2
+ w)(vk + vk+1) ∀v ∈ `∞(Z), ∀k ∈ Z, w ∈ (0,

1

8
). (1.2.5)In [40], a geometry-based subdivision operator that extends the �dual� Chaikin rule for lines has beeninvestigated. This scheme can be regarded as re�ning the support lines of the corresponding controlpolygon rather than re�ning the underlined set of control points, and generates C1 convex limitcurves from a strictly convex, closed initial polygon. A convexity-preserving bivariate interpolatory2-point Hermite-type scheme that generates C1 piecewise quadratic Bézier limit curves has beenpresented in [100]. In [81], the tension parameter w from (1.2.5) is adapted to the geometry ofthe four control points taking part in the de�nition of an inserted point, guaranteeing that thenewly inserted point does not coincide with any of its �parents�. The newly proposed geometricschemes remain local and in the same time eliminate artifacts and are convexity-preserving. In [32],the insertion rule is based on mid-point cubic interpolation like the rule for the linear scheme Sc(note that Sc is in the class of four-point schemes and corresponds to w = 1/16). However, theinterpolating polynomial is not built with respect to the uniform parameterization, but with respectto the centripetal and the chordal ones, that depend on the geometry of the control polygon. In[9] another nonlinear 4-point scheme based on local spherical coordinates has been constructed. Acircle-preserving version of the 4-point scheme has been presented in [93]. The latter interpolatingscheme, together with a certain relaxed approximating variant of it and four other (functional)variations of Sc have been considered in [10]. All the investigated six subdivision processes improveon the quality of the limit curves, compared to those generated by Sc, with the relaxed circle-preserving scheme providing the best visual performance. A subdivision scheme based on circulararc interpolation has been proposed in [41] and used as a prediction operator in a normal multi-scaletransform. A new family of subdivision schemes for curve interpolation can be found in [115]. Theirinsertion rule consists of three steps: �rstly, it adaptively places points on the edges of the coarse-scale polygon, then for each new point it computes a displacement vector, based on the unit normalsof the endpoints of the edge, and �nally, moves the point with respect to it. Unlike the normal MTsetting, the normal vectors proposed in [115] are vertex-centered and the size of the displacementsdepend solely on the old control polygon. The normal approach has been further developed in[116], where the displacement vectors are computed as weighted averages of the curvature normalvectors of the corresponding vertices. This additional rescaling of the normal component leads toreproduction of conic curves, a property that has already been studied in [11]. Edge-centered unitnormal vectors are used in [83] for generating nice-looking curvature-continuous curves of roundshapes. The proposed scheme can be viewed as the reconstruction step of the mid-point normalMT (Fig. 1.3a) with details depending in a geometric way on the coarse-scale data. Another classof re�nement schemes for curve interpolation, where the new-point positions are determined bysolving an optimization problem has been established in [70]. Since the authors there try to always�nd the smoothest possible re�ned polygons, the subdivision process is neither local nor stationary.So far geometry-based subdivision schemes and geometric multi-scale transforms have beeninvestigated in case studies only, and tools for their systematic analysis have yet to be developed.



1. Introduction 111.3 Main results and review of the content of the thesisThe main contributions of our thesis can be tentatively divided into three groups.
• Developing a general framework for Lipschitz stability analysis of both univariatesubdivision schemes S and their associated multi-scale transforms in the non-linear functional setting. For univariate linear subdivision, uniform convergence of thescheme S implies Lipschitz stability of S, which implies Lipschitz stability of the associatedmulti-scale transform M . Hence the stability analysis there comes for free, once uniformconvergence of the process is established. When nonlinearity is introduced, however, bothof the above implications are no longer true in general, and the stability analysis becomesan independent topic. Our main contribution is Theorem 2.2.8. Our approach di�ers fromthose used before, since we investigate the joint spectral radius based on the Jacobian of thederived scheme, rather than the derived scheme itself. In addition, we extend the stabilityanalysis to subdivision schemes, de�ned via piecewise di�erentiable Lipschitz functions, andthus, signi�cantly enlarge the application range. For instance, we are able to analyze medianinterpolating multi-scale transforms, as well as power-p subdivision schemes, which both donot �t within the previously known framework, described in [21]. These results led to thepublications [61, 59]. Finally, we propose a speci�c extension of the univariate analysis tomultivariate subdivision using local approximation techniques. Even though the theory isequivalent to the direct use of divided di�erence operators [15, 31], it enriches the set of an-alytic tools, and thus may lead to improvements in terms of speed and memory storage forthe numerical veri�cation of the convergence and stability criteria. In addition, some of theresults remain valid in the semi-regular case, as well, implying that the local approximationapproach is suitable for further theoretical generalizations.
• Investigating a general theory for normal multi-scale transforms for curves, andintroducing a globally convergent approximating normal multi-scale transform.Normal multi-scale transforms for curves, based on interpolating subdivision rules have beenanalyzed in [24] and the authors there left as an open question the study of B-spline normalMTs. Using it as a starting point, we manage to formulate and prove Theorem 4.2.3, thatcovers both the interpolating and approximating settings. It can be viewed as an extensionof the results from [24], when replacing order of polynomial reproduction with order of exactpolynomial reproduction in the statement. The two notions coincide for interpolating pro-cesses, but di�er for approximating ones. Moreover, we consider a wider class of admissiblenormal vectors, i.e., normal with respect to a point from the corresponding local piece of theinitial curve C, instead of normal only with respect to the corresponding coarse-scale edge.This research led to the paper [62]. Another important contribution is Theorem 4.3.1. It isknown that for the normal MT there is a tradeo� between global well-de�nedness, and fastdetail decay rate and high smoothness of the normal re-parameterization. In Theorem 4.3.1we show that the normal multi-scale transform based on the Chaikin operator S2 is globallywell-posed and convergent, where by well-posedness we mean that for any given point set ona continuous, recti�able curve, and for any newly predicted point, the normal line through itintersects the curve, and the obtained re�ned point set inherits the connectivity of the initialone. Moreover, in contrast to the globally convergent normal MT based on linear subdivision
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S1 [91], the S2 normal MT o�ers an additional advantage of �smoothing� the initial pointset. Thus, after �nitely many re�nement steps the S2 normal MT generates a point set v

jthat can be used as an initial point set for normal MT with other S, guaranteeing that theprocess remains well-de�ned on all re�nement levels. This is a practical recipe of constructingadmissible initial point sets for a normal MT based on an arbitrary subdivision rule.
• Improving the properties of standard normal MTs via new 2 point and 4 pointsubdivision schemes. In order to come up with a normal MT that is globally well-posed,yet possesses high order of detail decay and smoothness of the normal re-parameterization,we propose and investigate three generalizations of the prediction step. The �rst one isbased on locally adapted choice of the subdivision operators, the second one is built on thecombined action of several operators, and the third one uses non-linear, geometric operators.The adaptive algorithm we present exploits the advantages of the S2 normal MT, alreadymentioned at the end of the previous item. However, instead of having several re�nementsteps of pure S2 normal MT, followed by pure S normal MT, the algorithm checks a localcriteria to chose between the two prediction rules for the computation of every prediction point.This extra freedom improves the e�ciency of the algorithm in terms of memory storage andcompression rates, which is illustrated in several simulations. Our research in this directionled to the paper [60]. Another original idea is the introduction of combined normal MTs.Working in local frames, we see that the detail decay rate of the normal MT depends onthe normal component of the prediction, while the well-posedness and the smoothness ofthe re-parameterization depend on the tangential one. Moreover, early experimental dataindicated signi�cant improvement in the theoretically assured smoothness order of the normalre-parameterization, provided the normal vectors are chosen in a clever way. In particular,the normal re-parameterization of low order B-spline normal MTs reaches the smoothnessorder of the linear subdivision scheme itself, while, without additional assumptions on thenormals, the theory can assure only C2 limits. Therefore, we slightly generalize the normalMT paradigm and introduce another subdivision rule that we use for generating the normalvectors as a convex combination of the standard normal vectors, i.e., the ones with respectto the coarse-scale edges. Our main contribution is Theorem 5.2.2 which provides optimaldetail decay rate of order 4 and optimal C2,1 smoothness of the normal re-parameterizationfor the normal MT based on cubic B-spline prediction in the tangential direction, and classical4-point prediction in the normal direction. The normal vectors are generated by the linearscheme S1. Such a combined scheme outperforms each of the two corresponding �pure� MTs itis built of. Finally, we consider normal MT based on circle-preserving subdivision, and proveoptimal detail decay rate of order 4 for a particular member of this family that is an analog ofthe Neville's algorithm. The prediction rule is interpolatory and a geometrical generalizationof the 4-point scheme. Up to the knowledge of the author, Theorem 5.3.1 is the �rst resulton normal MTs involving nonlinear prediction operators.The outline of the remaining chapters of the thesis is as follows:In Chapter 2 a general theory on Lipschitz stability of univariate subdivision schemes and theirassociated multi-scale transforms is established. The classical linear univariate theory [31, 15, 37]is covered brie�y in Section 2.1, and then extended to the nonlinear case in Section 2.2, whichcoincides with the theoretical part of [61]. Subsection 2.2.1 sets up the notation and builds the



1. Introduction 13bridge between the linear theory and its future nonlinear generalization. Namely, the derivedscheme S [k] for a general k-o�set invariant scheme S is introduced and the commutation property
∆k ◦ S = S [k] ◦∆k is derived. With these tools at hand, an abstract theorem for Lipschitz stabilityof both the subdivision scheme S and its associated multi-scale transform M is formulated andproved in Section 2.2.2. Section 2.2.3 is devoted to creating e�cient numerical criteria for thepractical veri�cation of the conditions in Theorem 2.2.3. More precisely, the abstract contractivitycondition (2.2.5) is reformulated in terms of joint spectral radii associated with the �rst derivative
DS [k], k ≥ 1, of the corresponding derived schemes. This �di�erential� approach di�ers from the one,considered in [21], where the authors work directly with S [k], rather than with their Jacobians DS [k].In its present form (Theorem 2.2.4), the developed stability analysis is built on the di�erentiabilityof the functions fs, used to de�ne the action of the operator S. In manifold-valued subdivision,most of the applications (e.g., the log-exp analogues of linear subdivision schemes in Riemannianmanifolds) are based on even analytic subdivision operators, so the C1 assumption seems to bea negligible restriction there. Moreover, after the necessary adjustments to the speci�cs of themanifold-valued setting, the �di�erential� approach, together with analysis by proximity, give riseto a general theory on Lipschitz stability of manifold-valued subdivision schemes and multi-scaletransforms [51]. However, for subdivision processes, where the nonlinearity is introduced as a toolfor generating limits that preserve certain analytic properties of the initial data (shape-preservingschemes) or for making the processes more robust (statistical and morphological pyramids), thedi�erentiability assumption in Theorem 2.2.4 is often violated. Therefore, we spend the rest ofSection 2.2.3 on relaxing it, and, in the end, we derive our main theoretical result in the chapter(Theorem 2.2.8). The analyzed family of subdivision schemes in Theorem 2.2.8, de�ned via onlypiecewise di�erentiable Lipschitz functions fs is rich enough and covers most of the applications weare familiar with. This is illustrated in Section 2.3. There, we perform our stability analysis fortwo classes of shape-preserving subdivision schemes (convexity-preserving [71] and monotonicity-preserving [73]), median interpolating multi-scale transform [30], and the family of power-p schemes[95], respectively. Both the median interpolating multi-scale transform and the power-p schemes donot satisfy the assumptions in [21] and their Lipschitz stability has not been analyzed before.In Chapter 3, we use local polynomial approximation techniques for the analysis of multivariatesubdivision schemes. In higher dimensions the divided di�erence operator ∆k maps the vector space
`∞(Zs) to a tensor product of several copies Nk of it, where the number Nk increases exponentiallywith respect to both k and s. Our motivation for choosing the alternative analysis via local mapsis to improve the e�ciency of the numerical veri�cations of both the convergence and stabilitycriteria. In the regular case, ∆k can be related to a particular local approximation map, so thepresented approach is simply an abstraction of the classical theory, and is in line with the idea of�relative contractivity� in [15, 31], as well as with the use of a more general linear operator δ ratherthan ∆k in [4, 22]. On the other hand, the local approximation technique can be interpreted asrestricting the action of the subdivision operator S to some �nite dimensional subspace V ⊂ `∞(Zs)(namely quotient spaces of `∞(λ0) with respect to low-degree polynomial data, where λ0 ⊂ Zs isbounded). Thus our work can be viewed as a nonlinear generalization in the `∞ scalar-valued caseof the JSR theory, developed in [67] and further investigated in [57, 56]. (For a better insight intothe choices of V considered there, see the survey [13].) Extending upon the univariate results fromSection 2.2.2, a convergence and stability analysis of regular nonlinear multivariate subdivisionschemes is established in Section 3.1, and Section 3.2, respectively. As already observed for the



1. Introduction 14linear case in [18, 17], the local map approach and the divided di�erence approach give rise tothe same theoretical results. However, based on local approximations we propose new and versatileanalytic tools for the estimations of the corresponding spectral radii, that may lead to less expensivenumerical computations. This is illustrated in Section 3.3, where two di�erent families of bivariatesubdivision schemes, based on the univariate family Sp of power-p operators, are considered andproved to converge. The �rst one follows [22], while the second one is three-directional, or parallel.Section 3.4 is devoted to semi-regular triangulated meshes and to the limited extension for them ofthe already developed regular theory.In Chapter 4, we provide the theoretical analysis of normal MTs for curves with general linearpredictor S, and a more �exible choice of normal directions. Our theory extends upon previouswork [24, 91] on normal MTs with interpolating S. Furthermore, we present a globally convergentnormal MT that improves the regularity of the re�ned data. Finally, we propose an adaptivealgorithm for obtaining normal MTs with high detail decay rate and smoothness of the normal re-parameterization from an arbitrary initial sample, provided the initial curve C is smooth. Section 4.1contains basic introduction to normal MT for curves and reviews some of the existing literature onthe subject. The general analysis on normal MTs is developed in Section 4.2. Normal MT can beviewed as a particular instance of manifold-valued subdivision, where the generated surface is themanifold itself, and thus the �rst question is whether the process is well-de�ned. If the answer ispositive, the convergence and the smoothness of the transform are the next to be analyzed. Butsince the generated limit is given a priori (it is the initial curve C) and is smooth as a geometricobject (i.e., with respect to its arc-length parameterization), the analytic properties of the normalre-parameterization v(t) are the ones to be considered. Here v(t) is the limit, if exists, of the linearinterpolants vj(t) for the j-th level data vector v
j at the grid 2−jZ as j → ∞. The computationof the detail decay rate completes the analysis of the decomposition (analytic) step of the normalMT. The stability analysis is related to the reconstruction (synthesis) step of the normal MT, andis not performed in the section, as it seems to be very technical (see the last remark in Section 4.3).In Section 4.2.1 the notation is �xed and the necessary tools for our future analysis are established.More precisely, we justify the use of local frames for obtaining asymptotic results, de�ne a regularitycondition on the initial data set, that assures well-posedness of the normal MT, and describe theadmissible class of normal directions. In Section 4.2.2 the main result is formulated and only asketch of the proof is given. The full proof can be found in our paper [62]. In Section 4.3 weintroduce the normal MT based on the Chaikin operator S2, illustrate how the general theoryfrom the previous section is applied, and show that the S2 normal MT is globally convergent andimproves the regularity of the re�ned data. The material in this section consists of [62, Section 4.1]and [60, Section 2]. The goal of Section 4.4 is the invention of an adaptive procedure that gives riseto a well-de�ned normal MT that possesses high detail decay rates and regularity of the normalre-parameterization. At the beginning of the section it is shown that there is no single subdivisionoperator S, such that the S normal MT satis�es all the above conditions, e.g., it is shown that globalwell-posedness implies detail decay of order at most 2 and at most C1,1 normal re-parameterization.Then, Proposition 4.4.3 in Section 4.4.1 implies that no matter what the initial curve C, the initialsample v0 ⊂ C, and the considered prediction operator S are, �nitely many re�nements via the S2normal MT generate a point set vj, such that the S normal MT is well-de�ned for C, when sampledat vj. Hence, adaptivity provides a solution to the problem, performing the S2/S normal MT for asuitable choice of S. In Section 4.4.2 a more e�cient version in terms of memory storage and data



1. Introduction 15compression of the above adaptive idea is presented. The proposed algorithm allows for mixingthe two prediction rules within the same level of re�nement, and choosing between S2 and S forthe computation of every prediction point. Although the results from such relaxation cannot beguaranteed by theoretical arguments, the simulations in Section 4.4.3 indicate that the algorithmperforms well in practice. The material in Section 4.4.1, Section 4.4.2, and Section 4.4.3 coincidewith the one in the corresponding subsections of [60, Sections 3 and 4].In Chapter 5, we improve the analytic properties of particular normal MTs by relaxing variousparameters from their classical framework. Section 5.1 deals with the smoothness of the normalre-parameterization, while Section 5.2 and Section 5.3 deal with the detail decay rates. The mainobservation in the �rst direction, is that additional smoothness for the normal re-parameterizationcan be sometimes assured when the inequality Pe < s∞(S) holds for the prediction operator S. Inthis case, due to the relatively low order of exact polynomial reproduction, the size of the detailsis large, and di�erent choices of normal directions a�ect the regularity properties of the re�neddata. Thus, if appropriate normals are considered, the data regularity may increase signi�cantly.The bene�ts of the above idea are illustrated in Section 5.1.1 on normal MTs based on B-splinesubdivision operators. Such schemes are chosen because the predictor is very smooth, and in thesame time has order of exact polynomial reproduction only two, making the improvements veryvisible. The main observation in the second direction is that the two limitations on the detaildecay rate µ < min(s∞(S) + 1, Pe), imposed by the analysis in Theorem 4.2.3, can be treatedseparately. The �rst one is related to the regularity of the coarse-scale data, and thus to thesmoothness properties of the normal re-parameterization, again. The second one is related to theapproximation power of the prediction operator. Moreover, with respect to local frames, the �rst oneis sensitive to tangential displacements, while the second one is sensitive to normal displacementsof the multi-level data. The notion of combined normal MTs is introduced in Section 5.2, whereone uses an �updated� (as in Section 5.1) approximating predictor S in the tangent direction, andan interpolating predictor T in the normal one. The process can be viewed as S normal MT withadditional T -preprocessing in the normal direction, and on all levels the points generated by thecombined procedure coincide with those, generated by the pure S normal MT. Hence, the analysisof well-posedness, convergence and smoothness is the same, and only the detail decay rates aredi�erent. In Section 5.2.1 we test the new setup to normal MTs based on the combined action ofa B-spline Sp and a Deslauriers-Dubuc Tp prediction operators, and as in Section 5.1.1 we observeoptimal detail decay rates for small values of p. A remarkable consequence is the introduction ofthe hybrid (S3, S1, T3) subdivision operator, that incorporates the cubic B-spline S3 and the 4-pointoperators. This new scheme can be seen as another generalization of the 4-point scheme. Theassociated normal MT possesses optimal smoothness and detail decay rates that are by a wholefactor better than the detail decay rates of any of the both pure S3 and pure T3 normal MTs.Finally, in Section 5.3 we consider SNL normal MTs, where SNL is a non-linear geometric operator,related to interpolation via circle arcs. The setup can be viewed as a particular instance of acombined normal MT , associated with the linear operator S1 and SNL, thus related to the analysisin the previous section. We show that for any member SNL of the �circle-arc family� the detaildecay rate of the SNL normal MT is 3. Furthermore, for the SNL that is an analog of the Neville'sscheme, the corresponding normal MT has detail decay order 4, which is the optimal rate that canbe achieved by such transforms.



2. UNIVARIATE STABILITY ANALYSIS2.1 Linear subdivision schemes and multi-scale transformsIn the shift-invariant, linear setup, there is a complete theory [15, 31] about convergence, smooth-ness, and stability of a subdivision scheme S and its associated multi-scale transform M . Here, theanalysis of S and M signi�cantly simpli�es, due to the following implicationsUniform Convergence of S =⇒ Stability of S =⇒ Stability of M. (2.1.1)In this section, we closely follow [31].For the purpose of the thesis, we consider only r-adic, local, and shift-invariant subdivisionschemes. We start with the explicit de�nition of uniform convergence. The r-adic scheme S isuniformly convergent if for every sequence v0 ∈ `∞(Z), there exists a continuous function f : R→ Rsuch that
lim
j→∞
‖Sjv0 − f(

·
rj
)‖ = 0, (2.1.2)where f(·r−j) denotes the sequence {f(i/rj) : i ∈ Z}. Furthermore, the map

S∞ : `∞(Z)→ C(R), S∞v0 = f,should not be trivially zero. It is easy to check that (2.1.2) is equivalent to uniform convergencein L∞(R) of the piece-wise linear interpolations f j of the data vj = Sjv0. The limit is the samefunction f .The linear MRA is based on the order of polynomial reproduction of the underlying subdivisionscheme. It is de�ned as follows: S has order of polynomial reproduction P ∈ N, if S reproducesconstants (i.e., S1 = 1, where 1 ∈ `∞(Z) is the constant sequence 1), and P is the maximal numberwith the property: for every n < P , and every monic polynomial p(x) of degree n, there exists amonic polynomial q(x) of degree n such that
S(p|Z) = q|r−1Z.We also say that S reproduces polynomials of degree n, for every n < P . Now, if a shift-invariantlinear subdivision scheme S reproduces constants, then there exists a linear subdivision scheme S [1],called �rst derived scheme of S such that

∆1 ◦ S = S [1] ◦∆1. (2.1.3)Having established the necessary notation, the convergence and stability analysis of both S andits associate multi-scale transform is given via the following



2. Univariate stability analysis 17Theorem 2.1.1 (Theorem 3.2 from [31]). A univariate, linear, shift-invariant subdivision scheme
S is uniformly convergent, if and only if S reproduces constants and the spectral radius of its �rstderived scheme is less then one:

ρ(S [1]) = lim inf
j→∞

‖(S [1])j‖1/j = ρ < 1. (2.1.4)Note that, in order to compute the spectral radius of S [1], one may use an arbitrary norm onthe space of linear operators over `∞(Z), not necessarily the induced operator norm. There are twomore equivalent formulations of the contracting property (2.1.4). The �rst one is: there exists apositive integer n, and ρ ∈ (0, 1), such that for all v0 ∈ `∞(Z)

‖(S [1])nv0‖ ≤ ρ‖v0‖, (2.1.5)and the second one just writes the above inequality in terms of S rather then of S [1]:
‖∆1Snv0‖ ≤ ρ‖∆1v0‖. (2.1.6)Theorem 2.1.1 provides an explicit algorithm for checking convergence and stability of a uni-variate linear subdivision scheme, namely, we need to �nd the �rst n ∈ N such that ‖(S [1])n‖ < 1.From theoretical point of view the number of iterations n is not uniformly bounded (for every n ∈ None can always �nd a uniformly convergent scheme S such that ‖(S [1])n‖ ≥ 1), but from practicalpoint of view, if n > 10 no convergence occurs in the actual performance of the scheme, where onlya small number of steps are carried out.The Hölder regularity (or smoothness indicator) s∞(S) of S is de�ned by

s∞(S) := sup{s > 0 : f∞ ∈ Cs(R) for all v0 ∈ `∞(Z)}, (2.1.7)where Cs is the space of functions of Hölder smoothness s. The quantity (2.1.7) describes theminimally guaranteed Hölder smoothness for the limits f∞, generated by S. The smoothnessindicator s∞(S) is bounded from below by
s∞(S) ≥ − logr(ρ(S

[1])) > 0,and, under reasonable assumptions on the decay rate of the detail sequences dj, carries over tothe multi-scale transform M , as well. More precise statements on the exact Hölder exponent areavailable, and involve higher-order derived schemes (e.g., S [2] can be de�ned recursively as thederived scheme of S [1], and so on). We discuss them in Chapter 4.2.2 Theoretical approach to the non-linear case.This section extends the linear theory from Section 2.1 to the nonlinear setting, and repeats ourpaper [61, Section 2].



2. Univariate stability analysis 182.2.1 Notation and preliminary factsAlthough some of the things have already been mentioned, we prefer to repeat the important oneshere and back them up with explicit formulas, that appear to be useful in our proofs. We denoteby S both the subdivision scheme and the operator (rule) on `∞(Z) that generates it and it will beclear from the context which one we refer to at a given moment. The same holds for the multi-scaletransform M . We assume that S0 = 0 (throughout the chapter, 0 and 1 denote constant sequencesconsisting of zeros and ones, respectively), and that S is local and r-shift invariant. I.e., there arean integer L ≥ 0 and functions fs : R2L+1 → R, s = 0, 1, . . . , r − 1, such that the action of S isgiven by
(Sv)ri+s = fs(vi−L, . . . , vi+L), i ∈ Z, s = 0, . . . , r − 1. (2.2.1)Under the locality assumption, it is clear that S is well-de�ned on all real-valued sequences, and notjust on `∞(Z). The integer L characterizes the support size of S. Equivalently, r-shift invariancemeans that θr ◦ S = S ◦ θ, where θ is the shift operator given by (θv)i = vi+1.Following [109] we will call S o�set invariant if S(v+α1) = Sv+α1 for all v ∈ `∞(Z) and α ∈ R.O�-set invariance implies the reproduction of constant sequences, S(α1) = α1 (but not vice versa).Locality, r-shift invariance, and o�set invariance are often satis�ed for practically useful nonlinearsubdivision schemes. Moreover, these natural restrictions on the subdivision operator allow us totalk about nonlinear derived schemes, which has a central role in our stability analysis.Lemma 2.2.1. If S is local, r-shift and o�set invariant, then there exists a unique local (with thesame support size) and r-shift invariant operator S [1] (the so-called �rst-order derived subdivisionoperator associated with S) such that ∆ ◦ S = S [1] ◦∆.Proof. We give the explicit construction. For any �xed i ∈ Z, write
vi+l = vi + wi+l, wi+l =





∑l−1
m=0(∆v)i+m, l > 0,

0, l = 0,

−∑−1
m=l(∆v)i+m, l < 0.Now apply o�set invariance and (2.2.1):

(Sv)ri+s = (S(w + vi1))ri+s = vi + fs(wi−L, . . . , wi+L), s = 0, . . . , r − 1, (2.2.2)note that w depends on the arbitrarily �xed i ∈ Z. From this, we see that
(∆Sv)ri+s = fs+1(wi−L, . . . , wi+L)− fs(wi−L, . . . , wi+L) =: f [1]

s ((∆v)i−L, . . . , (∆v)i+L−1)for s = 0, . . . , r − 2, and
(∆Sv)ri+r−1 = (∆v)i + f0(−

−1∑

m=L

(∆v)i+1+m, . . . ,

L−1∑

m=0

(∆v)i+1+m)− fr−1(wi−L, . . . , wi+L)

=: f
[1]
r−1((∆v)i−L, . . . , (∆v)i+L).This shows the claim (uniqueness is obvious).



2. Univariate stability analysis 19The proof also shows that boundedness and di�erentiability properties of the functions fs de�n-ing S via (2.2.1) automatically carry over to the functions f [1]
s de�ning S [1]. The following statementis an immediate consequence of (2.2.2).Lemma 2.2.2. If S is local, r-shift and o�set invariant, with the functions fs in (2.2.1) globallyLipschitz continuous then for any two sequences v, ṽ ∈ `∞(Z) we have

‖Sv − Sṽ‖ ≤ ‖v − ṽ‖+ C‖∆(v − ṽ)‖.By induction, one can introduce higher-order derived schemes S [k]. More precisely, assume that
S is local and r-shift invariant, and that we have already de�ned the derived subdivision operators
S [1], . . . , S [k−1] for some k ≥ 2. Then, if S [k−1] satis�es

S [k−1](w + α1) = S [k−1]w +
α

rk−1
1 ∀w ∈ `∞(Z),using the same argument as in Lemma 2.2.1 we can construct a unique local and r-shift invariantoperator S [k] such that ∆k ◦ S = S [k] ◦ ∆k. We note without proof that the existence of S [k] isequivalent to requiring the following o�set invariance condition for polynomials of order k for S:

(S(v + p))i = (Sv)i + p(i/r) + q(i), i ∈ Z, (2.2.3)holds for all v ∈ `∞(Z), all polynomial sequences p generated by a polynomial p(·) of degree k − 1(i.e., given by pi = p(i), i ∈ Z), with some other polynomial q(·) of degree less than k − 1 (whosecoe�cients may depend on v and p). A less stringent condition requiring (2.2.3) only for v = 0is used in [21, 82] in connection with the study of quasi-linear subdivision schemes but does notimply the existence of the nonlinear derived subdivision operator S [k] as introduced above. Bothde�nitions are natural extensions of the notion of polynomial reproduction of order k for linearsubdivision schemes. Unfortunately, derived subdivision operators S [k] rarely exist for larger valuesof k. In many practical cases, although true for k = 1, (2.2.3) already fails for k = 2, e.g., themedian interpolating pyramid transform, introduced in Section 1.2. For some convexity-preservingschemes such as power-p methods, also S [2] exists. Despite these observations, we formulate ourresults for general k.Throughout the remainder of the chapter a subdivision operator S : `∞(Z) → `∞(Z) willbe called k-continuous (resp. k-Lipschitz, resp. k-di�erentiable) if S is local, r-shift invariant,o�set invariant for polynomials of order ≤ k, satis�es S0 = 0, and the functions fs which de�ne
S via (2.2.1) (and thus all f [m]

s de�ning the derived subdivision operators S [m], m = 1, . . . , k)are continuous (resp. globally Lipschitz, resp. continuously di�erentiable with bounded partialderivatives). Some comments are in order. First, k-di�erentiability implies the k-Lipschitz property,and the latter implies k-continuity. Also, since S0 = 0, a k-Lipschitz S is automatically bounded,in the sense that ‖S [m]v‖ ≤ C‖v‖ for all v and m = 0, . . . , k. Secondly, many of the used subdivisionschemes in practice are k-Lipschitz, but not k-di�erentiable. However, since the conditions of thestability theorem below require precise estimates for Lipschitz constants, additionally assuming theexistence (in some meaningful sense) of continuous �rst-order derivatives for f
[k]
s would simplifythis task. The technicalities triggered by the fact that the functions f

[k]
s possess only piecewisecontinuous partial derivatives will be discussed in Subsection 2.2.3 below. Finally, an extension toonly locally k-Lipschitz S and to `p(Z) norms for 1 ≤ p < ∞ (though possible, see [21, 82]) is notincluded below, partly because the considered examples do not require this generalization but alsoto keep the exposition more readable. The interested reader can �nd the `p extension in [41].



2. Univariate stability analysis 202.2.2 Main stability theoremIn this section, we formulate an abstract condition for Lipschitz stability of S and M which formallydoes not require any additional conditions on the subdivision operator. This is the main result of ourMaster's Thesis [58], built on a thorough analysis of the stability theorem for subdivision schemesin [21], and the proof of stability for the PPH multi-scale transform in [8].Theorem 2.2.3. Let S : `∞(Z) → `∞(Z) be a given subdivision operator. Assume that for somenonnegative constants C0, C1 ∈ R, some ρ ∈ (0, 1), and �nite k, n ∈ N, the inequalities
‖Sv − Sṽ‖ ≤ ‖v − ṽ‖+ C0‖∆k(v − ṽ)‖, (2.2.4)

‖∆k(vn − ṽn)‖ ≤ ρ‖∆k(v0 − ṽ0)‖+ C1

n∑

j=1

‖dj − d̃j‖, (2.2.5)hold for arbitrary v, ṽ ∈ `∞(Z) respectively for two arbitrary sets of multi-scale data {v0, d1, . . . , dJ , . . .},
{ṽ0, d̃1, . . . , d̃J , . . .}, with their multi-scale transforms de�ned by vj = Svj−1 + dj, ṽj = Sṽj−1 + d̃j,
j ≥ 1. Then M is stable, i.e.,

‖vJ − ṽJ‖ ≤ C2‖v0 − ṽ0‖+ C3

J∑

j=1

‖dj − d̃j‖ (2.2.6)holds with constants C2, C3 which depend on k, n, ρ, C0, and C1, but not on J ≥ 1.To obtain the stability result for the associated subdivision scheme S, set dj = d̃j = 0 in the aboveformulations.Proof. Fix 0 ≤ j ≤ J − 1. (2.2.4) gives rise to
‖vj+1 − ṽj+1‖ = ‖Svj + dj+1 − (Sṽj + d̃j+1)‖ ≤ ‖Svj − Sṽj‖+ ‖dj+1 − d̃j+1‖

≤ ‖vj − ṽj‖+ C0‖∆k(vj − ṽj)‖+ ‖dj+1 − d̃j+1‖.Applying this result iteratively J times we derive
‖vJ − ṽJ‖ ≤ ‖vJ−1 − ṽJ−1‖+ C0‖∆k(vJ−1 − ṽJ−1)‖+ ‖dJ − d̃J‖

≤ ‖v0 − ṽ0‖+ C0

J−1∑

i=0

‖∆k(vi − ṽi)‖
︸ ︷︷ ︸

:=A

+

J∑

i=1

‖di − d̃i‖. (2.2.7)Now to prove our theorem, it su�ces to show that A can be estimated by the expression in theright-hand side of (2.2.6). Let s := bi/nc, i.e., s is the largest integer not greater than i/n. Then(2.2.5) implies
‖∆k(vi − ṽi)‖ ≤ ρs‖∆k(vi−sn − ṽi−sn)‖+ C1

s−1∑

r=0

ρr
(r+1)n−1∑

t=rn

‖di−t − d̃i−t‖, (2.2.8)



2. Univariate stability analysis 21and after summation and using ρ < 1 we derive
A ≤ C(ρ)

( n−1∑

j=0

‖∆k(vj − ṽj)‖+
J∑

j=1

‖dj − d̃j‖
)
.To estimate ‖∆k(vj − ṽj)‖ for j = 1, . . . , n− 1, we use (2.2.4):

‖Svj−1 − Sṽj−1‖ ≤ ‖vj−1 − ṽj−1‖+ C0‖∆k(vj−1 − ṽj−1)‖ ≤ (2kC0 + 1)‖vj−1 − ṽj−1‖,which, applied j times, gives rise to
‖∆k(vj − ṽj)‖ ≤ 2k‖Svj−1 − Sṽj−1‖+ 2k‖dj − d̃j‖

≤ 2k(2kC0 + 1)‖vj−1 − ṽj−1‖+ 2k‖dj − d̃j‖

≤ 2k(2kC0 + 1)j‖v0 − ṽ0‖+ 2k
j−1∑

i=0

(2kC0 + 1)i‖dj−i − d̃j−i‖.Thus,
‖∆k(vj − ṽj)‖ ≤ 2k(2kC0 + 1)n−1‖v0 − ṽ0‖+ 2k(2kC0 + 1)n−2

n−1∑

i=1

‖di − d̃i‖. (2.2.9)Combining (2.2.7), (2.2.8), (2.2.9) and
J−1∑

i=0

ρs ≤
∞∑

i=0

ρs =

∞∑

i=0

ρbi/nc = n

∞∑

i=0

ρi =
n

1− ρ
,we derive

‖vJ − ṽJ‖ ≤ ‖v0 − ṽ0‖+ C0

J−1∑

i=0

ρs
(
2k(2kC0 + 1)n−1‖v0 − ṽ0‖+ 2k(2kC0 + 1)n−2

n−1∑

j=1

‖dj − d̃j‖
)

+ C1

J∑

i=1

s−1∑

r=0

ρr
(r+1)n−1∑

t=rn

‖di−t − d̃i−t‖+
J∑

i=1

‖di − d̃i‖

≤
(
1 +

2kC0(2
kC0 + 1)n−1n

1− ρ

)
‖v0 − ṽ0‖+ C3

J∑

j=1

‖dj − d̃j‖.The constant C3 is �nite, and does not depend on J because one can easily check that for any�xed 1 ≤ j ≤ J the coe�cient in front of ‖dj − d̃j‖ is of the same type as the coe�cient in frontof ‖v0 − ṽ0‖, i.e., a �nite sum of geometric series with respect to ρ times some uniformly boundedconstants.Let us comment on the assumptions in Theorem 2.2.3. First of all, the validity of the conditionsof this statement automatically implies convergence of S and M . This can be seen if one sets
ṽ0 = d̃1 = d̃2 = . . . = 0, and compares with the statements in [21] or [84]. The constant ρ < 1 also



2. Univariate stability analysis 22provides a lower bound for the Hölder smoothness of the limiting functions corresponding to S and
M (to speak about convergence of the multi-scale transform M , a natural su�cient condition is torequire that ∑∞

j=1 ‖dj‖ <∞).The condition (2.2.4) depends only on the subdivision operator S, and is usually easy to verify.Due to Lemma 2.2.1, this condition automatically holds with k = 1 for any 1-Lipschitz S. A similarstatement can be obtained for k = 2 (assuming that S is 2-Lipschitz). However, it is easy to showthat even in the linear case (2.2.4) cannot be ful�lled with k ≥ 3, unless the mask of S is non-negative and S has order of polynomial reproduction at least k [58]. A reformulation of condition(2.2.4) so that it holds in a sensible way for all k might be possible but since in case studies we haveso far always used Theorem 2.2.3 with either k = 1 or k = 2, we will not stress this issue further.2.2.3 Nonlinear spectral radius conditionsThe crucial second condition (2.2.5) in Theorem 2.2.3 is, as a rule, harder to verify than (2.2.4). Ifformulated for the case of subdivision stability (dj = d̃j = 0) it essentially represents a contractionproperty, similar to (2.1.4). More precisely, if S is k-Lipschitz, i.e., if S [k] exists and all the f [k]
s , s =

0, . . . , r−1 that de�ne it are Lipschitz continuous, the condition (2.2.5) just states that some power
(S [k])n is globally strictly contracting, i.e., (S [k])n possesses a Lipschitz constant strictly less than onefor some �nite n (compare with (2.1.5)). In this subsection we present a convenient reformulationof the contraction property (2.2.5), based on nonlinear spectral radii.Let us �rst consider the case when the subdivision operator S is k-di�erentiable. Let two setsof multi-scale data as in Theorem 2.2.3 be given. De�ne absolutely continuous paths in `∞(Z)

γ0(t) := ∆k(tv0 + (1− t)ṽ0), δj(t) := ∆k(tdj + (1− t)d̃j), j ≥ 1, t ∈ [0, 1],with their k-th order di�erences as endpoints. Obviously, the derivatives
dγ0

dt
= ∆k(v0 − ṽ0),

dδj

dt
= ∆k(dj − d̃j), j ≥ 1,are constant (and thus uniformly bounded in `∞(Z)) on [0, 1]. For each t ∈ [0, 1], consider the

k-th-order derived analog {γ0(t), . . . , γj(t), . . .} of the multi-scale transform M :
γj(t) = M [k](γj−1(t), δj(t)) := S [k]γj−1(t) + δj(t), j ≥ 1.The newly created paths γj : [0, 1] → `∞(Z) remain absolutely continuous, with derivatives be-longing to L∞ and a.e. given by the formula

dγj

dt
= DS

[k]

γj−1(t)

dγj−1

dt
+

dδj

dt

= DS
[k]

γj−1(t)

dγj−1

dt
+∆k(dj − d̃j),where DS

[k]
γ is a bounded linear operator on `∞(Z) representing the Frechet derivative of S [k] at γ.Unless S is linear, γj(t) 6= ∆k(tvj + (1 − t)ṽj) for j ≥ 1, t ∈ (0, 1). However, at the end points ofthe paths the equalities γj(0) = ∆kṽj and γj(1) = ∆kvj always hold.



2. Univariate stability analysis 23The above recursive formula leads to the introduction of a nonlinear spectral radius associatedwith M (more precisely with the associated k-th order derived transform M [k]) which we de�ne asfollows
ρs(M, k) := lim inf

j→∞
sup

(w0,w1,...,wj−1)∈(`∞(Z))j
‖DS

[k]

wj−1DS
[k]

wj−2 . . .DS
[k]
w0‖1/j . (2.2.10)Note that in this de�nition the supremum is taken over all possible choices of wl.For S it is more appropriate to set

ρs(S, k) := lim inf
j→∞

sup
w∈`∞(Z)

‖DS
[k]

(S[k])j−1w
DS

[k]

(S[k])j−2w
. . .DS [k]

w ‖1/j . (2.2.11)To see the di�erence with (2.2.10), set w0 = w, wl = (S [k])lw, l ≥ 1, and note that the wl are nownot arbitrary but depend on a single w ∈ `∞(Z) (and the supremum is only taken with respect tothe latter). Thus, we generally have ρs(S, k) ≤ ρs(M, k) but in many cases the inequality is strict.Similar spectral radii (based on S [k] rather than on DS [k]) have been de�ned in [21, 82] and [84]for the investigation of convergence and smoothness of nonlinear univariate subdivision schemes S.In both papers, the assumption was that, for some k ≥ 1 and all l = 0, . . . , k, there exist familiesof data-dependent bounded linear subdivision operators {S [l]
v }v∈`∞(Z) on `∞(Z), such that

∆l(Sv) = S [l]
v ∆lv.This is weaker than assuming the existence of nonlinear l-th order derived operators S [l] for all l ≤ kbecause despite the fact that by de�nition

∆l(Sv) = S [l]w = S [l]
v w, w = ∆lv,the allowed dependence of S [l]

v on v and not only on w = ∆lv gives greater �exibility (but also addsambiguity). In [21, 82], the nonlinear spectral radius
ρc(M, k) := lim inf

j→∞
sup

v0,...,vj−1∈`∞(Z)

‖S [k]

vj−1S
[k]

vj−2 . . . S
[k]
v0 ‖1/j ,was introduced while in [84]

ρc(S, k) := lim inf
j→∞

sup
v∈`∞(Z)

‖S [k]

Sj−1vS
[k]

Sj−2v . . . S
[k]
v ‖1/j (2.2.12)was proposed. Assuming ρc(M, k) < 1 is a su�cient condition for convergence of the subdivisionscheme S, and the value of − logr(ρc(M, k)) provides a lower bound for the Hölder smoothnessof the limit function (certainly, the weaker assumption ρc(S, k) < 1 yields the same conclusions).Following the proof in [21], it is not hard to verify that ρc(M, k) < 1 also ensures the convergenceof the multi-scale transform M for arbitrary data {v0, d1, d2, . . .} if∑∞

j=1 ‖dj‖ <∞.Having introduced the notions of joint spectral radii, we can prove a spectral radius version ofTheorem 2.2.3.Theorem 2.2.4. Let S be k-di�erentiable, and assume that (2.2.4) is satis�ed with this k ≥ 1.Then



2. Univariate stability analysis 24(i) S is stable if ρs(S, k) < 1,(ii) M is stable if ρs(M, k) < 1.Proof. Using the notation above, for any two sets of multi-scale data {v0, d1, . . . , dJ , . . .} and
{ṽ0, d̃1, . . . , d̃J , . . .}, we can write
∆k(vn − ṽn) = γn(1)− γn(0) =

∫ 1

0

dγn

dt
dt

=

∫ 1

0

(
DS

[k]
γn−1(t)

dγn−1

dt
+∆k(dn − d̃n)

)
dt

=

∫ 1

0

(
DS

[k]
γn−1(t)DS

[k]
γn−2(t)

dγn−2

dt
+DS

[k]
γn−1(t)∆

k(dn−1 − d̃n−1) + ∆k(dn − d̃n)

)
dt

= . . . =

∫ 1

0

(
Πn−1

0 (t)∆k(v0 − ṽ0) +

n∑

j=1

Πn−1
j (t)∆k(dj − d̃j)

)
dt,where for short Πn−1

j (t) = DS
[k]
γn−1(t)DS

[k]
γn−2(t) . . .DS

[k]

γj(t) for j ≤ n − 1 (for j = n it is just theidentity operator). Thus, we have
‖∆k(vn − ṽn)‖ ≤ (max

t∈[0,1]
‖Πn−1

0 (t)‖)‖∆k(v0 − ṽ0)‖

+2k
n∑

j=1

(max
t∈[0,1]

‖Πn−1
j (t)‖)‖dj − d̃j‖.Obviously, if ρs(M, k) < 1, then for any ρs(M, k) < ρ̃ < 1, there is a constant C = Cρ̃ such that

‖DS
[k]

wj−1DS
[k]

wj−2 . . .DS
[k]
w0‖ ≤ Cρ̃j ,independently of the choices for wl. In particular, maxt∈[0,1] ‖Πn−1

j (t)‖ ≤ Cρ̂n−j for all j = 0, . . . , n,and (2.2.5) follows by choosing n such that ρ := Cρ̃n < 1.The same consideration applies to the case dj = d̃j = 0 in (2.2.5), i.e., if only the stability of Sis of concern.Now the result follows from Theorem 2.2.3Remark 2.2.5. The spectral radius conditions of Theorem 2.2.4 are close to optimal, i.e., when Sis k-di�erentiable, the opposite (strict) inequality ρs(M, k) > 1 implies the existence of counterex-amples to the stability inequality of the multi-scale transform M while ρs(S, k) > 1 implies thatstability for S should not be expected, i.e.,
sup

v,ṽ∈`∞(Z),v 6=ṽ

‖SJv − SJ ṽ‖
‖v − ṽ‖ −→ ∞, J →∞.



2. Univariate stability analysis 25We sketch the argument for S. If ρs(S, k) > 1 then for each large enough J , there is a sequence
w ∈ `∞(Z) such that

‖DS
[k]

wJ−1 . . .DS
[k]

w0‖ > ρ̂J ,where wj = (S [k])jw, j = 0, . . . , J − 1, and ρ̂ is chosen such that 1 < ρ̂ < ρs(S, k). By the de�nitionof the operator norm this means that there is a u ∈ `∞(Z) with unit norm ‖u‖ = 1 such that
‖uJ‖ > ρ̂J , uJ := DS

[k]

wJ−1 . . .DS
[k]

w0u.More precisely, without loss of generality we can assume that there is an index lJ ∈ Z such that
(uJ)lJ > ρ̂J . Using the locality and r-shift-invariance of S (and thus of S [k] and DS [k])w as well, andthe continuity of all Df

[k]
s it is clear that we have a similar inequality (uJ)lJ > 1

2
ρ̂J for all w in asmall open neighborhood W of the initial w, and that this still holds true if we change the entries wland ul of any of these sequences outside a �xed interval l0−L1 ≤ l ≤ l0+L1 of indices (without lossof generality, we can assume that max

l0−L1≤l≤l0+L1

|ul| = 1). By using a trivial continuation argument,this allows us to choose the sequences v, z ∈ `∞(Z) such that (∆kv − w)l = (∆kz − u)l = 0 for all lin this speci�ed interval, and ‖z‖ ≤ A‖∆kz‖ ≤ A holds with some absolute constant A.Set ṽ := v + λz, and consider v(t) := v + t(ṽ − v) = v + tλz. Fix λ > 0 small enough so that
w(t) := ∆kv(t) = w + tλu is completely in W . De�ne vj(t) = Sjv(t), vj = vj(0), ṽj = vj(1), and
wj(t) = ∆kvj(t) = (S [k])jw(t), j ≥ 0. Then

‖vJ − ṽJ‖ ≥ 2−k‖∆kvJ(1)−∆kvJ(0)‖ = 2−k

∥∥∥∥
∫ 1

0

dwJ(t)

dt
dt

∥∥∥∥

≥ λ2−k

∣∣∣∣∣∣∣

∫ 1

0

((DS [k])wJ−1(t) . . . (DS [k])w0(t)u︸ ︷︷ ︸
=uJ(t)

)lJ dt

∣∣∣∣∣∣∣
≥ λ2−k−1ρ̂J ≥ λA−12−k−1ρ̂J‖z‖ ≥ cρ̂J‖v0 − ṽ0‖.For J →∞, this shows that S cannot be stable.The adjustment for the case of M is simple. For given wj (which are now, in contrast to theprevious case, not related to each other) such that

‖DS
[k]

wJ−1 . . .DS
[k]

w0‖ > ρ̂J ,where 1 < ρ̂ < ρs(M, k), we choose δj := wj − S [k]wj−1 such that wj = M [k](wj−1, δj) for all j ≥ 1.Then, using the same localization trick, we introduce the appropriate sequences z, u = ∆kz, vj,and dj such that ∆kvj = wj, ∆kdj = δj , ‖z‖ ≤ A‖∆kz‖ ≤ A. With this, considering the two setsof multi-scale data
{v0, d1, . . . , dJ}, {v0 + λz, d1, . . . , dJ}, λ > 0,will establish the failure of Lipschitz stability for M .Note that the counterexample for M is rather exotic, as the detail sequences dj are determinedfrom the wj via the formulas ∆kdj = δj = wj − S [k]wj−1. Thus, a property such as ‖dj‖ → 0which is often part of the application scenario, does not necessarily hold for the above constructed



2. Univariate stability analysis 26counterexample. It is a topic of future research to specify the notion of stability for multi-scaletransforms in such a way that available a priori information on the details dj is properly taken intoaccount.Remark 2.2.6. For k-di�erentiable S, Theorem 2.2.4 implies the stability result for S in [21].We will concentrate on the case k = 1, i.e., we will assume that S is 1-di�erentiable, andsketch the veri�cation of ρs(S, 1) < 1 from the assumptions of [21] (as was mentioned above, for
k = 1 the �rst condition (2.2.4) is almost automatic). The stability theory in [21] assumes thefollowing. Let the subdivision operator S preserve at least constant sequences, and write it inthe form Sv = Svv, where {Sv}v∈`∞(Z) is the above-mentioned family of bounded linear but data-dependent operators also preserving constants. Concerning the resulting family of �rst-order derivedoperators {(Sv)

[1]}v∈`∞(Z), two assumptions are made in [21]:
‖(Sv)

[1] − (Sṽ)
[1]‖ ≤ C‖v − ṽ‖, ∀ v, ṽ ∈ `∞(Z), (2.2.13)and

ρc(M, 1) < 1. (2.2.14)Obviously, (2.2.14) implies ‖(Svj−1)[1] . . . (Sv0)
[1]‖ ≤ Cρ̃j , with some ρ̃ < 1, some constant C, andall j ≥ 1. Since S is 1-di�erentiable, having that DS

[1]
w is the derivative of S [1] at w = ∆v, we canuse S [1]w = S

[1]
v w and formally di�erentiate:

DS [1]
w = D(S [1]

v )ww + S [1]
v .It is not hard to see that due to the locality and r-shift invariance of S, the de�nition of S [1]

v , andthe di�erentiability assumptions on the f [1]
s , condition (2.2.13) implies the boundedness of D(S

[1]
v )wsuch that

‖D(S [1]
v )ww‖ ≤ C‖w‖holds. Now apply this to estimating the operator products in the de�nition of ρs(S, 1). Set vj = Sjv,

wj = ∆vj . Then
Πj := DS

[1]

wj−1 . . .DS
[1]

w0 = ((Svj−1)[1] + Ej−1) . . . ((Sv0)
[1] + E0)

=

j−1∑

l=0

(Svj−1)[1] . . . (Svl+1)[1]ElΠl + (Svj−1)[1] . . . (Sv0)
[1],where El = D(S

[1]

vl
)wlwl is a small perturbation since

‖El‖ ≤ C‖wl‖ = C‖∆vl‖ ≤ Cρ̃laccording to the convergence theory. Moreover,
‖(Svj−1)[1] . . . (Svl+1)[1]‖ ≤ Cρ̃j−l−1,and using the notation Al := ‖Πl‖, Bj = 1 +

∑j
l=0Al, we obtain the recursions

Aj ≤ Cρ̃j(1 +

j−1∑

l=0

Al) = Cρ̃jBj−1, Bj ≤ (1 + Cρ̃j)Bj−1, j ≥ 0.



2. Univariate stability analysis 27This gives Bj ≤ C, and eventually Aj ≤ Cρ̃j , independently of the choice of v = v0. Thus,
ρs(S, 1) ≤ ρ̃ < 1 as well. A closer look at the argument also shows that (2.2.14) can be replacedby the weaker condition ρc(S, 1) < 1. The weakness of the stability theory in [21] is the additionalcondition (2.2.13) which is rarely satis�ed for nonlinear subdivision schemes. In particular, it is nottrue for the power-p schemes as well as for the median interpolating pyramid transform. Details ofthe argument will be given for the power-p schemes in Section 2.3.3.The main drawback of Theorem 2.2.4 is that it cannot be directly applied in practice. In mostof the schemes, the functions fs that de�ne them are only piecewise continuously di�erentiable. Inorder to apply the developed machinery to k-Lipschitz schemes of this type, we need an extension ofthe chain rule for the superposition γ̃ := φ ◦ γ : [0, 1]→ R of a Lipschitz curve γ : [0, 1]→ Rm anda piecewise C1 Lipschitz function φ : Rm → R. Here m is some �xed integer which may vary fromapplication to application. Obviously, γ̃ is again Lipschitz, and thus possesses a derivative γ̃′ a.e.on [0, 1]. The question of concern is whether this derivative can be computed a.e. from derivativesof γ and φ in a meaningful way. Since the image of γ in Rm has measure zero this question doesnot have a simple answer if no additional conditions on φ are made.We introduce a class C1

pw of piecewise di�erentiable Lipschitz functions which is su�cientlybroad to cover the applications of this manuscript (as a matter of fact, we do not know o�-hand ifthere are interesting examples that require more than what is proved below). A continuous function
φ : Rm → R belongs to C1

pw if there exists a locally �nite polyhedral partition {Ωi} of Rm suchthat the following conditions hold:(a) Each Ωi is a closed connected polyhedral domain in Rm, with non-empty interior Ω0
i . Thepolyhedra Ωi may be unbounded and non-convex. The pairwise intersections Ωij := Ωi ∩ Ωj ,

i 6= j, are either empty or represent d-dimensional polyhedral faces, d = 0, 1, . . . , m− 1, withnon-empty interior Ω0
ij as subsets of the associated d-dimensional hyperplane (if d = 0, i.e.,if Ωij is a point, then we set Ω0

ij = Ωij). Consequently, if we set Ωii = Ωi then {Ω0
ij} is apartition of Rm into pairwise disjoint sets.(b) The restriction of φ to any of the non-empty open sets Ω0

ii = Ω0
i and Ω0

ij , i 6= j, is C1, and auniform bound on all occurring derivatives exists.For such φ, we call Dφ : Rm → Rm an admissible derivative if Dφ|Ω0
ij
is continuous, and for any

x ∈ Ω0
ij the directional derivative of φ|Ω0

ij
in a direction along the face Ωij given by a unit vector uequals Dφ(x)u (if Ωij is a point (d = 0) then there is no restriction on the value of Dφ).Lemma 2.2.7. Let φ ∈ C1

pw, and let Dφ : Rm → Rm be an admissible derivative of φ. Then forany Lipschitz curve γ : [0, 1]→ Rm the superposition γ̃ := φ ◦ γ : [0, 1]→ R satis�es
γ̃′ = (Dφ ◦ γ)γ′ (2.2.15)a.e. on [0, 1].Proof. Since γ̃ is Lipschitz on [0, 1], the set E := {t ∈ (0, 1) : γ̃′ exists} has full measure. Set

Eij := {t ∈ (0, 1) : γ(t) ∈ Ω0
ij}∩E. Then ∪i,jEij = E. If Eij has measure zero, set Fij = Eij . In allother cases, let Fij be the set of isolated points in Eij , a set of measure zero. Let t0 ∈ Eij\Fij , and



2. Univariate stability analysis 28assume that Ωij is not a point (d > 0). Then there is a sequence tn → t0 of points tn ∈ Eij ⊂ Ω0
ij ,

tn 6= t0, n = 1, 2, . . ., for which
φ(γ(tn))− φ(γ(t0)) = Dφ(ξn)(γ(tn)− γ(t0)) = Dφ(ξn)γ

′(τn)(t− t0)holds with certain ξn ∈ Ω0
ij , ξn → γ(t0), and τn ∈ (0, 1), τn → t0. This follows from the admissibilityof Dφ, the assumed C1 property of φΩ0

ij
, and the di�erentiability of γ at t0. Thus,

γ̃′(t0) = lim
n→∞

φ(γ(tn))− φ(γ(t0))

tn − t0
= lim

n→∞
Dφ(ξn)γ

′(τn) = Dφ(γ(t0))γ
′(t0).If Ωij is a point (d = 0), then evidently γ̃′(t0) = 0 and γ′(t0) = 0 for such a t0, and the aboveequality holds for any choice of Dφ(γ(t0)). This proves (2.2.15) for all t0 ∈ ∪i,jEij\Fij = E\∪i,j Fij .Since the measure of ∪i,jFij is zero, the Lemma is proved.We note that the proof also goes through if the underlying polyhedral partition is deformedby any non-degenerate C1 di�eomorphism of Rm. For the applications in our thesis, the muchsimpler case of a partition obtained by the intersection of �nitely many straight lines in R2 su�ces.Moreover, in these applications, de�nitions of Dφ on the subsets Ω0

ij , i 6= j, are obtained bycontinuous extension from Dφ|Ω0
i
resp. Dφ|Ω0

j
which eases the computation of numerical estimatesfor the spectral radii of interest.Let Σk denote the class of k-Lipschitz subdivision schemes S, where each f

[k]
s , s = 0, . . . , r − 1,is the composition of �nitely many functions from C1

pw. Then the statement of Theorem 2.2.4 holdsfor any S ∈ Σk if in the de�nition of the spectral radii we use operators DS
[k]
v that are de�ned usingadmissable derivatives for the C1

pw functions the f
[k]
s , s = 0, . . . , r − 1, are composed of. ApplyingLemma 2.2.7 at each subdivision level, the proof follows line by line the proof of Theorem 2.2.4.Theorem 2.2.8. Let S ∈ Σk, and assume that (2.2.4) is satis�ed with this k ≥ 1. Then(i) S is stable if ρs(S, k) < 1,(ii) M is stable if ρs(M, k) < 1.We conclude the section with some remarks, that are in order. Note that the statement aboutthe sharpness of the spectral radius criterion forM in Remark 2.2.5 remains true if the required largevalue of ‖DS

[k]

wJ−1 . . .DS
[k]
w0‖ can be found by derivative calculations for the involved C1

pw functionsthat only use arguments belonging to the domains Ω0
i , and not to the lower-dimensional Ω0

ij . This isobvious from the proof given for Remark 2.2.5. In the examples in the next section, this additionalassumption can easily be veri�ed.As it will become more evident from the examples in Section 2.3, due to the assumed localityand r-shift invariance of S (and consequently of S [k] and (DS [k])v), the estimation of the spectralradii in Theorem 2.2.8 reduces to the study of the dynamics of certain low-dimensional nonlineariterated function systems (IFS). We use relatively crude estimates involving a few iterations of suchnonlinear IFS, a thorough study of the dynamical systems aspect is left for future work.



2. Univariate stability analysis 29In manifold-valued subdivision, most of the applications (e.g., the log-exp analogues of linearschemes in Riemannian manifolds) deal with even analytic subdivision operators, so the C1 as-sumption in Theorem 2.2.4 is a negligible restriction there. Moreover, combining the �di�erentialapproach� with analysis by proximity, a general theory on Lipschitz stability of manifold-valuedsubdivision schemes and multi-scale transforms can be established [51]. However, our stability re-sults and those from [51] are quite di�erent, due to the speci�cs of the manifold-valued setting,where algebraic factorizations like Lemma 2.2.1 do not hold, and where the implications (2.1.1) arepreserved by the assumed proximity conditions.The framework developed in this subsection gives rise to an intimate connection between thestability of a nonlinear subdivision operator and the approximation order properties of the corre-sponding subdivision scheme (see [49] for details). Thus, the �di�erential approach� also allows forparticularly short and natural proofs of the latter, once stability has been established.2.3 ExamplesIn this section, we illustrate how the theory from Section 2.2 is applied in practice for analyzing theLipschitz stability of particular subdivision schemes and multi-scale transforms. The �rst exampleis included because of the straightforwardness of its stability analysis, and because it avoids alarge amount of technical computations in the proof, making the argument easy to follow. Theother two considered examples emphasize a couple of points. Firstly, they show the failure ofthe implication (2.1.1) in the non-linear setting, and secondly, they demonstrate that our stabilityanalysis is more generally applicable than the one in [21]. Indeed, the dyadic median-interpolatingpyramid transform is stable, but its associate multi-scale transform is not, the power-p schemes Sp,
p > 4 are uniformly convergent, but not stable, and none of those subdivision schemes satisfy thecondition (2.2.13), needed for the framework of [21].2.3.1 Shape-preserving subdivision schemesIn this subsection, we consider two classes of shape-preserving subdivision processes, namely con-vexity [71] and monotonicity [73] preserving schemes. The results we present cover those from[72] (Theorem 7 and Theorem 9, respectively). In addition, we prove stability of the multi-scaletransform, associated with convexity preserving schemes. The text is taken from our paper [59].Following [71] we de�ne the following family of convexity preserving subdivision schemes

(Sv)2i = vi, (Sv)2i+1 =
vi + vi+1

2
− F̃ (∆2vi−1,∆

2vi), (2.3.1)where
F̃ (x, y) =





F (x, y), ∀x, y > 0
−F (−x,−y), ∀x, y < 0
0, otherwise , 0 ≤ F (x, y) ≤ 1

4
min{x, y}. (2.3.2)



2. Univariate stability analysis 30Theorem 2.3.1. Let F : R+ × R+ → [0,∞) be C1
pw and homogeneous of degree 1, i.e.,

F (λa, λb) = λF (a, b), ∀λ, a, b ∈ R
+.Then the subdivision scheme S given by (2.3.1)-(2.3.2), and its associated multi-scale transform Mare Lipschitz stable.Proof. Since F is homogeneous of degree 1, we can apply the Euler identity

F (a, b) = a
∂F

∂x
(a, b) + b

∂F

∂y
(a, b).This, together with (2.3.2) give rise to

∂F

∂x
(a, b),

∂F

∂y
(a, b) ≥ 0,

∂F

∂x
(a, b) +

∂F

∂y
(a, b) ≤ 1

4
, ∀ a, b ∈ R

+. (2.3.3)Hence, if we de�ne
∂F̃ /∂x(a, b) = ∂F̃ /∂y(a, b) = 0, ∀a, b : ab ≤ 0,we derive that F̃ ∈ C1

pw with partial derivatives, satisfying (2.3.3) as well. This, (2.3.1), and themean value theorem imply that for any v, ṽ ∈ `∞(Z)

‖Sv−Sṽ‖ ≤ ‖v− ṽ‖+max
i
|F̃ (∆2vi−1,∆

2vi)− F̃ (∆2ṽi−1,∆
2ṽi)| ≤ ‖v− ṽ‖+

1

4
‖∆2v−∆2ṽ‖. (2.3.4)For the second derived scheme S [2] we have the explicit formulae

(S [2]w)2i = 2F̃ (wi−1, wi), (S [2]w)2i+1 = wi/2− F̃ (wi−1, wi)− F̃ (wi, wi+1). (2.3.5)Therefore, the non-zero entries of the Jacobian DS
[2]
w satisfy

(DS [2]
w )2i,i−1 = 2

∂F̃

∂x
(wi−1, wi) ≥ 0, (DS [2]

w )2i,i = 2
∂F̃

∂y
(wi−1, wi) ≥ 0,

(DS [2]
w )2i+1,i−1 = −

∂F̃

∂x
(wi−1, wi) ≤ 0, (DS [2]

w )2i+1,i+1 = −
∂F̃

∂y
(wi, wi+1) ≤ 0,

(DS [2]
w )2i+1,i =

1

2
− ∂F̃

∂y
(wi−1, wi)−

∂F̃

∂x
(wi, wi+1) ≥ 0.

(2.3.6)
Obviously, S ∈ Σ2 and direct computations give that∑j |(DS

[2]
w )2i,j | ≤ 1/2,

∑
j |(DS

[2]
w )2i+1,j | ≤ 1.This, together with the sign pattern (2.3.6), implies that for any u, w ∈ `∞(Z), and any i ∈ Z

∑

j∈Z

∣∣∣
∑

l∈Z

(DS [2]
u )4i+s,l(DS [2]

w )l,j

∣∣∣ ≤
∑

l∈Z

|(DS [2]
u )4i+s,l|

(∑

j∈Z

|(DS [2]
w )l,j|

)

≤





∑
l |(DS

[2]
u )4i+s,l| ≤ 1/2, s = 0, 2

−(DS
[2]
u )4i+1,2i−1 + 1/2(DS

[2]
u )4i+1,2i − (DS

[2]
u )4i+1,2i+1 ≤ 3/4

−1/2(DS
[2]
u )4i+3,2i + (DS

[2]
u )4i+3,2i+1 − 1/2(DS

[2]
u )4i+3,2i+2 ≤ 3/4

.Hence, ρs(M, 2) ≤ sup
u,w∈`∞(Z)

‖DS [2]
u DS [2]

w ‖ ≤
√

3/4 < 1, and Theorem 2.2.8 completes the proof.



2. Univariate stability analysis 31Following [73] we de�ne the following family of monotonicity preserving subdivision schemes
(Sv)2i = vi, (Sv)2i+1 =

vi + vi+1

2
+H(∆vi−1,∆vi,∆vi+1), (2.3.7)where

H(x, y, z) =

{
y
2
G(|x/y|, |z/y|), y 6= 0,

0, y = 0,
G(s, t) =

s− t

`1 + (1 + `2)(s+ t) + `3st
, (2.3.8)with nonnegative constants {`i}3i=1, such that `1 + 2`2 + `3 = 6. Obviously, H ∈ C(R3) for anychoice of the `i's.Theorem 2.3.2. For any admissible choice of the constants `i, the subdivision scheme S de�nedvia (2.3.7)-(2.3.8) is Lipschitz stable.Proof. Using the explicit formulae

(S [1]w)2i =
1

2
wi(1 +G(|wi−1/wi|, |wi+1/wi|)), (S [1]w)2i+1 =

1

2
wi(1−G(|wi−1/wi|, |wi+1/wi|)),and (2.3.8), it is not hard to prove that S ∈ Σ1. Moreover, Lemma 2.2.2 assures that (2.2.4) holdsfor S with k = 1. Let w0 ∈ `∞(Z) be an arbitrary sequence with nonzero entries. The case, when

w0 possess trivial entries is straightforward and is left to the reader. The formulae for G(s, t) andfor S [1] imply that for any j ∈ Z the entries of wj = (S [1])jw0 are nonzero, too. Theorem 17 from[73] states that
max

i

∣∣∣∣∣max

{∣∣∣∣
wj

i−1

wj
i

∣∣∣∣,
∣∣∣∣
wj

i+1

wj
i

∣∣∣∣

}
− 1

∣∣∣∣∣ ≤ C

(√
3

2

)j

, ∀ j ∈ Z,and, thus, |wj| → c1 as j → ∞, where c depends on w0, and 1 is the constant 1 sequence. Since
G(1, 1) = 0, and ∂G/∂s(1, 1) = −∂G/∂t(1, 1) = 1/8, we derive that the relevant entries in thematrix representation of the �rst derivative of S [1] at c1 are

DS
[1]
c1

∣∣∣
{2i,2i+1}×{i−1,i,i+1}

=

(
1/16 1/2 −1/16
−1/16 1/2 1/16

)
.Since ‖DS

[1]
c1‖`∞ = 5/8, by continuity we conclude that ρs(S, 1) ≤ 5/8 < 1.2.3.2 Median interpolating pyramid transformThis subsection is taken from our paper [61, Section 3.1].The quadratic triadic median-interpolating pyramid transform (MIPT) was introduced in [30],and a dyadic version of the scheme was considered in [85]. For a real-valued continuous function fon a bounded interval I, the median of f on I is de�ned by

med(f ; I) := sup
{
α : m({x : f(x) < α}) ≤ 1

2
m(I)

}
,



2. Univariate stability analysis 32where m is the Lebesgue measure. For any v0 ∈ `∞(Z) and any i ∈ Z denote by pi(x) the uniquequadratic polynomial that satis�es
med(pi; [i− l, i− l + 1]) = v0i−l, l = −1, 0, 1.Then the subdivision step is given via

v13i+l = med
(
pi;
[3i+ l

3
,
3i+ l + 1

3

])
, l = 0, 1, 2,or via

v12i+l = med
(
pi;
[2i+ l

2
,
2i+ l + 1

2

])
, l = 0, 1,in the triadic, respectively the dyadic cases. We denote by Smed,3 and Smed,2 the correspondingsubdivision operators.Following [85] we write the corresponding subdivision operators as functions of the centers ci of

pi (when pi is linear, we formally set ci = ±∞):
(Smed,3v)3i =

2

9
vi−1 +

8

9
vi −

1

9
vi+1 − α0(ci)∆

2vi−1,

(Smed,3v)3i+1 = vi − α1(ci)∆
2vi−1,

(Smed,3v)v3i+2 = −
1

9
vi−1 +

8

9
vi +

2

9
vi+1 − α2(ci)∆

2vi−1,

(2.3.9)and
(Smed,2v)2i =

5

32
vi−1 +

15

16
vi −

3

32
vi+1 − α̃0(ci)∆

2vi−1,

(Smed,2v)2i+1 = −
3

32
vi−1 +

15

16
vi +

5

32
vi+1 − α̃1(ci)∆

2vi−1,
(2.3.10)where

α0 =
8ε0 + 2ε−2 − ε2 − ε̃−2/3

9(32− 2ε0 + ε−2 + ε2)
, α1 =

9ε0 − ε̃0
9(32− 2ε0 + ε−2 + ε2)

, α2 =
8ε0 − ε−2 + 2ε2 − ε̃2/3
9(32− 2ε0 + ε−2 + ε2)

,

α̃0 =
30ε0 + 5ε−2 − 3ε2 − 8ε̃−1/2

32(32− 2ε0 + ε−2 + ε2)
, α̃1 =

30ε0 − 3ε−2 + 5ε2 − 8ε̃1/2
32(32− 2ε0 + ε−2 + ε2)

, (2.3.11)with
ε−2 = (1− 4(c+ 2)2)+; ε0 = (1− 4c2)+; ε2 = (1− 4(c− 2)2)+;

ε̃−2/3 = (1− 4(2 + 3c)2)+; ε̃0 = (1− 36c2)+; ε̃2/3 = (1− 4(2− 3c)2)+;

ε̃−1/2 = (1− 4(−1− 2c)2)+; ε̃1/2 = (1− 4(1− 2c)2)+.For later use, we introduce some further notation. It is also not hard to prove that the quantity
ζi := −(∆vi−1+∆vi)/∆

2vi−1 is a continuous, piecewise di�erentiable, and strictly monotone function



2. Univariate stability analysis 33of ci. This function we denote by ζ = ζ(c). Consequently, the center ci is a continuous, piecewisedi�erentiable function of ζi (and thus of the involved �rst-order di�erences as well), i.e., ci =
c(∆vi−1,∆vi) := ζ−1(ζi). We mention a few important symmetries that help our stability analysis:

α0(c) = α2(−c); α1(c) = α1(−c); α̃0(c) = α̃1(−c); ζ(c) = −ζ(−c). (2.3.12)Both schemes are known to be convergent [30, 85], with limits enjoying a certain Lipschitzregularity. In [58] we showed that the dyadic MIPT is stable, but its associated multi-scale transformis not, unless some restrictions on the admissible class of details are given. In this section, we provethe followingTheorem 2.3.3. The triadic, quadratic, median-interpolating pyramid transform Smed,3 and itsassociated multi-scale transform M are Lipschitz stable.Proof. First of all, it is not hard, yet technical to see that Smed,3 ∈ Σ1 (see [61, lemma 3.1] for theproof), so what remains is to estimate the nonlinear spectral radii ρs(M, 1). Using (2.3.9) we derive
(∆Smed,3v)3i =

2∆vi−1 +∆vi
9

+ (α0 − α1)(ci)∆
2vi−1,

(∆Smed,3v)3i+1 =
∆vi−1 + 2∆vi

9
+ (α1 − α2)(ci)∆

2vi−1,

(∆Smed,3v)3i+2 =
−∆vi−1 + 5∆vi −∆vi+1

9
+ α2(ci)∆

2vi−1 − α0(ci+1)∆
2vi.Therefore, setting w := ∆v, using (2.3.12), and doing straightforward computations, we obtainthe following formulae for the nonzero entries of DS

[1]
med,3:

((DS
[1]
med,3)w)3i,i−1 =

2

9
− (A− C)(ci), ((DS

[1]
med,3)w)3i,i =

1

9
+ (B −D)(ci),

((DS
[1]
med,3)w)3i+1,i−1 =

1

9
+ (B −D)(−ci), ((DS

[1]
med,3)w)3i+1,i =

2

9
− (A− C)(−ci),

((DS
[1]
med,3)w)3i+2,i−1 = −

1

9
− B(−ci), ((DS

[1]
med,3)w)3i+2,i+1 = −

1

9
− B(ci+1),

((DS
[1]
med,3)w)3i+2,i =

5

9
+ A(−ci) + A(ci+1),where

A := α0 +
α′
0

ζ ′
(1− ζ), B := α0 −

α′
0

ζ ′
(1 + ζ), C := α1 +

α′
1

ζ ′
(1− ζ), D := α1 −

α′
1

ζ ′
(1 + ζ).By de�nition these functions are piecewise continuous and bounded functions of the center c.For further use, let us denote the entries of (DS

[1]
med,3)w by ti,j := ((DS

[1]
med,3)w)i,j. Direct compu-tations show that the elements t3i,i−1, t3i,i, t3i+1,i−1, t3i+1,i, t3i+2,i are positive, and that the elements

t3i+2,i−1, t3i+2,i+1 are negative. By shift invariance, this gives complete knowledge about the signpattern of the non-zero entries in (DS
[1]
med,3)w. More precisely, the ranges for each one of these entries



2. Univariate stability analysis 34have been numerically computed as follows (since all functions involved are piecewise rational andexplicitly available, this can be backed by tedious analytic estimates as well):



t3i,i−1 t3i,i 0
t3i+1,i−1 t3i+1,i 0
t3i+2,i−1 t3i+2,i t3i+2,i+1


 =




(0.1546, 0.3232) (0.0771, 0.1616) 0
(0.0771, 0.1616) (0.1546, 0.3232) 0

(−0.3016,−0.0476) (0.3536, 0.9366) (−0.3016,−0.0476)


 .We will use these bounds throughout the remainder of this subsection.To prepare for norm estimates for the operators (DS

[1]
med,3)w and their products, observe that

∑

j

|t3i,j| = t3i,i−1 + t3i,i =
1

3
+ (B − A+ C −D)(ci),

∑

j

|t3i+1,j | = t3i+1,i−1 + t3i+1,i =
1

3
+ (B − A+ C −D)(−ci),

∑

j

|t3i+2,j | = −t3i+2,i−1 + t3i+2,i − t3i+2,i+1

=
7

9
+ (A+B)(−ci) + (A+B)(ci+1),and thus

∑

j

|((DS
[1]
med,3)w)3i+l,j| ≤ 0.4166, l = 0, 1,

∑

j

|((DS
[1]
med,3)w)3i+2,j| ≤ 1.0318.This is not enough for establishing stability. To do so, we need the following lemma.Lemma 2.3.4. For any u, w ∈ `∞(Z)

‖(DS
[1]
med,3)u(DS

[1]
med,3)w‖ ≤ 0.9706.Proof. Let us denote by ti,j as before the elements of both (DS

[1]
med,3)w and (DS

[1]
med,3)u (by the indicesof an element it will be clear, exactly to which matrix it belongs), and by t2i,j - the elements of theproduct (DS

[1]
med,3)u(DS

[1]
med,3)w. By standard techniques for l = 0, 1, 3, 4, 6, 7 we have:

∑

j

|t29i+l,j| ≤
∑

j,s

|t9i+l,sts,j| ≤
∑

s

|t9i+l,s|(
∑

j

|ts,j|) ≤ 0.4166 · 1.0318 = 0.4298.Consider l = 2. Since (DS
[1]
med,3)u and (DS

[1]
med,3)w are local and shift-invariant, we can per-form our analysis on a �nite-dimensional subspace of `∞(Z). Therefore, to determine the elements

{t29i+2,j} we need to consider only the following product of a 1× 3 vector and a 3× 3 matrix

 t9i+2,3i−1 t9i+2,3i t9i+2,3i+1






t3i−1,i−2 t3i−1,i−1 t3i−1,i

0 t3i,i−1 t3i,i
0 t3i+1,i−1 t3i+1,i


 =


 − + −





− + −
0 + +
0 + +


 .



2. Univariate stability analysis 35Using again the ranges of the entries ti,j given above, we obtain the following bounds for the absolutevalues of t29i+2,·:
|t29i+2,i−2| ≤ 0.0910; |t29i+2,i−1| ≤ 0.2782; |t29i+2,i| ≤ 0.2350,and, thus ∑

j

|t29i+2,j| ≤ 0.6042.Due to symmetries, the case l = 5 is absolutely analogous to the case l = 2.It remains to look at the case l = 8, where we have the following situation:

 t9i+8,3i+1 t9i+8,3i+2 t9i+8,3i+3






t3i+1,i−1 t3i+1,i 0
t3i+2,i−1 t3i+2,i t3i+2,i+1

0 t3i+3,i t3i+3,i+1


 =


 − + −






+ + 0
− + −
0 + +


 .According to the sign pattern of the ti,j, both t29i+8,i−1 and t29i+8,i+1 are non-positive. If we assumethat t29i+8,i is non-positive as well, and substitute the bounds for ti,j from the previous page, wederive that

∑

j

|t29i+8,j| = −
i+1∑

j=i−1

t29i+8,j ≤ 0.6836.Otherwise, if t29i+8,i is positive then we write
∑

j

|t29i+8,j| = −t9i+8,3i+1(t3i+1,i−1 − t3i+1,i) + t9i+8,3i+2(−t3i+2,i−1 + t3i+2,i − t3i+2,i+1)

− t9i+8,3i+3(−t3i+3,i + t3i+3,i+1).While for the �rst and third term we can simply use the bounds for ti,j, e.g.,
−t9i+8,3i+1(t3i+1,i−1 − t3i+1,i) ≤ 0.3016(0.1616− 0.1546) = 0.0021,for the second term we use the previously established inequalities
t9i+8,3i+2 ≤ 0.9366, −t3i+2,i−1 + t3i+2,i − t3i+2,i+1 ≤ 1.0318.This leads to the desired estimate

∑

j

|t29i+8,j | ≤ 2 · 0.0021 + 0.9366 · 1.0318 = 0.9706.This �nishes the proof of the lemma.Lemma 2.3.4 assures that the spectral radius ρs(M, 1) of the multi-scale transform M associatedwith Smed,3 is less than one. Applying Theorem 2.2.8 completes the proof of the theorem.



2. Univariate stability analysis 362.3.3 Power-p SchemeThe univariate family of power-p schemes was introduced in [95]. These schemes are used fornumerically solving hyperbolic PDEs, as well as for compression of piecewise smooth data. Given
p ∈ [1,∞), the power-p subdivision operator Sp is de�ned by the formula

(Spv)2i = vi, (Spv)2i+1 =
vi + vi+1

2
− 1

8
Hp(∆

2vi−1,∆
2vi), i ∈ Z, (2.3.13)where

Hp(x, y) =

{
x+y
2

(
1−

∣∣∣x−y
x+y

∣∣∣
p)

, xy > 0,

0, xy ≤ 0.
(2.3.14)Each power-p subdivision scheme is convergent, with Hölder exponent 1 (see [95] for details).For p ∈ [1, 2], Sp satis�es (2.3.1)-(2.3.2), meaning that those schemes are convexity preserving andtheir stability analysis has already been covered by Theorem 2.3.1. Furthermore, S2 coincides withthe so-called PPH scheme [42, 71] whose stability in the sense of both S and M was settled also in[8]. Straightforward computations with w := ∆2v lead to

(S [2]
p w)2i =

1

4
Hp(wi−1, wi), (S [2]

p w)2i+1 =
wi

2
− 1

8
(Hp(wi−1, wi) +Hp(wi, wi+1)). (2.3.15)Moreover, the formulae (see [61, Lemma 3.6])

∂Hp

∂x
(x, y) = φ(−t) :=

{
1/2(1 + (p− 1)|t|p − pt|t|p−2), |t| < 1
0, |t| > 1

∈ [0, p),

∂Hp

∂y
(x, y) = φ(t) :=

{
1/2(1 + (p− 1)|t|p + pt|t|p−2), |t| < 1
0, |t| > 1

∈ [0, p),

(2.3.16)where t = (x − y)/(x+ y), together with the convention ∂Hp/∂x(x, y) = ∂Hp/∂y(x, y) = 0, when
|t| = 1 guarantee that for all p ≥ 1 Sp ∈ Σ2 and

‖Spv − Spṽ‖ ≤ ‖v − ṽ‖+ p

4
‖∆2(v − ṽ)‖, ∀v, ṽ ∈ `∞(Z).Thus, the stability analysis of Sp depends only on the value of the joint spectral radius ρs(Sp, 2).From (2.3.15) we derive the following expressions for the entries of ((DS [2]

p )w:
((DS [2]

p )w)2i,i−1 =
1

4

∂Hp

∂x
(wi−1, wi), ((DS [2]

p )w)2i,i =
1

4

∂Hp

∂y
(wi−1, wi),

((DS [2]
p )w)2i+1,i−1 = −

1

8

∂Hp

∂x
(wi−1, wi), ((DS [2]

p )w)2i+1,i+1 = −
1

8

∂Hp

∂y
(wi, wi+1),

((DS [2]
p )w)2i+1,i =

1

2
− 1

8

∂Hp

∂y
(wi−1, wi)−

1

8

∂Hp

∂x
(wi, wi+1).



2. Univariate stability analysis 37Hence, in order to determine the submatrix (DS [2]
p )w

∣∣∣
{2i,2i+1,2i+2}×{i−1,i,i+1}

, we just need to know
t := (wi−1 − wi)/(wi−1 + wi) and t̄ := (wi − wi+1)/(wi + wi+1). Let us denote by

T :=
(S [2]

p w)2i − (S [2]
p w)2i+1

(S [2]
p w)2i + (S [2]

p w)2i+1

, T̄ :=
(S [2]

p w)2i+1 − (S [2]
p w)2i+2

(S [2]
p w)2i+1 + (S [2]

p w)2i+2

. (2.3.17)Our goal is to express both T and T̄ in terms of t and t̄. First, we use
Hp(wi−1, wi) =

{
wi

1−|t|p

1−t
, |t| < 1,

0, |t| ≥ 1,
Hp(wi, wi+1) =

{
wi

1−|t̄|p

1+t̄
, |t̄| < 1,

0, |t̄| ≥ 1.Note that, setting t = −1 and t̄ = 1 whenever |t| ≥ 1, resp. |t̄| ≥ 1 allows us to use single expressionsfor both Hp(wi−1, wi) and Hp(wi, wi+1). This trick and (2.3.15) lead to
T =

(S [2]
p w)2i − (S [2]

p w)2i+1

(S [2]
p w)2i + (S [2]

p w)2i+1

=
−wi

2
+ 3wi(1−|t|p)

8(1−t)
+ wi(1−|t̄|p)

8(1+t̄)

wi

2
+ wi(1−|t|p)

8(1−t)
− wi(1−|t̄|p)

8(1+t̄)

,and an analogous formula for T̄ , which, after cancelation of wi and and the common denominators,give rise to
T =

−4(1 − t)(1 + t̄) + 3(1− |t|p)(1 + t̄) + (1− |t̄|p)(1− t)

4(1− t)(1 + t̄) + (1− |t|p)(1 + t̄)− (1− |t̄|p)(1− t)
,

T̄ =
4(1− t)(1 + t̄)− (1− |t|p)(1 + t̄)− 3(1− |t̄|p)(1− t)

4(1− t)(1 + t̄)− (1− |t|p)(1 + t̄) + (1− |t̄|p)(1− t)
.

(2.3.18)Therefore, we can construct a map T : [−1, 1) × (−1, 1] → [−1, 1) × (−1, 1], such that T (t, t̄) =
(T, T̄ ), that uses (2.3.18), whenever |T |, |T̄ | < 1 and sets T = −1, if |T | ≥ 1, resp. T̄ = 1, if |T̄ | ≥ 1.A remark is necessary. Note that the objects T and T̄ themselves are of no interest, and theywill be used only as a tool to additionally simplify the analysis of (DS [2]

p )w

∣∣∣
{2i,2i+1,2i+2}×{i−1,i,i+1}

,making it a function of two instead of three parameters! Therefore, even though we seem impreciseat some points (e.g., letting t = −1 and t̄ = 1, dividing by zero, when wi = 0) and assign �arti�cial�values to T and T̄ in cases when they are not de�ned with respect to (2.3.17), we do it in such away that the entries of the submatrix remain the same (as can be easily veri�ed by the reader)
(DS [2]

p )
S
[2]
p w

∣∣∣
{4i+2,4i+3,4i+4}×{2i,2i+1,2i+2}

=




1
4
φ(−T ) 1

4
φ(T ) 0

−1
8
φ(−T ) 1

2
− 1

8
φ(T )− 1

8
φ(−T̄ ) −1

8
φ(T̄ )

0 1
4
φ(−T̄ ) 1

4
φ(T̄ )


 .From now on we work with T . Let us �rst mention some of its properties. Due to symmetries

t↔ −t̄ leads to T ↔ −T̄ . The points (0, 0) and (−1, 1) are �xed points of T (actually they are theonly �xed points as shown in the Appendix). For (t, t̄) ∈ I := [−1, 0]× [0, 1] we have that
|4(1− t)(1 + t̄)± (1− |t|p)(1 + t̄)∓ (1− |t̄|p)(1− t)| ≥ 3(1− t)(1 + t̄) ≥ 3,



2. Univariate stability analysis 38and, thus, T is continuous in I. Consider w(ε)|i−1,i,i+1 = {ε/(2 − ε), 1, ε/(2 − ε)}, where ε ≥ 0,implying t(ε) = −1 + ε, and t̄(ε) = −t(ε) = 1− ε. The spectral radius of the limit matrix
A = lim

ε→0
(DS [2]

p )w(ε)

∣∣
{2i,2i+1,2i+2}×{i−1,i,i+1}

=




p/4 0 0
−p/8 1/2 −p/8
0 0 p/4


 (2.3.19)equals p/4 and is greater than one, whenever p > 4.Fix t ∈ (−1, 0) and consider an initial sequence w̃0 := w0|i−1,i,i+1 for which t0 = −t̄0 = t (forexample w̃0 = {(1 + t)/(1 − t), 1, (1 + t)/(1 − t)}). Then, according to (2.3.18) for any j ∈ Z,

w̃j = (S [2])jw̃0 has tj = −t̄j , such that tj = T (tj−1), where
T (t) =

t− |t|p
1− t

.Obviously, T : [−1, 0] → [−1, 0] and monotonically increases, since T ′(t) = 2φ(−t)/(1 − t)2, and
φ(t) ∈ [0, p]. For p > 4, the function

F (t) := T (t)− t =
t2 − |t|p
1− t

,is continuous and nonnegative in [−1, 0]. Moreover, F (t) is strictly positive in (−1, 0).Theorem 2.3.5. For p > 4, Sp is not Lipschitz stable.Proof. To prove the theorem, we will show that ρs(Sp, 2) ≥ p/4 > 1, ∀p > 4. From the de�nitionof joint spectral radius, it follows that in order ρs(Sp, 2) to be strictly less than p/4, for any ρ, suchthat ρs(Sp, 2) < ρ < p/4, there should exist an integer n = n(ρ), such that
‖DS

[2]
wm−1DS

[2]
wm−2 . . .DS

[2]
w0‖ < ρm, ∀w0 ∈ `∞(Z), ∀m ≥ n,where wj = (S [2]

p )jw0. Therefore, it su�ces to show that for any 1 < ρ < p/4 and any n ∈ N, thereexists a sequence w0 = w0(ρ, n) ∈ `∞(Z) with
‖DS

[2]

wn−1DS
[2]

wn−2 . . .DS
[2]

w0‖ > ρn.To do so, it is enough to work only with the restriction w̃0 = {w0
−1, w

0
0, w

0
1} and to estimate

‖DS
[2]

w̃n−1DS
[2]

w̃n−2 . . .DS
[2]

w̃0‖, which is a �nite product of 3× 3 matrices.Fix ρ ∈ (1, p/4). Since ρ(A) = p/4, for any n ∈ N

‖An‖ ≥ (p/4)n = (ρ+ (p/4− ρ))n ≥ ρn + nρn−1(p/4− ρ) ≥ ρn + (p/4− ρ).Since for t0 ∈ (−1, 0), F (t0) > 0 and T (t0) ∈ (−1, 0), we derive that for any initial ũ de�nedvia the pair (t0, t̄0 = −t0) and any j ∈ Z, the pair (tj, t̄j) that corresponds to (S [2])j ũ satis�es
(tj−1, 0) 3 tj = −t̄j , i.e., the sequence {tj} is monotonically increasing and bounded by zero.Let us now rede�ne φ(t) in order to make it left-continuous, instead of right-continuous (e.g.,
φ(1) = p, not φ(1) = 0). Then DS

[2]
ũ = A, if ũ is de�ned via the pair (−1, 1). Note that
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f(x1, x2, . . . , xn) := ‖x1x2 . . . xn‖ is a continuous function of its arguments. It is enough to sketchthe proof for n = 2 and x2. If ‖x2 − x̃2‖ < δ, then
δ‖x1‖ = ‖x1‖‖x2−x̃2‖ ≥ ‖x1(x2−x̃2)‖ = ‖x1x2−x1x̃2‖ ≥

∣∣‖x1x2‖−‖x1x̃2‖
∣∣ = |f(x1, x2)−f(x1, x̃2)|.Hence, considering the arguments to be 3× 3 matrices, there exists ε > 0, such that if ‖Xj −A‖ <

ε, ∀j = 0, . . . , n− 1, then ‖Xn−1Xn−2 . . .X0‖ > ρn + (p/4− ρ)/2.On the other hand, the entries of DS
[2]
w̃ are continuous functions of (t, t̄) in I, and so is thesupremum norm. Therefore, there exists δ1 > 0, such that for any ũ in U := (−1,−1 + δ1) ×

(1 − δ1, 1), we have ‖DS
[2]
ũ − A‖ < ε. Moreover, since T n−1(t) := T ◦ T ◦ · · · ◦︸ ︷︷ ︸

n−2

T (t) is continuousand monotonically increasing for t ∈ [−1, 0], and T n−1(−1) = −1, there exists δ2 > 0, such that
t ∈ (−1,−1 + δ2) implies T n−1(t) ∈ (−1,−1 + δ1).Now take t0 ∈ (−1,−1 + δ2). Then for the sequence w̃0 that corresponds to the pair (t0,−t0)we have that w̃j ∈ U , ∀j = 0, . . . , n− 1, and, thus,

‖DS
[2]

w̃n−1DS
[2]

w̃n−2 . . .DS
[2]

w̃0‖ > ρn + (p/4− ρ)/2 > ρn. (2.3.20)Remark 2.2.5 completes the proof. The explicit computations can be found in the Appendix.In [61] it was proven that both Sp and its associated multi-scale transform are Lipschitz stablewhenever 1 ≤ p < 8/3. For p ∈ [8/3, 4], up to the knowledge of the author, the stability questionremains open, and is a subject of future work. Some ideas and preliminary results can be found inthe Appendix.We �nish the section with showing that the stability theorem from [21] is not applicable to thepower-p subdivision. Following [61], suppose we were able to write
Sv = Svvwith a Lipschitz continuous family of linear subdivision operators Sv, which are local 2-shift invariantand have order of polynomial reproduction 2. Then

S [2]
w = (Sv)

[2]w w = ∆2v,where (Sv)
[2] is another well-de�ned family of Lipschitz continuous, local, 2-shift invariant subdivi-sion operators.Then we must have

(
S [2]
w

)
0
=

1

4
Hp(w−1, w0) =

∑

|k|≤L

ak(v|[−L,L])w−kwhere the coe�cient functions ak represent the entries ((Sv)
[2]
)
0,−k

and are thus Lipschitz continu-ous.Let us now specialize to sequences of the form
vi =

{
y(i− 1), i ≥ 1,
−xi, i ≤ 0.



2. Univariate stability analysis 40Obviously w−1 = x, w0 = y, wi = 0 otherwise, and
Hp(x, y) = ã−1(x, y)x+ ã0(x, y)ywith Lipschitz continuous ã−1 and ã0.Now set x = (1 + α)y with �xed but arbitrary α > 0, and let y → 0:

ã−1(0, 0)(1 + α) + ã0(0, 0) = lim
y→0

x+ y

2y

(
1−

(x− y

x+ y

)p)
=
(
1 +

α

2

)(
1−

( α

2 + α

)p)
.Such an identity can not hold for any p ≥ 1. Indeed, for a non-integer p > 1 this is obvious, whilefor an integer p ≥ 2 the right-hand side is a rational function of α with a non-trivial denominator,and thus can not coincide with the linear function from the left-hand side. For p = 1 we get

ã−1(0, 0)(1 + α) + ã0(0, 0) = 1,i.e., ã−1(0, 0) = 0, ã0(0, 0) = 1, which leads to a contradiction if we repeat the same exercise with
y = (1 + α)x.



3. ANALYSIS OF MULTIVARIATE SUBDIVISION SCHEMES VIA LOCALMAPSExtending upon the univariate Theorem 2.2.3, in Chapter 3 we analyze multivariate subdivisionschemes and multi-scale transforms, using tools from local (polynomial) approximation theory.There are two major concepts [18] for analyzing a subdivision scheme, namely via its derived schemes[15, 37], or via a set of local subdivision maps [67]. Even though they seem intrinsically di�erent,those two approaches characterize the subdivision process (convergence, smoothness, stability) interms of the same quantity [18, 17]. The theory based on derived schemes has already been extendedto higher dimensions on tensor-product grids, isomorphic to Zs in both the linear [31, 15] and thenon-linear [22, 50, 44] settings. Here we aim at exploring the �local subdivision maps� approach andits multivariate generalization. More precisely, we pick a bounded set λ0 ⊂ Zs and perform low-order-polynomial approximation on it. This, combined with the action of the subdivision operator
S, induces a family of local maps, for which we compute the corresponding joint spectral radius toanalyze convergence and stability of S, respectively. On Zs the two approaches remain equivalent,and for linear schemes the one based on S [k] is numerically preferred, since it gives rise to a sequenceof linear optimization problems [17, Section 4.6] each of which can be solved in �nite (but in generalalso exponentially growing) time. However, linear programming is not applicable to nonlinearprocesses, plus, due to the speci�cs of the divided di�erence operator ∆k, even for linear subdivisionthe computational time grows exponentially with the dimension s and the order k. Thus, consideringthe alternative approach for improving the numerical e�ciency of the spectral radii estimations isjusti�ed. Moreover, as illustrated in [23, 53], the use of local maps is a step in the direction ofdeveloping tools for the analysis on semi-regular and even irregular subdivision schemes, wheresimple di�erencing can not be used.Let us brie�y recall some notions and �x the notation. Throughout the section we work onlywith scalar-valued data (the functional setting) and the initial sequence v0 : Γ0 → R is uniformlybounded on the coarsest grid, i.e., v0 ∈ `∞(Γ0). Everywhere but in Section 3.4 we consider allthe grids Γj isomorphic to Zs, i.e., the regular tensor-product case, so we use this setting for theremaining de�nitions, as well. The subdivision operator S : `∞(Zs) → `∞(Zs) maps sequencescorresponding to two consecutive grids into each other and is always assumed to be local and
r-shift-invariant, i.e.,

S ◦ Ti = Tri ◦ S, ∀i ∈ Z
s,where (Tiv)l = vi+l is the translation operator, while the integer r > 1 coincides with the densityof the grids, i.e., Γj = r−jZs. (In other words, S has a dilation matrix rI, where I is the s × sidentity matrix). All the norms that we use are in�nity-norms and hence we will simply denotethem by ‖ · ‖. Whether the norm is on an operator, on a sequence, or on a function will be clearfrom the context. We use lowercase Greek letters α, β, . . . to denote multi-indices in Zs

+ and all the



3. Analysis of multivariate subdivision schemes via local maps 42arithmetic operations on them are applied componentwise, e.g.,
α = (α1, . . . , αs), |α| = α1 + α2 + · · ·+ αs, α! = α1! . . . αs!, xα = xα1

1 . . . xαs

s ,while lowercase Latin letters i, l, . . . stay for multi-indices in Zs.We use the multivariate analogues of (2.1.2), (1.1.1), (1.1.2) to de�ne uniform convergence for S,stability of S, and stability of its associated multi-scale transform, respectively. For a given initialsequence v0 ∈ `∞(Zs) we will denote the limit function f from (2.1.2) (when it exists) by S∞v0, andwe will use f j for the piecewise multi-linear interpolant of the data Sjv0 with respect to 2−jZs. Weuse {e`}s`=1 for the orthonormal basis of Rs induced by Zs, i.e., e` = (0, . . . , 0, 1, 0, . . .0) ∈ Zs withthe only nonzero entry being the `-th one. This allows us to extend the notion of �nite di�erencesto higher dimensions:
∆1 : `∞(Zs)→ (`∞(Zs))s, (∆1v)i =

{
∆1

e`
vi := vi+e` − vi : 1 ≤ ` ≤ s

}
,and, recursively, ∆k = ∆k−1 ◦∆1, k > 1. De�ned that way ∆k : `∞(Zs) → (`∞(Zs))s

k . However,there are obvious redundancies, because of symmetries of the partial derivatives, e.g.,
∆2

e1+e2
:= ∆1

e1
◦∆1

e2
= ∆1

e2
◦∆1

e1
= ∆2

e2+e1
,that allow us to decrease the dimension of the vector-valued output and to work with the followingoperator, which we will again denote by ∆k

∆k = {∆k
α := ∆α1

α1e1
◦ · · · ◦∆αs

αses | |α| = k}.For the above de�nition we used the coordinate representation α =
∑s

l=1 αlel as well as the con-vention ∆n
nel

= ∆1
el
◦ · · · ◦∆1

el
. Thus, ∆k acts on (`∞(Zs))Nk , where Nk =

(
k+s−1
s−1

). We de�ne thenorm ‖∆kv‖ via
‖∆kv‖ = sup

i∈Zs

‖∆kvi‖ = sup
i∈Zs

max
|α|=k
|∆k

αvi|. (3.0.1)In Chapter 2 we already saw that the standard analysis for univariate S is built upon theexistence of derived scheme S [1] and the validity of the commutation formula (2.1.3). Indeed, Sis uniformly convergent if ρc(S, 1) = ρ(S [1]) < 1, and Lipschitz stable if ρs(S, 1) = ρ(DS [1]) < 1,provided S is 1-di�erentiable. Moreover, due to regularity of Γj = r−jZ, the following equality
d

dx
S∞v0 = (rS [1])∞∆1v0;

(
d

dx

)k

S∞v0 = (rkS [k])∞∆kv0; ∀v ∈ `∞(Z),holds whenever the k-th derived scheme S [k] is well-de�ned (see for example [31, Proposition 3.1]for the linear case), implying that the Hölder regularity of S is at least s∞(S) ≥ − logr ρ(S
[k]).The standard analysis for multivariate S on Γj = r−jZs follows the same recipe and, at leastfor convergence and smoothness of linear S, it has already been worked out [31, Sections 6 and7]. However, the speci�cs of the operator ∆k lead to signi�cantly more computationally involvednumerical veri�cation of the convergence/smoothness criteria for s > 1. For instance, ∆1 maps

`∞(Z) into itself, and for any �nitely supported w ∈ `∞(Z) there exists a v ∈ `∞(Z) (actually awhole one-parameter family of v), such that w = ∆1v, locally. On the other hand, ∆1 maps `∞(Z2)



3. Analysis of multivariate subdivision schemes via local maps 43to the product space (`∞(Z2))2, and furthermore, due to symmetry of partial derivatives, its imageis a proper subspace of the latter (e.g., if w = (w1, w2) ∈ (`∞(Z2))2 such that ∆v = w for some
v ∈ `∞(Z2), then ∆yw1 = ∆xw2). Thus, the de�nition (2.2.12) of ρc(S, 1) needs to be restrictedonly to this image space, and in general ρ(S [1]|∆) < ρ(S [1]), where by ρ(S [1]|∆) we have denotedthe above mentioned restricted spectral radius (RSR) (see [17] or [18] for complete theory on thesubject). The strict inequality in the last equation, together with the bigger image space make thenumerical algorithms, based on S [k] and used for the analysis of S, to blow up within the numberof parameters. Below we try to �translate� the contractive properties of the derived schemes intothe language of local maps, and to propose more condensed numerical schemes for the estimationof the corresponding spectral radii. As before, we concentrate on the convergence and the stabilityanalysis of the subdivision scheme and leave the related smoothness analysis out.3.1 ConvergenceProposition 3.1.1. Let S be a stationary regular subdivision scheme, de�ned via an operator
S : `∞(Zs)→ `∞(Zs). If there exists a function F : `∞(Zs)→ R+, satisfyingi) ∃C1 ∈ R+, such that

‖f 1 − f 0‖ ≤ C1F (v), (3.1.1)where f 1, f 0 are the piecewise linear interpolants of Sv, v on 2−1Zs, Zs, respectively;ii) ∃n ∈ N, ρ ∈ (0, 1) such that
F (Snv) ≤ ρF (v); (3.1.2)iii) ∃C2 ∈ R+, such that
F (v) ≤ C2‖v‖, (3.1.3)for any v ∈ `∞(Zs), then S converges uniformly.Proof. Fix a v ∈ `∞(Zs). Since C(Rs) is a Banach space, we just need to show that {f j}∞0 is aCauchy sequence. From (3.1.1) and (3.1.3) we obtain

‖Sv‖ − ‖v‖ = ‖f 1‖ − ‖f 0‖ ≤ ‖f 1 − f 0‖ ≤ C1F (v) ≤ C1C2‖v‖ =⇒ ‖Sv‖ ≤ (1 + C1C2)‖v‖.Hence
‖f j+1 − f j‖ ≤ C1F (Sjv) ≤ C1ρ

[j/n]F (Sj−n[j/n]v) ≤ C1ρ
[j/n]C2‖Sj−n[j/n]v‖

≤ C1C2(1 + C1C2)
n−1

︸ ︷︷ ︸
C<∞

‖v‖ρ[j/n] ≤ C‖v‖ρ[j/n].Since
∞∑

j=0

ρ[j/n] =
n

1− ρ
,



3. Analysis of multivariate subdivision schemes via local maps 44for any ε > 0 there exists a N = N(ε, v), such that
∞∑

j=N

ρ[j/n] ≤ ε

C‖v‖ ,and thus, for any l > m ≥ N we have
‖f l − fm‖ ≤ ‖f l − f l−1‖+ ‖f l−1 − f l−2‖+ · · ·+ ‖fm+1 − fm‖

≤ C‖v‖
l−1∑

j=m

ρ[j/n] ≤ C‖v‖
∞∑

j=N

ρ[j/n] ≤ C‖v‖ ε

C‖v‖ = ε.Hence, S uniformly converges.Introducing contractivity criteria with respect to a general function F is not a new idea. Ithas appeared in the literature, since the foundation of the subdivision theory, see for example [15,Chapter 3.1] or [31, Section 6]. There the authors use the terminology S is contractive relative to
F , whenever (3.1.2) holds. In [4, 22], the authors also build their analysis on F -contractivity (intheir notation F is replaced by δ), but our restrictions on F are more relaxed, and our analysis ismore generally applicable in comparison to theirs. However, up to the knowledge of the author,even when the theory is based on the abstraction F mainly the standard choice F (v) = ‖∆kv‖for some k ∈ N, has been considered in the applications. The goal of this section is to replacemeasuring di�erences by measuring the order of local polynomial approximation, a method calledcharacterization by local oscillations in the theory of function spaces.Let F, G : `∞(Zs) → R+. We say that F is equivalent to G (F ∼= G) if there exist positiveconstants A and B, such that

A · F (v) ≤ G(v) ≤ B · F (v), ∀v ∈ `∞(Zs). (3.1.4)Obviously, ∼= is an equivalence relation, and if G ∼= F , then G satis�es the conditions in Theo-rem 3.1.1 if and only if F does. Indeed,
‖f 1 − f 0‖ ≤ C1F (v) ≤ C1B︸︷︷︸

C′

1

·G(v), G(Sv) ≤ 1

A
F (Sv) ≤ C2/A︸ ︷︷ ︸

C′

2

‖v‖,and
G(Snv) ≤ 1

A
F (Snv) ≤ ρ

A
F (v) ≤ B

A
ρG(v)leads to

G(Slnv) ≤ B

A
ρlG(v), ∀l ∈ N.Since ρ < 1, and A and B are �xed, there exists l0 ∈ N such that µ := ρl0(B/A) < 1. Denote by

m := nl0. Then
G(Smv) ≤ µG(v).Moreover, one can use di�erent (but equivalent!) functions F1, F2, and F3 in (3.1.1), (3.1.2), and(3.1.3) respectively.



3. Analysis of multivariate subdivision schemes via local maps 45The generic univariate example one should have in mind when trying to understand the useful-ness of the de�nition above is the following: Let λi := [i − l, i+ l], ∀i ∈ Z, where l ∈ Z+ is a �xednumber, and let Λ := {λi : i ∈ Z}. For any v ∈ `∞(Z) consider
F (v) := ‖∆1v‖ and G(v) := sup

λ∈Λ

{
inf
a∈R
‖(v − a1)

∣∣
λ
‖
}
.Then, direct computations show that

1

2
F (v) ≤ G(v) ≤ lF (v),and, thus, F ∼= G.Now let us generalize the example above. Let λ0 ⊂ Zs be a bounded neighborhood of 0 and let

Λ = {λi := Tiλ0 : i ∈ Zs} consists of all integral shifts of λ0. As before, if we denote by Πk(R
s)the space of all polynomials on Rs of total degree less or equal to k, then for any k ∈ N and any

v ∈ `∞(Zs) we de�ne
|||v|||k := sup

λ∈Λ
inf

p∈Πk−1(Rs)
‖v
∣∣
λ
− p
∣∣
λ
‖. (3.1.5)Here v|λ = {vi : i ∈ λ}, and p|λ = {p(i) : i ∈ λ} stand for the projection of the data onto the�nite set λ. Sometimes we will use the equivalent notation ‖v− p‖λ. It is an easy exercise to checkthat ||| · |||k is a seminorm. Note that it depends on λ0, as well, but in order to keep the notationas simple as possible, this is not explicitly indicated. When λ0 is too small, the above seminorm istrivially zero, and thus for our analysis we need to assure that λ0 is su�ciently �rich�. To do so, weintroduce the simplex

Tk := {β ∈ N
s : |β| ≤ k}.When s = 1, Tk is just the interval [0, k]. Note that for the analysis we develop in this chapter moregeneral sets Tk can be used (e.g., a�ne transformations of the introduced simplex), but for the sakeof simplicity we choose to formulate our results in terms of the Tk �xed above.Lemma 3.1.2. Fix k ∈ N. Let λ0 be any bounded set in Zs that contains Tk (i.e., there exists an

N ∈ N such that Tk ⊆ λ0 ⊆ [−N,N ]s). Let Λ = {λi = Tiλ0 : i ∈ Zs}. Then
‖∆k · ‖ ∼= ||| · |||k. (3.1.6)Proof. Let v ∈ `∞(Zs) be arbitrary. Fix i ∈ Zs. Then, for any polynomial p ∈ Πk−1(R

s) we have
max
|α|=k
|∆k

αvi| = max
|α|=k
|∆k

α(v − p)i| ≤ 2k‖v − p‖TiTk ≤ 2k‖v − p‖λi
,and, thus,

‖∆kv‖ ≤ 2k sup
i∈Zs

inf
p∈Πk−1(Rs)

‖v − p‖λi
= 2k|||v|||k. (3.1.7)For the other direction, due to shift-invariance, it is enough to show that

‖(v − Ik−1
0 v)‖λ0 ≤ C‖∆kv‖, ∀v ∈ `∞(Zs),where Ik−1

0 v ∈ Πk−1(R
s) is the unique polynomial that interpolates v on Tk−1, and C is a uniformlybounded constant, which depends on k and N , but not on v. Take w

∣∣
λ0

:= (v − Ik−1
0 v)

∣∣
λ0
.



3. Analysis of multivariate subdivision schemes via local maps 46In the univariate case the result follows by induction on the length of λ0, since w0 = w1 = · · · =
wk−1 = 0, wk = ∆kw0 = ∆kv0, and w−1 = (−1)k∆kw−1 = (−1)k∆kv−1. Thus, the Abel transformgives rise to

wj =

j−k∑

l=0

ajl∆
kvl, w−j+k−1 =

j−k∑

l=0

(−1)kajl∆kv−1−l ∀j ≥ k,with C =
∑j−k

l=0 |ajl | depending only on j, and being uniformly bounded whenever j ≤ N is �nite.Note that j ≥ k always holds, due to Tk = [0, k] ⊆ λ0. To �nd an explicit bound for C one may usethe Newton's interpolating formula and derive
‖(v − Ik−1

0 v)‖λ0 = ‖Ij0v − Ik−1
0 v‖λ0 ≤ sup

x∈λ0

(∣∣∣∣
∆kv0
k!

k−1∏

l=0

(x− l)

∣∣∣∣ + · · ·+
∣∣∣∣
∆jv0
j!

j−1∏

l=0

(x− l)

∣∣∣∣

)

≤ ‖∆
kv‖
k!

k−1∏

l=0

(N + k − l) + · · ·+ ‖∆
jv‖
j!

j−1∏

l=0

(N + k − l)

≤
j∑

l=k

(
N + k

l

)
2l−k‖∆kv‖ ≤ 3N+k

2k
‖∆kv‖.

(3.1.8)
For s = 2, since w(i,0) = 0, i = 0, . . . , k − 1, the above univariate result gives rise to

|w(j,0)| ≤ A0‖∆k
(k,0)v‖ ≤ A0‖∆kv‖, ∀j ∈ [−N,N ],where A0 depends on k and N , but not on v.For the next row, we have w(i,1) = 0, i = 0, . . . , k−2 and w(k−1,1) = ∆k

(k−1,1)w(0,0) = ∆k
(k−1,1)v(0,0).Hence

w(k,1) = ∆k
(k,0)w(0,1) + kw(k−1,1) = ∆k

(k,0)v(0,1) + k∆k
(k−1,1)v(0,0),and by induction every entry wj,1, j ∈ [−N,N ] can be represented as a �nite combination of k-orderdivided di�erences of v. Thus

|w(j,1)| ≤ A1‖∆kv‖, ∀j ∈ [−N,N ],for some A1 that depends on k and N but not on v. In the end, we derive that there exists uniformconstants Ai such that
|w(j,i)| ≤ Ai‖∆kv‖, ∀j ∈ [−N,N ]; ∀i = 0, 1, . . . , k − 1.By symmetry, we have the same inequalities for |w(i,j)|, too. Finally, we expand the argument tothe whole square [−N,N ]× [−N,N ] and conclude that

‖(v − Ik−1
0,0 v)‖λ0 ≤ ‖(v − Ik−1

0,0 v)‖[−N,N ]×[−N,N ] ≤ C‖∆kv‖, ∀v ∈ `∞(Z2),with a constant C that depends on N and k, but not on v. Induction on s completes the proof.In practice, the element of best approximation is di�cult to determine and there is no cheapalgorithm for �nding it. Therefore the following remark is important for applications.



3. Analysis of multivariate subdivision schemes via local maps 47Corollary 3.1.3. Let P be a bounded and �nite dimensional linear projector onto Πk−1(R
s), i.e.,there exists N ∈ N, B ∈ R+, and a neighborhood Tk ⊆ λ0 ⊆ [−N,N ]s, such that for every

v ∈ `∞(Zs) P : v
∣∣
λ0
→ Πk−1(R

s)
∣∣
λ0
, for every p ∈ Πk−1(R

s) P (p
∣∣
λ0
) = p

∣∣
λ0
, and ‖P‖ ≤ B. Then

G(v, P ) := sup
i∈Zs

‖v|Tiλ0 − P (v|Tiλ0)‖ ∼= ‖∆kv‖.Indeed, in the proof of Lemma 3.1.2 we already showed that for any such neighborhood λ0 wehave G(v, Ik−1
0 ) = supi∈Zs ‖v|Tiλ0 − Ik−1

0 (v|Tiλ0)‖ ≤ C‖∆kv‖. But
|||v|||k ≤ G(v, P ) = sup

i∈Zs

‖Tiv − Ik−1
0 Tiv − P (Tiv − Ik−1

0 Tiv))‖λ0 ≤ (1 + ‖P‖)G(v, Ik−1
0 ) ≤ C1‖∆kv‖,and since ||| · |||k ∼= ‖∆k · ‖ the argument is completed. In the computations above we used the trivialidentity v|Tiλ0 = (Tiv)|λ0.The following identity should be emphasized

G(v, Ik−1
0 ) ≡ ‖∆kv‖, λ0 = Tk, (3.1.9)meaning that the divided di�erence operator belongs to the class of projectors, considered in Corol-lary 3.1.3, and the corollary is an abstraction of the classical analysis via derived schemes.In this form, Proposition 3.1.1 is often not applicable, because (3.1.1) is too restrictive. Indeed,being a di�erence between two consecutive re�nements, the left-hand side is expected to be afunction of the �rst divided di�erence ‖∆1v0‖, while if we want to use F ∼= |||v0|||k with k > 1, theright-hand-side is a function of ‖∆kv0‖. Hence, in order for (3.1.1) to hold, if v0 = p|Zs for some

p ∈ Πk−1(R
s) the right-hand side vanishes, and then the left-hand side should equal zero, as well.But the latter is not true, in general. For example, one can check that (3.1.1) with F (v) = ‖∆2v‖is not satis�ed for the Chaikin scheme [16], while in [15, 31] it was shown that for this F (3.1.2) isstill enough for convergence. Following arguments similar to those in Chapter 2, we will show thatin many cases (3.1.1) is arti�cial and can be dropped. To achieve that, we work once again withthe special class of k-o�set-invariant schemes, de�ned in the multivariate setting via

S(v + p
∣∣
Zs) = Sv + q

∣∣
r−1Zs , (3.1.10)where p ∈ Πk−1(R

s) is arbitrary, and q ∈ Πk−1(R
s) depends on p and has the property p − q ∈

Πk−2(R
s).Theorem 3.1.4. Let S : `∞(Zs) → `∞(Zs) be local, r-shift and k-o�set invariant, as well asbounded operator, i.e., there exists a constant C ∈ R such that for any v ∈ `∞(Zs) ‖Sv‖ ≤ C‖v‖.Fix a bounded set λ0 ⊂ Zs that contains Tk and let Λ = {λi = Tiλ0, i ∈ Zs}, where Ti is thetranslation operator on Zs. If there exists n ∈ N and ρ ∈ (0, 1) such that

|||Snv|||k ≤ ρ|||v|||k, ∀v ∈ `∞(Zs), (3.1.11)then the associated subdivision scheme S is uniformly convergent.Proof. To prove the theorem, we only need a replacement of (3.1.1) and then to apply Proposi-tion 3.1.1 with F = ||| · |||k, since (3.1.2) and (3.1.3) are covered by our assumptions.



3. Analysis of multivariate subdivision schemes via local maps 48Lemma 3.1.5. If S is local, r-shift and k-o�set invariant (k ≥ 1), then
‖∆k−1Sv‖ ≤ 1

rk−1
‖∆k−1v‖+ Ck|||v|||k, ∀v ∈ `∞(Zs). (3.1.12)Proof. Fix an i ∈ Zs and a big enough λ ⊂ Zs that completely determines the sequence Sv on

λ̄ = TiTk−1. In other words, we can compute (∆k−1Sv)i, knowing only v|λ. Obviously, since Sis local and shift-invariant, λ is bounded and contains at least one translation of Tk−1. Let thistranslation be Ti′Tk−1 (for example for interpolatory schemes i′ = [i/r]). For any v ∈ `∞(Zs) let
pi = Ik−1

i′ v be the polynomial of total degree k − 1 that interpolates v on Ti′Tk−1. Then for every
α ∈ Zs

+, |α| = k − 1

|(∆k−1
α Sv)i| = |(∆k−1

α S(v − pi1+ pi1))i| = |(∆k−1
α S(v − pi1))i +∆k−1

α qi|,where qi ∈ Πk−1(R
s) has the same leading coe�cients as pi. But we know that for any s-variate poly-nomial p =

∑
|β|≤k−1 aβx

β , ∆k−1
α p = (k−1)!rk−1aα. Thus, ∆k−1

α qi = r−(k−1)∆k−1
α pi = r−(k−1)∆k−1

α vi′ .Therefore
|(∆k−1

α Sv)i| ≤ |(∆k−1
α S(v − pi1))i|+ r−(k−1)|∆k−1

α vi′| ≤ 2k−1C|||v|||k +
1

rk−1
|∆k−1

α vi′ |,and thus
‖∆k−1Sv‖ ≤ 1

rk−1
‖∆k−1v‖+ 2k−1C|||v|||k.The lemma is proved.We will show the proof of Theorem 3.1.4 only for s = 1. First, the existence of a global constant

C such that ‖Sv‖ ≤ C‖v‖ leads to the existence of a global constant C1 ≥ 1 (that depends on Cand the length l of λ0) such that |||Sv|||k ≤ C1|||v|||k for all v ∈ `∞(Z). Indeed,
|||Sv|||k = sup

i∈Z
inf

p∈Πk−1(R)
‖(Sv − p)‖λi

.Let λ̄0 be the interval on Z that completely determines Sv on λ0, i.e., (Sv)|λ0 = S(v|λ̄0
)
∣∣
λ0
. Suchan interval exists and it is �nite, due to the locality of the scheme. Moreover, since S is k-o�setinvariant, the support of S should be at least of length k, and so does the length of λ̄0. Let Λ̄ bethe collection of all integer shifts of λ̄0. Corollary 3.1.3 gives

sup
λ̄∈Λ̄

inf
p∈Πk−1(R)

‖(v − p)‖λ̄ ≤ C ′ sup
λ∈Λ

inf
p∈Πk−1(R)

‖(v − p)‖λ, ∀v ∈ `∞(Z), (3.1.13)where C ′ does not depend on v. Now take any v ∈ `∞(Z) and let p̄ be the element of bestapproximation of order k to v on λ̄0. Since S is k-o�set invariant, there exists a q̄ ∈ Πk−1(R) suchthat
S(v − p̄)|λ̄0

= (Sv − q̄)|λ0 .Therefore
inf

p∈Πk−1(R)
‖Sv − p‖λ0 ≤ ‖Sv − q̄‖λ0 = ‖S(v − p̄)‖λ̄0

≤ C‖v − p̄‖λ̄0
≤ C sup

λ̄∈Λ̄

inf
p∈Πk−1(R)

‖v − p‖λ̄

≤ CC ′ sup
λ∈Λ

inf
p∈Πk−1(R)

‖v − p‖λ = C1|||v|||k.
(3.1.14)



3. Analysis of multivariate subdivision schemes via local maps 49Since S is shift-invariant, the above result holds for every λi, and thus for the supremum over all i.Let m ∈ N and let m = m1n +m2, where m2 ∈ {0, 1, . . . , n− 1}. Then for any v ∈ `∞(Z)

|||Smv|||k ≤ ρm1 |||Sm2v|||k ≤ Cm2
1 ρm1 |||v|||k ≤ Cn−1

1 /ρ︸ ︷︷ ︸
:=A

(ρ1/n︸︷︷︸
:=µ

)m|||v|||k ≤ Aµm|||v|||k, (3.1.15)where µ ∈ (0, 1).Now we are able to prove the theorem. When k = 1, the result follows from Proposition 3.1.1and (3.1.13), since for a �xed v ∈ `∞(Z)

‖f 1 − f 0‖ = sup
i∈Z

max
j∈{0,...,r−1}

∣∣∣∣(Sv)ri+j −
j

r
vi+1 −

r − j

r
vi

∣∣∣∣
≤ sup

i∈Z
‖Sv − vi1‖λ′

i
≤ sup

i∈Z
C‖v − vi1‖λ̄′

i
≤ CG(v, I10 ) ≤ C|||v|||1,where λ′

i = [r(i− 1), r(i+1)], while λ̄′
i is the minimal interval on Z that completely determines Svon λ′

i. S is local and r-shift-invariant, so λ̄′
i is of �nite length and for any j ∈ Z, λ̄′

j = Tj−iλ̄′
i.For k > 1, combining Lemma 3.1.5 and (3.1.15), we derive

‖∆k−1vj+1‖ ≤ 1

rk−1
‖∆k−1vj‖+ Ck|||vj |||k ≤

1

rk−1
‖∆k−1vj‖+ CkAµ

j|||v|||k, ∀j ∈ Z.Since j was arbitrary
‖∆k−1vj‖︸ ︷︷ ︸

dj

≤ 1

rk−1
dj−1 + CkAµ

j−1|||v|||k ≤
1

(rk−1)2
dj−2 +

CkAµ
j−2

rk−1
|||v|||k + CkAµ

j−1|||v|||k ≤ . . .

≤ 1

(rk−1)j
d0 + CkA|||v|||k

(
j−1∑

i=0

µi

(rk−1)j−1−i

)
≤ |||v|||k−1

(rk−1)j

(
C + CkBr

j−1∑

i=0

(
µrk−1

)i
)

≤ C ′′µ̃j|||v|||k−1, where { 1 > µ̃ > µ if µ ≥ 1/rk−1

µ̃ = 1/rk−1 if µ < 1/rk−1 . (3.1.16)Therefore
|||vj|||k−1 ≤ C ′‖∆k−1vj‖ ≤ C ′C ′′µ̃j|||v|||k−1and, thus there exists n′ ∈ N and ρ̃ ∈ (0, 1) such that for any v ∈ `∞(Z)

|||Sn′

v|||k−1 ≤ ρ̃|||v|||k−1.By induction, it follows that there exists n′′ ∈ N and ˜̃ρ ∈ (0, 1) such that for any v ∈ `∞(Z)

|||Sn′′

v|||1 ≤ ˜̃ρ|||v|||1,and we are again in the case k = 1.In the multivariate setting (s > 1), the proof follows absolutely the same steps. There one justneeds to replace lengths of intervals with sizes of bounded sets in Zs, and to argue that λ̄0 containsa shift of Tk instead of an interval of length k. The details are left to the reader.



3. Analysis of multivariate subdivision schemes via local maps 50Remark 3.1.6. The proof of Theorem 3.1.4 implies that whenever (3.1.11) holds for some triple
(n, k, ρ), it holds for a triple (n′, 1, ρ′), too.Hence, for the sake of convergence, it su�ces to work only with ||| · |||1. However, if (3.1.11) holdsfor a triple (n, k, ρ), with k > 1, n may be much smaller than n′, and thus, the numerical veri�cationof (3.1.11) may be faster. Furthermore, using only k = 1 restricts the smoothness analysis of S tosmoothness exponents < 1. Indeed, Lemma 2.2.1 can be extended to higher dimension, assuringthat for any local, r-shift and k-o�set invariant scheme S there exists the k-th derived scheme
S [k], satisfying the commutation formula (2.1.3), and we already mentioned at the beginning of thechapter, that the Hölder regularity of S depends on the contractivity properties of S [k]. Note that,the smoothness analysis does not depend on the representative of the equivalence class ||| · |||k used forverifying (3.1.11)! Usually, the higher the k, the smaller the ρ, and thus, the better the smoothnessresult.If we restrict ourselves to the class of univariate, linear subdivision schemes, Theorem 3.1.4 isnecessary and su�cient for uniform convergence (see [15, 31]).The freedom of choosing di�erent neighborhoods λ and an arbitrary linear projector P given byTheorem 3.1.4 may improve (in terms of speed and memory space) the e�ciency of the numericalveri�cation of (3.1.11). In particular, if λ0 is the invariant neighborhood of S, i.e., the minimalneighborhood such that S∞(v)

∣∣
[0,1]s

depends solely on v0|λ0 , (3.1.11) is equivalent to the problemof computing the joint spectral radius of an iterated function system (IFS) with rs elements. Toillustrate this, consider the power-p schemes (2.3.13). In the univariate case the invariant neighbor-hood is λ0 = [−2, 3], while for the bivariate generalizations we have λ0 = [−2, 3]2. For any linearprojector P onto Π1(R
2) we de�ne four functions F P

i : R33 → R33, i = {(0, 0), (0, 1), (1, 0), (1, 1)}that map v|λ0−P (v|λ0) into Sv|λi
−P (Sv|λi

), respectively, where λi are the invariant neighborhoodsof the four cells on 2−1Z2, contained in [0, 1]2 (see Fig 3.1). We work on 33-dimensional vector space
V , since the size of λ0 is 36, while the range of P is of dimension dim(Π1(R

2)) = 3. Now (3.1.11)holds with k = 2 if and only if
ρ(F P ) := lim sup

J→∞
max

i1,...,iJ∈{1,2,3,4}
max
w∈V
‖w‖=1

‖F P
iJ
◦ F P

iJ−1
◦ · · · ◦ F P

i1
w‖1/J < 1. (3.1.17)Formula (3.1.17) links our results with the convergence analysis of linear subdivision schemesbased on the estimation of the joint spectral radius (JSR) of a �nite set of matrices derived fromthe mask of S [67, 56]. Indeed, the JSR is de�ned as (see [67] for more detail)

ρ(A|V ) := lim sup
J→∞

max
i1,...,iJ∈[0,1]s

∣∣Ai1 |V · . . . · AiJ |V
∣∣1/J . (3.1.18)There {Ai : i = 1, . . . , 4} is the collection of linear operators on `∞(λ0), s.t., A0(v) is an algebraicadjoint operator of (Sv)|λ0 with respect to a certain bilinear form de�ned in [67], while the otherthree operators are the corresponding shifts of A0(v) for the remaining subcells of [0, 1]2. Thespace V is a �nite-dimensional subspace of `∞(λ0), which is invariant under all Ai, and {Ai|V } is acollection of matrix representations of {Ai} with respect to a basis of V . The JSR analysis statesthat a linear scheme S is uniformly convergent if and only if ρ(A|V ) < 1. Hence, our convergenceanalysis is a nonlinear extension of the JSR concept.
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Fig. 3.1: The invariant neighborhood of λ = [0, 1]2 for the bivariate Power-p scheme, and the correspondinginvariant neighborhoods of it successors after one step of subdivision.Di�erent choices for the projector P lead to di�erent sets of functions F P
i , and thus, to di�erentjoint spectral radius problems (regarding the fact that due to Theorem 3.1.4 all the answers will bethe same). Smoothness analysis can be based on joint spectral radii, too [82]. The important thingto stress is that, unlike the operator ∆k : `∞(Zs) → (`∞(Zs))Nk , linear projectors P lead to localmaps {F P} that remain endomorphisms, implying that the computation of the corresponding jointspectral radii is more e�cient. 3.2 StabilityWith the machinery developed in the previous section, we can obtain stability results, too. Theonly adjustment is that for stability one is not interested in the re�nement of a single sequence

v ∈ `∞(Zs), but in the distance between two such re�nements. The exposition in this sectionfollows closely the previous one, and most of the proofs are skipped since they are analogous to thecorresponding ones from the convergence analysis.Proposition 3.2.1. Let S be a stationary regular subdivision scheme, de�ned via an operator
S : `∞(Zs)→ `∞(Zs). If there exists a function F : `∞(Zs)→ R+, satisfyingi) ∃C1 ∈ R+, such that

‖Sv − Sṽ‖ ≤ ‖v − ṽ‖+ C1F (v − ṽ); (3.2.1)ii) ∃n ∈ N, ρ ∈ (0, 1) such that
F (Snv − Snṽ) ≤ ρF (v − ṽ); (3.2.2)iii) ∃C2 ∈ R+ independent of v, such that

F (v) ≤ C2‖v‖, (3.2.3)for all v, ṽ ∈ `∞(Zs), then S is (Lipschitz) stable.



3. Analysis of multivariate subdivision schemes via local maps 52Proof. Fix J ∈ N, and two sequences v, ṽ ∈ `∞(Zs). (3.2.1) implies
‖SJv − SJ ṽ‖ ≤ ‖SJ−1v − SJ−1ṽ‖+ C1F (SJ−1v − SJ−1ṽ) ≤ · · · ≤ ‖v − ṽ‖+ C1

J−1∑

j=0

F (Sjv − Sj ṽ).(3.2.4)For any j ∈ N, (3.2.2) gives rise to
F (Sjv − Sj ṽ) ≤ ρ[j/n]F (Sj−n[j/n]v − Sj−n[j/n]ṽ), (3.2.5)and for every i ∈ {1, . . . , n− 1} we have

F (Siv − Siṽ) ≤ C2‖Siv − Siṽ‖ ≤ C2

(
‖Si−1v − Si−1ṽ‖+ C1F (Si−1v − Si−1ṽ)

)

≤ C2(1 + C1C2)‖Si−1v − Si−1ṽ‖ ≤ · · · ≤ C2(1 + C1C2)
n−1

︸ ︷︷ ︸
C<∞

‖v − ṽ‖. (3.2.6)Finally, combining (3.2.4), (3.2.5), and (3.2.6) we derive
‖SJv − SJ ṽ‖ ≤ ‖v − ṽ‖+ C1

J−1∑

j=0

F (Sjv − Sj ṽ) ≤ ‖v − ṽ‖+ C1C‖v − ṽ‖
J−1∑

j=0

ρ[j/n]

≤
(
1 + C1C

∞∑

j=0

ρ[j/n]
)
‖v − ṽ‖ =

(
1 +

nC1C

1− ρ

)
‖v − ṽ‖.

(3.2.7)The proof of Proposition 3.2.1 is completed.Theorem 3.2.2. Let S : `∞(Zs)→ `∞(Zs) be local, r-shift and k-o�set invariant. Fix a bounded set
λ0 ⊂ Zs that contains Tk and let Λ = {λi = Tiλ0, i ∈ Zs}, where Ti is the translation operator on Zs.Assume that there exists a constant C ∈ R such that for any v, ṽ ∈ `∞(Zs) ‖Sv− Sṽ‖ ≤ C‖v− ṽ‖.Then, if there exists n ∈ N and ρ ∈ (0, 1) such that

|||Snv − Snṽ|||k ≤ ρ|||v − ṽ|||k, ∀v, ṽ ∈ `∞(Zs), (3.2.8)
S is Lipschitz stable.Proof. We sketch the proof only for s = 1. Exactly as in the proof of Theorem 3.1.4 we show thatthe existence of a global constant C such that ‖Sv − Sṽ‖ ≤ C‖v − ṽ‖ leads to the existence of aglobal constant C1 ≥ 1 (that depends on C and the length l of λ) such that |||Sv−Sṽ|||k ≤ C1|||v−ṽ|||kfor all v, ṽ ∈ `∞(Z).Then, letting µ = ρ1/n ∈ (0, 1), we derive that for any v, ṽ ∈ `∞(Z)

|||Smv − Smṽ|||k ≤ Aµm|||v − ṽ|||k, ∀m ∈ N, (3.2.9)where A is a constant, that does not depend on v, ṽ, or m.



3. Analysis of multivariate subdivision schemes via local maps 53The next observation is that (3.2.1) with F = ||| · |||1 follows from the Lipschitz continuity of S.Indeed, �x i ∈ Z and let λ̄i = [̄i, ī+L] be the smallest interval that determines Svi (L is the supportsize of S). Then for any v, ṽ ∈ `∞(Z)

|Svi − Sṽi| = |(Sv − vī1+ vī1− Sṽ + ṽī1− ṽī1)i|
≤ |vī − ṽī|+ |

(
S(v − vī1)− S(ṽ − ṽī1)

)
i
|

≤ ‖v − ṽ‖λ̄i
+ C‖v − ṽ − (v − ṽ)̄i1‖λ̄i

≤ ‖v − ṽ‖+ C̃|||v − ṽ|||1.

(3.2.10)For the last inequality we used Corollary 3.1.3. Since i was arbitrary
‖Sv − Sṽ‖ ≤ ‖v − ṽ‖+ C̃|||v − ṽ|||1, ∀v, ṽ ∈ `∞(Z).Now we are able to prove the theorem. When k = 1, using

|||v|||1 ≤ C̄‖∆1v‖ ≤ 2C̄‖v‖, ∀v ∈ `∞(Z)the result follows from Proposition 3.2.1, where we have taken F = ||| · |||1.For k > 1 we use recursion and the following straightforward generalization of Lemma 3.1.5.Lemma 3.2.3. If S : `∞(Zs)→ `∞(Zs) is local, r-shift and k-o�set invariant (k > 1), then
‖∆k−1(Sv − Sṽ)‖ ≤ 1

rk−1
‖∆k−1(v − ṽ)‖+ Ck|||v − ṽ|||k, ∀v, ṽ ∈ `∞(Z). (3.2.11)Now, combining Lemma 3.2.3 and (3.2.9) we derive that for any v, ṽ ∈ `∞(Z)

‖∆k−1(Sjv − Sj ṽ)‖ ≤ C ′′µ̃j|||v − ṽ|||k−1, where { 1 > µ̃ > µ if µ ≥ 1/rk−1

µ̃ = 1/rk−1 if µ < 1/rk−1 . (3.2.12)Therefore
|||Sjv − Sj ṽ|||k−1 ≤ C ′‖∆k−1(Sjv − Sj ṽ)‖ ≤ C ′C ′′µ̃j |||v − ṽ|||k−1, ∀j ∈ Nand, thus there exists n′ ∈ N and ρ̃ ∈ (0, 1) such that for any v, ṽ ∈ `∞(Z)

|||Sn′

v − Sn′

ṽ|||k−1 ≤ ρ̃|||v − ṽ|||k−1.By induction, it follows that there exists n′′ ∈ N and ˜̃ρ ∈ (0, 1) such that for any v, ṽ ∈ `∞(Z)

|||Sn′′

v − Sn′′

ṽ|||1 ≤ ˜̃ρ|||v − ṽ|||1,and we are again in the case k = 1. Like in Theorem 3.1.4, the case s > 1 is analogous.In the univariate case for F = ‖∆k · ‖, Theorem 3.2.2 is nothing else but Theorem 2.2.3, andTheorem 2.2.8 provides a recipe for the numerical veri�cation of (3.2.8). As already explained in theprevious chapter, it is based on estimating the joint spectral radius ρs(S, k) of the �rst derivativeof the k-th derived scheme. Up to the knowledge of the author, other functions have not beenconsidered so far.



3. Analysis of multivariate subdivision schemes via local maps 543.3 Example: Convergence of bivariate Power-p subdivision schemesWe demonstrate our local-map approach on a family of bivariate power-p subdivision schemes. Firstof all, in the univariate case (2.3.13) due to
|Hp(x, y)| ≤

|x+ y|
2

, ∀ x, y ∈ R,we conclude that for any sequence v and index i

∣∣Hp(∆
2vi−1,∆

2vi)
∣∣ ≤ |∆vi+1 −∆vi−1|

2
≤ max{|∆vi−1|, |∆vi+1|}.Hence,

‖∆Spv‖ ≤
5

8
‖∆v‖, ∀v ∈ `∞(Z), p ≥ 1, (3.3.1)implying that every power-p scheme is convergent. Furthermore, one can show that the obtainedlimit functions are at least Lipschitz continuous, e.g., the smoothness of each of the schemes is 1.The factor 5/8 in (3.3.1) is sharp. However, if we limit the range of the parameter p, it can beimproved. For example, precise computations involving the partial derivatives (2.3.16) of Hp giverise to ‖∆Spv‖ ≤ 1

2
‖∆v‖, whenever p ≤ 4, and that the contracting factor monotonically increaseswith p→∞. Therefore, the estimations below are not optimal, if p is �xed a priori.In this section we consider two particular bivariate extensions of Sp, which we prove to beuniformly convergent. The �rst one follows [22], where for any `∞(Z2) and each pair (i, j) ∈ Z2 theauthors de�ne

(Spv)2i,2j = vi,j ;

(Spv)2i+1,2j =
vi,j + vi+1,j

2
− 1

8
Hp((∆

2
xv·,j)i−1, (∆

2
xv·,j)i);

(Spv)2i,2j+1 =
vi,j + vi,j+1

2
− 1

8
Hp((∆

2
yvi,·)j−1, (∆

2
yvi,·)j);

(Spv)2i+1,2j+1 =
(Spv)2i,2j+1 + (Spv)2i+2,2j+1

2
− 1

8
Hp((∆

2
xSpv2·,2j+1)i−1, (∆

2
xSpv2·,2j+1)i).

(3.3.2)
In other words, we use the univariate Sp once horizontally for predicting the data on the horizontalmidpoints of the old square grid, then vertically for predicting the data on the vertical midpointsof the old square grid, and �nally horizontally again for predicting the data in the centers of thesquares of the old grid by using the already predicted vertical midpoint data. In this setting onestep of the �rst order divided di�erence operator is enough for proving convergence, meaning thatwe use Theorem 3.1.4, and Corollary 3.1.3 with (3.1.9). Indeed, from (3.3.1) we have

max
{
|(∆xSpv·,2j)i|, |(∆ySpv2i,·)j|

}
≤ 5

8
‖∆v‖, ∀i, j ∈ Z. (3.3.3)Moreover, repeating one more time the above argument

∣∣(Spv)2i+1,2j+1 − (Spv)2i,2j+1

∣∣ =
∣∣∣∣
(∆xSpv2·,2j+1)i

2
− 1

8
Hp((∆

2
xSpv2·,2j+1)i−1, (∆

2
xSpv2·,2j+1)i)

∣∣∣∣

≤ 5

8
‖∆xSpv2·,2j+1‖,



3. Analysis of multivariate subdivision schemes via local maps 55together with
|(∆xSpv2·,2j+1)i| = |∆xSpv2i+2,2j+1 −∆xSpv2i,2j+1| ≤

∣∣vi+1,j − vi,j
2

+
vi+1,j+1 − vi,j+1

2

− 1

8

(
Hp((∆

2
yvi+1,·)j−1, (∆

2
yvi+1,·)j)−Hp((∆

2
yvi,·)j−1, (∆

2
yvi,·)j)

)∣∣ ≤ 5

4
‖∆v‖,gives rise to

|(∆xSpv·,2j+1)i| ≤
5

8
· 5
4
‖∆v‖ ≤ 25

32
‖∆v‖. (3.3.4)Finally, we have

∣∣(Spv)2i+1,2j+1 − (Spv)2i+1,2j

∣∣ =
∣∣∣∣
(Spv)2i+2,2j+1 − vi+1,j

2
+

(Spv)2i,2j+1 − vi,j
2

− 1

8

(
Hp((∆

2
xSpv2·,2j+1)i−1, (∆

2
xSpv2·,2j+1)i)−Hp((∆

2
xv·,j)i−1, (∆

2
xv·,j)i)

)∣∣∣∣

≤ ‖∆ySpv2(i+1),·‖
2

+
‖∆ySpv2i,·‖

2
+
‖∆xSpv2·,2j+1‖

8
+
‖∆xv·,j‖

8

≤
(1
2
· 5
8
+

1

2
· 5
8
+

1

8
· 5
4
+

1

8

)
‖∆v‖ ≤ 29

32
‖∆v‖,which is equivalent to

|(∆ySpv2i+1,·)j | ≤
29

32
‖∆v‖. (3.3.5)Now, combining 3.3.3, 3.3.4, and 3.3.5 we conclude

‖∆Spv‖ ≤
29

32
‖∆v‖, ∀v ∈ `∞(Z2), p ≥ 1. (3.3.6)This implies uniform convergence for the whole family Sp, while [22, Theorem 4] assures smoothnessfor the limits of order at least − log2(29/32) ≈ 0.1420. These results improve the one from [22]where convergence was proved only for p ∈ [1, 4], and the minimal smoothness was ≈ 0.03. However,the smoothness factor is still far away from the conjectured Hölder regularity of order 1 for Sp.The second family of bivariate subdivision schemes {S′

p} we investigate is the �fully parallel�power-p one. The di�erence between Sp and S′
p is only in the choice of direction for predicting datain the centers of the squares of the coarse grid. For Sp horizontal directions were used, while for S′

pthe main diagonals are considered:
(S′

pv)2i+1,2j+1 =
vi,j + vi+1,j+1

2
− 1

8
Hp(∆

2
zvi−1,j−1,∆

2
zvi,j),where ∆2

zvi,j := vi,j − 2vi+1,j+1 + vi+2,j+2. We call S′
p fully parallel, because we have three in-dependent directions, and thus the entries (S′

pv)2i+1,2j, (S
′
pv)2i,2j+1, (S

′
pv)2i+1,2j+1 can be simultane-ously computed. Using �rst-order divided di�erence operator ∆, the triangle inequality |∆zvi,j| ≤

|(∆xv·,j+1)i|+ |(∆yvi,·)j| and similar estimations as for Sp we derive
‖∆S

′
pv‖ ≤

7

8
‖∆v‖, ∀v ∈ `∞(Z2), p ≥ 1. (3.3.7)



3. Analysis of multivariate subdivision schemes via local maps 56Applied in this form, the operator∆ breaks the symmetry among the directions, since it captures
∆x and ∆y, but not ∆z. Let us consider

F (v) := sup
i,j∈Z
{|∆xvi,j|, |∆yvi,j |, |∆zvi,j|}, ∀v ∈ `∞(Z2)instead. If we denote by λ0 = [0, 1]×[0, 1], and take P = I00 , i.e., the linear projection P (v|λ0) = v0,0,then F (v) = G(v, P ) and Corollary 3.1.3 implies F ∼= ‖∆‖. Now

∣∣∣∣(∆yS
′
pv2i+1,·)2j

∣∣∣∣ =
∣∣∣∣
(∆yvi+1,·)j

2
− 1

8
Hp(∆

2
zvi−1,j−1,∆

2
zvi,j) +

1

8
Hp((∆

2
xv·,j)i−1, (∆

2
xv·,j)i)

∣∣∣∣ ≤
3

4
F (v),and due to symmetry we conclude

F (S′
pv) ≤

3

4
F (v), ∀v ∈ `∞(Z2), p ≥ 1. (3.3.8)Therefore, by Theorem 3.1.4, the fully parallel family {S′

p}p≥1 is uniformly convergent. Moreover,(3.3.8) assures smoothness of order − log2(3/4) ≈ 0.4150 for each S′
p, which is better than the

− log2(7/8) ≈ 0.1926 smoothness, guaranteed by (3.3.7). Again, we are still far away from provingHölder regularity of order 1 for {S′
p}. Finally, since there is a smooth local mapping that preserves

(0, 0) and sends (±1, 0), (0,±1), (1, 1) and (−1,−1) into the vertices of a regular hexagon aroundthe origin, F establishes a convergence and smoothness result also for S′
p applied on a regulartriangular grid. There F coincides with the norm of the natural divided di�erence operator ∆ forthe setting. This last observation is further explored in the Section 3.4.The stability analysis of {Sp} and {S′

p} is much more computationally involved and requirestaking into account several consecutive levels of re�nement. Hence, we do not do it. Of course,Theorem 2.3.5 tells us that for p > 4 both Sp and S′
p are not stable, but for small values of theparameter (even p = 2), up to our knowledge, the answer remains unknown. In [6] the Lipschitzstability of a relaxed version Srel of S2 is established. The relaxation used there allows for theveri�cation of a one-step contractivity property (3.2.8) for Srel, which in turn implies stability of theassociated Srel multi-scale transform. Even though numerical simulations suggest that the Srel multi-scale transform inherits the useful practical properties (such as avoiding Gibbs-like phenomena,exhibiting high quality of the reconstructed image, etc.) of the S2 multi-scale transform (see [4]), itacts quite di�erently than the S2 multi-scale transform in presence of singularities, so no theoreticalconclusions for the stability of S2 or its associate multi-scale transform can be drawn from thestability of the modi�ed transform.3.4 A note on semi-regular subdivisionThis section is a step towards extending the regular tensor-grid subdivision analysis from Section 3.1to subdivision schemes on semi-regular triangulated surfaces. Hence, throughout the section we onlywork with s = 2.Let the triangulation Γ0 be a a particular embedding on R2 of the topological set Φ0 =

(V0, E0, F0) of vertices, edges, and �triangular� faces, meaning that the boundary of each of the



3. Analysis of multivariate subdivision schemes via local maps 57faces consists of exactly three edges, and each edge is entirely shared by two adjacent triangles.In practice one does not work with the whole plane but with some compact subset K of it. Inorder to avoid analysis on the boundary of K and for simplicity, it is assumed that our trianglescover a slightly bigger set K ′, which due to the locality of the subdivision operator leads to analysisequivalent to the one on R2. For each j ∈ N we obtain Γj from Γj−1 via regular, dyadic re�nement,i.e., by dividing each old triangle into four new ones, using the midpoints of its sides. Obviously, atall levels all the newly-inserted vertices in the re�ned triangulations are of valence six. Thus, evenif the vertices of Γ0 are of di�erent valence (i.e., are extraordinary or irregular), their number is�nite and after su�ciently many re�nement steps they will all be well separated, meaning that forthe purpose of analysis it is enough to consider only one extraordinary vertex in Γ0 from the verybeginning. From now on we work within this assumption and, as a consequence, all the grids Γj aretopologically equivalent, having only one extraordinary vertex. Hence, we can drop the indices andonce again de�ne a stationary, local subdivision operator S : `∞(Γ) → `∞(Γ), such that for everyreal sequence v0 on Γ0 and every j ∈ N, vj = Sjv0 is a real sequence on Γj. This process is knownas semi-regular subdivision, and in this section we will consider only shift and 1-o�set invariantoperators S. (Here, by shift-invariance we mean, that the action of S depends only on the topologyof Γ, but not on the shape of the particular triangles.) For more general theory see [90].For any vertex ν ∈ VΓ, we de�ne the set of all adjacent vertices by λν := {µ ∈ VΓ : (ν, µ) ∈ EΓ}and refer to it as the topological 1-ring of ν. Analogously, we can de�ne the geometrical 1-ring of
ν λ′

ν ⊂ Γ, by replacing adjacent vertices with adjacent faces. In order to simplify the notation, wewill refer to both of them as the 1-ring of ν, will denote them via λν , and it will be clear from thecontext which one we consider. Let Λ := {λν : ν ∈ VΓ}. For every e = (ν1, ν2) ∈ EΓ we can de�ne�rst-order divided di�erence ∆ve := |vν1 − vν2|, and ‖∆v‖ := supe∈EΓ
∆ve. As in Section 3.1, wecan obtain ‖∆v‖ via the action of the interpolating operator I0ν on v|λν
, and immediately derive

‖∆v‖ = G(v, I0) = sup
ν∈VΓ

‖v − vν1‖λν
≤ 2‖v‖, ∀v ∈ `∞(VΓ).Constant reproduction does not depend on the geometry of Γ, so we can think of Γ being thethree-directional mesh with vertices in Z2, discussed at the end of the previous section, away fromthe extraordinary vertex where some adjustments are made. Hence, de�ning

|||v|||1 := sup
ν∈VΓ

inf
c∈R

∣∣v|λν
− c1|λν

∣∣,and showing that ‖∆v‖ ∼= |||v|||1 follows from Section 3.1. Moreover if ‖Sv‖ ≤ C‖v‖ for all v, wehave that (3.1.1) and (3.2.1) are always satis�ed with F = ||| · |||1, and that there exists C1, such that
|||Sv|||1 ≤ C1|||v|||1. Let us, for sake of complicity, repeat the argument for the validity of (3.1.1).

|f 1 − f 0| = sup
ν∈VΓ

‖Sv − vν1‖λ′
ν
≤ C sup

ν∈VΓ

‖v − vν1‖λ̄′
ν
≤ C ′|||v|||1.Here, for every ν ∈ VΓ, λ′

ν is the topological 2-ring of ν ′, where ν ′ is the vertex on Γ1 that correspondsto the vertex ν on Γ0, e.g., in the regular case Γ = Zs, ν ′ = 2ν. The set λ̄′
ν is the minimal onethat determines Sv on λ′

ν . Due to the existence of an irregular vertex, we don't always havethat λ̄′
µ is topologically equivalent to λ̄′

ν , for µ 6= ν ∈ Γ. However, the latter is true away fromthe extraordinary point, leaving us with only �nitely many topologically di�erent elements λ̄′
νi.



3. Analysis of multivariate subdivision schemes via local maps 58Moreover, since S is local and the extraordinary vertex has �nite valence, there exists a constant
L ∈ N, such that for any i, λ̄′

νi is contained in the corresponding L-ring of νi, leading to
sup
ν∈VΓ

‖v − vν1‖λ̄′
ν
≤ L|||v|||1.Now, it is straightforward to extend our previous results to semi-regular triangulations.Theorem 3.4.1. Let S be a local, shift and 1-o�set invariant subdivision operator on a semi-regularmesh. Assume that there exists a constant C ∈ R such that for any v ∈ `∞(VΓ), ‖Sv‖ ≤ C‖v‖. Ifthere exists n ∈ N, ρ ∈ (0, 1) and a function F ∼= ||| · |||1 such that

F (Snv) ≤ ρF (v), ∀v ∈ `∞(VΓ) (3.4.1)then the associated subdivision scheme S is uniformly convergent.Moreover, if there exists a constant C ′ ∈ R such that for any v, ṽ ∈ `∞(Γ), ‖Sv−Sṽ‖ ≤ C ′‖v−ṽ‖and if there exist ñ ∈ N and ρ̃ ∈ (0, 1) satisfying
F (Sñv − Sñṽ) ≤ ρ̃F (v − ṽ), ∀v, ṽ ∈ `∞(Γ) (3.4.2)then S is Lipschitz stable.As discussed in Section 3.1, the veri�cation of (3.4.1) and (3.4.2) can be done through estimatingthe joint spectral radius of an IFS. Away from the extraordinary point, we have the same pictureas before - a set of �nitely many functions {F P

i }. However, the analysis becomes more technicalclose to the irregular vertex [86, 78]. For instance, the smoothness analysis heavily depends on thegeometry of Γ and we will not consider it here. The interested reader may refer to the work ofWeinmann [106, 107, 108].Lemma 3.1.5 and Lemma 3.2.3 are based on the operator ∆k, which heavily depends on theregularity of the grids Γj . Thus, those results cannot be extended to the semi-regular case andwe do not have a proof for Theorem 3.4.1 with F ∼= ||| · |||k. However, [53] suggests that theproblem might be only due to the technique we use for the analysis, while the result may stillbe true. There, the author is interested in analyzing convergence and smoothness of multivariatesubdivision schemes, de�ned on even irregular meshes. As we already mentioned in the beginningof the chapter, the smoothness analysis in the regular setting is built on the existence of derivedschemes S [k] because it approximates the k-th derivatives of the generated via S limit functions.Thus, in general one needs a local operator de�ned as a linear combination of discrete values whichwould converge to the k-th order derivative of a multivariate function as the underlying mesh sizegoes to zero on an arbitrary (irregular) mesh. The latter can be achieved if one replaces the �nitedivided di�erence operator with a standard divided di�erence operator, related to the multivariateLagrange interpolation. For instance, on any set λ ∈ Γ0 ⊂ Rs (called stencil in [53]) of cardinality
dim(Πk(R

s)) that admits interpolation, i.e., there exists a unique polynomial p ∈ Πk(R
s), such that

p|λ = v|λ for all v ∈ `∞(Γ0), one can de�ne operator Dk(λ) satisfying
Dk

α(λ)v =
aα
α!

, ∀α ∈ Z
s
+ : |α| = k, (3.4.3)



3. Analysis of multivariate subdivision schemes via local maps 59where p =
∑

|β|≤k aβx
β. Note, that in the univariate regular case Γj = r−jZ all the stencils are ofthe type λi = [i, i+k] and r−kjDk(λi)v = ∆kvi. In general, whenever the grids {Γj} are nested andif for every j ∈ N there exists a special set Λj that covers Γj and is a normal collection of stencils fora homogeneous multi-level grid they prove that the straightforward extension of the left-hand-sideof the last univariate, regular equality remains equivalent to |||v|||k with respect to the notation inSection 3.1. More precisely [53, Lemma 22], together with (3.4.3) implies that for any �nite set

λ∗ ⊂ Γj and for any covering connected collection Λ∗ ⊂ Λj for it
A sup

λ∈Λ∗

[diam(λ∗)]k‖Dk(λ)v‖ ≤ inf
p∈Πk(Rs))

‖v − p‖λ∗ ≤ B sup
λ∈Λ∗

[diam(λ∗)]k‖Dk(λ)v‖,holds for any v ∈ `∞(Γj). Furthermore, for k-o�set invariant interpolatory (but possibly nonlinear!)
S there exist k-th derived scheme S [k] that satis�es a general commutation formula (2.1.3) withrespect to Dk, and convergence criteria in the vicinity of Theorem 3.4.1 (see [53, Theorem 24]).The result is considerably weaker than Theorem 3.1.4, but illustrates that the local map approachcan be a useful tool for analyzing irregular subdivision, too.We �nish the section with one last remark. Corollary 3.1.3 gives room for further generalizationsof G(v, P ). E.g., let Λ = {λi : i ∈ Zs} covers the whole Rs, and let there exist N ∈ N, satisfying
TiTk ⊆ λi ⊆ [i−N, i+N ]s, ∀i. Consider a family P = {Pi : v|λi

→ Πk−1(R
s)|λi
} of linear projectorsonto Πk−1(R

s), and assume that there exists C ∈ R with ‖Pi‖ ≤ C for all i ∈ Zs. Then
‖∆kv‖ ∼= G(v,P) := sup

i
‖v − Piv‖λi

, ∀v ∈ `∞(Zs).So far we considered only the shift-invariant setting λi = Tiλ0 with only one projector involved,i.e., Pi = P0 ◦ Ti. A natural question is whether we can bene�t from the more degrees of freedomin G(·,P). For example, if we are given a �nite set of projectors {P j}L1 , v is �xed, and if for everysubset λi we cleverly choose an optimal projector (in some sense) P ji and set Pi := TiP
ji. Thenis contracting property of the type (3.1.2) still enough to claim convergence? Since the choice ofprojectors depends on the data, the question is to some extend equivalent to the following one: if

Λ = {Tiλ0}, P1, P2 are two projectors acting on λ0, and
G(Snv, P1) ≤ ρG(v, P2), ∀v ∈ `∞(Zs)holds together with (3.1.1) and (3.1.3), then is S uniformly convergent? The answer is negative.Indeed, take s = k = 1, Sv2i = Sv2i+1 = vi, λ0 = [0, 1], and let P1, P2 correspond to the polynomialof best approximation of order 1 (i.e., P1(v) = (v0+v1)/2), respectively the interpolating polynomialat 0 (i.e., P2(v) = v0). Then, G(·, P1) ≡ ||| · |||1 and G(·, P2) ≡ ‖∆v‖. For any v ∈ `∞(Z),

|||v|||1 = ‖∆v‖/2 and for any n ∈ N, |||Snv|||1 = |||v|||1. Hence G(Snv, P1) = G(v, P2)/2, but S doesnot converge.



4. NORMAL MULTIRESOLUTION4.1 Introduction, mathematical formulation, and literature reviewNormal multi-scale transforms (MTs) for curves and surfaces were �rstly introduced in [55]. Sincethen, they have been used for multi-scale representation and compression of geometric objects[68, 76, 43], for adaptive approximation of level curves [12], in image analysis [66, 1, 65, 98, 99],and recently for interface tracking [92]. They allow e�cient computational processing of high di-mensional data and support progressive reconstruction, which makes them useful also for streamingapplications in networked environments. Roughly speaking, the normal MT works as follows: givena (continuous, smooth) curve C in R2, resp. surface S in R3, an initial (discrete) sequence of vertices
v
0 ⊂ C, resp. triangular mesh of vertices v0 ⊂ S is �xed. Then the coarse-scale data v

0 is re�nedlevel by level via �rst predicting a new, denser data set via a univariate linear subdivision operator
S applied componentwise, and then adjusting the �ner-scale data so that it lies on the curve, resp.on the surface (see Fig. 4.1 for the 2D case). Analytically, one-level re�nement is described by

v
j = Svj−1 + djn̂j, ∀j ∈ N. (4.1.1)For the �adjustment� (and, thus, for the reconstruction of vj from v

j−1) a set of unit "normals" n̂
j(typically unit normal vectors with respect to the edges of the polygonal line associated with v

j−1,resp., to the faces of the triangulated surface) are used, and sequences of scalar "details" dj arestored. In the analysis step, a new point vj = Svj−1 + djn̂j resp. detail coe�cient dji requires thedetermination of intersection points of the "normal lines" Svj−1
i + tn̂j

i with C, resp. S.In our thesis, we deal only with normal MT for curves, so from now on all the de�nitions will bewith respect to this setting. Let us �rst explain the general setup and its speci�cs in more detail.Due to the di�erent nature of data and details, and the fact that the unit normal directions n̂
jdepend in a nonlinear way on the coarse-scale data v

j−1, the normal MT
C ←→ {v0, d1, d2, . . .},given by (4.1.1) is a nonlinear transform, and its mathematical analysis is nontrivial. Unlike otherMTs, the decomposition (analysis) part of the normal MT, which is the part we deal mostly with, isa coarse-to-�ne procedure. We start with a �nite number N of distinct points on C: v0

i = v(s0i ), i =
0, . . . , N−1, which we assume linearly ordered w.r.t. arc-length, i.e., s00 < s01 < . . . < s0N−1 < s00+L.Extending with period N , we get two sequences v0 = (v0

i )i∈Z and s0 = (s0i )i∈Z (i.e., v0
i+N = vi and

s0i+N = s0i + L for all i ∈ Z) which correspond to the coarsest scale j = 0 in the normal MT. To�nd the �ner scale representations vj and sj, j ≥ 1, with the properties vj
i+N2j = v

j
i = v(sji ) and

sji+N2j − L = sji < sji+1, i ∈ Z, respectively, we use (4.1.1): Given v
j−1, we predict "twice as many"
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Fig. 4.1: One step of a normal MTpoints v̂j = Svj−1 using the subdivision operator S, and compute approximate normal directions
n̂
j for each of them. A standard choice is simply taking n̂

j
2i = n̂

j
2i+1 as the unit vector in thedirection (vj−1

i+1 − v
j−1
i )⊥. The important thing is that both v̂

j and n̂
j are computable from v

j−1,and need not be stored. Given these two sequences, we can �nd the v
j
i by intersecting C with theline through v̂

j
i in the direction n̂

j
i for all i ∈ Z. This is the most ambiguous step, as there mightbe no intersection points, or many intersection points, where taking a wrong candidate may leadto violation of the monotonicity condition sji+1 > sji , ruining the grid connectivity (topology) andleading to a non-nested data structure that cannot be reconstructed from the detail information.In both the cases, i.e., when there is no intersection point or when the monotonicity condition isviolated, we say that the normal MT is ill-posed. In practice, normal MT is used up to an a priori�xed �ne-scale J (e.g., in image processing the cardinality of any sample can not exceed the numberof pixels, while in encoding algorithms the limitation is on the number of bits). In theory, however,we study the asymptotical behavior of the method, hence we let J →∞. The mathematical analysisof normal MTs consists of answering the following questions:

• Under which conditions on C, S, the initial point set v
0, and the assignment rule for ap-proximate normal directions is the reconstruction part of the normal MT well-de�ned for all

j ≥ 1?
• Let vj(t) denote the linear interpolant (polygonal line) for the data vector vj at the grid 2−jZ.Does v

j(t) converge to a regular parametrization of C, and how smooth is this limit (callednormal re-parametrization of C)? This question is equivalent to asking about the convergenceof the linear interpolants s = sj(t) for the data sj at the grid 2−jZ to a smooth limit s = s(t)satisfying s′(t) > 0 since v(s(t)) coincides with the limit of {vj(t)}.
• Which decay rates can be expected for the detail sequences dj? Besides the fact that thedetails are scalar, this has immediate consequences for compression applications.
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• Under which assumptions on given normal MT data {v0, d1, d2, . . .} can we say somethingabout the asymptotic properties of the reconstruction part? E.g., do we get a smooth curve?This question can also be viewed as part of the stability problem for normal MT. Indeed, sta-bility of the reconstruction part means to show that, given the normal MT data {v0, d1, d2, . . .}of a smooth curve C, the reconstruction from slightly perturbed data {ṽ0, d̃1, d̃2, . . .} leads toa close-by limit curve C̃.The �rst theoretical results can be found in [24] where properties like regularity, convergence,and stability of interpolating normal MT for curves are established. The central idea of the authorsthere is to study normal approximation as a perturbation of a linear subdivision scheme and touse proximity conditions. The latter works only under additional smoothness assumptions on theinitial curve C, and thus only C1,α(R2), α > 0 curves are considered. Here and throughout thischapter, we denote by Ck,α the Hölder smoothness class of k-times di�erentiable functions f with

f (k) ∈ Lip α. In [24], the authors always assume that C can be locally parameterized by its x-coordinate with respect to a (properly chosen) local coordinate system, and interpret the normalMT as a nonregular scalar-valued multi-scale transform on the grid xj. They assume that thenew nodes are �well placed�, i.e., starting with a monotonic sequence x0, leads to a monotonicsequence xj , as well, for all j > 0, and that the points of xj do not cluster. Both these conditionsare de�ned via formulae on x that are not rotationally-invariant, and thus optimal choice of thecoordinate system is crucial for the analysis. Under these assumptions the authors prove uniformconvergence, regularity of the normal re-parametrization (that depends on the regularity of S andthe smoothness of C), exponential detail decay rates, and stability of the normal MT. Moreover,they produce a counterexample that their analysis does not hold for initial curves C ∈ C0,α, α ≤ 1unless a meaningful rule for the choice of the newly inserted point vj
2i+1 is established in the cases ofmore than one intersection points between a normal line and the curve. The question about normalsurfaces and how normal meshes work for less smooth spaces, particularly spaces that are used tomodel natural images such as BV, and the Besov space B1,1 remains open. The other uninvestigateddirection is the use of approximating prediction operators. In [91] the general theory from [24] hasbeen worked out on a concrete example, namely the mid-point interpolating (S1) normal MT. Thereexplicit local coordinate frames based on the arc-length parametrization of the original curve areused, which helps for the better understanding of the very technical paper [24]. Moreover, theauthor proves that the S1 normal MT is globally/unconditionally well-de�ned, i.e., no matter whatthe C1 curve C and the coarse-scale sample v

0 are, the multi-scale transform converges to a Lip 1normal re-parametrization. However, it is shown on an example that the above procedure does not�regularize� the �ne-scale data, i.e., the samples vj does not tend to a regularly spaced distributionwith respect to the arc-length of C, as j →∞.The S1 normal MT has been used in [12] as well, but in a slightly di�erent context. There, theauthors aim at the best and sparsest approximation of a continuous planar curve C by polygonal lineswith respect to the Hausdor� metric. Hence, not all coarse-scale intervals have been re�ned, but onlythose for which the approximation error surpasses a certain threshold ε. This leads to an adaptivealgorithm that places lots of points in the regions of low smoothness of C and very few ones in thoseof higher smoothness. Another di�erence from [91] is that here in case of more than one intersectionpoints between the normal line and the curve arc, a speci�c criteria for choosing the newly insertedpoint is necessary, namely, one should always take the piercing point that is farthest away from theprediction. Such an algorithm is easy to implement and is currently used in the authors' surface



4. Normal MT 63encoding software. However, from a theoretical point of view, it is convenient to replace the S1normal MT with a more geometrical, data-dependent re�nement rule that places the new vertexdirectly on C, e.g., to choose the midpoint of the corresponding curve arc. For both the versionsof the proposed method it is proved that C being of �nite length guarantees linear approximationorder O(n−1), where n is the number of sample points on the �nest level. Furthermore, for a C0,1initial curves C with curvature κ ∈ L logL (i.e., some Hardy-Littlewood maximal operator, appliedto κ to be in L1 - see [12] for details) both the algorithms have approximation order O(n−2). Whilethe �rst result remains true for non-adaptive re�nements, too, the second one holds in that setuponly for C ∈ C2 curves (i.e., one needs uniformly bounded curvature). Hence, [12] can be viewed asan attempt to extend the existing optimal approximation rates to C1,α curves.Our paper [62] extends the theory from [24] to the approximating setting and to a larger classof admissible normal directions, called �generalized normals�. The main observation is that boththe detail decay rate and the smoothness of the normal re-parametrization for the S normal MTdepend on the exact order of polynomial reproduction Pe of the prediction rule S. For interpolatingschemes S this number coincides with the well-known order of polynomial reproduction P , whilein case of approximating schemes this number is usually signi�cantly smaller, suggesting that thecorresponding normal MT does not perform well in terms of compression and visualization. Onthe other hand, we prove that the S2 (corner-cutting or Chaikin) normal MT is globally well-de�ned and, unlike the S1 normal MT, it does �regularize� the �ne-scale data. Finally, the paper[87] successfully extends the planar curve theory from [62] to the surface setting. More precisely,the author deals with the normal MT based on edge midpoint prediction and on normal directions,obtained via averaging the two corresponding normal vectors with respect to the neighboring coarse-scale triangles the given edge belongs to, and shows that such a transform inherits all the expectedproperties of the S1 normal MT for curves. The fundamental di�erence between 2D and 3D isthat, due to the more complicated topology for triangulations, the normal MT for surfaces may failfor coarse distorted meshes, independently of the choice of the prediction rule S. The lack of anyhope for global well-posedness restricts the analysis, and hence the derived results, to be of onlyasymptotic nature, and makes the �regularity� assumptions on the initial sample v0 and the initialsurface S to play a crucial part in the proofs. In [87] only C1,α surfaces and c-regular triangularmeshes with small enough global mesh width h(v0) are considered. The questions about the stabilityof the transform and possible extensions to the image analysis setting (i.e., S being only C0,1) areleft open. Another contribution of that paper is the introduction of a combined scheme, based onLoop [80] MT to determine the �ne-scale meshes, and of additional post-processing of the details,based on the Butter�y [39] scheme, yielding an improved base point along the same normal line,located at a distance asymptotically much smaller that either scheme alone could achieve. Testingon simple surfaces and v
0 con�rms that the Loop/Buter�y normal MT possesses high detail decayrates in the regular parts of the triangular meshes, and at the same time improves mesh regularityaround the extraordinary vertices.Apart from theoretical developments, there are several experimental papers, mainly in the sur-face case where the e�ciency of the �normal idea� is better highlighted. The pioneer paper [55]presents an algorithm to approximate any surface arbitrarily closely with a normal semi-regularmesh. Motivated by the observation that the geometric information of a surface can be containedin only a single dimension (the height over its corresponding tangent plane), the authors proposea hierarchical procedure based on Butter�y subdivision of triangle meshes, so that all the detail



4. Normal MT 64coe�cients when expressed in local frames have only a normal component. Their algorithm consistsof several steps, namely: mesh simpli�cation, building an initial net of curves, �xing the global ver-tices and edges, initial parameterization, piercing, and adjusting the parameterization. The needof combining so many di�erent procedures lies in the generally complicated and subtle analysis onsurfaces, and the fact that the algorithm is practically oriented. Let us brie�y mention the mainobstacles. First of all, in the curve case, ordering the initial data v
0 with respect to the arc-lengthparameterization of the initial curve C su�ces for determining the connectivity (topology) of themesh, while in the surface case the vertices cannot be linearly ordered, and the corresponding edgesand faces of the triangle mesh need to be additionally speci�ed. Hence, even when the vertices havealready been chosen, the correct choice of the mesh connectivity is crucial for well-posedness of thenormal MT. Second of all, in applications the given initial triangle mesh on the surface is the �nestone (the one at level J), it is in general not normal, and the only way to obtain a normal mesh fromit is to change the initial triangulation. Therefore, one should �rst choose a proper base mesh (thecoarsest level of the future normal semi-regular mesh) with vertices among those from the inputmesh, and connectivity that captures well the surface geometry. This is achieved within the �rstthree steps of the algorithm. Once the base mesh is �xed, the actual Butter�y normal MT takespart. The problem here is that no matter how good the base mesh is, it is still possible that thenormal line through a predicted point does not intersect the surface or intersects it in more than onepoint. In case of no intersection, the algorithm chooses the midpoint of the corresponding coarse-scale edge as the newly inserted point and stores the 3D vector with endpoints the predicted andinserted point, respectively. In case of many intersection points, the algorithm chooses the closestone to the coarse-edge midpoint. The metric is inherited from R2 via a bijective map between thesurface patch and a planar triangulation, with the same connectivity, and edges of the same lengthas those from the triangle mesh. Finally, the continuous readjustment of surface parameterizationsafter the insertion of every �ne-scale vertex is important for the correct choice of the next-levelintersection points. The authors tried the naive piercing procedure without parameterization fromthe base domain and found that it typically fails on all the models, they consider in [55].In [68], the above normal �remeshing� technique is applied for irregular highly detailed trian-gle meshes and is implemented in the progressive geometry compression framework described in[69]. (The term progressive compression means that an early coarse approximation is subsequentlyimproved through additional bits.) The algorithm accepts as input an arbitrary connectivity 2-manifold (with boundary) triangulation. Using the normal �remeshing� technique from [55], succes-sive adaptive approximations with semi-regular connectivity are computed and then subsequentlywavelet transformed and progressively compressed via zerotrees. The authors use non-lifted But-ter�y wavelets [94], because the exact same transform is used to produce normal meshes, as wellas Loop wavelets [69], because this is the wavelet transform used in [69] and this allows for faircomparison between the normal remesher and the MAPS remesher [77] used there. As expected,normal meshes using Butter�y wavelets possess best compression rates. Also a better compressionrate of normal meshes versus other remeshes is observed when the Loop wavelets are used. On theother hand, for non-normal meshes the Loop wavelet transform avoid Gibbs-type phenomena andtypically yields better visual appearance than the Butter�y transform, with comparable error mea-sures. Another possible direction for further generalizations and improvements of the progressivegeometry compression is to allow irregular re�nements, as well. Such kind of approach is investi-gated in [54], where each step of a regular re�nement is followed by an irregular one. The irregular



4. Normal MT 65operations are limited and they are as many as needed for topology changes, feature alignment,and stretching resolution. The main problem of the regular multi-scale transform is that �spiky�features lead to a stretched map, which may cause bad aspect ratio polygons, poor approximation,and numerical problems. On the other hand, the irregular algorithms are more complex for mul-tiresolution, smoothing, compression, editing, etc. The construction in [54] combines the advantagesof both the re�nements, and �controls� the disadvantages. All the results in the paper are experi-mental, which leaves room for research. Moreover, representing high topological complexity modelssuch as isosurfaces from medical imaging or scienti�c computing, and approximating dynamicallychanging, topologically complex geometries does not give good results with the novel approach, sofurther generalizations are expected.Another interesting application of normal MTs has been recently proposed in [92]. There thepropagation of an interface in a time-varying velocity �eld (i.e., a �eld that does not depend onthe shape of the front, but only on its location) is considered. In many numerical models it isbetter to track the front, described by a set of marker points with given topology, rather thana set of individual points from it, since the connectivity between paths is then maintained. Thelatter is incorporated in a new model via the use of S1 normal MT, leading to a computationalcost of only O(logN/∆t) or even O(1/∆t) for �xed small enough accuracy. (For comparison, thecost of standard front tracking algorithm is O(N/∆t), so basically the cost of the new method iscomparable with that of propagating just a single point!) The key observation is that not onlythe details of the �static� S1 normal MT decay with order 2, but also their time derivatives in thedynamic setting. This allows to double the time-steps at each �ner scale without worsening theoverall accuracy of the approximation. Since it is not possible to write a closed ODE system for the
djk(t) which maintains the normality of the detail vectors, for the purposes of this application theconstraints in the description of the normal MTs have to be relaxed. Hence, only at the beginning(t = 0) we have �classical� normal directions, orthogonal to the coarse-scale edges. However, for any
t ∈ [0, T ], where T <∞ is �xed a priori, using proximity analysis, one can still obtain exponentialdecay rates for ‖∆v

j(t)‖ and ‖dj(t)‖ similar to those in [91] for t = 0. Although theoreticallyveri�ed only for S1, numerical experiments indicate that the above phenomena in the behavior ofthe details and their time derivatives with respect to the scale j they belong to remain for generalnormal MTs, based on arbitrary linear, local, shift-invariant, interpolating S. Prediction with higherorder subdivision schemes results in substantial improvement in accuracy, while making the methodonly marginally slower. Further updates of the proposed method are expected, since in this form,the representation of the interface can deteriorate, if the length (or area) of the interface expandsquickly and the number of marker points used initially is not enough to resolve it, or if the �dynamic�normal directions rapidly shift away from the corresponding �static� ones.Normal mesh techniques have been recently used for image approximation and image compres-sion, an application which is totally di�erent from the previously mentioned ones. Indeed, digitalimages can be considered as height �elds and they are not just surfaces, but also functions on thepixels, i.e., 1D piecewise constant functions on a uniform, regular lattice. Hence, even standardlinear multiresolutions incorporate scalar details, so there is no bonus to gain in this direction.However, unlike surfaces in computer graphics, images are non-smooth and the edges become in-formation carrying features. In [66] it has been proved that normal triangulated meshes rapidlyplace more and more vertices directly on the edge contours, enabling a direct representation ofthe location and the geometry information of edges as well as extracting the information on (the



4. Normal MT 66height of) the singularity itself. Hence, the use of normal meshes gives rise to a sparse, but yettruthful, image decomposition. More precisely, for the Horizon class [29] of images (also known ascartoons) consisting of uniformly colored region separated by a smooth contour, the normal meshrepresentation has an optimal n-term approximation rate σL2 = O(n−1) as the number of termsin the representation grows. This is twice as good as standard wavelet approximation [27], a logfactor faster than the one obtained with curvelets [14], and comparable to techniques based oncontourlets [28], wedgelets [29] or other nonlinear adaptive schemes such as bandelets [88], or geo-metric wavelets based on binary partitioning algorithms [25]. On the other hand, in contrast to theother methods, the normal mesh representation relies on the implicit boundary locating property ofnormal meshes, and, thus, has only linear computational complexity. Compression is not addressedin [66], but since approximation and compression are tightly related, their results indicate that thenormal o�set method should be considered for the development of e�cient rate-distortion imageencoders. The latter aspect is further elaborated on in [98, 99, 1]. The major di�erence betweentheir normal mesh approach for image compression and the previous one proposed in [66] is thechoice of normal direction. In [66] the normal line through the midpoint of a coarse-scale triangularedge is collinear with the normal to a surface �tting its four neighbor vertices. Since cartoons areonly piecewise continuous, the theoretical results from [87] are not applicable and examples fromthe curve setting in [24] suggest that no decay rate is to be expected for the �ne scale o�sets. Thisleads to piercing points far away from the predicted midpoints, and, thus, the projection on the do-main (i.e., the xy-plane) destroys previous existing topologies. Therefore, in this setting one needsto combine normal o�sets with standard (vertical) ones giving rise to a nonnested multiresolutionmodel for which additional side information is stored in order to encode the complex dependencyrelations between consecutive resolution levels. In [98], by restricting the normals to be in a plane,orthogonal to the domain, the author assures that the piercing point projection always lies on thecorresponding edge of the coarse-scale domain triangle T and preserves topology. In case of morethan one intersections, the closest point to the prediction is to be considered. Moreover, in orderthe line singularities of the initial image to be well approximated by polylines formed by the triangleedges on the corresponding multiresolution level, an additional procedure, besides prediction andcorrection, has been added at each step of the normal o�set re�nement scheme - interconnection.In other words, the inner edges of the tessellation are chosen in such a way that they minimize the
L2 error metric between the original surface and the approximating mesh. It is an extra topologicalparameter per triangle, but it pays o� at the level of compression when the meshes are truncated,plus it guarantees that the optimal approximation rates from the previous setting [66] remain validhere, too, i.e. σL1 = O(n−1). Note that the last result is slightly weaker than the one in [66] becausein general the normal transforms perform best in L1-norm, where a few big errors are preferred overa lot of little ones! In [99] the authors discuss the underlying datastructures that are essential tomake the algorithm from [98] compact and e�cient, and explain how both these datastructuresand normal o�set coe�cients are encoded to bit level. The experimental results in the end indicatethat for images of geometrical nature the normal o�set decomposition is a promising compressiontechnique. The paper [1] is rather practically oriented and the authors focus on small n, where thetheoretical asymptotical behavior of the multi-scale transform is not yet visible. The main contri-bution is the development of a model for the o�sets such that they can be encoded e�ciently byan entropy coder. Compared with the JPEG2000 encoder, the proposed normal o�set encoder doesnot yet outperform it over the entire image, mainly because of the vertical o�sets away from thecontour that are stored losslessly, even though they do not contribute much to the image quality.



4. Normal MT 67But once the mesh is �ne enough the distortion decays rapidly.All the proposed normal mesh techniques [66, 98, 99, 1] are based on the mid-point predictionrule S1 that has only order 2 of polynomial reproduction, and thus the theoretical results in [87]imply that in the smooth regions of the image the detail decay rate is very slow. This was nota problem in case of cartoons, since away from the singularity the function was constant and thedetails were zero anyway. But if one extends the objects of interest to the space of piecewisesmooth images (rather than piecewise constant ones, considered so far) with smooth contours, theyimmediately see that the JPEG2000 encoder, as based on a more regular prediction rule (i.e., onethat is equipped with more vanishing moments), capture the smooth regions much more e�cientlythat the normal o�set encoder. The standard remedy in this case is adaptivity, i.e., to try tocombine the nice smoothing properties of the wavelets away from the singularities with the sharpedge detection of the normal mesh techniques into a single data-dependent multi-scale transform.This has been done in [65], the major contribution of which is the design of a new class of wavelettransforms that can be extended to normal o�set decomposition. The main observation is thatthe normal o�set decomposition can be embedded into the lifting scheme [96, 97]. However, thecombination of normal o�sets and a stable lifting scheme is nontrivial and naive implementations ofthe normal o�set decomposition are ill conditioned in L2 and hence of no use in applications to noisereduction. Although the adaptive method is of practical interest in higher dimensions, the scope ofthe paper is limited to a 1D discussion. The di�erence between the standard lifting transform andthe one, implemented in [65], is that the �rst transform computes �ne-to-coarse, while, due to thedependence of the normal directions on the coarse-scale edges, we need a coarse-to-�ne procedure.This is achieved via interchanging the order of the dual lifting (or Prediction) step with the primallifting (or Update) one. The approach in the paper includes a genuine linear polynomial prediction,but on ��ltered�, preconditioned updated values, where the exact prediction procedure follows fromthe design of the update step. On an equidistant grid, this leads to a transform that is the adjointto the corresponding predict-�rst lifting scheme. The proposed decomposition is fully adaptive tothe locations of the jumps, with no limitations as imposed by dyadic subdivision schemes. Theexperimental results at the end of the paper suggest that even for a univariate data the jumplocalization is so fast that the use of normal o�sets may still have a substantial bene�t. (Note that,due to the speci�cs of the normal approach one needs to store both a normal and a local o�setaround jumps, while the standard lifting schemes stores only a single vertical o�set!)4.2 General analysis on normal multi-scale transforms for curvesThis section follows closely our paper [62].4.2.1 Notation, de�nitions, and auxiliary resultsThroughout this chapter boldfaced letters are used for vector-valued quantities (points in R2, se-quences of such points, or R2-valued functions). The notation | · | is used both for the absolute valuein R and the Euclidean norm in R2 which should be clear from the context. The scalar product oftwo vectors a,b in R2 is simply denoted by ab. If a, b are sequences in R, and b is a sequence in
R2 then ab := (aibi)i∈Z, ab := (aibi)i∈Z for short.



4. Normal MT 68We consider closed, non-self-intersecting Ck,α curves C in R2 given by a regular arc-lengthparametrization v(s) ∈ Ck([R → R2) such that v(s + L) = v(s), v(s) 6= v(s′), 0 < |s − s′| < L,
v
′ 6= 0, and

|v(k)(s)− v
(k)(s′)| ≤ C|s− s′|α, s, s′ ∈ R, (4.2.1)where k ≥ 1 is integer, L is the length of C, and α ∈ (0, 1]. (Our results work for self-intersectingcurves, as well, provided that the curves can be split into several closed non-self-intersecting partsand that all of them are su�ciently represented in the sample v

0.) The positive parameter Cdenotes the Lipschitz constant of order α of the k-th derivative of the parametrization. Notethat the smoothness characteristics of the parametrization v of C (i.e., the Lipschitz constant C,the bounds for v
(m)(s), m = 1, . . . , k as well as k and α) and L may change if we switch todi�erent representation. The arc-length parametrization generates a local frame given by unittangent t(s) = v

′(s) and normal vectors n(s) = t(s)⊥ to the curve which is used in the analysis.Obviously, the analysis depends on the initial curve C, the prediction rule S, the initial sample
v
0, and the choice of normal directions. We already explained what our assumptions on C are, sowhat is left is to say a couple of words for the remaining three objects.We consider dyadic, linear, local, shift-invariant subdivision schemes S. Among all the otherexamples, we are particularly interested in the family {Sp}p∈N that generates B-splines of degree p.Using the Lane-Riesenfeld [75] algorithm, for any p ∈ N we de�ne:

(S0x)2i = (S0x)2i+1 = xi, (Spx)i =
(Sp−1x)i + (Sp−1x)i+1

2
, i ∈ Z. (4.2.2)We say that the (Hölder) regularity of S is s∞(S) = m + β if, as operator S : `∞(Z) → `∞(Z)it generates Cm,β limit functions S∞x, no matter what the initial sequence x is, and m + β isthe maximal number that satis�es the property. Note that, since S is linear, the regularity of Scoincides with the regularity of the limit function for the delta sequence that is one at zero, andzero elsewhere. For example, s∞(Sp) = p − 1 + 1. (Again, note that this di�ers from s∞(Sp) = p,since the latter implies that the limit function is always p times di�erentiable, while the �rst oneonly implies that the p− 1st derivative of the limit function is Lipschitz continuous.)We assume that S has polynomial reproduction order P ≥ 2 which means that for any poly-nomial p = p(t) of degree deg(p) < P there is a polynomial q = q(t) with deg(q) < deg(p) suchthat

S(p|Z) = p|2−1Z + q|2−1Z. (4.2.3)Here, p|Z denotes the sequence (p(i))i∈Z, and p|2−1Z the sequence (p(i/2))i∈Z. We say that S haspolynomial exactness order Pe if the above identity holds with some shift parameter cS in thefollowing form:
S(p|Z) = p|2−1Z+cS = (p(i/2 + cS))i∈Z. (4.2.4)I.e., S applied to a polynomial sequence of degree < P reproduces the exact values on a possiblyshifted grid. Below, P and Pe always denote the maximal values of polynomial reproduction resp.polynomial exactness order. If P ≥ 2 then also Pe ≥ 2 for some choice of cS. Indeed, since P ≥ 2,according to (4.2.3) constant sequences are reproduced exactly, and for the monomial sequence
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t = Z we have St = 1

2
t + cS, where cS is the contribution of the polynomial q(t) of degree 0. Bylinearity, this implies (4.2.4) for all linear polynomials p(x) = c1x+ c2:

S(p|Z) = S(c1t+ c2) = c1(t/2 + cS) + c2 = p(t/2 + cS) = p|2−1Z+cS .On the other hand, if S has non-negative mask a ≥ 0 then we are restricted to Pe ≤ 2. Indeed,suppose that (4.2.4) holds for quadratic polynomials. Choose i = 0 or i = 1 such that i/2+ cS 6∈ Z,and consider p(x) = (x − i/2 − cS)
2. Then evidently p(i/2 + cS) = 0 while (S(p|Z))i > 0 as alinear combination of only positive numbers p(i) and coe�cients from the sequence a (not all ofwhich can vanish because of the exact reproduction of constant sequences by S). Last but not least,for interpolating schemes Pe = P and cS = 0. For Sp we have order of polynomial reproduction

P = p+ 1, order of exact polynomial reproduction Pe = 2, and cS = 0 if p is odd and cS = 1/4 if pis even.Polynomial reproduction of order P implies the existence of derived subdivision operators S [n],
n = 1, . . . , P . For Sp we even have the explicit formulae of all the derived subdivision operators forfree due to (4.2.2) and subtraction being the inverse operation to addition. Indeed, since

(S
[1]
1 ∆x)2i = (S [1]∆x)2i+1 =

∆xi

2
=⇒ S

[1]
1 =

1

2
S0,assuming that S [1]

p = Sp−1/2 we get
(S

[1]
p+1∆x)i = (∆Sp+1x)i =

(∆Spx)i + (∆Spx)i+1

2
=

1
2
Sp−1∆xi +

1
2
Sp−1∆xi+1

2
=

(
1

2
Sp∆x

)

i

,and by induction
S [q]
p =

1

2q
Sp−q, ∀p ≥ q ≥ 0. (4.2.5)We will directly work with the local subdivision maps related to invariant neighborhoods for Sand S [n], n = 1, . . . , P . The most economic choice for such an invariant neighborhood I for S is asfollows: Let I = [N,N ′] be the smallest index interval in Z such that [0, P ] ⊂ I, and all (Sx)i withindices in [0, 1] + I = [N,N ′ + 1] should be computable solely from values xi with indices i ∈ I.For Sp, this invariant neighborhood would be I = [0, p+ 1]. Note that the invariant neighborhoods

I [n] of the derived subdivision operators S [n] are smaller: I [n] = [N,N ′ − n]. Denote by Ii = i + Ithe invariant neighborhood of index i, similarly for I [n]i = i+ I [n]. The local subdivision operatorsare pairs of linear maps A[n]
0 , A[n]

1 acting on RN ′−N−n+1, and mapping the vector y = (∆nx)|
I
[n]
i

to
y′ = (∆nSx)|

I
[n]
2i

resp. y′′ = (∆nSx)|
I
[n]
2i+1

. Due to shift-invariance, these maps do not depend on i.The relationship with S [n] is obvious, since y′ = (S [n]y)|
I
[n]
2i

and y′′ = (S [n]y)|
I
[n]
2i+1

by the commutatorproperties. Similarly, we de�ne A0, A1 related to S itself (see [15, 37] for details).The necessary assumptions on v0 and n̂ are inspired by our proof for well-posedness of normalMT. We work in local frames, so let us �rst de�ne them. For Ck,α curves we write the Taylorformula in the form
v(s) =

k∑

n=0

v
[n](ξ)

n!
(s− ξ)n + r(s, ξ), r(s, ξ) :=

∫ s

ξ

v
[k](t)− v

[k](ξ)

(k − 1)!
(s− t)k−1 dt, (4.2.6)



4. Normal MT 70where
|v[k](s)− v

[k](s′)| ≤ CC|s− s′|α, |r(s, ξ)| ≤ CC|s− ξ|k+α. (4.2.7)For an arbitrary but �xed ξ, we call x(s), y(s) the local frame coordinates of C, given by
v(s) = v(ξ) + x(s)t(ξ) + y(s)n(ξ), x(s) = t(ξ)(v(s)− v(ξ)), y(s) = n(ξ)(v(s)− v(ξ)). (4.2.8)That x(s), y(s) depend on ξ is not made explicit by the notation but has to be kept in mind.Lemma 4.2.1. Let C be a closed Ck,α curve, k ≥ 1, α ∈ (0, 1]. There exists a σ0 = σ0(C) > 0 suchthat for any choice of ξ, the associated local frame coordinate x(s) satis�es

1 ≥ x′(s) ≥ 1− C|s− ξ|2α′ ≥ 1

2
, s ∈ [ξ − σ0, ξ + σ0],where α′ := min(1, k + α − 1). Thus, x = x(s)|[ξ−σ0,ξ+σ0] is strictly monotone, and possesses aninverse function s = s(x) which belongs to Ck,α, with bounds on the derivatives s[n], n = 1, . . . , k,and the Lipschitz constant of s[k], independently of ξ. As a consequence, the arc of C correspondingto s ∈ [ξ − σ0, ξ + σ0] can be viewed as the graph of a Ck,α function y = f(x) := y(s(x)).Proof. Since Ck,α ⊂ C1,α′ and x′(s) = v

′(s)t(ξ) = cos(∠(v′(s),v′(ξ))) ≤ 1, the lower bound for
x′(s) follows from the cosine theorem

cos(∠(v′(s),v′(ξ))) = 1− |v′(s)− v
′(ξ)|2/2 ≥ 1− C|s− ξ|2α′

,where the �nal C depends on the smoothness characteristics of C, only. Now, set σ0 = (2C)−1/(2α′).The rest follows from the implicit function theorem, and from the fact that Ck,α is closed undersuperposition.Our assumption on the initial sample v
0 = v(s0) states that, for any positive constant C0 and

0 < δ < min(k − 1 + α,m− 1 + β, 1), there exists a small enough (but positive!) step-size h, s. t.,
‖∆s0‖ ≤ h; ‖∆2s0‖ ≤ C0‖∆s0‖1+δ,shall hold. The constant h depends on C, S, C0, δ, and σ. The following lemma gives some insighton this technical condition, written in its equivalent local form.Lemma 4.2.2. Let C be a closed, non-self-intersecting C1,α curve, and let v, s be sequences satis-fying vi = v(si), and si < si+1 for all i ∈ Z. Denote the local step-size by hi = ‖∆s‖Ii. Finally, let

δ ∈ (0, α], and σ0 as in Lemma 4.2.1. Then the following are equivalent:(i) There are positive constants C0 and h ≤ σ0 such that for hi ≤ h

‖∆2s‖Ii ≤ C0h
1+δ
i . (4.2.9)(ii) There are positive constants Ĉ, h ≤ σ0 such that for hi ≤ h and all k, l ∈ Ii

sk = sl + (k − l)hi + rk,l, |rk,l| ≤ Ĉh1+δ
i . (4.2.10)



4. Normal MT 71(iii) There are positive constants C̃ and h̃ ≤ σ0 such that for hi ≤ h̃

N (s|Ii) := max
k,l∈I

[1]
i

∣∣∣∣
∆sk
∆sl
− 1

∣∣∣∣ ≤ C̃hδ
i .(iv) There are positive constants C̄ and h̄ ≤ σ0, such that for h̄i := ‖∆v‖Ii ≤ h̄

‖∆2
v‖Ii ≤ C̄h̄1+δ

i .Proof. The equivalence of (i) and (ii) is easy to show. If (i) holds, we use the identity
sk = si′ + (k − i′)∆si′ +

k−i′−1∑

l=1

(k − i′ − l)∆2si′+l−1, k ≥ i′,where we choose i′ such that hi = ∆si′ . A similar identity holds for k < i′. Thus, sk− sl− (k− l)hican be bounded by C‖∆2s‖Ii ≤ CC0h
1+δ
i for any two indices k, l ∈ Ii. This is (ii) with Ĉ ≤ CC0.If (ii) holds then ∆2sk = rk+2,l − 2rk+1,l + rk,l for any l ∈ Ii, which yields (i) with C0 ≤ 4Ĉ.From (4.2.10), it follows that for any k, l ∈ I

[1]
i

∆sk = ∆sl + rk+1,l+1 − rk,l =⇒
∣∣∣∣
∆sk
∆sl
− 1

∣∣∣∣ ≤
2Ĉh1+δ

i

|∆sl|
≤ 2Ĉh1+δ

i

hi − |rl+1,l|
≤ 4Ĉhδ

i ,whenever Ĉh̃δ ≤ 1/2. Hence, (ii) implies (iii). Assuming that (iii) holds and taking k ∈ I
[2]
i , l = k+1in it, we derive |∆2sk| ≤ C̃hδ

i |∆sk+1| ≤ C̃h1+δ
i , which yields (i).In order to work with the points on the curve themselves, we need to mention some well-knownfacts: The shortest distance between two points in R2 equals the length of the line segment thatconnects them, i.e., |∆vk| ≤ |∆sk|; If C is recti�able, closed and non-self-intersecting the inversefunction v

−1(s) of its arc-length parameterization is Lipschitz continuous (see (6) in [91]), i.e.,there exists q > 0 that depends only on C, such that |∆vk| ≥ q|∆sk|; Since C ∈ C1,α, ‖∆2v‖Ii ≤
C(‖∆s‖1+α

Ii
+ ‖∆2s‖Ii) (see, for example [62, Lemma 2.4.]), where C < ∞ depends on α and |Ii|.Now, assuming that (i) holds, we derive

‖∆2
v‖Ii ≤ C(‖∆s‖1+α

Ii
+ ‖∆2s‖Ii) ≤ C(C0 + hα−δ

i )‖∆s‖1+δ
Ii
≤ C(C0 + hα−δ)

q1+δ
h̄1+δ
i .For the other direction, let k ∈ I

[2]
i and use (4.2.6) around sk+1. This leads to ∆2

vk = t(sk+1)∆
2sk+

r(sk, sk+1) + r(sk+2, sk+1). Hence,
‖∆2s‖Ii − 2CCh

1+α
i ≤ ‖∆2

v‖Ii ≤ C̄h̄1+δ
i ≤ C̄h1+δ

i =⇒ ‖∆2s‖Ii ≤ (C̄ + 2CCh
α−δ
i )h1+δ

i .Conditions (iii) and (iv) are added only for reference: (iii) allows for the comparison with theassertions on the non-uniformity measure N (x) used in [24, 91], (iv) works with the point sets
v ⊂ C directly, which is of practical importance, since it allows for checking how good the initial



4. Normal MT 72sample is without explicitly knowing the arc-length parameterization of C. As seen from the proof,the restriction δ ≤ α is needed only for the equivalence of (iv) with the remaining statements. Forthe equivalence of (i), (ii), and (iii), δ ∈ (0, 1] is enough.The proof of Lemma 4.2.2 shows that the equivalence of (i), (ii), and (iv) holds for h ≤ σ and
h̄ ≤ qh. Both σ and q are global constants that depend solely on C and are known a priori. However,in order for (iii) to kick in, we need to restrict ourselves to smaller scales (e.g., (ii) implies (iii) onlyif Ĉh̃δ < 1, and (iii) implies (ii) only if h̃ ≤ h), making the choice for h and h̄ to also depend on δand all the constants C0, Ĉ, C̄. In other words, our assumption (4.2.9) is asymptotically the sameas the non-uniformity measure, introduced in [24], but the two approaches signi�cantly di�er oncoarse-scale data. To explain this better, we will introduce N (v|Ii) - the R2 analogue of N (s|Ii).Since (iv) is the R2 analogue of (i), whenever (i), (iii), and (iv) are equivalent, so is(v) There are positive constants C̄ ′, h̄ ≤ σ such that for h̄i ≤ h̄

N (v|Ii) := max
k,l∈I

[1]
i

∣∣∣∣
|∆vk|
|∆vl|

− 1

∣∣∣∣ ≤ C̄ ′h̄δ
i .Note that (v) works solely with ∆v, while (iv) involves ∆2

v, as well, adding extra geometricalmeaning. Indeed, the non-uniformity measure is small, whenever the Euclidean distance betweenevery two neighbors remains close to a constant. On the other hand ∆2
v measures not only distance,but also �atness. E.g., even when all the points v are equally-spaced and N (v|Ii) = 0, the angle

θ = ∠(∆vk,∆vk+1) for some k ∈ I
[2]
i may still be large, and, thus, |∆2

vk| = 2h̄i sin θ/2 >> 0.Finally, for the choice of the normal directions we assume that, with some �xed constant C1,the sequence of approximate normals n̂ associated with v̂ = Sv satis�es
n̂K = n(ξK) : |ξK − sk| ≤ C1hi, k ∈ Ii, K ∈ I2i ∪ I2i+1. (4.2.11)with some ξK for all K ∈ I2i ∪ I2i+1 and all i ∈ Z. Note that this should hold for all the scales j inthe normal MT, even though it is not explicitly mentioned in the formula.This very mild condition can be seen as a straightforward generalization of the classical approachin [24, 91]. Indeed, if n̂2i = n̂2i+1 is taken normal to ∆vi, (4.2.11) is automatically satis�ed, sinceit gives rise to si < ξ2i+1 < si+1. The normals n̂2i are not needed for interpolating S. On the otherhand it extends the notion of �normality�, allowing directions normal not only to the coarse-scalepolyline v

j, but also to the initial curve C itself. Later we will see that this �exibility leads toimproving the smoothness of the normal re-parametrization for the Sp normal MT, even though thedetail decay rate remains only 2. 4.2.2 Main theoremTheorem 4.2.3. Let C be a regular Ck,α curve with k ≥ 1, 0 < α ≤ 1, and denote by v(s) its arc-length parametrization. Assume that S is a linear subdivision operator with �nitely supported mask,orders of polynomial reproduction resp. exactness P ≥ Pe ≥ 2, and Hölder smoothness exponent
s∞(S) = m+ β > 1, where m ≥ 1 denotes the largest integer < s∞(S). Suppose that (4.2.9) holdsfor v

0 with constants C0, h, and that throughout the recursion for the approximate normals thecondition (4.2.11) is satis�ed with constant C1.



4. Normal MT 73(i) For small enough h0 (how small depends on C, S, and the �xed constants appearing in (4.2.11)and (4.2.9)), the normal MT is well-de�ned for all j ≥ 1, and produces point sequences v
j =

(v(sji ))i∈Z ⊂ C and scalar detail sequences dj = (dji )i∈Z such that
‖dj‖∞ = O((h02−j)µ), µ < min(k + α,m+ β + 1, Pe).The mesh-width sequence hj := ‖∆sj‖∞ = maxi |sji+1 − sji | satis�es hj � 2−jh0.(ii) The piecewise linear functions s = sj(t) interpolating the data sj at the uniform grid 2−jZ,

j ≥ 0, converge to a limit function s = s(t) ∈ Ck′,α′ if k′ + α′ < min(k + α,m+ β, Pe). Moreover,the normal re-parametrization v(s(t)) of the curve C is regular, and belongs to Ck′,α′ as well.The complete proof is very technical and lengthy, and can be found in [62]. Here, we will justbrie�y sketch the main steps and only try to give the reader an intuition of what goes on. The proofis divided into two parts. For well-posedness and convergence it su�ces to consider k = m = 1,and, thus, δ < min(α, β) in (4.2.9), while for computing the detail decay rates and the smoothnessof the normal re-parameterization, the exact values of the two parameters do matter. We use thenotation, established in Section 4.2.1.The �rst part is built on classical perturbation analysis. Since S reproduces constants, applyingthe Taylor expansion (4.2.7) together with (4.2.11) for small enough h, gives rise to an existence ofa unique intersection point ṽK = v(s̃K), K ∈ I2i ∪ I2i+1, between the normal line through (Sv)Kand the curve arc Ci = v(s|Ii). Due to the smoothness of C we derive
|dK | ≤ C3h

1+α
i ; |s̃K − (Ss)K | ≤ C3h

1+α
i ,with constant C3 that depends on C, S, and C1. Combining it with (4.2.10) and Pe ≥ 2, we get

|∆s̃K − hi/2| ≤ C4h
1+δ
i ,where C4 depends on C0 and C3. Since S is dyadic and generates C1,β limit curves,

|∆2SsK | � CS2
−(1+β)‖∆2s‖Ii ≤ 2−(1+β)CSC0h

1+δ
i ≤ 2δ−βCSC0

(
hi

2

)1+δ

.Working with δ < β ′ < β, instead of β will guarantee that CS → 0, as hi → 0, so we can freely set
CS = 1 and disregard it from the future estimates. Putting all together, we derive
|∆2s̃K | ≤ |∆2SsK |+ |∆2(s̃− Ss)K | ≤ 2δ−βC0

(
hi

2

)1+δ

+ 23+δhα−δ
i C3

(
hi

2

)1+δ

≤ C0

(
hi

2

)1+δ (
2δ−β + hα−δ

i

23+δC3

C0

)
≤ C0

(
|∆s̃K |+ C4h

1+δ
i

)1+δ
(
2δ−β + hα−δ

i

23+δC3

C0

)
.Now, we �x C0 and 0 < δ < min(α, β), compute the intermediate constants C3 and C4, and then,take a su�ciently small step-size h, that guarantees

(
X + C4h

1+δ
)1+δ

(
2δ−β + hα−δ 2

3+δC3

C0

)
≤ X1+δ, X ≥ h/4. (4.2.12)



4. Normal MT 74This is enough to conclude, that for the above choice of h, (4.2.9) remains true after one level ofthe normal MT. Now, by induction we get well-posedness of the transform on all the levels j ∈ N,plus ‖∆sj‖ � 2−j‖∆s0‖, implying that S normal MT converges.The second part of the proof is based on analysis by proximity (see [50] for a survey of proximityconditions and their use in the analysis of manifold-valued subdivision), combined with bootstrap-ping arguments. It can be shown that
|dK| ≤ C|(Sv)K − v(SsK)| ≤ C ′

(∑

ν∈EM

M∏

m=1

‖∆ms‖νmIi + ‖∆s‖M+ρ
Ii

)
,where both C and C ′ depend only on C and S, M + ρ = min(k + α, Pe) and

EM := {ν ∈ Z
M
+ :

M∑

m=1

mνm = M + 1, 2 ≤
M∑

m=1

νm ≤ M}.In the �rst part of the proof we have already veri�ed that
‖∆sj‖ = O(2−j‖∆s0‖), ‖dj‖ = O((2−j‖∆s0‖)1+α),holds for C1,α curves. In addition, we need
‖∆2sj‖ = O(2−(1+α′)j), 0 < α′ < min(1, α,m+ β − 1).To achieve the latter, we have to switch to local frames and we will skip it here. In the next sectionwe will show for the S2 normal MT how exactly it is done. Once all these estimates have beenestablished, we use the following technique to improve the order:

• If for some 2 ≤ n < min(P, k + 1) the estimates
‖dj‖ = O(2−jµ), 0 < µ < n; and ‖∆rsj‖ = O(2−jβ′

), 0 < β ′ < r, r = 1, . . . , n.are satis�ed then
‖∆n+1sj‖∞ = O(2−jγ), 0 < γ < min(n + 1, m+ β, k + α).

• If for some 2 ≤ n < min(Pe, k + 1) and some γ ∈ (n− 1, n] we have
‖∆rsj‖∞ =

{
O(2−jβ′

), 0 < β ′ < r, r = 2, . . . , n− 1,
O(2−jβ′

), 0 < β ′ < γ, r = n,then
‖dj‖∞ = O(2−jµ), j ≥ 0, 0 < µ < min(γ + 1, k + α).This concludes the proof of Theorem 4.2.3.The �rst part of the proof di�ers from the approach in [24]. Indeed, the analysis there isperformed with δ = 0. But in this setting, (4.2.12) cannot be established, since the term C4h

1+δ is



4. Normal MT 75no longer a high-order perturbation of X and may be even bigger than X . In order to control C4,and, thus the whole term, an additional restriction on S has been introduced, namely S is takento be weakly contractive. Our approach veri�es that this restriction on S is not necessary for thestatements in the theorem to be true. As discussed in Section 4.2.1, the more general statement ofTheorem 4.2.3 comes at the price of working with the more complicated and restricting assumptionon the initial sample (4.2.9). Another consequence of our choice δ > 0 is the inability to treat Snormal MTs, when P = 1 or s∞(S) = 1. The analysis of such transforms is covered in [24]. Forexample, (4.2.9) does not hold for the mid-point-interpolating scheme S1 with any δ > 0, eventhough S1 normal MT is always well-de�ned and convergent [91]. To see this we use (4.2.5) andconclude that for any j ∈ N, ‖∆Sj
1s‖ = 2−j‖∆s‖, and ‖∆2Sj

1s‖ = 2−j‖∆2s‖. Fix any δ > 0 andinitial data s, such that A0 = ‖∆2s‖/‖∆s‖1+δ > 0. Hence
‖∆2Sj

1s‖ = 2−j‖∆2s‖ = 2−jA0‖∆s‖1+δ = 2jδA0‖∆Sj
1s‖1+δ = Aj‖∆Sj

1s‖1+δ,and no matter how small A0 and δ are, Aj →∞ as j →∞.For the second part of the proof, the new observation compared to [24] is the role of the orderof exact polynomial reproduction Pe which bounds the order of proximity for |v · S − S · v|. In [24]all the statements are in terms of the order of polynomial reproduction P . Since they consider onlyinterpolating S, Pe = P and cS = 0. This indicates that in general it is tricky to extend theoryfrom the interpolating to the approximating setting, since there are two di�erent candidates for Pthere. E.g., S possesses derived schemes up to order P and its regularity m + β depends on P ,too, but the S normal MT has detail decay rate not faster than Pe. Later, we will see that theseoddities, unlike the interpolating case, allow us to separate the analysis on the details from the oneon the smoothness of the normal re-parameterization and to change one of the two characteristicsof the transform without a�ecting the other.4.3 Chaikin normal multi-scale transformIn this section we study the S2 normal MT for closed C1,α curves C, and the text repeats our papers[62, Section 4.1] and [60, Section 2]. The constants Ci used in the exposition are di�erent fromthose in Section 4.2. Recall that the Chaikin scheme
(S2v)2i =

3vi + vi+1

4
, (S2v)2i+1 =

vi + 3vi+1

4
, i ∈ Z, (4.3.1)is approximating with P = 3, Pe = 2, and cS = 1/4 and generates C1,1 limit functions. Althoughits analysis is covered by Theorem 4.2.3, we will give an independent treatment, and obtain anunconditional global convergence result. I.e., for the natural choice of normal directions

n
j
2i = n

j
2i+1 ⊥ ∆v

j−1
i , i ∈ Z, j ≥ 1, (4.3.2)we prove the followingTheorem 4.3.1. Let C be a closed, non-self-intersecting C1,α curve, 0 < α ≤ 1. For any (ordered)initial point sequence v

0 ⊂ C the S2 normal MT that satis�es (4.3.2) is well-de�ned. It producespoint sequences vj ⊂ C and scalar detail sequences dj = (dji )i∈Z such that
‖∆v

j‖ ≤ C0‖∆v
0‖2−j, ‖∆2

v
j‖ ≤ C1‖∆v

0‖2−j(1+α′), j ≥ 1, (4.3.3)
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0 < α′ < α, and

‖dj‖ ≤ C2‖∆v
j−1‖1+α ≤ C3(‖∆v

0‖2−j)(1+α), j ≥ 1, (4.3.4)hold. The �nite constants C0, C1, C2, C3 depend solely on the curve C.Moreover, if {w0, d̃1, d̃2, . . . , d̃J} with arbitrary J ∈ N is a perturbed representation of the actualmulti-scale data, i.e.,
‖v0 −w

0‖ ≤ ε0, ‖dj − d̃j‖ ≤ εd2
−jν, 1 ≤ j ≤ J, ν > 0then there exists a constant C4, depending on C,v0, ε0 and εd, but not on J , s.t.,

‖vj −w
j‖ ≤ C4(ε0 + εd), ∀j ≤ J. (4.3.5)Proof. Step 1. We �rst argue that the S2 normal MT is always well-de�ned. Let C be given byits arc-length parametrization v(s). Fix an arbitrary level j ∈ N and an arbitrary position i ∈ Z.Since C is continuous and the points v(sj−1

i ) and v(sj−1
i+1 ) belong to di�erent hyper-planes withrespect to the parallel normal lines Li,`(t) = (S2v

j−1)2i+` + tn̂j
2i+`, ` = 0, 1, these two lines willintersect at least once the open arc v(s)|sj−1

i <s<sj−1
i+1

connecting v
j−1
i and v

j−1
i+1 . Now, if we choose

v
j
2i = infs>sj−1

i
{v(s) : v(s) ∈ Li,0}, resp. v

j
2i+1 = sups<sj−1

i+1
{v(s) : v(s) ∈ Li,1} as the left-most (for ` = 0) resp. the right-most (for ` = 1) intersection point of Li,`(t) with this arc, thenautomatically sj−1

i < sj2i < sj2i+1 < sj−1
i+1 . This guarantees the well-posedness.Step 2. Next we establish that hj = ‖∆sj‖ → 0 for any initial set of correctly ordered points v0on C. Denote by L the length of C. A small modi�cation of equation (6) in [91] gives that for any

L1 < L there exists a constant q > 0 (depending only on C and L− L1) such that
|v(s′)− v(s)| ≥ q|s′ − s|, |s′ − s| ≤ L1 (4.3.6)holds. Now, given any v

0 = {v(s0i )}i∈Z containing N ≥ 2 di�erent points on C, denote h0
i := (∆s0)i,

h0 := supi h
0
i , and set H0

i := h0
i−1 + h0

i , H0 := supi H
0
i . Apply (4.3.6) with appropriately �xed L1,and derive

H1
2i−1 = s12i − s12i−2 = H0

i −
(
(s12i−2 − s0i−1) + (s0i+1 − s12i)

)

≤ H0
i − |v(s12i−2)− v(s0i−1)| − |v(s0i+1)− v(s12i)|

≤ H0
i −

1

4
|v(s0i )− v(s0i−1)| −

3

4
|v(s0i+1)− v(s0i )|

≤ H0
i −

q

4
h0
i−1 −

3q

4
h0
i < (1− q/4)H0

i = rH0
i ,where r < 1 depends only on C and v

0. Analogously
H1

2i ≤ H0
i −

3q

4
h0
i−1 −

q

4
h0
i < rH0

i .Hence H1 < rH0, and repeating the same argument for every subdivision step, we conclude that
hj < Hj < rjH0 and thus hj → 0 as j → 0 at some geometric decay rate. Note that hj → 0 implies
h̄j → 0, where, as in Lemma 4.2.2, h̄j = ‖∆v

j‖∞ = supi∈Z h̄
j
i , where h̄j

i = |∆v
j
i |.



4. Normal MT 77Step 3. Now we turn to the �rst asymptotic estimate in (4.3.3). According to Lemma 4.2.1,we can work with local parameterizations (x, f(x)), x ∈ [−ρ, ρ], of the C1,α curve C, where x =
x(s + ξ) − x(ξ) and y = f(x) ≡ y(s + ξ) − y(ξ) are the coordinates with respect to the frame
(v(ξ), t(ξ),n(ξ)) with arbitrarily �xed ξ. Note that both 0 < ρ ≤ 1 and the Lipschitz constant Cfin

|f ′(x1)− f ′(x2)| ≤ Cf |x1 − x2|α, x1, x2 ∈ [−ρ, ρ], (4.3.7)can be assumed to be independent of ξ. Also note that f(0) = 0 and f ′(0) = 0 in the local framecoordinates, and that x = x(s) is a monotonically increasing function of s. The following simpleinequality for f(x) will be used frequently,
|f(x)| = |f(x)−f(0)| = |f ′(η)||x| = |f ′(η)−f ′(0)||x| ≤ Cf |η|α|x| ≤ Cf |x|1+α, x ∈ [−ρ, ρ]. (4.3.8)It is su�cient to prove (4.3.3) under the assumption that the initial step-size h̄0 is already smallenough. More precisely, without loss of generality, we can assume that

Cf(h̄
0)α < 1/2; h̄0 ≤ ρ ≤ 1. (4.3.9)Indeed, since h̄j → 0, for some �nite j0 the corresponding step-size h̄j0 will satisfy these twoinequalities, and we can then apply the result to v

j0 as new initial point set to get the asymptoticresult in (4.3.3).We �rst investigate a single step of the S2 normal MT. To simplify the notation, the sequence
v = (vi)i∈Z, where vi = v(si), will denote the current point set vj−1 on C, and ṽ = (ṽi)i∈Z will denotethe sequence v

j generated on the next level. Fix an arbitrary i, put ξ = si, and consider the localframe coordinates attached to the point vi. If h̄ := ‖∆v‖ ≤ ρ we can write vi−1 = (−x′, f(−x′)),
vi+1 = (x, f(x)), with some x′, x ∈ (0, ρ]. This notation is also depicted in Figure 4.2. We wouldlike to compare h̄ with ˜̄h := ‖∆ṽ‖. We only need to investigate two subcases, namely to compare
˜̄h2i := |ẽ2i| to h̄i := |ei|, and the similarly de�ned ˜̄h2i−1 to h̄i−1 and h̄i, where ẽ := ∆ṽ and e = ∆v.In the �rst case, we have v̂2i := (S2v)2i = (1

4
x, 1

4
f(x)). Let εx be such that ṽ2i = (1

4
x+εx, f(

1
4
x+

εx)) (since S2 normal MT is well-de�ned such an εx exists, and satis�es 0 < x/4 + εx < x). By(4.3.2), we have ṽ2i− v̂2i ⊥ ei, and substituting the coordinate representations of these vectors, we�nd
−εxx+ f(x)

(
1

4
f(x)− f(

1

4
x+ εx)

)
= 0. (4.3.10)Straightforward calculations lead to

1

4
f(x)− f(

1

4
x+ εx) =

1

4
f ′(t1)x− (

1

4
x+ εx)f

′(t2) =
1

4
x(f ′(t1)− f ′(t2))− εxf

′(t2), (4.3.11)where t1 ∈ (0, x), t2 ∈ (0, 1
4
x+ εx). Substituting (4.3.11) into (4.3.10), we obtain
εx(f

′(t2)f(x) + x) =
1

4
xf(x)(f ′(t1)− f ′(t2)).Hence, using (4.3.9), (4.3.8) and the Lipschitz condition for f ′ appropriately, we arrive at

|εx| ≤
|f(x)||f ′(t1)− f ′(t2)|
4(1− |f ′(t2)f(x)|/x)

≤
C2

f

4(1− C2
fx

2α)
x1+2α ≤

C2
f

3
x1+2α.
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Fig. 4.2: One step of S2 normal MTSimilarly, for the points v̂2i+1 and ṽ2i+1 = (3
4
x+ ε̂x, f(

3
4
x+ ε̂x)), we obtain

|ε̂x| ≤
3C2

f

4(1− C2
fx

2α)
x1+2α ≤ C2

fx
1+2α.Therefore, we can write

˜̄h2i = |ẽ2i| = [(
3

4
x+ ε̂x −

1

4
x− εx)

2 + (f(
3

4
x+ ε̂x)− f(

1

4
x+ εx))

2]1/2

= (
1

2
x+ ε̂x − εx)

√
1 + f ′(t3)2 =:

1

2
x+ δ̃x,where 0 < t3 < x. Using the standard estimate √1 + a ≤ 1+a/2 for a ≥ 0, and |f ′(t3)|2 < C2

fx
2α <

1/4, see (4.3.9), we estimate the term δ̃x by
|δ̃x| ≤ (|ε̂x|+ |εx|)

√
1 + f ′(t3)2 +

x

2
(
√

1 + f ′(t3)2 − 1)

≤ 4

3
C2

fx
1+2α(1 +

C2
fx

2α

2
) +

1

4
C2

fx
1+2α <

7

4
C2

fx
1+2α.Since x ≤ h̄i, for the �rst case we thus obtain

˜̄h2i ≤
1

2
h̄i +

7

4
C2

f (h̄i)
1+2α. (4.3.12)



4. Normal MT 79For the second case, we also need estimates for ṽ2i−1 = (−1
4
x′+ εx′, f(−1

4
x′+ εx′)). By repeatingthe above calculations for ṽ2i with x replaced by −x′, we arrive at

|εx′| ≤ C2
f

4(1− C2
f (x

′)2α)
(x′)1+2α ≤ C2

f

3
(x′)1+2α,and can writē̃

h2i−1 = |ṽ2i−1| =
(
1
4
(x+ x′) + εx − εx′

)√
1 + f ′(t4)2 ≡ 1

4
(x+ x′) + δ̃x′,where −x′ < −x′/4 + εx′ < t4 < x/4 + εx < x, and

|δ̃x′| ≤ (|εx|+ |εx′|)
√
1 + f ′(t4)2 +

(x+ x′)

4
(
√
1 + f ′(t4)2 − 1)

≤
C2

f

3
(x1+2α + (x′)1+2α)

√
1 + f ′(t4)2 +

(x+ x′)

8
C2

f max(x, x′)2α

≤ 2C2
f

3
max(x, x′)1+2α(1 +

C2
f max(x, x′)2α

2
) +

C2
f

4
max(x, x′)1+2α ≤ C2

f max(x, x′)1+2α,since 1 + C2
f max(x, x′)2α/2 < 9/8. Taking into account x′ ≤ h̄i−1 and x ≤ h̄i, we deduce

˜̄h2i−1 ≤
1

2
max(h̄i−1, h̄i) + C2

f max(h̄i−1, h̄i)
1+2α. (4.3.13)Now, using (4.3.12), (4.3.13), and passing to the maximum with respect to i, we conclude that

˜̄h ≤ 1

2
h̄(1 +

7

2
C2

f h̄
1+2α) (4.3.14)holds, whenever h̄ satis�es (4.3.9). Applying (4.3.9) one more time, we get ˜̄h ≤ rh̄ with r :=

15/16 < 1, so ˜̄h satis�es (4.3.9) as well. Iterating, we get h̄j ≤ rjh̄0 but also the stronger result
h̄j ≤ 2−j h̄0

j−1∏

l=0

(1 +
7

2
C2

f (r
lh̄0)2α) ≤ 2−jh̄0

∞∏

l=0

(1 +
7

8
r2αl) ≤ C02

−jh̄0,with a constant C0 depending on α only. This �nishes the proof of the �rst part of (4.3.3).Step 4. Regarding the detail decay, observe that
|d2i| = |ṽ2i − v̂2i| ≤ |εx|+

∣∣∣∣f(
1

4
x+ εx)−

1

4
f(x)

∣∣∣∣ ≤
C2

f

3
x1+2α +

5

4
Cfx

1+α ≤ 17

12
Cf h̄

1+α (4.3.15)where we have again used (4.3.9). The same estimate can be obtained for d2i−1, and for all otherindices by shifting to the corresponding local coordinate system. Thus,
‖dj‖∞ ≤ C2(h̄

j−1)1+α ≤ C2(C2−(j−1)h̄0)1+α ≤ C3(h̄
02−j)1+α, (4.3.16)with C2, C3 depending on α. By [62, Lemma 2.2], (4.3.16) also assures C1,α′ smoothness of thenormal re-parametrization.



4. Normal MT 80Step 5. To verify the asymptotic decay of ‖∆2
v
j‖ claimed in (4.3.3) we use Step 3. For ṽ = v

jwe have
|∆2

ṽ2i−1| ≤
∣∣∣∣
x− x′

4
+ ε̂x − 2εx + εx′

∣∣∣∣+
∣∣∣∣f(

3

4
x+ ε̂x)− 2f(

1

4
x+ εx) + f(−1

4
x′ + εx′)

∣∣∣∣

≤ 1

4

|x− x′|
4

+ |ε̂x|+ 2|εx|+ |εx′|+ 2h̄ sup
η∈[−ρ,ρ]

|f ′(η)| ≤ 1

4
|∆2

vi−1|+ 3Cf h̄
1+α.The same estimation holds for |∆2

ṽ2i−2|. Now pick any α′ ≤ α with α′ < 1. Taking the supremumover all i and iterating over all the levels j gives rise to
‖∆2

v
j‖∞ ≤ 1

4
‖∆2

v
j−1‖∞ + 3Cf(h̄

j−1)1+α′ ≤ 1

4
‖∆2

v
j−1‖∞ + 3Cf(C2−(j−1)h̄0)1+α′

≤ 4−j‖∆2
v
0‖∞ + CCf(2

−jh̄0)1+α′

j−1∑

l=0

2−(1−α′)l ≤ C1(‖∆v
0‖∞2−j)1+α′

.Step 6. The last step is to prove stability. For any j ∈ N, any i ∈ Z and l ∈ {0, 1}

|vj
2i+l −w

j
2i+l| ≤ |S(vj−1 −w

j−1)2i+l|+ |dj2i+ln
j
2i+l − d̃j2i+lñ

j
2i+l|

≤ ‖vj−1 −w
j−1‖+ ‖dj − d̃j‖+ |dj2i+l||nj

2i+l − ñ
j
2i+l|.The main trick is to estimate the last summand in a way that the perturbed data plays as less arole as possible, namely to verify

|nj
2i+l − ñ

j
2i+l| ≤

4‖vj−1 −w
j−1‖

|∆v
j−1
i |

. (4.3.17)Indeed, (4.3.2) gives rise to nj
2i = n

j
2i+1 = (∆v

j−1
i )⊥/|∆v

j−1
i |, and ñ

j
2i = ñ

j
2i+1 = (∆w

j−1
i )⊥/|∆w

j−1
i |,respectively. First, assume that |∆w

j−1
i | > 0 and the R2 scalar product 〈∆v

j−1
i ,∆w

j−1
i 〉 ≥ 0. Thenthe trivial estimation (see Fig. 4.3)

|nj
2i+l − ñ

j
2i+l| = 2 sin

α

2
=

sinα

cosα/2
≤ 2‖vj−1 −w

j−1‖
cos (α/2)|∆v

j−1
i |
≤ 2
√
2‖vj−1 −w

j−1‖
|∆v

j−1
i |

, l = 0, 1,holds, where α = ∠(∆v
j−1
i ,∆w

j−1
i ) ∈ (0, π/2). For the case 〈∆v

j−1
i ,∆w

j−1
i 〉 < 0, we derive

2‖vj−1−w
j−1‖ > |∆v

j−1
i | and (4.3.17) is again ful�lled. Finally, unless some additional restrictionson εC, εd and ν are imposed, |∆w

j−1
i | can be zero and, thus, ñj

2i+l may not be de�ned. In this casetake arbitrary unit vectors ñ
j
2i, ñ

j
2i+1 and let w

j
2i+l = w

j−1
i + d̃j2i+lñ

j
2i+l, l = 0, 1. From triangleinequality we have 2‖vj−1 −w

j−1‖ ≥ |∆v
j−1
i |, so (4.3.17) remains true.Once (4.3.17) is established, we use (4.3.15) together with the �rst part of (4.3.3) to conclude

‖vj −w
j‖ ≤ (1 + 22−αC2C

α
0 ‖∆v

0‖α︸ ︷︷ ︸
C

2−jα)‖vj−1 −w
j−1‖+ εd2

−jν.The latter gives rise to (4.3.5) (see [91, Theorem 4] for more details). Hence, the proof of Theo-rem 4.3.1 is complete.
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i
−

ñ
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i|1
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≤
2‖∆

v j−
1−

∆
w
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1‖/|∆
v j−

1

i

|Fig. 4.3: The estimations for (4.3.17) in the case 〈∆v
j−1
i ,∆w

j−1
i 〉 ≥ 0.Some remarks are in order: Note that for α = 1, the above computations yield a detail decayrate of ‖dj‖ = O(2−2j) but only ‖∆2

v
j‖ ≤ Cj‖∆v

0‖2−2j which falls short of establishing the secondestimate in (4.3.3), and the C1,α′ property with α′ = α = 1 in this case. The latter is veri�ed inTheorem 5.1.3, where a slightly di�erent technique is used. Even though (4.3.5) measures the L∞distance between the actual curve C and the perturbed limit C̃, both given analytically by theirnormal re-parameterizations, the same bound is valid for the Hausdor� distance distH(C, C̃) betweenthe geometric curves. Indeed, at each level j ∈ N the Hausdor� distance between the piecewiselinear interpolants of vj and w
j does not exceed ‖vj −w

j‖∞, since the Hausdor� distance betweentwo line segments is less or equal to the maximum of the distances between the corresponding endpoints of the segments. Under the assumptions of Theorem 4.3.1, (4.3.5) uniformly bounds thepoint-wise distance between the original data and the perturbed one (con�rming that compressionis a numerically stable procedure [91, Remark 1]) but none of the nice properties of C and v
j areautomatically inherited by C̃ andw

j. Indeed, wj may not be even well-de�ned (e.g., two neighboringvertices may coincide) or when it is well-de�ned, inequalities such as (4.3.3) do not necessarily hold.Furthermore, C̃ may have an arbitrary number of self-intersecting-points and is only continuous ingeneral. However, it seems that small/controlled perturbations may still preserve the additionalstructure of the data, but to prove this, di�erent approaches than the one presented in this sectionshould be used.4.4 Globally convergent normal MTs based on adaptivityA signi�cant drawback in terms of applications of the normal multi-scale technique is the nonex-istence of a globally/unconditionally well-posed and convergent transform, that at the same timehas high compression rates. To show this we prove the following result.Proposition 4.4.1. Let S be linear, local, shift-invariant subdivision scheme that reproduces con-stants. A necessary condition for the S normal MT to be well-posed for any initial curve C and any(admissible) initial data v
0 is that the coordinate-wise de�nition of S takes the form

(Sx)2i = αxi + (1− α)xi+1; (Sx)2i+1 = βxi + (1− β)xi+1; 0 ≤ β < α ≤ 1.



4. Normal MT 82Proof. Fix k ∈ Z. The proof elaborates the simple idea, that whenever at least one of the predictions
(Sv)2k or (Sv)2k+1 (w.l.o.g. let it be (Sv)2k) is not restricted to lie directly on the coarse-scale edge
vkvk+1, one can construct a set v

0 such that the normal line through (Sv0)2k does not intersectthe edge at all. Finally, one can construct a curve C, interpolating v
0, such that one step of the

S normal MT distorts the topology on v
1, i.e., the arc-length parameter s12k, associated to v

1
2k issmaller than the corresponding s12k−1. This is exactly one of the cases, when the normal MT isconsidered to be ill-posed. The actual computations follow this paragraph.Let S be such that the S normal MT is globally well-de�ned. Denote by Ik the invariantneighborhood of S around k. First, consider C to be the line segment {y = 0, 0 ≤ x ≤ 1} in R2.This leads to the degenerate case dji = 0 and v

j
i = (sji , 0) for all j ∈ N, i ∈ Z. Then the S normalMT is well-de�ned on C if for each scale j, sj is a monotonically increasing sequence, which is thesame as S being a monotonicity preserving scheme. The latter is true if and only if the �rst derivedscheme S [1] has a positive mask a(1) (see for example [114]). But in the �rst chapter we have alreadyshown that the symbols of S [1] and S are linked with the formula

a(1)(z) =
za(z)

z + 1
,meaning that ai = a

(1)
i + a

(1)
i+1, i ∈ Z. Hence, S has positive mask, itself. The next step is to showthat S has the smallest possible support, i.e., that (Sv)2k and (Sv)2k+1 depend solely on vk and

vk+1. This is equivalent to proving that ai = 0 for i /∈ A := {−2,−1, 0, 1}. If S is interpolatory,then a2i = 0 for all i 6= 0. But
0 = a2i = a

(1)
2i + a

(1)
2i+1 & a

(1)
2i , a

(1)
2i−1 ≥ 0 =⇒ a

(1)
2i = a

(1)
2i+1 = 0,leading to ai = 0, |i| ≥ 2. Now, assume that S is an approximating scheme with support of its maskbigger than A. We will construct a point set v0 and a curve C through it, such that for the data

v
1 = Sv0 + d1n1 the corresponding arc-length sequence s1 can not be monotonically increasing,and, thus, the process is ill-de�ned. We work with normals, given via (4.3.2), but it is clear how todo it in general. By v

0 being admissible we mean that s0 is monotonically increasing. Let
1 < max{i ∈ Z : ai 6= 0} = 2`, ` > 0.The cases when ` is odd, or when min{i ∈ Z : ai 6= 0} < −2 are analogous. Then

(Sx)2k = a2`xk−` +
∑

i>k−`

a2(k−i)xi,which, together with the fact that S reproduces constants gives rise to
(Sx)2k − xk = −a2`∆xk−` +

∑

i>k−`

bk−i∆xi. (4.4.1)The sequence b can be computed from a and has smaller support. Note that from the verybeginning we have silently assumed that (Sx)2k and (Sx)2k+1 are centered with respect to xk and
xk+1. More precisely, when ∆x is constant xk ≤ (Sx)2k < (Sx)2k+1 ≤ xk+1. This, together with(4.4.1) and a2` > 0, implies that there exists such an x0 ∈ `∞(Z) that

x0
k−1 < (Sx0)2k−2 < (Sx0)2k−1 < (Sx0)2k < x0

k.
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kFig. 4.4: An example that the �standard� normal S3 MT is not necessarily well-posed in general.The rest is easy. Take a set of points {v0 : v0

i = (x0
i , y

0
i ), i ∈ Ik−1∪Ik} in R2, where y0i = εx0

i , i < k,
y0i = 0, i ≥ k. The constant ε is an arbitrary positive constant and its role is simply to assure that
n
1
2k−1 is not parallel to n

1
2k. Let Lk−1(t) ∩ Lk(t) = P , where, as always, Lk−1(t) and Lk(t) are thecorresponding normal lines. Choose C to be a continuous planar curve that interpolates v0 but doesnot intersect the angle-shaped region between −−−−→Pv

0
k−1 and −−→Pv

0
k (see Fig. 4.4). Then with respect tothe arc-length parameterization v(s) of C, and the notation v
1 = v(s1) we have s12k−1 > s12k. Hence,the S normal MT for C with initial sample v0 is ill-de�ned. A contradiction.Corollary 4.4.2. Let S be linear, local, symmetric, shift-invariant subdivision scheme with orderof polynomial reproduction P ≥ 2. Then the S normal MT is globally well-posed if and only if S isthe mid-point-interpolating scheme S1 or the Chaikin scheme S2. In both the cases

dj = O(2−2j), j ∈ N.Proposition 4.4.1 implies that such an S reproduces linear functions only if (∆Sx)2k = ∆xk/2,leading to α− β = 1/2. In order S to be symmetric and, thus, independent of the way the data isprocessed (i.e., from left to right, or from right to left), we should either take β = 0 which is S1, or
β = 1/4, which is S2. Note that in this setting β plays the role of the shift parameter cS introducedearlier in the de�nition of Pe.Due to Corollary 4.4.2, the only geometrically meaningful choices for S are S1 and S2. The S1normal MT is studied in detail in [91], and there it is con�rmed that the transform is well-de�ned,convergent and satis�es (4.3.4), while the analysis on S2 normal MT was the subject of our previoussection. To summarize, given a concrete curve C that needs to be e�ciently stored, we seem tohave two options, provided we want to use normal multi-scale transforms: Start with an arbitrarysample v0 ∈ C, perform S1 or S2 normal MT, store relatively big details, and, when the details are�nally below some a priori given threshold and we may not store them anymore, end up with at



4. Normal MT 84most C1,1 approximation of C, no matter how smooth the initial curve is. Or use a normal MTbased on high-regular S for which, compute the arc-length parameterization of C (usually the curveis given to us only as a geometrical set of points in R2), the exact constants in (4.2.9), and the sizeof h, �nd an admissible initial sample v
0, and realize ‖∆v

0‖ is already so small that there is nopoint of further re�ning the data. A natural way to compromise between those two is to introduceadaptivity. In what follows we repeat our paper [60, Sections 3 and 4].4.4.1 Theoretical approachThe aim of this section is to show that S2 normal MT has the property to �uniformize� the �ne-scaledata v
j. Hence, it is suitable for adaptive procedures together with any high-regular subdivisionscheme S. In other words, using S2 for prediction on �nitely many coarse levels (the exact numberdepends on the initial data v

0, the initial curve C, and the choice of S) guarantees that if we switchto S afterwards, the normal MT will be well-de�ned and the detail decay rate will be as high as thesmoothness of C and the regularity of S allow. Thus, storing more data in the beginning (based onapproximating prediction operator, S2 normal MT produces twice as many details as the S1 normalMT) may potentially lead to a better compression later. This does not hold for S1 normal MT. Forexample, let C be just a line segment and
|∆v

0
−1| = 9|∆v

0
0| = 9|∆v

0
1|.Let T be the 4-point (also known as Dubuc-Deslauriers) subdivision scheme

(Tv)2i = vi, (Tv)2i+1 =
−vi−1 + 9vi + 9vi+1 − vi+2

16
, i ∈ Z. (4.4.2)Note that this is the same scheme as (1.1.3), de�ned in the introduction, but we changed thenotation from Sc to T in order to better distinguish the scheme from the family Sp! Then T is notwell-de�ned on v

0 since (Tv0)1 = v
0
1 = (Tv0)2. Moreover, for each j ≥ 1

|(∆Sj
1v

0)−1| = 9|(∆Sj
1v

0)0| = 9|(∆Sj
1v

0)1|,so one can never switch to T around v
0
0. To show that S2 always works in adaptive algorithms, weneed the following result.Proposition 4.4.3. Let C be a closed non-self-intersecting Ck,α curve. Then, for any δ ∈ (0, α)and any initial set v0 ⊂ C
‖∆2

v
j‖

‖∆vj‖1+δ
→ 0, j →∞, (4.4.3)where v

j is the multi-scale data at level j, obtained from v
0 via S2 normal MT.Proof. From (4.3.1) it follows that for any given sequence v
j−1 ⊂ C,

(∆2S2v
j−1)2i = (∆2S2v

j−1)2i+1 =
∆2

v
j−1
i

4
, ∀i ∈ Z.



4. Normal MT 85Therefore, ‖∆2S2v
j−1‖ = ‖∆2

v
j−1‖/4. (4.3.2) implies that v

j
2i and v

j
2i+1 lie on parallel lines,orthogonal to ∆vi. Hence, |∆v

j
2i| cannot be smaller than the distance |(∆S2v

j−1)2i| = |∆v
j−1
i |/2between the lines. This gives rise to

‖∆v
j‖ ≥ ‖∆v

j−1‖
2

.Now, denote by rj := ‖∆2
v
j‖/‖∆v

j‖1+δ. Using (4.3.3), (4.3.4), and the above we derive
rj ≤

‖∆2
v
j−1‖/4 + 4‖dj‖

(‖∆vj−1‖/2)1+δ
≤ 2δ−1rj−1 + C2−(j−1)(α−δ) ≤ qrj−1 + Cqj−1,where the constant C depends on C0, C2, and ‖∆v

0‖, while q := 2(δ−α) < 1. Thus,
rj ≤ qjr0 + Cjqj−1 → 0, j →∞.Indeed, Proposition 4.4.3, together with (4.2.9), implies that, for any given closed non-self-intersecting Ck,α curve C with k + α > 1, any choice of a linear subdivision scheme S, and anychoice of (at least two) initial points v0 ⊂ C, there exists j ∈ N (that depends on all C, S and v

0),such that the S normal MT for C with initial data v
j, obtained from v

0 after j re�nement stepsbased on the S2 normal MT, is well-de�ned, converges and possesses the detail decay rate and thesmoothness of the normal re-parameterization as predicted in Theorem 4.2.3.4.4.2 Adaptive algorithmThe direct implementation of the adaptive normal MT, introduced in Section 4.4.1 is wasteful, aswe do not take into account the locality of the prediction operators. E.g., if we want to store a curve
C that is the graph (x, f(x)) ∈ R2 of a smooth function (molli�er) f , with f(x) = 0, |x| > ε and
f(0) = 1/ε, where ε > 0 is a priori �xed, we need to perform pure S2 normal MT on a huge numberof scales, provided ε << 1, before the mesh-size hj becomes small enough so that the corresponding(4.2.9) for the four-point scheme is globally satis�ed and we switch to it. Since f is a straight lineaway from |x| ≤ ε this does not seam to be a problem (all the details there are zero, so we do nothave to store anything), but if our data is noisy or due to machine errors we get some very small(but nonzero! details) we end up spending twice as much memory as for the S1 normal MT onregions where the output from two transforms is practically the same. Hence, a reduction of thenumber of segments, where S2 is used is desirable for faster detail decay and less data storage. Theadaptive algorithm we propose here allows di�erent prediction operators to be used for di�erentneighborhoods within the same scale. From now on, unless something else is speci�ed, T will denotethe Dubuc-Deslauriers operator (4.4.2). Suppose a closed curve C with initial v0 ⊂ C is given, aconstant RB > 0 has been (manually) chosen, and the normal MT v

1,v2, . . . ,vj−1 up to level j−1has been carried over. Any vertex v
j−1
i is marked by an extra bit, which is zero if it is an S vertex,i.e., predicted by S2 or S1, and one if it is a T vertex, i.e., predicted by T . Initially, in v

0 all verticesare declared S vertices. Note that we work only with �nite initial data v
0, so v

j−1 is �nite, as well.Let its cardinality be N . The algorithm consists of the following steps
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• Enlarge vj−1 in a cyclic way by adding two elements vj−1

−1 = v
j−1
N−1,v

j−1
0 = v

j−1
N to the left andthree elements vj−1

N+1 = v
j−1
1 ,vj−1

N+2 = v
j−1
2 ,vj−1

N+3 = v
j−1
3 to the right.

• Create an empty set V j and whenever a vertex is marked, add it to V j .
• For each i ∈ [1, N ]:� If one of the vertices vj−1

i and v
j−1
i+1 is an S vertex, while the other is a T vertex, use S1to predict a new node between v
j−1
i and v

j−1
i+1 . Compute the new vertex v̂i. In case ofmultiple intersection points, take an arbitrary one among them. Store the correspondingdetail, and mark v̂i as an S vertex. Do not mark v

j−1
i or vj−1

i+1 .� Else, i.e., when v
j−1
i and v

j−1
i+1 are both either S or T vertices, determine the localneighborhood v̄ = {v̄i−1, v̄i, v̄i+1, v̄i+2}. v̄ may di�er from v

j−1
∣∣
[i−1,i+2]

and its exactderivation will be explained later. If
|∆2

v̄i−1| ≤ RBmin{|∆v̄i−1|, |∆v̄i|}, |∆2
v̄i| ≤ RBmin{|∆v̄i|, |∆v̄i+1|}, (4.4.4)holds and the normal line through T v̄ intersects the corresponding arc ̂

v
j−1
i v

j−1
i+1 = {v(s) :

sj−1
i < s < sj−1

i+1} at least once, use T as prediction operator. Store the detail for the newvertex v̂i (in case of multiple intersection points, take an arbitrary one among them) andmark all {vj−1
i , v̂i,v

j−1
i+1} as T vertices. Else, use S2 as prediction operator, compute twonew vertices, mark them as S vertices and store the details. Do not mark v

j−1
i or vj−1

i+1 .
• Go one more time through V j, store a single copy for each of the vertices in it (those from
v
j−1 may have two copies at the beginning) and delete all the S vertices, surrounded by both

T neighbors. What remains is vj.Let us explain �rst how to construct v̄. T is a primal scheme, i.e., node-oriented (averages thevalues in the nodes of the grid), while S2 is a dual one, i.e., interval-oriented (averages the meanvalues of the function between adjacent nodes of the grid). Hence, taking v̄ = v
j−1
i+1 is not alwaysappropriate, because the transition from one to the other leads to highly irregular data on the nextlevel. We create v̄ of a pure S or pure T type via v̄i = v

j−1
i , v̄i+1 = v

j−1
i+1 ,

v̄i−1 =

{
v
j−1
i−1 , if vj−1

i−1 and v
j−1
i−2 are of the same type

v
j−1
i−2+v

j−1
i−1

2
, otherwise ,and analogously for v̄i+2. Note that our algorithm guarantees that vj−1

i−1 and v
j−1
i−2 are of the sametype whenever vj−1

i−1 and v
j−1
i are not, so we never average vertices of di�erent nature! Taking equallyspaced points on a line and applying the above procedure, randomly choosing for each i whether Tor S2 normal MT should be used, gives rise to neighborhoods v̄ that consist of equidistant points,again. On the other hand, the experimental results indicate that our algorithm quickly improvesthe regularity of an initially irregular data set.Let us now explain the rationale behind (4.4.4) in more detail. In order to use as few S2 and

S1 steps as possible, we need a very local criteria, such as (4.4.4), for the choice of the predictionoperator. Note that (4.4.4) implies (4.2.9) with δ = 0. There are several reasons why we chose to



4. Normal MT 87work with δ = 0. First of all, the size of δ does not play any role for the detail decay rate, whichcan be seen from the proofs in [24, 62]. Secondly, by relaxing the restriction (4.2.9) we favor the
T normal MT, and, thus, avoid the S2 normal MT as much as possible (of course, we do not havetheoretical guarantee that the T normal MT is well-de�ned and we need to check it every time wewant to use it). Finally, (4.4.4) allows us to relate our work to [24], since the quantity we bound isasymptotically the same as their non-uniformity measure

N (s) := sup
i
N (si) = sup

i
max{∆si+1/∆si,∆si/∆si+1}. (4.4.5)Indeed, since v(s) ∈ C1,α, there exists a constant C <∞ such that

|v′(s)− v
′(s′)| ≤ C|s− s′|α, ∀s, s′ ∈ [0, L).Hence, by Taylor formula

∣∣∣∣∣
|∆2

v
j
i−1|

|∆v
j
i |
− |∆

2sji−1|
∆sji

∣∣∣∣∣ ≤
∣∣∆sji |∆v

j
i −∆v

j
i−1| − |∆v

j
i ||∆sji −∆sji−1|

∣∣
(∆sji )

2 − C(∆sji )
2+α

.For the expression |A| in the numerator we derive
A ≤ C(∆sji )

2+α

(
1+

(
∆sji−1

∆sji

)1+α

+

∣∣∣∣
∆sji−1

∆sji
− 1

∣∣∣∣

)
;

−A ≤ ∆sji (|∆sji −∆sji−1| − |∆v
j
i −∆v

j
i−1|)︸ ︷︷ ︸

B

.To continue the estimations in the second line, we need to consider two cases.
1) |∆sji −∆sji−1| ≥ C((∆sji−1)

1+α + (∆sji )
1+α) =⇒

|∆v
j
i −∆v

j
i−1| ≥ |∆sji −∆sji−1| − C((∆sji−1)

1+α + (∆sji )
1+α) =⇒

B ≤ C(∆sji )
1+α

(
1+

(
∆sji−1

∆sji

)1+α
)
;

2) |∆sji −∆sji−1| ≤ C((∆sji−1)
1+α + (∆sji )

1+α) =⇒

B ≤ |∆sji −∆sji−1| ≤ C(∆sji )
1+α

(
1+

(
∆sji−1

∆sji

)1+α
)
.Combining the above inequalities with the analogous ones for ∆v

j
i−1 resp. ∆sji−1, instead of ∆v

j
iresp. ∆sji , and using |x− 1| ≤ |x|1+α + 1 we get

∣∣∣∣∣
|∆2

v
j
i−1|

min{|∆v
j
i−1|, |∆v

j
i |}
− |∆2sji−1|

min{∆sji−1,∆sji}

∣∣∣∣∣ ≤
2Cmax{∆sji−1,∆sji}α(1 +N (sji−1)

1+α)

1− Cmax{∆sji−1,∆sji}α
.But |∆2sji−1|/min{∆sji−1,∆sji} = N (sji−1)− 1, so

sup
i

∣∣∣∣∣
|∆2

v
j
i−1|

min{|∆v
j
i−1|, |∆v

j
i |}
− (N (sji−1)− 1)

∣∣∣∣∣ ≤
2C‖∆sj‖α(1 +N (sj)1+α)

1− C‖∆sj‖α . (4.4.6)
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Fig. 4.5: Our test dataWhat we see from (4.4.6) is that, whenever ‖∆sj‖ → 0 and N (sj)→ 1, we have
sup
i

|∆2
v
j
i−1|

min{|∆v
j
i−1|, |∆v

j
i |}
→ 0, j →∞. (4.4.7)Vice versa, due to (4.3.6), we have ∀j ∈ N

sup
i

∣∣∣∣∣
|∆2

v
j
i−1|

min{|∆v
j
i−1|, |∆v

j
i |}
− (N (sji−1)− 1)

∣∣∣∣∣ ≤
2Cqα‖∆v

j‖α(1 + q1+αN (vj)1+α)

1− Cqα‖∆vj‖α ,and, thus, ‖∆v
j‖ → 0 together with (4.4.7) implies N (sj)→ 1, when j →∞.Some remarks are in order. According to the Appendix A in [24], T is weakly contractive withbound R = 3+2
√
2, i.e., for any strictly increasing u ∈ `∞(Z) such that N (u) ≤ 3+2

√
2, Tu is alsostrictly increasing and N (Tu) ≤ N (u). The bound is sharp and, together with (4.4.6), suggeststhe restriction RB < 2+ 2

√
2, because otherwise we allow applications of T normal MT even when

N (sj) > R which could even worsen the regularity of our data! Secondly, our algorithm can begeneralized for smoother both interpolating schemes T and approximating schemes S. However,the transition between S and T vertices should always be smooth, i.e., only S2 and the 4-pointscheme can be applied to neighboring intervals. Then in each of the directions one can upgrade theprediction operator with a smoother one of the same type. For example, in order to work with thecentral interpolating scheme of degree 9, we intermediately have to use the central interpolatingschemes of degree 3, 5 and 7, as well.For the two data sets illustrated in Fig. 4.5, we compare the behavior of the normal MTsbased on S1, S2, T , S1/T , and S2/T (we use the notation S2/T normal MT for the adaptivealgorithm, presented in the previous section, and S1/T normal MT for its exact counterpart, when
S2 predictions are replaced by S1 predictions). In the �rst example, we consider a small, irregularlyspaced initial vertex set v

0 (indicated by circles) on a C∞ curve, namely the unit circle. In thesecond example we consider well-spaced initial points v0 on a curve with four isolated singularities,which we will refer to as twisted circle, since it is obtained by dividing the unit circle into four arcsof equal length, and �ipping three of them around their corresponding edges. Although close, none



4. Normal MT 89of the points in v
0 coincides with any of the singularity points of the twisted circle. The twistedcircle is only C0,1. Hence the crucial inequality (4.3.6), needed for the well-posedness of the S2normal MT does not automatically hold. However, direct computations show that if P,Q lie onneighboring arcs of the twisted circle, then |PQ| ≥ |P̂Q|/(π

√
2), which for the given choice of v0 isenough. As we will see, for both examples the T normal MT fails at some level.4.4.3 Experimental resultsIn Fig. 4.6 we show experimental data for the �rst example. The non-uniformity measures N (vj)is computed in the same fashion as (4.4.5) by just replacing ∆si by |∆vi|. We prefer to work withthis measure, because at each level j it can be directly computed from v

j−1, while for N (sj−1) oneneeds to take into account the underlying curve C. In the second and third columns, by setting
RB = 0, we simply apply pure S2 resp. S1 normal MT. The second row compares the detail decay,combining the details from all levels j ≤ 5, while the last one compares the details only from the�nest scale.

T normal MT fails after 6 iteration steps, and this can be observed by the rapidly increasingvalues of its non-uniformity measure. Since S2, resp. S1, normal MT is always well-de�ned, theadaptive transforms never fail and this is con�rmed by the graphs of the associated non-uniformitymeasures. From these plots, we see the potential problem of working with large RB-values. Indeed,when we set RB = 5 (which is slightly larger than the theoretical bound 2+2
√
2 for T , as discussedin Section 4.4.2), we allow T normal MT steps, that even increase the irregularity of the initial data.While the S2/T normal MT is able to �recover� and after �ve more iterations decreases the non-uniformity measure to the level of the pure S2 normal MT, this is not the case with the S1/T normalMT. Indeed, applied on the circle, mid-point prediction never improves N (v), since if (∆v

0)−1, resp.
(∆v

0)0 cut arcs of length 2α, resp. 2β from the unit circle, where π > α > β > 0, then for any
j ∈ N ∪ {0}, aj := (∆v

j)−1/(∆v
j)0 = sin(α/2j)/ sin(β/2j) and {aj} is monotonically increasingsequence with limj→∞ aj = α/β. (However, for all intermediate i's, e.g., i ∈ {0, 1, . . . , 2j − 2},

(∆v
j)i/(∆v

j)i+1 = 1 which is illustrated in the bottom right graph of Fig. 4.6, where the details,obtained via S1 normal MT possess only four di�erent values, corresponding to the di�erent arcs inthe original partition.) When RB = 1, the adaptive S2/T , resp S1/T normal MT applies S2, resp.
S1, in all regions of highly non-uniform spacing. This explains the almost identical plots for S2/Tand S2, resp. S1/T and S1, normal MTs for small j. As discussed before, RB = 1 corresponds to
N (v) ≈ 2 and, thus, the corresponding plots for S2 and S2/T normal MTs start to slightly di�eronly when the data is already close to regular. Moreover, once N (vj) < 2 is achieved, the S2/Tnormal MT with RB = 1 turns into pure T normal MT. This is con�rmed by the log2 |d5| plotswhich contain half as many data points for S2/T as compared with S2 normal MT. On the otherhand, because of the inability of S1 to improve the non-uniformity measure, for every level j ∈ Nin the S1/T normal MT there will be points (in our particular case it is one point when RB = 5and two points when RB = 1), predicted via mid-point interpolation, which leads to the same `∞norm for the details as in the case of pure S1 normal MT. Hence the worst-case detail decay rateof the S1/T adaptive scheme will be only 2, instead of 3.Another observation is that, since the circle has constant curvature, looking at the details atsome �xed level (in our example - level 6) gives us an idea about the the global regularity of vj,when pure S2 or S1 normal MT are used. In our particular example, we see that in case of S2 normal
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RB=5Fig. 4.6: Comparison among T normal MT (left), S2/T normal MT (middle) and S1/T normal MT (right),when performed on the circle setup from Fig 4.5. The upper row plots N (vj−1) for j = 1, 2, . . . , 7.The middle row plots the corresponding log2-values of |dj | for levels j ≤ 5 in descending order.The lower row plots log2(|d5|).



4. Normal MT 91MT all the details are within a narrow range, and, thus, our data is close to regular even globally,while S1 normal MT leads to four regular pieces, that correspond to the four initial arcs, which wealready knew. Finally, the graphs for the details after �ve iterations are in line with Theorem 4.2.3regarding the expected detail decay rate. Indeed, the average values of the logarithm of the details,obtained by T normal MT, as well as by S2/T and S1/T normal MT with RB > 0 are all closeto -15, while the corresponding averages for the S2 and the S1 normal MT are close to -10, whichmeans that ‖d5‖1 ≈ 2−5·3, resp., ‖d5‖1 ≈ 2−5·2.
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RB=5Fig. 4.7: Numerical results for twisted circle. Plots position is analogous to Fig. 4.6.In the second example (twisted circle), we performed the same experiments. However, since the

T normal MT brakes down after 9 iterations, we take into account more steps and compare thedetails after 8 iterations, instead of 5. The results are summarized in Fig. 4.7. Since the twistedcircle is composed of circle arcs, some of the phenomena observed on the �rst example appear here,too, but due to the low smoothness of C, there are also additional e�ects. First of all, as we start
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Fig. 4.8: The adaptive schemes detect singularities.with almost equally spaced points v0, the non-uniformity measure for T and S1 normal MT stayslow for small j, until the singularities of the initial curve are �detected�. This happens only at level
j = 8 because the initial points were chosen very close to the singularities. Then the non-uniformitymeasure N (vj) corresponding to the T normal MT jumps from 3 to 13, and the transform fails atthe next level. Therefore, as can be seen from the graphs, for levels j ≤ 9 both S2/T and S1/Tnormal MT with RB = 5 coincide with the pure T normal MT. After that S2/T manages to improvethe non-uniformity measure, while S1/T just keeps it as it is.On the other hand, as shown on Fig. 4.8, the S2 normal MT detects the presence of singularitiesfrom the very beginning, although it cannot localize them as well as an interpolating normal MTwould do. Indeed, once an interpolating scheme hits a point it keeps it throughout all the followingiterations, while, even on a straight line and uniformly spaced data, once a point is hit by S2, itnever appears again on any of the �ner scales. To stress this e�ect we set the following example.On a smooth curve with a single singularity point, we start with a v

0 consisting of 4 irregularlyspaced points, and show the locations where S2/T normal MT still uses S2, i.e., where the localnon-uniformity measure exceeds RB. On the left plot, we see that at level j = 5 the irregularityof the initial data is essentially removed, and the only places, where S2 prediction is used, is nearthe singularity. In the middle plot, we show how the localization of the singularity by the S2/Tnormal MT improves after three more iterations. On the right plot, we see that even for very smallvalues of RB (in the particular case RB = 0.1) this still works, even though only after slightly moreiterations. The isolated S2 interval away from the singularity disappears for j = 10. This cannotbe achieved with the S1/T normal MT, since it can never fully recover from the irregularity of theinitial data and will use S1 predictions near vertices in v
0 for any j.We conclude our experiments with a comparison between our S2/T normal MT and the Tωnormal MT proposed in [24]. To the best of our knowledge, the latter is the only other normal MTthat is well-de�ned, converges and (in case of smooth initial curve) after �nitely many iterationsturns into a pure T normal MT. The family Tω is de�ned via

Tω = (1− ω)S1 + ωT, 0 < ω ≤ 1,and Tω is proven to be weakly contractive (see [24] for details) with bound
R(ω) =

4

ω

(
1 +

√
1− ω

2
− 1

) (4.4.8)



4. Normal MT 93for each speci�c 0 ≤ ω ≤ 1. Combined with [24, Theorem 5.7], this implies the existence of anincreasing sequence 0 < ω1 < ω2 < . . . < ωJ < 1 = ωJ+1 = . . . such that (4.1.1) with S replaced by
Tωj

leads to a well-de�ned transform called Tω normal MT (the ωj as well as the level J after whichthe Tω normal MT coincides with the T normal MT, depend on C and v
0). All one has to do isto choose ωj such that N (vj−1) ≤ R(ωj) (concrete rules for picking the ωj resp. a locally adaptiveversion of the Tω normal MT have not been elaborated on in [24]).Fig. 4.9 displays the decay of the non-uniformity measure N (vj) for j ≤ 8 associated with S2,

Tω, and T3ω/4 normal MT. Since the decay of the non-uniformity measure for smooth C is basicallya property of the underlying subdivision operator, for this test we let C be a straight line, and
v
0 consist of randomly chosen points on it with large N (v0) value. For the Tω normal MT, wealways work with the largest possible value ωj = 8N (vj−1)/(N (vj−1) + 1)2 satisfying (4.4.8), whilefor the T3ω/4 normal MT we use T3ωj/4 as prediction operator. In Fig. 4.9 we have plotted twoexamples. We observe that S2 improves the non-uniformity measure faster (actually, for S2 it canbe straightforwardly veri�ed that on a straight line N (vj) < (N (vj−1) + 1)/2, j ∈ N), and allowsus to switch to T at an earlier level. In the �rst example we can do this after three iterations, whilewe need four iterations if using T3ω/4 or seven iterations if using Tω, and in the second example wecan do this after �ve iterations, while we need six iterations if using T3ω/4 or more than eight ifusing Tω). The other observation is that for both examples T3ω/4 normal MT performs better than

Tω normal MT, which indicates that, in order to minimize the �ne-scale non-uniformity measure,the ωj should be chosen carefully.

Fig. 4.9: Comparison between our adaptive scheme and the family Tω proposed in [24].



5. IMPROVED NORMAL MTS. CASE STUDIESThe restrictive role of the exact order of polynomial reproduction Pe of the approximating subdi-vision operator S in the analysis of the S normal MT, established in Theorem 4.2.3, signi�cantlydisfavors the practical use of these transforms whenever Pe << P . Moreover, numerical experi-ments con�rm that the detail decay rate of the S normal MT is indeed related to Pe, and not to P .On the other hand, bigger details lead to bigger displacements of the newly inserted points, whendi�erent normal directions for the S normal MT are considered (see Fig. 5.1). Hence, the choiceof ξK in (4.2.11) has big impact on the regularity of the generated data. Another observation isthat the two limitations on the detail decay rate µ < min(s∞(S) + 1, Pe) have completely di�erentnature, can be �decoupled�, and treated independently.In this chapter, both the above ideas are further elaborated and improved normal MTs in terms ofsmoothness of their normal re-parameterization and detail decay rates are presented. The followinglemma from [62] is repeatedly used for our arguments, so we highlight it here. Its proof is given inthe appendix.Lemma 5.0.4. For given S with Pe ≥ 2, let 1 ≤ M < Pe, and assume that F : [a, b] → R is
CM,ρ for some 0 < ρ ≤ 1. Then for any �nite sequence (sl)l∈I ⊂ [a, b] and any index K such that
SsK ∈ [a, b] is well-de�ned we have

|F (SsK)− SF (s)K| ≤ C(
∑

ν∈EM

M∏

m=1

‖∆ms‖νmI + ‖∆s‖M+ρ
I ), K ∈ I ∪ I1,where the constant C is independent of the sequence s and K, and

EM := {ν ∈ Z
M
+ :

M∑

m=1

mνm = M + 1, 2 ≤
M∑

m=1

νm ≤ M}.Our main computational tool for the forthcoming analysis is the use of local frames. Let C bea closed, non-self-intersecting, planar curve, with smooth enough arc-length parameterization v(s),and let v0 = v(s0) ∈ C be a point on it. The local frame (T ,N ), centered at v0, is de�ned via
v
′(s0) = T , and v

′′(s0) = k(s0)N . The scalar function k(s) is the curvature of C at a given point
v(s) and is continuously di�erentiable, whenever v(s) ∈ C3. Due to the Taylor expansion, for C5curves C we have
v(s) = v0 + v

′(s0)(s− s0) +
v
′′(s0)

2!
(s− s0)

2 +
v
′′′(s0)

3!
(s− s0)

3 +
v
(iv)(s0)

4!
(s− s0)

4 +O((s− s0)
5).Combining it with the Frenet-Serret formulae
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Fig. 5.1: Comparison of the arc-length di�erence between the two �ne-scale-point candidates that corre-spond to two admissible choices of normal directions and predicted via S3 (v̂1) and T (û1), resp.
T ′ = αN , N ′ = −αT ,we derive

v(s) = v0 +

(
(s− s0)−

k(s0)
2

6
(s− s0)

3 − k(s0)k
′(s0)

8
(s− s0)

4 +O((s− s0)
5)

)
T

+

(
k(s0)

2
(s− s0)

2 +
k′(s0)

6
(s− s0)

3 +O((s− s0)
4)

)
N =: x(s)T + y(s)N .

(5.0.1)For analyzing di�erent transforms in the chapter we truncate the Taylor expansion di�erently,but we never work with terms that are of higher order than 5, so from this point of view formula(5.0.1) is given in its most general form. Finally, we are interested only in the asymptotical behaviorof the considered quantities (detail decay rates and regularity of v(sj(t))). Moreover, due to locality,we restrict ourselves to the invariant neighborhood s ∈ I0 of s0. Therefore, without loss of generalitywe can consider I0 dense enough so that Lemma 4.2.1 holds. Without further mentioning, this willalways be the setup for our estimations below.5.1 Improving the regularity of the �ne-scale data via suitable choice of generalizednormalsSection 5.1 exploits the additional degree of freedom that the choice of generalized normals gives,and uses it for improving the regularity of the B-spline normal multi-scale transforms. To getstarted, we need to reformulate (4.2.11) in order to meet the speci�cs of the process. Note �rstthat the formula n̂
j
K = n(ξK) emphasizes the role of the curve C and is to some extend misleadingbecause the main property of the normals, which basically makes the whole approach appealingfrom a practical point of view, is that they depend solely on the coarse-scale data v

j−1 (since
v
j−1 ∈ C, this encodes curve information, as well but in a discrete way). In this section we willde�ne generalized normals for the normal MT based on a given S with the help of another linearsubdivision operator N via the following formula

n̂
j
K =

(N∆v
j−1)⊥K

|(N∆vj−1)K |
, K ∈ I2i ∪ I2i+1. (5.1.1)



5. Improved normal MTs. Case studies 96For N we assume that it reproduces constants, has positive mask and support, not bigger than theone of the �rst derived scheme S [1] of S.It is not hard to see that (5.1.1) implies (4.2.11). Indeed, the assumptions on N give rise to
(N∆v

j−1)K being a convex combination of {∆v
j−1
k : k ∈ Ii}. Hence, there exists a ξk ∈ s|Ii suchthat its tangent vector t(ξk) to C is collinear with (N∆v

j−1)K , making n̂
j
K = n(ξK). Finally, dueto the locality of S, |ξK − sk| ≤ |supp(S)|hi.Due to (5.1.1) we can talk about (S,N) normal MT, meaning that the prediction points onthe �ne-scales are computed by S, while the normal directions are generated by N . The abovegeneralization of the method is of no practical interest when S is interpolatory, since this will not leadto improvements of either the detail decay rate or the smoothness of the normal re-parameterization.The detail decay observation follows from classical approximation theory. S produces Cm,β limitfunctions where m+ β +1 ≤ P = Pe, the prediction Svj−1 can be interpreted as an approximationto C within the class of Cm,β curves, leading to best approximation error of order m + β + 1. Forthe smoothness, consider once again C to be a line interval, and v

0 be a non-uniform sample ofit. For this setup the smoothness of the normal re-parameterization coincides with the Hölderregularity of the prediction operator. Now compare both the results with Theorem 4.2.3 and seethat the transform performs in an optimal way even with the standard normals (4.3.2). When S isapproximating, however, this is no longer the case, because Pe may di�er from P . More precisely,
Pe < m + β + 1 ≤ P may hold, suggesting that there might still be room for improvement of theabove two quantities. 5.1.1 (Sp, Sq) normal MTFrom now on we concentrate our attention on the family of B-spline operators {Sp} (4.2.2). Notethat the recursive de�nition for Sp shifts the re�ned data to the right, e.g., (S3x)2i = (xi+xi+1)/2 =
(S1x)2i+1, and the larger the p the bigger the e�ect. In order to keep the schemes centered we silentlyshift the indexes back as much as necessary, e.g., we actually deal with the operator S ′

3 such that
(S ′

3x)i = (S3x)i−1, but for simplicity we denote this modi�ed versions of Sp by Sp, as well. There areseveral reasons for our choice to work with the B-spline family. First of all, our previous results aretoo pessimistic if applied to Sp normal MTs: Theorem 4.2.3 implies detail decay rate and smoothnessof the normal re-parametrization up to order two no matter how big p is, and Proposition 4.4.1states that those transforms are not globally well-posed, either. At the same time, the Sp operatorsare still among the most favorable schemes used in practice, because of their nice geometric andanalytic properties, and are one of the main reasons why people are interested in normal MTsbased on approximating prediction rules. Hence, the Sp normal MTs are good as test case sinceimprovements should be possible. Last, but not least, they seem the best candidate to test our
(S,N) framework: Intuitively, if one wants the (S,N) normal MT to perform well, the two schemes
S and N should be closely related. From this point of view, the Lane-Riesenfeld algorithm and thepositiveness of the mask of Sp which makes Sp admissible for an N-operator, look very promisingand so does the observation that the standard S normal MTs exploited so far �t nicely into the newparadigm as (S, S0) normal MTs.Remark 5.1.1. For any p ∈ N and any admissible choice for N , the detail decay rate of the (Sp, N)normal MT does not exceed two.



5. Improved normal MTs. Case studies 97Normal MT on a circle Number of initial points (always placed equidistantly)
Sp n̂

j
i levels used 4 5 6 7 8 9 10

S2 standard 3 � 12 2.0011 2.0008 2.0005 2.0004 2.0003 2.0002 2.0002
S2 radial 3 � 12 1.9952 1.9974 1.9984 1.9989 1.9992 1.9993 1.9995
S3 radial 3 � 12 1.9997 1.9998 1.9999 1.9999 1.9999 1.9999 2.0000
S4 radial 3 � 12 1.9993 1.9995 1.9996 1.9997 1.9998 1.9998 1.9998
S2 standard 6 � 12 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
S2 radial 6 � 12 1.9952 1.9974 1.9984 1.9989 1.9992 1.9993 1.9995
S3 radial 6 � 12 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
S4 radial 6 � 12 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000Tab. 5.1: Decay of the detail coe�cients for (Sp, N) normal MTTo show this, we set C to be a circle of radius R > 0. Let us �rst consider p = 1 and take any

vi,vi+1 ∈ C. In this setting the standard normal directions are radial, i.e., the normal line through
(S1v)2i+1 contains the center of C, the detail d2i+1 with respect to the S1 normal MT equals theHausdor� distance from (S1v)2i+1 to C, and, thus, is the smallest possible among all the (S1, N)normal MTs. But we can directly compute

d2i+1 =

(
1−

√
1− h̄2

i

4R2

)
R =

h̄2
i

8R2
+ o(h̄2

i ), h̄i = |∆vi|.Since S1 is dyadic, it is clear that for any initial sample v0 and any j ≥ 1, h̄j = ‖∆v
j‖ = O(h̄02−j),implying |dj| ≥ Ch̄02−2j, where C > 0 is some constant. Hence, detail decay rate higher than twocannot be expected from an (S1, N) normal MT. The case (S2, N) is absolutely analogous, whilefor p ≥ 3 we have (Spv)K , K ∈ I2i ∪ I2i+1, to be a convex combination of {vk : k ∈ Ii}, meaningthat (Spv)K and the circle lie in di�erent regions with respect to the polyline, interpolating v. Inother words, the Hausdor� distance from (Spv)K to C is bigger than the corresponding one from

(S1v)K , if p is odd, (S2v)K , if p is even, respectively, making it impossible for the detail decay orderto be higher than two. Finally, since h̄j → 0 when æ→∞, for any given curve C ∈ C2 there existsa su�ciently large j, such that for all j > 0 the invariant neighborhood Ii of Sp is concentratedwithin a C region of almost constant curvature, i.e., the asymptotical behavior of the details in an
(Sp, N) normal MT for an arbitrary C2 curve C is the same as for the circle case. These heuristicarguments are backed-up by the experimental data in Table 5.1. There we have tested S2, S3, and
S4 on a set of equally-distant points on the unit circle. We assume that the detail decay behaveslike ‖dj‖ ≈ C2−jα. Therefore, to estimate the order exponent α, we use a least-squares �t on
− log2(‖dj‖) ≈ αj − logC.Remark 5.1.1 con�rms that the order of exact polynomial reproduction Pe is responsible for thedetail decay rate of the B-spline transforms. At �rst glance the result seems negative and disfavorsthe use of Sp normal MTs for applications. But, as we will see throughout this section, big detailssigni�cantly increase the role of the choice of N for the regularity of the (Sp, N) normal MT, andlead to improvements in the smoothness of the normal re-parameterization when the right N isconsidered. The above observation illustrates one of the main reasons why the analysis of normal



5. Improved normal MTs. Case studies 98MTs, based on approximating S is richer and more subtle than the one based on interpolating
S! Indeed, let S be interpolatory, with smoothness s∞(S) = m + β, and order of polynomialreproduction P . Then m + β + 1 ≤ P = Pe, and the (S,N) normal MT has detail decay order
m+ β + 1 for all admissible N . Hence, no matter what N we choose, the size of the displacementwith respect to the arc-length parameter between a newly inserted point by the (S,N) normal MTand a newly inserted point by the S normal MT is, by triangle inequality, at most twice the detailssize, and thus at least of orderm+β+1. The latter quantity is negligible for the smoothness analysisof the normal re-parameterization, explaining why the whole idea of generalized normal directionsdoes not lead to anything in the interpolating setting. On the other hand, in the approximatingcase, and for B-spline normal MTs in particular where m+ β >> Pe, such displacements a�ect thesmoothness analysis, and if properly adjusted, improve the regularity of the �ne-scale data. Beforesupporting the above claim with mathematical arguments, we would like to mention a useful factregarding the well-posedness of the (Sp, Sq) normal MT, that is related to the argument used forthe proof of Remark 5.1.1.Proposition 5.1.2. Let C be a closed, non-self-intersecting C2 curve that has non-negative, resp.non-positive, curvature at every point. Then, for any choice v

0 of initial data, the (Sp, Sq) normalMT, with p > q ≥ 0, is globally well-de�ned.Proof. Fix p ∈ N. Note that, in order to apply Sp, we need the cardinality of v0 to be at least |I0|,where I0 is the minimal invariant neighborhood around zero for Sp, de�ned in Section 4.2.1. Asalways, we assume that C is given via its arc-length parameterization v(s) and that, together with
v
0 we have access to {s0 : v0

i = v(s0i ) ∀i ∈ Z}. Since Sp has a positive mask and the sign of thecurvature of C is constant, for any sample v
0, any i ∈ Z, and any K ∈ I2i ∪ I2i+1, the predictedpoint (Spv

0)K and the curve C lie in the two di�erent regions of the plane, separated by the polylinethrough v
0. The point at in�nity belongs to the same planar region as C and taking into account thecontinuity and the closeness of C, as well as the formula (5.1.1), we conclude that for any admissiblenormal-generating operator N there will be a unique intersection point between the line through

(Spv
0)K , collinear with (N∆v

0)⊥K , and the curve arc {v(s|Ii)}. What remains to be checked is theproper connectivity of the derived �ner sample v1, i.e., that its points are ordered in an ascendingway with respect to the arc-length parameterization of C. For this part, we take advantage of theproperties of the B-spline schemes, and thus restrict ourselves to N = Sq. Take q = 0, i.e., usethe standard normals (4.3.2). The above �separation argument� for the set of predicted points andthe curve, implies that the details d1 are all non-negative, or all non-positive, depending on thesign of the curvature of C. The oriented angles ∠(∆v
0
k,∆v

0
k+1), k ∈ I

[1]
i are also non-negative, resp.non-positive, and, thus the normals n

1
K are sorted in a descent, resp. ascent order according tothe size of the oriented angles ∠(n1

K ,
−→
Ox) between them and the x-axis of a suitable local frame.A simple geometric argument implies that s1K < s1K+1 for all K, establishing the well-posedness ofthe (Sp, S0) normal MT. The rest is induction. For p = 1, we have the only possibility q = 0 andthis has already been covered. Assume we have proved the proposition for all p < P . Take p = Pand q < P . If q = 0 we are done. If q > 0, we already know that the (SP−1, Sq−1) normal MT iswell-posed. But, from (4.2.2) we have that (SPv

0)K is the midpoint of the edge (SPv
0)K(SPv

0)K+1,while n
1
K is the average of the normals n̂1

K and n̂
1
K+1, generated by Sq−1. Thus, ŝ1K < s1K < ŝ1K+1,where s1 is the arc-length sequence generated by the (SP , Sq) normal MT, while ŝ1 is the arc-length



5. Improved normal MTs. Case studies 99sequence generated by the (SP−1, Sq−1) normal MT. Since ŝ1 monotonically increases, so does s1,and the (SP , Sq) normal MT is well-posed.
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Fig. 5.2: Regularity of the normal re-parametrization for normal MT with S4.Proposition 5.1.2 gives a very easy criteria regarding when the (Sp, Sq) normal MT can be safelyapplied. Moreover, unless C is very complicated, starting with an arbitrary initial point set v0, andperforming S2 or S1 normal MT the curve will split into locally convex/concave arcs after very fewre�nements. Hence, we can quickly switch from S2 to higher Sp prediction operators in the extendedversion of our adaptive algorithm, mentioned at the very end of Section 4.4.2. Whether this is ofany practical value or not, depends on how much faster the normal MT based on Sp �regularizes�the data than the S2 normal MT does. And an indicator for the latter is exactly the smoothness ofthe normal re-parametrization, which further motivates our interest in the (Sp, Sq) normal MTs.For smooth curves C such as the circle and graphs of simple polynomials, we have monitoredthe smoothness behavior of the global x-coordinate function of the normal re-parameterization v(t)by plotting the graphs of the �rst component of 2jm(∆m
v
j)(t) for j = 8 for various m ≥ 1 (we canassume that this function is close to x(m)(t) if the re-parametrization is in Ck,α for some k ≥ m).The curve was the unit circle, with �xed initial set v0 of 10 non-uniformly distributed points at start.The series of plots in Fig. 5.2 is for the (S4, Sq) normal MT with q = 0, 1, 2 (from top to bottom),and show graphs withm = 1, 2, 3, 4 (from left to right). The plots con�rm the theoretical result fromTheorem 4.2.3 regarding the O(2−(1+α′)j) decay with any α′ < 1 for the monitored quantities, butalso suggest that for smooth C, the larger the q the smoother the v(t). Moreover, since s∞(S4) = 4,for q = 2 we already observe optimal smoothness C3,α′ for the re-parameterization. The followingtheorem concurs that those observations are true at least for small p.Theorem 5.1.3. Fix p ∈ {2, 3, 4}. Let C be closed, non-self-intersecting, regular Cp+1 curve, givenby its arc-length parameterization v(s). Let v0 ∈ C be such that the (Sp, Sp−2) normal MT is globally



5. Improved normal MTs. Case studies 100well-posed and convergent. Then the normal re-parameterization of C is Cp−1,1 for p = 2, 3, and
C3,α, α < 1 for p = 4. Finally,

‖∆nsj‖ = O(2−nj) = O(‖∆sj‖n), 1 ≤ n ≤ p; j →∞.Proof. Fix p ∈ {2, 3, 4}. Following our notation from Section 4.2, it su�ces to show that thelimit scalar function s(t) of the corresponding arc-length sequences {sj : sji = s(tji ) = s(i2−j), i ∈
[0, 2jL]}, j ∈ Z, is Cp−1,1. But, re-writing it in the form sj = Sps

j−1+ωj, leads us to a standard linearunivariate multiresolution where the perturbation argument from [24, Theorem 4.4] is applicable.In our setting, it simpli�es to the followingLemma 5.1.4. Let sj = Sps
j−1 + ωj, where the data sj is associated to the uniform grid 2−jZ.Then, if

‖ωj‖ = ‖sj − Sps
j−1‖ = O(2−ν(j−1)), ν > p,the piece-wise linear interpolants sj(t) converge uniformly to a Cp−1,1 limit s(t), while if

‖ωj‖ = ‖sj − Sps
j−1‖ = O(2−p(j−1)),the piece-wise linear interpolants sj(t) converge uniformly to a Cp−1 limit s(t), s.t.,

|sp−1(t+∆t)− sp−1(t)| ≤ C|∆t|(1 + | log |∆t||), ∀t, t +∆t ∈ [0, 1].Note that this is just a logarithmic factor worse than a Cp−1,1 smoothness.Here we estimate the quantity ‖ωj‖ for p = 2, 3, 4 and derive that
‖ωj‖ = O(2−(p+1)(j−1)), p = 2, 3; ‖ωj‖ = O(2−p(j−1)), p = 4, (5.1.2)which, together with Lemma 5.1.4 completes the proof of the �rst part of the theorem. The secondpart follows from (4.2.5) and (5.1.2) via

∆nsj = 2−nSp−n∆
nsj−1 +∆nωj =⇒ ‖∆nsj‖ ≤ 2−n‖∆nsj−1‖+O(2−νj)

=⇒ ‖∆nsj‖ = O(2−nj‖∆ns0‖) = O(‖∆sj‖n),for 1 ≤ n ≤ p, apart from n = p = 4 when we get the slightly weaker ‖∆4sj‖ = O(j‖∆sj‖4). Notethat Theorem 4.2.3 implies ‖ωj‖ ≤ C2−2(j−1), with a constant C <∞, independent of j and, thus
‖∆sj‖ � 2−j.To verify (5.1.2) it is enough to work with only one step of the normal MT, so instead ofthe notation v

j−1, vj we use v for the coarse-scale data and v̄ for its re�nement. Throughoutthe computations we use the geometrical interpretation of the (Sp, Sp−2) normal MT based on theLane-Riesenfeld algorithm, namely for any K ∈ Z, (Spv)K halves the edge ∆(Sp−1v)K while thegeneralized normal (Sp−2∆v)⊥K is orthogonal to the same edge. Due to the locality of Sp for p ≤ 4,we need to work only with the triplet (v−1,v0,v1) =
(
v(s−1),v(s0),v(s1)

). We choose the localframe (T ,N ), centered at v0 (see Fig. 5.3), and to simplify the notation, we set s0 = 0, v(s0) = 0,
α = k(s0), and β = k′(s0). Furthermore, note, that whenever v ∈ C3 the curvature is uniformlybounded, i.e., there exists a constant CC <∞ that depends solely on C such that α < CC. If v ∈ C4
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Fig. 5.3: Local (Sp, Sp−2) normal MT analysis with two di�erent choices of coordinate frames: left - theone centered at v0; right - the one, coinciding with the generated normal direction.then k′(s) is also uniformly bounded, and there exists another constant CC (possibly larger thanthe previous one, but still �nite) satisfying α, β < CC.p=2: Let s̄ be the argument sequence for v̄. For the Chaikin operator, due to symmetry, itsu�ces to provide estimations for ω0 = s̄0 − s1/4. From the orthogonality relation between ∆v0and v̄0 − (S2v)0, and the Taylor expansion (5.0.1) we derive
1
4
s21 − α2

48
s41 + o(s41) =

x2(s1)+y2(s1)
4

= x(s̄0)x(s1) + y(s̄0)y(s1) =

=
(
s̄0 − α2

6
s̄30 + o(s̄30)

)(
s1 − α2

6
s31 + o(s31)

)
+
(
α
2
s̄20 +

β
6
s̄30 + o(s̄30)

) (
α
2
s21 +

β
6
s31 + o(s31)

)
.Comparing the coe�cients in front of the corresponding powers of s1, we immediately see that if

s̄0 = a0 + a1s1 + a2s
2
1 + a3s

3
1 + o(s31) then
∣∣∣∣∣∣∣∣

a0 = 0
a1 = 1/4
a2 = 0

a3 = α2
(

1
24

+ 1
384
− 1

64
− 1

48

)
= α2

128

,or
ω0 = s̄0 −

1

4
s1 =

α2

128
s31 + o(s31) = O

(
(∆s0)

3
)
, (5.1.3)whenever v ∈ C3.p=3: We need to consider separately s̄0 and s̄1. For the second case, the generalized normalcoincides with the standard one and the computations are absolutely analogous to the (S2, S0)



5. Improved normal MTs. Case studies 102normal MT, so without further explanation we derive
x(s̄1)x(s1) + y(s̄1)y(s1) =

x2(s1)+y2(s1)
2

= 1
2
s21 − α2

24
s41 − αβ

24
s51 + o(s51)

=⇒ x(s̄1)
(
1− α2

6
s21 − αβ

8
s31 + o(s31)

)
+ y(s̄1)

(
α
2
s1 +

β
6
s21 + o(s21)

)
= 1

2
s1 − α2

24
s31 − αβ

24
s41 + o(s41)

=⇒

∣∣∣∣∣∣∣∣∣∣

a0 = 0
a1 = 1/2
a2 = 0
a3 = α2

(
1
12

+ 1
48
− 1

16
− 1

24

)
= 0

a4 = αβ
(

1
16

+ 1
128
− 1

48
− 1

96
− 1

24

)
= − αβ

384

,or
ω1 = s̄1 −

1

2
s1 =

αβ

384
s41 + o(s41) =

αβ

384
(∆s0)

4 + o(‖∆s‖4). (5.1.4)For s̄0 the computations are a little bit more complicated. First of all, using the Lane-Riesenfeldalgorithm, we can conclude that our prediction point is the midpoint of the neighboring Chaikinpoints, more precisely, it is ((x(s1) + x(s−1))/8, (y(s1) + y(s−1))/8
), while the normal directionis orthogonal to the Chaikin edge ((x(s1) − x(s−1))/4, (y(s1) − y(s−1))/4

). Secondly, by Theo-rem 4.2.3(ii) we already know that the limit s(t) ∈ C1, and, thus, for all j ∈ N (∆sj)−1 � (∆sj)0.Hence, in our notation we can let s−1 = −(∆s)−1 = r(∆s)0 = rs1, with r = O(1). Now, we havethe following equation
(
x(s̄0)− x(s1)+x(s−1)

8

)
(x(s1)− x(s−1)) +

(
y(s̄0)− y(s1)+y(s−1)

8

)
(y(s1)− y(s−1)) = 0 =⇒

x(s̄0)
(
(1− r)s1 − α2(1−r3)

6
s31 − αβ(1−r4)

8
s41 + o(s41)

)
+ y(s̄0)

(
α(1−r2)

2
s21 +

β(1−r3)
6

s31 + o(s31)
)
=

= 1−r2

8
s21 − α2(1−r4)

96
s41 − αβ(1−r5)

96
s51 + o(s51) =⇒

∣∣∣∣∣∣

a0 = 0
a1 = (1 + r)/8
a2 = 0

.Hence, s̄0 = (s1 + s−1)/8 + a3s
3
1 + a4s

4
1 + o(s41). Direct computations for a3 and a4 give rise to
a3 =

α2(21r2+39r+21)(1+r)
3·210

;

a4 =
αβ
32

(
(1+r)2(1+r2)

2
+ (1+r)4

210
− (1+r2)(1+r+r2)

24
− (1+r)4

192
− 1+r+r2+r3+r4

3

)
.Now we need a bootstrapping argument. Since r ∈ O(1), it is bounded, and thus, so is a3. Therefore

‖ωj‖ = O(2−3j) = o(2−2j) and, since s∞(S3) = 3 > 2, s(t) ∈ C2 due to Lemma 5.1.4. Thisimplies ‖∆2sj‖ = O(2−2j), i.e., |(∆sj)0 − (∆sj)−1| = O((∆sj)20). But the latter is equivalent to
r = −1 + O(s1), so a3 = O(s1) and

ω0 = s̄0 −
s1 + s−1

8
= O(s41) = O(‖∆s‖4). (5.1.5)Equations (5.1.4) and (5.1.5) lead to sj = S3s
j−1 + ωj with ‖ωj‖ = O(2−4j), so we concludethat s(t) ∈ C2,1. This result is optimal, since there is no way to obtain a more regular normalre-parametrization than the smoothness of the prediction operator!



5. Improved normal MTs. Case studies 103p=4: As with the Chaikin operator (p = 2), due to symmetry, we need to consider only onecase. From the equation
(
x(s̄0)−

5x(s1) + x(s−1)

16

)
(3x(s1)− x(s−1)) +

(
y(s̄0)−

5y(s1) + y(s−1)

16

)
(3y(s1)− y(s−1)) = 0,we deduce

x(s̄0)(3x(s1)− x(s−1)) + y(s̄0)(3y(s1)− y(s−1)) =

= 1
16

(
15(x2(s1) + y2(s1))− 2(x(s1)x(s−1) + y(s1)y(s−1))− (x2(s−1) + y2(s−1))

)
;

x(s̄0)
(
(3− r)s1 − α2(3−r3)

6
s31 − αβ(3−r4)

8
s41 + o(s41)

)
+ y(s̄0)

(
α(3−r2)

2
s21 +

β(3−r3)
6

s31 + o(s31)
)
=

= 15−2r−r2

16
s21 +

α2(r4+4r3−6r2+4r−15)
12·16

s41 +
αβ(r5+3r4−2r3−2r2+3r−15)

12·16
s51 + o(s51).Again, it is trivial to show that s̄0 = 5+r

16
s1 + a3s

3
1 + a4s

4
1 + o(s41) and direct computations (whichwe prefer to skip) give rise to

a3 =
α2(105r2 + 330r − 495)

3 · 213(r − 3)
(1 + r)2.Analogously to p = 3, we have r = −1 + O(s1), and thus, a3 = O(s21). For a4 we obtain

a4 =
αβ(3555r5 + 31315r4 + 1550r3 + 15510r2 − 41505r − 16665)

3 · 219(r − 3)
,which doesn't have -1 for a root, and thus, is O(1), making ‖ω0‖ = O(‖∆s‖4). This is enough onlyfor assuring C3,α, α < 1 smoothness for the normal re-parametrization.Note that the assumption C ∈ Cp+1 is too restrictive and is needed only to argue that ‖ωj‖decays with order, higher than p. Thus, any smoothness greater than Cp would do, but to keep thestatement as transparent as possible, we choose not to go into this. Unfortunately the techniqueabove cannot be performed further for p > 4, since computer simulations indicate that in this case

‖ωj‖ = O(2−νj) with ν < p, and, thus, Lemma 5.1.4 does not apply. The latter, however, is just asu�cient, but not a necessary condition for producing Cp−1,1 limits. Indeed, take arbitrary s0 andlet ωj
i = 2−j‖∆s0‖ be a constant sequence at any level j. Then the limit s(t) of the sj = Sps

j−1+ωjequals the B-spline of order p + 1, generated by sj = Sj
ps

0, shifted upwards by ‖∆s0‖. Hence, itssmoothness is the same as for the B-spline (i.e., s(t) ∈ Cp−1,1), but ‖ωj‖ = O(2−j). This implies thata more close-to-necessary criterium should replace the lemma, e.g., the following straightforwardgeneralization of itLemma 5.1.5. Let sj = Sps
j−1+ωj, where the data sj is associated to the uniform grid 2−jZ, and

p ≥ 1. If there exists ε ∈ (0, 1], q ∈ {0, . . . , p}, and C <∞, such that
‖∆nωj‖ ≤ C2−(n+ε)j, ∀j ∈ N, ∀n : 0 ≤ n ≤ q, (5.1.6)then the piece-wise linear interpolants sj(t) converge uniformly to a Ck,α limit s(t) with

k + α =





q + ε, q < p, ε < 1;
q + 1− q < p, ε = 1;
(p− 1) + 1, q = p.

.



5. Improved normal MTs. Case studies 104We have used the short notation 1− to denote that the result holds for all 0 < δ < 1 but may failfor 1.On the other hand, if there exists ε ∈ (0, 1], c > 0, and q < p, such that
‖∆qωj‖ ≥ c2−(q−ε)j , ∀j ∈ Nthen the limit s(t) (if it exists!) is at most Cq−1,1−ε.Proof. Once again, the proof is by induction on q using the Lane-Riesenfeld algorithm (4.2.2). Let

q = 0 and assume ‖ωj‖ ≤ C2−εj for all levels j ∈ N. We have to show that sj(t)→ s(t) as j →∞and s(t) ∈ C0,ε, if ε < 1 and s(t) ∈ C0,1− , otherwise. In order to do so, we need to estimate thedi�erence in L∞(R) between two consecutive interpolants sj(t).
‖sj(·)− sj−1(·)‖ = ‖sj − S1s

j−1‖ ≤ ‖(Sp − S1)s
j−1‖+ ‖ωj‖ ≤ C(‖∆sj−1‖+ 2−εj).We used the well-known fact in linear subdivision that, since p ≥ 1 (Sp − S1)1 = 0, there existsanother linear, local subdivision scheme T , such that (Sp − S1)x = T∆x, for all x ∈ `∞(Z), andthus ‖(Sp − S1)x‖ ≤ ‖T‖‖∆x‖. The constant C is the maximum of the a priori given C and ‖T‖that we denote again by C in order to simplify the equations. The only important thing is thatthis constant is bounded and independent on the level j. Now, using (4.2.5), ‖Sp−1‖ = 1, and thetrivial ‖∆ωj‖ ≤ 2‖ωj‖ we derive

‖∆sj‖ ≤ 1

2
‖∆sj−1‖+ 2C‖ωj‖ ≤ · · · ≤ 2−j‖∆s0‖+

j−1∑

l=0

2−l(2C2−ε(j−l))

︸ ︷︷ ︸
f(ε,j)

.The sum f(ε, j) is monotonically decreasing as function of its �rst argument, and monotonicallyincreasing as function of its second argument. Furthermore, for 0 < ε < 1 we have
f(ε, j) = 2C2−εj

j−1∑

l=0

2(ε−1)l ≤ f(ε,∞) =
2C

1− 2ε−1
2−εj

=⇒ ‖∆sj‖ ≤ 2−εj

(
2ε−1‖∆s0‖+ 2C

1− 2ε−1

)
≤ C2−εj,while for ε = 1 we have

f(1, j) = 2Cj2−j =⇒ ‖∆sj‖ ≤ C2−δj , ∀δ ∈ (0, 1).This leads to
‖sj(·)− sj−1(·)‖ ≤ C

{
2−εj, ε ∈ (0, 1);
2−δj , ε = 1, ∀δ < 1.

.Hence {sj(t)} is a Cauchy sequence in L∞(R) and converges to a continuous limit s(t). The Höldersmoothness of s(t) follows from the boundedness of 2εj‖∆sj‖, resp., 2δj‖∆sj‖.Now, let (5.1.6) be satis�ed for some pair (q, p) with 0 < q ≤ p. The computations aboveguarantee that sj(t) uniformly converges to a continuous limit s(t). Moreover, since
sj[1] := 2j∆sj = Sp−12

j−1∆sj−1 + 2j∆ωj = Sp−1s
j−1
[1] + ωj

[1],



5. Improved normal MTs. Case studies 105by induction we know that sj[1](t) converges uniformly to s[1](t) that is as smooth as Lemma 5.1.5states for the pair (q − 1, p − 1). Finally, since sj(t) and sj[1](t) are both converging sequences,classical results in [31, 15] assure that s(t) is di�erentiable with derivative s[1](t).On the other hand, having ‖∆qωj‖ ≥ c2−(q−ε)j implies that the corresponding sequence sj[q](t)does not converge in L∞(R), and thus, s(t) /∈ Cq. This �nishes the proof.Some comments are in order. Since for any given p ∈ N we have ‖∆nωj‖ ≤ 2n‖ωj‖ ≤ 2p‖ωj‖,
∀n ≤ p, and the constant C = 2p is bounded and independent on j, Lemma 5.1.4 is a corollary ofLemma 5.1.5, apart from the boundary case, which we did not treat. Our proof follows basically thesame steps as the proof in [24] and the only di�erence is that in the interpolating case one alwayshas optimal detail decay rates, which guarantee that the more restricted conditions of Lemma 5.1.4are su�cient for the smoothness analysis of the normal MTs, while for our problem we know thatthe detail decay rate remains two. Moreover, computer simulations indicate that for large p theregularity of the (Sp, Sp−2) normal re-parameterization is below (p− 1, 1), implying that we have todeal with negative statements, as well. But, unlike Lemma 5.1.5, Lemma 5.1.4 is not a necessarycondition and we cannot use it to disprove things.Remark 5.1.6. For any Sp and any admissible N , the o�sets ωj in the associated to (Sp, N) normalMT linear multi-scale transform sj = Sps

j−1 + ωj satisfy ‖ωj‖ = O(2−3j), provided C ∈ C3.In particular, Remark 5.1.6 implies that the normal re-parameterization of the (Sp, N) normalMT is C2,1− for all p ≥ 3 and smooth initial curves C, which is stronger than the C1,1− smoothness,guaranteed by Theorem 4.2.3. To show that, let vk, resp. sk, k ∈ Ii be the coarse-scale data and v̄Kbe its re�nement via one step of the (Sp, N) normal MT. Furthermore, let ξK be as in (4.2.11), and
(x(s), y(x(s))) be the local coordinates with respect to the frame (T = t(ξK),N = n(ξK)) centeredat v(ξK) (see Fig. 5.3). We have that ξK ∈ s|Ii and (5.0.1) gives rise to

x(s) = (s− ξK)−
α2

6
(s− ξK)

3 +O(|s− ξK |4), ∀s ∈ s|Ii, (5.1.7)where, as before, α = k(ξK). The bene�t of using this local frame is that the detail dK has nohorizontal component and the useful equality
x(s̄K) = (Spx)Kholds. Now we can restrict the problem to proximity analysis via subtracting x((Sps)K) from boththe sides, and using (4.2.11) we deduce:

x(s̄K)− x((Sps)K) = (Spx)K − x((Sps)K) =⇒ ωK +O(‖∆s‖3) = (Spx)K − x((Sps)K). (5.1.8)For the decay order of (Spx)K −x((Sps)K) we can apply Lemma 5.0.4 and Lemma 4.2.2, and derivethat, whenever C ∈ C3, |ωK | = O(‖∆s‖2). What we did so far is just to con�rm the detail decayresult from Theorem 4.2.3 for the (Sp, N) normal MT. However, we can bene�t from the fact that



5. Improved normal MTs. Case studies 106
x(s) is a third-order perturbation of s and improve the result. Indeed

(Spx)K − x((Sps)K) =

(
Sp

(
(s− ξk)−

α2

6
(s− ξK)

3 +O(|s− ξK |4)
))

K

−((Sps)K − ξK) +
α2

6
((Sps)K − ξK)

3 +O(|(Sps)K − ξK |4)

=
α2

6

(
(Sp(s− ξK)K)

3 − (Sp(s− ξK)
3)K
)
+O(‖∆s‖4);

=⇒ |(Spx)K − x((Sps)K)| ≤
α2

6

(
|(Sps)K − ξK |3 + ‖(s− ξK)

3‖Ii
)
+O(‖∆s‖4) ≤ O(‖∆s‖3).For the estimations we also used that Sp has exact order of polynomial reproduction 2.For N = Sq, the Lane-Riesenfeld algorithm gives rise to the additional relation

∆(Sq+1y)K = 0 =⇒ (Sq∆y)K = 0,which, as seen in Theorem 5.1.3, improves the decay order for ωj, if q is chosen appropriately.On the other hand, this improvement cannot be arbitrary big as p → ∞, because of the alreadymentioned third-order perturbation between the coordinate systems that correspond to discrete andcontinuous data, respectively. Indeed, the local frame (T ,N ) depends solely on coarse-scale data,so it should be intuitively clear that all our actions can smoothen up just the sequence xj = x(sj)we have control of, but not the sequence sj that also depends on the curve information betweenthe points from the sample v
j (an information that the (Sp, N) prediction operator has no chanceto capture). For instance, if we obtain ‖∆4xj‖ = O(‖∆xj‖4) = O(2−4j) for some (Sp, Sq) normalMT, it does not automatically imply ‖∆4sj‖ = O(2−4j), because sj = xj + O((x3)j). Actually, wehave already observed the problem in the proof of Theorem 5.1.3, where we derived the suboptimal

‖∆4sj‖ = O(j‖∆sj‖4) for the (S4, S2) normal MT. Finding the exact limit of the (Sp, Sq) normalMT ability for improving data regularity seems a very technical problem, and we do not pursueit. Another reason for not digging deeper there is the result from the forthcoming Section 5.2.1,where it is observed that smoothness of the normal re-parameterization higher than C3 does nota�ect the detail decay order of the combined normal MT. For the sake of the smoothness analysis,however, one may relax the restrictions on the normal-generating operator N and allow it to begeometric, thus nonlinear. For example, the curvature preserving subdivision rules [10] or thenormal-interpolating schemes [115, 116] are promising candidates for N . The prediction operator
Sp can be generalized, as well, by replacing the linear Lane-Riesenfeld algorithm (4.2.2) used for itsconstruction with a nonlinear one [34]. We postpone our research in this direction to the future.5.2 Improving the detail decay rate via additional pre-processing. Combinednormal MTsHaving dealt with the regularity of the normal re-parameterization in Section 5.1, here we con-centrate on the detail decay rate of the normal MTs. Of course, there is no chance to achieve
‖dj‖ = O(2−µj), µ > k + α, limitation for detail decay under C ∈ Ck,α, so throughout this sec-tion we always assume that C is smooth enough (e.g., one can think of C ∈ C∞). According to



5. Improved normal MTs. Case studies 107Theorem 4.2.3 and its proof, there are two di�erent restrictions on the speed of the detail decayfor a normal MT: the regularity of the data, and the polynomial exactness order of the predictionoperator. Both the properties depend on the chosen prediction operator S, and for any S thereis a tradeo� between the two characteristics. Indeed, high order exact polynomial reproduction
Pe implies existence of negative coe�cients in the mask of S, and thus Hölder regularity s∞(S)signi�cantly lower than Pe, as well as ill-posedness of the S normal MT, in general. Vice versa,high Hölder regularity of S leads to mask of S with only few and small in absolute value nega-tive coe�cients, hence small Pe. In any case, the detail decay rates of the S normal MT remainconsiderably smaller than the order of polynomial reproduction P of S, that serves as an upperbound for both Pe and s∞(S) + 1. Our main goal is to construct normal multi-scale transformsthat allow detail decay rates µ = P for larger P . A closer look into the proof of Theorem 4.2.3explains that the two restrictions µ ≤ m + β + 1 and µ ≤ Pe are used in a di�erent way and canbe decoupled. More precisely, the �rst one assures the regularity of the re�ned data, and thus, ofthe normal re-parameterization, while the second comes from classical approximation theory andestimates the error between a smooth curve and its approximation with P -order polynomials thatinterpolate C on such a regular set of points. In simpler words, the �rst restriction deals with thedata distribution in the tangential direction of the local coordinates, while the second one deals withthe corresponding distribution in the normal direction. Or, as it was said in [69]: �while geometryand parameter information are globally intertwined, they disconnect locally: in�nitesimally, we maythink of parameter information as being described by displacements in the tangent plane�.Our idea is to combine two di�erent rules S and S̃ for predicting the new point, and use themfor computing the tangential and the normal component of the point, respectively. We proposethe following procedure: given v

j−1 and K ∈ Z, compute (Svj−1)K and (S̃vj−1)K . Compute n̂
j
Kvia (5.1.1), where the scheme N is a priori �xed. Then, the predicted point v̂j

K is the orthogonalprojection of (S̃vj−1)K onto the normal line LK(t) = (Svj)K+tn̂j
K . In the local frame (T ,N = n̂

j
K),the following formula:

v
j
K = v̂

j
K + djKn̂

j
K ; x̂j

K = (Sxj−1)K , ŷjK = (S̃yj−1)K , (5.2.1)describes the process, which we will refer to as the (S,N, S̃) normal MT (see Fig. 5.4 for the
(S3, S1, T ) normal MT). In comparison to the (S,N) normal MT, (5.2.1) involves only an additionalpre-processing of the data via S̃ that takes place solely in the normal direction n̂

j
K , and, thus, there�ned data v

j is the same. Hence, the analysis of well-posedness, convergence, and regularity ofthe normal re-parameterization depends on S but not on S̃.5.2.1 (Sp, Sp−2, Tp) normal MTIn this subsection, we illustrate the concept of combined normal MTs on the family of (Sp, Sp−2, Tp)normal MTs, where Sp is, as before, the B-spline subdivision operator of degree p. The family {Tp}is the union of the 2p-point interpolatory schemes T2p−1 of Deslauriers and Dubuc [26], and theodd counterpart T2p of the dual 2p-point schemes of Dyn et al. [33], that locally �ts a Lagrangeinterpolation polynomial of degree 2p to the 2p + 1 points that are closest to the interval to bere�ned with cS = 1/4. For example, T1 = S1, T3 = T , and
(T2x)2i =

1

32
(−3xi−1 + 30xi + 5xi+1), (T2x)2i+1 =

1

32
(5xi + 30xi+1 − 3xi+2), i ∈ Z.
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Fig. 5.4: One step of the (S3, S1, T ) normal MT.Further motivation for the choice of {Tp} are the results in [35, Section 6]. The odd-indexed membersof the family are interpolating schemes with Pe(T2p−1) = P (T2p−1) = 2p, while the even-indexedones are approximating with Pe(T2p) = 2p + 1. Therefore for the detail decay analysis, the familyof (Sp, Sp−2, Tp) normal MTs seems the most appropriate, since with resect to the support size oftheir masks, Sp is the smoothest scheme, while Tp possesses the highest order of exact polynomialreproduction. On the other hand, this family can be viewed as an extension of the (S1, S0, T1)normal MT, which is nothing else but the classical S1 normal MT, and is the only example of anormal MT, where the detail decay rate µ = 2 reaches the order of polynomial reproduction P (see[91] for proof). As in Section 5.1.1, our construction performs excellent for small values of p.Theorem 5.2.1. Let C be closed, non-self-intersecting, regular Cp+1 curve, given by its arc-lengthparameterization v(s). Fix p ∈ {2, 3}. Let v0 ∈ C be such that the (Sp, Sp−2, Tp) normal MT isglobally well-posed and convergent. Then
‖dj‖ = O(‖∆sj‖p+1) = O(2−(p+1)j) j →∞.Proof. Let, as before, vk, resp. sk, k ∈ Ii(Tp) be the coarse-scale data and v̄K be its re�nement viaone step of the (Sp, Sp−2, Tp) normal MT. Furthermore, let ξK be as in (4.2.11), and (x(s), y(x(s)))be the local coordinates according to the frame (T = t(ξK),N = n(ξK)). From Theorem 5.1.3 wealready have that

‖∆nxj‖Ii = ‖∆nsj‖Ii = O(‖∆sj‖nIi) = O(2−nj), 1 ≤ n ≤ p; j →∞. (5.2.2)



5. Improved normal MTs. Case studies 109Applying Lemma 5.0.4 for the Cp+1 function y(x) and the scheme Tp, and using (5.2.2) we derive
|y((Tpx)K)− (Tpy)k| = C


∑

ν∈Ep

p∏

m=1

‖∆mx‖νmIi + ‖∆x‖p+1
Ii


 = O(2−j(p+1)), (5.2.3)where C depends only on C and Tp. Now, Lemma 4.2.2 implies

xk = xl + (k − l)‖∆x‖Ii + rk,l, |rk,l| = O(‖∆s‖2Ii), ∀k, l ∈ Ii,which, since both Sp and Tp exactly reproduce linear polynomials, gives rise to
|(Spx− Tpx)K | = O(‖∆s‖2Ii). (5.2.4)Following the same computational technique as in the proof of Theorem 5.1.3, it is not di�cult tocheck that for both p = 2, 3, |s̄K − ξK | = O(‖∆s‖2Ii). The explicit estimation can be found in theappendix. Taylor expansion (5.0.1) implies

y((Spx(s))K) = y(s̄K) =
α

2
(s̄K − ξK)

2 + · · · = O(‖∆s‖4Ii);
y((Tpx(s))K) = y(s̄K +O(‖∆s‖2Ii)) = O(‖∆s‖4Ii),with α = k′(ξK). Now, combining the last result with (5.2.3), we conclude

|dK | = |y((Spx)K)− (Tpy)k| ≤ |y((Tpx)K)− (Tpy)k|+ |y((Spx)K)− y((Tpx)K)| ≤ O(‖∆s‖min(p+1,4)
Ii

).Since min(p + 1, 4) = p + 1 for p = 2, 3, the proof is completed. More detailed and explicitcomputations as in the proof of Theorem 5.1.3 can be found in the appendix.A remarkable corollary of Theorem 5.1.3 and Theorem 5.2.1 is the case p = 3, which we willhighlight in a separate theorem. Note that the (S3, S1, T ) normal MT can be viewed as a particulargeneralization of the 4-point scheme T , a direction that has been actively explored for many yearsnow. Moreover, this generalized 4-point normal MT performs in an optimal way with respect toboth smoothness of the normal re-parameterization and high detail decay rates.Theorem 5.2.2 (Optimal 4-point normal MT). Let C be closed, non-self-intersecting, regular C4curve, given by its arc-length parameterization v(s). Let v0 ∈ C be such that the (S3, S1) normalMT is globally well-posed and convergent. Let T be the four-point scheme (4.4.2). Then for the
(S3, S1, T ) normal MT the detail decay rate is 4, i.e.,

‖dj‖ = O(‖∆sj‖4) = O(2−4j), j →∞,and the normal re-parameterization is C2,1.Some comments are in order. Since S3 exactly reproduces only linear polynomials, we knowfrom before that the (S3, S1) normal MT has detail decay rate two, i.e., ‖dj‖ = O(2−2j), while,since T generates C1,1 limits, the T normal MT has detail decay rate three up to a logarithmicfactor, i.e., ‖dj‖ = O(j2−3j) [24, Section 7.1.2]. Thus, their combined action improves by a whole



5. Improved normal MTs. Case studies 110factor the order of the better one between them, if applied alone. Secondly, as already discussed inSection 4.4, �nding and justifying an admissible sample v
0 for the T normal MT is a complicatedtask on its own, while Proposition 5.1.2 implies that for the (S3, S1, T ) normal MT we only need

v
0 to divide C into locally convex/concave regions - a criteria that is very easy to check in practice.The only drawback of the combined transform is that it remains approximating, and thus, twiceas many details as for the T normal MT are stored. However, taking into account all the positivefeatures of the (S3, S1, T ) normal MT, the latter does not seem to be much of a problem. Last, butnot least, there is strong numerical evidence that the above phenomena holds in 3D, as well. Indeed,in [87, Section 4] the (S3, S1, T ) normal MT analogue for triangulated surfaces has been considered,where S3 has been replaced by the Loop subdivision scheme, while T has been replaced by theButter�y subdivision scheme. Performed on irregular data sample of the unit sphere, the combinedLoop/Butter�y normal MT leads to detail decay rate of order four away from extraordinary vertices.The theoretical understanding of this empirical observation is still ahead.Remark 5.2.3. For p > 3, the detail decay rate of the (Sp, Sp−2, Tp) normal MT cannot be improvedand remains 4.The claim follows from the proof of Theorem 5.2.1. Indeed, all the estimations there are asymp-totical in their nature and provide not only su�cient but also necessary conditions for rapid detaildecay. First of all, it is clear the summand |y((Spx)K) − y((Tpx)K)| in the |dK| estimation cannotbe neglected and its order bounds the detail decay rate. Now, let us see whether we can make itsmaller than O(‖∆s‖4Ii). Equation (5.0.1) assures that, whenever the curvature α = k(ξK) 6= 0 wehave

|y((Spx)K)− y((Tpx)K)| = O(|(Spx− Tpx)K |2).The order in the inequality
‖(Sp − Tp)u‖ ≤ C‖∆2u‖, u ∈ `∞(Z),cannot be improved, where for the latter we used that by construction (Sp − Tp)q|Z = 0 for allpolynomials q of degree one, and the well known fact that in this case there exists another boundedlinear operator D, such that (Sp − Tp)u = D∆2u for all u ∈ `∞(Z). Indeed, due to symmetryand since Sp reproduces quadratic polynomials whenever p ≥ 2, it follows that for q(x) = x2,

Sp(q|Z) = (q + ap1)|2−1Z+cS , where ap 6= 0 depends only on p, while since Tp exactly reproducesquadratic polynomials, Tp(q|Z) = q|2−1Z+cS . Therefore
‖(Sp − Tp)q|Z‖ = ap 6= 0,while all the higher order divided di�erences ∆nq|Z, n > 2 are zero. We ended up with (4.2.10),being the only place which potentially allows room for improvement. But from Remark 5.1.6 itfollows that for every p ≥ 2

∆2sj = ∆2Sps
j−1 +∆2ωj =⇒ ‖∆2sj‖ = 2−2‖∆2sj−1‖+O(2−3j) = O(2−2j‖∆2s0‖),so, unless form the very beginning we have ‖∆2s0‖ = 0, the order in (4.2.10) cannot be improved.The above heuristic arguments are con�rmed experimentally by the results in Table 5.2. Onthe unit circle we consider two di�erent irregular initial data samples v

0 and v̂
0, such that the



5. Improved normal MTs. Case studies 111Estimation of the detail decay order via computing − log2(‖dj‖)/j for each level jNormal MT j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10
(S3, S1, T3) 5.4040 4.7841 4.5647 4.4079 4.3217 4.2681 4.2313 4.2041 4.1831 4.16492.0019 2.4977 2.8437 3.0704 3.2251 3.3354 3.4184 3.4830 3.5347 3.5770
(S5, S3, T5) 5.2305 5.1804 4.9641 4.7860 4.6559 4.5629 4.4926 4.4379 4.3938 4.35021.9547 3.0385 3.3760 3.5156 3.5967 3.6549 3.6982 3.7318 3.7586 3.7805
(S7, S5, T7) 5.0745 5.1475 4.9214 4.7465 4.6244 4.5357 4.4689 4.4168 4.3747 4.33041.8226 3.0567 3.3541 3.4896 3.5766 3.6375 3.6829 3.7182 3.7464 3.7694Tab. 5.2: Numerical veri�cation that the detail decay rate of a combined scheme cannot exceed 4. The unitcircle has been considered and two sets of initial data - uniform samples of π(x + x2) with stepsize 0.01 (upper results) and 0.1 (lower results).corresponding s0 and ŝ0 are just the projection of the quadratic polynomial π(x+x2) on the regulargrids 10−2Z and 10−1Z, respectively. Due to periodicity, v0

i+100 = v
0
i , and v̂

0
i+10 = v̂

0
i , so we have100 distinct points in v

0 and 10 distinct points in v̂
0. The idea of sampling a quadratic polynomialis inspired by the theoretical arguments in Remark 5.2.3. For both the initial samples we perform10 steps of the (Sp, Sp−2, Tp) normal MTs with p = 3, 5, 7, while for each step we store the quantity

− log2(‖dj‖)/j that corresponds to the detail decay order µ. We consider only odd members ofthe family, because for them the schemes Tp are well known and we do not have to compute theirmasks. For each of the three transforms we observe the same phenomena. Applied on the densersample v0, the values of the logarithm monotonically decrease, while applied on the coarser sample
v̂
0, the values of the logarithm monotonically increase with each re�nement. Both the sequencestend to 4, which for the (S3, S1, T3) normal MT remains in line with Theorem 5.2.1.5.3 Normal MT based on prediction via circle arcsThe only drawback of the (S3, S1, T ) normal MT is that it is approximating and we have to storetwice as many details. In this section we deal with interpolating transforms of the type (S1, S0, SNL)and investigate if for a suitable choice of SNL the detail decay rate can exceed two - the rate, obtainedvia the standard S1 normal MT. Our main motivation to consider such transforms is the fact that,since

(S1x)2k+1 = (S3x)2k+1, k ∈ Z, x ∈ `∞(Z),the action of S1 coincides with the action of the smoother (but approximating) subdivision scheme
S3 at the odd entries. Hence, (5.1.4) holds for S1, as well, meaning that the arc-length analogue
sj = S1s

j−1 + ωj of the S1 normal MT satis�es
‖ωj‖ = O(‖∆sj−1‖4) = O(2−4j), j →∞,whenever the initial curve C ∈ C5. Now, Lemma 5.1.4 suggests that the only obstacle for achievingsmoother normal re-parameterizations for the S1 normal MT is the low Hölder regularity of theprediction operator. As we will see from the following paragraphs, we can overcome the problem byusing non-linear prediction operators SNL for dealing with the normal components of the data in the
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Fig. 5.5: Prediction via circle arcs, using the left circle L, the right circle R, and their average SNL.combined normal MT framework. Indeed, Section 5.2.1 implies that neither linear nor univariate
SNL can improve the detail decay rates of the (S1, S0, SNL) normal MT, because in order to do so thepredicted points should depend on the geometry of the coarse-scale data. Therefore, the restrictionson SNL need to be relaxed. However, many of the known non-linear bivariate rules favor certaindirections in R2, which makes them dependent on the underlying coordinate system, and thus badcandidates for prediction operators. Dyn et. al. proposed several geometrical subdivision schemes[37, 33, 81, 38] that are of interest for our setting. Here we choose to deal with circle preservation,and thus consider SNL to be based on circle arcs.Let a closed, non-self-intersecting, smooth planar curve C in R2 be given via its arc-lengthparametrization v(s) ∈ C5. We consider a normal MT based on the following procedure: for agiven sample v

0 ∈ C, j ∈ N, and k ∈ Z, the normal vector n̂
j
2k+1 is orthogonal to the coarseedge ∆v

j−1
k , while the prediction point (SNLv)

j−1
2k+1 is the intersection point of the circle, passingthrough v

j−1
k−1,v

j−1
k ,vj−1

k+1 and the bisector of ∆v
j−1
k (see Fig. 5.5). Obviously this is a (S1, S0, SNL)normal MT. Note that, since by construction (SNLv

j−1)2k+1 lies on the normal line L2k+1(t) =
(S1v

j−1)2k+1 + tn̂j
2k+1 the transform coincides with the (SNL, S0) normal MT. However, writing itin the redundant form (S1, S0, SNL) helps us to relate our analysis to Section 5.2.1, plus emphasizeson the fact that the questions regarding well-posedness, convergence and smoothness of the normalre-parameterization have already been answered in [91], when dealing with the S1 normal MT.Working in local frames as in the previous sections, we will show that the detail decay rate of theabove introduced combined scheme is already of order three.From Theorem 4.2.3 we already know that ∆sj = O(2−j), and thus it su�ces to consider onlyone step of the transform. Moreover, due to the locality of the procedure, we need to work onlywith the triplet (v−1,v0,v1) =

(
v(s−1),v(s0),v(s1)

). We consider the local frame (T ,N ), centeredat v0, where v
′(s0) = T , and v

′′(s0) = k(s0)N . To simplify the notation, we set s0 = 0, α = k(s0),and β = k′(s0), and, as before, derive (5.0.1).Now, let the circle through (v−1,v0,v1) be also given by its arc-length parametrization Γ(t),



5. Improved normal MTs. Case studies 113and analogously, t0 = 0, and µ = k̂(t0). (Note that, since it is a circle, k̂(t) ≡ µ, and k̂′(t) ≡ 0 !).For the circle case, the Taylor expansion (5.0.1) simpli�es to
Γ(t) = v0 +

(
t− µ2

6
t3 +O(t5)

)
T̂ +

(µ
2
t2 +O(t4)

)
N̂ = x̂(t)T̂ + ŷ(t)N̂ , ∀t << 1, (5.3.1)where Γ′(0) = T̂ and Γ′′(0) = µN̂ .Hence, we can express the length of ∆v0 in terms of both ∆s0 = s1 and ∆t0 = t1, and comparethe corresponding summands in the two formulae:

√(
s1 − α2

6
s31 − αβ

8
s41 +O(s51)

)2
+
(
α
2
s21 +

β
6
s31 +O(s41)

)2
=

√(
t1 − µ2

6
t31 +O(t51)

)2
+
(
µ
2
t21 +O(t41)

)2

⇔ s21 − α2

12
s41 − αβ

12
s51 +O(s61) = t21 − µ2

12
t41 +O(t61) ⇔ µ2

12
t41 − t21 + s21 − α2

12
s41 − αβ

12
s51 +O(s61) = 0.Note that for the last expression we used O(s1) = O(t1) which follows from the Taylor expansions:

|∆v0| = s1 +O(s21) = t1 +O(t21).Now, we have a biquadratic equation with respect to t1, which we can solve. Again, since t1 � s1,
t21 is the smaller root of the equation, i.e.

t21 =
6

µ2

(
1−

√
1− µ2s21

3

(
1− α2

12
s21 −

αβ

12
s31 +O(s41)

))
.Since √1− x = 1− x/2 − x2/8 + O(x3), we deduce

t21 =
6

µ2

(
µ2s21
6

(
1− α2

12
s21 −

αβ

12
s31

)
+

µ4

72
s41 +O(s61)

)
= s21

(
1− α2 − µ2

12
s21 −

αβ

12
s31 +O(s41)

)
.This leads to

t1 = s1

√
1− α2 − µ2

12
s21 −

αβ

12
s31 +O(s41) = s1 −

α2 − µ2

24
s31 −

αβ

24
s41 +O(s51). (5.3.2)Note that, since we needed to divide by µ, we silently assumed that µ 6= 0. However in (5.3.2)

µ = 0 is not a problem anymore, and by continuity we can extend the argument to all µ. By directlycomputing the case µ = 0 one can easily check that the formula is indeed true. From (5.3.2) wesee that t1 is at least a third order perturbation of s1. The next step is to show that it is actuallya fourth order perturbation, since α − µ = O(s1) itself. Denote by (κ1, κ2) the coordinates of thecenter of the circle Γ(t) with respect to our local frame (T ,N ). Since v0 = (0, 0) ∈ Γ, the circle isgiven by the formula
(x− κ1)

2 + (y − κ2)
2 = µ−2.Thus,

∣∣∣∣
x(s1)κ1 + y(s1)κ2 = (x2(s1) + y2(s1))/2
x(s−1)κ1 + y(s−1)κ2 = (x2(s−1) + y2(s−1))/2

=⇒
∣∣∣∣∣
κ1 =

(x2(s1)+y2(s1))y(s−1)−(x2(s−1)+y2(s−1))y(s1)
2(x(s1)y(s−1)−x(s−1)y(s1))

κ2 =
(x2(s−1)+y2(s−1))x(s1)−(x2(s1)+y2(s1))x(s−1)

2(x(s1)y(s−1)−x(s−1)y(s1))

.



5. Improved normal MTs. Case studies 114Let us start with the denominator. From Theorem 4.2.3 we already know that s1 = ∆s0 �
∆s−1 = −s−1 so
x(s1)y(s−1)− x(s−1)y(s1) = s1s−1

((
1− α2

6
s21
)(α

2
s−1 +

β

6
s2−1

)
−
(
1− α2

6
s2−1

)(α
2
s1 +

β

6
s21
)
+O(s31)

)

= s1s−1(s−1 − s1)

(
α

2
+

β

6
(s1 + s−1) + O(s21)

)
.Note that µ = 0 (i.e., the circle is a straight line) if and only if the denominator equals to zero.Since the S1 normal MT is well-de�ned, s1s−1(s−1 − s1) 6= 0, and, thus in this case α = −β(s1 +

s−1)/3 + O(s21), or in other words the di�erence µ − α = β(s1 + s−1)/3 + O(s21) is indeed of orderone.From now on we assume that µ, α 6= 0, so the denominator is non-zero and all the algebraicoperations are well-de�ned. Let us work out the corresponding numerators for κ1 and κ2.
(x2(s1) + y2(s1))y(s−1)− (x2(s−1) + y2(s−1))y(s1)

= s21s
2
−1

(((
1− α2

6
s21
)2

+
(
α
2
s1 +

β
6
s21
)2)(α

2
+ β

6
s−1

)

−
((

1− α2

6
s2−1

)2
+
(
α
2
s−1 +

β
6
s2−1

)2)(α
2
+ β

6
s1
)
+O(s21)

)

= s21s
2
−1(s−1 − s1)

(
β
6
+O(s1)

)
;

(x2(s−1) + y2(s−1))x(s1)− (x2(s1) + y2(s1))x(s−1)

=
(
s2−1 − α2

12
s4−1 +O(s5−1)

)(
s1 − α

6
s31 +O(s41)

)
−
(
s21 − α2

12
s41 +O(s51)

)(
s−1 − α

6
s3−1 +O(s4−1)

)

=
(
s1s

2
−1 − α2

12
s1s

4
−1 − α2

6
s31s

2
−1 +O(s61)

)
−
(
s21s−1 − α2

12
s41s−1 − α2

6
s21s

3
−1 +O(s61)

)

= s1s−1(s−1 − s1)
(
1− α2

12
(s21 − s1s−1 + s2−1) + O(s31)

)
.Hence,

κ1 =
s21s

2
−1(s−1 − s1)

(
β
6
+O(s1)

)

2s1s−1(s−1 − s1)
(
α
2
+ β

6
(s1 + s−1) + O(s21)

) =
β

6α
s1s−1 +O(s31);

κ2 =
s1s−1(s−1 − s1)

(
1− α2

12
(s21 − s1s−1 + s2−1) + O(s31)

)

2s1s−1(s−1 − s1)
(
α
2
+ β

6
(s1 + s−1) + O(s21)

) =
1

α
− β

3α2
(s1 + s−1) + O(s21).Using again that (0, 0) ∈ Γ we estimate µ by the following

κ2
1 + κ2

2 =
1

α2
− 2β

3α3
(s1 + s−1) + O(s21) =⇒ µ =

1√
κ2
1 + κ2

2

= α− β

3
(s1 + s−1) + O(s21).Therefore

µ− α =
β

3
(s1 + s−1) + O(s21). (5.3.3)



5. Improved normal MTs. Case studies 115Again, due to continuity (5.3.3) remains valid for α = 0, as well. Our prediction point is exactly
Γ(t1/2) and the newly inserted point is v(s̄1), so the detail is

d = |v(s̄1)− Γ(t1/2)| ≤ |v(s̄1)− v(s1/2)|+ |v(s1/2)− Γ(t1/2)|.From (5.1.4) we already know that |s̄1 − s1/2| = O(s41), so we further estimate only the secondterm.
|v(s1/2)− Γ(t1/2)| = |x(s1/2)T + y(s1/2)N − x̂(t1/2)T̂ − ŷ(t1/2)N̂ |

≤
√

(x(s1/2)− x̂(t1/2))2 + (y(s1/2)− ŷ(t1/2))2 + |x̂(t1/2)||T − T̂ |+ |ŷ(t1/2)||N − N̂ |
=
√

(x(s1/2)− x̂(t1/2))2 + (y(s1/2)− ŷ(t1/2))2 +
(
|x̂(t1/2)|+ |ŷ(t1/2)|

)
|T − T̂ |.We used that T and N , resp. T̂ and N̂ , are orthogonal unit vectors. Let us �rst estimate |T − T̂ |.Equations (5.3.2) and (5.3.3) give rise to

x̂(t1) = t1 −
µ2

6
t31 +O(t51) = s1 −

µ2

6
s31 +O(s41) = s1 −

α2

6
s31 +O(s41) = x(s1) + O(s41);

ŷ(t1) =
µ

2
t21 +O(t41) =

µ

2
s21 +O(s41) =

α

2
s21 +O(s31) = y(s1) + O(s31).Hence

x(s1)T + y(s1)N = x̂(t1)T̂ + ŷ(t1)N̂ =⇒ x(s1)(T − T̂ ) + y(s1)(N − N̂ ) = O(s31)

=⇒
∣∣∣∣
s1ε1 − (α/2)s21ε2 = O(s31)
s1ε2 + (α/2)s21ε1 = O(s31)

,where T − T̂ = (ε1, ε2)
T , and, thus N − N̂ = (−ε2, ε1)T . From the second equation we see that

ε2 = O(s1) and plugging this into the �rst one, we conclude that ε1 = O(s21). Now, using the latterin the second equation, we derive that ε2 = O(s21), too. Therefore, |T − T̂ | = O(s21).For the other term in the expression we have the following:
x(s1/2) =

1

2
s1 −

α2

48
s31 +O(s41); y(s1/2) =

α

8
s21 +

β

48
s31 +O(s41);

x̂(t1/2) =
1

2
t1 −

µ2

48
t31 +O(t51) =

1

2
s1 −

α2

48
s31 +O(s41); ŷ(t1/2) =

µ

8
t21 +O(t41) =

µ

8
s21 +O(s41).

⇒
√
(x(s1/2)− x̂(t1/2))2 + (y(s1/2)− ŷ(t1/2))2 =

∣∣∣∣
β

48
s31 −

β

24
s21(s1 + s−1)

∣∣∣∣+O(s41) = O(s31).Thus, |v(s1/2)− Γ(t1/2)| = O(s31), and the third order detail decay rate has been established.In order to derive the leading term of the last expression, a little more detailed computationsare needed. Let ∆2s−1 = s1 + s−1 = rs1 = r∆s0. Since s−1 < 0, we have that r < 1. Moreover,(5.1.4) tells us that in most of the cases r = O(s41). Now, (5.3.3) gives rise to
x̂(t1) = x(s1) + O(s41); ŷ(t1) =

α

2
s21 +

β

6
rs31 +O(s41);



5. Improved normal MTs. Case studies 116Let us denote T̂ = (e1, e2)
T . Then N̂ = (−e2, e1)T and

x(s1)T + y(s1)N = x̂(t1)T̂ + ŷ(t1)N̂ =⇒
∣∣∣∣
x(s1) = x̂(t1)e1 − ŷ(t1)e2
y(s1) = x̂(t1)e2 + ŷ(t1)e1

=⇒

∣∣∣∣∣∣
s1 − α2

6
s31 +O(s41) =

(
s1 − α2

6
s31 +O(s41)

)
e1 −

(
α
2
s21 +

β
6
rs31 +O(s41)

)
e2

α
2
s21 +

β
6
s31 +O(s41) =

(
s1 − α2

6
s31 +O(s41)

)
e2 +

(
α
2
s21 +

β
6
rs31 +O(s41)

)
e1

=⇒
∣∣∣∣
e1 = 1 + O(s31)

e2 =
β
6
(1− r)s21 +O(s31)

,where for the last result we compared the corresponding coe�cients in front of the same powers of
s1. Hence, in the local frame (T ,N )

v(s1/2)− Γ(t1/2) =
(
x(s1/2)− x̂(t1/2)e1 + ŷ(t1/2)e2 , y(s1/2)− x̂(t1/2)e2 − ŷ(t1/2)e1

)T
.From the above computations we immediately see that the T component of the vector is O(s41),while the N component is O(s31), and thus

|v(s1/2)− Γ(t1/2)| = |y(s1/2)− x̂(t1/2)e2 − ŷ(t1/2)e1|+O(s41)

=

∣∣∣∣α8 s21 +
β
48
s31 −

(
1
2
s1 − α2

48
s31

) (
β
6
(1− r)s21 +O(s31)

)
−
(
α
8
s21 +

β
24
rs31
)
(1 + O(s31))

∣∣∣∣+O(s41)

= |(2r−3)β|
48

s31 +O(s41).To summarize, so far we proved that for any initial curve C given by its arc-length parametriza-tion v(s) ∈ C5 and any three points v−1 = v(s−1), v0 = v(s0), and v1 = v(s1) on it, such that
c∆s0 ≤ ∆s−1 ≤ C∆s0; and ∆s0 << 1holds with uniform constants 0 < c ≤ C <∞, independent of ‖∆s‖, the detail vector between thecircle midpoint prediction (SNLv)1 and the actual inserted point v̄1 = v(s̄1) for the (S1, S0, SNL)normal MT is of the form

d1 = v̄1 − (SNLv)1 =
(

O((∆s0)
4), (−1−2∆s−1/∆s0)k′(s0)

48
(∆s0)

3 +O((∆s0)
4)
)( T
N

)
,where T , N is the unit tangent, unit normal vector, respectively, to the initial curve C at v0. Theresult shows that in general, if we use any �admissible� circle interpolation as prediction operator,the detail d1 should be of order O(‖∆s‖3), or in particular ‖dj‖ = O(2−3j) at any level j ∈ N.Further, we want to see if we can gain an extra order of detail decay when using a linearcombination of two circles as prediction operator instead of only a single one. In particular, we willinvestigate the rule, proposed by Dyn in [41], namely the average of Lv and Rv, where in the �rstcase we interpolate via the �left� circle through v−1,v0,v1, while in the second case we interpolatevia the �right� circle through v0,v1,v2 (see Fig. 5.5). Note that the corresponding formulae for Rv



5. Improved normal MTs. Case studies 117can be obtained from the already derived ones for the Lv via simply replacing s−1 with−(∆s0+∆s1)whenever it appears. Direct computation gives rise to
v̄1 −

(Lv)1 + (Rv)1
2

=
(

O((∆s0)
4), (∆s1−∆s−1)k′(s0)

48
(∆s0)

2 +O((∆s0)
4)
)( T
N

)

=⇒ |d1| =
|k′(s0)|
48

(∆s0)
2|∆s1 −∆s−1|+O((∆s0)

4).Some comments are in order: First of all, the last formula is fully in line with the observation that ifthe curve is symmetric with respect to the midpoint v(s0+∆s0/2) then all the considered functionsare even in the local frame centered at that point, and thus the detail decay order should be even,as well. Indeed, in this case we have ∆s−1 = ∆s1 and the cubic term in the detail decay estimationvanishes. Second of all, (5.1.4) indicates that for big enough J , (∆2sJ)2i = O((∆sJ)4). This leadsto |∆sji+1 − ∆sji−1| = O((∆sj)4) for j > J and almost all i ∈ Z, and, thus, for most of the detailsthe decay rate is indeed 4. However, the prediction operator is interpolatory, so around coarse-scalevertices the above estimation fail (unless we start with close-to-uniform and dense enough initialdata) guaranteeing only |∆sji+1 −∆sji−1| = O((∆sj)1) in general. Therefore, |dj|∞ = O(2−3j), eventhough for other `p norms the decay might be faster.Our computations show that in order to assure a forth order detail decay for the same choice ofthe normals, a data-dependent adaptive prediction rule is needed. Direct calculation gives rise tothe following �adjustment� that will work:
(SNLv)2i+1 = x(Lv)2i+1 + (1− x)(Rv)2i+1

=
(
x(−1− 2∆si−1

∆si
) + (1− x)(1 + 2∆si+1

∆si
)
)

k′(si)(∆si)3

48
N +O((∆s)4);

x(−1− 2∆si−1

∆si
) + (1− x)(1 + 2∆si+1

∆si
) = O(∆s) ⇔ x = 1

2
+ ∆si+1−∆si−1

2(si+2−si−1)
+O(∆s).Knowing only the discrete data v

j doesn't allow us to build prediction rules based on the arc-length parameter s of the planar curve, but since (for small enough s) we already showed that
|∆v| = ∆s+O((∆s)2) we can use it and switch from arc-length to edge-length quantities that aredirectly computable from the data. For example,

∆si+1 −∆si−1 = si+2 − si+1 − si + si−1 =

(
si+2 −

si+1 + si
2

)
−
(
si+1 + si

2
− si−1

)
,and, thus the SNL normal MT given by

(SNLv)2i+1 =

(
1

2
+
|vi+2 − (vi+1 + vi)/2| − |(vi+1 + vi)/2− vi−1|

2|vi+2 − vi−1|

)
(Lv)2i+1 +

+

(
1

2
− |vi+2 − (vi+1 + vi)/2| − |(vi+1 + vi)/2− vi−1|

2|vi+2 − vi−1|

)
(Rv)2i+1has already detail decay of order 4. Note that, since S1 normal MT has detail decay of order two,we know that any point q on the bisector of ∆v

j
i , between its midpoint and the inserted point vj+1

2i+1



5. Improved normal MTs. Case studies 118has the property |(vi+1+vi)/2−q| = O((∆sj)2), so we can use the more general prediction operator
(SNLv)2i+1 =

(
1

2
+
|vi+2 − q| − |q − vi−1|

2|vi+2 − vi−1|

)
(Lv)2i+1 +

(
1

2
− |vi+2 − q| − |q − vi−1|

2|vi+2 − vi−1|

)
(Rv)2i+1.(5.3.4)So far we considered SNL to be a convex combination of the two prediction candidates L and R,so that our rule reproduces constants. However, if we forget about that we can simplify the aboveformula and derive an analog of the famous Neville's algorithm. More precisely, since

(2∆si+1 +∆si)

(
−1 − 2

∆si−1

∆si

)
+ (2∆si−1 +∆si)

(
1 + 2

∆si+1

∆si

)
= 0,following the above strategy we have that the normal MT based on SNL

(SNLv)2i+1 =
|vi+2 − q|
|vi+2 − vi−1|

(Lv)2i+1 +
|q − vi−1|
|vi+2 − vi−1|

(Rv)2i+1 (5.3.5)has detail decay rate four. The most natural choice for q is the midpoint of the coarse-scale edge
∆vi, but for certain applications other candidates may be preferred, so we decide to leave (5.3.5)written in its general form. To summarize, we proved the followingTheorem 5.3.1. Let C be a closed, non-self-intersecting, regular C5 curve, and v

0 ∈ C consists ofat least four di�erent points. For any scheme SNL that is an a�ne linear combination of circle-preserving prediction rules, the (S1, S0, SNL) normal MT has detail decay rate three. Furthermore,if SNL is given via (5.3.4) or (5.3.5), the (S1, S0, SNL) normal MT has detail decay rate four.There are other interesting options for the SNL operator that might be worth investigating.Numerical experiments with the centripetal and chordal subdivision schemes [33] indicate that thedetail decay rate there may again be three.



6. CONCLUSIONS AND FUTURE WORKIn conclusion, through the lines of this thesis we developed a general stability analysis of both uni-variate schemes and their associated multi-scale transforms in the nonlinear functional setting. Weshowed that, unlike the linear setting, convergence and stability analysis were no longer equivalent,and we derived e�cient numerical criteria for the veri�cation of each of them. We extended the uni-variate convergence and stability results to the multivariate regular setting via local approximationtechniques.We established a general theory for normal multi-scale transforms for curves, based on approxi-mating prediction operators. We proposed a globally-convergent normal MT, and built an adaptivealgorithm based on it that de�ned a well-posed transform with smooth limits and high detail decayrates. We investigated several extensions of the classical setup for normal MTs, namely we usedanother subdivision operator to generate the normal directions, the combined action of two di�erentsubdivision operators for the prediction step, and nonlinear geometry-based predictors, respectively,and showed that the properties of the normal MTs improved when such extensions were considered.Apart from the many answers, our work gave rise to plenty of questions, as well. Some of them,such as completion of the univariate Power-p stability analysis, extension of our general stabilitytheory to the normal MT case, determination of the exact limitations of the smoothness improve-ments of the (Sp, Sp−2) normal MT as p→∞, and investigation of other geometric predictors thatlead to normal MTs with high detail decay rates, are very concrete and need mostly computationale�orts. Others, such as how to extend the regular multivariate analysis via local maps in order tocover the high-order smoothness analysis on semi-regular grids, how to further optimize the prop-erties of the normal MT if possible, how to extend the normal MT analysis from the curve settingto the surface one, and how to adapt the normal MTs framework so that it covers a broader rangeof applications, e.g., fast interface tracking, are more abstract and need development of new toolsand introduction of fresh ideas.
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Appendix 129.1 Power-p schemes.1.1 Explicit construction for the instability argument for Sp, p > 4By the de�nition of operator norm, (2.3.20) means that there is a ũ0 = {ũ0
−1, ũ

0
0, ũ

0
1} with unit norm

‖ũ0‖ = 1 such that
‖ũJ‖ > ρn, ũn := (DS [2]

p )w̃n−1 . . . (DS [2]
p )w̃0ũ0.Using the continuity of all (DS [2]

p )w̃ in I, it is clear that we have a similar inequality ‖ũn‖ > 1
2
ρnfor all w̃ in a small open neighborhood W ⊂ I of the initial w̃0. Take
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−1 + ũ0
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0 + 4ũ0
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.This gives rise to
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.Note that ∆2v and ∆2z coincide with w0, respectively u0 everywhere except the �fth entry, but thisis not a problem due to the locality of Sp. Furthermore, ‖z‖ ≤ 11‖ũ0‖ = 11.Set ṽ := v + λz, and consider v(t) := v + t(ṽ − v) = v + tλz. Fix λ > 0 small enough so that

w(t) := ∆2v(t) = w0 + tλu0 is completely in W. De�ne vj(t) = Sjv(t), vj = vj(0), ṽj = vj(1), and
wj(t) = ∆2vj(t) = (S [2])jw(t), j ≥ 0. Then
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≥ λ2−3ρn ≥ 11−12−3ρnλ‖z‖ ≥ (1/88)ρn‖v − ṽ‖.Letting n→∞ implies that Sp cannot be stable.



Appendix 130.1.2 Some useful facts for the power-p schemesLemma .1.1. For p ≤ 4, T is well de�ned, and thus C∞, over its whole domain [−1, 1)× (−1, 1].Moreover, for the componentwise partial derivatives we have:
∂T

∂t
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p)(1 + t̄)φ(−t)
Φ(−t̄,−t)2 ,

∂T̄

∂t̄
(t, t̄) =

4(1− t)(|t|p − 4t+ 3)[1 + (p− 1)|t̄|p + pt̄|t̄|p−2]

[4(1− t)(1 + t̄)− (1− |t|p)(1 + t̄) + (1− |t̄|p)(1− t)]2
=

8(1− t)(|t|p − 4t+ 3)φ(t̄)

Φ(−t̄,−t)2 .(.1.1)Proof. Denote by Φ(t, t̄) the denominator of T , i.e.,
Φ(t, t̄) := 4(1− t)(1 + t̄) + (1− |t|p)(1 + t̄)− (1− |t̄|p)(1− t).Using that |t|p is monotonically increasing as a function of p, whenever |t| ≤ 1, we derive

Φ(t, t̄) ≥ 4(1− t)(1 + t̄)− (1− t̄4)(1− t) = (1 + t̄)2(1− t)((t̄− 1)2 + 2) > 0,for all (t, t̄) ∈ [−1, 1)× (−1, 1]. Since the denominator of T̄ is Φ(−t̄,−t) the well-de�nedness of Tis established. Verifying (.1.1) is a direct computation. The e�orts are considerably decreased, ifone uses the following representations for T and T̄ :
T = −1 + 4(1− |t|p)(1 + t̄)

Φ(t, t̄)
, T̄ = 1− 4(1− |t̄|p)(1− t)

Φ(−t̄,−t) , (.1.2)as well as the symmetries discussed in Section 2.3.3.The equations (.1.1) imply that in our region of interest [−1, 1)× (−1, 1] both ∂T/∂t̄ and ∂T̄ /∂tare nonpositive, while ∂T/∂t and ∂T̄ /∂t̄ are nonnegative.Lemma .1.2. For any p > 1, p 6= 2, T has only (0, 0) and (−1, 1) as �xed points.Proof. Since T (−1, t̄) = −1 and T̄ (t, 1) = 1, it is straightforward to show that there are no more�xed points on the boundary of the region. Thus, from now on we will work only within interior,i.e., (−1, 1)× (−1, 1). Let (t, t̄) be a �xed point for T . Then (.1.2) gives rise to
t = −1 + 4(1− |t|p)(1 + t̄)

Φ(t, t̄)
, t̄ = 1− 4(1− |t̄|p)(1− t)

Φ(−t̄,−t) ,which is equivalent to
1− t2

(3− t)(1− |t|p) =
1 + t̄

|t̄|p + 4t̄+ 3
,

1− t̄2

(3 + t̄)(1− |t̄|p) =
1− t

|t|p − 4t+ 3
. (.1.3)



Appendix 131Denote by f1(t) := (1 − t2)/((3 − t)(1 − |t|p)) and by f2(t) := (1 − t)/(|t|p − 4t + 3). Then, (.1.3)implies
f1(t) = f2(−t̄), f1(−t̄) = f2(t). (.1.4)Note that f1 is positive in (−1, 1) and f2 is positive in (−1, sp) and negative in (sp, 1), where sp = 1for p ≤ 4, otherwise is the root of tp − 4t + 3 in [0, 1]. The function s : (4,+∞) → R de�nedvia s(p) = sp is monotonically decreasing with a limit lim

p→∞
s(p) = 3/4. From (.1.4) it follows that

(t, t̄) ∈ (−1, sp) × (−sp, 1). Moreover, for the function f(t) := f1(t) − f2(t) in the interval (−1, sp)we have
f(t) =

1− t2

(3− t)(1− |t|p) −
1− t

|t|p − 4t+ 3
= (1− t)

(1 + t)(|t|p − 4t+ 3)− (3− t)(1− |t|p)
(3− t)(1− |t|p)(|t|p − 4t+ 3)

=
4t2(1− t)(|t|p−2 − 1)

(3− t)(1− |t|p)(|t|p − 4t+ 3)
≤ 0.

(.1.5)Equation (.1.4) is equivalent to f(t) = −f(−t̄), which, due to (.1.5), suggests f(t) = f(−t̄) = 0.Since only f(0) = 0 in (−1, sp) the proof is completed.Lemma .1.2 can be interpreted in the following way: the only invariant functions under theaction of Sp are the polynomials of degree 0,1 and 2. Indeed, T (−1, 1) = (−1, 1) implies that astraight line (and thus either a constant function or a linear polynomial) data sample generates thevery same straight line as limit, while T (0, 0) = (0, 0) implies that a (regular) data sample from aquadratic polynomial generates the same quadratic polynomial as limit, for any Sp, p 6= 2. Thus,the order of polynomial reproduction for the family Sp is 3.In the remaining part of the section, we will concentrate on the stability analysis of Sp, p ≤ 4.Lemma .1.3. Denote by Ii, i = 1, . . . , 4 the four quadrants of the square [−1, 1) × (−1, 1], e.g.,
I2 = [0, 1)× (−1, 0]. Then for any Sp ≤ 4

T : I1 → I1 ∪ I2 ∪ I4; T : I2 → I2 ∪ {(−1, 1)}; T : I3 → I3 ∪ I2 ∪ I4; T : I2 → I2.Proof. Due to symmetries it is enough to prove only the last two statements. Let (t, t̄) ∈ I3, i.e.,
t, t̄ ≤ 0 and assume that T (t, t̄) ∈ I1, i.e., T, T̄ > 0. The �rst part of Lemma .1.1 gives rise to

∣∣∣∣
−4(1− t)(1 + t̄) + 3(1− |t|p)(1 + t̄) + (1− |t̄|p)(1− t) > 0
4(1− t)(1 + t̄)− (1− |t|p)(1 + t̄)− 3(1− |t̄|p)(1− t) > 0

.Summing up the two inequalities we derive
(1− |t|p)(1 + t̄) > (1− |t̄|p)(1− t),which is a contradiction, since 1 − |t|p < 1 < 1 − t and 1 + t̄ = 1 − |t̄| < 1 − |t̄|p. Note that weproved a stronger result than the one stated in the lemma, namely if t, t̄ ≤ 0 then T + T̄ ≤ 0!



Appendix 132Showing that I4 is invariant under the action of T is done in a similar fashion. Here, we usethat if t ≤ 0 and t̄ ≥ 0, then
−4(1− t)(1 + t̄) + 3(1− |t|p)(1 + t̄) + (1− |t̄|p)(1− t) ≤

−4(1− t)(1 + t̄) + 3(1− t)(1 + t̄) + (1− t)(1 + t̄) ⇒ T ≤ 0;

4(1− t)(1 + t̄)− (1− |t|p)(1 + t̄)− 3(1− |t̄|p)(1− t) ≥
4(1− t)(1 + t̄)− (1− t)(1 + t̄)− 3(1− t)(1 + t̄) ⇒ T̄ ≥ 0.The proof is completedAnother useful result is the following lemma that narrows the �bad� sectors, which may lead toinstability.Lemma .1.4. For all p ∈ [1, 4] and any w ∈ `∞(Z),
‖ (DS [2]

p )w
∣∣
{2i,2i+1,2i+2}×{i−1,i,i+1}

‖ ≥ 1 ⇔ (−t)p−1 + t̄p−1 ≥ 4

p
.In particular, (t, t̄) ∈ I4.Proof. Again, the proof consists only of computations. It is easy to check, that

φ′(t) =
1

2
p(p− 1)(t+ 1)|t|p−2 ≥ 0,meaning that φ(t) monotonically increases with φ(−1) = 0, φ(0) = 1, and φ(1) = p. For the evenand the odd parts of the function we have

F1(t) := φ(t) + φ(−t) = 1 + (p− 1)|t|p ∈ [1, p]; F2(t) := φ(t)− φ(−t) = pt|t|p−2 ∈ [−p, p].Now ‖((DS [2]
p )w)2i,·‖ = F1(t)/4 < p/4 ≤ 1 and analogously for the 2i+ 2-nd row. For the 2i+ 1-strow we have two cases to consider:

Case 1 : ((DS [2]
p )w)2i+1,i < 0 ⇒ ‖((DS [2]

p )w)2i+1,·‖ =
F1(t) + F1(t̄)

8
− 1

2
≤ p

4
− 1

2
≤ 1

2
;

Case 2 : ((DS [2]
p )w)2i+1,i ≥ 0 ⇒ ‖((DS [2]

p )w)2i+1,·‖ =
F2(−t) + F2(t̄)

8
+

1

2
,and the letter exceeds 1 if and only if F2(−t) + F2(t̄) ≥ 1/2, which up to simpli�cations is exactlywhat we wanted to prove.Combining all the four lemmas, we conclude that no matter what initial w̃0 = {w0

−1, w
0
0, w

0
1}we chose, after �nitely many subdivision levels n (the number n depends on w̃0) we end up witha submatrix (DS [2]

p )w̃n which operator norm is less than 1, and so is the norm of any submatrix
(DS [2]

p )w̃m, where m ≥ n. Of course, as shown in the proof of Theorem ??, this may happenarbitrarily slow (i.e., n → ∞), but this is not enough to claim instability, since the joint spectral



Appendix 133radius of the limit matrix A in (2.3.19) is not bigger than 1. In fact, we believe that it is possibleto prove that there exists global n, and ρ ∈ (0, 1), such that no matter what w̃0 we take,
‖(DS [2]

p )w̃n−1(DS [2]
p )w̃n−2 . . . (DS [2]

p )w̃0‖ ≤ ρn.However this will not be enough to claim stability. Indeed, the invariant neighborhood of Sp consistsof six points (all these subdivision schemes can be viewed as generalized four point schemes),meaning that four second divided di�erences, resp., three ts should be considered for the stabilityanalysis. This makes the IFS richer and more di�cult to analyze. For example, even if we knowthat both (t0, t1) and (t1, t2) are far away from the �bad� region, de�ned in Lemma .1.4, then we justknow (or can try to prove) that (T0, T1) = T (t0, t1) and (T2, T3) = T (t1, t2) are not in the region,as well. However, (T2, T3) might be there, and computer simulations show that for p > 8/3 thisdoes actually happen from time to time. Nevertheless, we conjecture that for p ≤ 4, Sp is Lipschitzstable and hope to be able to prove it in the near future. On the other hand, note that, the higherthe p, the higher the n for which ‖An‖ < 1, implying that even theoretically stable, the processmay need so many steps to stabilize that can be considered instable from a practical point of view..2 Normal multi-scale transforms.2.1 Proof of Lemma 5.0.4Proof. The proof is taken from our paper [62]. Let Q0(x) = 1, and Qm(x) := (m!)−1x(x−1) . . . (x−
m+ 1), m ≥ 1. We have Qm(0) = 0 if m ≥ 1. Note that for arbitrary l ∈ Z

(∆(Qm|Z))l = (m!)−1((l + 1) . . . (l −m+ 2)− l . . . (l −m+ 1)) = (Qm−1|Z)l,and by induction ∆nQm|Z = Qm−n|Z, n = 0, . . . , m. Moreover, ∆nQ|Z = 0 for any polynomial Q ofdegree m < n. These properties will be used without further mentioning.In the following, K ∈ I ∪ I1 is considered �xed and dropped from the notation whenever thiscannot lead to confusion. Introduce r = (rl)l∈I by setting
sl =

M−1∑

m=0

(∆mSs)KQm(2l −K − 2cS) + rl, l ∈ I. (.2.1)Evidently, ∆Msl = ∆Mrl for all l ∈ I [M ]. Applying S to the above identity, and using (??), wehave
Ssk =

M−1∑

m=0

(∆mSs)KQm(k −K) + Srk, k ∈ I0 ∪ I1,and consequently
(∆nSs)K =

M−1∑

m=n

(∆mSs)KQm−n(0) + (∆nSr)K = (∆nSs)K + (∆nSr)K , n = 0, 1, . . . ,M − 1,



Appendix 134i.e., (∆nSr)K = 0, n = 0, 1, . . . ,M − 1. Together with the above equality ∆Mrl = ∆Msl for the
M-th order di�erence, this implies

|rl| ≤ C‖∆Mr‖I = C‖∆Ms‖I , l ∈ I, (.2.2)similar to the derivation of [24, (4.27)]. Throughout the proof of Lemma 5.0.4, C denotes a genericconstant which does not depend on s and K but may change its value from line to line. Moreover,we frequently use the estimates
|(∆Ms)K | ≤ 2M−m‖∆ms‖I , m = 1, . . . ,M − 1, (.2.3)and
|(∆mSs)K | ≤ C‖∆ms‖I , m = 1, . . . , P, (.2.4)where P ≥ Pe is the polynomial reproduction order of S. The �rst one is obvious by the de�nitionof the di�erence operators ∆m while the second is a consequence of the existence of derived S [m] forall 0 ≤ m ≤ P .To estimate the quantity |SF (s)K − F (SsK)|, we evaluate F (sl) using Taylor expansion (4.2.6)of order M for F (s) with respect to SsK , then apply S to it, together with the formula

sl − SsK =
M−1∑

m=1

(∆mSs)KQm(2l −K − 2cS)

︸ ︷︷ ︸
=:dl

+rl, l ∈ I, (.2.5)which follows from (.2.1). This gives
|SF (s)K − F (SsK)| =

∣∣∣∣∣
M∑

n=0

F (n)(SsK)

n!
(S(s− SsK)

n)K + SRK − F (Ss)K

∣∣∣∣∣

≤ C

∣∣∣∣∣
M∑

n=2

(S(d+ r)n)K

∣∣∣∣∣+ |SRK |,where d = (dl)l∈I and R stands for the sequence of remainder terms Rl = O(|sl − SsK |M+ρ) in theTaylor formula. The terms for n = 0 and n = 1 have canceled since S reproduces constants, and
(S(s− (Ss)K))K = (Ss)K − (Ss)K = 0. The remainder term SRK satis�es

|SRK | ≤ Cmax
l∈I
|sl − SsK |M+ρ ≤ C‖∆s‖M+ρ

I .For M = 1 this �nishes the proof (in this case EM = ∅).For M ≥ 2, we split any of the remaining terms as follows:
(S(d+ r)n)K = (Sdn)K +

n∑

i=1

(
n
i

)
(S(ridn−i))K .For the terms in the double sum, we use rough estimates involving (.2.2), (.2.3), and (.2.4). Byde�nition of d in (.2.5), we have

‖d‖I ≤ C
M−1∑

m=1

|(∆mSs)K | ≤ C
M−1∑

m=1

‖∆ms‖I ≤ C‖∆s‖I



Appendix 135and consequently
|S(ridn−i)K | ≤ C‖r‖iI‖d‖n−i

I ≤ C‖∆Ms‖iI‖∆Ss‖n−i
I ≤ C‖∆Ms‖I‖∆s‖n−1

I , i = 1, . . . , n.This yields
∣∣∣∣∣

M∑

n=2

n∑

i=1

(
n
i

)
S(ridn−i)K

∣∣∣∣∣ ≤ C

M∑

n=2

‖∆Ms‖I‖∆s‖n−1
I ≤ C(‖∆Ms‖I‖∆s‖I + ‖∆s‖M−1

I )

≤ C(‖∆Ms‖I‖∆s‖I + ‖∆2s‖I‖∆s‖M−1
I ) ≤ C

∑

ν∈EM

M−1∏

m=1

‖∆ms‖νmI ,see the de�nition of EM .According to (.2.5), the remaining terms (Sdn)K , n = 2, . . . ,M , can be written as
(Sdn)K =

∑
∑M−1

m=1 νm=n

n!

ν!
S

(
M−1∏

m=1

(∆mSs)νmK Qm(2 · −k − 2cS)
νm

)

K

.We now explore the exact polynomial reproduction of order Pe > M ≥ 2: If∑M−1
m=1 mνm ≤M then,since S(p|2Z) = p|Z+2cS

S

(
M−1∏

m=1

(∆mSs)νmK Qm(2 · −K − 2cS)
νm

)

K

=

(
M−1∏

m=1

(∆mSs)νmK Qm(· −K)νm

)

K

=

M−1∏

m=1

(∆mSs)νmK Qm(0)
νm = 0.Thus, we obtain

M∑

n=2

|(Sdn)K | ≤ C
∑

2≤
∑M−1

m=1 νm≤M,
∑M−1

m=1 mνm>M

M−1∏

m=1

|∆mSsK |νm ≤ C
∑

ν∈EM

M−1∏

m=1

‖∆ms‖νmI .In the last estimation step, we have used (.2.4) and the fact that any term ∏M−1
m=1 ‖∆ms‖νmI with

ν such that ∑M−1
m=1 mνm > M + 1 and ∑M−1

m=1 νm ≤ M can always be majorized via (.2.3) by aconstant multiple of a similar term with ν ∈ EM . Together with the already obtained estimates forthe other terms involved in the upper bound for |F (SsK) − SF (s)K |, this concludes the proof ofLemma 5.0.4. .2.2 Alternative proof of Theorem 5.2.1 via explicit computationsProof. In order to perform the computational technique from the proof of Theorem 5.1.3, and tohave control on the leading terms in the estimations we need to assume C ∈ Cp+2, instead of
C ∈ Cp+1.



Appendix 136p=3: We use the same technique as in Theorem 5.1.3, so we also keep the same notation. Weneed to consider separately d0 and d1. Let us start with the second case. Since n̂1 ⊥ ∆v0 thereexists a ξ1 ∈ (s0, s1), such that n̂1 = n(ξ1). Let
ξ1 = s0 + r∆s0 = rs1, r ∈ (0, 1).With respect to the local frame (t(ξ1),n(ξ1)), centered at v(ξ1) we have y0 = y(−rs1) = y1 =

y
(
(1− r)s1

). Using (5.0.1) with higher order
y(s) =

α

2
s2 +

β

6
s3 +

α3 + γ

24
s4 +O(s5), s << 1, α = k(ξ1), β = k′(ξ1), γ = k′′(ξ1),writing r in the form r = a0 + a1s1 + a2s

2
1 + O(s31), and comparing the coe�cients in front of thecorresponding powers, we derive

α
2
(−rs1)2 + β

6
(−rs1)3 + α3+γ

24
(−rs1)4 +O(s51) =

= α
2
((1− r)s1)

2 + β
6
((1− r)s1)

3 + α3+γ
24

((1− r)s1)
4 +O(s51)

=⇒

∣∣∣∣∣∣

(2a0 − 1)α/2 = 0
αa1 − (a30 + (1− a0)

3)β/6 = 0
αa2 − (6a0a1 − 3a1)β/6

= 0 =⇒ r = 1
2
+ β

24α
s1 +O(s31).For the forth-order term we used the simpli�cation, that since (−rs1)2− ((1− r)s1)

2 = O(s31), then
(−rs1)4 − ((1 − r)s1)

4 = O(s51) and those summands do not contribute. As, in Theorem 5.1.3, Cbeing of �nite length and C5 assures us that there exists a global constant CC < ∞, that dependsonly on the initial curve, such that α, β, γ < CC < ∞. The above computation, together with(5.1.4), give rise to
s0 − ξ1 = −ξ1 = −

s1
2
− β

24α
s21 +O(s41); s1 − ξ1 =

s1
2
− β

24α
s21 +O(s41); s̄1 − ξ1 = −

β

24α
s21 +O(s41).Hence,

y−1 = y(s−1 − ξ1) =
α

2

(
s2−1 +

s21
4
− s1s−1

)
+

β

6

(
−s3−1 +

3s1s
2
−1

2
− s21s−1

2

)
+O(s41);

y0 = y1 =
α

8
s21 +O(s41); ȳ1 = O(s41);

y2 =
α

2

(
(∆s1)

2 +
s21
4
+ s1∆s1

)
+

β

6

(
(∆s1)

3 +
3s1(∆s1)

2

2
+

s21∆s1
2

)
+O(s41).We used that O(∆s−1 = −s−1) = O(∆s0 = s1) = O(∆s1), which is equivalent to the normalre-parameterization of the (S3, S1) normal MT to be C0,1, and it follows from Theorem 4.2.3. Now

|d1| = |(Ty)1 − ȳ1| =
∣∣∣∣ α32
(
4(∆s0)

2 − (∆s−1)
2 − (∆s1)

2 −∆s−1∆s0 −∆s0∆s1

)

︸ ︷︷ ︸
A

+

+ β
192

(
2(∆s−1)

3 + 3∆s0(∆s−1)
2 + (∆s0)

2∆s−1 − 2(∆s1)
3 − 3∆s0(∆s1)

2 − (∆s0)
2∆s1

)

︸ ︷︷ ︸
B

+O(‖∆s‖4)
∣∣∣∣.



Appendix 137According to Theorem 5.1.3 ‖∆2s‖ = O(‖∆s‖2) and ‖∆3s‖ = O(‖∆s‖3). Thus
∆s−1 = ∆s0 +O((∆s)2); ∆s1 = ∆s0 +O((∆s)2); ∆s−1 +∆s1 = 2∆s0 +O((∆s)3).The �rst two equalities are enough to conclude that B = O(‖∆s‖4), while for A we have

A = 2(∆s0)
2 + (∆s0 −∆s−1)(∆s0 +∆s−1) + (∆s0 −∆s1)(∆s0 +∆s1)−∆s0(∆s−1 +∆s1)

= (∆s0 −∆s−1)(∆s0 +∆s−1)− (∆s0 −∆s−1 +O(‖∆s‖3))(∆s0 +∆s1) + O(‖∆s‖4)
= (∆s0 −∆s−1)(∆s−1 −∆s1) + O(‖∆s‖4) = O(‖∆s‖4).Thus,

|d1| = O(‖∆s‖4).Note that at any moment of our estimations we have had full control over the constants in the
O(‖∆s‖4) terms, which guarantees us that |d1| ≤ C‖∆s‖4 with a global constant C <∞ dependingon C and ∆s0. Also, even though in the formula for r we have α in the denominator, it cancels outin the estimations for d1 and, thus, by continuity we can extend our result to the case α = 0, aswell.The computations for |d0| are much easier. First, since n̂0 ⊥ v−1v1 there exists a ξ0 ∈ (s−1, s1),such that n̂0 = n(ξ0). Moreover, we already now that
s−1−ξ0 = −

s1 − s−1

2
− β

24α
(s1−s−1)

2+O(s41) =⇒ s0−ξ0 = −
s1 + s−1

2
− β

24α
(s1−s−1)

2+O(s41) = O(s21).On the other hand, (5.1.5) implies s̄0 = O(s21), as well. Therefore, since y(s) = O(s2), and (Tv)0 =
v0, we conclude that

|d0| = |y0 − ȳ0| = O(‖∆s‖4).The proof is completed.p=2: Due to symmetry, it su�ces to check only d0. From Theorem 4.3.1 we know that the S2normal MT is globally well-posed and the restriction on the cardinality of v0 is only to assure thatwe always use di�erent points for the computation of Tv0. Since n̂0 ⊥ ∆v0, we work with the samelocal frame, centered at ξ1, as in the �rst part of the proof for p = 3. Hence y−1, y0, and y1 are thesame as before, but estimated one order less, i.e.,
y−1 =

α

2

(
s2−1 +

s21
4
− s1s−1

)
+O(s31); y0 = y1 =

α

8
s21 +O(s31),while for ȳ0, due to (5.1.3), we have

s̄0 − ξ1 = −
s1
4
− β

24α
s21 +O(s31) =⇒ ȳ0 =

α

32
s21 +O(s31).Therefore

|d0| =
∣∣(T2y)0 − ȳ0

∣∣ = 3α

32

∣∣s21 −
s2−1 − s1s−1

2

∣∣ +O(s31)

=
3α

64

∣∣2(∆s0)
2 − (∆s−1)

2 −∆s0∆s−1

∣∣ +O(‖∆s‖3)

=
3α

64

∣∣(2∆s0 +∆s−1)∆
2s−1

∣∣+O(‖∆s‖3) = O(‖∆s‖3),where, we used that the C1,1-normal re-parameterization of the S2 normal MT gives rise to ∆s−1 �
∆s0 � ‖∆s‖ and |∆2s−1| = O((∆s−1)

2) follows from Theorem 5.1.3.


