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Abstract

In today’s knowledge economy, many organizations are trying to manage
their knowledge base in order to gain and maintain a competitive edge. Yet
knowledge in peoples’ heads can hardly be managed directly, since knowledge
transfer involves an active and individual learning effort. Nevertheless, or-
ganizations can support learning indirectly. Therefore this study approaches
the challenge of knowledge-intensive work from another perspective: How
can organizations support informal and individual on-the-job learning?

To obtain a ranking of the most important organizational factors that sup-
port learning, a fully structured and dynamic survey at a German shipyard
was used to measure the intensity of learning and potentially relevant driving
or inhibiting factors in different working environments. Due to the stochas-
tic nature of the learning process and the large number of variables, it was
necessary to develop a new algorithm, called BOGER, for the statistical
analysis, which features automatic and robust non-linear model selection.

Interdisciplinary insights from a wide field of literature as well as the empir-
ical ranking were condensed into the newly developed PIA-model. “PIA” is
the acronym for: ‘perspective taking, integration, action’ – see figure 2.1 on
page 31. Some of the illustrated mechanisms explain the already effective
application of state-of-the-art industrial practice models such as the Toyota
Production System or the EFQM model, both of which emphasize organiza-
tional learning. Thus, this study provides a deepened understanding of the
most important organizational levers influencing learning for their applica-
tion and adaptation to new industrial contexts.

For a 4-page summary see section 1.1 on page 13.

Subject Terms / Keywords: Workplace Learning, On-The-Job Learning, Knowledge
Management, PIA-Model, Perspective Taking, Organizational Learning, BOGER Algo-
rithm, Algorithmic Statistical Modelling, Learning Index
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1. Introduction

Chapter Contents

1.1. Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2. Introduction and Motivation . . . . . . . . . . . . . . . . . . . . 17

1.1. Executive Summary

In competitive business environments, the effective creation, transfer and use of knowl-
edge by organizations has only recently been widely recognized as a principle factor that
creates value for stakeholders – by driving innovation as well as creating and maintaining
competitive advantage (see section 1.2 on page 17). Therefore the aim of this study is
to provide management guidance to support organizations with this ‘knowledge manage-
ment’1 challenge.

As will be detailed in section 2.3.1 on page 28, supporting learning is the primary chal-
lenge in knowledge management, since also knowledge transfer involves, on the receiv-
ing side, a person, who needs to acquire, i.e. learn, the transferred knowledge. Therefore
this study focuses on informal on-the-job learning that occurs during normal problem
solving activities at work and during innovation projects. This type of individual learning
effect may eventually lead to group learning and the implementation of organizational
improvements – i.e. organizational learning (see section 2.6 on page 77 for the detailed
definitions of learning and knowledge). Whereas the focus on the individual person as
unit of analysis may be unusual for the research stream on knowledge management, I
argue that, instead, focusing on the individual level allows for more concrete managerial
guidance.

Another reason for choosing learning as the primary perspective is because learn-
ing requires an active involvement on behalf of the learner. Hence the learner needs to
be motivated and able to integrate the new knowledge into the prior knowledge he or she

1In the field of business administration, this topic is referred to as ‘knowledge management’, however
– as will be detailed later in this section – depending on the definition for ‘knowledge’, the question
arises, if knowledge can be ‘managed’ directly at all.
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1.1. Executive Summary

already has on the topic (section 2.3.3 on page 34). Therefore learning is not a process
that can be managed by direct intervention (in contrast to managing cash flows or mate-
rial – see section 2.5.1 on page 69). Yet organizations can support learning indirectly by
creating learning supportive working conditions.

In the literature on knowledge management and related fields, many features of or-
ganizations have been observed to affect learning. Rarely have these studies quantified
the effect strength of these features on learning. However, because constraints such as
limited time and people (and thus resources), organizations cannot practically optimize
all aspects of their organization. Thus, it is imperative to prioritize their actions and
concentrate on a few selected features with the greatest leverage effect on learning first.

Thus, the aim of this study is to give managerial guidance towards which features
of an organization can support on-the-job learning most strongly.

To obtain a ranking of the most relevant organizational factors for learning, a fully
structured survey was fielded in many different departments at Meyer Werft – a ship yard
in northern Germany. In order to cover a broad range of organizational factors within
a limited time frame, a dynamic and interactive online survey was implemented. (see
chapter 5 on page 137). Given the lack of standardized, relevant and adequate standard
constructs, on-the-job learning intensity at the individual level was measured by a newly
developed and validated construct. This construct, referred to as the learning index,
asks the participant to evaluate concrete learning episodes in a way that directly relates
to the actual work of the respective participant (section 5.4.1 on page 146).

The data sample collected with the survey has an effective sample size of n = 292 with
293 variables in total (section 6.3 on page 198). This large number of variables compared
to the sample size in combination with a substantial amount of noise in the data, non-
linearities and collinearities (section 5.12 on page 163) posed a formidable challenge for
the statistical analysis. Given these data specific challenges, it was necessary to develop
and validate the new statistical analysis algorithm BOGER. BOGER features
systematic and robust creation of a statistical model with a much smaller number of
variables – which is composed of only the most important factors on learning (chapter 6
on page 171).

The result of the statistical analysis is a ranking of the most important factors affecting
learning as well as an indication of the robustness and accuracy of this ranking (section 7.2
on page 217). Additionally, the effect of each organizational factor on learning is visualized
with newly developed model shape graphics (section 7.1.3 on page 213). In these model
shape graphics the factor-dependent distribution of the raw data is compared side-by-side
with the effect as approximated by model. Compared to using a table with a few scalars
per variable, this type of visualization allows for a much more direct and rich inspection
of the results.

Despite the robust and relevant statistical results that emerged, this type of statistical
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analysis only provides information about the association of a factor with learning rather
than insights that directly address the causal effects of a factor on learning (section 4.1.5
on page 109). Therefore the statistical results for each important factor were analyzed in
conjunction with insights from theory in section 7.3 on page 226.

The creation of the survey involved a detailed literature search, however, the statistical
results inspired another wave of literature research in an even broader range of research
streams (section 2.2 on page 23) with even further refined search terms. This lead to
an overall improvement in the quality of the research. More details on this iterative
approach, scientific theory and methodology can be found in the chapter on 3 on page 83.
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Figure 1.1.: Condensed Literature Insights: the PIA-Model (Source: Author)

Fused from literature and empirical results, the insights for this study are con-
densed in the newly developed PIA2-model (figure 1.1). The PIA-model illustrates
the number of principle aspects of the learning process, which is in-line with the empirical
results :

• As humans, we have developed the skill that allows us to filter (step 1) vast amounts
of data as we receive it through all our senses. This skill allows us to effectively make
sense of the complex situations that we face, despite our limited cognitive resources.
The resulting information, which has usually been refined to a more relevant set
of filtered information, is then either used in step 2 for creating new knowledge
(i.e. learning) or directly for decision making. It is because of this process that we
can behave and work effectively in a complex world – even if we do not and cannot
understand its full complexity. Following Orr (1996), this filtering process is referred
to as perspective taking (section 2.3.2 on page 30). Decision making (step 6) is

2PIA-model stands for ‘Perspective Taking / Integration / Action Model’.
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1.1. Executive Summary

here a direct link to action and hence the utilization of knowledge.

• Prior knowledge plays an important role in filtering information and consequently
also affects learning and decision making (links 4 and 5). Given that prior knowledge
is shaped by personal histories and the socially constructed corporate culture, per-
sonal history and corporate culture affect learning and decision making (section 2.3.4
on page 41).

• As illustrated by the PIA-model and confirmed by the empirical results, learning
is driven by two feedback loops, which require personal motivation, sufficient
external data and effective filtering to support learning and effective decision making
in a virtuous cycle (section 2.3.6 on page 47 and 7.3.5 on page 243).

While managers cannot directly ‘manage’ their employees’ cognitive processes, orga-
nizations have three principal levers for supporting individual learning:

• A climate for controversial yet constructive discussions, that allows for a
comparison of a diversity of perspectives on a particular problem, can help employ-
ees refine their own perspectives on a problem and thus support decision making
(section 2.3.5 on page 45 and 7.3.1 on page 226). Furthermore, employing a sys-
tematic perspective on a problem within an organization or its status as a whole
can be offered to the involved organizational actors. Such an systematic analysis
method frequently involves suitable visualizations. A systematic perspective on
an organization can be created with the analysis and visualization methods inherent
in the EFQM model, Kaplan’s balanced score card (BSC)3 or the Toyota Pro-
duction System in the form of process models, project management plans or key
performance indicators (section 2.4 on page 57). Alternatively, a suitable system-
atic perspective can be provided with interactive analysis and visualization tools in
the form of software. In either case, the systematic perspective increases trans-
parency by using a pre-filtering step to analyzing the available data. This allows
the involved organizational actors to better filter the essence of a problem and thus
improve decision making. The greatest benefit of using this approach is that it fuses
a systematic but unintelligent perspective of the involved actors with the subjective
but intelligent perspectives (section 2.3.3 on page 35).

• Support the learning feedback loop, by e.g. offering inspiring and motivating
tasks, establishing a suitable fault culture (for constructively dealing with mis-
takes) or allowing for multiple iterations during problem solving.

• Provide more raw data by e.g. better access to information, better search tools,
more experiments or more IT systems that capture information about the organi-

3see Kaplan and Norton (2007) or Lamotte and Carter (2000)
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zation’s performance. This lever, however, only becomes effective if the other two
levers are already effective at a good level – i.e. if the involved actors already filter
effectively and learn iteratively.

More details on the implications can be found in chapter 8 on page 263.

1.2. Introduction and Motivation

In an environment of globally available capital and production equipment, the shared
knowledge embedded in a skilled workforce remains the only production factor, which is
difficult to imitate by the competition (Teece, 2000). Thus in contrast to more traditional
models of competitiveness, which are based e.g. on market dominance and efficiencies
of scale, organizations in today’s commercial environment should be viewed as dynamic
systems of distributed knowledge with the purpose of coordinating complex activities
and enabling technical as well as organizational innovations (Malik, 2008; Spender, 1996;
Tsoukas, 2005b).

A corresponding shift of the perceived value of firms from a basis of tangible towards
intangible factors of production, can also be observed in the stock market – as a kind of
consensus amongst all investors: As Davenport et al. (2005) argue, the fraction of tangible
assets to the total market capitalization of Dow Jones Index listed firms has dropped from
almost 100% to only 20% between 1980 and 2005. Given that most analytic firm valuation
methods are based on a more or less sophisticated analysis of cash flows4 (Luenberger,
1998), this observation implies that on average the community of market participants
expects (discounted) cash flows that in sum5 far exceed the current value of the firm’s
assets. Hence investors, based on hopes, speculation but also based on the track record of
firms, expect high returns from the firm’s commercial activities due to largely intangible
production factors such as brand recognition, customer connections – and knowledge
(Davenport et al., 2005; Spender, 1996). Since balance sheets only list tangible assets,
there are a number of initiatives6 to establish new and standardized valuation methods
to quantify (i.e. estimate) the intangible value components of corporations (Andriessen,
2004; North, 2002).

Hence for corporations with highly trained employees and commonly also with high
labor costs, business success critically depends on how well they acquire, protect, com-
bine and utilize the knowledge embedded in their employees, the organization itself and

4A simple indicator for the relative value of a firm is the widely used future-earnings-per-share also
known as the forward EPS ratio (in Germany the share price-to-current-profit (KGV) ratio is more
popular). More sophisticated methods are based on the expected net present value of cash flows
that are subject to random processes, which are modeled by event trees and estimated probabilities
(Luenberger, 1998).

5Hence the net present value of the cash flows far exceeds the current total value of all tangible assets.
6In Germany the knowledge balance sheet initiative is can be found under ‘Arbeitskreis Wissensbilanz’
(http://www.akwissensbilanz.org/).
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1.2. Introduction and Motivation

partner organizations in the value chain in order to create and/or maintain a competitive
advantage (Spender, 1996; Teece, 2000). Schreyögg and Geiger (2007) add to this claim
that the body of knowledge and its use needs to be superior compared to body and use
of knowledge by competitors in order to provide a true competitive advantage.

While there is broad consensus about the importance of knowledge for organizations,
there is little agreement on the definition of knowledge. In addition most definitions in the
field of knowledge management are very vague7 (Schreyögg and Geiger, 2007). This dis-
agreement and ambiguity causes severe limitations for application and research: Without
a concrete definition of knowledge, which is distinguishable from data and information, it
is difficult to operationalize knowledge, compare the results of different studies and design
specific features of the organization in ways that support the creation, transfer and use of
knowledge (section 2.5.5 on page 76).

Moreover there are various challenges with designing a useful definition of knowl-
edge that is concrete enough to be useful in practical application – as will be detailed
in section 2.5.6 on page 76. Therefore a number of authors suggest to focus on the ac-
tivities connected to knowledge-intensive value creation processes within organizations
(section 2.5.5 on page 76) instead of focusing on knowledge with object-like characteris-
tics (section 2.5.1 on page 69). Therefore individual learning during problem solving at
work – as an important part of the knowledge management challenge – was chosen as the
principal perspective of this study (section 2.6 on page 77).

Focusing on knowledge intensive activities at work, furthermore allows to consider a
much wider spectrum of research streams with many valuable insights (section 2.2 on
page 23). Thus this study approaches knowledge intensive work in a interdisciplinary
manner.

Given the abstract nature of the topic and the challenges with operationalizing knowl-
edge for research, there is a lot of theoretical knowledge management literature. Hence
there is no shortage of theories, frameworks and models on knowledge management. There
is however a shortage of high quality empirical studies on knowledge. Since systematic
empirical observation (qualitative as well as quantitative) is important to critically eval-
uate the large existing variety of theories and frameworks on knowledge, the literature
research, that is a principle part of this study, is complemented with an empirical part: a
fully structured survey (chapter 5 on page 137).

In summary, effectively creating, sharing and using knowledge is a principle factor for
corporate competitiveness in today’s global economy. Thus the aim of this thesis is to
provide managerial guidance for the challenge of supporting knowledge intensive work
with organizational means. To provide this guidance, an engineering research approach
is employed, while leveraging theory and constructs from other fields such as psychology,

7Frequently non-knowledge is not defined (Schreyögg and Geiger, 2007). See also the knowledge definition
of this study in section 2.6.1 on page 77.
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management and the educational sciences.
The overall structure of this thesis is conventional with a theory chapter ( 2 on

page 21), various chapters on data collection and methods (3, 4, 5.2, 5 and 6), a chapter
on the analysis and interpretation of the empirical results ( 7 on page 205) followed by an
implications chapter ( 8 on page 263) – including area for future research. A number of
details, which are non-essential for an overall understanding of the arguments, are covered
in the appendix ( A on page 287).

Each chapter begins with an introduction to the contents of the respective chapter.
For the writing style conventions used for this thesis, see also appendix section A.1 on
page 287. In the electronic PDF version of this document, all literature and page references
are highlighted in blue or light green in order to mark hyperlinks, which allow the reader
to directly jump to the reference target with a mouse click.
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2.1. Summary of the Theory Chapter

2.1. Summary of the Theory Chapter

A large amount of literature is concerned with knowledge or learning. To increase this
study’s practical usefulness as managerial guidance, first this broad spectrum of literature
is presented in section 2.2 on the next page. The aim is to integrate general insights on
learning from several different disciplines, an approach that has yielded superior results
with increased practical usefulness in other circumstances (Gittelman and Kogut, 2003).

Section 2.3 on page 28 discusses in greater depth select literature that theoretically
supports the newly created PIA-model. The selection is in part due to the literature
research for this thesis as well as the empirical results of this study – as a result of an
iterative engineering research approach (see next section and section 3.1.6 on page 93 for
further details). Other major contributions to the literature that are in contradiction with
the PIA-model are presented in section 2.5 on page 68.

The theory chapter concludes with section 2.6 on page 77 on definitions used for the
study and section 2.7 on page 80 on the research gap and question.

The PIA-model (figure 2.1 on page 31) was developed to illustrate and integrate the
most important theoretical insights relevant to this study (see sections 1.2 on page 17
and 2.7.2 on page 80). The insights highlighted in the PIA-model can be summarized as
follows:

• Learning is an active endeavor, primarily on behalf of the learner (section 2.3.1
on page 28).

• Humans live and work in complex environments and thus are constantly able to
perceive a large stream of data. To make sense of all this data, the human brain
filters it down to relevant bits of information. This process of complexity re-
duction, referred to as perspective taking (section 2.3.2 on page 30), has some
special properties. For example, it is intelligent, adaptive and subjective, since it is
based on prior knowledge, which can be socially constructed (section 2.3.4 on
page 41) and thus itself subject to learning.

• Knowledge is created, i.e., learned, when the filtered information is integrated
with previously acquired prior background knowledge into a coherent understanding
of the situation or the problem (section 2.3.3 on page 34). This knowledge is then
what drives decision making and action – i.e., the application of knowledge or
knowing (section 2.5.5 on page 76).

By this definition, knowledge is only in the heads of people and directly connected with
action (including communication and searching), which implies that knowledge cannot be
managed directly like other corporate resources (such as money) – see section 2.5.1 on
page 69. Instead the organizational environment can be designed to support learning –
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which, however, requires different approaches than those that are popular in the knowledge
management literature (e.g., knowledge databases – as described in section 2.5 on page 68).
The approaches that support learning are discussed further at the very end of this thesis
in the implication chapter 8 on page 263.

Finally, the definitions and perspectives used for this study are defined (section 2.6 on
page 77), and the following research question is formulated:

What are the most important organizational features that support or

hinder on-the-job learning?

(see section 2.7 on page 80)

2.2. Multiple Perspectives on Learning

As discussed in the introduction 1.2 on page 17 and given the focus on knowledge-intensive
activities, a wide range of research fields hold valuable insights regarding the research
question of this study.

Therefore, for this study, it is not sufficient to limit the search for relevant literature
to a small set of technical terms, since technical terms are commonly specific to a single
research field.

Ph.D. theses commonly begin with a literature section that covers at least a represen-
tative sample of the relevant literature. A couple of decades ago the search for literature
was determined by the researcher’s diligence and by the scope of the literature available
from his or her library and inter-library loans. The latter was frequently the most severe
limitation. Nowadays the widespread use of literature databases has dramatically enlarged
the range of literature in which the researcher can search. Even though the search is still
limited by the databases’ size, that limit rarely poses a problem. Given the much larger
search possibilities, searching strategies and in particular the choice of search keywords
become the dominant challenge for finding relevant and high-quality literature.

When I1 began my literature research in the field of knowledge management, I first
searched for models of knowledge – probably driven by my engineering background. In
engineering it is common and frequently effective to aim first at understanding the consti-
tutive parts of any machine or process. However, instead of finding a single unambiguous
and widely accepted model of knowledge, I found a large number of different perspec-
tives on the same problem, highlighting various aspects of it. In addition, the categories
used in these models are usually not clearly defined (examples are Argote et al. (2003);
Elsbach et al. (2005); Hargadon and Fanelli (2002); North (2002); von Krogh and Ven-
zin (1995)), making it difficult to accurately differentiate the categories, which creates

1See appendix section A.1 on page 287 for the writing style conventions used for this thesis.
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challenges for operationalization and practical application. (A more detailed discussion
follows in section 2.5.5 on page 76.)

Thus, given the wide spectrum of perspectives on knowledge-intensive work and many
different definitions and models of knowledge, it became necessary to scan the following
range of related research streams:

• Management Science & Organizational Science

– Knowledge Management – focusing on how knowledge is created and trans-
ferred between organizational units or firms. The most prominent model of
knowledge was popularized by Nonaka (1991) based on the explicit and tacit2

distinction of knowledge by Polanyi (1966). Other authors focus more on the
activity of using knowledge, referred to as knowing (Cook and Brown, 1999;
Orlikowski, 2002; Tsoukas, 2005b).

– Organizational Learning – learning of employees within organizations, usu-
ally including implementation of the organizational changes (i.e. change man-
agement) (Argote, 1999; Argyris, 2002a; Brown and Duguid, 1991; Crossan
et al., 1999) – see also section 2.6 on page 77.

– Sense Making – describes the process of understanding a situation – within
a complex organizational setting – by a group or an individual. This under-
standing then serves as a “springboard into action” (Weick et al., 2005).

– Situated Practice & Narratives – This stream aims to describe and ex-
plain how practice evolves within organizations – frequently including a focus
on narratives and their importance in informal knowledge transfer (Orr, 1996).
Ethnographic research methods (Samra-Fredericks, 2000), involving the cre-
ation of thick descriptions3 (Elsbach et al., 2005; Weick, 1993) of the observed
processes and actors, are very common in this research stream.

– Expert Systems In the 1980s a number of scholars and software engineers
were trying to create so called expert systems, which – mostly by rule-based
software – were aiming to capture expert knowledge and eliminate the need for
expert attention for relatively simple tasks. Since these not truly intelligent
systems were not able to imitate human judgment (Ackoff, 1989; Svenmarck
and Dekker, 2003), work on this topic soon faded away. While this research

2Explicit knowledge in Nonaka’s model is knowledge that is easily verbalized and captured in documents,
while tacit knowledge is personal and in the heads of people, requiring significantly more effort and
different methods to convert it into the more transferable explicit knowledge. There is an extensive
discussion about the precise features of tacit knowledge and whether it can be converted into explicit
knowledge (D’Eredita and Barreto, 2006a; Glisby and Holden, 2003; Schreyögg and Geiger, 2005;
Tsoukas, 2005b) – more details in section 2.5.1 on page 69.

3Thick descriptions are detailed story-like reports on the results of ethnographic research – e.g. collected
while shadowing a developer team at their normal work.
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stream is certainly not a current and up-to-date discussion, the stream’s history
from an early hype to negligence holds some insightful lessons – useful to judge
the state of current research streams.

• Psychology In the field of psychology, useful insights regarding knowledge intensive
work are clustered around the following terms and research paradigms4:

– Cognitive Psychology – focuses on the mechanisms of human information
processing incl. perception, memory training and learning (Anderson, 1990).
The first focus was on simple learning processes (such as vocabulary memo-
rization) but later publications highlight that cognition also depends on the
knowledge a person has acquired in the past (Sternberg, 2008) – this ability is
termed crystalized intelligence (Cattell, 1971).

– Psychology of Child Development – investigates how children develop their
cognitive abilities. The research stream is rooted in educational psychology
(Piaget, 2003) and in cognitive psychology Siegler (2005).

– Lifespan Psychology – Drawing on the insights from cognitive psychology
and the psychology of child development, lifespan psychology is concerned with
the development of cognitive abilities over the entire lifespan – not just child-
hood (Baltes and Staudinger, 1999).

– Educational Psychology – focuses on the process of academic or school-
based learning (Butler and Winne, 1995; Siegler, 2005) and how learning skills
can be trained and improved (Roßnagel, 2008).

– The Research on Epistemological Beliefs – can be seen as a branch of
educational psychology, which focus on a particular kind of prior knowledge:
the beliefs about the structure and validity of knowledge. Various studies show
that these beliefs have an important effect on learning (Hofer, 2001; Schommer,
1990).

– The Psychology of Expertise – investigates how outstanding expertise is
developed, using world class chess or piano players as an example (Ericsson
and Lehmann, 1996; Ericsson et al., 2007).

– The Psychology of Problem Solving – is concerned with the cognitive
strategies that people use to solve complex problems using experiments with
computer simulations (“micro-worlds”) – see Dörner et al. (1999) and Badke-
Schaub and Frankenberger (2004).

4This categorization does not intend to be a formal and complete model of current psychological research
but is meant only as a possibly incomplete overview of research in psychology relevant to knowledge
intensive work. Noteworthy is particularly that these research paradigms evolve over time and thus
that they can not be part of a consistent model encompassing all research efforts.
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2.2. Multiple Perspectives on Learning

– Psychology of Decision Making – closely related to problem solving, the
research on decision making focuses how decisions are made using prior knowl-
edge, experience, mental models, discussion, analysis and more – individually
or in teams (Badke-Schaub et al., 2007; Brehmer, 2005)

• Educational Sciences – investigates learning processes in school or higher edu-
cation settings (Clark, 2005). In these settings the knowledge or skill is usually
pre-defined and taught to an entire group of students – both aspects that make
these formal teaching situations very amenable to research of formal learning.

• Sociology

– Knowledge and Theory of Action in Sociology – is concerned with how
societies and organizations shape the way peoples perceive their environment
and how people with their knowledge and actions can shape the shared beliefs
in societies and organizations (Habermas, 1989; O’Donnell et al., 2003).

• Philosophy – One of the focuses of philosophy is epistemology, i.e. the theory
of knowledge. Aside from the classical thinkers such as Plato, Aristoteles, or the
philosophers of the period of enlightenment such as Kant and Foucault, a number
of modern day scholars use deduction in combination with insightful examples or
cases for their arguments regarding the nature of knowledge. Examples for studies
of this kind are Habermas (1989), Weick (1993) and Tsoukas (2005b).

• Neurosciences – deals with the mechanisms of the brain currently on a very low
biological level of the neuron. With new sensory technology such as magnetic reso-
nance imaging (MRI), recent findings confirm a number of insights from cognitive
psychology in a more direct way (Jaeggi et al., 2007).

• Industrial Practice / Engineering Outside of the academic community in vari-
ous industries, a few models featuring organizational learning have been developed
as an essence of the experiences of many. The following models stood the test of
application in practical settings:

– The Toyota Production System (TPS) developed and used at car maker
Toyota focuses on continuous organizational learning and has many methods
that include features also suggested by academic research. It is a method that
has proven to be very successful in practice – even outside the Japanese cultural
context – see section 2.4.3 on page 60.

– TQM & EFQM – related to the Toyota philosophy and stemming from a tra-
dition of quality management, total quality management (TQM) methods have
been further developed into an overarching framework for evaluating organiza-
tions using a combination of key performance indicators (KPIs) and qualitative
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judgment. The way in which the EFQM ‘model criteria’ (groups of KPIs) are
designed and causally connected as leading and lagging indicators, echos many
of the findings from academic research. Further details in section 2.4.4 on
page 62.

All of these perspectives are closely related but not identical. The different perspectives
are due to slightly different objectives – e.g.:

• the control (“management”) of knowledge in corporate contexts by management
instead of

• the accumulation of knowledge and skill without direct connection to a value-adding
work process in the context of schools or universities.

The different objectives lead to different foci expressed by the language and, in par-
ticular, by the metaphors used in these research streams – see (Tsoukas, 2005b, Chpt.
10) and (Andriessen, 2006). Language is here both driven by the objectives and shaping
our perspective and with it our way to think about the subject (Tsoukas (2005a), Dörner
(2005, p. 120), Woodward-Kron (2008) and Mertz (2007)), which in turn may influence,
refocus or sharpen our objectives (see also section 2.3.5 on page 43). The result is that
whole research communities thrive around particular metaphors for a problem and may
even re-explore aspects of the problem that have been already investigated and discussed
in other research communities5. An example is the research on knowledge management,
which only significantly unfolded in the last two decades (Nonaka et al., 2006) more or
less from scratch with a special focus on non-formal learning within firms6, while many
important theoretical foundations had already been laid in the educational sciences – e.g.
(Piaget, 2003; Rasmussen, 2001).

The different research streams, despite using different perspectives, frequently come
to similar results. Sometimes however differences are maintained over longer periods of
time. Research streams with hypothesis that cannot be maintained or with a perspective
that proves itself as less useful compared to other perspectives, frequently just die out –
as has happened to the research on expert systems (Ackoff, 1989).

In summary: There are many research streams or perspectives covering aspects of
knowledge management from different angles. The challenge for this study is to integrate
these perspectives into a few coherent general insights about knowledge management.

The aim of this literature search is therefore to present the most prominent perspectives
on the problem and integrate the findings from those perspectives – leading to a few general
insights that have received broad support. Based on these general insights, a particular

5Noteworthy is that some researchers work in multiple research communities and some of the research
streams also overlap.

6see also the detailed discussion of the knowledge management research stream in section 2.5 on page 68
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2.3. Literature Findings Integrated into the PIA-Model

perspective is chosen for the purpose of this study including definitions of the problem
and of the key terms.

To improve quality, this research was conducted following an iterative approach (see
section 3.1.6 on page 93): After a first literature search, a draft literature section was
written, the survey designed, the data collected and analyzed. The statistical analysis
of the data then triggered further literature research, of which the insights were used
to refine this theory chapter and the findings were used to support the interpretations
directly in the result interpretation chapter 7 on page 205. A more detailed discussion on
the research approach will follow in section 3.2 on page 97.

2.3. Literature Findings Integrated into the PIA-Model

From the different research streams, mentioned in section 2.2 on page 23, a number of
common insights emerge. A summary of the insights was already given in section 2.1 on
page 22.

To provide a graphical overview, these insights have been integrated in a model called
PIA(see figure 2.1 on page 31).

2.3.1. Active Learning

Around the 1970s the dominant view of learning shifted from a notion of a passive learner
learning from an active teacher to learning theories, which stress the active engagement
of the student. This shift occurred both in the educational sciences (Clark, 2005) and
developmental psychology (Siegler, 2005, p. 770). In these models the teacher can ’only’
support the student’s learning efforts by creating a suitable context for example by giving
the student a task, which requires the student to learn a new skill in order to complete the
task. Hence the motivation of a student to actively engage in learning in order to solve
the task plays an important role (see also the self-regulated learning model of Butler and
Winne (1995) in figure 2.4 on page 48).

Some of these learning models are very specific to school or academic settings (Butler
and Winne, 1995; Roßnagel, 2008), in which a predefined body of knowledge is taught
with often small and targeted exercises. Other authors cover a broader and less specific
spectrum of learning situations, which arise while solving everyday problems in child
development (Piaget, 2003) and while solving predefined tasks posed to school children
in various experiments (Siegler, 2005). Thus the latter kind of models, covers situations
very similar to problem solving on-the-job.

In the field of knowledge management, most researchers emphasize the process of exter-
nalizing knowledge, i.e. getting the knowledge out of the head of employees and preparing
it for the transfer to other organizational units by means of documents, discussions or
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collaboration (Argote et al., 2003; Nonaka and Takeuchi, 1995; North, 2002). Hence the
focus is on a push concept of knowledge while only few use a pull concept, which in-
volves searching (see section 2.3.7 on page 51). This is also partly due to the choice of
knowledge as research paradigm, which inherently suggests a quasi-material object-like na-
ture of knowledge, which can be deliberately created, stored, hoarded7 (Abou-Zeid, 2002;
De Long and Fahey, 2000; North, 2002) and transferred (Nonaka et al., 2000).

Thus, while the principal insight, that learning is primarily an active and personal
endeavor on behalf of the learner (Butler and Winne, 1995; Jacobson and Prusak, 2006;
Piaget, 2003; Siegler, 2005), appears trivial – it is frequently overlooked or at least deem-
phasized in much of knowledge management literature.

An important implication of an active learning perspective is furthermore that knowl-
edge transfer based on individual learning processes makes direct management of knowl-
edge impossible. Knowledge can thus only be management indirectly by creating a learning
supportive context (Fahey and Prusak, 1998; O’Donnell et al., 2003), which can include a
wide range of measures such as the supply of suitable information as well as a supportive
leadership style.

Furthermore a number of scholars stress the importance of the task or the exercise that
serves as objective and context for learning (Butler and Winne, 1995; Piaget, 2003; Siegler,
2005). In the before mentioned research stream ’Psychology of Problem Solving’ Badke-
Schaub and Strohschneider (1998); Brehmer (2005); Dörner et al. (1999) and others are
designing tasks to be completed in computer simulated ’micro worlds’ as learning contexts
– in order to study the problem-solving and learning behavior of different participants with
different cultural or experience backgrounds in experiments8. Brehmer (2005) for example
observed, that tasks with delayed feedback impede learning while performing the task.
Furthermore Salter and Gann (2003) in his study on drivers of innovation, concludes that
difficult and open tasks lead to more learning and thus innovation. Thus the task, as an
important aspect of the learning context, plays an important role in learning and hence
features of the task affect learning.

Given the high level of attention that the task receives in the literature related to
learning and the variability of tasks encountered in work settings, this study – with an
on-the-job learning focus – needs to carefully take into account the nature of the task
triggering learning experiences.

Consequently the properties of the task should be included in the empirical data acqui-
sition. As will be presented in section 5.3 on page 141 in further detail, several aspects of
the task – during which learning experiences occurred – have been surveyed, for example:
the concrete example task, which is chosen by the survey participant, is classified into

7The knowledge as object perspective will be covered in further detail in section 2.5.1 on page 69.
8Unfortunately these studies with micro-worlds do not include the opposite (and difficult to realize)
approach: studying variability of learning behavior given different tasks and different micro-worlds.
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2.3. Literature Findings Integrated into the PIA-Model

three groups: routine tasks, more open tasks within longer term projects and even more
open tasks within innovation projects.

This is why innovation is included in the survey data as a special task type: special in-
novation projects, for which it is clear from the beginning that previously applied solutions
will not work without substantial modification and thus the employee is challenged to de-
vise a novel and innovative solution. While innovations are frequently the spontaneous
end-result of a learning process, innovations are included in this survey as an innovation
challenge rather than innovation as an outcome variable. In order to ensure that only
work projects that include an obvious challenge for innovation, are classified correctly in
the data as innovation projects, i.e. in order to assure that the definition of ‘innovation
project’ is understood in the intended way by the participants, multiple probing questions
are used to check a number of criteria for innovative projects (see section 5.7 on page 153
for details).

Another aspect of active learning is the need to economize learning effort (e.g. invested
time) (Boisot and Canals, 2004; Cohen and Levinthal, 1990). Davenport and Beck (2001)
and Hansen and Haas (2001) go even further and point out that in a world with easily
accessible information, those who supply information need to compete for the learners’
attention.

Summarizing, learning requires the active engagement of the learner and the learners
effectiveness in economizing his or her resources (e.g. time) for learning. Furthermore the
nature of the task during which an employee learns, is an important aspect of the learning
context and sets the learning objectives and therefore should be considered in this study
on on-the-job learning.

2.3.2. Perspective Taking

Perspective Taking is filtering Information out of all available Data Given that learn-
ing is an active and personal process, investigating the details of the process on an indi-
vidual level yields useful insights regarding how to manage a learning supportive organi-
zational context.

Knowledge workers continually have to make sense of the situation at work. Not only
since the wide-spread introduction of the Internet, do knowledge workers have a lot of
data and information accessible to them. In fact humans in general are constantly faced
with a very large stream of data, which includes any visual, auditory or other sensory
input and may or may not be relevant to the problem at hand. Hence, for the purpose
of this study and following Ackoff (1989), Davenport et al. (2001) and Boisot and Canals
(2004), data is defined as the unfiltered stream of sensory input available to a person or
an organization9.

9In large parts of the knowledge management literature data, information and knowledge are neither
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Given that most of this data is not relevant to the task at hand and cognitive resources
are limited, humans (and most other living species) have developed filtering mechanisms in
order to extract relevant information. All our sensory systems (especially the eye (Platek
and Kemp, 2009)) are built in ways that allow for effective reduction10 of the data down
to much fewer – yet relevant – features (D’Eredita and Barreto, 2006b; Tsoukas, 2005b).
Thus information is defined here as a collection of relevant features, i.e. a filtered extract
of the entire available data. Orr (1996) refers to this filtering and feature selection process
as viewing a particular problem from a particular perspective. Other authors refer to this
filtering process as ‘attention drawing’ to particular aspects of the problem (Davenport
and Beck, 2001; Davenport et al., 2001; Weick et al., 2005).

Following this idea of filtering, it becomes evident that the more data is available,
the better the filtered information can be – provided that sufficiently efficient filtering
strategies are employed.
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Figure 2.1.: PIA-model – Perspective Taking / Integration / Action Model (Source:
Author)

explicitly defined nor are the differences of these categories explained (Argote et al., 2003; Hofer-Alfeis,
2003; Nonaka, 1991; North, 2002). This is rather surprising, since the field of knowledge management
aims to be a holistic theory of the firm (Nonaka and Takeuchi, 1995; Spender, 1996) – rather than
just information management with a new label. See also section 2.5.5 on page 76 on the importance
of knowledge definitions.

10Many popular data formats, such as JPEG or MPEG-1 Audio Layer 3 (MP3), leverage this effect for a
reduction of the memory size, by removing features from the files, which people would not notice or
hear. Thus in computer science terms, the human sensory system uses lossy compression strategies
for data reduction.
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2.3. Literature Findings Integrated into the PIA-Model

Once relevant features and bits of information are filtered for a given task, people
integrate these to get a coherent view and explanation for the situation as preparation
for decision making. The further abstraction and connection of information into working
models of the world is referred to as knowledge in this study. Graphically11 figure 2.1 on
the previous page illustrates this process of cognition with filtering of the data in step
1 and integration of information to more abstract knowledge in step 2. In the following
figure 2.1 on the preceding page will be referred to as Perspective Taking / Integration /
Action Model or short PIA-model. More details will follow in the next section ( 2.3.3 on
page 34).

Perception filtering can also be dependent on current aims, e.g. when a person enters a
meeting room in order to sit down there, the person will first scan the room for a table and
chairs – rather than proceeding with a detailed inspection of the carpet. Gibson (1986)
modelled this application dependence in his model of ‘direct perception’ (Vicente, 2003).

Note that for the sake of simplicity, factors related to self-regulation such as the per-
son’s current aims or motivation are left out of the PIA-model (figure 2.1 on the preceding
page). Including self-regulatory processes in the PIA-model, like in the self-regulated
learning model (SLR) by Butler and Winne (1995) (figure 2.4 on page 48), because these
aspects would add a whole new layer of complexity to the model.

Filtering is Complexity Reduction Considering filtering as a preparation for decision
making, the filtering process is a way to simplify our picture of the world around us down
to the features that are relevant to a given task (Badke-Schaub et al., 2007). This measure
of complexity reduction (Malik, 2008; Tsoukas, 2005b) allows us to effectively react to the
complexity of the world, despite our limited cognitive resources for integrating information
and decision making (Jaeggi et al., 2007; Porac and Shapira, 2001; Tsoukas, 2005b). Some
authors refer to this ability as ‘human judgement’ – i.e. selecting the essential features
from the total data of a complex situation for decision making (Ackoff, 1989; Davenport
et al., 2001; Tsoukas, 2005b; Weick, 1993). Note that only the perceived complexity is
reduced – the real complexity in the situation or the problem is not reduced12.

Thus only complexity reduction allows us to behave and work efficiently in our complex
environment – certainly at the expense of overlooking details of the actual world around
us. Over time we as humans fine-tune our complexity reduction behavior in such a way,
such that we overlook only irrelevant13 details, which do not reduce the effectiveness of
11The aim of this graphic is to illustrate the common denominator of the various studies cited here – in

a necessarily simplifying form.
12In some engineering systems, the real complexity can be reduced by restructuring many tightly inter-

dependent system components into much fewer modules, which are designed to be tolerant to external
disturbances. Much of the system behaviour can then described and analysed with the overall behav-
ior of the modules as observed at the module interfaces. This is one of the rare instances, where the
true complexity can be reduced.

13Note that, what is relevant, may change over time or depending on the situation and thus these changes
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our behaviour (Gibson, 1986; Vicente, 2003).

Prior Knowledge biases the Filtering Process The PIA-model in figure 2.1 on page 31
illustrates another important effect: Link 4 symbolizes the influence that a person’s prior
or background knowledge has on filtering. Thus the way we filter the data – or in other
words: the perspective we take on the actual world – may change over time and with our
experiences in the actual world we create and modify our prior knowledge. Since prior
knowledge creation is also dependent on the perspective we assume, a feedback loop with
interesting effects is created. Section 2.3.4 on page 41 will cover prior knowledge in further
detail after the next section, which covers the integration of information to knowledge.

Achievement

Cues

Organism's
Perception
of the
World

Actual
State
of the
World

Ecological
Validities

Utilisation
Coefficients

Figure 2.2.: Brunswik’s Lens Model (Source: Author following Vicente (2003))

A similar dependence of perception on prior knowledge is described in ecological psy-
chology by Brunswik (1956): He models perception of the actual world by an organism
as being mediated by a set of cues – as illustrated by his lens model in figure 2.2. The
organism does not perceive the full complexity of the actual world but sees only the cues:
a reduced set of features. To recognize and make sense of the cues, the organism employs
a weighting and interpretation function that Brunswik refers to as ‘utilisation coefficients’.
These utilization coefficients are optimized iteratively through readjustment of the coef-
ficients towards the probabilistically and objectively optimal coefficients (the ‘ecological
validities’) by the organism – upon positive and negative experiences with the actual
world as illustrated by the ‘achievement’ feedback link. Hence the lens model includes the
effect of the organisms personal history, which made it popular within a community of re-
searchers frequently referred to as ‘neo-Brunswikians’ (Vicente, 2003). An example is the

create new challenges even for experienced people.
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2.3. Literature Findings Integrated into the PIA-Model

recent refinement of the lens model by Stewart and Lusk (1994) to distinguish between
‘true descriptors’, ‘cues’ – actually available to the organism – and actually perceived
‘subjective cues’ – see also Stewart (2001) and Vicente (2003, p. 258).

The original lens model includes the essential elements of the PIA-model (figure 2.1 on
page 31): the complexity of all available data is reduced to a set of cues (step 1 in the
PIA-model), utilisation coefficients (a simple form of history dependent prior knowledge)
drives the integration of the cues to a coherent judgement of the situation (step 2 in the
PIA-model) and this whole process is refined by a feedback process involving experiences
with the actual world (steps 1,2,3,4,6 and 7 of the PIA-model).

Nevertheless, with the PIA-model, a new model was created for this study, since it
emphasizes other aspects that are important in this study, which the lens model deem-
phasizes: The PIA-model clearly shows prior knowledge as an important component and
how it is embedded with an internal feedback loop – see also section 2.3.6 on page 47.
Brunswick’s representation of the cues is problematic14 and thus the PIA-model avoids
showing cues and instead illustrates that of all available cues only a few are filtered out
and consciously perceived – symbolized by the filtering funnel.

Hence, in summary, people’s decisions depends strongly on how they have filtered all
available data down to a limited set of information. The filtering mechanism is biased by
a person’s prior knowledge.

2.3.3. Integrating information

Integrating Information causes Learning After covering the filtering and feature selec-
tion process, this section sheds further light on how the collected and filtered information
is connected in order to prepare for decision making.

In his ethnographic study on copy machine technicians at Xerox, Orr (1996) describes
various episodes of a pair of technicians on repair jobs at customer sites. Very revealing
are his analyzes of the diagnosis process of copy machine failures. Orr refers to the data
filtering process as perspective taking, which in his case is very much enhanced by social
interaction of the two technicians through the telling of past experiences in narratives.
The narratives include hints towards a particular perspective on the machine’s problem
(illustrated by link 3 in the PIA-model). Furthermore the narratives also hint towards
a possible connection of the facts and thus towards a hypothesis of the causal chain of
events – consistent with the observed failure symptoms (step 2 in the PIA-model). Orr
refers to this last step before decision making as integration of the facts. In the next step,

14As Stewart and Lusk (1994) propose in their extended lens model, there needs to be a distinction
between the cues, which the actual world exhibits and the reduced set of cues, which a person perceives
for further integration. But even the graphical representation by Stewart and Lusk (1994) does not
directly illustrate that the number of perceived cues is intentionally much smaller than the number of
available cues – which is an advantage of the funnel symbolic of the PIA-model.
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the technicians frequently decide to validate their hypothesis by exchanging the part,
which is suspected to be the root cause of the failure, with a spare part. This last step
is illustrated in the PIA-model (figure 2.1 on page 31) with steps 6 and 715. Blackler
et al. (2000) share Orr’s emphasis on ‘perspective taking’ and attributes great influence
to perspective making and taking in a corporate strategy review process within a British
high technology company.

In cognitive psychology, Sternberg and Hedlund (2002) propose a model very similar
to the PIA-model (figure 2.1 on page 31). Learning is modeled by the following process
steps16:

• Selective encoding (feature selection in order to extract relevant information, per-
spective taking)

• Selective combination (“integrating information into a meaningful interpretation of
the situation”),

• Selective comparison (“relating new information to existing knowledge”)

Sternberg’s model is in one aspect more refined than the PIA-model, since it distinguishes
two different ways of integrating information: creating new mental models and refining
existing mental models.

Similar insights can be found under the research paradigm sense making, which is for
Weick et al. (2005) the understanding of how to connect i.e. integrate different facts – as a
“springboard for action”. They further elaborate: “To deal with ambiguity, interdependent
people search for meaning, settle for plausibility, and move on.”. Hence people search
for a plausible connection and explanation of the filtered information – which is not
necessarily the correct integration of the facts. Once a plausible explanation is found, it
adds incrementally to the body of background knowledge17.

Visualization supports Perspective Taking and thus also Learning All models so far
presented in this section, emphasize the importance of perspective taking for learning and
decision making. While perspective taking and integration of the filtered information is
a cognitive activity concealed in the brain of the learner, it can be supported externally:
One possible support is the interaction with a teacher, who draws the learner’s attention
to relevant aspects of a problem (section 2.3.1 on page 28 and 2.5.1 on page 69). A similar
support effect can be achieved by visualization (Ertl et al., 2008). Learning supportive
visualizations can be either manually created (e.g. a schematic drawing or a mind map)
15Compare also the argument of Weick et al. (2005) that “[...] we act our way into belated understanding.”,

p. 419..
16Both citations are from Sternberg and Hedlund (2002, p. 146).
17from (Weick et al., 2005, p. 419): “[...] the concept of sensemaking suggests that plausibility rather than

accuracy is the ongoing standard that guides learning”.
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or computer generated (e.g. a statistical graph18 such as the Shewhart process control
chart19).
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Figure 2.3.: PIA-model with Visualization (Source: Author)

The PIA-model in figure 2.3 illustrates the effect of a suitable visualization: A suitable
graphical schematic or a statistical graph, can reduce the complexity of the actual problem
and filter out relevant aspects of complex problems. Hence such visualizations can serve as
a pre-filtering tool for complex data or a complex situation, reducing the need for filtering
in the persons brain, which frees up cognitive resources that can be used for more refined
filtering. As discussed before, improved perspective taking also leads to improved learning
and decision making.

In addition, the use of visualization filter is an additional aid not an exclusive perspec-
tive on the problem: With the newly gained insights from the systematic perspective, a
person may still have another unfiltered but more educated20 look at the complex situa-
tion. Hence the strength of systematic visualization lies not in replacing human filtering
but in combining systematic and thus non-subjective analysis and visualization with intel-
ligent but subjective human judgement. As illustrated with the process arrows at the top

18For an example of a statistical graph see figure 7.2 on page 215.
19In statistical process control the Shewhart control chart show the process performance (e.g. the true

dimension of a mass produced component) over the production time for monitoring the true dimension
within tolerance limits (Devor et al., 1992, p. 146).

20As step 3 illustrates, the systematic view of the situation may also have an education effect – i.e. refine
the persons prior knowledge, which in turn enables more effective perspective taking.
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of figure 2.3 on the facing page, this combines the strength and mitigates the weaknesses
of both complexity reduction approaches.

In their case study on problem solving and innovation in civil construction projects,
Salter and Gann (2003) found a simple visualization by ‘sketching on paper’ as one of
the most effective problem solving tools – second only to conversations with colleagues.
Similarly Dodgson et al. (2007) and Carlile (2002) found that models21 of a new product in
development support the ‘design conversation’ of the participating engineers from multiple
disciplines.

The wearable computing pioneer Steve Mann has pushed the concept of computer
generated visualization to a new extreme with the invention of his EyeTap glasses, which
allow to overlay a computer picture onto the real picture as seen through the glasses
(Mann, 2001; Mann and Fung, 2002). He demonstrated the overlay of different kinds of
computer generated visualizations, that were linked to the direction of view of the user,
e.g. text information based on face recognition, additional graphics replacing other visual
objects in reality and a semi-transparent overlay of e.g. temperature information from
a heat camera (Mann, 2005; Mann and Fung, 2002). This augmented reality mixing or
overlaying of a systematic and non-intelligent computer generated visualization onto the
complex reality supports rather than replaces human decision making. This combination
can be very potent, since it leverages the different strengths of man and machine. Steve
Mann refers to this approach as “Humanistic Intelligence (HI)” and contrasts it against
“Artificial Intelligence (AI)” approaches, which rely solely on the computer for decision
making (Mann, 2001; Mann and Barfield, 2003).

As will be detailed in section 2.3.6 on page 47 the learning process itself may be
iterative and may also allow for iterative fine-tuning of the visualization method (step 8
in fig. 2.3 on the facing page). This explains why software used for visualization22, can be
a powerful tool for decision support: The user can iteratively and interactively refine the
visualization and learn more about a problem or a situation. Since the software reduces
the effort required to generate the visualizations, the user can perform more iterations and
thus gain more refined insights. This effect was already realized in the 1960s by one of the
pioneers of computer aided design (CAD), Ivan Sutherland, who saw his early 2D CAD
system “Sketchpad” not just as a fancier and electronic version of a drawing table23 but
as an interactive system, which – by its visualization and interactive features – supports
the engineer in iteratively finding solutions to design problems (Salter and Gann, 2003;
Sutherland, 1964).

21These models could be computer aided design (CAD) models, simulations or similar ‘boundary objects’
(Carlile, 2002) that support visualization and in turn also communication.

22The use of software for visualization is frequently overlooked over the other uses of software, e.g. for
automation of tasks or communication.

23Ironically many companies to this date use CAD systems purely as a more efficient tool for draftsmen
to generate drawings.
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Conversely the lack of a suitable visual support can also lead to a reduced ability for
effective decision making as the observations by Sengupta et al. (2008) in an experiment
involving a computer simulation of a software project confirm: Many of the participating
well experienced project managers failed to make suitable decisions (e.g. when to put
more people on the project) and even failed to learn from their mistakes, when delayed
effects of managerial decisions were not properly visualized and thus managers were not
sufficiently supported in their perception of the project situation. More on the effect of a
suitable perspective on projects in project management in section 2.4.2 on page 58.

Thus, in summary, visualization can support learning and decision making by improv-
ing filtering – i.e. perspective taking. Moreover, interactive visualization software can
support an iterative refinement of the learner’s perspective.

How Knowledge is accepted as True Weick’s notion of plausibility as standard for
“truth”, raises the question how knowledge is justified, i.e. found to be true. von Krogh
and Grand (2000) emphasize in their description of the information-to-knowledge inte-
gration step that new information and knowledge is carefully integrated with the existing
dominant logic. Similar to Piaget’s concept, new knowledge is either integrated in the
existing dominant knowledge or, when the new evidence is overwhelming, a part of the
dominant logic is replaced by a new mental model. von Krogh and Grand (2000) in ad-
dition highlight that dominant logic may be shared, e.g. within an organization, by social
interaction – again similar to Habermas (O’Donnell et al., 2003).

The source of information – in particular its trustworthiness – appears to further affect
knowledge justification: Kane et al. (2005) demonstrated that sharing social identity with
a person, who is the source of new information, makes the justification of this knowledge
more likely. Yet empirical studies on knowledge justification are rare, which supports
Tsoukas (2005b) with his argument that further research is necessary to shed more light
on the processes of knowledge justification.

Yet one important aspect of knowledge justification is widely supported: knowledge
justification depends on prior knowledge and thus may be subject to change.

Prior Knowledge affecting Integration Thus the integration process step, does not
only integrate recently filtered information but also leverages prior knowledge to integrate
the new knowledge (link 5 in the PIA-model). Therefore integrating knowledge requires
retrieval of older knowledge including the retrieval of memories. This retrieval process
appears to have peculiar properties that somewhat resemble the bias that prior knowledge
has on perception:

Loftus (2003) has observed in one of her experiments, that involved showing a video of
a car accident, that witness accounts of a past event (i.e. memories) can be skewed by how
an investigator asks questions about the event. Similarly there appears to be hindsight
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bias, i.e. knowledge about the outcome of an event (e.g. the financial crisis in 2008 and
2009), tends to make people believe that they “knew it all along”, i.e. it appears obvious
in hindsight to focus on the factors leading to the event, while at the time many other
factors were seen as relevant24 Bernstein et al. (2007).

Further support can be found in sociology, where the well known Thomas-Theorem
describes how a particular complexity reducing and subjective perspective in combination
with prior knowledge drives decision making. Citing Thomas and Znaniecki (1927) from
Esser (2002, p. 62):

“And the definition of the situation is a necessary preliminary to any act of
the will, for in given conditions and with a given set of attitudes an indefinite
plurality of actions is possible, and one definite action can appear only if these
conditions are selected, interpreted, and combined in a determined way and
if a certain systemization of these attitudes is reached, so that one of them
becomes predominant and subordinates the others.”,

Thomas and Znaniecki (1927, p. 68)

New Knowledge is Integrated into Old / Prior Knowledge New knowledge is always
integrated into a person’s body of prior knowledge (Roßnagel, 2008, p. 19). Only this
integration makes it usable – i.e. accessible via associations or traces (Roßnagel, 2008, p.
44).

The aspect of integrating knowledge into existing knowledge, can also be found in
the theory by Anderson (1988) on associative networks. He argues that similar to the
biological structure of the brain consisting of networks of neurons, information items (or
chunks) are stored in the brain in a network that connects chunks of information by
association. He supports his theory with various studies concerning short term and long
term memory recall as well as their relation to learning strategies and intensity.

Given that the integration process relies on recently received and filtered information
as well as prior knowledge, the peculiarities of human memory come to bear:

Using philosophical arguments and cases, O’Donnell et al. (2003) argue with the theory
of communicative action by Habermas (1989) that insights from new experience episodes
add incrementally to the background knowledge, if and only if the new insights are in-line
with the existing body of background knowledge. Exceptions are only situations with
drastic experiences, which include undeniable evidence for an alternative truth, which
is incompatible with a person’s prior knowledge. This is in-line with Piaget’s learning

24A very famous example of this effect are the events that led to the Challenger space shuttle accident:
The problems with gaskets of the rocket motor and low temperature were known before the launch –
yet ignored. In hindsight this was a mistake but in the situation the gaskets were only one of many
risk factors.
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model from educational sciences in which new experiences are integrated in existing men-
tal models (accommodation) if possible (Clark, 2005; Piaget, 2003) – similar to Sternberg’s
selective comparison process step. Only cases, in which the new information can not be
accommodated in the existing mental models, are new mental models created (assimi-
lation) – again comparable to the selective combination process step in Sternberg and
Hedlund (2002).

Hence adjustments to the background knowledge are mostly small and incremental,
an effect that is further strengthened by the perception bias caused by the background
knowledge – as discussed in the last section. Yet critical experiences can still change, i.e.
replace aspects of the background knowledge (Esser, 2002, p. 62) – albeit in small pieces
(O’Donnell et al., 2003) – if the critical experiences contradict with a person’s constructed
picture of reality. These changes in the background knowledge may then also lead to a
permanent change in people’s behavior.

Also in psychology this updating effect of the background knowledge has been observed:
In their study using the Iowa Gambling Task (IGT) with normal participants and amnesia
patients, Gupta et al. (2009) found that the amnesia patients performed worse because of
their ongoing loss of declarative knowledge (a special part of background knowledge) used
for judging the success chances of a card deck. The healthy participants engaged in more
incremental updating of their background knowledge regarding different decks and “were
able to draw on these long-term relational representations and stay with advantageous decks
even when receiving frequent (if small) punishments.” (Gupta et al., 2009, p. 1692). The
latter finding supports Habermas’ argument that changes to the background knowledge
from normal (non-critical) experiences are small and incremental.

With growing age the background knowledge becomes increasingly refined and thus
critical events, which can not be accommodated, become less frequently (Piaget, 2003) –
coherent with insights from lifespan psychology, which views crystalline intelligence grow
at decreasing rate as age increases (Baltes and Staudinger, 1999).

In Piaget’s words:

“Everything that we learn as children, impedes us to invent or to discover.”25.

In summary, integrating recently filtered information and prior knowledge into a co-
herent understanding of the situation is a preparations step towards decision making.
The result is new knowledge, which may add or modify the existing body of background
knowledge, which by a feedback effect illustrated in the PIA-model (figure 2.1 on page 31)
again influences perception and integration.

Note that the model of perception and integration in the PIA-model is slightly sim-
plifying in the sense that it shows perception and integration as two distinct processes,
25Piaget’s quote was translated from the French original from a conversation with J.C.I. Bringuier: “Tout

ce qu’on apprend à l’enfant, on l’empêche de l’inventer ou de le découvrir.”.
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while these two processes should rather be seen as a continuum from perception including
increasingly intelligent feature selection to a pure integration of highly filtered information
to knowledge (Tsoukas and Vladimirou, 2001).

2.3.4. Prior / Background Knowledge and Perception

Prior Knowledge affects Perception As mentioned before, prior knowledge biases how
people filter data. A person’s body of prior knowledge is incrementally created over many
episodes of experience. In the PIA-model (figure 2.1 on page 31) this is visualized by the
feedback loop with steps 4, 1, 2 and 3 respectively.

Using a simple classification exercise26 in a laboratory study with 5-year old children,
Siegler and Svetina (2006) observed how children created their own mental models to
solve the posed questions (the experimenters did not give any hints on how to solve the
problems). Once the children learned a superior mental model, problem solving perfor-
mance increased drastically. Siegler (2005) observed similar effects with children learning
to perform simple arithmetic calculations.

Hence the feature selection (i.e. filtering) process depends on the prior knowledge of
people – as is further confirmed in similar ways and in various studies from a broad variety
of research fields:

For Butler and Winne (1995), prior knowledge and beliefs about learning and the
subject play an important role in the learning process – as modeled in their self-regulated
learning model (SLR) – see also figure 2.4 on page 48.

Baltes and Staudinger (1999) model prior knowledge and prior experiences as Prag-
matics of cognition, which together with the Mechanics of cognition – a basic information
processing performance – determines the problem-solving performance of people. Their
model is based on a model by Cattell (1971), who distinguishes between crystalline in-
telligence (prior knowledge) and fluid intelligence (basic cognitive performance). While
the Mechanics performance peaks with age around 25, Baltes and Staudinger (1999) see
the Pragmatics of cognition as stable or even increasing beyond age 25. For them it is
the clever leveraging of prior knowledge and experience (among a few other strategies),
that allow people up until ages around 70 to compensate for their reduced basic cognitive
performance.

For Piaget (2003) and Siegler (2005) children learn by creating ever more detailed
mental models about problems. Thus problem solving performance is largely based on the
mental models the children have learned before. Siegler and Svetina (2006) have observed
in a laboratory experiment that ’encoding’ of a problem, i.e. non-suitable filtering, is one
of the principle causes for children to fail in creating suitable mental models – allowing

26A sample questions for Siegler’s classification exercise is: “Are there more dogs or animals in the
picture?”.
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them to attain increased problem solving performance.
In organizational science a community of researchers support the idea of ’situated

cognition’ i.e. a mode of cognition that draws on mental schemas for interpretation of the
raw data of the external (real) world (Elsbach et al., 2005). Hence they have also observed
the filtering process and its dependence on prior knowledge.

So far the mental models discussed were mostly conscious: In the field of expertise
research Ericsson et al. (2007) has demonstrated that perception can even be trained
deliberately to improve performance – even to reach exceptional performance e.g. in chess
playing or sports (Ericsson, 2005). Quickly recognizing game situations in chess can be
trained to such an extend that they become a skill that is as fast and unconscious like a
motor skill27. Thus once conscious skills that depended on prior knowledge can be trained
so far that at least conscious use of the prior knowledge is not necessary anymore.

Furthermore, prior knowledge is built up incrementally by exposure to many experience
episodes (Carlile and Rebentisch, 2003; D’Eredita and Barreto, 2006b). This implies
means that the body of prior knowledge and with it also the filtering mechanism of
perception is very individual – with an important implication:

Already by the selection of relevant information, decision making becomes an individ-
ual and thus subjective activity (Tsoukas, 2005b; Weick, 1993).

Socially Constructed Prior Knowledge In the last paragraphs empirical evidence for
prior knowledge driving our filtering i.e. perspective taking process was presented. Since
perspective taking dependents on an individual and thus unique body of prior knowledge,
perspective taking driving perception is individual as well. The following paragraphs will
however show that while individual, prior knowledge is not created completely without
the influence of other people – e.g. family, colleagues, friends or even society at large:

A number of authors highlight that the prior knowledge that affects our perspective
on a problem, is in many cases socially constructed. That means that the prior knowledge
is not created mostly independently from others during our own experiences but instead
that a large part of this knowledge was created due to stimuli from the interaction with
others. Thus prior knowledge is affected by the people we as humans interact with,
which includes family and friends but also the organizational environment and society at
large (O’Donnell and Henriksen, 2002; Tsoukas, 2005b). Hence organizational as well as
national culture may influence our decisions by biasing our perception of the environment
and the situation (Starbuck, 2004).

In sociology there is a long standing discussion how society influences people’s actions
and/or how people shape society. Habermas (1989) describes a background knowledge of
the lifeworld about society and self, which serves as reference frame for filtering percep-
27An example for a motor skill is bike riding. People use the skill (i.e. ride bikes) without drawing their

conscious attention to the task.
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tion of the environment. The background knowledge, which is very much comparable
with the prior knowledge mentioned before, is built incrementally over many episodes of
experiences.

In addition, the incremental build-up and modification of the background knowledge,
implies that human perception and thus also behavior depends on one’s personal history.
Therefore, since background knowledge accumulates over time, the feedback loop of the
PIA-model in figure 2.1 on page 31 with steps 3, 4 and 5 shows a dependency of the
cognitive system on the person’s past. In control systems terms, this makes the entire
system controlling human behavior non-stationary – i.e. dependent on the past. This
property is where Hüther (2006) sees a principle source of human adaptability to a wide
variety of circumstances and challenges.

Large parts of Habermas’ background knowledge are socially constructed , i.e. the
knowledge including norms and values is aligned and synchronized with socially shared
norms and values by interaction with others – especially during upbringing but also while
working within an organizational culture28. That implies that people’s perspectives on
problems are very much biased by this socially constructed background knowledge29. Yet
it also implies that people may change the shared background knowledge by their willful
actions and communication (O’Donnell et al., 2003).

Similar arguments can be found in psychology, where e.g. Anderson and West (1998)
argue that climate variables, as used in psychology, measure a certain state of a shared
perspective and thus bias the group’s actions. Strongly shared mental models have even
been shown to support problem solving performance in certain types of tasks (Badke-
Schaub et al., 2007; Mathieu et al., 2000).

In summary: As the first step in decision making, humans strongly filter the avail-
able data down to a smaller set of relevant information. Concentrating on only relevant
information, is essential for effective human behaviour. This filtering or feature selec-
tion process is governed by prior or background knowledge, which has been built-up in
many experience episodes and is continually refined and challenged by interactions with
others and the actual world. Even though the background knowledge may be biased so-
cially by e.g. organizational culture, it remains individual and thus makes decision making
subjective by virtue of the subjective feature selection process.

2.3.5. Language for Thought and Diversity in Discussions

28Similar arguments regarding an organizational background knowledge, which in turn affects cognition
can be found in Elsbach et al. (2005).

29Dörner et al. (1999) found in his research with micro-worlds (computer simulations of e.g. running a
city) that problem solving strategies are dependent on culture: German and younger Indian Managers
on average chose different strategies to solve the challenge.
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Language in Thought Within the context of perspective taking and integration, lan-
guage can be seen from two perspectives: 1.) a special body of background knowledge,
which is socially constructed and 2.) a special skill that allows us to take a particular
perspective on a situation either by thought (Dörner, 2005; Tsoukas, 2005b) or by com-
municative interaction with others (O’Donnell et al., 2003; Orr, 1996; Rasmussen, 2001).
Andriessen (2006) illustrates the effect of language by discussing how metaphors focus
our attention on certain aspects while hiding others. For example, when talking about ‘a
team of specialists’, this term hints towards a group of highly competent individuals, who
are working in established working practices. In contrast, the term ‘specialist work force’
suggests that we are dealing with a uniform specialist resource, while the individuality of
specialists is deemphasized.

Habermas even sees language as our central tool to create an intersubjective rationality
by virtue of the logic inherent in language (Habermas, 1989; O’Donnell et al., 2003).
Similarly Schreyögg and Geiger (2007) argue that “knowledge is constructed in social
communication processes”, p. 83.

These claim are further supported by Hacker and Wetzstein (2004), who demonstrated
in an experiment, that reflexive dialogue improves the quality of solutions in technical
design – even without an expert partner for the discussion.

The empirical results of Reimann and Dörner (2004) from their laboratory experiment
on the effect of self-questioning of engineers during 4 standardized design tasks, indicate
that engineers who frequently pose questions to themselves create better technical designs.
In particular questions that widen the perspective on the problem, e.g. by analogy to
similar problems, and questions on causal effects support the thought process on the
design task.

Thus language is not only a tool for communication, but also a tool to take perspective
and a support for integrating information resulting in new insights and judgement.

Shared Meaning, Deep Discussions & Boundary Objects Teams work most effectively
if they have developed a shared meaning of language and the problem at hand - i.e. if
they have developed a shared perspective of the situation (Sandow and Allen, 2005, p.
8). Once a common language and understanding supports team communication, team
discussions go deeper and lead to better results (e.g. better technical design solutions)
illustrated by the following studies:

Extending the research of Dietrich Dörner on problem solving, Badke-Schaub et al.
(2007) in their study on an air-craft accident and mental models of the pilot team argue
that language is central to using and shaping mental models. They view mental models
as a simplified perspective on the world, which support efficient decision making and also
support coordination, when mental models are socially shared:
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“These models allow them to integrate new information and to make predic-
tions with little mental effort. Due to their nature, these working models are
necessarily simplifications of the world.”,
“When the team members exchange their models in communication, they build
up a team mental model.”,
Badke-Schaub et al. (2007, p. 7, 9)

In the same field of research, Bierhals et al. (2007) found in their empirical multi-
method study that shared mental models in subgroups within teams reduced the need for
explicit communication and improved performance.

Carlile (2002) has found a similar discussion enhancing effect with a 3D (CAD) model,
that acts as a shared perspective on the product in development (a new car model in
his case study). For Carlile the 3D model is a boundary object or shared artifact that
facilitates deeper discussions across functional domains in a concurrent engineering project
– leading to improved decision making of the group of engineers. For a similar insight see
also Dodgson et al. (2007).

After his well known SECI model (see section 2.5.1 on page 69), Nonaka et al. (2000)
added to his theory the concept of Ba (Japanese for shared context or mental space).
Nonaka argues that a Ba supports efficient knowledge transfer.

Studying knowledge transfer via social networks (i.e. networks of personal contacts),
Hansen (1999) observed that a large number of contacts (‘weak links’ ) increases access
to simple knowledge. However when more complex knowledge needs to be transferred,
the total number of contacts becomes much less relevant. Instead the number of ‘strong
links’, i.e. intensive contacts with a shared understanding, drives knowledge transfer. Thus
Hansen’s empirical finding confirms that shared perspective supports deep and intensive
discussions leading to increased knowledge transfer.

Summarizing, creating a common understanding supports deep and productive discus-
sions and can not only be achieved by language but also by shared artifacts as a discussion
basis: e.g. a model, a project plan or a schematic drawing. For Dodgson et al. (2007)
the ‘design conversation’ supported by visual cues (models, sketches etc.) is an effective
working mode for engineers to develop and validate their work in an interdisciplinary
manner.

Validating Prior Knowledge in Discussion by Diversity in Perspective Aside from
building a common understanding and from exchanging knowledge, discussions also have
the effect of challenging each others perspectives on a problem. If the participants are
open enough, the discussion can lead to a validation or falsification of the participants’
prior knowledge – by virtue of the strength of the presented arguments.

Colleagues who share a reasonable level of trust (Sandow and Allen, 2005) may pur-
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posely challenge each other in discussions or conversations to validate their perspectives –
as observed in ethnographic field research by Orr (1996). In his study he describes many
episodes in which teams of (Xerox) copy machine technicians use narratives (in this case:
conversations enriched with stories of past technical problems) to continuously challenge
each others’ perspective on the technical problem – in order to integrate all relevant clues
to a diagnosis and finding a fix:

“Perspective is important in diagnosis. [...] This is one of the reasons that
consultations and joint troubleshooting are so popular and effective. It also
provides someone to whom stories can be told and who will tell stories in
return; the telling of war stories, the consideration of the present with reference
to known diagnoses of the past, is an essential part of diagnosis.”,
(Orr, 1996, p. 124)

In Orr’s example, language is used as a tool for thought, to build a common un-
derstanding of the current as well as past problems and as a medium to challenge and
socially align each other’s prior knowledge, which shapes the individual perspective on
the problem. In the PIA-model (figure 2.1 on page 31), the process is illustrated by link 7
(the communication action itself), a response by the other technician, followed by at least
one iteration of the internal perspective taking and integration loop (steps 1,2,3,4 and 5).
More details on the learning iteration loops will follow in section 2.3.6 on the facing page.

O’Donnell and Henriksen (2002) argue in a similar manner by claiming that Habermas’
lifeworld background knowledge is challenged in discourse by what O’Donnell and Hen-
riksen call ‘validity claims’. When this process of challenging the background knowledge
is occurring in a group of people, it may also have the effect of socially re-constructing
the background knowledge.

Also citing Habermas’ notion of validity claims, Schreyögg and Geiger (2007) advocate
a ‘discursive understanding of knowledge’ (p. 94), which highlights the knowledge quality
improving effects of critical discourse, where this discourse relies on the critical comparison
of multiple perspectives on a problem.

Similarly Walsham (2001) argues that comparing different perspectives drives learning.
Therefore databases storing a single ‘correct’ interpretation for each problem or case are
much less helpful than a controversial discussion with multiple experts highlighting the
difficult points of a topic.

In his study on factors leading U.S. corporations to long-term business success, Collins
(2001a) found that an important common property of successful corporations is a culture
of opinion diversity and controversial discussion.

Yet diversity in teams also poses challenges: Kearney et al. (2009) argue that diversity
in teams (in age, educational background, personality etc.) only supports problem solving,
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when the team members share the personality trait that they enjoy engaging in cognitive
effortful inspection and discussion of a problem30. Thus diversity in perspective only
becomes beneficial, if team members take the time and effort to negotiate a common
language and understanding of the problem.

Last but not least, academia is an example of a social institution that evolved into a
system, which stresses and cultivates the multiplicity of perspectives by means of publica-
tions, citations, peer review and conferences – all with the primary aim of learning (and
teaching).

Summarizing, team members with a diversity of perspectives can engage in critical
discussions, which by comparison of the perspectives and their implications bring implicit
assumptions and subtle differences to the surface. Such deep discussions allow creation,
refinement and validation of shared body of prior knowledge regarding the problem at
hand.

2.3.6. Iterative Learning modelled with Feedback Loops

Feedback Loops in the PIA-Model On the analysis level of a single learning episode,
learning is an iterative activity in which the learner iterates within two feedback loops31:

• An internal loop, illustrated by steps 1, 2, 3, 4 and 5 in the PIA-model (figure 2.1
on page 31), which would model more passive learning activities such as learning,
while reading a text book. The internal loop leads to the incremental addition or
modification of the learner’s body of prior knowledge.

• An external loop, which includes the internal loop (steps 1 – 5) and additionally
includes a decision and action (steps 6 and 7) that interacts with and thus feeds
back to the actual world. The action could be in the form of a small experiment or
trial32, communication (e.g. a discussion) or a searching activity (see section 2.3.7
on page 51). When a visualization technique is used as illustrated in the PIA-model
with visualization (figure 2.3 on page 36), then the person may also iteratively fine-
tune the visualization based on his or her growing understanding (step 8).

30Team diversity is helpful if team members have a ‘need for cognition’ – see Cacioppo and Petty (1996).
Then the team members are likely to overcome the negative effects of diversity, e.g. lack of common
understanding.

31With these two feedback loop the PIA-model at first sight deceptively likens a control system for a
machinery system from control system engineering – e.g. a cascaded double-loop air-conditioning room-
temperature control system). The engineering minded reader should note however that in contrast
to most technical control systems, which are stationary (i.e. have a current state, described by a few
variables, which together with the governing equations completely determines the system’s behavior),
the human cognitive system as modelled in the PIA-model has a history and its behavior depends on
this history and the prior knowledge, which was created in the course of this history.

32An example ‘experiment’ or trial would be Orr’s copy machine technicians exchanging a part with a
spare part in order to test whether this part caused the machine’s malfunction (Orr, 1996).
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Thus external loop activities involve actively probing the actual world in addition
to the refinement of the body of prior knowledge from the first loop.

Figure 2.4.: Self-Regulated Learning (SRL) Model (Source: Butler and Winne (1995, p.
248))

Similar Double-Loop Feedback Effects in Literature Butler and Winne (1995) model
academic learning in a similar iterative manner with their Self-Regulated Learning (SRL)
model as shown in figure 2.4. Like the PIA-model, their model contains a body of prior
knowledge (in their case split up into four categories) that has an initial state and is
modified iteratively as the learning episode progresses. As in the PIA-model, there is
an internal feedback loop that directly feeds the learner’s self-assessment of the learning
progress back into the prior knowledge affecting the learner’s goals and strategies. In addi-
tion there is an external feedback loop outside of the learner’s cognitive apparatus, which
is an external learning performance assessment – e.g. an exam (Butler and Winne, 1995,
p. 248). Similarly but more simplified Goldberg and Cole (2002) model the learning rate
in schools as a feedback system that involves student motivation, academic performance
and the teacher’s expectations of the student.

D’Eredita and Barreto (2006b) describe learning as episodic activity: i.e. learning takes
place iteratively in many episodes (learning experiences) and creates knowledge that is
connected to that episode. The connection to past episodes is recalled upon attention to
the subject. Racsmany and Conway (2006) found a similar episodic structure of knowledge
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in a series of six psychological experiments.

When only learning activities such as reading, searching or discussion are considered,
the SRL-model is sufficiently similar to the PIA-model allowing the transfer of some of
insights applicable to the SRL-model: Drawing on a number of other studies and their
model, Butler and Winne argue that the continuation of the iterative learning process
by the learner is dependent on the learning progress. If the learning progress is at (or
above) the learner’s expectations the learning process continue with further iterations.
When the progress begins to fall short of the expectations, the learner is likely to adjust
his or her learning strategies. But if that does not improve the learning progress over
several iterations, the motivation of the learner will become depressed, which may cause
the learner even to completely disengage from the learning task.

Thus correspondingly in organizational work settings, knowledge workers are unlikely
to continue with a learning effort for many iterations, if there is no substantial learning
progress – in-line with their expectations – visible to them. This feedback mechanism has
an important implication:

Those who learn successfully in a particular situation, are likely to be motivated to
learn even more, while those who do not see progress at any point within a learning episode,
are bound to completely abandon the learning effort. In general this feedback effect is
situational and depends on the person but also an many situational factors – e.g. the
availability of relevant information in a particular case. However if one takes into account
that some employees by personality, skill or prior experiences are more open to on-the-job
learning than others, even a small difference in this openness will be amplified by the
described feedback effect and will lead to either substantially supporting or attenuating
learning33.

Other authors echo this insight: Roßnagel (2008) argues that older employees in par-
ticular may have lost practice for the skill of learning in formal learning settings, since they
have gone through their formal education many years ago and also because corporations
send older employees less frequently to seminars. Hence older employees on average have
a reduced self-efficacy regarding formal learning before attending a seminar. He suggests
to build-up self-efficacy by targeted training in order to avoid a self-fulfilling prophecy
regarding the learning performance.

Further support can be found in the field of problem solving psychology, where Dörner
et al. (1999) describes problem solving as a feedback loop, which is similar to the external
feedback loop of the PIA-model and consists of the following phases:

33From the engineering theory of control system, a self-reinforcing effect will either reinforce itself without
limits leading to something like a resonance catastrophe or cause a system (such as an operational
amplifier) to saturate. Many engineering systems are however also limited by other factors (e.g.
increasing resistive forces) or the process is limited by a new kind of bottle neck that has become
effective. Similarly learning will not spin out of control either but rather other factors will limit
learning, e.g. more difficulties to find good information.
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1. Defining Aims

2. Collecting Information and creating (mental) Models [equivalent to the internal
feedback loop from the PIA-model]

3. Prognosis (using the information and prior knowledge)

4. Planning and Decision Making

5. Feedback

6. Self-Reflection (adjusting the mental model) [this is the external loop back to step
2]

Thus Dörner’s model also contains two cascaded feedback loops that affect cognition
mediated by the adjustment of mental models with internal and external stimuli – similar
to the internal and external feedback loop in the PIA-model (figure 2.1 on page 31).

Iterative Learning with Multiple Actors The iterative learning process, can also take
place jointly with multiple actors: Orr (1996) describes ‘diagnosis’ (i.e. learning to un-
derstand the cause of a technical problem) as an iterative process that involves repeated
adjustment of the copy machine technicians’ perspective on the problem eventually lead-
ing to a solution. Similar to the PIA-model he describes two processes that are equivalent
to the internal and external feedback loops of the PIA-model: In the diagnosis process a
pair of technicians jointly create hypotheses about the cause of the copy machine’s mal-
function. To test these hypotheses, the technicians frequently exchange parts, that are
the suspected cause, against a spare part. This is an example for the external loop from
the PIA-model. But Orr also emphasizes the importance of another activity in diagnosis:
the telling of narratives about earlier problems. By talking about an earlier problem, one
technician offers a particular perspective on the available data of the problem34 to the
other technician. The teller of the narrative is acting with communication and thus em-
ploys the external loop of the PIA-model, while the listener passively compares the offered
perspective against his own perspective and thus employs the internal feedback loop from
the PIA-model.

Summarizing, the PIA-model contains an external and an internal feedback loop that
allows describing learning as an iterative process within these loops. This description of
iterative learning is consistent and similar to various alternative descriptions in literature.
By the nature of feedback loops, the iterative learning process may amplify or attenuate
34Here the ‘data of the problem’ is any data of the problem that the technicians have already obtained and

reviewed and thus is directly available to them in their thought process. Examples are observations
of the technicians about the state of the machine as well as reports of the malfunction by the users of
the machine.
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itself depending on only small differences in the initial and boundary conditions – i.e. the
predisposition of a person for on-the-job learning or an actual learning condition.

The amplification and attenuation effects make the dependency of learning on personal
disposition and situational factors non-linear.

2.3.7. Searching for Information

Searching and Feedback In the last section learning was modelled with the PIA-model
(figure 2.1 on page 31) as an iterative process with an internal and an external feedback
loop. The external loop symbolizes actions such as experiments (or trials), communication
and activities to deliberately gain more relevant information – i.e. searching. Search ac-
tivities may include, searching of databases but also leveraging personal social networks35

to get information from others.
As with the learning activity as a whole, the level of searching activity is subject to

the feedback effect as well: if the learner during a particular learning episode experiences
searching as helpful, he or she is likely to engage in further searching activity, while upon
negative experiences with searching, knowledge workers are likely to abandon the searching
efforts and to seek alternative strategies. If even the revised learning strategies lead to an
alternative support of learning, the learner is likely to disengage with the learning task.

Chiou and Wan (2007) operationalized the learners expectations about the usefulness
of searching for him or her with a common psychological construct: self-efficacy. In their
empirical study on internet searching, they found that searching self-efficacy decreases
dynamically upon encounter of positive and negative search performance results during
the course of a searching episode. Self-efficacy is an important factor, affecting whether
a learner decides to do a search (Debowski et al., 2001), choose alternative strategies or
to stop learning36. Thus the findings of Chiou and Wan (2007) confirm the application
of the cascaded feedback PIA-model to predict the dynamics of searching – incl. the
amplification and attenuation effect of positive and negative search experiences.

Whether search is perceived as helpful, i.e. whether people maintain and build self-
efficacy for searching during the learning episode, depends also on the searching strategies:
i.e. the questions that a learner asks other people or the search terms a learner uses.
If the learner is progressively learning during the learning episode, he or she will also
continuously adjust his or her perspective on the problem and through the new perspective
35In the following the term ‘social network’ labels any network of personal acquaintances and is not

limited to only recently popular web-based communities.
36Bandura (1997) describes self-efficacy as a dynamic phenomenon, which can be ‘trained’ by approaches

such as ‘guided mastery’. Within the PIA-model self-efficacy would be a special part of a persons’
prior knowledge, reflecting the persons prior experiences and expectations regarding a particular task.
Like any other part of the prior knowledge, it can be modified gradually over time, which is consistent
with Bandura’s observations and suggestions. Thus self-efficacy could be seen as a operationalization
of a special part of the prior knowledge as a psychometric construct and therefore represents a form
of complexity reduction.
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the learner will see new gaps of information and thus continuously be able to ask new
questions37. Thus searching and learning may support each other vice versa: with out a
progressing learning effect, searching becomes difficult and without successful searching,
learning becomes difficult.

More on searching and knowledge management, which is not essential to the line of
argument of this theory chapter, is covered in appendix section A.2 on page 288.

2.3.8. Tacit Knowledge and Implicit Learning

The process of integrating filtered data in order to construct new mental models (knowl-
edge) can be conscious as well as unconscious (Scott and Dienes, 2008; Siegler, 2000). This
effect is frequently referred to as explicit (conscious) vs. tacit (unconscious, non-verbal)
knowledge or explicit vs. implicit learning.

Especially the research stream knowledge management (KM) focuses on the challenges
that emerge from attempting to ‘transfer’ tacit knowledge from one person to another – see
section 2.5.1 on page 69. For many KM researchers tacit knowledge is one of the principal
barriers for knowledge transfer (Rolf, 2004; Schreyögg and Geiger, 2005). Of those KM
scholars a fraction further aims to overcome this challenge primarily by externalization
(i.e. conversion of tacit to explicit knowledge) – see e.g. Abou-Zeid (2002); Coffey and
Hoffman (2003); Hofer-Alfeis (2000); Nonaka and Takeuchi (1995); North (2002).

In this section the current state of research regarding tacit knowledge from different
fields will be outlined, which will show that the phenomena associated with tacit knowl-
edge or implicit learning are not well understood in detail yet. There is however evidence
regarding two relevant issues: a) implicit learning rarely happens in complete isolation
from explicit learning and b) tacit knowledge or an implicitly learned skill can be ‘trans-
ferred’ or taught to other people by interactive methods (e.g. working together or joint
practicing). Given these two insights and tacit knowledge and the previously outlined
challenges surrounding learning, I therefore claim:

a) The challenge of tacitness is in many cases overshadowed by and connected to the
general challenge of learning. Thus research on organizational improvement measures
should focus on learning in general first and address the implicit learning challenge
with interactive and social knowledge sharing approaches – as already researched and
suggested in many earlier studies.

b) Since implicit and explicit learning mostly happens in a mixture form, detecting and
measuring explicit learning can be used as a proxy for the entire learning effect – with
both explicit and implicit parts.

37The copy machine technicians in Orr (1996) always think of new places in the machine to inspect after
reshaping and adjusting their perspectives on the problem (in their case predominantly by telling
narratives).
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This claim is further detailed in the following elaborations:

Implicit Learning under Scrutiny from Different Fields From a learning psychologi-
cal perspective, conscious and unconscious learning is referred to as explicit and implicit
learning . Kuhn and Dienes (2005) demonstrated using an experiment involving the recog-
nition of sequences of musical tones, that implicit learning is more than just memorizing
chunks of information in an unconscious manner. After a training session, the participants
were able to classify tone sequences by using an implicitly learned rule.

Along these lines, Dienes and Perner (1999) and Pothos (2007), citing results from
experiments with artificial grammar (AGL), argue that the information integration process
leading to an understanding, e.g. of a mechanism or a situation, is not always conscious but
can also be associative: While explicit learning involves a conscious and deliberate learning
effort, implicit learning – leading to tacit knowledge – can occur unconsciously during
episodes of experience. Dienes and Perner (1999) further argue that implicit learning
creates associative “first-order connectionist networks” – similar to those described earlier
by Anderson (1988). Supporting the theory of associative neural networks, (Sun et al.,
2005) with a neural network computer simulation predict explicit and implicit learning
behavior in more detail.

Other types of implicit learning, e.g. the implicit learning of hidden covariation de-
tection (HCD)38, have found to be weaker than first expected at discovery in the field of
psychology (Roßnagel, 2001).

Given the unconscious nature of implicit learning, it does not come as a surprise that
a property of this form of learning is that people are usually not able to verbalize what
they have learned or to recall the learning episodes (Manier et al., 2004; Nonaka and
Takeuchi, 1995; Tsoukas, 2005b). Frequently this effect appears in the form that, when
an expert tries to explain something, his explanation is hard to understand because the
speaker bases his arguments on many tacit assumptions and insights – which are not
equally obvious to the listeners39.

In the field of knowledge management, much of the discussion focused on a simi-
lar distinction between explicit and tacit knowledge by Polanyi (1966), which was later
popularized in the management literature by Nonaka (1991) – see also section 2.5.1 on

38In an experiment Roßnagel (2001) has shown a series of pictures of long haired and short haired women
to participants and described them as kind and capable respectively. The participants were however
not given any direct hint about the covariation of long hair with kind and short hair with capable.
In earlier experiments other authors showed that participants implicitly learned the covariation. Yet
in more recent experiments, Roßnagel and others found the implicit learning effect to be rather weak
(Roßnagel, 2001).

39The reader may think of some professors, who have a hard time teaching their students, since they have
lost the understanding for what could be difficult to a newcomer. With many years of experience and
practice, for them some of the basics have just become intuitively obvious – i.e. tacit – and thus not
worth to mention or actively think about. It is actually part of the professors’ skill to not have a need
to think about the basics – which frees cognitive capacity for other focal points.
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page 69. An insightful and recent discussion of Polanyi’s conception can be found in
Tsoukas (2005b).

Polanyi illustrates the nature of tacit knowledge with his famous ‘blind man’s stick’
example: When a blind man uses a stick to probe his environment, he focuses his attention
entirely on the tip of the stick in order to learn more about the objects in his environment,
which the tip touches. If the man wants, he can also focus on how the stick feels in his hand
but that would only distract him from his original task: exploration of the environment.
The blind man has developed a high skill level in using his stick as a tool for exploration
– “making it feel as if it [the tool] is an extension of [his] own body (Polanyi and Prosch,
1975)” (Tsoukas, 2005b, p. 127).

This principle applies not only to physical tools but also to intellectual tools: e.g. when
we as humans speak, we don’t think of the rules of grammar but focus on what we want
to express. “As we learn to use a tool, any tool [also an intellectual tool], we gradually
become unaware of how we use it to achieve results.” (Tsoukas, 2005b, p. 127).

These examples illustrate Polanyi’s conception the to-from structure of tacit knowl-
edge: “tacit knowing requires three elements: subsidiary particulars, a focal target, and a
person who links the two.” (Tsoukas, 2005b, p. 103). In the language example, the rules
of grammar are the subsidiary particulars (i.e. the tacit knowledge), which the person
leverages in order to attend to a focal target – here the contents of the expression.

Tsoukas goes even further by arguing:

“We must [...] learn to rely [...] subsidiarily on particulars to attend to
something else, hence our knowledge of them [the subsidiaries] remains tacit.”
(Tsoukas, 2005b, p. 147)

and therefore:

“We achieve competence, by becoming unaware of how we do so.” (Tsoukas,
2005b, p. 150)

Thus for Polanyi and Tsoukas, most of our actions involve the intense use of tacit
knowledge. Hence a large body of tacit knowledge, like that used by an experienced
practitioner, enables particularly effective behavior: “a practitioner’s ability to follow rules
is grounded on an unarticulated background.” (Tsoukas, 2005b, p. 103). This argument
is also supported by Schön (1992) for whom tacit knowledge is acquired and practiced in
action (p. 176).

This further implies that we have many skills in both tacit and explicit forms. For
example, most of us will know how to switch gears in a manual transmission car consciously
by the following steps: 1.) press the clutch, 2.) operate the gearshift lever (“the stick”),
3.) release the clutch. Yet most of us will rely much more efficiently on their tacit gear
shifting skill and just think consciously: “gear up!” or even simpler just: “go there!”. Most
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people will also experience reduced gear-shifting performance, when trying to consciously
control the gear shifting process. The practice in gear-shifting (as a motor task) is not in
the conscious knowledge about the process but in the implicit skill.

The insights by Polanyi and Tsoukas are based on examples, cases and deductive
reasoning. Yet the described properties of tacit knowledge are also being discussed in
psychology:

For Sternberg, tacit knowledge is one of the most important factors in practical in-
telligence – i.e. an intelligence measure that predicts on-the-job performance (Sternberg,
1997; Sternberg and Hedlund, 2002). Therefore he and some other scholars measure tacit
knowledge using Sternberg’s tacit knowledge inventory for managers (TKIM) survey scale
(Colonia-Willner, 1999) by how well mangers choose from a variety of possible strategies
for a number of realistic mini-cases40.

Regarding the high efficiency of tacit knowledge for decision making, some studies
observed higher recognition speed, when the recognition was based on a tacit skill rather
than an explicit recognition process (Boldini et al., 2004; Hintzman and Caulton, 1997).
Yet these findings could so far not be confirmed without contradictions (Dewhurst et al.,
2006).

In the neural sciences, the study by Jaeggi et al. (2007) shows results that high per-
formers in a dual perception and decision task, keep the neural activation levels low, while
the low performers show increased neural activation levels during periods of task overload
(Activation levels are measured by MRI). This could be a hint that the high performers
leverage tacit knowledge more efficiently (with a lower level of activation) and thus keep
more cognitive free for concentrating on the focal task.

However, overall, the link between the use of tacit knowledge and decision making
performance compared to degree of explicit knowledge usage, appears to be a topic of
ongoing research (Dewhurst et al., 2006).

In addition tacit knowledge is special when it comes to knowledge justification – i.e.
conscious and deliberate validation of knowledge. Tacit knowledge by its unconscious
nature escapes conscious and deliberate testing and validation (Schreyögg and Geiger,
2005) – e.g. using deductive logic (Tsoukas, 2005b). It remains unclear how and if tacit
knowledge is validated.

40In Sternberg’s tacit knowledge inventory for managers (TKIM) survey scale, 9 mini-scenarios, which
represent common situations in the business world, are presented to managers by a description that is
about 5 sentences long. For each of these mini-scenarios managers rate the quality and effectiveness
of about 10 strategies to handle the situation (Colonia-Willner, 1999). The instruction is to ‘scan’ the
strategies and rate them. Thus given the short rating time and the brevity of the description, it is
likely that managers give an intuitive answer – i.e. an answer expressing their tacit skills for business
situations. Yet it remains unclear how Sternberg and other scholars like Willner ensure that answers
are truly intuitive rather than based on conscious reasoning. Alternatively they need to follow Polanyi
with the assumption that decisions are mostly based on tacit knowledge and only on a small fraction
based on explicit knowledge or cognitive performance.
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Interaction of Implicit and Explicit Learning Another important facette of implicit and
explicit learning is that there is evidence that neither occurs in complete isolation from
the other but always in a mixture with varying degrees of implicitness and explicitness
(Schreyögg and Geiger, 2005; Tsoukas, 2005b; Wong and Radcliffe, 2000).

Based on an experiment involving children learning basic arithmetic operations, Siegler
(2000) demonstrated that insights on how to solve a problem in some cases first surfaced
in an unconscious (i.e. tacit) form. The children only later became able to explain the
insight – i.e. verbalize the explicit skill. Another form of implicit to explicit knowledge
conversion was detected by Fischer et al. (2006), who observed increased formation of
explicit knowledge for a group of participants that received a special treatment: a night-
long sleeping break between tests.

Based on theory from psychology and simulated using a neural network computer
model with an explicit and implicit learning part, Sun et al. (2005) argues that implicit
and explicit learning happens always in conjunction.

The fact that rates of forgetting are similar for explicit and tacit knowledge (McBride
and Dosher, 1997) in addition to the previously mentioned findings regarding conversion
of tacit to explicit knowledge suggests that tacit and explicit may be stored in the same
neurons in the brain and just differ by the form of connection to the neurons and thus
their accessibility – similar to the concept by (Anderson, 1988) in which working memory
and long term memory differ only by their activation state. Yet this hypothesis requires
further investigation.

Implications of Tacit Knowledge for this Study Summarizing the literature on tacit
knowledge and implicit learning: the PIA-model in figure 2.1 on page 31 would need to
be extended by two modes of integrating information and two modes of prior knowledge:
implicit or explicit learning leading to tacit or explicit knowledge. In normal practice
knowledge workers unconsciously leverage a large body of tacit knowledge in addition to
a usually much smaller portion of explicit knowledge, which is used consciously for decision
making. The mechanisms how explicit and tacit knowledge is converted into the other
form in the human brain are so far not well understood. Yet there are many indications
that learning is rarely purely explicit or implicit but usually occurs as a mixture of both.

The unit of analysis of this study is on the level of an individual employee and not on
the level of episodic micro-processes in a person’s brain. Therefore understanding every
detail of the mechanisms surrounding tacit knowledge is not necessary to learn about
the effect of the organizational environment on learning in general. Thus I do not see
the necessity to model the unclear interactions of implicit and explicit learning for the
purpose of this study in the PIA-model and see this decision as an acceptable measure of
complexity reduction for the purpose of this study.

As many authors stress, transferring tacit knowledge poses a challenge – yet the
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challenge of tacitness is in many cases overshadowed by and connected with
the general challenge of learning. When a specialist has a tacit skill, which he needs
to pass on, the skill’s tacitness limits the specialist in his ability to support the learner’s
learning process. Yet by demonstration of the skill (joint practice), the specialist may
still draw the learners attention to the relevant information, which the learner can then
integrate and acquire the skill – usually in a mixed form of tacit and explicit knowledge.
It depends on the situation, whether the reduced teaching ability of the specialist or the
general challenge of learning the skill is the most limiting factor for knowledge transfer.

For on-the-job learning in problem solving situations, tacitness of a specialist’s knowl-
edge is even less important, since only a fraction (albeit a large fraction) of all learning
activity is with another person acting as an informal teacher or learning companion.

Tacit components certainly becomes a problem in the special case, when somebody
tries to capture knowledge of specialists in a document or a database. However the chal-
lenge regarding tacitness is very much reduced and frequently overcome, when personal
interaction is used in the transfer of the skill (from tacit to tacit). The latter recommen-
dation is far from new and echoed by a large group of scholars (D’Eredita and Barreto,
2006b; Fahey and Prusak, 1998; Hansen et al., 1999; Nonaka et al., 2000; O’Donnell et al.,
2003; Orr, 1996; Reagans et al., 2005; Sandow and Allen, 2005; Schreyögg and Geiger,
2005; Tsoukas and Vladimirou, 2001).

Nevertheless in all cases a big part of the challenge is the learning process. The
challenge of tacit knowledge becomes effective only indirectly and acts on the learning
process by reducing the learning support that the ‘teacher’ may give to the learner – in
person or via documents.

Therefore to go a step beyond the current state of research and add value, the focus of
this study is on the other (and frequently more important) barrier of knowledge transfer:
the learning process (Jacobson and Prusak, 2006).

2.4. Using the PIA-Model to Explain Industrial Practice
Models

A number of practices used in various industries, utilize the effects described in the the
PIA-model (figure 2.1 on page 31). Practice based management models such as the Eu-
ropean Framework for Quality Management (EFQM), modern project management and
the Toyota production system are discussed in this section as examples of leveraging the
modeled effects.

Due to their practical effectiveness, all three industrial practice models received wide
spread acceptance – in industry as well as the engineering sciences, where all three prac-
tices have found their way from industry onto the research agenda (Goldratt, 1997; Serrano
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et al., 2008; Walgenbach and Beck, 2000). The primary difference of these practice models
to other management theories is that these models were initially developed from practical
insight rather than theory.

2.4.1. Commonalities of Industrial Practice Models

The three industrial practice models have the following principle commonalities:

1. Create a shared understanding first. Before searching for solutions, all three
practices first mandate spending time on analyzing and creating a shared under-
standing of the current situation (status) with respect to the organization’s aims.
This combined analysis and teaching effect is achieved by visualization of the
situation in a framework model.

2. Engage in deep discussions regarding the solution. The shared, systematic
and simplified visualization of the situation (based on the model) allows all partic-
ipating organizational agents to engage in a deep and constructive discussion with
the aim to find and agree on a way or to get from the current state to the common
goal.

3. Repeat and iteratively improve using feedback loops. Steps 1 and 2 are
iteratively repeated to improve both the suitability of the shared perspective and
the solution.

How these principle commonalities link to the perception and integration model, will
be discussed later in section 2.4.5 on page 66 after describing the properties of the three
mentioned industrial practice models in more detail. The reader may recall the effect of
visualization illustrated with the PIA-model in section and figure 2.3 on page 36.

2.4.2. Project Management

In project management, a complex and interlinked activity with many actors is broken
down into a finite number of activities – referred to as the work break-down structure
(WBS) (Wysocki, 2006, Chpt. 4) or as the activity definition (Project Management In-
stitute, 1996, Chpt. 6). Each activity in the project plan is an abstract and complexity
reducing representation of a group of smaller tasks that are related, e.g. a single person
within a time frame is responsible (Wysocki, 2006, Chpt. 1).

Next, the activities are put in sequence and the web of the most important dependen-
cies are visualized e.g. by a PERT chart (for an example see figure 2.5 on the next page).
Since not all but only the most important dependencies are modelled, also this step is
leading to complexity reducing representation. It follows the estimation of the duration
of the individual activities and a back-planning from a due or delivery date taking into
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Figure 2.5.: Gantt Chart Example (Source: Author)

account resource limitations and leading to due dates for all individual activities (Project
Management Institute, 1996, Chpt. 6).

The Gantt chart is however only the tangible outcome of the three initial planning
steps: Very important and valuable is also the shared understanding about the dependen-
cies and the expected duration of the activities plus an agreement on when to work on
which activity in a coordinated manner. The resulting plan is effectively an agreement of
all participants about the overall and intermediate goals of the project. Important for the
project manager is furthermore a visualization of the critical path, which is the longest
sequence of activities, which determine the overall project duration (in the example in
figure 2.5 the critical path is the sequence: “Task 1.1”, “Task 2”). In conventional project
management, the project manager will focus his actions on this critical path (Project
Management Institute, 1996; Rand, 2000).

Given the importance of a suitable perspective on the project including a suitable
focus of the project manager on the critical activities, Goldratt (1997) advocates for an
alternative to the critical path: the critical chain – which takes into account resource-
constraints and psychological aspects of deadlines41. The value of his approach derives
largely from the novel perspective that he offers. Even though Goldratt does not present
any empirical evidence, the novel perspective has been intriguing enough to start a new
line of discussion including case studies of industry applications (Best, 2006; Bevilacqua
et al., 2009; Yang, 2007) and theoretical or empirical analyses (Herroelen et al., 2002; Raz,
2003; Steyn, 2001).

After the project has started, modern project management approaches include a status
monitoring process, with which the actual progress is compared with the planned progress
in addition to a continually updated forecast for the required remaining time in the active
activities. The status can be a simple information such as “X% complete”, or the current
41To fight the “student syndrome” leading to procrastination, when there is much safety hidden in activ-

ities, Goldratt advocates the use of buffers at strategic locations.
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state plus a prediction42 about the activity completion date, e.g. “The status gets a yellow
light, since we are currently lagging behind in the activity and need more resources in
order to meet the deadline. Yet with more resources we expect, that meeting the activity’s
deadline is still feasible.”43. Both types of status reports can be aggregated, e.g. across
departments, via statistical or qualitative methods – leading to a picture of the project
state with systematically reduced complexity. As an alternative to this conventional
approach Goldratt (1997) instead suggests to monitor the actual completion times and
the resulting state of the various project buffers.

The purpose of the project status is to effectively support a discussion with the aim
to decide on corrective actions44 early in order to bring late activities back on track or to
reschedule affected activities leading to make-up plans. Again the systematically gener-
ated status information is only a starting point for the discussion to which individual and
possibly richer perspectives on the project’s state may be added and used in conjunction
for robust decision making.

Since the status and predictions about the activity completion dates are continually
updated, project management approaches with this updating feature, effectively include
an internal feedback loop that continually refines the predictions and corrective actions.

The structuration and visualization of the project activities and additionally of the
actual project progression, facilitates learning across projects, allowing to continually
refine the systematics to control the progress of projects45.

In summary, project management methodologies offer different ways of visualizing the
scope of the project work and the current project status, supporting effective decisions
on corrective actions to keep the project on course. As the comparison to the alternative
critical chain approach by Goldratt (1997) shows, different perspectives on the project are
conceivable and given their importance are the topic of a intense debate.

2.4.3. The Toyota Production System

The Toyota Production System (TPS) is mentioned here as an example, since it has
gained importance beyond its original application at Toyota. Many other companies apply
principles of the system under the headings lean production / manufacturing, Just-in-time
Production or Continuous Improvement (Kaizen).

42See also activity 10.3 ‘Performance Reporting’ from the Rev 3 PMI framework (Project Management
Institute, 1996, Chpt. 10).

43Wysocki (2006) describes 5 types of status reports in Chpt. 10 on p. 321ff.
44One of the simplest, yet not always effective, corrective actions is putting more man-power on an

activity.
45While the organizational actors using a project management methodology will have learning experi-

ences, which they transfer across projects, most project management approaches do not systematically
support across-project learning. Hence there is no explicit long term focus in project management –
in contrast to EFQM of section 2.4.4 on page 62 and the TPS of section 2.4.3.
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The system was developed in the 1950s by Taiichi Ohno, Shigeo Shingo and Eiji
Toyoda for mass producing cars with finite customizations based on the work of W.
Edwards Deming, whose ideas (Deming, 1985) eventually lead to the TQM (Total Quality
Management) approach, and Walter A. Shewhart (the prime father of Statistical Process
Control (Devor et al., 1992; Shewhart, 1931)) (Liker, 2004).

The system consist of a few principles on how to design flow production systems as well
as management principles that need to be applied with concrete methods and processes
for the individual organization, plant or department. Thus one strength of these principles
is their abstract nature that allow for application and utility in many different settings.

The production principles frequently have two sides: a perspective on the production
process and linked hints on how to improve production. For example, processes should
be designed according to the following principles (labelled with the original Japanese
technical terms):

• Muri – Decompose a complex process into its simplest parts [process perspective]
and standardize these process parts in order to be able to monitor and continuously
improve the standardized process steps [improvement action].

• Mura – Make the entire process lean – i.e. look for unnecessary inventories [flow
perspective] and reduce them as much as possible – e.g. by stabilizing the previ-
ous process step using statistical process control with key performance indicators
(KPIs)46 [improvement action].

• Muda – Elimination of any wasteful activity and focus on the value creating ac-
tivities. To support finding wasteful activities, the TPS has 7 categories of waste:
1.) over-production, 2.) unnecessary motion, 3.) waiting, 4.) excessive transport
of parts, 5.) over-processing, 6.) inventory 7.) rework and scrap [value stream per-
spective] (Liker, 2004, p. 28). How the different kinds of waste can be eliminated
depends on the actual process [improvement action]. The progress of improvement
can be tracked with KPIs such as actual work time over cycle time.

These three principles all have in common, that the create a new level of transparency
on the processes - either by an abstract model of the work in process steps or by complexity
reducing KPIs that reflect process performance in a few numbers. Thus new transparency
is created by a shared and simplified perspective on a complex process. Transparency
and visualization are frequently used techniques of the TPS: An example is the guidance
for part design, which should aim at making any misalignment or missing components
directly and visually obvious. Another example are the Andon boards at central locations
46Key performance indicators or KPIs are numerical measures that indicate the performance of a process

in a numerical and therefore simplified manner. Examples are the average throughput time of a certain
type of parts, defect rates, yield rate, work hours per part or profit per part.
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on the shop floor of a flow production line, which visualize the current state of the process
to all workers.

It should be noted, that if the shared perspective is labelled as simplified here, it
is simplified with respect to the full complexity of the process. Commonly this new
systematic shared perspective is more detailed than what can be exchanged easily in
discussions without such a common perspective.

The newly agreed upon shared perspective is not only used to describe the status in a
detailed way but also to discuss and agree on targets. Especially KPIs lend themselves for
target setting but also for monitoring improvement, which is important either to facilitate
feedback – in case of failure – and equally important – in case of success – to applaud the
participants.

In the scientific community, especially the value stream perspective focusing on waste-
ful activity has received attention – under the name value stream mapping47 (Bevilacqua
et al., 2008; Lian and Van Landeghem, 2007; Serrano et al., 2008).

Hence, in summary, much of the strength of the TPS derives from using a simplifying
but suitably focusing model to create a shared and simplified perspective on a complex
process. The TPS contains only very few prescriptive and specific hints for process im-
provement, since many of the suggestions in TPS are very general and can also be found
in other manufacturing optimization approaches. The shared perspective and the gen-
eral nature of the hints support the development of domain specific and therefore highly
specialized and effective solutions. The effectiveness of the process improvements are con-
tinually monitored and refined along with the shared perspective in a feedback approach
called Kaizen.

2.4.4. EFQM

Until the 1960s, quality engineers focused on classical statistical process control (She-
whart, 1931) with applications purely in production and the ISO 9001 series of standards
(Wilkinson and Dale, 1999). Yet in the 1960s, quality engineers began to realize that many
drivers of quality are located outside of the manufacturing shop floor (e.g. the relationships
to suppliers, human resource management, strategic management, etc.) (Walgenbach and
Beck, 2000). Total Quality Management (TQM) systems began to evolve.

Inspired by ideas that form the basis of the Toyota Production System (TPS) and
the Baldridge Award (Evans and Jack, 2003; Sims et al., 1992) in the U.S.48, the EFQM
organization was founded as a non-profit organization in 1988 by 14 larger European cor-
porations such as British Telecom, Volkswagen, Dassault Aviation and Philips (European

47in German: “Wertstromanalyse”
48Following the successes of Japanese firms with statistical process control based on the work of Shewhart

(1931) and Deming (1985). An initiative was started to promote total quality management to the U.S.
industry with the Baldridge Award for outstanding U.S. implementations of total quality management.
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Foundation for Quality Management, 2003) as a European TQM organization. Since then
EFQM has grown to over 800 members and focuses on training auditors (EFQM assessors)
and the European Quality Award (EQA) (European Foundation for Quality Management,
2003).

Hence the EFQM model was initially created from industrial practice and, due to its
popularity49 and the support of the European commission (Walgenbach and Beck, 2000),
only later (in the 1980s) began to attract scientific interest and investigation – e.g. Bou-
Llusar et al. (2009); Burkhard (2006); Ehrlich (2006); Evans and Jack (2003); Kujala and
Lillrank (2004); Rusjan (2005).

EFQM goes beyond pure process modelling and aims to provide a framework to assess
the entire organization – which is shown in figure 2.6. For each block in the figure there
are a number of sub-categories, e.g. Category 3 People has 5 sub-categories, including 3a:
“People resources are planned, managed and improved” and e.g. 3c “People are involved
and empowered” – see also (Bou-Llusar et al., 2009) for details.

Figure 2.6.: The EFQM Excellence Model (Source: European Foundation for Quality
Management (2003))

EFQM inherited50 the central idea from statistical process control: continuous im-
provement (category 5b) based on systematic measurements of quality, cost, throughput
times and adherence to schedules – all to the expectations of the customer (category
5c-e). This is effectively an internal daily-business short-term feedback loop for iterative

49A recent example for a full EFQM implementation is the reinsurance Hannover Rückversicherungs AG
(Heinrich and Kohlenberg, 2008).

50Given their common heritage, the element continuous improvement based on measurements is shared
amongst EFQM and the Toyota Production System TPS.
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improvement.
Yet the scope of EFQM goes beyond these smaller short-term improvement iterations,

extending the concept of monitoring and incrementally improving an organization’s pro-
cesses with key performance indicators (KPIs) for all aspects of the organization – incl.
soft aspects such as leadership and human resources51. Improving the entire organization
certainly is a medium to long term effort.

In contrast to other holistic KPI-based approaches such as the balanced score card
(Kaplan and Norton, 2007), the EFQM framework is a predefined, systematic, holistic52

and complexity reducing perspective on all aspects of the organization. This predefined
nature of EFQM has the advantage that its users need to engage with this – for them
foreign – view of their situation, leading to new insights. Using the EFQM model does
however not imply that it is the only and most suitable perspective on the organization. In
the contrary, a number of EFQM practitioners advocate the combination of EFQM with
other models, e.g. the Balanced Score Card (BSC), which allows for a better focusing on
the specfic and current issues of an organization and thus can be an ideal complement to
EFQMs overview perspective (Lamotte and Carter, 2000; Schmidt, 2008).

For the assessment of the enablers and the result indicators the EFQM society has
developed the RADAR method, which describes the assessment process as a multi-stage
and mostly qualitative yet strictly structured process with teams of trained usually ex-
ternal assessors53. In contrast to most other corporate benchmarking approaches, the
RADAR process includes numerical scores (for complexity reduction). But instead of re-
lying on pseudo objective and overly simplistic linear aggregation schemes using weighted
sums of subscores, the RADAR process allows the assessors at every level54 to use their
sound and intelligent judgement to set the numerical score covering and simplifying the
entire complexity within an enabler or results category. Subjectivity in this assessment
is reduced by working in teams of assessor. In addition, the RADAR process not only
evaluates the current performance of all parts of the organization but assesses whether the
local performance is the result of a well defined process complete with integrated review
and continual improvement mechanisms (integrated feedback cycles) – see also European
Foundation for Quality Management (2001).

As in project management and TPS, the assessment of the situation is not only used
for understanding the status quo but also to set goals and monitor improvement.

Particular to the EFQM model is furthermore the split of assessment categories into
51In the EFQM model the term ‘people resources’ is used instead human resources to emphasize the

individuality of people.
52EFQM encompasses all parts of an organizations.
53The RADAR methodology emphasises many of the quality criteria also known in the social sciences,

e.g. systematic analysis based on categories or inter-subjective qualitative judgement (Wengraf, 2001).
54The only exception is the very top level for the EFQM excellence award, for which the scores of the

different enabler and result dimensions are aggregated by a weighted sum. Yet for practical applications
this sum is not required.
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enablers and results, which are also called leading and lagging indicators respectively. The
lagging result categories, cover direct business success categories, such as financial results,
customer satisfaction or corporate image. The leading indicators track results that only
with a time lag will lead to the direct business results, e.g. good leadership positively
affects productivity and thus also positively affects the financial results (Schmidt, 2008).

Noteworthy is that the EFQM model does not include a strict description55 of how
the leading indicators, possibly in a combination, directly act on the lagging indicators.
Only recently have researchers begun with attempts to empirically confirm the causal
links between leading and lagging indicators (Bou-Llusar et al., 2009; Evans and Jack,
2003). Yet for the effectiveness of the EFQM model a detailed and mathematically strict
description of the causal linkages is not necessary: Strict and detailed descriptions of
the linkages would become very complex – especially when relevant yet industry specific
factors are considered. Thus avoiding a strict linkage definition is effectively a complexity
reduction56. The fuzziness of the model leads practitioners to focus first on monitoring
and improving all categories of the model in iterative steps, which – at least according to
the common professional insight of the EFQM member organizations – will support and
improve the organization’s effectiveness. Again for this improvement cycle modelling the
causal linkages of the model strictly in mathematical form is not necessary.

The EFQM model furthermore includes very abstract guidance on how to support and
improve the enabler and result categories with the Fundamental Concepts of Excellence.
These include for example insights from W. Edwards Deming with “Excellence is visionary
and inspirational leadership, coupled with constancy of purpose [including communicating
this vision within the organization].” (European Foundation for Quality Management,
2003). Yet given the abstract nature of this guidance, they are applicable to many different
kinds of organizations, but also require significant skill and effort in applying them in a
concrete context.

Summarizing, the EFQM approach, like project management, focuses and spends sig-
nificant effort on building a common and deep understanding of the state of the organiza-
tion – shared by all relevant organizational actors – as a sound platform for an deep and
intelligent discussion in order to find context specific solutions. EFQM covers all aspects

55An example for a strict description would be a causal graph (Pearl, 2003) – as frequently used in
structural equation modelling (SEM) (Pearl, 1998).

56Describing and empirically proving the causal links implicit of the EFQM model would require first
to operationalize all leading and lagging indicators as empirically useful numerical constructs, which
are general and equally valid across multiple firms in different industries. In addition a range of
environmental factors (e.g. the specific market environment) would need to be monitored and modelled
during the time of the study. Next, given the sizable variable number, data over a large number of
firms would need to be collected. Only then with suitable assumptions on causality could the causal
linkages be demonstrated empirically. The two earlier cited EFQM / TQM validation studies by
Bou-Llusar et al. (2009) and Evans and Jack (2003), which claim to validate most causal linkages, use
questionable data and methods given the complexity of the problem and the diversity of the surveyed
organizations.
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of the organization (e.g. human resources) and balances short term with long term goals.

2.4.5. Link to the PIA-Model

As mentioned in section 2.4.1 on page 58, there are 3 principal commonalities amongst
the three industrial practice models. The effect and effectiveness of these commonalities
are discussed in the following with reference to the PIA-model.

1. Visualize to create a shared understanding first. All 3 approaches spend
significant time and resources on creating a shared understanding of the current
situation (status) and of the organization’s aims.

Reaching the shared understanding is usually facilitated for example by a mental
model57, a visualization or a key performance indicator (KPI), which show the
situation in a simplified (i.e. complexity reducing) and systematic manner. Hence
applying the industrial practice models effectively creates a pre-filter to aid and
reshape the team members filtering of the problem’s complexity as illustrated by
step 1 in the PIA-model with visualization (figure 2.3 on page 36).

The improved filtering also improves the understanding (step 2) and leads to better
decision making (step 6). Thus this is how the industrial practice models facilitate
improved local and contextual decision making by those directly involved – rather
than using prescriptive instructions that may not fit the context.

The improved filtering is achieved by opening up a novel way to analyze the problem,
which is achieved by offering a visualization tool, an analysis method or by qualifi-
cation of the team members (i.e. by adding to the team member’s prior knowledge:
link 3 in the PIA-model).

Since the shared perspective is created by a team of employees and regularly re-
viewed, its subjectiveness is decreased and its robustness and usability is improved.

Furthermore the industrial practice models do not only require the shaping of any
shared perspective, but give specific hints and prescriptions on how to systemati-
cally analyze and visualize the situation leading to a single and contextually relevant
perspective within the limits of a prescribed framework. This perspective might be
equally suitable as other perspectives but – by its systematic nature – exhibits the
great advantage that it has a stable bias – i.e. the perspective does not depend on
the current situation or the hopes, prior experiences and wishes of the participat-
ing organizational agents58. In contrast, subjective perspectives of individuals or
even groups of people are never completely without situational and subjective bias.

57e.g. in the TPS: looking for all wasteful actions in a work process
58Within the PIA-model (figure 2.1 on page 31) ‘hopes, prior experiences and wishes’ are modelled in a

simplifying manner with the component ‘prior / background knowledge’.
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However despite its bias, subjective perspectives may more suitably represent the
situation – especially since non-systematic perspectives frequently allow to cover
more complexity. Therefore a value greater than the sum is derived from a fusion
of an unbiased but possibly simplifying systematic perspective and a subjective but
complex perspective. This fusion is achieved by discussion and subsequent learning
of all participants indicated by step 7 of the PIA-model.

Hence the result of this perspective shaping process is an agreement of a detailed –
yet complexity reducing – shared view of the situation with little bias and therefore
high robustness (Argote (1999, Chpt. 4), Prusak (2005)). The artifacts created in
the process of perspective shaping, e.g. a project plan or a KPI system, are only a
support tool, used to create socially constructed and thus shared knowledge in the
heads of the organizational participants, which drives the perception of the situation.
See also section 2.3.4 on page 41.

2. Engage in deep discussions regarding the solution. All 3 industrial practice
models contain little guidance on how to solve a concrete problem. At best vague
and context-independent general solution hints are provided, which require a sig-
nificant and intelligent effort to apply them in an actual context. Therefore the
newly created deep59 shared understanding of the situation allows the participating
organizational agents to engage in a deep and constructive discussion in order to
agree on goals, track improvements from an earlier status assessment and to develop
or adapt solutions for the specific context of the firm.

In the PIA-model these discussions integrate the information from the shared and
individual perspectives into new knowledge (step 2), which is the basis for decision
making regarding the solution (step 6) and action (step 7) finally.

3. Repeat and iteratively improve using feedback loops. The three practices
all include regular reviews to reassess the situation and the effectiveness of earlier
decisions – allowing for readjustment or correction of the organization’s actions as
well as the shared perspective. The latter may include also an iterative fine-tuning
of the visualization method (step 8 in the PIAmodel fig. 2.3 on page 36). These
reviews effectively created an outer feedback loop to the implementation of actions
(steps 7 and 8 in the PIA-model).

Hence the planned or ongoing actions as well as the shared perspective are frequently
refined in conjunction.

59In the previous paragraph the shared perspective was labelled ‘detailed – yet complexity reducing’.
A compromise between detail and complexity level is necessary to facilitate effective discussion of a
situation. Also the links between the facts may be complex and therefore – given cognitive constraints
of the human brain – a limitation of complexity in the facts and the inter-linkages is necessary for
humans to cope with the problem (Boisot and Canals, 2004).
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At first sight, it may be surprising that all three industrial practice models focus much
effort on creating a shared perspective60 and leave the discussion and solution finding step
to those who apply the general practices in actual local contexts – rather than giving more
prescriptions regarding the solutions directly.

The PIA-model, derived from an entirely different tradition of scientific studies, can
be used to explain the effectiveness of this approach: Following Weick et al. (2005), Orr
(1996) and many others – as discussed in section 2.3.3 on page 34 – decisions strongly
depend on how we perceive or make sense of a situation.

In addition, a stronger focus on more prescriptive solution hints (e.g. ‘best practices’ ) is
not a good option either, since such prescriptions would need to be very complex to account
for all contextual peculiarities that different organizations may have. Alternatively sharing
of best practices without or little modification is limited to a small range of contexts
(Matson and Prusak, 2003).

Hence, summarizing, the strength and generality of the three different industrial prac-
tice models, beyond simple ‘best practice’ sharing61, derives from indirectly supporting
decision making – in a contextually relevant manner – by creating and agreeing on a robust
shared perspective first. Since many organizational actors participate in the reasoning and
decision making process, the first step for change management (Beer et al., 1990; Gioia
and Chittipeddi, 1991; Orlikowski and Hofman, 1997; Tsoukas and Chia, 2002) is made:
A shared understanding for the decided actions and possibly also compromises is widely
spread within the organization. Thus these industry practices support organizational
learning including individual learning and organizational change in a holistic manner.

2.5. Alternative Perspectives Covered in Literature

Earlier in this chapter (in section 2.3 on page 28) the PIA-model (figure 2.1 on page 31)
model was presented and will be used for the interpretation of the results from the survey
data in the later chapters. This section gives an overview of a number of issues and
lines of argument that are subject to intense discussion in the literature – but which
for different reasons have not been included in the model – either because covering these
aspects adds complexity to the model, which is unnecessary for this application or because
the argument is incompatible with the literature, which forms the basis of the PIA-model.

60In his discussion of an organizational matrix structure, Bartlett and Ghoshal (1990) argues that the
strongest effect from organizational structure derives from the fact that all organizational actors must
assume a particular perspective. Thus he implies that if managers can flexibly assume different
perspectives on the organization, the formal organizational structure becomes less important.

61Certainly ‘best practice’ sharing can also be done with sensible modifications to a local context. Yet
such modifications usually require first an abstraction of the features of the best practice followed by
an application of these features – after a structured analysis step – in a different and new way to the
new context. I would argue that such an approach is more similar to the general approach of the three
practices presented here rather than to ordinary best practice sharing.
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Therefore the aim of this section is to compare the PIA-model to other similar or even
opposing perspectives in order to sharpen the understanding of the model further and its
relation to other widely discussed points of view. This also implies that this section is
useful but not essential for understanding the other parts of the study.

The next subsections cover the following alternative perspectives on knowledge, learn-
ing and knowledge management:

• Knowledge as Object rather than a Personal Skill

• Identifying Application Relevant Knowledge (Knowledge Maps)

• True Knowledge vs. Diversity of Perspectives

• Valuation of Knowledge

• Importance of Knowledge Definitions

2.5.1. Knowledge as Object rather than a Personal Skill

In the field of management science, knowledge management (KM) is seen as the field of
research that provides relevant insights regarding knowledge creation, retention (storage)
and transfer within organizations (Argote et al., 2003). Other management scientists
further include the use of knowledge within the scope of KM (De Long and Fahey, 2000).

Yet given the choice of the term ‘Knowlege’ as an important part of the KM research
paradigm, KM analyses the problem through a very particular perspective leading to
claims that in some aspects stand in contrast to the general insights described before in
this chapter. In addition in large parts of the KM literature a definition of knowledge
is either not made explicit at all or only a vague definition is provided (Schreyögg and
Geiger, 2007) and there is only a limited agreement on the definition of knowledge – which
is part of an ongoing discussion in the field of KM (Fahey and Prusak, 1998).

This section highlights the differences between some of the most important claims
from KM and the general insights presented before (in section 2.3 on page 28), which are
used in form of the PIA-model as basis for this study. Many of these differences have also
caused discussions within the field of KM – as will be discussed later.

Most influential for KM is the SECI model presented in (Nonaka, 1991; Nonaka and
Takeuchi, 1995). Central to Nonaka’s model is the distinction between two forms of knowl-
edge: explicit and tacit knowledge. Referring to Polanyi62, Nonaka sees tacit knowledge
as a genuinely personal type of knowledge that can not be verbalized, while explicit knowl-
edge is verbalized knowledge that surfaces directly in discussions and can be captured in
documents.
62Tsoukas claims that Nonaka has misinterpreted Polanyi (Tsoukas, 2005b, Chpt. 6). Hence it can be

argued that Nonaka misinterpreted or at least overly simplified Polanyi’s notion of tacit knowledge.
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Based on this dichotomous notion of knowledge, the SECI model illustrates how
knowledge is converted between these two types of knowledge in a cycle with 4 modes
of knowledge conversion (Nonaka et al., 2000, p. 9):

1. socialization (from tacit knowledge to tacit knowledge – e.g. by working together)

2. externalization (from tacit knowledge to explicit knowledge)

3. combination (from explicit knowledge to explicit knowledge)

4. internalization (from explicit knowledge to tacit knowledge)

Later Nonaka et al. (2000) added the concept of Ba, the Japanese term describing a
shared context in which social knowledge transfers take place.

Particularly illustrative is Nonaka’s example of a Matsushita engineer trying to learn
from the Osaka Hotel Head Baker the perfect dough kneading technique in order to
implement it in the next generation Matsushita bread baking machine. Nonaka describes
this episode as externalization process converting the tacit knowledge of the baker to
explicit knowledge that is then transferred to the engineer – facilitated by the context of
working together.

Many authors in KM have used the SECI paradigm to describe knowledge transfer
and conversion – exemplary papers are: Abou-Zeid (2002); Hussi (2004). Very frequently
the application of the model goes along with the implicit assumption that knowledge has
properties similar to that of money or a stock pile of a commodity:

• it can easily be identified,

• it can be counted (and its value measured),

• transferring involves mostly sending it, while receiving it does not involve much
effort on behalf of the receiving party,

• it can be disconnected from people (externalized),

• it can therefore be managed directly

For examples see: North (2002) and Hofer-Alfeis (2003). As the arguments supporting
the PIA-model showed and the following arguments will further detail, none of the above
listed implicit assumptions describes knowledge and learning well.

The analogy with money yet has one deceiving advantage: the model is easy to un-
derstand for people with a traditional management training and existing management
techniques can be applied with minor modifications63. Consequently the aim of many
63Following Weick et al. (2005) with his argument that plausibly rather than lengthy validation is the

standard for adopting new knowledge, it is not surprising that this model was widely adopted in the
management and computer science literature.
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authors is to disconnect knowledge and capture it in databases. For example, Coffey
and Hoffman (2003) try to capture the knowledge of NASA design experts in a database,
given the long time scales of NASA projects. All these approaches emphasize knowledge-
as-objects or knowledge stock to the detriment of knowledge flow – as Fahey and Prusak
(1998) remark. Hopefully NASA can reap their efforts when the time comes and the
database allows their young engineers to learn. Yet only if the young engineers put effort
into learning from the database and if the lessons are truly useful for so far unforeseeable
application, will their initiative payoff64.

Yet it is unclear if Nonaka was fully understood, if one considers for example the
following quote from Nonaka and Takeuchi (1995):

“Information is a flow of messages, while knowledge is created by that very
flow of information, anchored in the beliefs and commitment of its beholder.
Thus understanding emphasizes that knowledge is essentially related to human
action.” (Nonaka and Takeuchi, 1995, p. 58)

Furthermore when Nonaka describes his SECI model as a cycle, one could also interpret
the phases 1.) externalization (tacit knowledge of person A to explicit), 2.) combination
(transfer of explicit knowledge) and 3. internalization (explicit to tacit knowledge in
person B) as a teaching / learning relationship. However this is not how it is widely
interpreted by many knowledge-as-object authors.

A special subgroup of these knowledge-as-object authors further claims that knowledge
objects can be attached to process steps – for examples see: Binner (2008) and Kwan and
Balasubramanian (2003). Their aim is to provide a managerial tool for verifying whether
the person responsible for the process step has the required knowledge. Most of these
arguments focus on explicit knowledge and while most of these authors acknowledge the
existence of tacit knowledge, their focus on explicit knowledge leads them to ignore the
tacit part (Fahey and Prusak, 1998).

Nonaka’s publication and widespread adoption of his model yet also called for further
testing of the model and many critics:

In line with the findings presented in earlier sections, D’Eredita and Barreto (2006b)
and Tsoukas (2005b) re-interpret the Matsushita bread baking example in a different way
that contrasts with Nonaka’s model: In their view the joint dough kneading experience
of the head baker and the engineer, made the engineer focus on the right bits of data
(filtering) and thus allowed the engineer to learn the kneading skill even though the
64Haas and Hansen (2005) demonstrated that in some cases, even searching takes too much effort in com-

parison to the returned value of the findings. In his study, different teams from a consulting company
were analyzed how much they searched for information in the firms knowledge database, which was
incentivized, and how successful the teams’ projects were. Quite unexpectedly those teams, which
simply relied on their experience and little searching, found ways to use their time more effectively
and produce better business results.
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head baker could not describe his tacit kneading skill with words. Hence the non-verbal
interaction of working together was pivotal in this case. Since the engineer was consciously
reflecting on his learning process, he was able to acquire the skill in tacit as well as in
explicit form. D’Eredita and Barreto (2006b) and Tsoukas (2005b) therefore claim that
the baker’s tacit knowledge was not converted and transferred at all. Instead the baker
only helped the engineer to learn the bread kneading technique by himself. Since the
baker was not able to verbalize his technique, his help was limited to the demonstration
of the technique, which however turned out to be sufficient. Therefore the authors (with
the support of Schreyögg and Geiger (2005)), claim that tacit knowledge can not be
converted directly and without loss or change into explicit knowledge or vice-versa. The
process of knowledge transfer should be modeled as a teaching / learning process instead.

Looking at this bread baking episode from very far away, one could still use Nonaka’s
model to describe the process as a conversion of the Baker’s tacit knowledge into explicit
knowledge, which is owned by the engineer. Like all models Nonaka’s model is a simplified
representation of the true mechanism and has limited predictive power (and usability). His
perspective is particularly useful when analyzing knowledge transfer between large groups,
e.g. organizational units or corporate divisions. For these high level types of analysis,
Nonaka’s model is abstract enough for large groups of actors but still highlights that
forwarding of documents and instructions should be supported by face-to-face meetings
and if possible personnel transfer (Argote, 1999, Chpt. 5).

If Nonaka’s model despite all weaknesses is useful, the question arises, why an alterna-
tive perspective and model was used for this study: The aim of this study is to gain a more
detailed understanding of how knowledge transfer happens between individual knowledge
workers and how it can be supported by an organization. Since this research question
requires an investigation at the individual level, I claim that the perspective illustrated
by the PIA-model (fig. 2.1 on page 31) is more effective, since it highlights the following
aspects of knowledge, which are particularly relevant at the individual level:

Knowledge is personal – i.e. in the heads of people (Okhuysen and Eisenhardt, 2002;
Schreyögg and Geiger, 2005; Schön, 1992; Tsoukas, 2005b) and thus requires personal
interaction to make use of it (Salter and Gann, 2003; Sandow and Allen, 2005). Other
definitions are certainly possible but less useful, since with these other definitions clearly
differentiating information from knowledge becomes difficult. More importantly, when
knowledge is stored in text books in the book shelf, then the difficult step of getting that
knowledge into somebodies head, becomes overly deemphasized, which diverts attention
away from the learning step in knowledge transfer.

The transfer of knowledge requires an active engagement with the subject
mostly on behalf of the learner – as argued for in section 2.3.1 on page 28. Despite
this simple and old insight, the receiving part of the knowledge transfer, i.e. the more
difficult part, is frequently neglected by the knowledge-as-object KM fraction – e.g. see
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(Hofer-Alfeis, 2003; North, 2002). The required effort is even increased when the learning
process also requires searching for information first (Haas and Hansen, 2005).

Thus knowledge in the heads of people cannot be managed directly like a simple other
corporate resource (such as money or material). What can be managed is the organiza-
tional environment that supports individual and personal learning driven by the initiative
of the individual employee – and this is what this study focused on (see section 2.7 on
page 80).

2.5.2. Identifying Application Relevant Knowledge in Maps

Knowledge is hard to identify in detail as a set of small knowledge objects. Since
knowledge is the integration of information, its essence is the connection of new infor-
mation with existing knowledge – as discussed in section 2.3.3 on page 34. Knowledge
therefore has little meaning when taken out of context (Tsoukas, 2005b).

Nevertheless it is possible to identify roughly larger bodies of knowledge – e.g. me-
chanical engineering knowledge about steam systems. One could even devise an exam to
test whether a predefined scope of skills is covered. This method is frequently used when
aiming to test for a minimum and standard skill set.

Yet knowledge management frequently aims to manage in particular those skills, which
are non-standard capabilities of a corporation and give the corporation a competitive edge.
Hence it is not surprising that a number of authors – e.g. Hofer-Alfeis (2003); Ward (1998)
– aim at mapping explicit non-standard organizational knowledge.

Attempting however to determine the scope of knowledge accurately, rather than test-
ing of a predefined standard scope, is more difficult – especially since many skills are
mixture of explicit and tacit knowledge. Therefore even the experts owning the knowl-
edge can only identify the explicit portions. The management of INCAT, an Australian
fast ferry ship yard, does not fear loosing their know-how to competitors, when allowing
e.g. a Hong-Kong ship yard, to build their catamaran design on license. As a principle
reason they cite casual ambiguity, the inability of even their expert engineers to fully
explain which knowledge it is that allows them to perform. This is in-line with Tsoukas
argument that we need to first become unaware of a skill to fully master it – as discussed
on p. 54 (Tsoukas, 2005b).

Hence the attempts to map the particularly valuable non-standard explicit knowledge
can be coarse at best65. Furthermore, as discussed before in this section, knowledge in
the heads of people can not be managed directly like any other commodity. Therefore

65Aside of mapping attempts in Hofer-Alfeis (2003); Ward (1998) cited earlier, which focus on mapping the
explicit knowledge, mostly disconnected from people, there are also other efforts to map the knowledge
in groups of people – e.g. see the social network approach by Cross et al. (2001). Social networking has
a very different aim: facilitating personal communication incl. possibly teaching/learning situations.
Due to their human centered approach, social networking techniques are much more promising.
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it is not only difficult to create knowledge maps, their usefulness in application is also
very questionable – in particular in comparison to the effort and cost to create coarse
knowledge maps.

Yet mapping standardizable skills might be a an effective measure to ensure a minimum
standard qualification level throughout an organization or at various steps in a process
and is practiced in many organizations since many years in the form of formal employee
qualifications programs (with seminars, workshops etc.).

2.5.3. True Knowledge vs. Diversity of Perspectives

As already discussed in detail in section 2.3.5 on page 45, diversity of perspectives
supports learning (Collins, 2001a; Orr, 1996; Walsham, 2001). Yet this diversity should
have some limits – i.e. some commonalities in the perspectives and with it a shared
language to describe the problem is important for effective problem solving in groups as
well (Badke-Schaub et al., 2007; Carlile, 2004; Nonaka et al., 2000; O’Donnell et al., 2003).

So far this effect was discussed with reference to the PIA-model and how humans inte-
grate filtered information to knowledge that they hold for the (current) truth (section 2.3.3
on page 34).

It holds however also an important insight with respect to the knowledge-as-object
perspective: Organizations should not aim to enforce and disseminate a single ‘true’ stock
of knowledge but rather should cultivate a (possibly limited) diversity of perspectives
within the organization. Certainly these different perspectives will also have different
levels of quality. However a diversity of perspectives offers a multitude of alternative true
views highlighting different aspects of a problem. Thus in a practical application of the
knowledge a critical comparison of different perspectives can lead to an overall improved
and contextually relevant perspective on a problem.

Hence knowledge management efforts need to take into account that knowledge has
different levels of quality (Schreyögg and Geiger, 2007). Thus like nature-approximating
models in Physics, even partially flawed knowledge may have practical usefulness – albeit
better quality knowledge could be more useful. Conversely not all what is treated as
knowledge in organizations is flawless knowledge. Hence Schreyögg and Geiger (2007)
have observed knowledge quality control processes in some firms.

Thus summarizing, a deep understanding of a problem frequently derives from a true
understanding and a critical examination of multiple different perspectives on a problem.
Thus aiming for a single true stock of knowledge should not be the aim of knowledge
management efforts. The aim should be the cultivation of a diversity of high quality
perspectives on an issue.
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2.5.4. Valuation of Knowledge

In principle the valuation of knowledge is important, since in corporate environments time
to ‘manage knowledge’ is limited. Thus knowledge management competes with other value
creating processes – most frequently the core short term value creation process of the busi-
ness (the daily business). Hence to be able to prioritize knowledge management activities
with other business activities it would be necessary to estimate the value of the knowledge
that is managed. Some authors from the knowledge-as-objects school of thought, there-
fore argue that knowledge management should aim at explicating and storing or sharing
particularly valuable knowledge (Bornemann and Alwert, 2007; Bornermann, 1999; Hofer-
Alfeis, 2003).

Yet aside from the difficulties with ‘managing knowledge’ (section 2.5.1 on page 69)
there are some properties of knowledge that create significant challenges to assign a mon-
etary value to knowledge:

The value of knowledge stems from its potential for future applications (Fa-
hey and Prusak, 1998). Hence if one can predict future challenges and resulting knowledge
applications for an organization and if one understands which knowledge is needed or use-
ful for these future challenges, then one can estimate the value of knowledge. Meeting
these requirements is at best difficult under practical conditions:

Most firms operate in increasingly turbulent markets and environments (Leibold et al.,
2004; Spender, 1996). Hence predicting future challenges is frequently inaccurate. Since
knowledge is hard to identify – as discussed in the last paragraph, it is difficult to link
objects or fields of knowledge accurately with future challenges.

Thus knowledge hoarding approaches – aiming to fill knowledge databases – entail
significant risks of over-investment in authoring and storing information (Lam and Chua,
2005). Aside from the waste of resources in such over-investments, too much irrelevant or
out-dated information further decreases acceptance of knowledge databases, since search-
ing becomes harder. Searching can even become so difficult and require more effort than
value drawn from the findings (Haas and Hansen, 2005). In fact many larger corporations
have put intense efforts in building up vast databases (North, 2002; Voelpel et al., 2005).
Most of these efforts were not worth the effort – at least from the perspective of the
users and therefore did not become a natural part of the organization without continuing
attention and subsidies (North, 2002, p. 316).

Hence hoarding knowledge disentangled from its uses bears the risk of over-investment
in documenting and storing knowledge as information (Fahey and Prusak, 1998). From
this challenge, the following questions arise for managers: Who decides what knowledge
is valuable? A manager or a larger group of practitioners who are using and will use the
knowledge? Who decides how much effort to invest in documentation and what quality
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2.5. Alternative Perspectives Covered in Literature

documents need to have66?

2.5.5. Importance of Knowledge Definitions

When designing organizational measures to support knowledge management, it is impor-
tant to share a proper definition of knowledge among the members of the organiza-
tion. In particular it is important to understand the subtle difference between information
and knowledge in order to avoid becoming trapped in just launching a new informa-
tion management effort under the new name of knowledge management. (Schreyögg and
Geiger, 2007).

Understanding the nature of knowledge implies understanding the most important
features of knowledge and challenges surrounding knowledge management – and this un-
derstanding is created in a discussion of a suitable knowledge definition with the orga-
nizational actors. Schreyögg and Geiger (2007) for example propose a ‘discursive under-
standing of knowledge’, which defines knowledge as an active and individual construction
in critical discourse processes (as mentioned section 2.3.5 on page 45). Hence their defi-
nition highlights that there are different quality levels of knowledge, which e.g. lead to a
knowledge review process at Shell (Schreyögg and Geiger, 2007, p. 94). Thus if a common
understanding of knowledge is shared within an organization, the chances for success of
measures supporting KM and learning are greatly increased (Fahey and Prusak, 1998;
Hussi, 2004).

Since this integration step is a learning step, it requires the active involvement and
also the necessary prior knowledge on the part of the learner. 2.3.1 on page 28. This per-
sonal concept of knowledge is in-line with the concept of knowing (Cook and Brown, 1999;
Okhuysen and Eisenhardt, 2002). Similarly Schreyögg and Geiger (2007) ‘discursive un-
derstanding of knowledge’ as well focuses on the knowledge construction (in discourse) as
a process or activity. Thus action emphasizing definitions of knowledge such as ‘knowing’
or ‘learning’ are most suitable to describe the challenges surrounding knowledge.

2.5.6. Summary – Alternative Perspectives

In the preceding subsections the argument was made that the knowledge-as-object view,
which is popular in the knowledge management research stream, is not very useful as a
basis to design knowledge management systems. The comparison of knowledge to other
organizational resources such as capital or assets, hides too many aspects of knowledge
Fahey and Prusak (1998):

66Documentation can be created with different levels of effort and different resulting quality. The lowest
level may be storing an individual experts notes without further editing – which then are only useful to
remind the same expert at a later time about his insights. On the high quality end, the documentation
may have undergone several steps of editing, making it understandable for a wide audience without
contextual knowledge and checking for legal aspects e.g. in operating manuals.
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• Knowing and learning requires the active engagement of people – especially when
learning new knowledge (section 2.3.1 on page 28).

• Knowledge is hard to identify (section 2.5.2 on page 73).

• Knowledge cannot be disconnected from people and their context – without loss.

• The value of knowledge can hardly be estimated in sufficiently fine granularity to
support the daily work.

• Knowledge cannot be directly managed.

Thus defining that knowledge can only be found in the heads of people and everything
else is data and information – most suitably captures the properties of knowledge. For sup-
porting knowledge flows in organizations, the focus should be on the activities surrounding
knowledge (e.g. knowing or learning). Further details on the knowledge definition used
for this study in the following section.

2.6. Assumed Perspective & Definitions

In this section the definitions chosen for this research are presented:

2.6.1. Knowledge Definition

As argued for in the preceeding sections, learning is a more suitable paradigm for the
purpose of this study than the notion of knowledge. Just for reference, knowledge, infor-
mation and data are defined for the purpose of this study as follows67:

• Data is any sensory input that we are receiving e.g. through our eyes or any input
that we could receive, e.g. if we looked in the right direction. In the end data is
sensory input but it can be brought to our senses by means of information technology.

• Information is a filtered extract of all available data, either by deliberate choice
or very strongly also by unconscious filtering processes driven by prior knowledge
– see section 2.3.2 on page 30 and following. Information can be in the heads of
people but can also be conserved in written form, e.g. in a university text book or
in newspaper commentary.

• Knowledge is the integration of information and prior knowledge into understand-
ing – see section 2.3.3 on page 34. The process of integrating knowledge is called
learning.

67The definitions used here are in principle following Ackoff (1989) and Tsoukas (2005b).
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2.6. Assumed Perspective & Definitions

Knowledge can only be in the heads of people. A text book in the book shelf is not
knowledge, it is only a carefully arranged stream of information, which is intended
to aid the learner.

Certainly data, information and knowledge can also be defined in other ways. e.g.
some scholars might argue that a newspaper commentary contains knowledge, while a
newspaper report (aiming to only portrait a situation in words) contains only information.

The definition presented for this study has however one important advantage – making
it useful in organizational application68: Information and knowledge are clearly distinct
categories, since one may be stored electronically and on paper, while the other is only
in the heads of people and involves a challenging process called learning. Thus when an
organizational measure is aimed at information management, it is clear that the goal can
be full automation of a data filtering and information transmission process. In contrast to
that, the people bound definition of knowledge already implies that a measure aimed at the
organizational knowledge, can not lead to full automation but requires the involvement
and support of people. Hence it becomes clear to all organizational participants, that
measures aimed at information management are in principle different from knowledge
management efforts.

2.6.2. Organizational Learning Definition

To emphasize the active character of knowledge transfer (section 2.3.1 on page 28), a
learning perspective was assumed for this study. Another reason for learning (rather
than e.g. teaching or knowing), is that learning is frequently the most limiting factor
in the knowledge transfer process and the application of knowledge (as was discussed in
section 2.3.8 on page 56).

There fore and as discussed in the motivation section 1.2 on page 17, gaining insights
on supporting organizational learning with organizational measures is the aim of this
thesis.

Unfortunately “[...] definitions of organizational learning show as little convergence as
definitions of leadership.” (Berson et al., 2006, p. 579). Hence the term ’organizational
learning’ is frequently used rather liberally and often even without explicit definition:
Argyris (2002b) writes about organizational learning but really focuses on managerial
learning, without clarifying a distinction between organizational and managerial learning
and therefore implies that managerial learning is strongly linked to organizational learning.
Argote (1999) studies the organizational learning effect of American ship yards during the
second world war building the ’Liberty Ships’ (Lane, 2001) by using the productivity
increases as a proxy for organizational learning.
68See Fahey and Prusak (1998) who argue for the importance of a practical working definition of knowledge

in application.
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More explicit definitions can be found in the following publications: Following Brown
and Duguid (1991) organizational learning integrates practice, individual learning as well
as change – and leads to innovation. Crossan et al. (1999) model organizational learning in
their 4I framework by “social and psychological processes: intuiting, interpreting, integrat-
ing, and institutionalizing” on p. 523. Hence they link multiple levels: the individual, the
group and the organizational level. Hence organizational learning begins with individual
learning, yet also conversely individual learning is influenced by group and organizational
learning (Vera and Crossan, 2004, p. 225).

Since individual learning is a key element in organizational learning, this study focuses
on the individual learning part of organizational learning.

For simplicity but yet not in contrast with the afore mentioned authors organizational
learning is defined for the purpose of this study as consisting of two major components:

• Individual learning

• Organizational Change – including group learning and change management69 (i.e.
institutionalizing)

2.6.3. Individual Learning Definition

Individual learning was already discussed in detail in the previous sections (especially in
section 2.3.6 on page 47), where it was described with the support of various publications.
Most noteworthy is:

• On-the-job learning is particular (i.e. special) to the problems at the work-
place of an individual employee. Thus this study is not concerned with formal learn-
ing of standardized subject matter – as is common in school, academic or seminar
settings – as studied by Roßnagel (2008) and Maurer et al. (2003).

• Learning as defined for this study is directly linked to perception and to
decision making (incl. problem solving activity) – i.e. the use of knowledge.
Thus it is similar to the definitions used by Berings et al. (2005); Brehmer and
Dörner (1993); Dörner et al. (1999); Sengupta et al. (2008), which focus on problem
solving.

• Learning affects not only the understanding of a particular phenomenon but also
includes the refinement of our perspective on this or other phenomena (see the
PIA-model in figure 2.1 on page 31).

Compare also the operationalization of this learning definition with the learning index
in section 5.4 on page 145.
69For references on change management see (Beer et al., 1990; Orlikowski and Hofman, 1997; Tsoukas,

2005a).
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2.7. Research Gap and Research Question

2.7. Research Gap and Research Question

2.7.1. Research Gap

As outlined in the previous sections many streams of research already offer findings rele-
vant to knowledge intensive work. In particular the mechanics of cognition and learning
have been described as well as a number of peculiar properties of knowledge such as tacit
knowledge.

A large variety of factors affecting learning, knowledge creation and transfer has been
presented. Frequently studies cover a particular cause-effect relation (or a limited set of
factors): e.g. effect of factor A on learning, while holding factors B,C and D constant.
Yet is unclear, which factors most strongly affect learning, when considering a larger more
encompassing set of factors.

When spontaneous (non-formal) learning processes are considered in detail, organi-
zational factors are not considered (Berings et al., 2005). The effect of organizational
factors on learning are only studied as factors causing the participation in formal on-the-
job training activities (e.g. Maurer et al. (2003)).

Furthermore most research focuses either on the individual use of knowledge outside of
organizational contexts or on the non-individual use of knowledge in organizations. Hence
organizational factors are either not covered in depth or, if they are, then the learning
processes are not investigated in detail on an individual level.

2.7.2. Research Question

Given that individual learning is key component of organizational learning, yet little is
known on how to support it by support it with organizational means, the following research
question was chosen:

Which are the most important organizational features that support

or hinder on-the-job learning?

With ‘on-the-job (individual) learning’ as defined before in section 2.6 on page 77 as
spontaneous learning, while solving problems at work.

Since organizations are under constant pressure to adapt to the external environment
(Malik, 2008), it is essential that the organizational members can focus their efforts on a
few important factors, rather than aiming to optimize all learning supportive factors of
the organization.

This main question leads to a number of sub-questions:

• How can we measure ‘organizational learning’?
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• What are the most important organizational barriers and promoters (factors)

of on-the-job learning?

• How can insights about individual learning in organizational contexts,

be used to design organizational measures to support learning?

The next chapters will outline the research methodology (chapter 3 on page 83), the
actually used research methods – i.e. the survey (chapter 5 on page 137), the development
of the statistical analysis algorithm BOGER (chapter 6 on page 171) and result interpre-
tation (chapter 7 on page 205) of this study followed by the implications (chapter 8 on
page 263).
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3. Theory of Science & Methodology

Chapter Contents

3.1. Scientific Paradigma . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.1.1. Methodology as Quality Standard for Methods . . . . . . . . . . 84

3.1.2. Science – a High-Quality Form of Investigation . . . . . . . . . . 84

3.1.3. Basic Assumptions about Reality and the Value of Research . . . 86

3.1.4. General Value Proposition of this Research . . . . . . . . . . . . 91

3.1.5. Perspective Validation and Empirical Results . . . . . . . . . . . 92

3.1.6. Iteration Improves Research Quality . . . . . . . . . . . . . . . . 93

3.1.7. Methodological Approach . . . . . . . . . . . . . . . . . . . . . . 95

3.1.8. Optimizing Methods – Cost vs. Benefit and Quality . . . . . . . 96

3.2. Choice of Methods for this Study . . . . . . . . . . . . . . . . . 97

This chapter covers the following topics of scientific theory, which form the theoretical
basis for the discussions regarding the applied methods in the remaining chapters:

1.) Basic assumptions about science (and in par-
ticular about quality criteria for scientific re-
sults) underlying this study are presented.

Section 3.1 on the following page

2.) The selection and sequence of the mixed
methods used for this study are summarized.

Section 3.2 on page 97

This chapter is particularly relevant to those readers who wish to inspect the methods
of this study and thus need to understand the basis on which the combination of methods
used in this study has been chosen. Further details on the individual methods are described
in the chapters on the qualitative stage ( 5.2 on page 139), the quantitative survey ( 5 on
page 137) and the statistical analysis ( 4 on page 101 and 6 on page 171).
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3.1. Scientific Paradigma

3.1. Scientific Paradigma

3.1.1. Methodology as Quality Standard for Methods

To judge the methods used in later sections, one first needs to describe quality standards
for methods. Arbnor and Bjerke (1997) refer to such a quality standard as methodology. A
methodology would define criteria such as reliability, validity, context relevance, generaliz-
ability, value to practitioners (e.g., predictive power) and research cost. When considered
individually, most researchers would agree to aim for these criteria – especially when
an ideal research design can be found that perfectly meets all quality criteria (including
cost and duration). Differences quickly surface, however, when the researcher needs to
compromise (e.g., due to a limitation in resources, time and access to organizations).

Different basic and personal assumptions will lead to different optimal trade-offs be-
tween value to practioners, context relevance, robustness of the results, accuracy and
research cost (Arbnor and Bjerke, 1997, Chapter 1).

Thus this section, firstly, makes explicit the basic assumptions underlying this study
and, secondly, describes the quality criteria (the methodology to select appropriate meth-
ods) for this study. In section 3.2 on page 97, this methodology is applied and the actual
choice and sequence of methods for this study is summarized.

3.1.2. Science – a High-Quality Form of Investigation

Useful and valuable knowledge about organizations can be created by researchers but also
by organizational actors, consultants and other investigators. Yet scientific investigation
sets itself apart from other forms of investigation by the following widely accepted basic
quality standards for the investigation process (Arbnor and Bjerke, 1997, p. 23) :

• The investigations should be systematic – i.e., follow more or less strictly defined
rules. Such explicitly described and followed methods reduce subjective bias
and make the process of obtaining the results verifiable – i.e., testable by others.

• The line of arguments should also be systematic. All statements must be ei-
ther supported by citations, deductive reasoning or empirical results. Conclusions
should be confined to those claims that can be supported with new evidence or lit-
erature. In particular, claims regarding causality should be carefully supported
by more than just statistics showing associative relations1.

• The methods, the sourcing from other literature, the interpretation of the results
and the reasoning behind the conclusions should be exposed to peer review by

1Statistical evidence that two variables are correlated, i.e., have high and low values at the same time
(associative relation), includes no support for causality. Only in combination with further evidence
(e.g. from literature) on the direction of causality, can association be interpreted as partial evidence
for a causal claim.
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publications within reasonable time intervals. By this “Principle of Publicity”
(Arbnor and Bjerke, 1997, p. 24), the research may serve as an inspiration for others
and allow others to test the results.

• A representative sample of the existing literature relevant to the topic needs to
be taken into account – in order to find a suitable perspective on the problem and
to avoid overlooking relevant aspects.

• If possible, researchers should work in teams or at least discuss one another’s
research approaches and methods – in order to reduce subjective bias by inter-
subjectivity.

• Since the aim of research is to better understand the subject in question, the result
will be an abstract description of the subject – i.e., a model, or what Arbnor
and Bjerke (1997) refer to as ideal-typified language (as described earlier on p. 89).
Such abstract descriptions are often created to allow some form of prediction in
practical application. In that case, the predictive power of the model or abstract
description becomes a principal quality criterion2.

• In addition, the methods chosen should reliably yield robust and sufficiently
accurate results. The quality requirements for the result of the analysis also imply
quality requirements for the data sample: The sample should be sufficiently large
for robustness and accuracy. In addition, the sample of cases or people observed
should be representative of the sample the researcher aims to make claims about.
(More details on this are discussed in chapter 4 on page 101).

• The limitations arising from any weaknesses from the employed methods or data
sample should be made explicit. This implies that the strength of any new claims
arising from the research should be discussed.

• There are many empirical methods to reliably detect associative relationships – i.e.,
two states or events always occurring in conjunction or in sequence. However, in
most cases association alone is not sufficient: Building models of a phenomenon
based on association, requires in addition insights about the causality between fac-
tors, including the direction of causality. If a research project aims to detect
and support causality with appropriate evidence, an analysis should include either

2Starbuck emphasizes that when a deeper understanding of a social phenomenon is reached, the principle
quality test of this new theory is successful prediction of future events: “When researchers attempt to
improve social systems, they must acknowledge the values guiding their proposals, use their theories
to predict outcomes, and revise their theories when the predicted outcomes do not occur.”, (Starbuck,
2004, p. 1249)
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3.1. Scientific Paradigma

a direct3 or indirect4 method to get from association to causation. (More details on
this are discussed in section 4.1.5 on page 109.)

These quality requirements are independent of the basic assumptions and aims of the
research, and they are widely accepted.

Aside from the use of explicitly defined and robust research methods, the requirement
of publicity enables the scientific community to further improve insight into a topic by:
1.) testing research results by peer review (and thus identifying robust insights – which
will survive) as well as 2.) iteratively refining and further developing insights by sharing
new results with other scholars. Thus scientific results shows a superior quality and
robustness not only in the rigorous application of robust methods but also when a claim
stands the test of time – i.e., when the results are confirmed by other researchers with
new perspectives, new data and other methods.

3.1.3. Basic Assumptions about Reality and the Value of Research

Knowledge about Organizations is Socially Constructed In the theory chapter 2 on
page 21, the PIA-model (figure 2.1 on page 31) was presented as a model describing
the process of learning in episodes. The principal insights are not limited to learning
in work settings but apply equally to learning of researchers during the course of their
investigations.

Like organizational actors, researchers must make sense of the situation in the organiza-
tion under investigation. Given that organizations are complex social systems, researchers
need to reduce this complexity (Starbuck, 2004, p. 1238) by describing their observations
in more abstract categories, which are the necessary basis for building models and creat-
ing abstract insights that allow application and transfer to future cases. In section 2.3.2
on page 30, this process of complexity reduction was described as the highly subjective
process of perspective taking, which can be supported (but not replaced) by systematic
analyses or visualizations (section 2.3.3 on page 35). As illustrated by the PIA-model with
visualization (figure 2.3 on page 36), the analysis methods can also be iteratively refined
in the process, which may improve but also subjectively bias the results.

3A direct way to support a causal statement with empirical results is by active experimentation (Hitch-
cock, 2007). The complex system or process under study is actively manipulated, and the effect of the
intervention is observed. Interactions of variables can be detected by design of experiments (DOI) –
see also Box (1994).

4In a number of research fields, interventions or manipulations of people, economies and organizations
are not a feasible or ethical option. In these cases, researchers frequently combine statistical analysis
of association with other methods to find the direction of causality – e.g., using qualitative methods
(Starbuck, 2004). Other researchers make the strong assumption (Hitchcock, 2007) that sequence
indicates causation, such as in longitudinal studies (e.g. Maurer et al. (2003)) or data mining in
biology (e.g. Opgen-Rhein and Strimmer (2007)). In modern statistics, a number of methods are
under development that allow one to draw conclusions regarding causality with weaker assumptions,
which thus require less support by other methods (Pearl, 1998). Yet even these modern methods do
require assumptions - albeit weak assumptions.
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Scientific knowledge about organizations is also constructed by the subjective creation
of categories, which are used as a specialized and subjective language to describe organiza-
tions (Starbuck, 2004). Given that researchers mostly work embedded in research commu-
nities, these categories and perspectives are affected by national culture (Dalmedico, 2004)
as well as the culture of the research community. Therefore a number of management sci-
entists view knowledge from organizational research as socially constructed (Arbnor and
Bjerke, 1997; Goldberg and Cole, 2002; Malik, 2008; Starbuck, 2004; Tsoukas, 2005b). So-
cial construction was already illustrated with the PIA-model in section 2.3.4 on page 42.
In the following, researchers who see knowledge as socially constructed are referred to as
constructionists.

The challenge of subjective perspective taking in principle applies to all sciences. Yet
given the nature of their problems, some sciences are less strongly affected by it.

For example, the natural sciences are frequently concerned with problems in which the
complexity lies not so much in the operationalization and selection of relevant variables
but more in understanding the interaction of a few variables. The simple mathematical
model5 F = m a from Newton’s laws of motion is a good example: One of Newton’s major
contributions was that an object’s mass and the forces acting on the object are the only two
variables that can predict the object’s acceleration with a very high degree of accuracy6.
All other variables, such as the size and shape of the object, are not relevant unless they
lead to forces acting on the object (e.g., the force of air resistance depends on the object’s
shape, cross-sectional area and current velocity). In contrast to organizational science,
the number of candidate variables for a model is finite (and small), and all variables are
well defined and quantifiable. In addition, Newton was able to perform experiments in
which he controlled (as in manipulated) all variables and the environment. With the
experiments and systematic empirical methods, he was able to show that only the acting
forces and mass determine acceleration in the relationship described by the mathematical
model. Newton’s model stood the test of time and still serves as a good approximation7

used in many engineering sciences.

In organizational science, subjective perspective taking is more challenging because:

• Manipulative experimentation as a way to validate hypotheses (especially about
causality) is frequently not possible or ethically acceptable, and thus researchers
have to resort to ‘natural experiments’ (Starbuck, 2004). Further details follow in

5Force is equal to mass times acceleration.
6Newton’s model is precise enough for most common engineering purposes, yet some applications, such
as GPS, require taking into account relativistic effects – as described by Albert Einstein’s theory of
general relativity.

7Albert Einstein refined Newton’s model with the special theory of relativity. Yet the refinements only
become significant when dealing with bodies traveling at speeds that are a substantial fraction of the
speed of light. Hence it applies to only a few engineering applications. An exception are GPS receivers,
which have to compensate for relativistic effects connected with earth’s rotational speed.
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section 3.1.3 on the next page. But natural experiments or other analyses usually
rely on strong assumptions and cannot be easily replicated under the same conditions
by other researchers.

• Variables are hard to identify and hard to operationalize. For example, a person’s
background knowledge is hard to operationalize, yet it is very relevant (section 2.3.4
on page 41).

• There are many more potentially relevant variables (Starbuck, 2004). The more
potentially relevant variables exist to describe a scientific problem, the more sub-
jective complexity reduction is required, and the more subjective the insights from
the investigation will be.

These challenges commonly require organizational researchers to use subjective as-
sumptions and subjective judgement in order to get to their results, which is why or-
ganizational science studies rarely offer proof without doubt. Given that organizational
science, like other sciences, uses the principle of peer review, theories are inspected and
tested by a community of researchers. Thus results that prevail over extended periods
of time at least have an inter-subjective support. Still, the community of organizational
researchers is embedded in various cultures (national culture, scientific culture etc.), and
the views of the researchers testing a new theory will not be completely independent, and
therefore organizational science results are at least in part subject to social construction.

In addition, and possibly more severe, the organizational mechanisms themselves may
be socially constructed – e.g., they may be influenced by corporate or national culture
(Malik, 2008; O’Donnell et al., 2003; Tsoukas, 2005b; Voelpel and Meyer, 2006). As
described in section 2.3 on page 28, this effect can also be illustrated with the PIA-model
(fig. 2.1 on page 31). The organizational actor’s complexity-reducing perspective on a
problem or a situation is largely determined by his or her socially constructed background
knowledge, and thus the actor’s behavior is also affected by this socially constructed
perspective (section 2.3.4 on page 41).

In summary, organizational science results are at least in part affected by social con-
struction, due to severe challenges with applying scientific methods to complex organi-
zational problems and since the observed organizational mechanisms themselves may be
socially constructed.

The aim of the method mix used for this study is to reduce subjectivity and the effect
of social construction – yet from the preceding arguments, it must be clear that the results
of this study can never be completely unaffected by social construction and subjectivity.

Simple Prescriptive Strategies do not match Organizational Complexity The socially
constructed and thus subjective nature of knowledge creation about organizations is only

88/343



one challenge stemming from the complexity of organizations. Complex systems require
equally complex models to fully describe their behavior (Malik, 2008). Even if modeling is
desired to reduce complexity, too much complexity reduction may lead to overly simplistic
recommendations that work in some situations and fail in others – as the following example
illustrates.

Simple strategy prescriptions (e.g., in the form of best practices8) are popular among
many management scientists and practitioners (Matson and Prusak, 2003). Prominent
examples are the diversification wave in the ’80s, followed by a counter-movement back
to ’concentration on the corporate core competencies’ related to the out-sourcing hype in
the ’90s. Not surprisingly, neither out-sourcing nor in-sourcing is a superior strategy in
general. They may, however, be strategies leading to superior results in certain conditions.
The difficult part is describing the conditions in which a particular strategy is effective.
Given an unlimited number of organizational structures existing in a large number of
different commercial environments, such a model accounting for a high complexity in
boundary conditions is bound to become very complex itself. In addition, this complexity –
including a large number of variables – makes scientific validation in most cases infeasible.

These challenges with complexity explains why simple models and simple strategies are
much more commonplace than complex and contextual models. Yet those simple models
have important drawbacks:

“[...] formal strategy models cannot offer contextually sensitive and time-
sensitive advice, nor can they formally suggest novel ways of acting.”, Tsoukas
(2005b, p.369)

Starbuck further illustrates another drawback of complex models, such as computer
simulations with many variables and delayed effects: the behavior of these models is not
simple and thus hard to understand. Due to the lack of transparency, policy makers
frequently reject complex models in favor of simpler models – even though the complex
models describe reality much more closely than simpler ones (Starbuck, 2004, p. 1238).

How Organizational Research can Contribute Value by Perspective Setting If simple
models do not directly apply in many contexts, and complex models are commonly infea-
sible to create and validate, the question then arises: What can organizational research
contribute at all to practitioners and other researchers?

Management scientist William H. Starbuck9 argues for a more active role of the re-
searcher:

8Best practices can still have value – if they are adapted to local circumstances rather than blindly
applied (Matson and Prusak, 2003). Yet going successfully beyond blind application of best practices
requires substantial understanding of how a particular best practice is effective.

9Starbuck formerly served as the editor of the management science A-Journal Administrative Science
Quarterly and still serves on various boards of journals related to organizational science and organi-
zational behavior.
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“Rather than realities, the social systems I was studying proved to be arbi-
trary categories created by observers or social conventions. I became an advo-
cate for research that actively attempts to change situations rather than merely
to observe what happens spontaneously.”, Starbuck (2004, p. 1233)

In particularly, he recommends searching for and analyzing natural experiments, and
he advocates for the researcher engaging with practitioners in organizational change efforts
to test hypotheses:

“Because systems are almost always close to their equilibria, they do not
have to display the capabilities that they would have when displaced from their
equilibria.”
“Thus, I began urging myself and my colleagues to search for natural exper-

iments and to become engaged in efforts to improve social systems. Natural
experiments occur when exogenous events displace social systems from their
normal equilibria. In these situations, one can see some of the systems’ adap-
tive and reactive capabilities, which opens the possibility of discovering why
equilibria exist.”, Starbuck (2004, p. 1249)

Similarly, Arbnor and Bjerke (1997) argue for an active role of the researcher. However,
in their Actors approach to research, they focus on creating and refining an understand-
ing of the organization together with and for the practitioners. They argue that causal
models, modeling an ever-changing status quo, and simplistic direct attempts to change
the organization, e.g., by ‘motivating employees’, is much less effective than creating a
more refined shared understanding and a meaning for the change among all relevant orga-
nizational actors (including managers and employees) (Arbnor and Bjerke, 1997, p. 279).
Hence the focus of Arbnor and Bjerke (1997) is on perspective setting – similar to the
effect of the industrial practices described in section 2.4 on page 57.

In more abstract terms, Arbnor and Bjerke (1997, p. 60) describe the results and value
added by scientific research following the actors approach as consisting of:

1. ‘descriptive languages’ – a systematic description and summary of the empirical
observations,

2. ‘ideal-typified languages’ – a description of the gained/refined understanding of the
phenomenon and

3. ‘emancipatory interactive action’ – the presentation of the insights to practition-
ers or other researchers stimulating them to reflect on their own perspectives and
understanding for further improvement.

This definition fuses the analysis of empirical observations leading the researcher or re-
searchers to a refined understanding of the phenomenon that can be shared with other
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researchers and organizational actors. Sharing this novel perspective on the organization
allows all involved to mutually refine one another’s perspective on the phenomenon. The
practical value of the research derives primarily from the refined perspective of the or-
ganizational actors, who will be able to make better decisions based on more effectively
filtered information.

Perspective setting is also the primary objective of management science for Malik
(2008). He describes his research as merely a description of his personal and subjective
understanding about mechanisms within organizations, which he has arrived at during the
course of his experiences in various organizations. He argues that the value in his research
lies in the particularly insightful perspective he offers with his viable systems model10.

In summary, despite the complexity of organizations and the contextual differences
between them, organizational science can contribute by helping the organizational actors
to reflect on and refine their perspective, which creates a ‘springboard’ for more effective
decisions and action (see Weick et al. (2005) in section 2.3.3 on page 34).

3.1.4. General Value Proposition of this Research

As already mentioned in section 3.1.1 on page 84, research designs are optimized to meet
multiple objectives (validity, reliability, robustness, cost, duration etc.). In most circum-
stances, designing a research approach also involves making sensible compromises that
maximize the value of the research (given the budget and a limited time frame). There-
fore the intended value of the research in this study needs to be defined first – which is
the purpose of this section.

The aim of this study is to contribute to science and support practitioners in the
following manner:

1. Search for relevant literature to get an exposure to multiple and systematic perspec-
tives on the phenomenon.

2. Systematically observe and describe the phenomenon (in this case, learning in or-
ganizational contexts).

3. Fuse the summarized results from the observations with insights from literature to
gain a deeper understanding of the phenomenon for typical cases.

4. Present this understanding and the methods to other researchers for inspection and
in order to enable others to test and extend the insights.

10The viable systems model models the control mechanisms in organizations by analogy to the control
mechanisms of complex biological organisms – following the work of Stafford Beer. Rather than
giving prescriptive advice about strategy, Malik provides practitioners with a particular perspective
for understanding their organization (in Malik’s way), allowing them to draw their own conclusions,
leading to contextually adapted and relevant decisions.
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5. Present this understanding to practitioners11 in a suitable form that is understand-
able by the audience – thereby offering a new perspective on the phenomenon and
promoting a deeper understanding. Practitioners may then combine their own per-
spectives with the new perspective and reflect on their actions and behavior re-
garding the phenomenon in order to improve decision making (for this study, the
practitioners are managers who shape the working environment to support learning).

This study is applied research in the sense that it aims to bring benefits to practition-
ers. Basic research or methodological research similarly aim for the above value goals by
emphasizing item 3.) rather than 4.).

In summary, this study aims to systematically observe the phenomenon of interest
(here, on-the-job learning) and integrate existing insights on the topic. This study con-
tributes by offering a novel, high-quality and robust perspective to practitioners and
researchers.

3.1.5. Perspective Validation and Empirical Results

Earlier in this chapter, on page 89 and in section 3.1.4 on the previous page, perspective
setting among organizational actors was proposed as the primary method of transferring
scientific insights to practitioners. In the theory chapter (section 2.3.5 on page 43), ex-
posure to the opinions of others by reading or discussions was cited as the most effective
way to develop and refine one’s own perspective on a problem. This raises the question of
whether and why empirical investigations are necessary and valuable at all for creating,
refining and validating perspectives.

As described in section 2.3.6 on page 50, Orr’s copy machine technicians test their
diagnosis by exchanging mechanical parts. Without this validation step, the technicians’
storytelling could easily drive them into a perfectly plausible but completely false direction.

Similarly, Starbuck (2004) cites an example on medical doctors and recommends an
analogous approach to organizational research: The medical doctor, as cited by Starbuck,
claims that good medical doctors do not rely on diagnosis alone, since there are many
more combinations of symptoms than diagnoses, and symptoms may be more or less
pronounced. Therefore instead they validate their initial hypothesized diagnosis with
careful treatment (e.g. low doses of medication) – in order to proceed with treatment in
the same direction, only if the patient responds in the expected manner.

In both examples, empirical information can be very helpful in narrowing down the set
of all possible and internally consistent perspectives on a problem. Compared to discus-
sions with other researchers, for example, empirical methods have one distinctive feature
that makes them effective: they are systematic. As already discussed in section 2.3.3 on
11The target audience for the results of this study are practitioners from the focus organization as well

as from other organizations and other researchers.
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page 35, when a systematic and less subjective but unintelligent presentation (visualiza-
tion) of a problem is combined with a person’s subjective and intelligent perspective, it
can be a strong tool to understand and solve difficult problems, which can also be useful
in scientific research.

Empirical methods are socially constructed tools that highlight only certain aspects of
a problem while hiding others. Yet, despite some built-in biases (by design) and possibly
even systematic flaws of the method, the systematism inherent in the method largely
immunizes it from biases caused by the researcher’s hopes or expectations.

Thus, similar to the analysis methods of the industrial practices described in section 2.4
on page 57, the value of empirical results lies in the different nature of biases – i.e., a
systematic bias rather than a subjective one. The comparison of the empirical results
to the researcher’s current perspective, including current expectations, hypotheses and
hopes, allows the researcher to reflect. This may lead the researcher to adjust his or her
current perspective or even decide to proceed with further empirical investigations with
a new focus.

To put it simply: an answer certainly depends on the question asked12, but a sys-
tematically acquired result may still be surprising and may lead open minds to change
their perspective and/or follow up with further questions. A constructionist researcher
uses empirical results not as source of ultimate truth but to ground his or her process of
perspective refinement on systematically acquired (thus differently biased) data – and, if
possible, refines the perspective over several iterations, as discussed in the next section.

3.1.6. Iteration Improves Research Quality

As described in the last sub-section, empirical methods are powerful tools to validate
the researcher’s perspective. Yet empirical methods will be systematically biased by the
design of the method – e.g., the design of a questionnaire. The design of the empirical
method is driven by the researcher’s perspective.

In section 2.3.6 on page 47, based on various studies, learning processes were described
as iterative processes, iterating between perspective taking, integrating the filtered infor-
mation to new insights, leading to new decisions to look for further information (step 7)
and possibly to adjust the methods (step 8) (see the external feedback method in the
PIA-model figure 2.3 on page 36).

As for other iterative learning processes, iterating between refining the researcher’s
perspective through interaction with other opinions and conducting empirical investiga-
tions is an effective approach to increasing the quality of the research results. Given that
reducing various biases is one of the most formidable challenges in research, iteration
between perspective setting and multiple different empirical methods primarily improves

12... and the questions asked depend on the researcher’s current and subjective perspective.
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the robustness of the research results.
In addition, iterative research approaches are also recommended specifically for scien-

tific learning about organizations in literature.
As mentioned earlier, Starbuck advocates focusing on natural experiments in orga-

nizational research. In order to reduce biases due to subjective values underlying the
researcher’s perspective, Starbuck further recommends an iterative research approach:

“When researchers attempt to improve social systems, they must acknowledge
the values guiding their proposals, use their theories to predict outcomes, and
revise their theories when the predicted outcomes do not occur.”, Starbuck
(2004, p. 1249)

Like Starbuck, Arbnor and Bjerke (1997, p. 306) stress the importance of an iterative
approach for data collection, analysis and discussion:

“The actors approach’s presumption of socially constructed reality places the
creator of knowledge in a situation that is distinct from the two other ap-
proaches. Actors creators of knowledge consciously work under the assump-
tion that they not only change the actors, but are at the same time changed
by the actors. This situation constitutes the basis of how growth of knowledge
in the actors approach ought to take place (a process of mutual development
that creates meaning). In this process, creators of knowledge intend to develop
insights that make it possible for them to look at the situation from a new per-
spective, which in turn changes the initial prerequisites of the study.”, (Arbnor
and Bjerke, 1997, p. 306)

Scientific research in many fields today strongly focuses on frequent publication of
research results. This increases the overall quality of research by increasing the amount
of external review of the results and methods, either by peer review before publication or
by other researchers commenting on a publication. It furthermore allows others to build
their own research on the results of prior research.

Thus in all research areas that rely on publications, the contributing scholars increase
knowledge in an iterative manner – even if the methodology of individual studies does not
include an iterative approach.

Using a sequential (i.e., non-iterative) research approach, with a fixed sequence (e.g.,
literature research, method design, empirical data collection, analysis13) may be a suitable
approach to keep research efforts short and small, allowing for more (public) iterations
by publication. Using an iterative research approach within a research project has the
13The categories exploratory and confirmatory research make sense only for strictly sequential research

efforts. Exploratory studies will be the preparation of confirmatory studies, and the results of confir-
matory studies will trigger further exploratory research.
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disadvantage that the project will have multiple stages and thus grow larger and take
longer. The advantage of iterative research projects is the increase in quality before
publication, which is particularly useful if a research stream is flooded with too many
low-quality publications – too many for other researchers to read and comment on. Then
the longer publication cycle time pays off in a deeper and more substantial scientific
discussion.

Even in statistics there is a branch of scholars who recommend iterative model build-
ing: the advocates of Bayesian statistics (Lee, 1997) suggest that statistical results should
be iteratively refined as new results and insights emerge by iteratively refining prior like-
lihoods to posterior likelihoods14.

In summary, the quality of scientific research stems only in part from its systematic
methods. The other important driver of quality is the iterative nature of research efforts
over time – either by regular publication (and public discussion with other scholars) and/or
by iteration between different methods within a study.

Whether and how many iterations within a study will pay off depends on the re-
searcher’s level of knowledge, the quality and progress of existing literature15 and the
quality of the researcher’s current results16.

3.1.7. Methodological Approach

Building on the widely accepted minimal set of principles regarding good science from
section 3.1.2 on page 84, this section merges the generic principles with those that depend
on the basic assumptions from section 3.1.3 on page 86.

Researchers with a positivist worldview17 focus mostly on the general quality standards
described in section 3.1.2 on page 84, frequently with a special emphasis on methods. Pos-
itivists aim for objective models as complexity-reducing representations of an objectively
perceivable reality, which implies that, if the methods are sufficiently robust and accurate,
the created knowledge will be an absolute and everlasting truth.

Researchers following a constructionist approach (Tsoukas, 2005b)18 also aim to meet
the general quality standards – yet with a different aim for the results: an insightful, i.e.
useful, yet (inter-)subjective perspective on the issue in focus, possibly including a model
14In Bayesian Statistics, the investigator starts with an educated guess (the prior likelihood), which is

successively refined (‘updated’) by new empirical data (to a posterior likelihood). It can be shown
that with sufficient updating with data, the estimated result robustly converges to the true result.
Thus with sufficient data the process is even robust when starting with a false hypothesis – in which
case only the convergence may be slower.

15Especially in fields in which the general quality of studies is low, an increase may improve scientific
progress by deeper discussions.

16Low-quality results or only a slight increase in insight may lead the researcher to the decision to further
iterate within a study.

17In the terms of Arbnor and Bjerke (1997), an analytical worldview, labeled as ‘behavioral science’ by
Starbuck (2004).

18In the terms of Arbnor and Bjerke (1997), the actors approach.
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to illustrate results. In contrast to the absolute knowledge of positivist scholars, the aim
is robust and useful knowledge, but given the challenges of subjective perspectives, the
knowledge created by constructionist scholars is at most inter-subjective19 rather than
objective and everlasting.

Since organizations are complex systems composed of many individual and different
actors, this complexity needs to be reduced by the researcher. As discussed in section 2.3.2
on page 32, complexity reduction is always subjective. Therefore, to mitigate the effect
of subjectiveness, the following techniques can be applied in addition to aiming for the
general quality criteria from section 3.1.2 on page 84:

• inter-subjective methods – merging the insights and judgment of multiple re-
searchers (e.g., conducting research in a team during the design as well as analysis
phases); and

• iterative research approaches – iterations within a study between analysis, discus-
sions, further reading and further empirical data collection20, leading to an iterative
refinement of the researcher’s perspective, grounded in empirical observation (as
described in section 3.1.6 on page 93)

3.1.8. Optimizing Methods – Cost vs. Benefit and Quality

While high-quality research results need to be an aim, the efforts in conducting the re-
search should remain in an appropriate proportion to the quality and value of the insights
aimed for. Thus when selecting a particular research method, the expected quality and
value of the results21 should be weighed against the expected costs of using the method.
Cost here includes any kind of effort associated with the method, especially the time it
takes to apply it. Even though neither research costs nor success is accurately predictable
in most cases, the expected cost effectiveness needs to be taken into account when selecting
a method. Hence the value of a research approach should also be judged by its expected
return on research investment.

Thus when selecting a method, the researcher needs to optimize for the expected value
of the insights, including their quality and cost. The combined results of two different
medium-quality methods may be more valuable and robust than the application of a single
very high-quality and high-cost method.

19Inter-subjective research results are insights that are not entirely subjective, since they represent a
shared consensus of a group of researchers, but since the results are only the consensus of a limited
number of subjective opinions, inter-subjective results are not perfectly objective either.

20In such iterations, natural experiments as suggested by Starbuck (2004) may become useful.
21The true value of the results could vary, e.g., by the level of detail of the insights: the results could be

a series of associations or they could be a causal graph (i.e. associations with the causal direction as
well).
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Given that in the constructionist view of science, every finding is only a (possibly
temporary) stepping stone for deeper and iterative understanding of a subject, high (i.e.
cost-effective) but not perfect quality must be the aim. In addition, in order to miti-
gate the effects of subjectiveness, there are more quality objectives to meet, and thus a
constructionist view of science will lead to other compromises when optimizing methods.

In summary, research should aim for cost effectiveness and optimize for value (including
quality) against cost in order to optimize not a single study but the process of research
by iteration. In addition, different basic assumptions (see section 3.1.3 on page 86) lead
to different optimal compromises in the method design.

3.2. Choice of Methods for this Study

As described in section 2.2 on page 23, there is a lot of literature that is relevant to
knowledge-intensive work. Yet many different perspectives (e.g., definitions of terms) are
used, and there is substantial disagreement among the dominant theories from different
areas of research. Furthermore, the large body of literature varies widely in quality.

Thus there is no lack of literature but rather an abundance of incoherent literature,
which is why finding a suitable perspective on a problem can be particularly challenging.

A side effect of the large amount of literature is the large set of factors that have been
reported to drive or inhibit learning. Therefore this study aims22 for a ranking of the most
important factors affecting on-the-job learning. A ranking in turn requires a quantitative
analysis – which led to the decision to conduct a single23 survey with a broad set of
potential factors. To reduce the candidate factors down to a reasonable level beforehand,
insights from literature and unstructured interviews were used.

After a first literature review, a few qualitative interviews were conducted – not to get
solid and presentable evidence but to support further literature research and to design the
structured survey (see section 5.2 on page 139). After collecting the data from the struc-
tured survey and after overcoming some difficulties with the data analysis (see chapter 6
on page 171), the results were interpreted and compared with further literature research,
which led to further refinement of the perspective (and its illustration in the form of the
PIA-model).

In summary, the study was conducted with a mixed set of methods and involved
discussions with other researchers during all of the following phases:

• Literature Research
22See also the research question in section 2.7.2 on page 80.
23In the spirit of iterative research, it would have been desirable to field multiple surveys and/or qualitative

stages. But given the large number of variables, the survey results are only usable when the variables
included cover a certain critical breadth, which in turn greatly increases the required sample size
(critical mass). Thus a usable survey requires a substantial effort, and therefore I chose to field a
single broad survey rather than multiple narrow and short ones.
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• Qualitative Semi-structured Pilot Interviews and Interactive Pilots of the fully Struc-
tured Survey (including interviews to understand the participants’ interpretation of
the questions)

• A Single Structured Survey with a large set of potentially relevant variables24 and
a large sample size

• Statistical Analysis with a model for statistical inference25

• Interpretation of the Results

• Further Literature Research

• Model building (as perspective setting)

• Write-up & Presentation

The sequence of methods gives this study the following properties with respect to the
quality criteria described earlier (in sections 3.1.2 on page 84 and 3.1.7 on page 95):

• Mixing literature research with qualitative interviews and a quantitative fully struc-
tured survey (including a pilot study26) made it possible to refine the research
findings iteratively and to choose from many perspectives in literature on the use
of knowledge in organizations – in order to achieve a high level of quality for the
published insights.

• Multiple methods, sources and discussions with other researchers increased the ro-
bustness of results and reduced subjective bias.

• The decision against a detailed analysis of the qualitative interviews (involving in-
terview transcripts) and the decision to focus on a single but wide and large sample
size made is possible to keep the research costs (especially in terms of time for
the entire study) at a reasonable level.

• The main empirical source of evidence (the survey) was analyzed with a robust
statistical method27 that semi-automatically reduces the number of variables in

24The broad literature review in chapter 2 on page 21 raised many potentially relevant factors rather
than yielding a single more reduced set of factors that is widely accepted.

25Despite obtaining a large sample size, the challenges with noise in the data combined with the relatively
large number of variables (section 5.12 on page 163) made it necessary to design a novel and more
suitable statistical model-building algorithm – see chapter 6 on page 171. A new statistical method,
however, was not part of the original planned sequence of methods.

26The initial literature review, the qualitative interviews at the beginning of the study and the pilot
study for the survey provided a necessary basis that allowed the creation and refinement of the fully
structured survey. Thus the unstructured early work in the study was a first step to iteratively narrow
down and refine the perspective on the problem.

27see chapter 6 on page 171
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the final statistical model and achieves high internally validated predictive power.
Thus it yielded a ranking of the surveyed influence factors – an added value
so far not found in the literature.
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4. Statistical Theory on Algorithmic
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As mentioned in the last chapter, the research question (section 2.7.2 on page 80) aims
to rank the most relevant factors affecting learning, which implies that many potentially
relevant variables need to be considered for inclusion in a statistical model. Therefore a
systematic procedure to select the most important variables for the statistical model is
required, which could even be automated.

Since automatic as well as manual model selection pose a number of challenges, this
chapter illustrates the relevant background from statistical theory that underlie the choice
and design of the statistical analysis algorithm. Those readers interested primarily in the
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algorithm used for this study may skip to section 6.2.1 on page 179, which has references
back to this chapter.

In recent decades, many statistical regression algorithms have been developed that
feature not only parameter estimation but also model selection. Frequently the central
part of such an algorithm is a mechanism that automatically composes the statistical
model by choosing variables included in the model from a larger subset of potentially
relevant variables.

Many of these algorithms have rightfully been criticized for fragile results, which is
why a number of researchers argue that data-driven model selection (sometimes referred
to as data mining) is unsound (Chatfield, 1995; Zhang, 1992a) and that many regression
methods should exclusively be used for confirmation of a priori specified models (Backhaus
et al., 2006, p. 8). In the following, this line of argument will be referred to as the theory
school of thought.

In this chapter, I will argue that parameter estimation, as performed during model
fitting in ordinary linear regression, is in principle not different from model selection:
both parameter estimation and model selection specify the shape of the model. Therefore
I argue that in principle data-driven model selection is possible and necessary but that in
practice many automatic model selection algorithms are not robust, since biased statistical
estimators are used for optimization of the model, including its fit. Conversely, with
low-bias statistical estimators, stable algorithms are feasible, and consequently stable
regression algorithms can be used for exploratory research. This claim is supported by
a detailed discussion of the challenges and causes of model-fit estimator bias, complete
with a presentation of modern low-bias estimators and examples of robust model selection
algorithms.

While the following discussion focuses on regression with continuous outcome variables,
similar implications apply to classification with categorical outcome variables.

The mathematical arguments in this and subsequent chapters will use the following
notation:

y a scalar
yi,j a scalar element of a matrix, addressed by indices i, j
y a vector y (in sans-serif font)
X a matrix X (in capitals with sans-serif font)
DP (y, x) a distribution D of a stochastic process P . The distribution is described

mathematically here as the probability density function (PDF), which
is multi-variate over the variable vector y, x.

EPx [g(x)] the expected value of function g(x) for the stochastic process P over
variable x
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To put my argument into a general context, I will first give an overview of the process
of statistical inference and how the approach of the theory school of thought differs from
an algorithmic approach. Next I will highlight the limits of automation in the statistical
inference process – particularly with respect to causality. Next, I will present the central
argument as an illustration of why there is, in principle, no difference between parameter
estimation and model selection. To round the discussion off, common model-fit criteria
for both parameter estimation and model selection are presented.

4.1.1. The Process of Statistical Inference

Before making a claim about algorithmic modeling, this section outlines how algorithmic
modeling fits into the entire process of statistical inference and in particular why the whole
process is still far from automatic but requires the researcher’s sound (and subjective)
judgment at a number of steps.

Step 1: Problem Formulation Statistical analysis starts with a pragmatic formulation
of a problem, which requires a wealth of knowledge about the context of the
measurement (Chatfield, 2002). Therefore pre-investigations, such as exploratory
qualitative research, frequently become necessary.

If the aim of analysis goes beyond generating descriptive statistics and towards
learning about the mechanisms generating the data (statistical inference1), the
following questions need to be answered: Does an underlying mechanism, i.e., a
stochastic process generating the data, exist? If so, how stable is this process over
time? Is it stationary, i.e., independent of its history (past states of the observed
system)? For social systems: Does the mechanism of interest depend on the his-
tory and perception of the involved actors – which may change? If the researcher
assumes that there is no underlying and stable mechanism, e.g., when a radically
constructionist position is assumed, then statistical inference has no use. In all
other cases, even if the mechanism has validity only for a limited time and con-
text and is subject to a constructed (subjective) perception of the problem by the
involved actors, then statistical inference is useful in finding and/or validating a
model that approximates these mechanisms (Voelpel and Meyer, 2006). For sim-
plicity, in the following arguments, these underlying mechanisms will be referred
to as “reality” or the “true” statistical process, where the quotes indicate that we
might not deal with an absolute and true reality as in the natural sciences but
instead with a limited subjective perspective on the true but not directly and fully
observable reality. As discussed in section 3.1.3 on page 86, subjectivity is mainly

1see section 4.1.3 on page 105 for a detailed discussion of statistical inference.
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introduced by the individual choice of information selected for the investigation –
e.g., through a subjective choice of issues surveyed by a structured questionnaire.

Step 2: Data Collection Next the researcher needs to decide which data is relevant and
how it should be measured and collected. In survey design, this involves choosing
which questions to include and how to formulate them. If all cases cannot be
collected or if the entire population cannot be surveyed, the researcher in addition
needs to consider how to collect a representative sample of the larger population
of all cases.

A prerequisite for making these decisions is some prior knowledge or at least
suspicions about the investigated mechanisms2.

Step 3: Statistical Analysis The analysis may start with cleaning data. This may
include removal of inconsistent data items – e.g., removal of incomplete surveys
and surveys with inconsistent answers to logically connected test questions. In
addition, some researchers decide to remove a small fraction of outliers, such as
surveys whose results are very far away from the researcher’s hypothesized model.
Next the researcher needs to choose an appropriate method of statistical analysis,
given the problem and the available data. For parametric methods only, the
researcher further needs to decide on and thus restrict the model’s shape - e.g. by
assuming only linear relationships as a sufficiently accurate approximation. Next
the model needs to be fitted to the data sample, which for parametric models is
parameter estimation. Finally, the fitted model needs to be evaluated for quality
(e.g., goodness of fit) and robustness, i.e., the risk of deriving false (random)
results with the fitted model.

Step 4: Interpretation and Presentation of the Results The statistical results de-
rived from the fitted model need to be interpreted. The numerical results need
to be translated into a meaning within the context of the study.

The procedure for the interpretation should be as systematic as possible and
should be made transparent for inspection by others3. If available, the results
are compared to existing research and/or other sources of insight about the prob-
lem, such as literature or a qualitative analysis. Finally, the results need to be
presented in a form that is understandable to those who use the results, e.g., for
decision making.

2see also D.R. Box’s reply to and in (Breiman, 2001b) on p. 216
3For an example, see the guidelines of Brambor et al. (2006) on the interpretation of multiplicative
interaction models.
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4.1.2. Theory-based vs. Algorithmic Modeling Approaches

Section 4.1.1 presented a general description of the analysis process. This section covers in
further detail the two principal approaches to statistical model selection and evaluation:

• purely theory-driven model selection based on an a priori specified model for con-
firmatory research, and

• algorithmic model selection (automatic model selection) for exploratory research.

How these two approaches differ in the analytical process is outlined in further detail in
table 4.1 on the next page.

Both approaches commonly lead to a publication discussing the theory (from litera-
ture), the methods and interpretation, commonly including a critical coverage of potential
weaknesses in the methods and new questions for future research.

Hence the main difference between the two approaches is model selection: The statis-
tical model used in the theory approach is completely determined by theory. While there
is an evaluation of the model (model fit and parameter significance), there is no assurance
– by statistical means – that the chosen model is the best possible model. Hence the the-
ory approach relies entirely on the correctness and completeness of the initial literature
research, which needs to lead the researcher to the single “correct model” even though
there might be other plausible alternative models. Thus knowledge from studies using the
theory approach is only refined iteratively by publication and subsequent inspection by
others and the test of time (as already discussed under the heading of iterative research
in section 3.1.6 on page 93).

With the exploratory (algorithmic) approach, the researcher does not use or need
strictly formulated hypotheses about cause-effect links before model fitting. He or she
just needs to decide which variables to collect data for. Additional knowledge about
causal links and their direction is only used at the end during the interpretation stage.
Thus the algorithmic approach includes an iteration internal to the study for further
refinement before exposing the results to the inspection of others and the test of time
(section 3.1.6 on page 93).

Note that some mixtures of the two approaches are also possible, e.g., starting the
theory approach with many alternative and plausible hypotheses.

4.1.3. Overall Aim of Statistical Inference

In statistical inference, the aim is primarily to learn about the mechanisms of the un-
derlying process (the process that drives “reality”) in order to find ways to predict4 or

4Note that prediction does not require finding causal links, it just requires the detection of associative
patterns and thus is frequently simpler. In the following, the focus will be on manipulation rather
than prediction, since the aim of this research is to provide advice on how to design (i.e., manipulate)
the organizational environment to support learning.
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Analysis Pro-
cess Step

Theory Approach Algorithmic Approach

Problem For-
mulation &
Data Collec-
tion

Insights from a detailed litera-
ture review, and an optional
qualitative pre-study, are used to
formulate strictly defined hy-
potheses, defining the data col-
lection requirements and causal
relationships. Thus most of the
statistical model is determined at
this step.

A literature review plus pos-
sibly a qualitative pre-study are
used to define the data collec-
tion requirements. In contrast
to the theory approach, the aim
is to gain only a preliminary
and broad understanding of
the problem in order to define
a set of potentially relevant
variables from which only a sub-
set will later be included in the
statistical model.

Data Collec-
tion

Collected variables are strictly
limited to those listed in the hy-
potheses.

Data collection of the set of
variables with potential rele-
vance.

Statistical
Analysis

The mathematical structure of
the model is created, based on
the before formulated hypothe-
ses and corresponding set of vari-
ables. In the case of paramet-
ric models (e.g., the multi-variate
linear regression model), this also
determines the principal shape of
the model. Next, the model is
fit to the data – i.e., the pa-
rameters are estimated. Finally,
the quality and robustness of
the model and/or of individual
parameters are evaluated – e.g.,
by a model fit estimate and Stu-
dent’s t-test for significance of the
parameters.

Depending on the available data,
a parametric model might be
used, which requires an assump-
tion on model shape. For non-
parametric models, this shape
limitation step is omitted. In
both cases the next step is au-
tomatic variable selection and
parameter estimation, which
are performed by an algorithmic
procedure. The final step is the
evaluation of model quality
and robustness.

Interpreting
and Presenting
the Results

Based on the statistical results on
associative patterns in the data,
the hypotheses are either con-
firmed or rejected. If confirmed,
the detected associative rela-
tionships are translated into
causal claims based on the
theory inherent in the hypothe-
ses from the problem formulation
stage.

Based on the model built by
the algorithm rather than on hy-
potheses, further literature re-
search with a new search focus
follows as an iterative refine-
ment of the initial research (sec-
tion 3.1.6 on page 93). Possibly
after further manipulation of the
statistical model, the detected as-
sociative relationships are trans-
lated into causal relationships
based on the refined theory.

Table 4.1.: Principle Approaches to Model Selection
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manipulate the real process in a targeted manner. The tool for gaining a deeper un-
derstanding of the underlying process is commonly a statistical procedure or algorithm
applied to collected data sample from a larger population. Modeling “reality” implies that
the aim is to make claims – based on a collected sample – regarding the entire population
or the future5 and not just the sample (from a larger finite population or past events).

Researchers therefore aim to fit statistical models to collected data from the process of
interest in order to learn about the mechanisms of “reality” from the structure and shape
of the model, based on the assumption that the model sufficiently reflects “reality” even
though it is only built on a sample, which is smaller than the entire population. Thus the
aim can be stated as follows:

Statistical inference aims at using a representative sample of a larger pop-
ulation to create a model, which sufficiently fits “reality” in order to allow
predictions and/or inferences about the mechanisms driving “reality”.

As will be discussed in section 4.1.5 on page 109, statistical analyses can only find
associative relationships (concurrent occurance of events), which may or may not be based
on a causal link. Thus assumptions about the causal links between independent and
dependent variables of the model must be made a priori. Therefore the researcher should
choose only those independent variables for the model which are assumed to have a causal
effect on the dependent variable.

Noteworthy as well are stochastic processes , processes that, given a particular variable
configuration, still show (limited) random behavior. An example is the stochastic process
of getting lung cancer from smoking: Smoking does not (deterministically) lead to lung
cancer in all cases. One can even get lung cancer without smoking. Smoking “only”
strongly increases the risk of contracting lung cancer. One reason for this randomness
may be that some relevant variables (latent variables) are not observed and therefore
missing from the statistical model (Hitchcock, 2007). In the case of lung cancer, this
might be, e.g., a yet-unknown genetic predisposition that has so far been overlooked in
studies about the disease. In addition to these seemingly random but actually hidden
deterministic effects, there are also true sources of randomness – such as radioactive
decay6.

In statistical inference, there are a number of methods that deal with stochastic pro-
cesses, which are described in the next section.

5Whenever a population is mentioned here, it should be understood in the following way: A population
could be a population in an ordinary sense – i.e., a group consisting of a finite number of people. Other
statistical processes have no finite maximum sample size – e.g., behavioral processes in society across
generations. In these cases, the aim of statistical inference is to make predictions about the future.
In other words, we build a model from past events with the aim of understanding the data-generating
process, which we assume to be constant over time, in order to make predictions of the future.

6While the rate of radioactive decay is highly predictable, the point in time in which a particular atom
decays is a truly random process not depending on any other external variables (according to the
current state of scientific knowledge).
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4.1. The Theory regarding Model Selection and Fitting

4.1.4. Modeling Stochastic Processes

In statistical inference, there are two common approaches to deal with stochastic processes:

• Classifier Models. The model directly models the probability of discrete events,
such as the probability of getting lung cancer or not. A frequently used method is
the logistic regression (Efron, 1986), which models the probability of discrete events,
i.e., ordinal (categorical) data, with a linear model – equivalent to ordinary linear
regression models dealing with metric (continuous) data. In machine learning, algo-
rithms creating models for the probability of discrete (categorical) events are referred
to as classifier algorithms – examples are Arcing (Breiman, 1998), Random Forest
(Breiman, 2001a) and PART (Frank and Witten, 1998). Classifiers are popular in
bio-informatics as well as in the social sciences7.

• Expected Value Models. In many applications, a model of the expected (i.e.,
average) behavior of a stochastic process is sufficient and of principal interest. In or-
ganizational research, a stochastic process may be driven by factors of the working
environment and various situational factors, such as an employee’s current moti-
vation or the personal relationships of the participants in a meeting. Despite the
relevance of these situational variables on the process, the researcher might not be
interested in them since they cannot be used as levers for organizational improve-
ment8. In such a case, the researcher might sensibly decide not to observe these
variables and thus to accept some situational randomness and instead focus the
statistical model-building effort on the organizational actors’ mean behavior – and
how it is affected by the working environment.

The most common example of an expected value model is the ordinary multi-variate
linear regression (Backhaus et al., 2006). The fit of a linear regression model min-
imizes the error between the model and the data. It is therefore tolerant to noisy
data (i.e., data from a stochastic process).

Neither of these two approaches to statistical inference fully model a stochastic process
of a continuous (i.e., metric) random variable. A complete model of a continuous random
variable would be a mathematical representation of a multi-variate distribution DP (y, x).
This distribution would be a function of all dependent and independent variables (vector
y, x) related to the stochastic process. Modeling a distribution instead of the expected
value (a simple scalar) would require a parametric or non-parametric model of the multi-
variate probability density function describing the distribution and a large sample size to

7For example, in political science, a classifier algorithm may be used to predict the likelihood that
a person with a particular configuration of socio-demographic variables (profession, age, preferred
newspaper etc.) will vote for a particular political party.

8Nevertheless, it might be worthwhile to include these variables in a statistical model to reduce unex-
plained variance.
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estimate this function. Yet so far no practical algorithms for full stochastic modeling are
available. Pearl’s proposal to perform structural equations modeling (SEM) with distribu-
tions rather than correlations is a notable but nascent start (Pearl, 2003) of a discussion
in this direction in the field of statistics. Alternatively, some classifier algorithms (such as
Random Forest (Breiman, 2001a)) use very many categories to emulate the modeling of
a continuous random variable – which, however, also increases the required sample size9.

Due to this study’s particular application of statistical inference, the following discus-
sion focuses on expected value models of stochastic processes.

4.1.5. Automation Limits of Statistical Analysis & Causality

The intention of this section is to clarify that algorithmic model selection procedures can
not automatically generate causal models when observational data (i.e., “natural exper-
iments”) is used. To automatically create causal models data from truly manipulative
experiments would be needed instead10. Thus with observational data algorithmic model
selection can only detect association (concurrence of events or correlation) and therefore
always relies on assumptions about causality.

Exceptions are more recent techniques from the field of causal inference, which de-
tect causality using statistical methods – yet these methods also rely on assumptions on
causality even though these assumptions are weaker and not as specific as the direction of
causality for a specific link. For examples on causal inference, see (Heckman, 2005; Pearl,
2003; Rubin, 2004; Winship and Morgan, 1999).

For the sake of the central argument about model selection, the more advanced tech-
niques of causal inference will not be covered in detail here. Instead the basic challenges
with causality are illustrated with an example about studying the effect of smoking on
the risk for lung cancer (following the arguments in Hitchcock (2007)):

Given observational data on smokers and non-smokers and their actual history of lung
cancer (or lack thereof), the following main challenges arise when a researcher tries to
infer causation:

• Probabilistic Causation Smoking does not inevitably lead to lung cancer; at most,
it increases the risk of lung cancer. Thus instead of using a simple ‘A always causes
B’ (A → B) relationship model, a probabilistic model is necessary: ‘A increases
the probability of B’. Or, if B is not a simple dichotomous outcome but instead a
continuous variable, e.g., wage B is dependent on education A, then a probabilistic
model of the following form is necessary: ‘A changes the distribution of B’.

9This approach has the downside that the categories, representing small bands of the continuous random
variable (e.g., 0.1 to 0.17), do not have a sequence anymore; thus some information in the dataset is
discarded, which in turn leads to an increase in the required sample size.

10For the research question of this study, manipulative experimental data, would require a manipulation
of the organization and is thus not feasible.
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• Spurious Correlations with Latent Variables Many challenges arise from la-
tent (not observed) variables. For example, a correlation between yellow fingers
and lung cancer may have been observed. Thus if smoking was not observed, then
the researcher might be tempted to conclude that yellow fingers cause lung cancer.
However, in that case, smoking is a latent variable that actually drives two indepen-
dent statistical processes: coloring of the fingers and lung cancer. From the data
alone, one may get an incorrect understanding of the causal directions. While this
is an obvious example, others may be less so, and the existence of an underlying
latent variable may be overlooked entirely.

The purely associative correlation between yellow fingers and lung cancer is referred
to as spurious correlation. While there are some methods to detect spurious cor-
relations, there are always cases in which they fail or in which weaker assumptions
about causality need to be made nevertheless. The only failsafe method to detect
causality is in a true experiment, where the experimenter can enforce a treatment
in a truly random manner.

• Temporal Sequence is no Guarantee for Causal Direction Occasionally lon-
gitudinal studies are touted as the ultimate method to detect causality and its
direction. However, temporal sequence is no guarantee for causality – again due to
possibly overlooked latent variables, as the following example illustrates: Before a
storm, the mercury column of a barometer will fall. But if we try to constrain the
mercury column, the storm will occur nevertheless. In this simple example, it is
obvious that the weather and atmospheric pressure are the latent variables driving
both events in sequence, and the temporal sequence does not guarantee causation.
Thus temporal sequence might be a good indication but not proof for causation.
Determining causation from temporal sequences requires the assumption that an
effect with a lead time on the event of interest is not caused by any hidden latent
variables or other similar effects.

Hence causation is a serious challenge, since most scientific models provide value only
by either understanding the causal links for later practical use of the resulting mental
model or directly when models are used for forecasting. If the direction of causality has
been misunderstood, then interventions based on the model will not have the desired
effect.

In summary, the causal structure of the problem needs to be confirmed by means other
than observational data. During the interpretation of statistical results from model selec-
tion algorithms, the new insights about association need to be fused with other knowledge
about the causalities of the problem – e.g., from literature or a qualitative pre-study –
ideally in an iterative research approach.

Along these lines, Lukacs et al. (2007) cite Soule (1987):
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“Models are tools for thinkers, not crutches for the thoughtless.”

in order to emphasize that hypothesizing, and thus theoretical considerations, is “at
the heart of science”.

4.1.6. No Principle Difference between Model Selection and Fitting

While there is lot of controversy surrounding algorithmic model selection (Chatfield, 1995),
this section will show that model selection and the fitting of a parametric model (which
is widely accepted) are very similar – in principle. Therefore sound algorithmic modelling
is feasible in principle and it is a number of practical challenges11, which cause many
algorithmic model selection approaches to behave in a non-robust manner.

Given the overall aim of statistical inference from section 4.1.3 on page 105, the aim
of statistical model building is to fit a model to “reality”, which allows predictions of a
dependent variable using a set of independent variables that has been limited to those
variables in line with the a priori causal assumptions.

In section 4.1.2 on page 105, two principle approaches to statistical inference were
compared: the theory approach and the algorithmic approach. The following discussion
focuses on the ‘statistical analysis’ step from table 4.1 on page 106.

For the theory approach, Chatfield (1995, p. 420) describes the process of model build-
ing as consisting of the following steps:

1. model formulation/specification (including data pre-processing)

2. model (parameter) estimation

3. model validation (checking model fit)

4. combination of data from multiple sources (meta-analysis)

Under the theory approach, the set of variables included in the model is determined
before the statistical analysis by the a priori developed hypotheses. Step 1 consists of a
translation of the verbal hypotheses into a mathematical model and thus includes a deci-
sion on the shape of the model (e.g., a non-parametric model or a particular parametric
model). In step 2, using the sample data, the shape of the model is finally determined
based on the prior decision regarding shape flexibility. For parametric models, this model
fitting step centers on the estimation of the model parameters, e.g., the regression coeffi-
cients in ordinary regression.

How well the resultant model fits “reality” is determined not only by step 2 (parameter
estimation) but also by step 1 (model specification). Recently a number of researchers
began to advocate for removing this artificial separation between parameter estimation
11The details of the practical challenges are described later in section 4.2 on page 119.
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and model selection – as a consequent next step in improving model-based statistical
analysis: Burnham and Anderson (2004), for example, calls for “inference based on the full
set of models” [p. 262], while Chatfield (1995) and Faraway (1992) demand consideration
of uncertainty for the entire modeling process, including model selection, not limited to
parameter estimation only.

Therefore, for judging the success of the entire model-building process, a single stan-
dard or fitness criterion is needed, not separate standards for judging each step separately.

The parameter estimation in step 2 is commonly validated in step 3 using a criterion
for the model’s fit with “reality” in the form of an estimator, such as R2 (usually based
on the collected sample). If a model fit estimator is good enough for validating the
model estimation step, then it should also be good enough to validate the entire process,
including the model specification step – as long as the employed statistical estimator for
model fit is robust enough to assess both steps jointly. Because both steps essentially are
concerned with defining the shape of the model, there is no principal reason to treat them
differently.

For confirmatory research, supporters of the theory approach may argue that assessing
only the success of the model estimation step is sufficient, since the specified model can be
assumed to be true based on prior research – i.e., the model formulation already reflects
the mechanisms of “reality” and the researcher is only aiming to quantify the variable
effects.

In practical applications, statistical models will not perfectly fit “reality”: there will be
some unexplained variance. While some of this variance will be due to genuinely random
variation, most of the unexplained variance will stem from (non-observed) latent variables
that have not been included in the model (Chatfield, 1995, p. 426) – as was discussed in
section 4.1.3 on page 105. Thus the model does not perfectly reflect “reality”. Such models
can be at best good approximations of “reality” – reflecting our limited knowledge of the
real world.

Citing the popular saying coined by Box and Draper (1987):

“Essentially, all models are wrong, but some are useful”, p. 424

the claim that a model is true can hardly be supported in practical settings (see also
(Burnham and Anderson, 2004, p. 262.).

Supporters of the theory approach may add to this that their theory-based model
is, like any other model, only an approximation, but the best possible approximation of
reality, given the available data.

However, Breiman (2001b) and Lukacs et al. (2007) (independently from each other)
observe that there are multiple good models, and therefore in most cases there is not a
single best model that stands out from all other good models. They argue as follows:
Most statistical inference procedures aim to maximize a model fit measure. Yet these
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model fit estimates have estimation errors and biases. Thus if one sees these errors as a
kind of measurement error within a limited tolerance range, it becomes very likely that
statistical inference yields multiple models that have model fit scores that fall within this
tolerance range. Consequently, all models with a fit within the tolerance range need to
be considered as equally good. Mathematically there will still be a single most optimal
model, however it must be considered equally good compared to any other models within
the tolerance range. See Breiman (2001b, p. 206) for an example.

Yet if an underlying stochastic process is truly understood theoretically, the theory ap-
proach with a theory-based model may be used for a quantification of the effect strenghts
of the different terms. However, researchers who use statistical models, which are deter-
mined and fixed a priori, to confirm their hypotheses run the risk12 of overlooking other
theoretically plausible models that fit the data better or equally good within the tolerance
of the model fit estimate. Hence to avoid this risk, assessing (i.e., validating) the entire
process of model building, including model specification, becomes a necessity. For this
assessment, predictive power with respect to “reality” (i.e., model fit) suggests itself as a
quality criterion for both steps: model selection and model fitting.

A number of researchers have correctly pointed out that model selection using conven-
tional R2 estimates or similar measures is very unstable in a number of applications
(mostly depending on properties of the data) – see Anderson and Burnham (2002);
Breiman and Spector (1992); Chatfield (1995); Grünwald (2007); Kapetanios (2007); Mc-
Cann and Welsch (2007); Yuan and Yang (2005); Zhang (1992a). These examples demon-
strate that a particular algorithmic model selection method is not sufficiently robust, but
that does not imply that automatic model selection in general is impossible. These studies
merely highlight the importance of making the model selection algorithm and the involved
statistical estimators robust enough for different kinds of data.

The supporters of the theory approach often refer to these examples as illustrations
that exploratory research using model-based statistical inference is in general not possible,
and that most methods lend themselves only to confirmatory analysis (Backhaus et al.,
2006, p. 8). This is true for a wide range of conventional methods (such as ordinary linear
regression) and early algorithmic approaches (e.g., step-wise regression based on t-test
to enter/delete (Breiman, 1992)). Especially for noisy and high-dimensional data, the
robustness requirement is often difficult to meet – as section 4.2.2 on page 123 will show.
Thus starting with a fixed model based on theory may be a very good and practical
choice if only weaker algorithmic methods are available. However, showing that many
early algorithmic approaches fail the requirements for robustness does not imply that
model-based exploratory research is infeasible in general.

12Running this risk might be an acceptable and good research design choice when all other design al-
ternatives exhibit other and more severe weaknesses and downsides – as discussed in section 3.1.8 on
page 96.
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Thus if an algorithm meets the robustness requirements, it can be a useful tool to
automate model selection and fitting – all within a limited space of plausible models. The
limit is necessary since the detection of causality can not be automated, as discussed in
section 4.1.5 on page 109.

In an algorithmic modeling approach, instead of fully specifying the model form and
variables a priori based on assumptions, the researcher would make assumptions on which
variables may be relevant and thus need to be collected. Furthermore, he or she would
make assumptions on how the causal linkages are directed but would not assume how and
which of these variables enter the final model.

In summary, if automatic parameter estimation is possible, then explorative automatic
model selection must also be possible – as long as the involved algorithms and model fit
criteria are sufficiently robust. It follows that the model-building process as a whole
needs to be assessed by a single model fitness criterion, which is common for both the
model specification and estimation step. However, designing sufficiently robust model
selection algorithms is difficult, which frequently makes theory-based model building a
viable alternative. Yet there are examples of robust model selection algorithms, which
will be presented in section 4.2.5 on page 134.

4.1.7. Model Selection Criteria: Model Fit vs. Model Error

In the preceding section I argued for a single model fit with “reality” criterion for both
model selection and fitting. The most common measure of model fit is the coefficient of
determinance: R2. It is popular because the meaning of R2 is easy to understand and
because there exists a simple estimation method.

Yet since there are challenges with robustness of the simple R2 estimation method (for
certain types of data), recent statistical literature has featured a discussion on generalizing
model fit criteria and improving robustness – on which this section contains an overview.

In general, for expected value model, model fit criteria can be divided into two classes:

1. Predictive Error measures – gauge the average mismatch between the statistical
model and “reality”, including random noise. Analogous and in the same criteria
class, model fit measures gauge the fit of the statistical model with “reality”.

2. Model Error measures – gauge the mismatch between the current statistical work-
ing model and an ideal expected value model13.

Predictive Error Predictive error and model fit measures (such as R2) estimate the
mismatch or fit of the statistical model with “reality”. Since the statistical model is an
expected value model here, the measure will include model inaccuracies – e.g., due to
13Expected Value Models – as discussed in section 4.1.4 on page 108.
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linearization14 and the average mismatch due to random “noise” from stochastic processes
(see sections 4.1.3 and 4.1.4 on p. 105).

Thus, for most practical applications, predictive error model fit criteria are preferable,
since they estimate the predictive power (and accuracy) of the statistical model for real-life
applications, which may include random, i.e., stochastic, effects.

Model Error Model error measures estimate the difference between the model and an
ideal model that perfectly reflects the expected value of the stochastic process – i.e.,
“reality” without any random noise. Hence a measure of model error assesses the accuracy
of the stochastic modeling process compared to the maximum achievable accuracy with
an expected value model.

Thus model error measures are more suitable for analyzing the performance of sta-
tistical fit algorithms with different datasets, since the measure neutralizes the effect of
noise that may be specific to a dataset.

An example of a model error measure, used for ranking different models, is introduced
in Breiman (1996b):

PL = PE(Working Model)− PE(Ideal Model) (4.1)

PE is the predictive error – here, the sum square errors estimated with a reduced bias
using a test set. The ideal model is the true underlying (expected value) model to which
truly random noise is added. PE(Ideal Model) is the model fit of the ideal model with the
data including random noise15. A similar measure – derived from information theory – is
the Kullback-Leibler information quantity, which measures the difference between a true
model and a particular working model (Burnham and Anderson, 2004, p. 267).

Suitability for Model Fitting As will be shown in the following, both model fit criteria
classes lead to similar results when used as objective function in model fitting.

As noted in Burnham and Anderson (2004), the true stochastic process is unknown in
most practical applications. For selecting the best statistical model for one and the same
true process, it is not necessary to the know the ideal model, since the ideal model term
in the Kullback-Leibler information quantity (Burnham and Anderson, 2004, p. 267) and
in Breiman’s predictive loss measure remains constant: from equation 4.1 and the fact
that the ideal model is fixed for a particular application, i.e., PE(Ideal Model) = const.,
it follows that minimizing the predictive loss and minimizing the predictive error of the

14Model inaccuracies are discussed in more general detail in section 4.2.2 on page 123 under the header
model flexibility.

15Since the real process is noisy, there is no perfect expected value model that perfectly predicts the
actual data. Thus the PE(Ideal Model) fit will be high but not necessarily perfect (i.e., 100%).
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working model both lead to the same parameter estimates and model selection result:

arg minPL = arg minPE(Working Model) (4.2)

Therefore Breiman suggests minimizing the predictive error, which is maximizing the
model fit R2 based on a robust estimator with little bias. A number of authors agree
that a robust predictor of the model fit with “reality” is a practical and suitable joint
model selection and parameter fitting criterion (Efron, 1986; Faraway, 1992; Li et al.,
2006; Zhang, 1993).

Summary As discussed in the previous section, algorithmic model selection is feasible
when based on a robust estimator for the model fit – i.e., both model selection and model
fitting performance need to be optimized for and validated by a single and common robust
quality criterion. Recent statistical literature contains proposals for a number of new
model fit indicators, which fall into two abstract categories: predictive error and model
error. Despite the differences of the two categories, using two equally robust and accurate
measures from each category will yield the same model selection and fitting results – as
long as frequently applicable assumptions hold. Practical examples for robust predictive
error measures are presented later in this chapter in section 4.2.4 on page 129.

4.1.8. Variable Selection vs. Model Selection

Variable Selection / Parameter Selection Many model selection and fitting algorithms
first select a model, then fit the model, and finally compare multiple models and select the
best (or a few good ones)16. Some algorithms further reduce the problem to automatically
selecting variables independently from the rest of the current model. A classical example
is step-wise regression, which uses Student’s t-test for deciding whether to delete or add
a variable and the associated regression parameter to the current model (Breiman, 1992;
Faraway, 2002; Miller, 1984). More recent examples are forward step-wise regression with
AIC as model fit criterion (Atkinson and Riani, 2007) or with a bootstrapped model fit
criterion (Breiman, 1992), least angle regression (LARS) (Efron et al., 2004), and Lasso
(Lutz and Buhlmann, 2006).

While these variable selection approaches, may work fine for certain types of stochastic
processes (i.e. kinds of data) and model types, there are two principle challenges with
variable selection – that may lead to erroneous results with other types of data and models:

16There are a few notable exceptions. Breiman’s random forest grows a number of tree-like models,
involving variable selection and fitting at every step (Breiman, 2001a). Similarly, the decision-tree-
based algorithms PART (Frank and Witten, 1998) and cForest (Strobl et al., 2007) combine model
selection and fitting. Other examples are support vector machines (SVM) (Breiman, 2001b; Rasmussen
and Williams, 2006) and neural networks (Guyon, 2007; Witten and Frank, 2005).
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collinearity of variables and non-independence of the model terms. Unfortunately, the data
of this study belong to the latter group.

Challenge 1: Collinearity Collinearity occurs if information relevant to the stochastic
process is shared by two or more variables. The simplest case is when two variables
correlate. In that case, collinearity is easily detectable Backhaus et al. (2006, p. 90).
Yet there are also cases in which process-relevant information is shared by three or more
variables. This is commonly referred to as multi-collinearity, which can be detected by
removing and adding variables to a model and monitoring the estimates for the parameters
related to the other variables. If multi-collinearity is present for the added/removed
variable(s), the parameter estimates will change for all other variables affected by this
collinearity (see Backhaus et al. (2006, p. 91) and Brambor et al. (2006, p. 70)).

Hence strong multi-collinearity causes the affected parameter estimates in ordinary
regression to become fragile (non-robust) – even though the affected terms themselves are
valid effects with a true impact on the stochastic process (Brambor et al., 2006, p. 70).
Thus strong multi-collinearity may bias and weaken stability17(significance) measures,
such as Student’s t-test, that measure the stability of an individual term included in the
current model. A weakening of a term’s stability due to collinearity may be acceptable if
the data otherwise contains little noise. It is foremostly the combination of collinearity,
noise and small sample sizes that causes the problem to become critical.

Therefore, if a model contains sufficiently strong multi-collinear variables, the parame-
ter estimates and the assessments of the parameter stability (significance) of the collinear
variables become dependent on the composition of the rest of the model – i.e., a parameter
may be stable in conjunction with a particular group of independent variables but unsta-
ble when combined with another group of variables. In step-wise regression, for example,
finding that a collinear parameter is insignificant does not imply that it is insignificant in
all models. Thus the significance test cannot be used to remove a variable permanently
for the rest of the search. Instead of seeking the best variables/parameters in the model,
the search for the best model needs to be enlarged to assess all possible combinations of
variables in a model.

Guyon et al., in their work on feature selection in the field of machine learning, claim
more generally that uni-variate feature selection, i.e., variable selection, does not provide
useful and reliable information for robust model selection with collinear data; instead, only
full models need to be compared. Yet in practical applications, the number of possible
unique models can be very large: e.g., rather than testing 30 parameters individually,
performing a full model search in order to choose 10 out of 30 potentially relevant variables,
more than 30 million models need to be tested. Therefore Guyon et al. suggest a filtering
17For the BOGER algorithm developed for this study, a stability measure is defined in text box 6.2.1 on

page 190 as an alternative to conventional statistical significance tests.
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approach in which the potentially relevant variables are screened first, and the number of
candidate variables for the model are reduced before beginning with a full model search
(Guyon, 2007; Guyon et al., 2006).

Challenge 2: Models with Non-Independent Terms The second challenge with by-
variable model selection is the type of model: The mathematical model of ordinary linear
regression is composed of completely independent terms:

y = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + . . . (4.3)

Here bi are the regression parameters and xi the independent variables.
Hence removing a term will not change the behavior of the model due to changes in

any of the other terms18. The interaction term x1x2 is no problem either, since it can be
treated as a new and separate variable. However, when either x1 or x2 is removed, the
interaction should be removed as well (Brambor et al., 2006).

In contrast to such a model with independent terms, already small changes to the
model cause the terms to depend on each other:

y = b0 + b1x1 + b2x
γ2
2 [b3x3 + b4x4 + . . . ] (4.4)

Here both bi and γi are model parameters that need to be estimated.
If x2 is removed, then any insights regarding the parameters b3 and b4 are invalidated.

Thus, similar to the above described treatment of interactions, either the terms b3x3 +

b4x4 + . . . are removed or their stability needs to be retested.
The BOGER model – developed for this study (see section 6.2.2 on page 180) – uses

multiplicative terms in order to allow for modeling AND-relationships (i.e., an effect on
the outcome is only caused if factor A AND B are both strongly present with a large
numerical value). Hence by-variable selection is only acceptable in a screening phase for
the BOGER algorithm.

Summarizing ... In summary, algorithmically selecting a model by assessing the stability
of individual terms (by-variable or by-parameter model selection) leads to optimal models
(in terms of model fit and robustness) only under the following conditions: 1.) The
independent variables are only weakly collinear, and 2.) the model is composed of mutually
independent terms19.

18The only exception is the constant offset term b0, which is likely to change upon removal of another
term. Yet the offset term is frequently not very relevant for interpretation.

19Unless a special term adding/removing strategy is used, as described before in this section with regard
to interactions.
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If these conditions for by-variable or by-parameter model selection are violated, a full
model search strategy needs to be used in order to search the large space of all possible
models, consisting of all possible variable combinations. To improve computational effi-
ciency, by-variable selection with weak criteria may nevertheless be useful in a screening
stage that precedes a full model search.

4.2. Practical Challenges with Algorithmic Model Selection

Previously, section 4.1 on page 103 discussed theoretical issues regarding model selection.
Section 4.1.6 on page 111 further pointed out that many model selection algorithms are
not robust, and thus there is an unacceptably high likelihood that the results are strongly
biased. This section will first illustrate how and why the statistical estimators for model
fit can become severely biased – dependent on the data and the fitted model. Next, it will
discuss the effect of biased estimators on model selection. And, finally,it will present a
number of robust model fit (i.e., predictive error) estimators as well as examples of robust
algorithmic model selection algorithms that utilize these estimators and are thus much
less vulnerable to the various model-fit estimation biases.

4.2.1. Measures for Model Fit with Reality (R2)

As discussed in section 4.1.7 on page 114, there are two categories of model fit criteria:
predictive error and model error. In the following, a formal and general mathematical
definition of model fit with “reality” will be presented. Hence the focus will be on predictive
error measures, given their suitability for practical applications.

As discussed before in section 4.1.6 on page 111, robust algorithmic model fitting
critically depends on a low level of bias in the model fit estimation procedure. One reason
for this is the use of the model fit criterion as an objective function for automatic model
fit optimization. Therefore, as an illustration, model fit – as measured by the popular
coefficient of determinance R2 – is defined in a general (non-approximate) mathematical
form followed by an analysis of the most common estimation procedure for R2.

A principal challenge in low-bias estimation is to obtain an estimate that robustly
generalizes beyond the collected sample to the rest of the entire population. As outlined
in section 4.1.3 on page 105, statistical models serve as approximations for the “true”
underlying statistical process P driving “reality”, and they are used to understand the
statistical process in a quantitative way and/or to make predictions. In both cases, the
model resulting from this analysis needs to have predictive power beyond the collected
survey sample in order to model the underlying mechanism (“reality”) in a sufficiently
accurate manner. Thus the model should be based on a sample that is sufficiently rep-
resentative of the total population in addition to a good model fit (with the fitting data
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sample). Fulfilling these two requirements, the model would have a low sampling bias –
i.e., building another model based on another representative sample would lead to similar
results and represent the underlying “real” mechanism well. A model with sufficiently high
predictive power is a prerequisite for further analysis of the model and interpretation of
the results, e.g., for getting low-bias estimators for the variable effect strengths.

The model’s fit with the collected sample data, measured, e.g., by the coefficient of
determinance R2, is commonly used as a measure for predictive power, based on the
assumption that the collected sample is approximately representative for the entire pop-
ulation and thus the underlying stochastic process P 20.

In a general and mathematically exact (i.e., non-estimated and non-approximate) form,
the coefficient of determinance R2 is defined as21:

R2 =
explained variance

total variance
= 1− unexplained variance

total variance
= 1−

EPy,ŷ
[
(y − ŷ)2

]
EPy,ȳ [(y − ȳ)2]

(4.5)

where y is the random outcome variable driven by the stochastic process P , ŷ is
the prediction for the dependent variable using the model and ȳ is the average of the
dependent variable22. The residuals y − ŷ are squared, which disproportionally penalizes
larger deviations of the model from the sample data compared to smaller deviations –
in principle, a desirable property. However, penalizing large deviations more than small
makes this measure also less robust to the impact of outliers that have large deviations,
even though they might represent only a small fraction of the sample.

Thus an alternative measure would be a coefficient based on the absolute values of the
residuals, which in the following will be referred to as R the absolute sum coefficient of fit
or Rabs. Its general and precise mathematical definition is:

Rabs = 1−
EPy,ŷ [ |y − ŷ| ]

EPy,ȳ [ |y − ȳ| ]
(4.6)

This measure treats all data points equally and is thus more robust to outliers.
R2 has nevertheless become the de facto standard to measure model fit, since squaring

the residuals has one important convenience advantage: in ordinary linear multivariate
regression, the square residuals are minimized23 instead of the absolute residuals, which

20Citing (Backhaus et al., 2006, p. 64): “Nachdem die Regressionsfunktion geschätzt wurde, ist deren
Güte zu überprüfen, d.h. es ist zu klären, wie sie als Modell der Realität geeignet ist.” (“After the
regression function is estimated, its goodness must be assessed, i.e., it needs to be investigated, how
well it [the regression function] serves as model of reality.”) Backhaus et al. (2006) then proceed to
argue for the use of R2 and by-parameter tests such as the student t-test.

21See also (Backhaus et al., 2006, p. 66)
22Strictly speaking, ȳ, the true mean of the population, is unknown as well and thus must be estimated,

e.g., by the mean of the sample.
23The solution to ordinary linear multivariate regression minimizes the quantity: S = (Y − bX)(Y − bX)
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allows for a closed-form solution for the coefficients. This can be calculated very quickly
using a simple and computationally very efficient matrix operation24.

Following this de facto standard, model fit will be measured by both R2 and Rabs in
this study. In contrast to the common use of R2, however, this study will use multiple
different methods to estimate the true R2 for the whole population in order to reduce
estimator bias – as will be detailed later.

At this point, it is worth noting the way in which R2 and Rabs are commonly estimated.
The challenge in evaluating the expressions in equations 4.5 and 4.6 is, in both cases, to
estimate the expected value EP [] of the deviation between model and data with little
bias. In the general definitions, R2 and Rabs differ only in the deviation term, which is
defined for the following arguments as function g(x, y): For R2 the deviation function
g(x, y) = (y − ŷ(x))2, while for Rabs the deviation function g(x, y) = |y − ŷ(x)|. In both
cases, y refers to the sample data and where ŷ(x) refers to the current model, which
functionally depends on the independent variable vector x.

In general, EPx,y[g(x, y)], the expected value of any function g(x, y) for a stochastic
process P , is given by:

EPx,y[g(x, y)] =

∫
any x,y

DP (x′, y′) g(x′, y′) d(x′, y′) (4.7)

where DP (y′, x′) is the multi-variate distribution describing the stochastic process P in
the form of a multi-variate probability density function (PDF) (Lee, 1997, p. 13) over
random variables y′, x′ (the prime indicates that the variables are helper variables for the
integration). The integration is performed over all possible combinations of x, y that are
valid in the population generated by the process P . Unlikely combinations of x, y will be
multiplied with the very low probability density value and thus will hardly affect the end
result of the integration.

Since accurately estimating EPx,y[g(x, y)] is the key to estimating the model fit25, the
challenge in calculating the model fit is to obtain the true multi-variate representation
DP of the stochastic process P and to evaluate the integral over all possible values. Since
in most cases the true distribution DP is unknown26, statisticians commonly estimate the

where the data X and Y has been transformed linearly to have zero mean (Backhaus et al., 2006, p.
115).

24The R2-maximizing solution of the regression coefficient vector b is b = arg min
b

S(b) = (X′X)−1 · X′Y

(Backhaus et al., 2006, p. 116). Since R2 is directly proportional to S for a given and fixed sample,
R2 is the natural model fit measure for linear regression and only distinct from S by a normalization
that allows comparison across datasets.

25See equation 4.7.
26The true distribution DP completely describes the random process P if it is multi-variate over all

relevant variables. Thus if the researcher knows this distribution, he or she has a more detailed
description of the process than an expected value model (section 4.1.4 on page 108). For example:
Pearl (2003) suggests going beyond linear expected value models in structural equation modeling by
using multi-variate distributions. Thus when the distribution DP is known, there is no point in further
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model fit using a representative sample generated by P – as is described in the following:
When a random sample of size n from a larger population of size N is available and

sufficiently large27 compared to N , it can be assumed that it is approximately repre-
sentative of the entire population. It follows that the distribution of the sample is an
approximation of the distribution of the population. Then a practical method to esti-
mate the value of the integral in equation 4.7 is to perform a Monte-Carlo integration
(Robert, 2005) by first randomly drawing samples (X, y)gen from the distribution of the
collected sample DP (x, y). Next, artificial samples gi for g(x, y) are calculated using the
previously generated artificial samples (X, y)gen. Finally, the gi samples are averaged to
give an estimator for the integral in equation (4.7)28. The simplest method of drawing
samples from the distribution of the survey sample is to simply use the samples contained
in the sample, rather than modeling the distribution (e.g., by kernel fitting), and then
generating samples from this model of the distribution. Using the simple method, the
Monte-Carlo integral simplifies to the frequently used mean estimator for the expected
value EPy,x[g(y, x)]:

ẼP [g] =
1

n

n∑
i=1

gi (4.8)

where the samples gi have a distribution that approximates DP
g .

The simple estimator in equation 4.8 has the appropriate convergence property of
statistical estimators: as the sample size n converges to the size of the entire population
N , the estimator ẼP [g] will also converge to the true value of EP [g]29.

With this estimator, equations 4.5 and 4.6 for R2 and Rabs simplify to:

R2 = 1− ẼP [g2]

ẼP [(y − ȳ)2]
= 1−

∑n
i=1 (yi − ŷi)2∑n
i=1 (yi − ȳ)2

(4.9)

and

Rabs = 1− ẼP [g]

ẼP [|y − ȳ|]
= 1−

∑n
i=1 |yi − ŷi|∑n
i=1 |yi − ȳ|

(4.10)

While the previous paragraphs may be a rather complicated explanation for the simple
mean estimator, it sheds light on how the estimator can be biased: the estimate of the
multivariate distributionDP

g based on a sub-sample with size n << N will be biased, since
the sub sample is hardly ever perfectly representative. It is this bias in the estimation
process of the distribution that also biases the estimator itself. Thus the choice of the data

statistical modeling.
27Sufficiency of sample size depends on the type of data-generating process and in particular how much

noise it adds, as will be detailed in this and following sections.
28Alternative and more accurate discrete integration methods are Simpson’s rule or the Trapezoidal rule.
29For another statistical estimator van der Laan (2006) includes a mathematical discussion of estimator

convergence on p. 10.
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used by the estimator is pivotal for its accuracy. For any small sample size n << N the
estimator will likely be biased, which is the reason that other estimators are considered
later – see section 4.2.4 on page 129.

The meaning of the different possible values for R2 is illustrated in table 4.2. The
interpretation of different values of Rabs and the limits (−1 < Rabs < 1) are the same as
shown in table 4.2, with the only exception that the absolute values of Rabs will generally
be lower.

R2 = 0 The model is as good for prediction as simply using the mean
of Y for prediction without regard for the independent vari-
ables X – i.e., the model has no value.

0 < R2 < 1 The model is a better predictor than the mean. The value
of R2 is the fraction of the variance around the mean and
explained by the model.

R2 = 1 The model is a perfect predictor for the data Y when X is
known.

−1 < R2 < 0 The model is a worse predictor than the mean – i.e., the
model has no value. This never happens for ordinary linear
regression or when estimating R2 using the data the model
was fitted to, since minimizing S always leads to R2 >= 0.
Hence R2 < 0 is usually a sign of a defunct fit algorithm.

R2 > 1 or R2 < −1 Not possible.

Table 4.2.: Meaning of Different Values of R2

In summary, this section presented a general mathematical definition of R2 and Rabs

and derived the most commonly used estimator for both model fit measures. This de-
scription forms the theoretical basis for the discussion in the following sections on how
this simple model fit estimator can lead to biased results.

4.2.2. Biased Model Fit Estimation and Overfitting

The theoretical details of the previous section gain practical relevance when the interaction
between the model fit estimation method and the model fitting process itself is consid-
ered. This section will illustrate how the bias in the model fit estimator used in ordinary
regression may negatively affect the model fitting process and lead to overfitting. Note
that for illustration of the effect, it is assumed in this section that the statistical model
is specified before the model fitting step. The following section will cover the additional
effect of model selection.

Note that the effect described below is small and neglible when the sample size is large
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and few variables are considered. Unfortunately, many common social science applica-
tions are complex problems with many variables, and sample sizes are often relatively
small. Empirical evidence for overfitting due to a high model flexibility stemming from a
relatively large number of variables can be found in sections 6.1.4 on page 177 and A.6.3
on page 310.

In ordinary linear multivariate regression, the following quantity is minimized to ob-
tain the parameter estimates b̂ (using the commonly used simple mean estimator for the
expected value from equation 4.8 on page 122)30:

b = arg min
b

EPy,x
[

(y − ŷ(x))2
]

for the entire population (4.11a)

b̂ ∼= arg min
b

∫
any x,y

D̂P
x′,y′ (y′ − ŷ(x′))2 d(x′, y′) with an estimated distribution (4.11b)

∼= arg min
b

[
(Y − Ŷ)(Y − Ŷ)

]
over the collected sample (4.11c)

∼= arg min
b

[(Y − bX)(Y − bX)] over the collected sample (4.11d)

b̂j ∼= arg min
bj

n∑
i=1

(yi − ŷi(bj , xi))2 (4.11e)

∼= arg min
bj

n∑
i=1

yi −∑
j

bjxi

2

(4.11f)

where equation (4.11a) precisely describes the unknown true optimum, while the other
equations describe the estimation procedure in various equivalent forms. Any estimation
procedure will in some way estimate D̂P

x,y – equation (4.11b). The estimation of the
distribution is most commonly performed by using the collected samples as described in
the following equations: equations (4.11d) and (4.11c) are simply the matrix versions of
equations (4.11f) and (4.11e).

Note that the quantity EPy,x
[

(y − ŷ(x))2
]
is directly proportional to R2 and thus

the minimization process shares the same challenges with low-bias estimation with the
simple R2 estimators. Thus the model fit optimization described above is equivalent to
minimizing R2.

The completeness of the coverage of the distribution DP by the collected sample is
essential for a low-bias model fit estimate. The coverage becomes especially sparse, and
thus the estimate more strongly biased, if the sample size n is relatively small compared to
the number of independent variablesm: In order to estimate the model fit, the distribution

30arg min
b

refers here to a minimization of the quantity after the arg min operator by adjusting b during

the optimization. The entire expression evaluates to the optimized values of b – labeled here as b̂.
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DP needs to be estimated over a variable hyperspace of dimensionality m – i.e., a multi-
variate PDF for DP with m-dimensions needs to be estimated. When the sample size n
is small compared to m, there will be a very sparse point cloud of sample data in the vast
variable hyperspace, which leads to inaccuracies and bias in the estimation of DP and
thus also to a bias in the model fit estimate.

This sparseness effect will only lead to a minor bias for R2 model fit estimates that
are estimated based on an independent data sample, which was not used during model
fitting. This “natural” bias is amplified, however, if R2 or a proportional expression31 is
used as an optimization goal function during model fitting – as the following illustration
will show.

overfitted
(perfect fit, R2 = 1.0)

not overfitted
(reduced fit but higher predictive power)

a) b)

true stochastic relationship

expected value model

y

x

y

x

Figure 4.1.: Overfitting - A Graphical Example

The effect of this sparseness on model fitting is illustrated in figure 4.1 showing the
same – slightly noisy – data in part a) and b) of the figure. When the algorithm fits an
expected value model by aggressively maximizing the R2 based on the sparsely modeled
distribution – as shown in part a) of the figure – then the model (in red) is overfitted,
i.e., the fit to the collected sample is much better than the real relationship (in green)32

(Breiman, 1996b, p. 2351). In contrast, figure part b) shows a non-overfitted model (in
red), which is much closer to the real relationship (in green), but gets a lower R2 model
fit estimate, since the true randomness of the underlying process reduces the R2 model
fit estimate.

This is rather disturbing, since the conventionally estimated R2 suggests a very good

31As shown in equation (4.11f).
32In figure 4.1, a non-linear model is used for illustration. In the case of ordinary linear regression, the

overfitting effect would look different but is still present and similar, especially when the model uses
many variables and thus also has many parameters, giving it a high degree of freedom.
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fit, but the overfitted model actually fits reality much worse than what the R2 value
suggests, and thus it also fits new samples33 much worse than a simpler model would34

– see part b) of figure 4.1. This coincides with common intuition that suggests that the
model in part b) will be much more reliable for predictions of new samples collected after
model building than the model in part a). Citing Chatfield:

“Although a more complicated model may appear to give a better fit, the predic-
tions from it may be worse. The dangers of overfitting are ’well-known’, par-
ticularly in multiple regression [. . .], but these dangers are not always heeded.”,

Chatfield (1995, p. 429)

Hence the combination of many variables with comparatively few samples leads to
an overly sparse modeling of the statistical process’ true distribution DP . The use of
this sparse sample within the simple mean estimator, in combination with aggressive
optimization, leads to a strong overestimating bias for theR2 and an overfitted model. The
optimization and the weaknesses of the R2 estimator interact in a disadvantageous manner
that leads to a bias far exceeding the abovementioned “natural” bias of the conventional
R2 estimator (Efron, 1986). The principal problem is that estimator for R2 and the fitted
model become dependent on each other during the model fit optimization process. Thus,
conversely, an independent estimator for model fit (even when slightly biased) will yield
results much closer to the model fit with reality (rather than the sample data). Examples
of such independent model fit estimators are presented next in section 4.2.4 on page 129.

While this problem with the ordinary R2 model fit estimator is central to overfitting,
it only occurs when a number of conditions are present simultaneously:

• little data – too few samples compared with the number of variables, leading to
the distribution sparseness and model fit estimation issues discussed above.

• noisy data – the true relationship is not entirely deterministic or some relevant
variables are missing from the model – possibly since they have not been or could
not be collected35.

• unevenly distributed data – even if the absolute number of samples is sufficiently
large, the samples may be distributed unevenly over the range of an individual
variable – see dataset 2 in figure 4.2 on the next page and the explanations below.

33New samples are either additional samples from a larger population or are generated by the process in
the future.

34With reference to the discussion from section 4.1.7 on page 114, the simpler model has a less than
perfect prediction error but has a model error of almost zero – implying that it is close to the best
possible expected value model, given the noise in the data.

35See also the discussion regarding spurious correlations and hidden latent variables in section 4.1.5 on
page 109 on causality.
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Figure 4.2.: Overfitting Depending on Data Density and Model Flexibility
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• model flexibility/stiffness – the shape of the model has too many degrees of
freedom compared to its dimensionality (i.e., number of variables) – see details
below.

• aggressive optimization – the algorithm aggressively searches for the mathemat-
ically best (i.e., optimal) result, not just any good result – without compromise or
a stopping rule to avoid overfitting36.

Besides the absolute number of collected samples, uneven data density over different
values of a variable may also lead to overfitting – as figure 4.2 on the preceding page,
parts a) and b) illustrate. Note that “Example Dataset 1” in the left column has more
data than “Example Dataset 2” in the right column. In addition, dataset 1 is also more
evenly distributed, as the graphs at the bottom of the figure show. The data in the right
column is the same as in the left column – just with many points removed. The low data
densities in part b) for x < x′′′ lead to strong overfitting for a flexible model (in red). The
same model fitting technique performs much more stably in part a), when sufficient data
is available and sufficiently uniformly distributed over all possible variable values.

Aside from the data density, the flexibility of the model shape also plays an important
role in susceptibility to overfitting. In figure 4.2 on the previous page part a), the red
model is rather flexible and already disturbed by a local drop of data density around x′.
A stiff linear model (in blue) – shown in part c) – would be less disturbed by such a
local drop in data density, at the expense of a lower fit of the true shape of the stochastic
process. Thus with increasing stiffness, robustness can be traded for model fit.

Yet linear models can also overfit (i.e., the regression coefficients or slopes become
biased) if the sample size is so low that some spaces within the hyperspace spanned by
the independent variable are left empty37 or if strong noise requires a high data density
throughout the entire hyperspace.

To summarize this section, model fit with “reality” is the aim of all model-building
efforts. The model fitting process interacts with the biases in the conventional model fit
estimators. Thus, depending on the data and the flexibility of the model, the model may
strongly overfit the data – leading to a spurious model that is a poor approximation of
“reality” and an overly optimistic model fit estimate.

4.2.3. Challenges in Model Selection

The previous section (4.2.2) highlighted how overly flexible models tend to overfit, driven
by aggressive optimization of a biased R2 model fit measure. The discussion was based

36Almost all optimization algorithms (including the closed-form solution from ordinary regression) have
this property, since it would be difficult to determine a stopping point before overfitting occurs.

37This is comparable to using a fractional design instead of a full-factorial design (Devor et al., 1992).
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on a model selected a priori. The degree of model freedom is restricted to the flexibility
in the model’s shape.

If the statistical algorithm also selects the independent variables in the model, then the
degree of freedom of the model building process has effectively been increased substan-
tially. Also considering different options for data pre-processing (e.g., filtering out outlier
values or variable transformations) adds another degree of freedom to the model building
process (Chatfield, 1995, p. 427). Similarly, algorithms, with the option to automatically
introduce different transformations of the same variable, have a higher degree of model
freedom.

Analogous to the discussion in section 4.2.2 about model flexibility, increasing model
freedom while keeping the sample size constant increases the likelihood of overfitting
and thus introducing severe biases in the conventional model fit estimators. Since most
model selection algorithms also maximize model fit (by adding and removing independent
variables), a model selection result on a biased estimator will also be biased. Biased by-
variable selection is commonly even less acceptable for interpretation than inaccuracies in
the model-shape parameter values38.

Thus model fit estimators with low bias are even more important in algorithmic model
selection than in theory-based model fitting – based on an a priori frozen model structure
with a frozen set of independent variables and variable transformations.

In addition, Breiman (1996b) has shown by a simulation study that stable model
selection also may require very high precision in the data: By the conventionalR2 estimate,
the best39 5-variable sub-model (out of 30 variables in total) has been found (Breiman,
2001b, p. 206). He observed, however, that within the 1% of the best R2 estimate, there
were three other models with very different independent variables.

Thus precision of the model fit estimator, in addition to a low bias, does matter. Both
the effect from sampling, i.e., the sampling bias , and measurement inaccuracies may lead
to spurious models. Therefore an assessment of the robustness of the solution from a
model selection algorithm would be valuable.

4.2.4. Estimates for Predictive Error

Section 4.2.2 on page 123 suggested the independence of the model fitting process as one
way to avoid the bias in the model fit estimate caused by overfitting. The previous section
(4.2.3) further emphasized why unbiased estimators are a key to robust model selection.
Section 4.1.7 on page 114 outlined the difference between model error and predictive error.
The conclusion was that for practical applications, where the ideal model is unknown,

38A more detailed discussion of the robustness of by-variable model selection strategies will follow in
section 4.1.8 on page 116.

39Since the number of variables in the sub-model is fixed to 5, comparing and maximizing R2 is equivalent
to maximizing more modern estimators, such as AIC or Cp – see section 4.2.4.
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4.2. Practical Challenges with Algorithmic Model Selection

predictive error is the model selection and fitting criterion of choice. This section will
present various statistical estimators for predictive error.

An important property of statistical estimators is convergence towards the true value
as the sample size increases (asymptotically unbiased) (Breiman, 1992; Kobayashi and
Sakata, 1990; Shao and Wu, 1989). Van der Laan even formally defines the concept of a
“asymptotically linear” property (van der Laan, 2006), which, aside from no- or low-bias
convergence towards the true value, also puts limits on the rate of convergence. This rate
is of practical interest because in many applications with many variables the sample-size
requirements are high and tough to meet, and thus low-bias behavior of an estimator
becomes important for small sample sizes (below the convergence limits) as well. For
an example investigation, see Zhang (1993), in which he compares the performance of
different cross-validation estimators for small sample sizes. The estimators, which are
presented below, will also be evaluated according to their performance for small sample
sizes.

Two general estimator design strategies can be observed:

1. Bias-Correcting Estimators: A number of estimators (e.g., AIC, BIC40 and
Mallows’ Cp) are based on the conventional R2 model fit estimate using the sample
data – but the respective authors have found different biases for the limit case (as
sample size n→∞), and corrected for them. For example, the Akaike information
criterion (AIC) Akaike (1974) is based on a solid information theoretical foundation
(the Kullback-Leibler information quantity), and its estimator is simplified to:

AIC = n log(σ̂2) + 2K (4.12)

where σ̂2 is the variance of the model residuals (and thus σ̂2 ∝ R2), and K is
the number of parameters in the model – serving as bias correction (Anderson and
Burnham, 2002, p. 268).

Another example is Mallows’ Cp (Mallows, 1973, p. 662), for which the estimator
simplifies to:

Cp =
1

σ̂2
R2 − n+ 2p (4.13)

where σ̂2 is the estimate of the variance using the current model, n is the sample
size and p is the number of variables in the selected sub-model.

Zhang (1992b) even argues that for ordinary linear regression and for the measures
AIC, BIC and Cp:

“... all of these can be shown in one way or another to be asymptotically

40Burnham and Anderson (2004) show that for large samples, the Bayesian Information Criterion (BIC)
converges to the same results as AIC.
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equivalent to minimizing (with respect to k) [the final prediction error
FPE:]”

C(k, λ) = R2(k) + λk, 0 ≤ k ≤ K (4.14)

where R2(k) is the residual sum of squares based on the sample data and for the
model with only the first k covariates (out of K covariates in total). In the limit and
for ordinary linear regression, λ, the penalty for overfitting, is the only difference
between AIC, BIC and Cp.

2. Bias-Reducing Cross-Validation Estimators: Other estimators avoid using
the conventional R2 estimate and instead use estimation techniques that are more
independent of the model fitting process and thus do not suffer from the model
fitting bias (as detailed in section 4.2.2 on page 123). These estimation algorithms
are commonly referred to as cross-validation techniques, or in Breiman’s terms as
resampling techniques (Breiman and Spector, 1992).

While theoretically sound for the limit case with large samples, the bias-correcting
estimator group has received much criticism in its application for model selection (Breiman
and Spector, 1992; Zhang, 1992b). Since model selection is commonly an issue when many
potentially relevant variables are involved, and thus the sample-size requirements are also
hard to meet, these estimators’ weak performance for small sample sizes causes instable
model selection behavior. Yuan and Yang (2005) even use a bootstrapping41 technique
to assess the instability of AIC or BIC due to the limited size of the sample. When the
instability, measured by the index PIE, is too large (PIE > 0.5), they suggest specifying
the model by other means, e.g., by combining the predictions of multiple models into an
average and thus more robust prediction (also called bagging or ensemble building).

As an alternative to correcting and controlling the bias in the conventional R2 model
fit estimate, resampling or cross-validation techniques have been suggested by various
authors (Breiman, 1996b; Burman, 1989; Efron, 1986; Zhang, 1993). A particularly data-
efficient resampling technique is bootstrapping – further details are presented in text box
4.2.1.

The term cross-validation is apparently used somewhat loosely in the literature. The
actual estimation algorithms stretch from simple dataset separation (see below) to sophis-
ticated and computationally intensive bootstrapping methods. All estimation algorithms
have in common that they calculate the model fit using the usual R2 or Rabs formulas
(equations (4.9) and (4.10)), though based on different datasets – either a sub-set of the
collected sample or a completely separate test (validation) dataset. By using independent
data sets, these estimates do not suffer from the bias introduced by the interaction of
41Bootstrapping is a particular cross-validation or resampling technique – see also text box 4.2.1 on the

next page.

131/343



4.2. Practical Challenges with Algorithmic Model Selection

Text Box 4.2.1 Bootstrapping

Cross-validation techniques commonly split the sample data into two or more sub-datasets,
of which some are used exclusively for model building and others are used for validation. In
contrast, bootstrapping (Breiman, 1992; Breiman and Spector, 1992; Efron and Tibshirani,
1997) in several iterations fits multiple models to different sub-samples of the sample data
in order to assess the robustness of the model-building process with respect to the sampling
bias. Each model-building iteration commonly begins with splitting the sample data into
two sub-samples: one for model building (training data) and one for validation (test
data). Then a model is fitted against the training data and the model quality (e.g., model
fit R2) is assessed against both training and test data. After running through multiple
iterations, a set of models is created and fitted. The size of the variations in model fit and
in the parameters across the iterations provide a good measure for assessing model (and
parameter) robustness.

model fit estimation and model fitting (as described in section 4.2.2 on page 123).
The following list gives an overview of the most common cross-validation algorithms:

• Simple Dataset Separation Cross-Validation – The collected data is split into
a training dataset and a test dataset. The training dataset is used for model fitting,
while the test dataset is used for calculating a model fit independent estimate of
R2 or Rabs (Stone, 1974, p. 111). While this method is simple and delivers a truly
independent estimate, the available data is split into two smaller samples, leading to
a higher sampling bias for the model fit estimates on both the test and training data.
Thus this technique is useful and simple if enough data is available for splitting.
Since cross-validation becomes especially important when relatively little data is
available, other more data-efficient techniques have been developed.

• Jackknife Cross-Validation – Shao and Wu (1989) developed Jackknife cross-
validation as a very data-efficient estimation method:

1. One or more data points are removed from the collected sample;

2. a new model is fitted to this new data sub-set; and

3. a model fit estimate is calculated based on the data sub-set and the new model.

4. Steps 1-3 are repeated many times, resulting in a distribution of R2 or Rabs

estimates.

With the distribution of R2 or Rabs estimates, the variability of the model fit es-
timate can be assessed. In some variants of jackknife, square correlations between
the complete data and the subset are used to estimate a new, less-biased model fit.
While this estimation algorithm is very data efficient (almost the complete dataset
is used for model fitting), the models are fitted on different but very similar samples,
and hence the estimate is not very independent of the model fitting process.
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• Breiman’s Little Bootstrap A bootstrapping-based estimator for the predictive
error in the X-fixed case, i.e., the experiment is repeated in a controlled manner
with the same dependent variable settings X. Simulation experiments in Breiman
(1992) show that the estimator has very low bias and is very data efficient – i.e.,
does not require a large and separate dataset.

• Efron’s Bootstrap Cross-Validation Efron suggests a bootstrapping-based cross-
validation estimator that has a low level of bias that is comparable to the simple
data separation cross-validation, but is more data efficient – i.e., has lower variability
than simple cross-validation for a given sample size (Efron and Tibshirani, 1997).

• Breiman’s Predictive Error Cross-Validation Estimate The estimator works
only with bagged or ensemble methods, such as the random forest algorithm by
Breiman (2001a), in which a number of individual models are averaged to give a
more robust prediction. The estimator works as follows:

1. From a part of the collected sample, a training sample is generated by boot-
strapping42. All samples not used in the training dataset make up the test
dataset. Many such training and test dataset pairs are generated.

2. A new “individual” model is fitted to each training and test dataset.

3. A model fit estimate for each test dataset and the respective individual model
is calculated.

The result is a distribution of what Breiman calls “out-of-bag” model fit R2 estimates.
The average of these out-of-bag estimates is an estimator for the predictive error.
For details, see: Breiman (1996b); Breiman and Spector (1992).

Zhang (1993) confirms that Breiman’s multifold cross-validation estimate outper-
forms any other cross-validation algorithm in terms of bias and data efficiency –
albeit at high computational cost.

As the development of further cross-validation techniques is still in progress, this list
is not complete. Zhang (1993) and Burman (1989) list and compare additional variations
of cross-validation.

The more sophisticated bootstrapping-based cross-validation techniques have an addi-
tional benefit: the estimator is the mean (or another aggregation) of a number of results
for different bootstrapping samples (and models). Thus if the aggregation step is skipped,
one gets information about the distribution of the individual results that make up the
aggregated estimator. If the mean is used for aggregation, and the number of individual
42One option is to use bootstrapping with replacement, using about 63.2% of the data in the training

sample (Strobl et al., 2007, p. 4). Then the training dataset has the same size as the original sample,
and the test dataset has about 36.8% of the original sample size. Alternatively, bootstrapping without
replacement but with a limited training data size (e.g., 70%) can be used.
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results aggregated with the mean is sufficiently large, the central limit theorem43 applies
to the mean – i.e., the mean estimator will be normally distributed, and thus one can
calculate confidence intervals for it. Hence the information about the distribution of the
individual results allows one to assess the robustness of the estimator towards the sam-
pling effect. It furthermore helps to reduce and control the high variability that these
low-bias estimators often exhibit (Efron and Tibshirani, 1997).

In addition, confidence intervals around the estimators for two different models allow
the robust judgment of whether one model is superior to the other or whether the pre-
dictive error estimates for the two models are too close and too inaccurate to distinguish.
Such judgments furthermore allow an assessment regarding how stable the ranking of
candidate models is towards biases in the measurements.

In summary, during recent decades a number of estimators with much less bias from
model fitting became available as an alternative to the conventional R2 or Rabs model
fit estimates. Two classes of estimators emerged: estimators that aim to correct for
the bias in the conventional R2 model fit estimate and estimators that use independent
datasets for cross-validation. Recent simulation studies (Breiman, 1992; Efron, 1986;
Zhang, 1993) have shown that cross-validation approaches show better performance, es-
pecially for smaller samples, when the bias-correcting estimators are not yet close to
convergence. Additionally, the bootstrapping-based cross-validation measures offer dis-
tributions of individual model fit estimates. These distributions allow an assessment of
the variability of the estimated value in a particular case, e.g., by means of confidence
intervals. With this information they allow an assessment regarding robustness towards
the sampling effect and measurement errors.

Breiman’s multifold (bootstrapped) cross-validation estimate for the prediction error
(Breiman, 1996b) outperforms any of the other methods and provides results with min-
imal bias – even for smaller sample sizes. Therefore it is used in the BOGER algorithm
developed for this study – as described in detail in section 6.2.7 on page 195.

4.2.5. Examples of Robust Algorithms and their Properties

The conclusion from the theoretical part of this discussion was that model selection based
on the sample data is possible in principle (section 4.1.6 on page 111) and that predictive
error is a suitable criterion for both model selection and parameter fitting (section 4.1.7
on page 114). Next, various practical challenges with model fit estimators were discussed
(section 4.2.2 on page 123) and more robust alternative cross-validation estimators were
43The central limit theorem, also known as the “law of large sums”, states that the distribution of a

large sum of independent and identically distributed random variables (the summands) is distributed
normally with a mean equal to the expected value of the individual summand random variables and
their variance divided by the number of summands (σ2

sum = σ2
summands/n) (Lee, 1997). Thus the mean

of the sum is a more accurate estimator for the true mean of the process that generated the individual
summands.
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presented (section 4.2.4 on page 129). With these robust estimators, the practical model
selection challenges, described in section 4.2.3 on page 128, can be overcome. After these
mostly theoretical arguments, this section provides examples of robust model selection
algorithms and highlights their common properties.

The following algorithms are referred to as “robust”, which means more specifically that
they are more robust than others, when run with the same sample size, or, conversely,
that these algorithms need less data to attain the same level of robustness.

Examples of robust model selection algorithms are:

• Zhang’s Cross-Validation Model Selection Method – Zhang (1993) uses dif-
ferent cross-validation estimators for the predictive error in order to rank and then
manually select from a small set of regression models.

• Yuan and Yang’s ARMS Algorithm – Yuan and Yang (2005) propose an algo-
rithm with a model-screening feature, i.e., first a large number of models are screened
and ranked by the simple and biased AIC and BIC criteria. Only a certain fraction
of good models (e.g., the top 25%) are used in the next stage. The final model is
a weighted average (a bagged model), with the weights based on a more elaborate
cross-validation estimate of the relative predictive error. Similar to a bootstrapping
approach, the original sample data is split into many pairs of equally sized training
and test datasets Next, the internal regression algorithm is used to fit individual
models to each training dataset. Based on the respective test dataset, a predictive
error estimate for each individual model is calculated. Aside from the usage of a
robust predictive error estimator, much of the algorithm’s robustness is derived from
the combination of many models – commonly referred to as ensemble building or
bagging44.

• Breiman’s Random Forest Algorithm – Breiman (2001a) proposes a non-
parametric ensemble-building algorithm based on binary decision trees, which can
be used for classification but also regression with continuous outcome variables. In
the same spirit as Yuan and Yang’s split data method, a number of artificial train-
ing and test dataset pairs are generated by randomly drawing data rows45 from the
original sample (bootstrapping). While the datasets are all random and indepen-
dent of each other, as an effect of bootstrapping, they share the same distribution
with the original sample. CART decisions trees are fitted to the training part of
the bootstrapped datasets. Since each node (or split) of the tree is built only on a

44In the statistical literature, there is a whole string of discussion regarding the class of ensemble-building
algorithms, e.g., arcing (Breiman, 1998) or boosting (Lutz and Buhlmann, 2006).

45The term “data rows” here refers to, e.g., the survey data of a single participant or the data for a
particular event – including the outcome variable. Thus the bootstrapping procedure never mixes
data (e.g., between survey participants) and thus ensures that the new random sample has the same
multi-variate distribution as the original sample.
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single variable, this algorithm does not need a separate variable-screening or feature-
selection method to deal with large numbers of variables compared to the sample
size (Strobl et al., 2007, p. 3). Finally the individual trees are combined (bagged)
to a single random forest model by simple averaging of the individual tree pre-
dictions. Breiman (1996a) calls this ensemble-building procedure bagging (bootstrap
aggregating). The algorithm includes but does not actively use Breiman’s estimator
for predictive error (see section 4.2.4 on page 129), which in the context of random
forest, Breiman calls out-of-bag estimate.

According to Breiman’s simulation studies (Breiman, 2001a,b), the random forest
algorithm performs well even with relatively few samples compared to the number of
variables. Breiman shows mathematically that in the limit case (for large samples)
the algorithm does not overfit and generalizes well beyond the sample as the number
of individual trees grows large.

An open-source implementation for R is available as randomForest package (Liaw
and Wiener, 2002)46

• Strobl’s cForest Algorithm – Strobl et al. (2007) have improved Breiman’s Ran-
dom Forest algorithm by using an improved version of CART trees. The split at each
node is not just determined by minimizing the misclassification rate (the analog of
the conventional R2 model fit estimate in decision trees), but by a significance test.
The user may choose from simple tests, such as the student t-test, to more sophis-
ticated procedures, such as Monte Carlo – see also the R package party (Hothorn
et al., 2008). Thus Stobl’s algorithm is even more conservative in preventing over-
fitting than Breiman’s original random forest algorithm.

In summary, this list is far from complete and instead illustrates that robust model-
selection algorithms are feasible and have been implemented.

Given the special properties of the survey dataset collected for this study (in terms of
number of variables, variable types and level of noise – see section 5.12 on page 163), the
BOGER algorithm – as a more suitable alternative for this dataset – has been developed
for this study based on the design principles underlying the algorithms presented above
(see section 6.2 on page 179).

46As with any other add-on package for R, it is available on CRAN either via the web or through the
install.packages() function.
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5.1. Overview

5.1. Overview

The initial literature research (chapter 2 on page 21) and the insights from the qualitative
stage (chapter 5.2 on the next page) lead to a large set of organizational and personal
factors that potentially affect on-the-job learning. Since the aim of this research is to
find the most important factors affecting on-the-job learning (section 2.7.2 on page 80), a
quantitative study became necessary – as discussed earlier in the methods section 3.2 on
page 97.

Given the large number of variables, and with it a requirement for a sufficiently large
sample size, a strongly structured online questionnaire was chosen as a quantitative re-
search tool, as will be described in this chapter.

The 60-minute online survey was fielded in the summer of 2007 at the shipyard Meyer
Werft in Papenburg, Germany, and yielded 329 samples for further statistical analysis (in
chapter 7 on page 205).

Meyer Werft specializes in building cruise ships and other high-value vessels. The yard
builds highly customized ships in small series of two to six, using a flow-line principle from
smaller assemblies (sections and blocks). Since every manufactured piece is different,
Meyer Werft is no typical mass-production yard1 The survey covered all departments,
including a wide range of diverse tasks and working environments, such as automatized
steel cutting and block assembly, purchasing and technical design, IT and administration.

The following sections illustrate:

• insights from a few pre-survey qualitative pilot interviews (section 5.2 on the facing
page),

• the content of the survey (section 5.3 on page 141),

• the design and validation of a quantitative measure for on-the-job learning activity
(the learning index),

• the design of the interactive survey mechanism2 that led the participants through
the survey to allow for a wide spectrum of questions within a comparatively limited
time frame (sections 5.4 on page 145 and 5.11 on page 162),

• a description of how the survey was piloted and fielded (sections 5.5 on page 152
until 5.9 on page 159),

• the data pre-processing and filtering steps used (section 5.10 on page 161),

• and the properties of the resulting data (section 5.12 on page 163).

1For a company profile of Meyer Werft, see appendix section A.3 on page 289.
2Section 5.9 on page 159 includes a quantitative assessment of the performance of this survey algorithm.
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5.2. Pre-Survey Qualitative Pilot Interviews

From a first literature research iteration, the following factors affecting on-the-job learning
came in focus for this study:

• Biographical factors (e.g. age, education, years in the firm)

• The Nature of the Work Environment (e.g. leadership)

• Properties of the Example Task (e.g. interdependence of this task with tasks
of other people, autonomy in working on the task)

• Learning Behavior and Learning Success (e.g. learning used strategies)

• Personality (e.g. self-efficacy, Big-5)

• Personal Network (e.g. number of personal contacts)

• General Climate Working, Learning and Age Climate

Given the goal and the method choice of this study (see section 3.2 on page 97),
these factors needed to be quantified in a time economical and standardized manner – as
required for data acquisition with a fully structured survey.

Hence, the first literature search iteration also included a search for suitable stan-
dardized and tested surveying tools. As will be detailed in section 5.3 on page 141 some
standardized surveying tools were found to be suitable for the task and context of this
study. Yet for a number of important aspects of the problem no suitable existing survey-
ing tools could be found. This most prominent example is the outcome variable of this
study: on-the-job learning effect for dissimilar tasks and dissimilar learning episodes
(further details in section 5.4.1 on page 146).

Furthermore, many standardized surveying constructs used in literature have been
developed, tested and applied with groups of participants that do not represent the pop-
ulation average (e.g. university students). Therefore it was necessary to interactively
test existing surveying tools in interviews, whether the questions were understood in the
intended way by the participants.

Thus with the aim to test existing and if necessary develop new surveying tools for this
study, a series of 6 qualitative interviews was conducted. While semi-structure interview
guides were used for the interviews, the interview guides were evolving with each interview
and thus no standardized data, that is comparable across participants, was collected3.

3Analysis methods for unstructured interviews, such as transcript coding methods, were thus not used
either, since the aim was not to generate scientific evidence but rather to test and refine the line of
questioning. Hence there is also no extensive documentation of the interviews at this point.
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5.2. Pre-Survey Qualitative Pilot Interviews

One of the interviews was lead by Polina Isichenko with a stronger focus on innovation,
which was the focus of her research.

Using the method of evolving interviews the following insights – regarding practical
and suitable surveying methods – emerged:

• It is easy to talk about knowledge in general terms but very hard to ask people to
list what knowledge they have in different thematic areas. Hence it is difficult
to have the participants categorize their knowledge in abstract functional categories
such as ’embedded knowledge’, ’procedural knowledge’, ’event knowledge’ as sug-
gested by von Krogh and Venzin (1995), which is in-line with the arguments from
the theory section 2.5.2 on page 73. This challenge becomes practically infeasible,
when additional restrictions from the research method become relevant: For exam-
ple, if a structured survey is chosen in order to obtain a sizable sample – as proposed
later in section 5.3 on the next page – the survey instrument allows only for very
limited (and before-hand scripted) interaction in addition to the time limitations of
a survey.

• Using concrete examples from the interviewees’ work, proved as very effective
facilitator to get more details on the interviewees use of their knowledge. This
matches with findings in the psychological literature, as for example Schwarz and
Bienias (1990) have observed in their study comparing general and episode specific
questionnaire results.

These two insights were the trigger to link the question items for the learning index,
which is used in the survey of this study as the outcome variable, to specific and concrete
learning episodes – as experienced by the individual participant (details in section 5.4.1
on page 146).

Eventually the insights gained in this evolutionary interviewing process lead to the
design of the fully structured survey (described in 5.3 on the next page) and further
testing of the fully structured survey in interview form followed before fielding it (as
described in the survey pilot section 5.5 on page 152).

As mentioned before, the before mentioned practical insights regarding the surveying
methods, were not derived in a particularly systematic (i.e. scientific) manner. Yet the
insights were confirmed in the survey pilots (section 5.5 on page 152) and the successful
application of the fully structured survey (section 5.9 on page 159).

Furthermore and in the spirit of the iterative research approach (from section 3.1.6 on
page 93), the qualitative interviews inspired further literature search iterations during the
weeks the interviews were conducted.
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5.3. Covered Constructs in the Survey

The aim of this survey was not only to provide data for this study, but also to provide
data for an innovation study by Polina Isichenko and a work motive study by Christian
Roßnagel. Furthermore, the consulting company DNV4 also had a few general questions
on learning and knowledge as a rerun from an earlier survey.

Hence the selection of constructs5 of contained in the survey is based on the initial
literature review for this study but also contains constructs that serve the aims of the other
parties. Aside from a common general part, the questions for the different research aims
are triggered in a partly random fashion by an algorithm described in section 5.7. The
survey is usually not run with the complete set of question items listed below, and therefore
all participating researchers got a large data set – albeit with a substantial fraction of
missing values that will require filtering and imputation (see appendix section A.5.2 on
page 303).

The following table lists all included (but algorithmically activated) constructs and
question items. All questions items were originally posed to the participants in German;
they have been translated here into English. Unless otherwise noted, the questions were
created by the author of this study.

Table 5.1.: Survey Constructs

Construct Purpose Official Name/Source / Comment No. of Factors

I Biographical Information 8 (Section Total)

Sex 1

Age In number of years not age groups 1

Department By top-level department (cost ac-
count) number

1

Education Level Highest completed degree and cur-
rent enrollment in practical training
(“Lehre”)

2

Years – in the company & in
the current dept.

In number of years 2

Years experience in other com-
panies

In number of years 1

4Det Norske Veritas http://www.dnv.com
5The constructs mentioned here are batteries of question items that all probe in a similar direction.
The combined (usually summed or averaged) results of the question items provide a single reliable
measurement in a general / broad direction.
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5.3. Covered Constructs in the Survey

Table 5.1.: Survey Constructs

Construct Purpose Official Name/Source / Comment No. of Factors

I DNV Questions 25 (Section Total)

Knowledge Distribution & Ac-
cess

DNV’s custom questions, already
used in only one previous survey at
Meyer Werft

12

Personal Motivation DNV’s custom questions 13

I Work Environment – non-task specific 9 (Section Total)

Leadership (perceived behav-
ior of the superior)

• Encouragement for em-
ployee initiative

• Clarity of responsibili-
ties

• Constructive feedback

• Result focus

• Group climate focus

• Trust in the employees

Adapted from van de Ven et al.
(2000)

6

Formal Continuing Education Seminar Offerings and Participation 2

Speed of change in the work
environment

1

I Innovation / Project / Work – Task Properties 33 (Section Total)

Depending on the chosen branch: an innovation project, a non-innovation project, the

normal work in the last 4 weeks.

B Innovation Participation 7 (15 in detail)
(Subsection Total)

Depending on the survey path, a short or a detailed set of innovation ques-

tions is included.

Nature of participation in in-
novation projects

Idea Creator, Supporter, . . . 5 (7 in detail)

Involvement in the Project Time involvement 2 (5 in detail)

Innovation Novelty Incremental / radical (1 in detail)
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Table 5.1.: Survey Constructs

Construct Purpose Official Name/Source / Comment No. of Factors

Innovation Impulse New requirement, external idea,
competitive pressure, . . .

(1 in detail)

B Project Properties 2 (Subsection Total)

Project Duration 1

Work (Time) Input 1

B Work Process Classification – for the example project /
work of last 4 weeks

31 (Subsection To-

tal)

Task Effectiveness perceived results / performance
(self-rating)

2

Task difficulty level 1

Change in Working Processes Changes in the department within
the last 3 years.

2

Job/Task Characteristics

• Skill Variety (AV)

• Task Identity / Close-
ness of Task Definition
(AG)

• Task Significance (BSK)

• Autonomy (Auto)

• Feedback (FB)

Job Diagnostic Survey (JDS) a Job
Characteristics Model Survey Tool
(see Oldham & Hackmann 1975 in
Kulik et al., 1988), translated into
German by Schmidt and Kleinbeck

5

Comparison with the project
and the participant’s regular
work

For projects only 1

Task Interdependence Question on whether this task de-
pends on other people’s works or
vice versa

2

Procedural detail On detail level of work instructions 1

Level of systematization for
solving problems

1

Resource scarcity Innovations only 1
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5.3. Covered Constructs in the Survey

Table 5.1.: Survey Constructs

Construct Purpose Official Name/Source / Comment No. of Factors

Level of personal communica-
tion

Number of contacts by contact
group (own dept., supplier, superior,
. . . ) + frequency of communication

14

Level of Routine Frequency of similar tasks in the
past

1

I Learning Component 20 (Section Total)

“Learning Frequency” Frequency of consciously perceived
(and recalled) learning events

1

Learning Strategies High-level individual learning strat-
egy (by experimentation, reading,
discussion, investigations of past in-
cidents, ...)

6

Perceived Learning Barriers &
Opportunities

Mostly organizational barriers: lack
of information, contact persons,
time,. . .

9

General learning intensity im-
pression

“How much in total and compared
with other tasks did you learn in
project/task XYZ?” (see appendix
section A.4.3 on page 297)

1

Individual novelty of the sub-
ject

Level of surprise about the learning
events

1

Personal interest in the topic “The topic was also interesting to me
personally and independent of my
tasks.”

1

Feedback intensity (from col-
leagues)

1

I Person specific variables 14 (Section Total)

Task-specific self-efficacy Loose adaption from Ralf
Schwarzer’s scale for teacher
job-specific self-efficacy (Schwarzer
and Jerusalem, 1999)

1

Self-Regulation Self-regulation scale by Schwarzer
(2000) [Original in German]

1

144/343



Table 5.1.: Survey Constructs

Construct Purpose Official Name/Source / Comment No. of Factors

Epistemological Beliefs (EÜ)

• Objectivity of Facts

• Subjective learning aims

Based on Bauer, Johannes, Festner,
Dagmar, Harteis, Roßnagel.

5

Job Self-Efficacy “Berufliche Selbstwirksamkeit
(BSW)” by Abele et al. (2000)

1

Job Involvement Survey instrument from Frone and
Russell (1995), translated into Ger-
man by author

1

NEO FFI Big Five 10-item short version (NEO FFI) of
the Big-Five personality dimensions
Rammstedt and John (2007)

5

I Work Motives 212 (Section To-
tal)

An instrument by and for
Christian Roßnagel

212 (short items)

+ free text field for comments

Overall
To-
tal

excl. short Work Motive Items 157

All questions that were included in the final model, as a basis of the interpretation
of results, are quoted (in an English full-length translation) later in the discussion of
statistical results in chapter 7 on page 205.

5.4. Quantifying On-The-Job Learning – Learning Index

The aim of this survey instrument is to quantify the on-the-job learning effect. For that
purpose, I developed and tested (section 5.11 on page 162) a novel survey instrument that
makes it possible to measure the on-the-job learning effect: the learning index. Aside
from the employed learning strategies, it is the core outcome variable. As a back-up and
cross-checking instrument, a much simpler question on the general learning impression is
included in the survey (see appendix section A.4.3 on page 297).
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5.4. Quantifying On-The-Job Learning – Learning Index

A new learning construct was designed for this study because an existing standard
construct – with acceptable quality and applicability for this research effort – was not
found in the literature.

5.4.1. Learning Index Survey Tool

A challenge with quantifying on-the-job learning is that the learning content is not stan-
dardized. Hence there is no standardized exam that allows one to measure the learning
effect of the survey participants6. Non-standard learning situations might therefore call
for more qualitative methods, with on-the-job observation and in-depth interviews of in-
dividual participants by a team of researchers. But given the large number of potentially
relevant factors and thus the high required sample size (> 200), such an individual qualita-
tive research approach with a case-by-case analysis is not feasible for this study. Therefore
a perceived, i.e., self-reported, learning effect is quantified by the learning index survey
tool in multiple steps – as presented below.

Self-reports have a number of challenges – especially when they involve a recollection
of past events (Loftus, 2003). Therefore this survey tool is designed to reduce the biases
associated with recollection:

Following the arguments from theory section 2.3.6 on page 47 on iterative learning, the
learning index survey tool is designed to directly address the episodic nature of learning:
learning occurs during episodes of experience and remains connected to these episodes
(D’Eredita and Barreto, 2006b; Racsmany and Conway, 2006). Hence it is not surprising
that Schwarz and Bienias (1990) found that relating survey questions to actual episodes
of experience reduces bias in the recollection of facts (see also Ji et al. (2000)).

That is why this survey tool relates questions on past learning experiences to actual
work episodes of the individual survey participant in two ways: 1.) The questions about
learning activity are linked to an actual task from the participant’s working experience
from the recent past. To further facilitate the recollection of the task’s context, the
participant is asked to divide the task into 2 – 3 work steps. 2.) For each of these work
steps, the participant is asked to name a particular learning situation rather than simply
providing an unspecific learning intensity.

This survey strategy requires an interactive (i.e., computer automated) survey system,
for which the web-based software system Unipark was chosen (details are provided in
section 5.7 on page 153). This software system can steer the participant through different
paths within the survey based on pre-programmed rules and the individual participant’s

6In work settings, measuring the learning effect is substantially more difficult than in school or university
settings, since it is generally much less clear what the participants already knew about the problem
and its solution before they encountered it. Hence when using a standardized exam, the researcher
would need to assess the participant’s knowledge before and after the learning episode – without giving
hints towards the problem or its solution with the exams.
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answers. For the learning index, the loop feature of the online survey system was used,
which generates question pages based on templates and previous answers on-the-fly.

This process sends the participant through two cascaded loops. Figure 5.1 illustrates
it in further detail. This process is a central component of a larger survey algorithm,
which is described later in section 5.7 on page 153.

Survey Start

Step 1: Speed Measurement
and Task (Innovation, Project, 

Normal Work) selection 
Questions & Algorithm

[see section Survey Algorithm]

Step 2: The Participant is 
asked to split his task into 2-3 

steps and give these worksteps 
a name.

The Participant has chosen an 
example task (an  innovation, project 
or his/her work of the last  4 weeks)

Step 3: The Participant is asked to list and 
give names to learning episodes he/she 

had while working on this  workstep.

For each Workstep:

For each Learning Episode:

Step 4: For each learning Episode the 
participant is asked how important the 

learning episode was for him/her.

Step 5: For each learning Episode the 
participant is asked, whether he/she 

actually made us of the learned lesson 
in at least one other case.

further questions on learning strategies
and general learning impression

Figure 5.1.: Learning Index Surveying Tool – Flow Chart (Source: Author)
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5.4. Quantifying On-The-Job Learning – Learning Index

1. In step 1, the participant is asked to choose a project he or she has recently par-
ticipated in: a sample innovation, a non-innovation project, or his or her work in
the last four weeks. In order to prevent participants from changing their example
project during the rest of the survey, and to encourage participants to think seriously
about this step, the participant is asked to enter a name for the example project in
a text field7.

Note that the instructions ask for any project – explicitly including projects and
tasks without exceptionally high learning effects. In the survey introduction, how-
ever, it was communicated to the participants that this survey is about on-the-job
learning. Hence the participants will more likely8 select learning-rich rather than
non-learning projects and tasks.

2. For the chosen example project, the participant is asked in step 2 to split his/her
innovation or normal project into two or three different work steps; in the case of
the last four weeks of normal work, the participant is asked to split his/her work
into two or three tasks. Again, the participant must enter names9 for the task steps.

All following questions regarding the example project, the work step or the short
task, include the wording entered by the participant, which increases the context-
setting effect and speeds up the answering of related questions.

3. In step 3, the participant is asked to name any learning situations (i.e., learning
episodes) that he or she can consciously recall within each work step. As with the
projects and work steps, the participant is asked to enter a name for the learning
situation – encouraging the participant to think of actual learning episodes instead
of just entering a rough number.

The number of learning episodes is limited to three, with the option to enter a
number for additional learning episodes if more than three occurred. Furthermore,
there is an explicit check-box for the case that somebody did not learn anything
during this work step10.

4. For each of these learning situations, the participant is asked to self-assess the learn-
ing effect with a question on the lesson’s importance (step 4) and another question
on the lesson’s usefulness (step 5) in another actually experienced occasion. The

7No name is required for the work of the last four weeks.
8This self-selection bias for learning-rich projects and tasks is not a problem because the research ques-
tions of this study can also be answered with a slightly but systematically biased learning index – as
was discussed in section 5.4.2 on page 150.

9To maintain anonymity, an instruction offers the participants the option to use acronyms instead of
recognizable names for the work steps or the example project.

10This check box is used as a data consistency check – triggering a warning message to the participant if
violated.
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aim is to get a second assessment of the lesson’s importance and to reduce bias in
this assessment by linking it to another concrete situation (context) where the lesson
became useful. For the full question texts and answering scale description, see the
text box 5.4.1 on the next page.

In the qualitative pre-pilot interviews (section 5.2 on page 139), it became clear that
the two questions are understood by the participants in very similar yet different
(i.e., partly interchangeable) ways. This observation is further supported by a mild
Pearson correlation of 0.36 in the survey data (for further details and a graphical
representation, see appendix section A.4.1 on page 295).

Therefore the two question items were merged into a single construct by addition –
in order to gage the lesson’s value. In four cases (1.3% of the survey data), the survey
reduction skipped the question on learning usefulness to save time (see section 5.7
on page 153). In those few cases, the lesson value was estimated from the learning
importance question item alone – as a proxy for both. Using learning importance as
a proxy for both questions is only an approximate replacement for the result from
both question items and thus may be challenged. Yet in the case of this survey, the
proxy method came to application in such a small fraction of all cases (1.3%) that
the effect of using this approximation method is in any case negligible.

Learning usefulness, when measured as an expectation before the learning task is
engaged, may also be related to learning motivation, as predicted in the ’expectancy
theory’ by Vroom (1964). This survey, however, collected the learning usefulness
after the learning episode – as experienced in an actual instance – and therefore the
data is not suitable to test the expectancy theory. Yet it might be valuable to test
the expectancy theory in the context of on-the-job learning in future research – as
detailed in section 8.5 on page 282 on future research.

After the participant completes all iterations of the double-loop, the bulk of other
general questions follows. Hence this difficult part of the survey is located close to the
beginning, when attention is still fresh. As a positive surprise the results in section 5.9 on
page 159 indicate that the attention of the majority of participants stays high during all
iterations of the double-loop. There is no detectable degradation of the results by a loss
of attention – as might have been expected.

The result of these loop iterations are a collection of learning situations that are linked
to a specific work experience11, which the individual participant chooses and names, as
well as assessments of the importance and usefulness of the lesson learned for each learning
situation.
11This experience can be either an innovation project, a longer normal (non-innovation) project or specific

work tasks from the previous four weeks, which the participant has to name.
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5.4. Quantifying On-The-Job Learning – Learning Index

Text Box 5.4.1 Learning Importance and Usefulness Questions in Full Text

Learning Importance is assessed for each learning situation by the question:

“How important for you was what you learned?”

“Wie wichtig war das Erlernte für Sie?” [German Original]

A five-step scale from “not at all important” to “very important” over was used without
further intermediate anchoring. In order to get a true interval scale, this scale is only
anchored at the ends and the intervals in between are not labeled. The web-based survey
tool visually suggests equal distance between the steps by the equal spacing of the radio
buttons.
Learning Usefulness is assessed for each learning situation by the question:

“Was what you learned after <Project Name> <Workstep Name> also useful
for you in at least one specific case?”

“War das Erlernte für Sie auch nach <Projekt Name> <Name des Arbeitss-
chrittes> in mindestens einem konkreten weiteren Fall für Sie nützlich?” [Ger-
man Original]

The participant rates the question on a similar five-step scale, from “not useful at all”
to “very useful”. The placeholders <Project Name> and <Workstep Name> are both
replaced with the respective entries by the participant – in order to make the connection
to the participant’s context directly visible in the questions.

5.4.2. Learning Index Definition

The previous subsection illustrated the data collection for the learning index. This section
describes how this data is used to calculate a single scalar index for the on-the-lob learning
effect of a particular participant linked to a particular work context. In the following
chapters, this learning index is used as the primary outcome variable of this study.

The learning index is defined as follows:

The learning index is the sum of the learning situations weighted by the re-
spective learning importance and usefulness.

The primary underlying assumption is that the actual learning effect strongly correlates
with the number of learning situations that a person can remember.

Mathematically this definition translates to equation 5.1:

Learning

Index Person j,
Workstep k

=

all valid

Learning

Situations∑
i

1

2
( Learning

Importance + Learning
Usefulness

) Learning Situation i,
Person j,

Workstep k

 (5.1)
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In the four cases that the learning usefulness was not available (due to an automatically
reduced survey), only the learning importance is used as a proxy for the average of both
(similar) items – as shown in equation 5.2 (see also the discussion of the construct for the
lesson’s value in section 5.4.1 on page 146.). Since both learning importance and usefulness
indicate the value of a particular lesson, the results of equations 5.1 and 5.2 can be and
are mixed12 in the final outcome variable vector (containing the learning outcomes for all
participants). Since the questions on importance and usefulness are similar and related,
the only major difference between the two equations is that the learning index values on
both learning importance and usefulness are based on two rather than just one question
item per learning situation and thus are likely to have a slightly higher quality. More
details on the correlation of learning importance and usefulness are provided in appendix
section A.4.1 on page 295.

Learning Index Person j,
Workstep k

=

all valid

Learning

Situations∑
i

 Learning
Importance Learning Situation i,

Person j,
Workstep k

 (5.2)

Like psychometric constructs, both variants of the learning index are based on many
question items, which increases reliability. The data from the text-entry fields even allow
a manual (and thus intelligent) quality inspection of the entries.

Despite the bias-reducing features of the learning index (such as the context reference),
a number of biases should be expected. Social desirability might lead some participants
to report about their learning experience in an overly optimistic fashion. Given that the
survey was introduced to the participants as a study on workplace learning, the partic-
ipants will most likely choose a sample project that involves an above-average learning
effect. Some participants might want to make a good impression by presenting themselves
as more active learners than they actually are. And since the importance or usefulness of
the learning effect is a subjective judgement, it might be subjectively biased. Moreover,
the learning index measures the consciously experienced learning effect, but there may also
be an unconscious or tacit learning effect that has effect on employee productivity. While
conscious and unconscious learning frequently occur in conjunction (see section 2.3.8 on
page 52), we do not directly measure the unconscious part with the learning index.

As will be detailed later in appendix section A.4.2 on page 295, the distribution of the
surveyed learning index, with many participants at learning index zero, suggests that the
bias due to social desirability is small.

12Depending on the survey-reduction level, a participant will or will not get questions about learning
usefulness; thus either the full or the reduced version of the learning index will be available. Hence
the results never overlap and can be merged into a single outcome vector.
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5.5. Survey Pilots

Although these effects bias the learning index, the biases are systematic and uniform for
a larger sample. Hence it is unlikely, e.g., that the effect of social desirability depends on
independent variables such as education level – which would also bias the fitted statistical
model. By a similar argument, the learning index is also seen as a sufficiently accurate
relative proxy for total learning, including unconscious learning13.

The aim of the learning index is not to measure the true and absolute average learn-
ing effect for any project or task. To gain insights regarding the research questions, it
is sufficient to compare the relative learning effect under the effect of different organi-
zational factors, such as the working environment. Biases that do not depend on these
organizational factors are therefore not a problem.

As section 5.11 on page 162 further confirms, the design of the learning index meets
the quality requirements for this research purpose and is cost effective (section 3.1.8 on
page 96).

5.5. Survey Pilots

This section will describe the results of the survey piloting sessions – as a basis for the
description and origin of the survey design goals next in section 5.6 on the facing page.

Based on the insights generated in the qualitative stage, a draft version of the online
survey was constructed and tested in three stages with one, two and 12 Meyer Werft em-
ployees, respectively. In the pilot phase, it was possible to streamline the wording and the
flow of the survey significantly for better and quicker understanding by the participants.

Yet the time requirement, combined with the large number constructs necessary for
reasonably extensive models for learning and innovation, proved to be a formidable chal-
lenge. For a certain revision of the survey, most people took around 80 minutes to finish,
but about 20% took much longer and were only done with about 30% of the survey after 80
minutes. Thus the survey was still too long, and, more importantly, different participants
had very different speeds in completing it. Hence the participating researchers realized
that further shortening of the survey (at great cost in model sophistication) would not
solve the speed variability problem and therefore decided on another solution: The online
survey was equipped with a program logic (the automatic flow control survey algorithm)
that selects questions only if relevant to the person’s task example and based on the par-
ticipant’s initial speed, in addition to some randomness (details follow in section 5.7 on
the next page).

The data from the pilot stage was not used in the statistical analysis.

13Supported by the literature cited in section 2.3.8 on page 52, the underlying assumption regarding
unconscious learning is that conscious learning is a good predictor (i.e., is highly correlated) for
unconscious learning and thus also correlated to total learning, combining both effects.
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5.6. Survey Design Goals

With experiences from the pilot stage, the online survey was designed for the following
design goals (in addition to the quality goals described in chapter 3 on page 83):

• The questions should refer to actual examples of the individual employee’s work
in order to ensure the connection to the actual organizational context and in or-
der to reduce subjectivity and the influence of general attitudes about the survey
participant (as already discussed in section 5.4.1 on page 146).

• The survey should not take longer than one hour on average – within reasonable
bands, e.g., a minimum of 40 minutes and a maximum of 80 minutes.

The participants of this survey have very different backgrounds and thus will show
very different speeds when working through the survey. Hence to meet the time
requirement from above for all participants, the survey needs to adapt to the par-
ticipant’s speed.

• The survey should include a wide range of sub-factors describing the major factors
listed in section 5.3 on page 141, including a part on innovation (for Polina Isichenko)
and a part on work motives (for Prof. Christian Roßnagel).

• The questions in the survey should come from standardized question item batteries
forming validated constructs – as far as possible. In addition the constructs should
also closely fit the study question and be applicable within the context. When
these requirements were contradictory and compromises were necessary, preference
was given to the context fit criterion – in line with the aims of the study and the
methodology (section 3.1.7 on page 95).

5.7. Survey Algorithm

This section describes the overall survey algorithm, which steers the participant through
different paths within the survey based on pre-programmed rules – in order to cover
the wide spectrum of questions and in order to automatically adapt to the individual
participant’s speed. It includes the learning index survey tool described in section 5.4.1
on page 146.

For its flexibility and simplicity of deployment (given the web-based client application),
the Unipark online survey tool was chosen for this study. Technical details on Unipark’s
features and the implementation of this survey can be found in text box 5.7.1 on the next
page.

For the purpose of the algorithm, the survey can roughly be split into three content
branches and one common section:
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5.7. Survey Algorithm

Text Box 5.7.1 Unipark – Features of a Flexible Web-Based Survey System

Unipark is the survey product by Globalpark AG, of Cologne, Germany (see also http:
//www.unipark.de/.), used in both academic and commercial settings.
Out-of-the-box Unipark features:

• Participants can participate in the survey simply with their web browser and a
special link to Unipark’s web server.

• A web-based editor to quickly create large dynamic online surveys, complete with
rules that check the consistency of the answers and, if necessary, force the participant
to correct inconsistent answers (very important for the quality of the data).

• Unipark allows automatic generation of question pages for loops. In these (and
other) pages, it can dynamically display the contents of variables within the question
text – an example is mentioned in text box 5.4.1 on page 150.

• There is also some limited built-in support for survey flow control with conditional
rules based on previous answers or other variables of the survey (except time, un-
fortunately).

• For greater flexibility, the researcher can add advanced features by embedding Java
Script code in the survey pages and executing this code in the participant’s web
browser (see http://developers.sun.com/scripting/javascript/). Able to use
any common Java Script function, the researcher can then perform any calculation,
define any condition and feed the results back into the survey variables (which reside
on the Unipark server).

• In addition, there is support for anonymous and non-anonymous surveys (with e-
mail invitations). In the end, the researcher can download a single data file with
the data from all participants.

Nevertheless, to realize the complex adaptive flow control mechanism of this survey, the
built-in functionality was not sufficient, and thus embedded Java Scripts were used heavily
for measuring time and pre-process variables for complex flow control decisions (including
controlled random decisions).

• a common component (including, e.g., biographical information),

• learning component – (a),

• the innovation component – (b) and

• the work motives component plus the DNV knowledge questions – (c)

Since the content branches are not directly related, the algorithm selects only a single
branch (a, b or c) plus the common section for each participant. Since a single branch plus
the common section was still too long for some participants, the algorithm would select
one of five different survey-reduction levels (reducing the number and scope of questions
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of each branch) for each participant individually, depending on the participant’s speed in
answering questions at the beginning of the survey.

In addition, participants would classify their normal tasks by answering a few ques-
tions, and the algorithm would then ask them to select and name an example from one
of the following three task branch categories:

• an innovation project,

• a normal (non-innovation) project, or

• the participant’s normal work during the previous four weeks.

The remaining questions were then asked in the context of the work example chosen
by the participant.

The pilot phase showed that the terms ‘project’ and ‘innovation’ had very different
meanings for different participants. Thus a simple question asking them to choose between
the three task branches was not effective and led many participants into the wrong branch
– invalidating their entire dataset. Therefore a system involving multiple questions and
consistency checks was used to reduce the number of participants getting into the wrong
task branch – described in further detail below.

Using these three filtering stages (content branch, task branch and survey-reduction
level) opened up 35 different ways to proceed through the survey14 and maximized the
number of questions that could be answered within a reasonably predictable and limited
time frame. With this algorithm, roughly 95% of the participants completed the survey
within 50 to 70 minutes.

Since some of these mechanisms are non-random, there is a danger of undesired self-
selection effects. Employees with less education, for example, may be systematically slower
in filling out the survey and thus may only be represented with lower reduction levels. In
that case, certain factors would be collected with higher frequency for those with higher
levels of education.

Nevertheless, the algorithm has been designed following the aims of the methodology
to keep these undesired and unavoidable self-selection effects within reasonable limits. As
the following description will illustrate, the random elements of the flow control mitigate
the self-selection effects, and controlling for self-selection15 makes it possible to detect
certain types of self-selection.

The following algorithmic steps are executed at run-time, while the participant fills
out the survey. The steps are individualized for each participant (see also figure 5.2):
14Not all permutations of content branch, task branch and reduction level make sense – thus the number

of paths is fewer than 45.
15Using variables such as the “education level” see section 5.12.1 on page 163, it is possible to control for

these self-selection effect and if necessary by means of sample weighting correct for them – which was
not necessary for this survey.
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5.7. Survey Algorithm

Survey Start

Step 1: All Participants complete 
5 very standard survey pages, the 
completion time is measured for 
each page and a averaged speed 

index relative to a 'standard 
participant' calculated in %.

Step 2: The Participant is asked if 
he is involved significantly in 

innovation projects

Step 3: Decision is made 
randomly for branch (learning, 

innov. or work motives) and from 
the speed index a survey length 

reduction level is set.

for
Innovators

(Task Type)

all others

Step 5a: Participants are asked if 
they regularly work and are 

responsible (to some extend) for 
larger scale projects.

Step 4: 
Participant 
names an 
example 

innovation 
project in which 
he participated. for project workers

(Task Type)

Step 5b: 
Participant names 

an example 
(normal) project in 

which he 
participated.

normal work of
last 4 weeks
(Task Type)

Rest of the Survey
(depending on Branch, Task Type 

& Reduction Level)

Figure 5.2.: The Interactive Survey Algorithm – The Example Task Selection Flow
(Source: Author)

1. Step 1: For each of the first five survey pages, the participant’s completion time is
measured individually. Each measurement is then compared to a standard bench-
mark completion time, which was defined a priori based on the results of the pilot
study. The result is a speed index measuring the participant’s speed as a percent
of the benchmark speed for each page. For use in the following decision stages, these
page-speed indexes are averaged by an exponential moving average.

2. Next, in step 2, a series of questions are used to assess whether the participant was
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substantially involved16 in an innovation project in the recent past. This pivotal
question page was designed in a failsafe way: if the answers are inconsistent, either
‘no innovation participation’ is assumed or the participant receives an error message
for some standard cases – asking him or her to rethink the answers before proceeding.

3. With this information collected, the central decision-making component of the
survey is triggered. It behaves differently for innovation and non-innovation partic-
ipants:

• If the participant was significantly involved in an innovation project, a ran-
dom number is generated and used for randomly setting the content branch
with the probabilities:
a) learning – 30%, b) innovation – 55% and c) work motives – 15%.

• If the participant was not involved in an innovation, a random number is
generated and used to randomly set the content branch with the probabilities17:
a) learning – 67% and c) work motives – 33%.

In addition, the averaged speed index is used to determine the survey-reduction
level, which further triggers or deactivates questions within the content branches:

Average Speed Index Range Reduction Level

0 % - 34 % 1
35 % - 49 % 2
50 % - 74 % 3
75 % - 99 % 4

100 % - ∞ 5

4. If the participant has an innovation involvement and he/she is in content branch
b (innovation), the participant is asked to think about this project and enter a name
for it. This name is not used in the analysis but makes it possible to automatically
use this participant specific name in all following questions, in order to ensure that
the participant answers the question specifically about the chosen innovation and
not in general18. Next, there are more detailed questions about this particular

16The questions probe for the type of personal participation, duration, size and novelty of the project.
The involvement is substantial if the participant was a contributor – not just a user – of the innovation,
and if he or she worked on it for more than 15 hours.

17Note that the innovation content branch is not possible for non-innovation task branches, which is the
reason that the number of paths through the survey is limited to 35.

18During the pilot phase, I observed while talking with some participants during the survey that some
people were strongly tempted to change their mind about which project they had chosen. Naming the
project in the beginning reduces the risk of participants changing the project during the course of the
survey.
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5.8. Survey Conduction and Resulting Sample

innovation, and the following step about selecting a project is skipped.
Alternatively, if there was innovation participation but content branch a (learning)
was randomly set, the participant is automatically forwarded to the next step.

5. Similar to the question page on innovation participation, the participant is asked
whether he or she frequently works on larger-scale projects over a time span of at
least three weeks. If the series of probing questions is answered in a particular way,
the participant is assigned the task type ‘Project’ and then asked to select an
example problem from his or her work and to assign it a name.
If not, the assigment is ‘normal work’ from the previous four weeks. Again,
additional questions for a consistency check with direct feedback to the participant
were used.

6. At this point (about one-quarter into the survey), all variables determining the
further shape of the survey for this participant are set:

• Content Branch – a) learning, b) innovation and c) work-motives

• Task Branch – 1) Innovation, 2) Project or 3) Normal Work, last four weeks

• Reduction Level – an estimator on five levels for how many questions can be
asked of this participant in order for the person to be done in about 60 minutes.
For example, for each content branch there is a stripped-down package of ques-
tions (level 2), a normal package of questions (level 4) and a complete/luxury
package of questions (level 5).

7. . . . It follows a long series of questions that are either enabled or not, depending
on the state of the above three variables and the survey-reduction level. Unless the
most extreme survey reduction (level 1) is activated, the learning index survey
component (figure 5.1 on page 147) follows next.

All meaningful permutations of these three variables lead to 35 different paths through
the survey. However, not all of them have been equally frequently used – as will be
described in section 5.9 on the next page. Fortunately, many participants were fast enough
to get into reduction level 4 or above.

5.8. Survey Conduction and Resulting Sample

In parallel to the survey pilots (from section 5.5 on page 152), the survey was advertised to
all 2,400 employees at Meyer Werft in Papenburg as a voluntary and anonymous survey.
Participation was offered in two ways: either at a fixed time in a computer room session
or over the web directly from the person’s work PC.
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Within 2.5 months from the end of May 2007 to the beginning of August 2007, 446
employees participated in total.

As with any voluntary study, adverse selection effects may be present – i.e., a group
sharing a particular property may systematically choose not to participate. For example,
participation among white-collar employees was higher, at about 20%, compared with
about 10% participation in the production departments. Yet since there was substantial
participation across all departments, this difference is regarded as acceptable here.

5.9. Actual Performance of the Interactive Survey

This section shows some statistics about how the interactive survey was actually used in
the field – as an indicator of how well the survey algorithm (section 5.7 on page 153) and
the questions worked.

Task Branch No. of Participants % of Participants

innovation projects 89 27 %
large projects 96 29 %
short tasks during the last 4 weeks 144 44 %

Table 5.2.: Usage of the 3 Different Task Branches

Table 5.2 shows the fraction of participants19 who went into each task branch. Given
that most people’s work at the shipyard is dominated by tasks that take less than four
weeks, it is not surprising that 44% of all participants chose a learning episode from such
a shorter task. Nevertheless, the two other branches (innovation and large non-innovation
projects) are also well represented, with almost 30% each.

As described in section 5.7 on page 153, the number of survey questions is automati-
cally reduced, unless the participant was fast enough during the first few questions. The
reduction is performed on five levels, where level 5 has the least reduction and thus the
widest coverage of questions – yielding the most complete datasets. At the other extreme,
level 1 is a very minimal set of questions that hardly allows a broad analysis. During the
pilot stage, the questions and explanations during task branch selection and the learning
frequency survey components were especially fine tuned – also with the aim of allowing
the participants to understand and go through the questions more quickly.

As figure 5.3 on the following page and table 5.3 on the next page show, this fine
tuning paid off. Most of the participants experienced no survey reduction at all. The
general reduction of questions was not too strict but rather well balanced – considering
that the next 39% of participants are spread over levels 3 and 4.
19Based on the mostly filtered data with n=329 (after filtering out inconsistent answers and before filtering

out apprentices or due to missing values – see section A.5.1 on page 302).

159/343



5.9. Actual Performance of the Interactive Survey

RedLevl 1 (0%)

RedLevl 2 (3%)

RedLevl 3 (12%)

RedLevl 4 (27%)

RedLevl 5 (58%)

Figure 5.3.: Reduction levels 5 and 4 are used most frequently.

Reduction Level No. of Participants per Re-
duction Level

% Participants per Reduc-
tion Level

5 (no reduction) 174 58 %
4 83 27 %
3 36 12 %
2 8 3 %
1 (max reduction) 1 0 %

Table 5.3.: Reduction Level Usage

Figure 5.4 on the facing page further shows that the time participants needed to get
through the survey stayed below the aim of 60 minutes in most cases20. Moreover, the
distribution of the survey duration does not change much across reduction levels, which
indicates that another design goal for the interactive survey was achieved: the reduction-
level mechanism automatically reduced the number of questions in order to reach a roughly
equal survey duration for all participants.

20Some of the very far outliers are due to a problem with measuring the duration when the participant
does not finish the survey properly after the last page (though this is not a problem for the collection
of data).
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Figure 5.4.: The Survey Duration Distribution hardly changes across Reduction
Levels

Hence, the collected statistics about how the survey algorithm worked in the field show
that the design goals regarding time and question breadth were fulfilled.

5.10. Data Pre-Processing

Given the many paths that a participant can follow in the interactive survey, and given
the many different types of questions and answer formats, extensive pre-processing of the
raw survey data was necessary.

This pre-processing is performed by 3,800 lines of R-code (see section A.6.2 on page 307)
and involves operations such as:

• Filter the data in multiple stages – yet refrain from classical outlier removal. Details
are provided in appendix section A.5.1 on page 302.
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5.11. Validity Investigation of the Learning Index

• Correctly assign the data types of all scales.

• Rescale the numerical values from, e.g., the coded scale data (1, 2, 3, 4, 5) to (0,
0.25, 0.5, 0.75, 1). Note that this is not ordinary normalization, which depends on
the mean and standard deviation of the data. The intention was to perform data
pre-processing in such a way that the transformation steps are independent of the
input data.

• Depending on the path actually chosen, mark all invalid or missing values correctly
as missing values (NA).

• Generate (i.e., calculate) some new variables, such as blue or white collar or
department category (technical design, administration, production) based on other
variables – here, the department of the participant.

In particular, the calculation of the learning index is included as an aggrega-
tion of information from multiple variables from the learning frequency survey tool
(section 5.4.1 on page 146).

• Imputation of the missing values by one of the simplest, most predictive, robust
and conservative strategies: mean imputation – see appendix section A.5.2 on
page 303.

5.11. Validity Investigation of the Learning Index

Given the novelty of the learning index, its reliability and validity needs to be verified.
Thus in appendix section A.4 on page 290, the learning index’s consistency – both inter-
nally and with other question items and constructs – is verified by the following tests:

• Statistics about the input data for the learning index, i.e., the learning situations,
learning importance and learning usefulness data, were generated – and showed the
expected (thus good) results.

• The distribution of the learning index was inspected and showed similarity of a
log-normal distribution – a common distribution of many natural processes. Not
surprisingly, there were also many participants who had a learning index of zero
– who could not recall any specific learning episode – which is a good indication
of low bias caused by social desirability (section A.4.2 on page 295). Moreover, a
comparison of these distribution results with the answering behavior for the much
simpler question on the general learning impression (in section A.4.3 on page 297)
indicates that the link to concrete learning episodes has led to the desired effect of
bias reduction for the recollection of past events (see section 5.4.1 on page 146).
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• The survey contains three questions that are expected to correlate with the learning
index. For example, there is a question after the learning index survey tool asking
the participant to give a general impression (i.e., rating) of the learning effect of the
example project or task.

The correlation of the learning index with these variables was therefore investigated
with distribution graphs in addition to the ordinary Pearson correlation. The results
clearly show a visible correlation of all investigated variables with the learning index.

In summary, the learning index passed all mentioned validation tests.

5.12. Properties of the Data Set

The choice of statistical method depends largely on the type of data collected for anal-
ysis. In the case of this survey, the data properties made it necessary to the design and
implement the BOGER algorithm – see section 6.2 on page 179.

Therefore the properties of the survey dataset are presented in this section.

5.12.1. Multi-Variate Relationships / Collinearity / Correlations

From figure 5.5, it appears that the learning index strongly depends on the participant’s
education level. The two variables correlate with 0.21. Most readers (including the author)
will quickly be able to think of a plausible theoretical explanation for this relationship.
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Figure 5.5.: Apparent Positive Dependence of Learning Index on Education Level.

Yet a few additional facts disturb this pretty picture:
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5.12. Properties of the Data Set

At an early stage of the statistical analysis, a 140-page report was auto-generated21,
listing the top 150 correlations of all 15,000 possible correlations of this dataset with about
120 variables. In line with the observations by Starbuck (2004), these top 150 correlations
have a Pearson correlation of 0.36 or higher. Hence a correlation of 0.21 is not even high
enough to be in the top 150.

In addition, education level appears to correlate with -0.37 even stronger to another
variable: the task branch of the survey – i.e., the type of the example project or task.
Figure 5.6 further underlines that there appears to be a relationship between education
level and the task type22 (task branch).
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Figure 5.6.: An even stronger Relationship: Task Branch and Education Level.

Furthermore, the task branch also correlates with the learning index. The correlation
is with -0.26 even stronger than the correlation between education and the learning index.
See also figure 5.7.

These three pieces of evidence suggest that the information allowing a prediction of
the learning index is shared by education level and task branch. Thus these two variables
are collinear – as discussed in section 4.1.8 on page 117.

Moreover, this evidence on statistical association allows for all of the following conclu-
sions:
21With the report generation capability of R– see appendix section A.6.2 on page 307.
22Strictly speaking, the task branch is an ordinal (i.e., category) variable without an interval sequence –

hence in the actual analysis, this variable is broken into three dummy variables, which are referred to
as the taskType group – see section 7.3.7 on page 250. For simplicity, the argument is made as if the
task branch were an interval variable, which is acceptable because the relationships happen to behave
the same as if they were.
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Figure 5.7.: Distribution of Learning Index by Task Branch – Showing a stronger
Correlation than in Figure 5.5 on page 163.

1. Education level acts through the task type on the learning index – i.e., the task type
mediates the effect of the education level.

2. The task type happens to correlate with the education level, which is plausible since
higher-educated employees are more likely to work on innovation or larger projects
than employees with less education are.

Task type has an effect on learning index, but education level has no direct effect
on the subjectively rated relative learning effect. The correlation between education
level and learning index is simply due to the correlation between task branch and
education level.

3. The task type happens to correlate with the education level, and education has a
direct effect on learning. The task branch has only a very weak effect on learning,
since most of the correlation between the learning index and task branches stems
from the relationship between education level and task branch.

4. Education level acts directly on learning. In addition, the education level is related
to the task type, but this is not related to the relationship between task type and
learning index.

With a simple correlation analysis or a uni-variate graphical analysis with figures such
as the conditional distribution figure 5.7, the researcher cannot gain any further insights
for determining which of the above hypotheses holds true. Assumptions about causality
cannot be justified either, since all of the above variations appear plausible.
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5.12. Properties of the Data Set

There is, however, one method to test the above hypotheses without further assump-
tions: fitting a suitable multi-variate statistical model.

As a brief preview of the statistical results chapter 7 on page 205, I will note here the
results from fitting the multi-variate BOGER model to the data: when both independent
variables were in the model, the term for education level was not stable (significant), nor
was an interaction between task type23 and education level. Hence education level not
linked with the task type and does not directly act on the learning index, but a direct
and stable effect of task type on the learning index could be detected. Thus hypothesis 2
could be confirmed.

In summary, the many correlations indicate that the survey dataset is substantially
collinear. Due to these collinearities and many plausible explanations from theory, a
suitable multi-variate statistical modelling approach should be pursued.

5.12.2. Noise

Figure 5.8 on the facing page shows the dependency of the learning index on the person-
ality trait “openness to new experiences” from the psychometric standard scale: Big-Five
(see section 7.3.11 on page 257). The various features of figure 5.8 are explained in text
box 5.12.1 and with more background and an annotated figure in section 7.1.3 on page 213.

Text Box 5.12.1 Dependent Distribution Figures Explained

This ‘dependent distribution’ figure type, used extensively for this study, is a more
information-rich alternative than scatterplots to visualize dependencies of a continuous
variable on a category (ordinal) variable (continuous independent variables are automat-
ically converted to category variables).
The data of the dependent variable (on the y-axis) is grouped by the independent variable
(on the x-axis).
Instead of scatters, the dependent variable’s distribution for each group is plotted by
independent variable. The distribution makes visible any dependencies and the noise.
To make dependencies even more obvious, boxplots of the grouped dependent variable
data are overlaid. The range inside the box contains 50% of the data. In addition, the
median of the grouped data is plotted as a thick black dot. An ordinary linear regression
line – the thick red line – is fitted through these median points. This fit is weighted by
the number of samples in each group. The thinner grey lines indicate similar weighted
regression fits through the 25% and 75% quantile points (the hinges of the boxplots) –
giving an indication of the behavior of the variance.
See also figure 7.2 on page 215 for an annotated example. More detailed background
explanations are given in section 7.1.3 on page 213.

23In the actual analysis, this the task branch variable is broken into three dummy variables (with val-
ues either 0 or 1). The variable group is referred to as the taskType group – see section 7.3.7 on
page 250 7.3.7 on page 250.
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Figure 5.8.: A Noisy Relationship: Distribution of Learning Index by BFI Openness
level.

What becomes directly evident from figure 5.8 is that the effect of openness is masked
by a lot of noise, which appears as a large variance on the learning index over the different
levels of openness (large compared to the effect of openness on learning). This noise or
variance can stem from truly random noise24 in the process, but most of it will stem from
variance explained by other variables. Some of these variables are included in this survey.
If they have explanatory power, they are included in the multi-variate statistical model
(described in chapter 6.2 on page 179), which then increases the explained variance of the
model and reduces the level of noise in the predictions.

However, by the nature of the survey subject, there will also be many latent variables
that affect learning but that have not been included in the survey. There will be a
large group of variables related to the situation of the learning episode, e.g., detailed
and non-recurring properties of the task or the learning opportunity; the participant’s
current mood; the involved colleagues, superiors, suppliers (including the participant’s
personal relationship with these collaborators) etc. Hence even if there is a learning-
supportive organizational environment, there are many situational factors that may hinder
or completely block learning in a particular situation. This also explains the large amount
of zero-learning cases in the survey data – see appendix section A.4.2 on page 295.

These situational variables have not been included in the survey since they are difficult
or impossible to survey in a standardized form, and since they cannot be influenced

24Random noise that cannot be explained by any variable – even not a latent variable.

167/343



5.12. Properties of the Data Set

by the management of the organization and thus do not represent organizational levers
for supporting learning. While this approach makes it possible to keep the survey at a
reasonable length, it limits the maximum achievable explained variance by the model,
since latent variables – by the lack of data on them – cannot be included in any multi-
variate model. Therefore a substantial and irreducible fraction of noise will remain for
the analysis (see also section 6.3.2 on page 199 on model fit).

Aside from the noise, the fit of the medians (the red line) suggests that the personality
trait of “openness” leads to an increased learning effect. The boxplots are a little less
assuring of this relationship. The Pearson correlation of only 0.17 also suggests that there
is at best a very weak relationship between openness and learning.

Yet as will be described in the statistical results in section 7.3.11 on page 257, this is
a factor that is stable (i.e., significant) in the final statistical model. The magnitude of
the effect is also weak in the statistical model, since openness is one of the weaker factors
in the final model, and large fractions of the variance are explained by other stronger
independent variables.

In summary, there is a high level of noise in the data, which for the analysis can be
reduced to some extent with a multi-variate model. Thus the noise that masks effects in
the uni-variate analysis can be reduced by a multi-variate model. However, given that a
substantial part of the stochastic process is driven by latent variables that describe the
specific learning situation, a substantial fraction of noise will remain – even in the final
analysis with a multi-variate model.

5.12.3. Non-Linear Relationships

As will be presented in the statistical results in section 7.3.3 on page 238, one of the
strongest factors driving learning is personal interest in a topic, assessed by the question
item:

“The topic was also interesting to me independently from my tasks.”

“Mich hat das Thema auch persönlich unabhängig von meinen Aufgaben inter-
essiert.” [German Original]

Yet figure 5.9 on the next page shows an unusual relationship. The red-line median
fit suggests a strong linear relationship, in line with the strong linear correlation of 0.294.
However, the conditional distributions and boxplots instead suggest that the learning
index is acting on the variance like a fade-in amplitude function acts on a sinusoidal.
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An amplitude function, however, makes ordinary linear regression models non-linear25

when the amplitude function is multiplied with a group of ordinary linear regression terms.
Hence this strong cone-shaped relationship in figure 5.9 suggests that some of the stronger
effects in the data are non-linear – which is later confirmed in the statistical results in
section 7.3.3 on page 238.
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Figure 5.9.: A Non-linear Relationship: An increasing Personal Interest is associated
with an increasing mean and variance of the Learning Index Distribution.

In summary, even before the modelling effort with BOGER there was evidence that
some of the stronger effects would be non-linear (and more specifically multiplicative),
which led to the non-linear design goal for BOGER (section 6.2.1 on page 179).

25Strictly speaking, multiplying the sum of ordinary linear regression terms (in parentheses) by a variable
does not make the regression model non-linear, since this multiplication is equivalent to replacing all
original terms with the respective interaction with the multiplied variable. Multiplying a function with
shape parameter that needs to be fitted to linear regression terms, however, does make the regression
model non-linear.
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6. Statistical Analysis with BOGER
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6.1. Performance of Existing Algorithms

Previously, in section 5.12 on page 163, the properties of the survey data set were
described as multi-variate, collinear, noisy and non-linear.

Initially the plan was to use existing statistical analysis methods to build a multi-
variate model of the data in order to obtain a ranking of the most important factors
acting on individual learning. After various trials, first with conventional and later with
state-of-the-art algorithms, it became evident that no existing algorithm was suitable for
building a statistical model for the survey data with an acceptable level of predictive
power and robustness (section 6.1).

Therefore, drawing on ideas from various state-of-the-art algorithms, a new statistical
model-building algorithm was developed for this study, which handled the specific proper-
ties of the survey data significantly better than any of the existing algorithms. The design
of this new algorithm, called BOGER1, is described in section 6.2 on page 179, followed
by a performance evaluation in section 6.3 on page 198.

6.1. Performance of Existing Algorithms

Section 4 on page 101 laid out the theoretical requirements for a statistical analysis algo-
rithm suitable for this application, based on existing literature. This section will illustrate
with the model fitting performance of different algorithms, how these requirements have
practical relevance to this study and why none of the tested existing algorithms satisfac-
torily met the requirements.

After the description of a systematic comparison method and its application to the
presented algorithms, qualitative descriptions of the individual algorithm performance
follow, with discussions of the reasons for the unsatisfactory behavior.

6.1.1. Choice of Existing Algorithms

While attempting to find an adequate statistical model of the survey data, a number of
existing algorithms were tested. The insight gained during this experimentation process
led to the formulation of the requirements for a suitable statistical algorithm, given the
dataset at hand (details will follow in section 6.2.1 on page 179).

During the experimentation process, a number of algorithms (e.g., structural equations
modeling, or SEM) could be excluded from the trials. Further details on the “story of the
analysis”, explaining how the algorithms were chosen during the course of the analysis,
are provided in section 6.1.4 on page 177.

The following lists and briefly describes the tested algorithms (test results follow in
section 6.1.3 on page 175):

1BOGER is short for BOotstrapped GEnetic Regression
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a) Static Multi-Variate Linear Regression An ordinary multi-variate linear regres-
sion (Backhaus et al., 2006, Chpt. 1) was run with an a priori defined model based on
the state of knowledge from the literature research at the time of the analysis2.

b) Breiman’s RandomForest The original random forest algorithm by Breiman (2001a).
RandomForest is essentially a classification algorithm (section 4.1.4 on page 108).
When used with a metric outcome variable, it divides the outcome variable into a
number of intervals. These intervals become a set of unordered3 classification cate-
gories, against which the internal and native RandomForest classification algorithm is
run.

The RandomForest classification works by first searching for the independent variable
that is the best predictor for the outcome categories. This variable, which is either
categorical or metric (at an optimized ‘split’ threshold), becomes the first node in the
tree. The data is split into two branches depending on the threshold of the independent
variable. Then, for each branch of the tree, the next-best variable that predicts the
outcome of the branch’s data sub-set is selected as the next node and branch point. By
repeating these steps recursively for the sub-branches until no variables are left (or a
stopping criterion is reached), a decision tree leading to the outcome categories based
on the independent variable settings is created4.

Next, the entire tree-growing process is repeated based on different bootstrap samples
(similar to the mechanism used in BOGER – see section 6.2.4 on page 185), yielding
a whole ensemble of trees, i.e., a forest. Breiman and others (e.g., Chatfield (1995,
p. 428) and Yuan and Yang (2005)) claim that this bagged ensemble predictor is
more robust to sampling biases than building a single statistical model. The only
downside is that a bagged model cannot be easily inspected for statistical inference
without more sophisticated methods such as Breiman’s variable importance measure
(see section 7.1.1 on page 206). For more details, see Breiman (2001a,b); Strobl et al.
(2007).

Since model selection and model fitting are combined in each step of the tree-growing
process, RandomForest integrates model selection and fitting in an inseparable manner.

c) cForest cForest by Strobl et al. (2007) is an improved version of Breiman’s Ran-
domForest algorithm, with some minor differences in the bootstrapping method and
tree-split selection mechanism (offering different choices for the branch split definition
method: significance testing or Monte-Carlo). Strobl et al. claim that their improve-

2See also section 3.2 on page 97.
3Since RandomForest loses the order of different outcome variable levels, it loses a significant part of
the information contained in the data set. Thus RandomForest is less data-efficient for a regression
problem than for a classification problem.

4Note that this is an expected value model.
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ments increase the robustness of the tree-growing process – i.e., the robustness of
combined model selection and fitting.

d) Genetic Function Fitter The Genetic Function Fitter is an early version of the
non-linear function fit component used within BOGER (see section 6.2.3 on page 183)
without many of BOGER’s other important features, such as algorithmic variable
selection, bootstrapping and bagging. It was run with an a priori selected statistical
model, using the same variables as the static linear multi-variate regression model,
with the addition of non-linear terms5 for the same variables. Like RandomForest and
cForest, the genetic function fitter is able to fit a non-linear model – yet in contrast
to the two forest-building algorithms, it fits a parametric and thus much less flexible
non-linear model.

e) Static Regression with RandomForest Variables Another ordinary multivariate
linear regression fit with a model consisting of the variables as selected by Breiman’s
random forest.

f) Genetic Function Fitter with RandomForest Variables Another genetic model
fit with a model consisting of the variables as selected by Breiman’s random forest.

6.1.2. Comparison Method

A number of statistical model fitting algorithms were tested on the survey data. In line
with the discussion on mode fit estimation bias in section 4.2.2 on page 123, the models
were not only compared by the ordinary R2 model fit (section 4.2.1 on page 119) but also
by a rough estimate for the prediction error, indicating the model’s predictive power for
future samples.

The prediction-error estimation was performed with the following method, which is
equivalent to a simple cross-validation prediction-error estimate (as presented in sec-
tion 4.2.4 on page 129): First, the data-filtering and simple mean imputation method
were frozen – i.e., they remained unchanged for all tests mentioned below. Then the data
points were randomly assigned labels from 1 to 10 – hence the data was separated into 10
different randomly selected slices. Different combinations of slices make up three different
(yet overlapping) data sets A, B and C – as shown in table 6.1.

Next, each algorithm was run on the three different data sets A, B and C – each
consisting of:

• 204 samples, or 70%, “training data”, which the algorithms used for model fitting,
plus

5The non-linear terms were the same as described in the BOGER math model section 6.2.2 on page 180.
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Data Set Training Data Slices Test Data Slices

A 1, 3–6, 8, 10 2, 7, 9
B 2–5, 7, 9, 10 1, 6, 8
C 1,2, 5–9 3, 4, 10

Table 6.1.: Simple Cross-Validation Data Sets A, B, C

• 88 samples, or 30%, “test data”, which the algorithms did not use. Instead, it was
used exclusively for cross-validation to get a model fit estimate, which is indepen-
dent of the model fit and thus free of the bias due to overfitting6 (section 4.2.2 on
page 123).

As the final step, the training and cross-validation test fit performance, measured by
the simple R2 estimator7, were averaged over the data sets A, B and C (for training and
test datasets separately) – as shown in table 6.2 on the next page. A high-quality model
would thus show both a high training and test model fit average and have little difference
between the training and test fit – indicating low overfitting.

This method is a crude threefold version of Breiman’s cross-validation estimator of
the prediction error – see section 4.2.4 on page 129. Since only three test sets were used,
and strong fluctuations of the individual test fit results are evident, the precision of the
averaged test fit result is limited. Judging from the fluctuations alone, I would estimate
the accuracy of the test fit results to be within ± 3% (absolute R2 deviation).

6.1.3. Comparison Results – Existing Algorithms

Using the model fit measures defined in the previous section, table 6.2 on the next page
shows the model fit results for the different algorithms. The labels a) – f) correspond to
labels in the algorithm description list from section 6.1.1 on page 172.

The a priori frozen statistical model used for the ordinary multi-variate linear regres-
sion model achieved a reasonably good training model fit but almost no cross-validation
model fit on the test data – which indicates that this regression model appears to be
sound when using the conventional tests, but in fact is completely useless for prediction.
Trial e) with a different a priori model suggests that this problem is not only due to the
choice of model.

RandomForest achieves the best training dataset performance but with 6% only a very
low cross-validation model fit (i.e., a low predictive power) – even if this cross-validation
model fit is the second-best of the tested algorithms. Hence RandomForest is strongly

6As mentioned in section 4.2 on page 119, the cross-validation model fit estimate is free of the overfitting
bias but not necessarily of other biases, e.g., the sample bias due to a sample that is too small.
Nevertheless, it is useful in comparison with the training data model fit estimate.

7For the definition of the R2 model fit, see section 4.2.1 on page 119.
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R2 Model Fit to ... Average R2

Data Set A Data Set B Data Set C

Train. Test Train. Test Train. Test Train. Test

a) Static
Regression
(with variables
as above)

26 % −1 % 21 % −3 % 22 % 6 % 23.0 % 0.7 %

b) Breiman
Random
Forest

81 % 10 % 81 % 2 % 82 % 6 % 81.3 % 6.0 %

c) Strobl’s
cForest

31 % 8 % 32 % 13 % 34 % 9 % 32.3 % 9.8 %

d) Genetic
Function
Fitter

24 % 9 % 20 % −8 % 24∗ % 14 % 22.5 % 5.2 %

e) Static
Regression
(with variables
from Breiman
random Forest)

30 % −6 % 24 % 4 % 27.0 % −1.0 %

f) Genetic
Function
Fitter (with
variables from
Breiman
random Forest)

26 % −1 % 26.0 % −1.0 %

Table 6.2.: Model Fit Comparison of Existing Algorithms

overfitting (section 4.2.2 on page 123), which implies that any insights about the model
(e.g., variable importance) will not reflect reality beyond the training data sample.

The cForest algorithm showed the best, but still low, predictive power, with almost
10%. It still significantly overfits (32% training data fit) but much less than RandomForest
does.

Of all algorithms, the genetic function shows the least overfitting but yields a lower
predictive power than the two tree-building algorithms. Trial f) indicates an even lower
performance and higher overfitting. Hence these results appear to depend on the chosen
model.

In summary, all model fit results are very low – even by social science standards for
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noisy data8. This is particularly problematic since low model fits cause the parameter
estimates and variable selection results to become unstable (non-robust) – not surprisingly,
given that the fitted model only very crudely represents the real underlying stochastic
process (see section 4.1.3 on page 105).

6.1.4. The Process of the Analysis

This section describes the sequence of events (the actual path of the analysis process)
that led to the selection of the algorithms in the comparison presented in the preceding
section 6.1.3. In addition to describing the rationale behind the final algorithm choice, it
presents further details on the behavior of the tested algorithms.

The experimenting started with simple uni-variate graphical analyses and a correlation
analysis, which led to results as described in section 5.12 on page 163 as well as the primary
insight that a multi-variate statistical inference model is necessary for this dataset (as
discussed in section 5.12.1 on page 163).

Despite the indications for non-linear relationships, the statistical inference model
building effort began with an ordinary multi-variate linear regression and the tweaking of
the imputation method (appendix section A.5.2 on page 303).

The first results were encouraging and somewhat matched the theory and other plau-
sible explanations (e.g., ‘education level’ was part of the model – see sections 5.12.1 on
page 163). However, after further experimenting with the imputation method, I noticed
that the effect strengths and significance of the regression parameters would vary with
different imputation methods. More disturbingly, the regression results also changed with
the same imputation method but different filtered sub-datasets9. The regression results
(parameter effect strength and significance) even changed between fitting the model to a
larger dataset A and fitting the model to a smaller dataset A’, which was only a subset of
A. This behavior suggests that even the inflexible non-linear regression model was subject
to overfitting (section 4.2.2 on page 123), which is confirmed by the close-to-zero cross-
validation results from table 6.1.3 on page 175. Further experimentation with different
a priori frozen models showed that the algorithm model fit performance results would
be affected by the choice of a priori model but that the cross-validation results generally
remained very poor.

The linear regression model’s low predictive power due to overfitting led to the decision

8In engineering, the researcher frequently has the opportunity to collect a sufficiently large sample with
little effort and cost by automatic means. In these cases, the R2 model fit frequently exceeds 0.7.
However, in the social sciences, R2 model fits around 0.2 are not uncommon – given large numbers of
variables, relatively small sample sizes, hidden latent variables and stochastic effects.

9Reducing the need for imputation, I experimented with various filtering settings to get a mostly complete
dataset for an a priori reduced set of variables, with the original intention to get a first regression
model without the effects of imputation. For the actual analysis, the filtering was later relaxed again
– as described in appendix section A.5.1 on page 302.
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not to test other, more sophisticated algorithms that a) use a linear model10 and b) do
not feature an algorithmic variable selection.

The low model fit and the indications for non-linear relationships led me next to try
two non-parametric algorithms, which have features to mitigate overfitting: Breiman’s
RandomForest (Breiman, 2001a) and a variant called cForest (Strobl et al., 2007). Unlike
the regression trials that were performed with an a priori fixed model11, both Forest build-
ing algorithms include the automated building of a decision tree – i.e., fully algorithmic
model selection and fitting12.

As discussed in section 6.1.3 on page 175 on the algorithm results, both RandomForest
and cForest are overfitting, with RandomForest much more so than cForest. Both algo-
rithms show a low cross-validation model fit below 10%. While the cross-validation model
fit performance is not particularly good, the model selection behavior of the two algo-
rithms is even less acceptable for statistical inference – for the data set of this study. The
variables that the two algorithms identified as the most important ones13 varied widely
for different data sets (A, B, C).

The low performance of the two forest algorithms, which in literature with classification
problems showed superior performance, led me to understand that a) using a classification
algorithm for a problem with a metric outcome variable is not very data efficient14, which
is a severe disadvantage given the number of variables and the relatively small sample
size; and b) given the level of noise in the data, non-parametric algorithms are too flexible
and thus led to an unacceptable risk of overfitting (section 4.2.2 on page 123).

Therefore the genetic function fitter (section 6.2.3 on page 183) was developed as a
model that is more flexible than the ordinary linear regression and less flexible than a
non-parametric model. My (unfulfilled) hope was that a higher fit (but little overfit)
would mitigate the non-robustness of the ordinary linear regression. Yet although the
genetic function fitter actually did show comparatively good overfitting performance, its
cross-validation fit and thus predictive power results fell short of the two forest algorithms
(see table 6.1.3 on page 175).

In summary, the low performance of the tested algorithms and their model selection
10This includes a decision against structural equations modelling (SEM), which is based on the matrix

of Pearson correlations (Backhaus et al., 2006) and thus on the assumption that the relationships are
at least approximately linear(Guyon et al., 2006; Hothorn et al., 2008).

11The were also some less serious attempts with step-wise regression, which led to the expectedly very
non-robust results (Miller, 1984).

12Given the tree-building mechanism, there is no differentiation of model selection and fitting. Instead,
model selection and fitting are integrated in a single tree-growing process.

13The order of most important variables was identified by using Breiman’s variable importance measure
– see section 7.1.1 on page 206.

14Both RandomForest and cForest convert regression problems with metric variables into classification
problems by slicing the metric outcome variable into several intervals, which the native classification
algorithm uses as non-ordered categories. Given the loss of the order of different outcome variable
levels, a significant part of the information contained in the dataset is lost. Thus RandomForest and
cForest are less data-efficient for a regression problem than for a classification problem.
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behavior led to the following insights regarding the requirements for a suitable algorithm:

• use a non-linear but parametric model

• feature a variable-selection procedure

• use the metric outcome variable natively and thus in a data-efficient manner, re-
taining its sequence information

• show low overfitting

• yield an acceptably high (cross-validated) model fit – i.e., a high predictive power

These requirements, and further requirements listed in detail in section 6.2.1, led to the
development of the BOGER algorithm – based on the genetic function fitter – as detailed
in the next section.

6.2. Design of the BOGER Algorithm

The particular nature of the survey data (section 5.12 on page 163) and the unsatisfying
performance of existing model-selection and fitting algorithms (section 6.1.3 on page 175)
led to the development of BOGER. This section describes the design goals and details of
the BOGER algorithm – addressing the algorithmic modeling challenges described in the
statistical theory chapter 4 on page 101 – followed by details on BOGER’s implementation.
Section 6.2.4 on page 185 provides an overview of BOGER’s model selection mechanism,
while section 6.2.2 on the next page provides details on the underlying statistical model
in mathematical form.

BOGER is short for BOotstrapped GEnetic Regression.

6.2.1. Design Goals

Given that even modern existing algorithms (as discussed in section 6.1.1 on page 172)
do not adequately meet the challenges of this dataset (as described in section 6.1.3 on
page 175 and 6.1.4 on page 177), the BOGER algorithm was designed to meet the following
challenges:

• Build a multi-variate model – given the collinear nature of the survey data (see
also section 5.12.1 on page 163).

• From a large set of potentially relevant variables, semi-automatically se-
lect a much smaller set of variables for inclusion in the statistical model. Given
that the number of potentially relevant variables is far too large compared to the
sample size of the survey dataset, the number of variables needs to be drastically
reduced in order to build a robust statistical model.
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• Test the model robustness by a state-of-the-art and robust method: bootstrap-
ping15 – in order to directly and robustly assess the effect of the sampling error by
statistical simulation.

• Yield robust results withmulti-collinearity in the data – i.e., deal with explanatory
information that is shared by multiple variables (as discussed in section 4.1.8 on
page 116).

• Restrict the complexity of the underlying mathematical model, but retain
sufficient model flexibility for a good model fit, which may require non-linear func-
tions and interactions. The model should not, however, be fully non-parametric,
in order to mitigate the risk of overfitting (as discussed in section 4.2.2 on
page 123).

• Given the large number of variables relative to the sample size and the noise in the
data, make maximum use of the available information inherent in the data
– i.e., achieve a high data efficiency by directly using the data rather than an
intermediate, such as the correlation16, and by retaining the sequence and distance
information embedded in the metric scales used in this survey17.

• Yield a higher explained variance with a robust and non-overfitted model than
any of the other algorithms presented in section 6.1.3 on page 175 – given the
nature and size of the dataset of this study (see section 5.12 on page 163).

Section 6.3.3 on page 202 will summarize how BOGER’s design features and resulting
performance (section 6.3.2 on page 199) fulfill these design goals.

The following sections will first illustrate the core components of BOGER before de-
scribing the model selection algorithm, which leverages the core components. The core
components are the parametric mathematical model, the genetic algorithm used to esti-
mate the parameters of the mathematical model, and the parameter-instability estimation
method involving bootstrapping.

6.2.2. The Mathematical Model

In order to reduce overfitting (as observed for the non-parametric RandomForest algorithm
in section 6.1.4 on page 177 and the survey data), the BOGER algorithm uses a parametric
15For more on bootstrapping and alternative resampling techniques, see 4.2.4 on page 129.
16Some algorithms, such as factor analysis or structural equations modelling (SEM), build their models

only on statistical intermediates (SEM uses the correlation) (Backhaus et al., 2006; Pearl, 2003). Using
an intermediate for statistical analysis may be acceptable if a large sample size is available to build a
model with few variables.

17Many modern algorithms are internally classification algorithms (e.g., random forest), which do not
internally make use of the sequence and distance information inherent in metric scales. To use these
algorithms, the metric data is converted into category (class) data – with the loss of the sequence and
distance information.
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mathematical model, which restricts the flexibility of the model. Making the model less
flexible is effectively a trade-off between achievable modeling accuracy (i.e., the sample
data’s fit with the model) and model robustness due to reduced overfitting (see also
section 4.2.2 on page 123). Yet a model that most accurately models the sample data
but then generalizes poorly to the entire population (i.e., has poor robustness and little
predictive power) is of no value18. Therefore a simple robust model is more valuable for
this study than a complex, accurate but non-generalizable model.

The simplest model would have been a simple linear one, such as y = α1 x1 +α2 x2 +

· · ·+αn xn. A linear model has a number for advantages, mainly: due to its simplicity there
is little risk of overfitting, and the parameters fitting the model optimally to the data can
be calculated with a simple, very computationally efficient and fast matrix operation19.
Furthermore, a linear model can be extended without losing these advantages with linear
interaction terms (e.g., α12 x1 x2). These are the reasons that linear models form the basis
for many popular statistical methods, including multi-variate regression, factor models,
structural equation models and logistic regression (Backhaus et al., 2006).

However, many relationships in organizations are not linear – e.g., if two factors are
connected by a logical AND relation. A relationship such as “employees need to be qualified
(xq) AND motivated (xm) to perform well (y)” implies for the negative outcome that not
being qualified and / or not motivated leads to bad performance. This is markedly
different from a linear relationship, which implies that either qualification or motivation
both separately or in combination lead to some degree of good performance – e.g., being
motivated but not qualified still leads to a fair performance.

The AND relationship translates mathematically into a multiplicative function such
as y = αf1(xg, s1) f2(xm, s2) where f1( ) and f2( ) are reshaping functions with shape
parameters s1 and s2 – e.g.: f1(xg, s1) = xs1g with 0 < s1 ≤ 1. If the variables are
appropriately reshaped, the relationship simplifies to y′ = x′g x

′
m (where the symbol ′

means reshaped). With this simplification, the term x′g x
′
m is a linear interaction term, if

the shape parameters s1 and s2 are held fixed during the model fitting process. However,
in most cases the reshaping is unknown and needs to be adjusted in the model fitting
process to optimize the model fit. Yet more difficult are feedback systems, which may be
described by a linear differential equation, but their directly observable solution function
is highly non-linear (Senturia and Wedlock, 1993).

To model at least overall AND-relationships in addition to simple linear terms and
interactions, the following mathematical model (eq. 6.1) is fit to the sample data by a
non-linear function fit algorithm leveraged by BOGER:
18For a discussion of fit and overfitting, and their relation to predictive power, see sections 4.1.7 on

page 114 and 4.2.1 on page 119.
19Most algorithms minimize the square error between the data and the model. This makes it possible to

calculate the optimal parameter values with a simple matrix operation, as described in section 4.2.1
on page 119.
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y =
(
x1+α1
1+α1

)
·
(
x2+α2
1+α2

) γ2
· . . .

· [β0 + β1 x1 + β3 x3 + . . . ] (6.1)

This model is designed for xi ∈ [0, 1]20.

As in linear regression21, there are ordinary linear terms (β0 + β1 x1 + β3 x3 + . . . )

with parameters βi and a linear intercept β0. In addition, there are also special mul-
tiplicative terms

(
xi+αi
1+αi

)
, which have a principal parameter αi and an optional power

parameter γi – similar to the shaping parameters si from the example above. One may
think of the linear terms as an analog signal and the multiplicative terms as an amplitude-
shaping function.

Note the differences from a multi-variate linear model with interactions: 1.) The shape
parameters αi and γi are not known a priori and therefore are automatically adjusted
(optimized) during function fitting, together with the linear coefficients βi. 2.) The
multiplication terms apply to all linear terms (note the parentheses around the linear
terms).

The linear terms behave like linear terms in a multi-variate regression. With the
coefficients βi, the slope (or effect strength) of a variable xi in the model can be set.
Negative βi denote negative effect strength (here, effects that with increasing variable xi
reduce learning levels).

The particular arrangement of the multiplicative terms in the mathematical model
stems from the simplifying assumption that if AND-relationships exist for any of the
variables, then the simplest case applies that such a variable affects learning in an AND-
relationship with all other learning relevant factors. As will be shown in section 7.2.3 on
page 224, personal interest in the learning topic enhanced the effect of all other variables
relevant to learning performance, such as learning strategy, leadership support etc. Hence
personal interest in the topic AND all other factors driving learning (including learning-
supportive leadership, learning strategy etc.) drive learning. If all other possible combi-
nations of personal interest with any other variable (or variable group) would have been
included in the model, the model’s flexibility would have increased significantly, which
in turn would have led to a much higher risk of overfitting (section 4.2.3 on page 128).
Hence the design decision here was to create a model that is only slightly more flexible
than a linear model. In case the assumption of the simplest case is violated, the effect will
be a reduced model fit but not a reduced model robustness. Thus, as long as the overall
model fit is at an acceptably high level, this possible reduction of fit due to the violated

20The scale data of this survey has been rescaled to the interval from 0 to 1 – e.g., the coded scale data
(1, 2, 3, 4, 5) has been rescaled to 0, 0.25, 0.5, 0.75, 1. See also section 5.10 on page 161.

21Compare also the ordinary multi-variate regression model in equation 4.4 on page 118.
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assumption poses no bigger problem, since any model will only be an approximation of
reality.

Furthermore, the multiplicative terms
(
xi+αi
1+αi

)γi
have been designed to have the fol-

lowing properties: the shape parameter αi can effectively set a lower offset for the effect
of xi. If αi = 3, γi = 1 and xi is somewhere between 0 and 1 (due to the data scaling
during pre-processing), then the multiplicative term will take a value between 0.75 and
1. Thus, with αi = 3, xi has a multiplicative effect – yet its strength is reduced. For
αi = 20, the multiplicative effect of xi is limited between 0.95 and 1 and begins to become
negligible. For simplicity of the model, αi = 20 has been chosen as the (almost) neutral
and maximum22 α-parameter setting.

With the shape parameter γi between 0 and 1, further non-linearity can be introduced
with the effect of a root function on the multiplicative term. γi between -1 and 0 allow
an inversion of the multiplicative term. γi = 1 is the neutral position leading to no
deformation or inversion.

In addition, the effect of all terms can be neutralized in the process of fitting the model
by the function fitter via special parameter settings – as shown in table 6.3.

Parameter Label Neutral pos. Effect
βi linTerm 0 no linear effect of xi
αi multOffs 20 hardly any multiplica-

tive effect of xi
γi multExp 1 or -1 no deformation of inver-

sion of the multiplica-
tive term

Table 6.3.: Parameter Labels

In summary, a non-linear yet still fairly simple and thus inflexible parametric math-
ematical model (eq. 6.1 on the facing page) is fit to the sample data by the BOGER
algorithm.

6.2.3. Genetic (Non-linear) Function Fit Algorithm

As in linear multi-variate regression, the parameters in the BOGER mathematical model
(equation 6.1 on the preceding page) that lead to an optimal model fit with the data need
to be estimated from the sample data. However, due to the non-linearities of the BOGER
mathematical model, there is no algebraic way to solve for the fit-optimizing parameter
values in order to directly calculate the optimal values – similar to the matrix operation
used in ordinary multi-variate regression (see footnote in section 4.2.1 on p. 121).

22Strictly speaking only αi = ∞ completely neutralizes the multiplicative effect. Therefore somewhat
arbitrarily but based on approximation, αi = 20 was chosen as the maximum α-value for the genetic
model fit optimizer, which causes multiplicative terms with higher α-values to become deactivated.
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The parameter optimization problem instead belongs to the most difficult class of
numerical problems – NP-complete problems. Finding the perfectly optimal solution to
such problems is not feasible within a reasonable time frame, and thus they need to
be solved heuristically (Rivkin, 2000). A heuristic algorithm searches and finds a good
solution that is close to the optimum.

Genetic algorithms, mimicking Darwinian evolution involving many generations of mu-
tation and selection, offer robust heuristic optimization results for arbitrary mathematical
forms of target functions. Many alternative algorithms that can handle arbitrary target
functions, such as simulated annealing or gradient descent, are much less robust, since
they can be trapped in local minima, while genetic algorithms get close to the global
minimum with a high likelihood23.

Genetic algorithms have only one major disadvantage: they are very computationally
inefficient, as the following brief description of genetic algorithms illustrates.

The aim of the genetic algorithm is to find the combination of input-variable settings
that leads to a good (i.e., close to optimal) result when used in the evaluation of the
target function. In the case of BOGER, the genetic algorithm leads to a high and almost
maximized model fit based on a good input parameter vector.

1. Based on user-defined starting values, a set of input-independent variable vectors is
artificially generated using a number of different techniques, such as perturbation
of the starting values, random generation or a combination of the two. This initial
set of candidate-independent variable vectors is referred to as generation 1.

2. For each solution candidate, the target function (in this case, the fit between the
model and the sample data24) is evaluated.

3. Ranked by the target function values, the top fraction of the solution candidate
vectors is selected. This set of best candidates forms the basis of the next generation.

4. To complete the next generation to its full size, further solution candidates are gen-
erated by mutation of features from the selected best candidates and/or by random
generation.

5. Steps 2 and 4 are repeated until the improvements of the target function from gen-
eration to generation stagnate and yield successive improvements below a stopping
threshold value or a maximum number of generations is reached.

23Unlike algebraic solutions for the optimum, most heuristic algorithms provide close to optimal results
with a high likelihood but without guarantee. This remaining risk needs to be balanced with other
risks of getting false results, such as getting trapped in a local minimum.

24In the case of this study, the target function is the mathematical model’s fit against the sample data.
The model parameters form the independent variable vector, which is adjusted successively over many
generations to lead to a good model fit result. (The sample data, consisting of an independent and
dependent variable matrix, remains unchanged.)
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Hence a genetic algorithm is effectively a random search procedure with mechanisms
that guide the random process towards a good solution. With large sizes of each genera-
tion and a large number of generations (compared to the number of parameters that are
optimized), the likelihood of finding a solution close to the global optimum becomes large
as well.

Yet, not surprisingly, even systematic trial-and-error is a computationally intensive
process.

For the BOGER algorithm, the genoud genetic optimization algorithm from the rgenoud
package (v5.4-7) for R was used (Mebane and Sekhon, 2007). The package features par-
allelization of the computations to multiple CPUs25, and it permits various adjustments
(such as the size of the generations, the fraction of best candidates retained in the next
generation, the generation and mutation strategies and the stopping threshold). Depend-
ing on the setting, optimizing around 25 parameters takes 5-10 minutes for a single data
set with about 300 data rows (on a single CPU core26 of an Intel Pentium D 945 with 3.4
GHz).

In summary, automatically fitting the parameters of the non-linear mathematical
model (eq. 6.1 on page 182) in order to minimize the error between model and data
requires a non-linear optimization algorithm. BOGER uses the genetic optimization algo-
rithm genoud for the task, which robustly finds the global optimum but is computationally
intensive.

6.2.4. Overview on Model Building and Robustness Testing

This section gives an overview on how the BOGER algorithm semi-automatically (i.e.,
algorithmically27) builds the statistical model from a set of candidate terms and how the
model (and parameters) are tested for robustness.

As discussed in section 4.1.8 on page 116, by-variable or by-paramter selection strate-
gies are only suitable for non-collinear data and mathematical models with mutually
independent terms. Two conditions that do not apply in the case of the survey data and
chosen mathematical model: Firstly, the BOGER mathematical model contains mutually
dependent multiplicative terms (see equation 6.1 on page 182). Secondly, some indepen-
dent variables in the dataset of this study were found to be collinear (see section 5.12 on
page 163).

Thus, as suggested by Guyon et al., BOGER uses by-variable model selection only
during a screening stage – in order to reduce the number of independent variables con-
25The computational load can be spread across multiple CPU cores or computers with genoud – leading

to a much faster completion time. Since BOGER’s model selection procedure is parallelizable with
less overhead, this genoud’s parallel feature was not used.

26The Intel Pentium D 945 is effectively a two-core variant of a Pentium IV. Each core is an improved
version of the Pentium IV.

27For more theory on algorithmic model building, see section 4.1 on page 103.
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sidered in the preceding full model search and selection stage. This approach reduces
the computational effort by several magnitudes28 (Guyon, 2007; Guyon et al., 2006). In
the final full model selection stage, the predictive power for all unique candidate models
(i.e., unique combinations of the reduced variables and terms set) needs to be robustly
estimated.
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Figure 6.1.: BOGER Algorithm – Flow Chart (Source: Author)

28For example, a full model search with 100 potentially relevant terms requires robust testing and com-
parison of 1.26 · 1030 unique combinations of terms (i.e., unique mathematical models).
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Hence BOGER allows the user to build the model semi-automatically in two stages:

1. First, in a fully automatic screening stage, BOGER selects a set of promising
candidate terms from a larger set by using a by-parameter selection strategy – as il-
lustrated by steps 1–6 in figure 6.1 on the preceding page. In contrast to non-robust
algorithms such as step-wise regression, which rely on Student’s t-test (Anderson
et al., 2000; Chatfield, 1995; Lukacs et al., 2007; Miller, 1984), the statistical signif-
icance of each parameter in BOGER is estimated by a more robust bootstrapping
method (Breiman, 1992). The user can restrict the use of variables within the model
(e.g., a particular variable may enter only as a linear term) – based on theoretical
considerations (step 1 in figure 6.1).

2. Finally, in a model selection stage, starting with the reduced set of terms with
fairly stable parameters, the user manually creates a number of candidate models.
BOGER tests the different models so the user may select a good one using the
criteria of predictive power and robustness of the entire model (step 7 in figure 6.1).
This interactive (partly manual) procedure allows the user to make use of theoretical
insights (e.g., about causality29) and steer towards a model that has a high (but not
perfect) predictive power, that is robust and that makes (causal) sense – all with
an acceptable level of computational effort (iterating through steps 6–8 and leading
to step 9 in figure 6.1 on the facing page).

6.2.5. The Fully Automatic Screening Stage

Overview of the Screening Stage As mentioned before, in the screening stage (steps 1–
5 of figure 6.1 on the preceding page), BOGER uses a by-parameter selection approach to
fully automatically reduce the set of candidate variables for further investigation during
the final full model selection stage. A term will be included in the final stage if the
associated parameter proves to be sufficiently stable as gaged by a robustly estimated
instability measure (details follow in text box 6.2.1 on page 190).

As described in section 4.2.2 on page 123, there are a number of challenges with
model robustness (overfitting and fit estimation) in cases where the number of variables
is relatively high compared to the number of data samples. Therefore BOGER tests
individual parameters in ‘smaller’ groups of 32 parameters or less.

First, in step 1 of figure 6.1 on the facing page, the user chooses a few (∼ 15) variables
that he or she expects to have the strongest influence. These make up a ‘core variable’
29An ideal (i.e., accurate and robust) and fully automatic model building algorithm would be effective at

finding the statistical association (correlation) of two variables. However, it could not determine the
causality (and causal direction) of the relationship between two variables. But the researcher must
build a model of causal relationships if the intention is to explain a process. Thus fully automatic
algorithms are mainly useful when prediction rather than causal understanding is the aim – as is the
case in medical diagnosis (Sobel, 2005).
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group, which together form a stable foundation for all screening models30. In addition,
the user can restrict which types of parameters are to be used in conjunction with which
variables. For the survey used in this study, the majority of variables were expected to
yield only a weak effect. Thus – for this majority – only a linear and a basic multiplicative
term (employing only the α parameter) were included in the model.

As a preparation for robustly31 estimating model fit and parameter instability, BOGER
– in step 2 of figure 6.1 – generates nboot sets of training and test samples (referred to
as ‘bootstrapping samples’ ). The purpose of bootstrapping in this application will
become clearer further below.

In order to test all candidate parameters for stability, BOGER – in step 3 of fig-
ure 6.1 on page 186 – creates nscreen screening models composed of the user-defined
core variables (∼ 15 variables) plus ∼ 5–8 non-core variables. Thus each screening model
contains the same core group variables in addition to a selection of non-core variables,
which are different for every screening model. Enough variable sets are created in order
to have each non-core variable in at least one screening model. The variable sets forming
screening models will be referred to as ‘screening iterations’ .

This strategy of splitting up the problem into many smaller screening model selection
problems may seem unusual compared to the strategy of many other algorithmic model
building methods. In step-wise regression, for example, the algorithm starts with a large
model including all potentially relevant variables and then reduces it down to include only
statistically significant terms – which leads to robust results only for sample sizes that
are large compared to the number of screened variables32. Screening larger numbers of
potentially relevant variables leads to the challenges described in section 4.2.2 on page 123.
Fitting any model (even an ordinary multi-variate linear model) that has comparatively
many variables will give the model too much flexibility, which leads to a high risk of
overfitting. Therefore, in BOGER, a divide-and-conquer approach is used in fitting many
smaller models to the sample data, which reduces the risk of overfitting to an acceptably
low, user-defined level33. This approach enables BOGER to robustly screen a very large
number of variables compared to the sample size.

Next, in step 4 of figure 6.1 on page 186, the genetic optimizer (section 6.2.3 on

30The intention behind using a core group is to avoid testing any significant parameter with an otherwise
very weak and unstable model composed of other insignificant parameters. A core group gives the
candidate model a minimum basis of robustness – even if individual core group parameters later prove
to be less stable than expected.

31For the underlying theory, see section 4.2.4 on page 129.
32Step-wise regression is a simple algorithmic and fully automatic model building method. It uses the

t-test, F-test or another simple estimator as a criterion to determine which terms to include in an
ordinary multi-variate regression model. Despite its inclusion in many statistical software packages,
the algorithm is only robust with sample sizes that are very large compared to the number of variables.
It has received much criticism for this reason (Breiman, 1992; Miller, 1984).

33By restricting the number of variables in each screening run, the user can choose a suitable compromise
between risk of overfitting and computational effort.
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page 183) fits each screening model to all training bootstrapping samples (i.e., nscreen · nboot

model fits are performed). The result is a R2 and Rabs model fit estimate (more details
in section 6.2.7 on page 195) and a vector34 of the parameter estimates . All estimates
are provided for each for each screening model and bootstrapping sample. In order to
improve the average quality of the models (without compromising robustness), 65%35 of
the models with the lowest model fit36 are filtered out for the remaining steps.

The parameter estimates over different bootstrapping samples and screening models37

make it possible to robustly38 estimate the instability of each parameter – as defined in
detail in text box 6.2.1 on the following page. Parameter instability is used here similar to
how Student’s t-test is used to determine statistical significance in ordinary multi-variate
regression – yet with the difference that BOGER’s instability measure is more robust
against the sampling bias for this application39.

The parameter instability measures the degree of a parameter’s fluctuation when the
model is fit to another data sample. The more accurately a parameter estimate reflects the
properties of the entire population, the less it will fluctuate across different samples. Since
complete data about the entire population is hardly ever available, statistical researchers
have developed a number of cross-validation techniques, which split up or resample from
the collected data sample in order to more robustly estimate statistical quantities by
assessing the effect of the sampling bias (see also section 4.2.4 on page 129). The resam-
pling technique used by BOGER is bootstrapping40, which was chosen because it uses the
limited available data very efficiently compared to many other resampling techniques41.

34Note that the parameters are never averaged for direct use in the mathematical model, since experiments
with BOGER have shown that a model based on an average of parameters has less fit with both training
and test bootstrapping samples. Instead, the final model will be used as a bagged model – i.e., the
prediction will be the average of the predictions of multiple models based on different bootstrapping
training samples. See also section 4.2.5 on page 134 and 6.2.6 on page 192 for details.

35This is a default setting that can be modified by the user.
36For model filtering, the sum of the model’s training and test set fit is used as criterion.
37For the core variables, parameter estimates for many different screening models have been generated

and thus are used for instability estimation. Similarly, for ‘ordinary’ (non-core) variables there can be
results from multiple screening models if screening redundancy is used – as described on page 191.

38BOGER uses a bootstrapping approach to make the estimates of model fit and parameter instability
robust against the sampling bias – see also section 4.2.4 on page 129.

39BOGER does not simply use the t-test as well, due to various problems with the t-test when used
for by-parameter model selection: Student’s t-test relies on a number of strong and, in this case,
unfulfilled assumptions. Furthermore, the usefulness of a claim about a non-zero hypothesis has been
the subject of recent debate (Anderson et al., 2000; Lee, 1997; Lukacs et al., 2007; Miller, 1984). And
most important for model selection, the t-test is not robust enough against the biases caused by the
sampling process – as discussed in section 4.2 on page 119. There is a significant risk that the results
of the t-test do not generalize to the entire population.

40More theoretical details on bootstrapping were presented in text box 4.2.1 on page 132.
41Ordinary cross-validation, e.g., simply splits the dataset once into a training and a test set, doubling

the sample size requirement.
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Text Box 6.2.1 BOGER’s Parameter Instability Measure

For assessing parameter instability, BOGER generates multiple estimates for a single pa-
rameter by fitting the model to different bootstrapping training samples (see appendix
section A.6.1 on page 305). The result is a vector of parameter estimates for each param-
eter.
Parameter instability measures a parameter’s fluctuation across different models built on
different bootstrapping samples. In some cases, the combination of terms not connected
to the parameter may also differ (e.g., when the parameter is included in multiple screen-
ing models). The fluctuation is based on a measure similar to the standard deviation:
the single-sided square error (SSSE) – defined in equation 6.2. This design of the mea-
sure is in principle similar to Student’s t-test42or an inverse signal-to-noise ratio (with
normalization).

SSSE =

√
1

n

∑
fi

[(
median(parameterfi)− parameterfi

)2] (6.2)

where parameterfi is a filtered parameter vector consisting only of those parameter values
that are on the weak side of the median parameter. For a linear parameter with median
0.8 and an original parameter estimate vector {0.3, 0.8, 0.5, 1.3, 0.9}, the filtered vector
is {0.3, 0.5} and thus contains only all values that are weak with respect to the median
strength of the parameter.
The parameter-instability measure is the single-sided square error normalized with the
mean of the variable corresponding to the parameter and the parameter’s strength – as
shown in equation 6.3. This normalization ensures that smaller parameters, acting on
high variable means, get a similar stability score as higher parameter values, acting on
variables with smaller means. In addition, the fluctuation is set in relation to the strength
of the parameter43.

parameter instability = SSSE · variableMean
absoluteParameterStrength (6.3)

= SSSE · variableMean
abs(mean(parameterfi)−neutralPos parameter fi)

The result of the normalization is an instability measure that allows robust and direct
comparison of the stability not only of linear parameters (αi) but also of multiplicative
parameters (βi and γi – see eq. 6.1 on page 182).
This instability measure was developed on the basis of many trials with the BOGER
algorithm, using the robust model fit measure as a criterion and graphically visualized
distributions for understanding the quality of individual parameters. Yet despite these
efforts, as discussed earlier in this section and section 4.1.8 on page 116, this parameter-
instability measure (like any other parameter criterion) is suitable only for model screening
rather than full algorithmic model selection.
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Step 5 of figure 6.1 on page 186 concludes the screening stage by selecting the terms
of the mathematical model that will enter the model selection stage. This selection is
fully automatic and uses the parameter instability as its criterion. Only those parameters
whose instability44 is below a user-defined threshold will be activated for the full model
selection stage. BOGER chooses the terms of mathematical model for the full model
selection stage based on the activation state of the parameters – in step 6 of figure 6.1 on
page 186.

The chosen parameter-instability threshold should be strict enough to reduce the vari-
ables down to a number that can be handled in an interactive full model selection stage
and allow a further reduction of variables. For the dataset of this study, the screening
stage was ended with ∼ 28-35 variables and further reduced down to ∼ 15-25.

In summary, the result of the BOGER screening stage is a model with a significantly
reduced number of variables. The selection of the variables (and terms) is based on a by-
parameter selection approach. The algorithm is designed to also function robustly when
the number of potentially relevant screening variables is large compared to the sample size.
Yet, given the weaknesses of by-parameter model selection (see section 4.1.8 on page 116),
the resulting model is only preliminary and just a basis for a final model selection stage,
which is described in section 6.2.6 on the following page.

Details of the Screening Stage The preceding pages have given a general overview of
the screening stage. The presentation was detailed enough for a general understanding
of the algorithm. The following pages will present two implementation details that make
the screening process more robust. Readers who are not interested in these details may
skip to section 6.2.6 on the next page.

The first detail is frequency equalized bootstrapping sample generation. In order to
make use of the original sample in the most data-efficient manner, the bootstrapping
samples are generated in such a way that they are random but frequency equalized –
i.e., each data point occurs equally frequently in the bootstrapping samples, but in which
bootstrapping sample a data point is included is still random. For more details, see
appendix section A.6.1 on page 305.

The second detail is screening redundancy. In an attempt to mitigate the weaknesses of

42Student’s t-value is defined as t = bi
si
, where bi is the regression parameter estimate and si is the

standard error corresponding to the parameter. The t-test then involves looking up the corresponding
confidence probability value in a distribution for the t-test, which is based on a number of assumptions,
such as normality (Backhaus et al., 2006, p. 74).

43A small fluctuation towards the weak end may be a serious problem for a parameter with a weak effect,
while it is not for a strong parameter. Thus strong parameters are not penalized by fluctuations with
a medium magnitude.

44More precisely: BOGER will estimate multiple instability values for some parameters – either if the
parameter is a core parameter or if more screening runs are performed than absolutely necessary
(“screening redundancy”. This is described later on p. 191). BOGER then uses the average of the 35%
worst instability values of a parameter as the criterion for parameter selection.

191/343



6.2. Design of the BOGER Algorithm

by-parameter model selection, BOGER can be run with a screening modeling redundancy:
more variable sets and thus screening models are generated for testing each variable in
multiple and different screening models. Using this approach, the composition and pe-
culiarities of individual screening models become less important because the non-core
parameters are also included in more than one screening model – at the expense of having
to fit 2 to n times as many screening models (where (n−1) is the number of redundancies).
With the screening redundancy, the user adjusts the number of different screening models
in which each variable is included. The result is multiple parameter instability values
– of which the worst 35% are used as the parameter selection criteria in by-parameter
selection. Furthermore, this procedure provides additional “samples” of the parameter
estimate, which is less dependent on (and thus biased by) a particular model. Despite an
improvement in robustness, this by-parameter selection still cannot compete with a full
model search in terms of robustness (see section 4.1.8 on page 116).

Hence both design details improve BOGER’s accuracy and robustness.

6.2.6. The Final Stage of Model Selection

The aim of the final model-selection stage is to validate and refine the results of the
screening stage. There are two principal differences between the two stages: 1.) the
selection of the final model is based on a robust estimate of the model fit rather than
parameter instability; and 2.) the process is interactive and partly manual, with the
possibility for intelligent user input on, e.g., causalities (see section 4.1.5 on page 109).

The final model selection stage starts with the preliminary model (step 6 in figure
6.1 on page 186), which was created fully automatically with a by-parameter selection
approach during the screening stage. This model is then iteratively refined without a
predefined search path:

1. For increased accuracy and robustness, the current model is fit to an enlarged45

set of bootstrapping samples – similar to how the screening models were fit in the
screening phase (step 6 in figure 6.1 on page 186). Like in the screening phase, the
result is a collection of fitted models – one model for each bootstrapping sample.

2. Next, the quality of the model as a whole is assessed (step 7 in figure 6.1 on
page 186). For each individual bootstrapping model, the model fit with the training
data and the fit with the cross-validation test data is calculated. As in the screening
stage, the average model quality is increased by removing the lower fraction of
models based on the sum of a model’s training and test model fit. In contrast to the

45For computational efficiency during the lengthy screening stage, most estimations are performed at
a normal accuracy. Yet the final stage achieves increased accuracy and robustness by using more
bootstrapping samples and a higher screening redundancy.
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screening phase, the criterion is slightly stricter, keeping only the best 25%46 of the
models for inclusion in the bagged model. Empirical evidence for the effectiveness
of this model filtering strategy can be found in appendix section A.6.5 on page 314.

The result is a) a selection of the best models, as well as b) a robust overall esti-
mate for predictive power (of this best sub-set). The predictive-power estimate is
measured by Rabs and is provided in the form of a model fit distribution as well
as an average based on the filtered set of bootstrapping models – for details, see
section 6.2.7 on page 195. Using this predictive-power estimate as criterion, the
researcher decides whether the model needs further improvement by adding and
removing terms and variables. When starting with the final model selection stage,
the researcher will always try to further improve the model.

3. Based on theoretical insights and the updated parameter instability as a tentative
suggestion47, the researcher may add and/or remove terms (i.e., parameters) to/from
the mathematical model48 (step 8 in figure 6.1 on page 186).

4. Next, step 6 of figure 6.1 on page 186 (or step 1 in this list) is repeated and
the modified model is fitted to the bootstrapping samples. With this step another
iteration of the final model selection process has begun. As for the previous model,
the next steps will be the model fit assessment (step 7) and further modification of
the model (step 8).

The researcher iterates through this process of assessing and modifying models until
there are no (or only marginal) improvements of the predictive power compared to the
best model tried so far. At that point, the user can use BOGER’s history logging function,
which stores all tested models and their performance assessment, in order to select the
best one to become the final model (step 9) – see section 6.2.8 on page 197.

The result of the entire semi-automatic process is the robust selection of a good model49

by taking all available information (data and theoretical considerations) into account. The
process is performed within an acceptable time frame and starts on a solid foundation: an
already improved model from the screening stage. However, since there is no prescribed
46This fraction is user-definable (with the parameter bootSamplFilter.frac) and should be set in such

a way that the final bag still contains sufficiently many individual models. Since the number of
bootstrapping samples and thus also the number of models is higher in the final stage, depending on
the settings, the total number of models in the final bag may still be larger than in the screening stage.

47Note that parameter instability is not used as a criterion in the final model selection stage. Instead
the parameter instability, which was updated during the previous model fitting, may be used as a
tentative suggestion for creating the next model.

48Terms that were not included in the model from the screening stage may also be reactivated for further
investigation. A history function saves all models and allows the user to go back to any older model
(see section 6.2.8 on page 197).

49The result from BOGER is a good and robust model selection – instead of a mathematically perfect
optimum, which is non-robust.
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search path with full coverage of the vast amount of possible models, there is no guarantee
of finding the mathematically optimal model (the best model)50. Following the argument
of Breiman (2001b) and Lukacs et al. (2007), I claim that a mathematically optimal model
is not necessarily of much greater value, since the mathematically optimal result is based
on inaccurate and at least weakly biased estimators. Hence the mathematically optimal
model is also only a ‘good’ model with respect to the overall process.

As outlined in chapter 4 on page 101, there are a number of challenges in statistical
inference, most notably causality, model selection (including fitting), overfitting, biased
model fit estimators and variable vs. full model selection. BOGER was designed to address
and mitigate all of the risks resulting from these challenges (except for causality51) instead
of focusing on only some parts of the process and thus on only one type of risk. Hence
the risk of getting spurious results is non-zero. Yet, I argue that the BOGER design
represents a suitable compromise among the algorithm’s effectiveness in mitigating the
various risks of delivering spurious results, time and data efficiency.

For actual prediction, the predictions of the best individual bootstrapping models
are averaged. The weaker bootstrapping models are excluded from this average by the
combined training and test model fit criterion (see step 7 above). For this approach,
Breiman (1996a) coined the term bagging, which is short for “bootstrap aggregating”. Other
authors refer to this technique as “ensemble building” (Chatfield, 1995; Strobl et al., 2007;
Yuan and Yang, 2005) – see also section 4.2.5 on page 134. This approach mimics a board
of experts who collaborate on a joint (and thus inter-subjective) expert prediction.

The much acclaimed strength of bagging is its robustness and its flexibility with regard
to the model type (Breiman, 2001b; Chatfield, 1995; Strobl et al., 2007). Bagging leads to
robust predictions, since it is built on the basis of multiple models, which are fit to different
(bootstrapping) data sets. In addition, it is flexible enough to accommodate models with
mutually dependent terms (section 4.1.8 on page 116) that would not allow for a simple
averaging of model parameters. One can even assess the model’s local robustness over
specific parts (intervals) of the independent variable space (see also figure 4.2 on page 127)
by measuring changes in the divergence of the individual model predictions over different
parts of the variable space.

A downside of bagged models is that they lead to black-box models that the researcher
cannot easily interpret. The bagged BOGER model also must be seen as a black-box
model, since the parameters of the individual models have very little meaning. As dis-
cussed before in this section and in section 4.1.8 on page 116, averaging the parameters
can only serve as a rough indication for the importance of a particular term in the bagged
50Most statistical model fitting algorithms (ordinary regression, logistic regression, SEM etc.) achieve a

mathematically optimal model fit but have no systematic model selection process, let alone a mathe-
matically optimal model selection procedure. See also section 4.1.6 on page 111.

51Dealing properly with causality either requires strong (and possibly false) assumptions using other
(qualitative) evidence or suitable experimental designs, as described in section 4.1.5 on page 109.
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model. Therefore alternative model inspection techniques need to be used, ones that do
not involve drawing inferences from the internal mathematical structure of the model.
A suitable model inspection technique is Breiman’s variable importance measure – see
section 7.1.1 on page 206.

Note that the result of the BOGER algorithm is a robust expected value model. If the
true data-generating process is stochastic, the prediction of a bagged BOGER model is
the expected value for a particular setting of independent variables, rather than a model
of the full multi-variate distribution completely describing the stochastic process – see
also section 4.1.4 on page 108.

The final model selection stage, in summary, performs a full model search in order
to avoid the challenges and restrictions of by-variable (i.e., by-parameter) model selec-
tion. The result of the interactive iteration process is a good “bagged” expected value
model consisting of multiple yet selected (filtered) bootstrapping models with no or little
overfitting.

6.2.7. Robust Model Fit Estimation in BOGER

The previous sections described the model building steps performed by BOGER. As al-
ready mentioned in section 4.2.2 on page 123, a robust model fit estimator is a principal
component of a robust model selection algorithm. This section will describe in further
detail the estimator used by BOGER. This section is relevant for readers who wish to
inspect and evaluate the quality of BOGER’s design and for readers who need to under-
stand the meaning of BOGER’s model fit measures in order to assess model quality in
detail.

Section 4.2.4 on page 129 presented various modern model fit estimation methods.
Evidence from various studies showed that bias-reducing estimators were more robust
and accurate than bias-correcting estimators – such as simple bias-correcting estimators
for Mallows’ CP and Akaike’s information criterion (AIC).

For bagging algorithms such as BOGER or Random Forest, which bundle and aver-
age predictions of multiple individual models, Breiman’s Predictive Error (PE) Cross-
Validation Estimate (Breiman, 1996b) showed good accuracy and low bias (Breiman and
Spector, 1992; Strobl et al., 2007; Zhang, 1993). In addition, it makes very efficient use
of the limited sample data, since models are fitted to all parts of the sample data instead
of an a priori separation into a training and a validation dataset – as in simple dataset
separation cross-validation (see section 4.2.4 on page 129). The high computational effort
connected to bootstrapping and building a bagged model is the only disadvantage cited
(see text box 4.2.1 on page 132).

Analogous to Breiman’s approach, BOGER calculates the ordinary R2 and Rabs model
fit with the training and test datasets for each bootstrapping model. The result is two
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predictive error estimates (as defined in section 4.1.7 on page 114) for each bootstrapping
sample (i.e., for each iteration):

• The training data model fit – which is an ordinary R2 and Rabs estimate (sec-
tion 4.2.1 on page 119) based on the training bootstrapping sample and the corre-
sponding fitted BOGER model.

• The test data model fit – based on the corresponding test bootstrapping sample
and fitted BOGER model. Breiman and Strobl et al. refer to the test data model
fit as an out-of-bag model fit estimate (Breiman, 2001a; Strobl et al., 2007).

Since the bootstrapping test samples were not used for model fitting, the test data
model fit – i.e., the out-of-bag model fit – serves as an independent validation of the
predictive error and allows detection of biases related to the fit process, such as biases
due to overfitting (see section 4.2.2 on page 123).

As discussed in section 4.2.2 on page 123 and 4.2.1 on page 119, estimates for the
model fit that are based on the training data may be severely biased due to an interaction
of the estimation biases and aggressive fit optimization. Nevertheless, the training data
model fit should be considered in addition to the test data model fit. Commonly, the
user chooses fewer bootstrapping test samples than training samples. In those cases, the
test data model fit estimates have a higher risk of being subject to sampling biases (see
section 4.2.1 on page 119), given the smaller underlying sample size. See also the empirical
comparison in appendix section A.6.5 on page 314. Hence both model fit measures will
be biased, but in different ways – which can be exploited to estimate the true predictive
power:

A model has a high predictive power if the following two conditions hold:

1. The training and test model fits are both high; and

2. the training and test model fits are close to each other, indicating that there
is little overfitting and thus the model is generalizable beyond the training sample
(true predictive power).

BOGER calculates52 model fit with two measures: R2 and Rabs. R2 is very common in
statistics and penalizes larger deviations from an expected value model more than smaller
deviation due to its square function. Thus individual but strong outliers will have a strong
effect on the R2 estimate. Therefore R2 is a sensible choice for statistical processes that
have little or no noise compared to the predicted value (i.e., high signal-to-noise ratio)
and thus few outliers. However, for noisy statistical processes, Rabs is more robust against
individual outliers, since it is based on the simple sum of the (absolute) errors. Empirical
52BOGER uses the simple estimators for R2 and Rabs as presented in a mathematical form in section 4.2.1

on page 119.
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evidence for this argument can be found in appendix section A.6.5 on page 314. Since the
data from this study is noisy, BOGER is used with Rabs as the primary model fit measure
that is used for model filtering and predictive power assessment.

So far the discussion has focused on the individual models that constitute the bagged
BOGER model. Assessing the individual models is relevant and useful during the iterative
model building process. Yet in the end, the predictive power of the final model needs to
be assessed. However there is no independent test dataset for the bagged model, since
the test samples of one model are the training samples for another model and vice versa.
(This is the property that makes BOGER data efficient.)

Therefore BOGER relies on a model filtering strategy that uses only a fraction of the
bootstrapping models in the bag – based on the sum of training and test model fit as
criteria. Test runs with BOGER indicated that these ‘best’ bootstrapping models have a
training and test model fit close to each other. Hence at the end of the iterative model
building and filtering process, the bagged BOGER model consists of a number of ‘best’
bootstrapping models that show little overfitting or other biases related to the fit process.

Since averaging many non-overfitting models does not involve a new fit optimization
process, no interaction with model fit estimates is possible, and thus the bagged model
will not be overfit either. Therefore an ordinary R2 and Rabs model fit estimate based on
all available (and thus many) samples is an acceptable model fit measure for the bagged
model, since any biases from overfitting will be as low as in the individual bootstrapping
model. In addition, the sample bias of the ordinary model fit will be reduced as well –
due to the larger sample that the Rabs model fit is calculated against.

In summary, the true predictive power of the bagged BOGER model can be assessed
robustly by assessing the predictive power of the individual models on the training and test
data as well as assessing the simple model fit of the bagged model against the total sample.
With these different and redundant assessments of predictive power, the BOGER model’s
generalizability to the entire population or into the future can be judged including an
assessment of the robustness of this judgment (i.e., the magnitude of the various biases).

6.2.8. Implementation in R

The BOGER algorithm was implemented in a specialized statistical programming lan-
guage called R, which is an open-source system popular in research on statistics and
bio-informatics (R Development Core Team, 2007).

This choice of statistical software package (instead of SPSS, STATA or similar) allowed
for much flexibility in algorithm implementation, visualization and analysis, which was
much needed to deal with the challenges described in the previous sections of this chapter.

The BOGER algorithm (without data preparation or analysis) was implemented in
about 4,000 lines of R code (that is equivalent to about 200 pages with single-spaced
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text). The BOGER implementation features an internal logging mechanism, a command-
line interface for user-interaction and the parallelization of the algorithm for execution on
multiple CPU cores or computers.

More details on the implementation and R can be found in appendix section A.6.2 on
page 307.

6.3. Design Requirement Validation & Performance of
BOGER

Section 6.2.1 on page 179 described the design goals for BOGER. To validate these re-
quirements, this section describes BOGER’s model fitting performance and summarizes
it features that meet the requirements.

Since the performance validation is based on the survey data from this study, it also
serves as an assessment of the quality of the statistical model, which is the foundation of
the accuracy and robustness of the statistical results presented in section 7.2.1 on page 217.

6.3.1. Model Selection Progress

As discussed before, the statistical model building challenge for the survey dataset begins
with a fairly large set of variables and associated parameters:

• 139 original survey variables with 284 parameters (see section 5.3 on page 141);

• plus 154 interactions with 291 parameters (automatically added based on a correla-
tion analysis53);

• summing up to 293 variables total (survey variables + interactions) with 575
parameters in total.

Based on theoretical grounds (the obvious lack of a causal effect on learning – see sec-
tion 4.1.5 on page 109), some of these variables were disabled a priori and were not included
in the search for a suitable statistical model (see step 1 in fig. 6.1 on page 186). There-
fore only 502 parameters (229 parameters from interactions) were fed to the BOGER
algorithm.

Given an effective sample size54 of n = 292, this number of parameters is large
enough to lead to significant risks of overfitting (see sections 4.2.2 on page 123 and A.6.3
on page 310). Therefore, in order to improve robustness, a model with a much smaller
53For the 139 survey variables, a full correlation analysis of all possible combinations of two variables is

performed. Any combination of two variables with a correlation between 0.32 and 0.98 is added to
the dataset as a simple linear correlation (e.g., variable 1 · variable 2). Eleven additional ‘custom’
interactions were also added based on theoretical considerations.

54See the discussion of data filtering in section A.5.1 on page 302.
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number of parameters needs to be selected systematically – as described in section 6.2.4
on page 185.

After BOGER’s screening procedure (see section 6.2.5 on page 187) was implemented
and debugged, a high-quality screening run was started and ran for ∼ 6.5 days on the two
CPU cores of an Intel Pentium D 945 with 3.4 GHz.

In the beginning, as a preparation of the screening stage (step 3 in fig. 6.1 on page 186),
32 screening models were automatically generated, each consisting of 25-35 parameters .
Of these 25-35 parameters55, 12 were contained in all screening models as core parameters
(from five core variables). Each screening model was fit to 14 bootstrapping samples. A
screening redundancy (see p. 191) of five leads to 192 screening iterations (i.e., 6·32 = 192

partly overlapping screening models). Hence, in total, the genetic optimization algorithm
performed 192 · 14 = 2688 model fit operations (with 192 different math models and 14
different bootstrapping samples). Thus a computational effort of approximately 6.5 days
leads to an average model fitting time of 6.5 · 24 · 60/2688 · 2 = 7.0 minutes per model and
CPU core.

The result of this parameter screening was a parameter pre-selection (based on the
parameter instability criterion) as the basis for the first interactive model, with 31 pa-
rameters.

This preliminary model was then iteratively and interactively refined in more than 32
iterations (steps 6 – 8 in fig. 6.1 on page 186) by using the predictive power estimate of
the model as model optimization criterion – see also section 6.2.6 on page 192 on the final
stage of full model selection.

The resulting final model consists of ‘only’ 22 parameters. For quality improve-
ment, the final bagged model includes only the top 25% of all individual bootstrapping
model fits for the same 22-parameter model structure – see section 6.2.6 on page 192).
Compared to the preliminary pre-selection model from the screening stage, the final model
has improved predictive power – as the model fit results in the following section will show.

6.3.2. Model Fit & Predictive Power Estimate

Figure 6.2 on the next page shows the real learning index data vs. the predicted learning
index, giving a graphical impression of how well the BOGER model fits the data. If there
was no randomness (noise) in the process, all points would lie on the red line for a perfect
model.

Appendix section A.6.4 on page 311 contains an analysis of the residuals, which are
approximately normally distributed – indicating that the non-linearities in the data have
been treated by the BOGER model with sufficient accuracy.

55The automatic generation of screening models is based on variables, not parameters, which is why the
number of parameters per screening model varies.
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Figure 6.2.: A Graphical Impression of Model Fit: Real vs. Predicted Learning Index

Training Fit Test Fit

R2 (bagged model) 34.5 % -
R2 (indiv. filtered models) 32.6 % 36.7 %

Rabs (bagged model) 28.4 % -
Rabs (indiv. filtered models) 28.1 % 26.1 %

Table 6.4.: Model Fit Summary – Solid Results

More precisely, table 6.4 quantifies the model fit using two different measures with
different strengths and weaknesses: R2 and Rabs

56.
The fit results are further distinguished by Training Fit and Test Fit, which indicates

whether R2 or Rabs was estimated using the sample used during model fitting (training
data) or using the test dataset57. Since the test data is not used for model fitting, the

56Rabs is a model fit measure very similar to R2, with the only exception that instead of using the sum
of the squared errors it uses the sum of the absolute value of the errors – see also section 4.2.1 on
page 119

57As described in section 6.2.5 on page 187, the test data is the test data from bootstrapping and thus is
different for each individual model in the bag.
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R2 and Rabs values based on the test data are expected to be a less biased estimate
of predictive power than the corresponding estimates based on the training data (see
section 6.2.7 on page 195).

Moreover, the fit results are shown separately for the overall bagged model and as an
average fit of the individual filtered models. As discussed in section 6.2.6 on page 192,
the final model, which is used for predictions and inference, is a single bagged model
consisting of the ‘individual filtered models’, i.e., the top 25% of all individual bootstrap-
ping models with the same final model structure. For the individual filtered models, the
model fit estimates listed in table 6.4 on the preceding page are calculated for each model
individually and then averaged over all individual models. In contrast, the bagged model
is only a single model and thus only the simple R2 and Rabs estimates based on the total
data can be calculated (see section 6.2.7 on page 195).

The first impression of the model fit results in table 6.4 on the preceding page with
values above 25% is good58 – especially when compared to the results from the other tested
algorithms (section 6.1.3 on page 175). One detail, however, may be surprising: the R2

estimate for the individual models and the test data is higher than the corresponding R2

estimate for the training data. As discussed in section 6.2.7 on page 195 and empirically
supported in appendix section A.6.5 on page 314, R2 is less robust to noise in the data
than Rabs. This is why Rabs instead of R2 was used for the model selection with BOGER
and why Rabs will be used as a basis of the following assessment of the quality of the
statistical model.

Considering primarily the estimate for Rabs in table 6.4 on the preceding page, it can
be concluded that:

• The BOGER model only very slightly overfits: the training fit is only ∼ 2% higher
than the test data fit. This is a substantial improvement compared to any of
the existing alternative algorithms, which all strongly overfit – see section 6.1.3
on page 175.

• The low level of overfit further implies that the simple Rabs model fit estimate for the
bagged model fit will have a low bias due to overfitting. It can thus be interpreted
as a robust and fairly accurate estimate of the true predictive power of the final
bagged model.

• Therefore the predictive power of the final bagged model with approximately Rabs =

28% (or in terms of R2 = 34%) is fairly high – given that learning is a complex
process with many latent and possibly overlooked variables, which makes it similar
to typical social science applications (see section 4.2.2 on page 123). Judging from

58Considering the level of noise in the data.
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the variance of the training model fit distributions in figure A.19 on page 316, these
bagged model fit estimates should be accurate within a tolerance of at most ±5%.

• For the survey data, the model prediction performance is more than twice as good
as the performance of the best existing alternative algorithm (cForest) – see sec-
tion 6.1.3 on page 175.

• The preliminary pre-selection model from the screening stage has a training model
fit of R2 = 32.4% and a test fit of R2 = 25.9%. Thus the refined final bagged
model has a substantially better test model fit than the pre-selection model and
overfits less. Overall the predictive power of the final model is better than the fully
automatically generated pre-selection model.

An empirical analysis of the model fit measures – by comparing the distributions of
individual bootstrapping model fits in appendix section A.6.5 on page 314 – empirically
supports the robustness of the above used assessment methods and results.

In summary, given the complex and stochastic nature of the learning process, the model
fit is fully satisfactory. The detailed results confirm the robustness of this assessment.

6.3.3. Design Requirement Validation Summary

With the empirical results from the two following sections, it can be concluded that the
BOGER algorithm meets all design requirements posed in section 6.2.1 on page 179:

• The mathematical model at the core of BOGER (eq. 6.1 on page 182) is a multi-
variate model, which can deal with the collinearities in the survey data and
restricts the model flexibility for increased robustness to overfitting.

• BOGER supports systematic full model selection in order to reduce the number
of variables in the final model, with a fully automatic screening stage followed by
an interactive full model selection stage.

• The combination of training and test model fits allows a robust assessment of the
predictive power and robustness of the model.

• The BOGER results for the survey data show only a small overfitting bias (sec-
tion 6.1.3 on page 175).

• The sample data is used with high data efficiency by full use of the information
in the metric scales (by the use of a native regression algorithm instead of a classifi-
cation algorithm in the background) and by the use of a data-efficient bootstrapping
algorithm.
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• With approximately Rabs = 28% and R2 = 34%, a high explained variance, i.e.,
a high level of predictive power, is attained for the survey data (section 6.1.3
on page 175). The predictive power is more than twice as high than the best
alternative algorithm (cForest) – compare sections 6.3.2 on page 199 and 6.1.3 on
page 175.
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7.1. Result Interpretation Procedures

7.1. Result Interpretation Procedures

As already discussed in section 6.2.6 on page 192, the final bagged BOGER model has
one major disadvantage: In contrast to an ordinary regression model, for example, the
parameter estimates cannot be used directly for inference.

Hence to draw inferences from an opaque bagged model that defies direct inspection,
the following sub-sections will present alternative inspection and model structure analysis
techniques in the form of a variable-importance measure and uni-variate model-shape
graphs.

These inspection techniques are relevant for a detailed interpretation of the results.
Readers looking for a summary of the statistical results in the context of existing theory
may skip to the implications section 8.1.2 on page 267.

7.1.1. Interpretation Criterion – Variable Importance

This section presents the permutation variable-importance measure as proposed by Breiman
(2001a), which allows the user to quantify the importance of a particular variable without
the need to inspect the model’s structure. Thus the variable-importance measure also
works for models that appear as a black box and have an arbitrary complex structure.
Moreover, with this measure, the model’s independent variables can be ranked according
to the strength of their effect on the outcome variable (in this case, the learning index) –
independently from how the variable occurs in the model (even if the variable occurs in
different configurations and multiple times in the model).

The Need for a Variable-Importance Measure and Existing Alternatives In ordinary
multivariate linear regression, a comparison of the regression coefficients can assess the
strength of each individual variable’s effect on the model, as long as the data has been
standardized (z-transformed) to equal mean and variance (Backhaus et al., 2006, p. 54)
and the variables are not collinear1. A few additional rules apply when interactions are
used – as will be discussed in section 7.1.2 on page 212.

1Collinearity, i.e., a substantial correlation of two variables A and B, makes a simple interpretation of
regression coefficients bA and bB for A and B impossible. The additive structure of ordinary linear
regression models suggests that increasing A alone will increase the dependent variable y at a slope
of bA. However, if B is highly correlated with A, B will also increase as A increases. This coupled
increase of B multiplied by bB needs to be added to the direct effect of A on y. Using a multiplicative
interaction AB may alleviate problem. See also sections 7.1.2 on page 212 and 4.1.8 on page 117.
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It is not as easy to directly assess the relative importance of the variables and their in-
teraction using the bagged BOGER model, with its multiplicative terms and non-additive
structure.

Existing Variable-Importance Measures Since many model building algorithms in ma-
chine learning are similarly opaque to direct inspection, various variable importance mea-
sures have been proposed in the machine learning literature – e.g.:

• Breiman’s Permutation Variable Importance (Breiman, 2001a; Strobl et al., 2007)

• Laan’s Absolute Prediction Loss Variable Importance (van der Laan, 2006)

• The Gini Coefficient from Information Theory (Breiman, 2001a; Strobl et al., 2007)

• Pratt’s Variable Importance Measure for Linear Regression (Thomas et al., 2007)

As Strobl et al. (2007) report, the Gini coefficient shows a very strong bias – at least for
Breiman’s method of estimation. It has thus not been considered for this study. Pratt’s
variable-importance measure is restricted to additive linear models. That leaves Breiman’s
Permutation Measure and Laan’s Absolute Prediction Loss Variable Importance for use
in this application.

Breiman’s Permutation Variable Importance is suitable It turns out that Breiman’s
permutation variable importance is effectively a measure for the relative prediction loss,
and thus it is very similar to Laan’s absolute prediction loss measure (van der Laan, 2006,
p. 4) – except for the estimation methods. It is noteworthy that Strobl et al. (2007)
demonstrates biased results from Breiman’s permutation variable-importance measure
using simulated data. However, this bias stems from a bias in tree node split selection,
i.e., from a bias in automatic variable selection during model building and fitting. Thus
no biases have been reported for the permutation measure itself but rather for the random
forest algorithm in certain circumstances.

The results of this study will be interpreted with Breiman’s permutation variable
importance. This method was chosen instead of attempting to interpret individual pa-
rameters for the following reasons:

• Complex interactions of the mathematical terms in the model (e.g., the multi-
plicative and linear terms) are covered.

• Collinearity can be dealt with – see below.

• Extensive coverage and testing of Breiman’s permutation measure (Archer and
Kimes, 2008; Strobl et al., 2007) has taken place. Other researchers have begun
to appreciate and use this very flexible variable-importance measure in practical
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applications (often in conjunction with the use of random forest), as these examples
show: Archer and Kimes (2008); Li et al. (2006); Thuiller et al. (2006).

• The robustness or statistical significance of the variable-importance result can
be assessed by inspection of the distribution of variable-importance esti-
mates over different bootstrapping model fits. Using Breiman’s permutation tech-
nique (see below), a variable-importance sample is estimated for each bootstrapping
model contained in the final bagged model (see section 6.2.6 on page 192). These
samples are then plotted in a frequency graph to visualize the distribution of the
variable importance – as shown in fig. 7.4 on page 222. This distribution is effectively
the variation of the variable-importance due to the sampling effect (section 4.2.1 on
page 119) – the same statistical significance effect that is analyzed with Student’s
t-test. However, the analysis of the variable-importance distribution can be more
informative than the null-hypothesis testing approach inherent to Student’s
t-test2.

• Any data – even with skewed distributions3 – is accepted, and no standardization
is necessary.

Following Breiman, the permutation variable-importance measure for a variable xj is
estimated as follows:

1. Calculate the Rabs
4 model fit based on a dataset (e.g., the collected sample or a

particular bootstrapping sample)5.

2. For the statistical process p, generate samples from its multivariate distribution
DP (X, y) for the independent variables xi (with i = 1 . . .m incl. j) and replace the
data of the focus variable xj with samples from an independent univariate distribu-
tion of xj . Drawing xj from its univariate distribution makes it independent of the

2Ordinary null-hypothesis testing, such as Student’s t-test, assesses the probability of a term being
insignificant – i.e., the probability that a non-zero parameter estimate in ordinary regression is in
fact zero and that the estimate is only non-zero due to sampling effects, not because of a real effect
in the data. Thus passing the t-test means that the true value of a parameter is not zero and lies
somewhere between zero and the parameter estimate – which is not very informative for most practical
investigations. Certainly t-tests yielding very high significance levels suggest that the effect strength is
likely closer to the estimator than to zero – yet this is not what Student’s test measures. In addition,
the test requires strong assumptions, such as normal distributions. Therefore null-hypothesis testing
has received much criticism in recent statistical literature (Anderson et al., 2000; Lee, 1997; Lukacs
et al., 2007).

3Skewness of variable distributions cannot be removed from variables simply by using result-neutral
linear transformations such as the z-transformation.

4Breiman uses R2 instead of Rabs. But since, in section 6.2.7 on page 195, Rabs has been found to behave
more robustly on noisy data, Rabs was chosen here instead. Conceptually there is no difference, since
both estimators are a measure for model fit.

5Given the instability of R2 with small sample sizes, as described in section 6.3.2 on page 199, the
variable-importance measure used for BOGER is based on the more robust Rabs estimate – described
in section 4.2.1 on page 119
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state of the other variables xi (with i 6= j) and thus the information in xj regarding
the statistical process is replaced with noise, which is identically distributed as xj .

In practice, these sampling steps are approximated (estimated) by simply using the
data for xi from the chosen dataset as is and replacing xj simply by a permutation6

of the vector xj . Thus all variables xi are distributed properly, and the univariate
distribution of xj remains the same, but the information in xj – i.e., its correlation
with y (and the other xi’s) is completely removed. Similar to the sampling issues
of the mean estimator, this approximation is only as good as the used sample is
representative of the larger population.

3. Calculate the model fit with the permutated xj : Rabs(permutated fit).

4. Calculate the prediction loss PL due to the permutation of xj , i.e., the removal of
the information in xj , as:

PL = Rabs(model fit)−Rabs(permutated fit)

The higher the prediction loss, the more valuable the information xj was for the
predictive power of the model (with respect to the used dataset).

5. Repeat steps 2 through 4 a large number of times (>100) in order to ensure that
the sampling by permutation is truly random. Then average the prediction losses.
This average is the permutation variable importance.

Note that the resulting estimate of the predictive loss (i.e., the variable importance)
contains no information regarding the direction of the effect of the investigated variable.
To obtain the effect direction, a graphical analysis method is used as a complement to the
variable importance – see section 7.1.3 on page 213.

Features of the Variable-Importance Implementation of this Study Since the R-
implementations of the permutation variable importance by Liaw and Wiener (2002) in
the randomForest package and by Strobl et al. (2007) in the party package (Hothorn
et al., 2006) are tightly interwoven with their respective random forest implementations,
the above algorithm was re-implemented in R for the BOGER algorithm with some ad-
ditional features:

Similar to the challenges with bias in estimating the model fit R2 (see also section 4.2.2
on page 123), the bias in the variable importance measurement calculated from an R2

estimate strongly depends on the dataset used in its estimation process described above.
Commonly all available data (the complete collected sample) is used. However, if this
is the data that the model is fitted on, then the R2, used internally, may have a strong
overfitting bias (see also section 4.2.2 on page 123). Thus the variable-importance measure

6The vector xj is reordered randomly.
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would not distinguish between a variable importance that truly adds predictive power to
the model and a variable importance that only increases overfitting.

For BOGER, the variable-importance can be estimated based on two different datasets:

• all data with respect to the bagged model; and

• only the internal test data7 – for a more independent estimate.

Unfortunately, the variable importance for the internal test data cannot be calculated
for the bagged model, since the internal test data is only unknown test data for a single
model in the bag. Thus the variable importances for the individual models in the bag are
averaged instead of using the bagged model for calculations of the R2.

The variable-importance estimates based on the two different data sources both have
weaknesses. Yet the two estimates are biased in different ways. In the following, two
different variable-importance estimates will be calculated and provided for each variable8:

• a complete data variable-importance estimate, which is the variable impor-
tance based on the final bagged model and the complete data. This estimate is
preferable to estimates based on the training variable importance, since it is based
on the bagged model and slightly more data and both types of estimates may be
subject to overfitting biases; and

• a test variable-importance estimate, which is the average of all variable-importance
estimates based on the test data and the predictions of individual bootstrapping
models9.

Analogous to the discussion in sections 6.2.7 on page 195 and 6.3.2 on page 199, both
measures have different strengths and weaknesses. But the weaknesses can be mitigated
when the two different estimates are used in combination: the complete data importance
for the bagged model may be subject to a bias related to overfitting – see section 6.3.2 on
page 199. The test variable importance estimate, in contrast, is completely independent
of the model fit process and thus is not subject to an overfitting bias. However, the
test data estimate is based on a smaller sample and is therefore more subject to random
biases from the sampling process10. Hence both estimates should be used in conjunction
in order to assess the magnitude of the different biases and thus also the accuracy of the
two estimates.

7Since there is no true (untouched) test data for the bagged model, the variable importance based on
the test data is an average of the variable importances in the individual models.

8Future users of this measure may consider combining the model fit results from the different datasets
in order to obtain a combined predictive loss estimate, allowing for a combined and robust measure
of variable importance.

9The selection of individual bootstrapping models is restricted to those “good” individual models that
are contained in the final bagged model.

10For details on the sampling bias, see section 4.2.1 on page 119.
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There is no estimate based on the training data, since it would have both weaknesses
of the other two measures: it is subject to overfitting biases, and it is more subject to sam-
pling biases, since it is based on a smaller sample than the complete data estimate. Hence
a training data estimate would be in all respects inferior to a complete data estimate.

To gain further insights on the magnitudes of these biases – i.e. to get an estimate
of the accuracy and robustness of the variable importance measure – the BOGER imple-
mentation in addition estimates distributions of the variable importance over the different
bootstrapping models in the bag. Hence the permutation variable importance is estimated
with Breiman’s method for each individual bootstrapping model with many permutated
datasets that are either based on the complete data or on the test data for the respective
bootstrapping model. The result is many “samples” of the variable importance estimate
(one for each permutation and bootstrapping model) that can be used to generate fre-
quency plots in order to illustrate the distribution of the estimate for a particular variable
over different bootstrapping models. See also the result graphics for this study in fig-
ures 7.4 on page 222 and 7.5 on page 223.

A large variance of this distribution indicates a low robustness of the variable (and the
associated parameter estimates) over different bootstrapping models and thus suggests
that the variable importance is likely to be affected by overfitting or sampling biases. In
the language of linear regression, one would describe the parameter estimate to have a
low statistical significance.

Finally, a grouping feature has also been implemented, which circumvents problems
with highly correlated (collinear) variables by assessing the model prediction gain of groups
of variables jointly rather than individual variables separately. This is done by permutat-
ing groups of variables in such a way that the variable value combination for a individual
participant always remains intact. Consider a variable grp.ABC consisting of the inde-
pendent variables A, B and C represented in a matrix, with a column for each variable,
and the answers for each survey participant in the rows. Only the sequence of rows is
randomized, but each row remains unchanged. The group of variables is also treated as a
group during the permutation step described before, and therefore their collinearities are
maintained throughout the process. The result is a variable-importance measure for the
entire group instead of for the individual variables11.

In addition, this grouping feature can also be used for grouping by concepts, e.g., all
task/job-related variables in a task properties group.

In summary, the extended version of Breiman’s permutation variable-importance mea-
sure presented here is a suitable and robust estimation method to quantify the effect
strength (but not the direction of the effect) of individual variables or groups of variables

11Similar to collinear parameters in ordinary linear multi-variate regression, variable-importances for
individual but strongly collinear variables would not be meaningful, since their effect depends on the
other variables in the group.
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7.1. Result Interpretation Procedures

on the outcome variable (i.e. learning) – as defined by the fitted BOGER model. Thus it
is a suitable tool to draw inferences from the fitted BOGER model without the need for
direct inspection of the opaque BOGER model.

7.1.2. Interpreting Interactions

When using multiplicative interaction variables, as in this study, the interaction variable
AB will be highly collinear with its primary effects A and B. This correlation makes any
effect strength measure for the individual variables A, B or AB become meaningless for
interpretation: any change in A would also lead to a change in AB, with an additional
effect on the outcome of the model. Thus an individual effect strength measure only
covering variable A would not cover the correlated (i.e., actually always synchronously
occurring) effect of AB.

Therefore, in ordinary linear regression, interactions require special interpretation of
the parameters – see figure 7.1 by Brambor et al. (2006). The figure shows an example of
a dichotomous conditional variable Z, which is either 0 or 1.

Figure 7.1.: Interpretation of Interactions (Source: (Brambor et al., 2006))

If variable Z is 1, then Y has a much stronger functional dependence on X. Thus
Z can also be called a moderator. Neither β1 nor β3 is relevant for interpretation but
instead (β1 + β3). This also explains the frequently observed counteracting results of
interactions and main effects: β1 can be negative, even if the overall effect of X on Y
(without conditioning on Z) should theoretically be positive. A negative β1 in combination
with a strongly positive β3 will lead to a positive effect of X on Y for Z = 1. If the majority
of the sample has Z = 1, then the overall unconditional effect of X on Y will be positive,
even though the negative parameter β1 suggests otherwise.
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In a more general case, where Z is a continuous variable as well, and thus the functional
relationship between Y and X lies between the two extreme functions of the dichotomous
case, (β1 +Z β3) is the relevant parameter for interpretation (Cleary and Kessler, 1982).

In the case of the mathematical model of the BOGER algorithm (see section 6.2.2 on
page 180), the interpretation of the parameters is even more complicated: the multiplica-
tive terms, for example, will interact with the linear terms. In addition, the data used
by BOGER is not z-transformed to zero mean and standard deviation equal to 1, so the
parameter values cannot be compared directly.

In summary, the interpretation approach by (Brambor et al., 2006), described above, is
helpful to understand the signs of the BOGER parameter estimates and why interactions
and main effects can have counter-acting directions. For interpretation of the BOGER
parameters, however, the extended permutation variable-importance measure should be
used instead, since it allows for a suitable treatment of the interactions with its grouping
feature (section 7.1.1 on page 206).

7.1.3. Model Shape Graphics by Variable

Graphics can frequently visualize details and patterns more effectively than lists of sin-
gle numbers, and thus computer-generated plots are a useful tool in modern statistics.
Graphics showing the real data in suitable ways are valuable in detecting the unexpected
(West, 2006):

“The greatest value of a picture is when it forces us to notice what we
never expected to see.”, Tukey (1977, p. vi), bold in the original

Nevertheless, graphics have one severe disadvantage that needs to be compensated for:
they can have at most three dimensions – or in animation, four dimensions (with the time
as the fourth). Even though 3D visualization is possible12, a good overview is frequently
only achieved in a 2D plot.

Since the learning process is stochastic (i.e., noisy) and high-dimensional, these multi-
variate properties of the survey dataset require a multi-variate model (as discussed in
section 5.12.1 on page 163) – which was created with the BOGER model. Hence a low-
dimensional analysis technique, such as 2D plots, cannot be used as a primary analysis
tool for a high-dimensional problem.

However, 2D-graphics can be a useful complement to the variable-importance analysis
described before, e.g., for the interpretation of the effect direction. The high-dimensional
model shape will be plotted in many 2D graphs – one for each independent variable. These
graphs show the dependent variable vs. a particular independent variable, graphically

12In R, the user may create and script both 3D graphics as well as 3D animations.
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7.1. Result Interpretation Procedures

illustrating the overall (unconditional) effect of a variable, including its direction (positive
or negative).

The simplest approach for producing such graphs would be to use the mean of all
independent variables except for the focus variable in the fitted model and vary the focus
independent variable xj over its typical range. With this artificial input data matrix X

use the fitted model to make predictions for the dependent variable ŷ and plot the line of
these predictions in a ŷ vs. xj graph. This simplistic approach does not account for any
collinearities. Thus the graphing method proposed here simply reuses the original samples.
It effectively draws samples of the independent variables from the original distribution of
the stochastic process DP (y, x) – and uses the resulting ‘artificial’13 input matrix X̃ for
predicting ŷ. The resulting ŷ vs. xj graphs then do not show the model as a line but rather
as a point cloud, since not only xj is varied but all other independent variables as well.
For better visualization, the point cloud is visualized in the form of a frequency graph
showing the shape of the distribution of ŷ vs. xj . For an example, see the right column
of the graphs in figure 7.2 on the next page, which illustrates the dependence of learning
intensity on personal interest in the learning topic (see section 7.3.3 on page 238).

Since the other independent variables are drawn from the multivariate distribution de-
rived from the sample, collinearities are preserved automatically. Using the shape of the
displayed bi-variate distributions or the median in the ŷ vs. xj graphs (one for each inde-
pendent variable), one can directly see the direction of the overall effect of the respective
xj .

Hence the practical implementation of the above procedure can be summarized as
follows: Drawing samples from a stochastic process with the same distribution that gen-
erated the sample is approximated by using the original sample as X̃. Then, using the
fitted model, predictions ŷ for the original input data X are calculated and plotted in
many graphs – one for each independent variable.

In the following sections, figures (such as figure 7.8 on page 229) will include the
distribution of the real complete data in the left column. The complete real data is shown
without mean imputations and related filtering14 in the right column. Thus these graphs
allow the researcher to compare the model shape (or in this case, a distribution) with the
original data sample, labeled ‘Training Data’ 15 here. They will also aid in visualizing the

13The input matrix X̃ is practically equal to the actually sampled input data X. Yet, to keep the argument
as general as possible, this method would also work for an artificially generated input matrix as long
as the matrix is identically distributed as the original sample, complete with all collinearities.

14Mean imputation was used to fill the many small gaps in the multi-variate dataset. Further filtering
was applied for some variables to reduce the need for imputation – see also appendix section A.5.2
on page 303. This fourth and last filtering stage was not applied to the data shown in the left model
shape graph as ‘training data’.

15Since the model shape is based on the bagged BOGER model, the ‘training data’ sample also refers
to the complete and non-imputed data sample fed to the BOGER algorithm and should not be
confused with the bootstrapping training data samples inside of the BOGER algorithm for individual
bootstrapping models.
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individual directions of the overall variable effects.
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Figure 7.2.: Annotated Model Shape Graphics: The left graph shows the original
(noisy) data for comparison with the expected value model prediction in the
right graph. The distribution of the real and predicted data for the outcome
variable ‘learning index’ is shown in histograms for different levels of a de-
pendent variable ‘learning interest’. Medians and their linear fit line (in red
and green) are added for a further abstracted aggregation of the relationship
between the two variables’ box-plots.

To visualize as much information as possible and useful, each sub-graph in figure 7.2
shows three representations of the same data in an overlayed manner:

• The grey filled boxes show the data distribution in the form of vertically stacked
histograms16 (i.e., vertical frequency plots).

• The rectangles with dark blue lines and no fill are boxes from a box-plot of the data.
The blue boxes contain 50% of all samples and thus also provide information about
the distribution of the data.

• The big black dots indicate the median of the learning index for a given level of the
respective focus variable. The median was chosen here instead of the mean, since
the median represents the typical learning index value for a given level of the focus

16A wider box means more frequent occurrence for a given range of the learning index and a given
range of the independent focus variable. Thus this discrete representation is an approximation for the
bi-variate distribution in the form of a probability density function (PDF).
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variable, while the mean provides the average learning index. The typical learning
index, i.e. the median, is more meaningful for interpretation17.

• The fitted line in green (for the real data) and in red (for the model shape) is a
weighted line-fit of the medians18.

The shown graphics were created by the author using custom scripts in R based on Trellis
Graphics (Sarkar, 2008). Each graphic can be automatically generated with a single call
of the respective R function.

The vertically stacked histograms in figure 7.2 on the preceding page require an ordinal
independent variable with a finite number of ordered categories, in order to be able to plot
a distribution for each independent variable category. If a metric independent variable
is used instead, categories for the metric independent variable (i.e., discrete levels) are
automatically generated19.

These graphs also have some minor disadvantages:

• The number of levels for the independent variable may influence the slope of the
line fit. In the case of an artificially categorized metric independent variable, the
user may adjust the number of levels. Hence the user may influence the medians
through the choice of categorization levels – and thus also the line-fits. Although
more levels increase the line-fit accuracy, more levels also decrease the accuracy of
the median estimator. Thus the user needs to find a good intermediate number of
levels.

Using a mean estimator instead of the median will yet again lead to a slightly
different line-fit.

• The BOGER model is an expected value model20 of the learning index as a function
of the independent variables. Hence the expected value model does not model the
variance (the noise) of the process. However, the real data includes not only this
expected value but also the variance of the process. Thus the real data and the
model shape are not perfectly comparable, but this comparison is still informative.

In summary, despite these minor disadvantages, the advantages – such as accounting
for collinearities – make this type of graph a useful analysis tool, suitable and sufficiently
accurate for comparing model shape with real data and for assessing the direction of a
variable effect, including collinearity frequently occurring with interactions.
17See also the nice example at http://en.wikipedia.org/wiki/Median#Popular_explanation.
18In more detail, the line-fit is a simple bi-variate ordinary least-square regression of the medians weighted

by the number of samples underlying each median, i.e., the number of samples for each level of the
independent focus variable.

19Alternatively, the user may provide custom intervals for the categorization of metric variables into
custom levels.

20see section 4.1.4 on page 108
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Particularly noteworthy is the usefulness of the information inherent in distributions:

“[...] Thus, instead of characterizing statistical findings by stating percentages
such as ‘70 percent of adult men have brown hair,’ researchers state, test,
and do not reject the hypothesis: ‘Men have brown hair.’ Then they describe
such findings by saying ‘Men have brown hair’ as if the description describes
everyone or every situation. The distribution of hair colors becomes a general-
ization. Much of the time, such generalizations have no bases beyond computed
averages, that is, ‘An average man had brown hair.’ Since social phenomena
often have overlapping frequency distributions, comparisons between averages
may say nothing about specific instances.”,
Starbuck (2004, p. 1245)

Thus for stochastic (non-deterministic) processes, distributions are much more insight-
ful than mean (or median) statistics. Furthermore, distributions are a direct view21 on
the raw data without any (possibly biased and flawed) preprocessing22.

7.2. Overall Statistical Results

The following subsections show the statistical analysis results for the BOGER model as
a whole. A by-variable discussion follows in section ( 7.3 on page 226).

7.2.1. Survey Questions of the Model Variables

In line with the research aims, the learning index is the outcome variable – quantifying
the learning intensity that an individual participant experienced in a particular project
or time frame at work (see section 5.4.2 on page 150).

As described in section 6.3.1 on page 198, the application of the BOGER algorithm led
to a reduced set of variables and parameters that were included as the strongest effects in
the final bagged BOGER model. The 22 parameters systematically retained in the final
model correspond to the variables listed in table 7.1 on page 219.

This final set of variables is listed with a brief description and the original variable
short names, since the short names are short as well as unique and therefore reappear in a
number of graphs. For the analysis of the variable importance (section 7.1.1 on page 206),
some of the variables have been grouped according to collinearities or on conceptual
grounds. These variable groups are also listed in table 7.1 on page 219. Further details
on the questions and scales are provided in the sub-sections referenced below.

21Except for choosing this type of visualization, the researcher does not make any (possibly already biased
and subjective) choice regarding a filtering method – see section 2.3.3 on page 35. Hence the researcher
effectively uses only a very light filter.

22Unless the levels of a metric variable are artificially generated – as discussed above.
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Group Variable’s Short Name Description / Question

F grp.LearnStrategy Learning Strategy Group
(section 7.3.1 on page 226)

lst.reading “During your task, how have you learned ...?”
“... by searching and reading”

lst.discussion “During your task, how have you learned ...?”
“... by discussion with others”

learnSup.Strategy Learning-supportive strategy scale – the inclina-
tion to support learning by reading and/or dis-
cussions.

F grp.LeaderEffect Leadership Effect Group
(section 7.3.2 on page 231)

dnvSc.
KnowlConduceTaskDesign

Knowledge-conducive task design scale, consist-
ing of work inspiration, feedback and formal
training.

learnSup.Leader Learning-supportive leadership style scale, con-
sisting of feedback, initiative, climate, trust.

inter.dnvSc.
KnowlConduceTaskDesign_
learnSup.Leader

Interaction of knowledge-conducive task design
and learning-supportive leadership style.

• li.interest Personal interest in the topic (section 7.3.3 on
page 238).

F grp.History Professional History Group
(section 7.3.4 on page 240)

years.in.dept Years in the department.
age Age of the participant.
inter. years.in.dept_age Interaction between <Years in the department>

and <Age of the participant>.
F grp.ApproachClear Learning Barriers Variable Group

(section 7.3.5 on page 243)
inter.approachClear_
foundContact_
expertAvail

The three-way interaction of the learning barri-
ers <approach not clear>, <no suitable contact
found> and <expert not available> (the only
variable remaining in this group – see section
7.3.5)

• EU_lmeth.IntSoc Epistemological beliefs (EÜ) regarding social
learning methods (section 7.3.6 on page 247).
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• EU_lrnProc Epistemological beliefs (EÜ) regarding the learn-
ing process (section 7.3.6 on page 247).

F grp.TaskType Task Type Group
(section 7.3.7 on page 250)

isInnovation Dummy variable, which is 1 if the learning index
corresponds to the learning experiences from an
innovation project.

isNormalWork Dummy variable, which is 1 if the learning index
corresponds to the normal work of the previous
four weeks.

• proc.TaskDetail Description Detail-Level of Procedures (sec-
tion 7.3.8 on page 252)

• n.seminar Number of seminars (section 7.3.9 on page 254)
• XDS_AG_jobClosure Job Closure – the degree to which the partic-

ipant works on a task from beginning to end
(section 7.3.10 on page 255)

• bfi.open Openness to new experiences – from the Big-5
scale (section 7.3.11 on page 257)

• taskDifficulty Participant’s assessment of the task difficulty
(section 7.3.12 on page 257)

• learnEncourage.Faults Fear of mistakes (section 7.3.13 on page 258)
• interceptLin Linear intercept β0 in the BOGER model (equa-

tion 6.1 on page 182)

Table 7.1.: Variable Shortname and Question Overview

7.2.2. Variable Rankings and fitted Model Parameters

In this section, the structure of the fitted BOGERmodel will be analyzed by using the vari-
able importance measure as variable ranking criterion – see also section 7.1.1 on page 206.
In addition the accuracy and robustness of the variable importances will be analyzed with
plots of their distributions.

As detailed in section 6.3.2 on page 199, the final BOGER model, which was fitted
to the survey data, has a predictive power of Rabs ≈ 26% (R2 ≈ 32%) and shows little
overfitting. Thus the model sufficiently accurately fits the data in order to draw inferences
about the true stochastic process from the properties of the statistical model.

Section 7.1.1 on page 206 suggested the use of two different measures for variable
importance: one based on the bagged model and the complete data, and one based on the
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individual bootstrapping models and the test data. Since both estimates have different
biases, they are presented side-by-side in figure 7.3 on the next page. Behind each variable
name, the parameter value within the BOGER math model is shown.

Each graph is sorted by variable importance, leading to two different lists of variable
rankings. It is a good sign that the variable-importance estimates decrease from a value
around 0.15 to values close to 0 – even though the majority of estimates fall below 0.08. For
these variables with an importance just below 0.08, the differences are small, which leads
to clear differences in the ranking order between the complete and test data estimates.

To gain further insights into these differences, the accuracy and robustness of the
variable-importance estimates were analyzed using frequency (i.e., distribution) plots of
individual estimates in figures 7.4 on page 222 and 7.5 on page 223 – with one estimate
sample for each permutation and bootstrapping model (see section 7.1.1 on page 206).
While both figures show rather flat distributions, the majority of variable-importance
estimates cluster closely around the median (indicated by the big round dots). This is
supported by the narrow blue boxes, which contain 50% of all estimates (following the
philosophy of box-plots). It is noteworthy that the variances of the different variable-
importance estimate distributions represent an upper bound for the variance of the true
variable-importance distribution for the bagged model. Since the frequency plots in the
figures 7.4 on page 222 and 7.5 on page 223 are based on the individual bootstrapping
models rather than the bagged model (see section 7.1.1 on page 206), the displayed vari-
ance is inflated and above the true variance corresponding to the bagged model. Hence
the variable importances have been estimated with a limited but sufficient accuracy.

Given the sizable tolerances on the estimates, even small differences in the estimates
cause significant changes in the ranking. However, it becomes clear from the distribu-
tions that the estimated differences (e.g., between the second and the eighth variable) are
within the estimation tolerances. Therefore we only obtain enough information from the
estimation to claim that the estimates are almost equal, and thus multiple rankings could
be the result.

Yet the accuracy of the variable-importance estimates is high enough to make slightly
softer statements regarding variable ranking, such as “personal interest is within the top
five variables”. Such statements are well sufficient for interpretation and practical pur-
poses. In the following, this slightly ambiguous ranking will be called soft ranking.

A comparison of figure 7.4 on page 222 and figure 7.5 on page 223 further illustrates
that the differences in the ranking sequences between the estimates based on the complete
data and the test data are also within the estimation tolerance and thus are marginal.

From the distribution plots, it can be concluded that the variable-importance esti-
mates are not accurate enough to provide a single true ranking with a high confidence
level. However, the distributions also show that the estimates are sufficiently accurate to
provide a “soft” (i.e., approximate) ranking of the variables by effect strength – which is
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Figure 7.3.: The Variable Ranking Results based on the Variable Importance Measure
(section 7.1.1) estimated with the Complete Data (left graph) and Test
Data (right graph).
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Figure 7.4.: Variable Importance Robustness and Accuracy Assessed with the Dis-
tribution of the Complete Data Variable Importance Estimate for Individ-
ual Bootstrapping Models.
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Figure 7.5.: Variable Importance Robustness and Accuracy Assessed with the Dis-
tribution of the Test Data Variable Importance Estimate for Individual
Bootstrapping Models.
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7.2. Overall Statistical Results

sufficient for the aims of this study. The distributions further allow the claim that the
differences between test and complete data variable importances are marginal (i.e., within
the estimation tolerances). Thus both estimation methods allow for a soft ranking of
variables – with different but small biases. Therefore the ranking based on the test data
has been arbitrarily chosen for use in the following sections on interpreting the results.
This choice is equivalent – within the accuracy tolerances – to using the ranking based on
the complete data.

7.2.3. BOGER Model Parameter Results

As discussed in sections 6.2.6 on page 192 and 7.1.1 on page 206, the parameter estimates
for the mathematical model within BOGER (section 6.2.2 on page 180) cannot be used
for inference, since they stand in interaction with each other, and thus the parameter
values are meaningless in isolation. The permutation variable importance measure is used
instead. However, for reference the parameter estimates are shown in figure 7.6 on the
next page.
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Figure 7.6.: BOGER Internals Inspected: BOGER Parameter Values and Parameter
Instabilities
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7.3. By Variable Results and Interpretation

7.3. By Variable Results and Interpretation

The following subsections describe for each variable group:

• The individual variables (question items) in the variable group.

• Preliminary analysis steps and results – if any.

• The statistical results using the BOGER algorithm.

• The interpretation of the results, including the use of results from relevant literature.

• A summary.

A summary of the interpreted results can be found in section 8.1.2 on page 267 with
the implications in section 8.1.2 on page 267.

7.3.1. Learning Strategy Profile

The Statistical Results – Learning Strategy The model contains a group of questions
that all begin with the phrase “During your task, how have you learned ...?”, followed by:

• “... by searching and reading” (lst.reading).

• “... by discussion with others” (lst.discussion).

• “... by trial and error as well as experimenting” (lst.experiment).

• “... by demonstration from other people” (lst.demo).

• “... by investigation and analysis of event in the past” (lst.analysis).

• “... by other methods” (lst.other).

The questions are arranged on a single survey screen page, so that the five-level scale from
“not at all” to “very much” is used to comparatively rank the different learning strategies.
It is difficult to define scale anchors to connect the answering category “very much” with
an absolute intensity of strategy use – especially when they need to be easily and quickly
understandable by the participants. Moreover, the comparison of the different learning
strategies is most important in the context of this study. Hence no attempt has been
made to define hard scale anchors, such as “daily”. Since this scale design is only suitable
for comparisons, individual answering biases23 are removed by subtracting the mean of all
answers for each participant from each scale variable. The result is an exclusively relative
scale (rather than an abstract rating) – i.e., isolated comparisons of individual learning
strategies are not meaningful.
23‘Answering bias’ refers here to individual tendency to use the scale. For example, one participant might

reserve “very much” for exceptionally intensive uses of a strategy, while another person might very
commonly use “very much”, while both participants may mean the same intensity.
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Figure 7.7.: Learning Strategy Profile Dimensions Compared for Participants with
a High and a Low Learning Index. For comparison, the arrows in the right
graph, for the ‘high learner’ group, indicate the values from the left graph, for
the ‘low learner’ group. ‘High learners’ employ the reading and discussion
learning strategies relatively more frequently than the ‘low learners’ (see red
arrows).

For a preliminary graphical analysis24, the profile of employed learning strategies is
compared between a “low learner” group of participants, with a learning index in the
lower 50% quantile, and a “high learner” group, with a learning index in the upper 50%
quantile. The result is shown in figure 7.7. For each of the above learning strategies,
the figure shows the distribution complete with mean and 95% confidence interval for the
mean. The red and black arrows in the right graph show the values of the “low learners”
from the left graph for direct comparison with the “high learners”.

Using the arrows as a visual aid, different profiles of learning strategies become visible
between the low learners and high learners. While the use of different strategies varies
strongly within the two groups, only the more frequent use of the ‘searching and reading’

24This method is only a preliminary analysis because the choice to split participants into two or more
groups may strongly influence the graphical result. Possible alternatives to the method described here
would be to use more groups (i.e., multiple levels of the learning index), or to use the top 30% and
bottom 30% of all samples as the cut-off point for the high and low groups in the learning index – as
used in microelectronics. Continuous models, such as the one fitted by the BOGER algorithm, avoid
the problem with selecting suitable levels completely.
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7.3. By Variable Results and Interpretation

as well as the ‘discussion’ strategies separates the high learners from the low learners – as
the red arrows pointing to the differences in the means between the two groups suggest25.

This preliminary finding and the interactive search26 for a BOGER model with a high
predictive power has led to the creation of the variable group grp.LearnStrategy, which
consists of the following variables:

lst.reading Question: “How have you learned? ... by searching and read-
ing.”

lst.discussion Question: “How have you learned? ... by discussion with
others”

learnSup.Strategy A special scale for this learning strategy profile calculated as
the normalized sum of lst.reading and lst.discussion.
This artificial variable acts in a similar way as an interaction
of the two variables27.

In the final BOGER model, the three abovementioned variables have a positive effect
– as shown in figure 7.8 on the facing page. (Details on reading figure 7.8 on the next
page are provided in section 7.1.3 on page 213.) Only the variables in the variable group
grp.LearnStrategy – and not any of the other strategies – added predictive power. Hence
the findings of the preliminary analysis are confirmed.

Going through different model fit iterations with the BOGER algorithm using either
the combined scale (learnSup.Strategy) or the variables for the question items on reading
and discussion individually, the results show that the scale has the strongest and most
stable effect on learning. Compared to any of the other variables, the combined scale
also has by far the strongest effect – see figure 7.3 on page 221. Both the training and
internal test variable-importance measures agree. Interactions with other variables (e.g.,
leadership) could not be confirmed.

The increased stability of the BOGER model parameter associated with the scale is
not surprising, since the scale enters the model with only one parameter compared to the
two parameters of the two individual item variables.

Using a scale instead of a single item broadens the scope of the measurement. The
scale, calculated from the normalized sum of the two individual item variables, measures
the overall intensity with which the participant used the reading strategy or the discussion
strategy in any combination. Since all other questions on learning strategies are excluded,
the scale can be understood as a particular learning strategy profile. A high variable
importance of the scale variable compared to the individual item variables, in conjunction
with the fact that the reading or discussion strategies are interchangeable28, strongly

25Testing for statistically significant mean differences is not the intention here, given the preliminary
nature of the analysis. The analysis of the BOGER model will provide more robust findings.

26For the final full model search, see section 6.2.6 on page 192.
28Possibly there is a non-linear combination in which the reading or discussion strategies act, but the

data from this study is not sufficient to detect it.
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Figure 7.8.: Positive Associations of the Reading and Discussion Learning Strate-
gies as well as the sum of both in a special scale (learnSup.Strategy) with
Learning is shown with a Model Shape Graphic (see p. 215).
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7.3. By Variable Results and Interpretation

suggests that it is a common property of the reading or discussion strategy that drives
learning.

Interpretation of the Results – Learning Strategy Reading & Discussion Hence the
question arises: which common property of reading and discussion – not shared by any of
the other strategies – is exerting such a strong positive effect on learning? In the survey
data, no question item highly correlates with either the learning or the reading learning
strategy. Thus the common property must be a hidden latent variable (Pearl, 2003) (a
variable not covered by the survey), which drives learning indirectly – mediated by the
reading and discussion learning strategy.

Compared to any of the other learning strategies (such as experimentation or analysis
of past events), the strategies ‘reading’ and ‘discussion’ involve dealing with other people’s
ideas and opinions regarding the subject, mediated by language – i.e., with a variety of
perspectives on the problem.

The learning-supportive effect of dealing with a variety of perspectives and refining
one’s own perspective on the problem has been observed by many scholars – as described
in section 2.3 on page 28. As discussed in section 2.3.4 on page 41, language centrally
shapes perspective setting, which in turn drives learning by integration of information
suitably filtered from all available data (section 2.3.3 on page 34). Furthermore, in their
case study on a civil construction company, Salter and Gann (2003) found that interaction
with others supports learning and innovation most strongly.

Thus the strong effect of the “reading” and “discussion” learning strategies, combined
with the results of these studies, strongly suggests that the exposure to many different
perspectives mediated by language is the primary driver of on-the-job learning.

While the “reading” and “discussion” learning strategies linked to integrating facts yield
the strongest effect on learning by far, this finding does not imply that other strategies
focusing on the targeted collection of information, for example “experimentation” or “anal-
ysis”, are not important. In Orr (1996), a discussion that considers different perspectives
is the central feature of copy machine fault diagnosis. Yet the ability to quickly check29

and validate hypotheses by investigating the machine or exchanging a spare part is also
an essential feature of diagnosis – helping the technicians to effectively steer and focus
their discussion. Hence targeted experimentation and analysis, based on the current hy-
potheses, may still be an essential tool – even if not the central one – for reducing the
number of plausible perspectives and creating a more solid link between the current per-
spectives and observations of reality30. Without this grounding or validation effect, many
29I.e., perform a reality check.
30Personal Note by Author: My personal experiences during my doctoral research confirms this argument:

most of what I personally learned is not from the survey data but from other studies. Yet, had I not
run into problems with the conventional statistical methods, for example, I would never have looked
for and learned about more modern methods.
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more equally plausible perspectives would remain, and Orr’s copy technicians would not
converge towards a single perspective on the problem and a single solution that solves
their copy machine problem in reality.

That this effect did not appear in the survey data during the statistical analysis, e.g.,
by an interaction, is not surprising, since this secondary effect is likely too weak to stand
out from the statistical noise in the data.

A rival yet related explanation is that discussions have the additional benefit that they
force the learner to articulate his/her reasoning, which is similar to the self-explanation
strategies found by Siegler (2005). In Siegler and Chen (2008), he found that asking chil-
dren to explain their reasoning for both correct and false answers strongly supported the
children in building appropriate mental models to solve the example problem of Siegler’s
experiment.

In summary, the results of the survey suggest that exposure to other perspectives
and with it the refinement of the learners perspective on the problem is one of the most
important activities driving learning. The pure data/information gathering aspect of all
learning strategies can not be equally important, since the strategies analysis, experimen-
tation and demonstration show a much weaker effect – despite the benefit of generating
truly new data. Thus the results confirm the literature findings behind the PIA-model
(figure 2.1 on page 31), which describes perspective taking31 as a central preparatory step
to learning.

7.3.2. Leadership Effect

The Statistical Results – Leadership The leadership style of the participant’s superior
(as perceived by the participant) was measured by a standard scale, which has been
introduced by van de Ven et al. (2000).

The effect of leadership was analyzed in a similar manner as the learning strategies. A
preliminary study, shown in figure 7.9 on the next page, indicates that the “high learners”32

are exposed to a different leadership style or profile than the “low learners”. The red and
black arrows in the right graph indicate the mean value of the “low learners” in the left
graph for direct comparison with the “high learners”.

The red arrows in figure 7.9 on the following page indicate the leadership dimensions,
which are more pronounced for the leaders of the “high learners” (in comparison with the
leaders of the “low learner” group):

• ldr.OwnInitiative – Leaders of this innovation encourage individuals to take ini-
tiative.

31See section 2.3.2 on page 30.
32The participants with a learning index in the upper 50% quantile.
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7.3. By Variable Results and Interpretation

Figure 7.9.: Leadership Profile Dimensions Compared for Participants with a High
and a Low Learning Index. For comparison, in the right graph, for the ‘high
learner’ group, the arrows indicate the values from the left graph, for the
‘low learner’ group. Leaders of the ‘high learners’ on average more strongly
encourage initiative, provide feedback and value group climate and trust (see
red arrows).

• ldr.SupFeedback – Frequency that individuals involved in the innovation receive
constructive feedback from the leader on how to improve their work.

• ldr.ClimateFocus – Leaders of this innovation place a strong emphasis on main-
taining group relationships.

• ldr.Trust – Leaders place a high level of trust in individuals connected with this
innovation.

In contrast, the following leadership dimensions do not differ much between high and
low learners:

• ldr.GoalFocus – Leaders of this innovation place a strong emphasis on getting the
work done.

• ldr.ClearResponsability – Individuals connected with the innovation are clear
about their individual responsibilities.
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This is striking, since these latter two dimensions can be seen as the principal or bare
minimum leadership skills of a conventional leadership understanding. The above two
dimensions still describe positive aspects of leadership; however, focusing on goals33 and
assigning clear responsibilities do not particularly support (or hinder) learning when it
comes to getting departmental tasks done.

Similar to the learning strategies, a leadership profile scale was constructed from the
sum of the four question items showing a raised effect for the high learners. Since some
important dimensions of management are missing, this scale – strictly speaking – bundles
only a subset of important qualities that may contribute to a leader’s effectiveness. Even
though the scale is termed ‘leadership profile’, it is not a general and all-encompassing
leadership measure but rather a measure of certain aspects of leadership that are relevant
to learning.

This new profile variable learnSup.Leader showed higher predictive power for learning
than the original full leadership scale by van de Ven et al. (2000) – see also variable
learnSup.Leader in the model shape graphic 7.10 on the next page.

The Dimensions of Leadership in Literature Many authors stress the importance of
leadership for long-term business success (Collins, 2001b; Deming, 1985). A number of
authors further highlight that certain management styles support learning (Uhl-Bien et al.,
2007; Vera and Crossan, 2004).

Despite this existing literature, there has been no investigation of how Van de Ven’s
notion of leadership (as quantified by his leadership scale) particularly affects learning.
However, the impact of the components of the scale have been covered as individual
research subjects:

• Individual initiative, i.e., an active approach by the learner enhances learning –
as discussed in section 2.3.1 on page 28. Leaders who trust their team members and
encourage individual initiative thus allow for effective learning experiences if the
team members make use of this autonomy in order to solve problems. Furthermore,
by allowing for individual initiative, leaders show appreciation for employees’ skills
and thus strengthen employees’ identity as specialists, which in turn is a strong
motivator (O’Donnell et al., 2003; Orr, 1996).

• Good relationships between the team members support communication within
the team. Cross et al. (2001) refer to workers’ feeling of ’safety’ in their relationship
with colleagues when engaging in learning-effective discussions – especially when the
questions reveal knowledge deficits. Orr (1996) and Nonaka (1991) also underline

33Collins (2001b) argues that an unwavering commitment to corporate goals is one of the primary success
factors of longer-term outstanding leaders.
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Figure 7.10.: A Positive Association of the Learning Supportive Leadership Profile
with Learning shown with a Model Shape Graphic (see p. 215).

234/343



the importance of good personal relationships as a factor supporting learning and
knowledge exchange.

• Feedback: The leadership profile comprises general feedback as well as feedback
from the superior. However, the question items are not specific enough to know
whether the feedback is on the task results or on the methods the individual employee
used to attain the results.

The literature points to the importance of general feedback as well as feedback
regarding the methods:

Sengupta et al. (2008) stress the importance of suitably visualizing34 the intercon-
nected and delayed effects of project management interventions – i.e., generating
proper feedback about the project management task, allowing managers to learn
and improve their project management skills. Similarly, feedback from measure-
ments and experiments in the form of active hypothesis testing (by exchanging spare
parts) is an essential part of the learning and problem-solving episodes described in
Orr (1996) – second only to integrating different facts from prior knowledge and the
feedback.

In educational psychology, Butler and Winne (1995) describe a learning process that
involves not only external feedback, e.g., in the form of test grades, but also internal
feedback about the learning process, automatically while learning35. Similar models
are used in Roßnagel (2008) and (Zusho et al., 2003).

Finally, feedback also shapes or focuses the perspective on a problem – as illustrated
by the PIA-Model (fig. 2.1 on page 31) and the descriptions of its outer feedback
loop in section 2.3.6 on page 47.

Section 2.4 on page 57, on the three industry practices EFQM, TPS and project
management, discussed the creation of a shared perspective on the organization’s
processes and problems, a perspective strongly guided and systematized by man-
agement, which is a very effective measure to drive organizational change. Hence
positive management influence on learning could also be mediated by jointly devel-
oping a shared perspective as a basis for learning. This aspect has not been covered
in this survey and thus would be an interesting topic for future research.

Thus leaders may affect learning by cultivating diverse and alternative perspectives,
which leads to the creation of more robust shared perspectives – as discussed in
section 2.4.5 on page 66.

34See also section 2.3.3 on page 35 on the effect of visualizations on learning.
35While their research focuses on school or university settings with fixed and clear learning goals as well

as pre-selected learning materials, the model allows for very different learning goals: truly acquiring
a skill or only pleasing the teacher. Hence it is likely that the model generalizes also to learning
situations in work settings with a task goal rather than a skill goal.
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7.3. By Variable Results and Interpretation

• Trust: Trust within the team has been widely accepted as an important basis for
effective and intensive collaboration (Becker, 2006; Liker, 2004; Salter and Gann,
2003; Sandow and Allen, 2005; Szulanski et al., 2004).

Statistical Results – Leadership & Task Design In addition to the profile of learning-
supportive leadership, an interaction between learnSup.Leader and the DNV scale “Knowledge-
Conducive Task Design” added predictive power to the model.

The DNV scale36 “Knowledge Conducive Task Design” is composed of the following
question items:

• “My work offers many inspirations for new ideas and innovations.”

• “Seminars that are important for me, are offered to me.”

• “During my work I get feedback that helps me improve all the time.”

Thus the scale describes a (perceived) learning-supportive work environment.
In order to check for counteracting effect, both the interaction as well as the two

main effects were added to the model. Since the interaction and the two main effects are
collinear, they have been joined to a common variable group grp.LeaderEffect for the
variable-importance calculation in figure 7.3 on page 221. Hence figure 7.10 on page 234
also shows all three variables.

When the ranking of variables by strength is concerned, the group grp.LeaderEffect,
consisting of all three variables, is placed second by the internal test variable importance
measure but fifth by the complete data variable importance, even though the absolute
values for variable importance are not very different – see figure 7.3 on page 221. Given
that both variable-importance measures are only estimators with limited precision, only
a soft claim37 can be made:

The variable group for the effect of leadership is amongst the five most impor-
tant variables.

Note that the parameter values in figure 7.6 on page 225 for the two main effects
are both negative, while the interaction is positive. In figure 7.10 on page 234, however,
all variables show positive effects (including the collinearity effect) – i.e., the interaction
is stronger than the individual direct effects of the leadership profile and the knowledge-
conducive task design variable. Thus both variables occuring with high values concurrently
(in high correlation) drive learning more strongly than do the individual effects.
36With a Cronbach’s alpha of 0.62, the scale is fairly reliable, i.e., in a factor analysis the vectors of

its items would point in similar directions. The answers of the items are related but not perfectly
identical and thus only partly redundant. Removing an item reduces the alpha to 0.50 – 0.56. Hence
the scale cannot be improved by removing an item.

37See also the discussion on “soft ranking” with the two variable-importance estimators in section 7.2.2
on page 219.
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Hence a learning-supportive leadership style, occurring concurrently with a learning-
supportive work environment, drives on-the-job learning even more strongly than do the
two individual scales in isolation.

Interpretation of the Combined Results – Leadership & Task Design Given the result
that the modified leadership profile and the knowledge-conducive task scale correlate
and yield a higher predictive power in the multi-variate BOGER model, there are three
different possible interpretations38:

1. Leadership causes a knowledge-conducive task design.

2. A knowledge-conducive task design for the employees causes managers to adopt a
certain leadership profile.

3. Leadership and a knowledge-conducive task design frequently occur concurrently
(both at the same time) but are caused by another latent variable39 that was not
collected and thus remains hidden in the background.

Interpretation 2 suggests a causal link between the employee work environment and
the manager’s leadership behavior, which is not a plausible interpretation and thus can
be discarded. In order to support interpretation 1 with few doubts, other methods – e.g.,
a true experiment or evidence from other studies – are needed to establish the causal link
(Hitchcock, 2007). When no such evidence is found, interpretation 3 is the most likely
interpretation, leading also to the weakest claim:

A leader who puts trust in his team members, encourages employee initiative,
cares about group relationships and gives useful feedback frequently leads to
productive results and possibly shapes an environment in which the team mem-
bers perceive their jobs as inspiring, get opportunities for continuing education
and get useful feedback from the superior or others. These inspiring working
conditions for the team members lead to a higher team member learning index.

In summary, the literature widely supports the result that the aspects bundled in the
leadership scale and the knowledge-conducive task scale have a positive effect on learning.
From the analysis, a particular learning-supportive leadership profile emerges, including
the following aspects: supporting employee initiative, feedback, group climate and trust.
Not included are the classical leadership dimensions: goal focus and clear division and
assignment of responsibilities. However, no support could be found for a causal connection
in which leadership shapes a learning-conducive work environment. Hence, it remains
38see section 4.1.5 on page 109, on causality, and section 7.1.2 on page 212, on interactions
39An example of such a hidden latent variable could be a manager’s specific leadership style or personality

traits.
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7.3. By Variable Results and Interpretation

unclear how leadership affects the work environment in detail. Therefore the survey data
combined with the literature only allows the claim that the learning-supportive leadership
profile and a learning-conducive work environment together (i.e., occurring at the same
time) strongly support learning, and that this combination is one of the most learning-
supportive factors. Future research should aim to shed more light on how leadership
supports learning – e.g., by investigating how leaders shape the perspectives of their
employees and what the effect of this perspective shaping is.

7.3.3. Personal Interest

The Statistical Results – Personal Interest Another important factor in the fitted
BOGER model is personal interest in the topic of the task or project. The participant’s
level of interest was gauged with the question:

“I was also interested in the topic personally – independent from my tasks.”

This effect is strongly positive, as can be seen in figure 7.11.
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Figure 7.11.: A Positive Association of Personal Interest in the Topic with Learn-
ing shown with a Model Shape Graphic (see p. 215).

The internal test and complete data variable measure give slightly different rankings
for the variable of personal interest: third and seventh place, respectively. Similar to the
leadership effect, the absolute variable-importance measures do not differ much and are
both close to 0.5. It is also noteworthy that this is the only variable that is stable with a
(non-linear) multiplicative term in the final model (there is no linear term in addition).
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A correlation of personal interest with other variables (e.g., leadership) was not found.
Thus there is no indication in the survey data that personal interest is driven by any of
the other survey variables.

Interpretation of the Results – Personal Interest In the theory section, it was argued
that knowledge transfer critically depends on the active learning engagement of the learner
(see section 2.3.1 on page 28). Not surprisingly, therefore, intrinsic motivation for learning
is one the primary factors for driving the iterative learning process (section 2.3.6 on
page 47). This is also in line with the fact that the multiplicative term is stable in the
final model, since the multiplicative term suggests that personal interest acts on learning
only in conjunction with (i.e., with an AND-relationship40) other driving factors. As
discussed in section 5.12.3 on page 168, personal interest acts like an amplitude function
on the variance.

Colquitt et al. have found in a meta-analysis that motivation for learning is a strong
predictor for the learning outcome, in some cases even stronger than cognitive skill
(Colquitt et al., 2000, p. 681). Personal interest in the topic is very closely related to
the learning motivation concept of Colquitt et al. (2000), and thus it can also be under-
stood as an intrinsic motivator.

In another direction, Butler and Winne (1995) argue that (academic) learning activity
is likely to halt when learning performance is much below the learner’s goals and expecta-
tions, and as a consequence learning motivation is reduced during the course of a learning
episode41 (details were discussed in section 2.3.6 on page 48).

Hence the following question arises: what is the direction of the causal link between
intrinsic motivation and learning? Does personal interest in a topic drive learning, or
does learning drive problem-solving performance and thus also positively affect personal
interest?

Future studies should further investigate whether the causal effect is only in one di-
rection or possibly even in both directions. A causal link in both directions would be in
line with the theoretical insights on iterative learning (with feedback loops) presented in
section 2.3.6 on page 47.

In addition, it should be investigated whether extrinsic motivators such as monetary
incentives also lead to more learning in work contexts. For academic contexts, Butler
and Winne (1995) claim that extrinsic motivators (e.g., good grades on an upcoming
exam) lead to different and less effective learning behavior. Does this insight for academic
learning also translate to problem-solving situations in organizations?

40For a discussion of AND-relationships and multiplicative terms, see section 6.2.2 on page 180.
41In having personal interest as an independent effect on learning in the math model for this survey, it

is implicitly assumed that personal interest in a topic is a fairly stable and independent characteristic
of people and that the causal direction of effect is from personal interest to learning intensity.
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Moreover, it should be investigated whether there are any other variables that support
personal interest that have not been included in this survey (e.g., certain features of task
design or a particular behavior of the superior).

In summary, from the empirical results together with the theoretical insights that
intrinsic motivation causally acts on learning, it can be concluded that personal and
intrinsic motivation for a topic strongly supports learning. In addition, it needs to be
further investigated whether learning performance also feeds back into and thus affects
personal motivation.

7.3.4. Personal Working History Variable Group

Statistical Results – Personal History A number of variables related to participants’
age and personal working history have been tested for predictive power in the BOGER
model, but only two variables and their linear interaction added predictive power:

• Age of the participant

• Number of years the participant worked in the current department

These variables and their interaction are part of the BOGER model with simple linear
terms. The two main effects are highly correlated with ρ = 0.95 – which has led to the
introduction of the interaction.

Drawing on the model shape graphics (figure 7.12 on the next page) and the results
for the (average) parameter estimates within the BOGER model (fig. 7.6 on page 225),
table 7.2 summarizes the statistical results. The ‘Training Data Shape’ column describes
the results from the left shape graph, based on the complete training data, while the
column ‘(Bagged) BOGER Model Shape’ summarizes the results from the right model
shape graph (fig. 7.12).

Variable Parameter
Estimate

Training Data
Shape

(Bagged) BOGER
Model Shape

Age negative neutral – no visi-
ble and strong ef-
fect (relative to the
noise)

neutral but non-
linear around 9
years

Number of Years in
current Department

negative neutral neutral

Interaction between
Age and Years in
Department

positive neutral positive and
slightly non-linear

Table 7.2.: Statistical Results – Personal History
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Figure 7.12.: Relationship of Job History with Learning shown with a Model Shape
Graphic (see p. 215).
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At first sight, it may be surprising that the parameter estimates for the main effects
and the interaction in table 7.2 on page 240 have counteracting signs: years in department
(negative), age (negative) and the interaction of both (positive). However, as detailed in
section 7.1.2 on page 212, the parameter signs in isolation are meaningless, since main
effects and the interaction always act in conjunction and thus the model shape graphics
should instead be the source of insights on the direction of the effects.

In summary, the results from the model shape graphics in table 7.2 on page 240
reveal that neither age nor years in the department has a strong direct effect on learning.
However, the interaction is strongly associated with a high learning intensity. Therefore
in a variable group, together with the two main effects, the interaction was added to the
final model – which has led to an increased predictive power.

Result Interpretation – Personal History The statistical results from the survey data
imply that staying a long time in a single department at a young age reduces the learning
effect, while staying longer as a senior member in a department at an older age supports
learning.

While there is some evidence that it takes more effort to achieve the same learning re-
sults at an older age (Baltes and Staudinger, 1999, p. 476), other studies show that certain
groups of older employees (e.g., managers) have found a way to maintain their everyday
cognitive performance, allowing them to learn and adapt even in turbulent environments,
which require such a learning ability for continued success (Colonia-Willner, 1999, p. 602).
Roßnagel (2008) also reports that older employees can train and maintain their skills for
formal learning. Hence, despite the popular “wisdom” that older employees learn less,
evidence from the literature supports the statistical results that age is not necessarily a
limiting factor for learning.

Regarding the effect of personal job history, the PIA-model (figure 2.1 on page 31)
provides a lead: personal history as well as personal job history are incrementally created
from many episodes of experiences – composing a person’s body of prior knowledge. This
prior knowledge strongly affects perspective setting, i.e., the way one filters all available
data, and thus it also affects learning and decision making (section 2.3.4 on page 41).
A particular structure or kind of personal experience may lead to a learning-supportive
filtering behavior and thus support the learning process as a whole.

In light of this theoretical background, a possible and plausible interpretation would
be that at a young age it is still more important to orient oneself and explore different
environments by switching departments (yet not too frequently), while at an old age –
after sufficient orientation – becoming a specialist supports learning.

While the survey data does not entirely support this hypothesis, the principal insight
from the data is nevertheless that personal job history in combination with age has a
strong effect on learning. Yet the evidence is not sufficient to understand how the three
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variables interact.
Consequently, future research would need to go one step further and gain a deeper

understanding of the detailed mechanisms of how personal job history interacts with
age and affects learning. Such a research step would require a suitable categorization and
operationalization of personal histories, which will likely be a difficult task and is probably
the reason why it has not yet been done.

In summary, even though the detailed mechanisms of personal history that affect
learning require further investigation (possibly with different survey constructs), personal
history has emerged from the the statistical results as a strong predictor for learning,
which is in line with the theory behind the PIA-model.

7.3.5. Learning Barriers Variable Group

Statistical Results – Learning Barriers Other questions in the survey address barriers
to learning specific to the participant’s task. All questions start with “I could have learned
more...” and end with:

• “... if I could have found more written information” (lbo.findInfo).

• “... if more written documentation had existed on the topic” (lbo.infoExistant).

• “... if I had found a competent contact to discuss this topic” (lbo.foundContact).

• “... if I had the chance to talk to a competent expert in time” (lbo.expertAvail).

• “... if I had known how to approach the topic” (lbo.approachClear).

• “... if I had the chance to experiment more” (lbo.moreExperiments).

• “... if the information had been reliable” (lbo.infoDependable).

• “... if I had had more time” (lbo.noTime).

• “... if I had more measurements from previous projects” (lbo.infoMeasured)

• other barriers (lbo.otherBarrier).

• no learning opportunity existed (lbo.noLearnOpport).

The learning barriers are used in their raw form without any mean correction42.

42Of the presented learning strategies, most participants will have used all of them to some extent, so the
relative frequency of learning strategy use is of central interest, and therefore a mean correction for
the answering bias of each participant is desirable. In contrast, the question items regarding learning
barriers aim more at detecting whether a particular barrier has been a hindrance or not. Therefore
the absolute (non-mean corrected) answers are of primary interest.
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Similar to the preliminary analysis of the learning strategies and leadership, the profile
of learning barriers was plotted for a “high learner” and a “low learner” group in figure 7.13.
Again, the red and black arrows in the right graph represent the mean value of the “low
learners” for direct comparison with the “high learners” from the left graph.

Figure 7.13.: Learning Barrier Profiles Compared for Participants with a High and
a Low Learning Index. For comparison, the arrows in the graph of the ‘high
learner’ group on the right indicate the values of the ‘low learner’ group from
the graph on the left. Leaders of the ‘high learners’ on average more strongly
encourage initiative, provide feedback and support group climate and trust
(see red arrows).

The red arrows point to substantial differences between the low- and high-learner group
for the following learning barrier dimensions (ordered by the magnitude of difference):

1. Information Not Found [lbo.findInfo]

2. Not Enough Time [lbo.noTime]

3. More Measurements Necessary [lbo.infoMeasured]

4. Expert Not Available [lbo.expertAvail]

5. Contact Not Found [lbo.foundContact]

6. Approach Not Clear [lbo.approachClear]

Since some of these barrier dimensions are related by topic (e.g., information not found,
contact not found, expert not available), a further analysis was performed to determine
whether a new aggregate variable, composed from a specialized combination – similar to
the learning strategy or leadership profile approaches in the previous sections – would
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yield a better predictive power. Hence the construction of a matching special profile
scale, containing only the above dimensions, was attempted. However, this combination
of dimensions did not add much predictive power to the model.

Instead it was found that the variables:

lbo.approachClear “[More learning] ... if I had known how to approach
the topic”,

lbo.foundContact “[More learning] ... if I had found a competent contact
to discuss this topic” and

lbo.expertAvail “[More learning] ... if I had the chance to talk to a
competent expert in time”

correlate highly, and the interaction of these three variables added predictive power to the
model. Fitting a model with this three-way interaction and the respective main effects
further indicated that it was mostly the interaction that added predictive power and
not any of the main effects, which were rather unstable (by parameter instability) and
weak (parameter values close to zero). Therefore the main effects were omitted from later
models, and the resultant variable “group” grp.ApproachClear in the final model contains
only a single variable: the three-way interaction.
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Figure 7.14.: A Positive Association of the interaction Approach Not Clear & Ex-
pert Not Found or Available with Learning shown with a Model Shape
Graphic (see p. 215).

The model shape graphic for the three-way interaction in figure 7.14 shows a strongly
positive effect on learning. Thus the joint occurrence of “approach not clear” and the lack

245/343



7.3. By Variable Results and Interpretation

of discussion with a knowledgeable expert is on average associated with a higher learning
effect. The direction of the causal effect needs to be determined with reference to theory.

Result Interpretation – Learning Barriers Rather surprisingly at first sight, participants
who encountered many barriers to learning actually learned more. This observation can
also be expressed in other words: the participant’s greater effort at learning led him/her
towards more barriers to learning. The latter interpretation of the results is consistent
with the learning feedback effect outlined in section 2.3.6 on page 47: The ‘high-learner’
group has gone through a number of successful learning iterations, leading to a high
learning effect. During a learning episode, the momentum for iterating in the learning
feedback cycle43 was supported by the progressive learning effect, which has maintained
or even improved the high-learner’s high learning motivation and high search effectiveness
(section 2.3.7 on page 51) – leading to an even further improved learning effectiveness.

At some learning level, this virtuous spiral meets new barriers that were not significant
at a lower learning level. A behavior that limits an upward-spiraling feedback process is
very common for feedback systems in other fields: in many engineering applications, such
limiting effects occur due to an increased resistive force, while biological systems frequently
run into new bottlenecks. For example, a plant’s growth may be limited by the amount
of sunlight it receives. But once the plant receives enough sunlight, it will not have an
infinite increase in growth. Growth will instead be limited by a new bottleneck, such as
a scarcity of nutrients in the ground.

In the case of learning, the statistical results suggest that once learning gains mo-
mentum, it is limited by new bottlenecks – listed here along with literature references
supporting the respective claims:

1. limited access to information (section 2.3.2 on page 30),

2. lack of time for further investigation (Salter and Gann, 2003),

3. limited access to knowledge through a social network (lack of contacts and access to
specialists) (D’Eredita and Barreto, 2006b; Dodgson et al., 2007; Haas and Hansen,
2005; Sandow and Allen, 2005),

4. and a lack of a suitable perspective on the problem (it was not clear how to approach
the topic) (Badke-Schaub et al., 2007; Weick, 1993).

If these barriers are only reached after other factors (such as motivation or personal
learning predisposition) have propelled the learning loop to a high level of learning, the
direction of the causal effect is at first44 from the high level of learning to the learning
43‘Learning feedback cycle’ refers here to both the internal and external feedback loops of the PIA-model

– as described in section 2.3.6 on page 47.
44While approaching a high learning level.
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barriers – i.e., encountering these barriers is caused by the high learning level. Once a
high learning level has been reached, the causal direction will reverse, and the barriers
will negatively act on learning intensity and, with it, limit the learning spiral.

Given these results, future research should focus on two issues:

• How can organizations be designed, and leaders act, in order to move more employees
from the group of low-learners to the high-learner group45? How can more employees
gain enough learning momentum in order to reach a high learning level and begin to
encounter the selected learning barriers presented above? (For factors driving the
learning loop, see also other variables included in the survey – e.g., personal interest
in the learning topic in section 7.3.3 on page 238.)

• Once the barriers are encountered, what are the barriers that limit the high-learner
group in more detail? How do these barriers limit learning? How can organizations
eliminate the barriers or mitigate their effect?

The fact that the interaction of ‘Approach Not Clear’, ‘Expert Not Found’ and ‘Expert
not Available’ adds predictive power to the BOGER model implies that this particular
combination of barriers is a particularly good predictor of learning. This combination
further suggests that the learner is faced with a particularly difficult and open problem
that requires a challenging refinement of the learner’s perspective on the problem – which
was (unsuccessfully) attempted by seeking discussions with experts. Yet for now this
statement has to remain a hypothesis that requires further detailed investigation in future
research.

In summary, the learning barriers captured in this survey have been found to become
relevant learning bottlenecks only after a high level of learning effectiveness is reached.
Thus organizations should first concentrate on the factors that get the learning momen-
tum going and only then focus more attention on learning barriers, such as access to
information and experts as well as sufficient time.

7.3.6. Epistemological Beliefs about Learning

Statistical Results – Epistemological Beliefs The final BOGER model contains two
variables regarding the epistemological beliefs (EÜ46) about learning, collected by using
the two following scales:

• EÜ Learning Process (EU_lrnProc) consists of the question items with five-level
answering scales (disagree ... agree):

45First, the learning level at which the other barriers become significant bottlenecks would need to be
investigated. Possibly the barriers, as discussed here, only gradually become more dominant, like air
resistance eventually dominates the rolling resistance of a car.

46The German acronym EÜ stands for “Espistemologische Überzeugungen”, or epistemological beliefs.
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7.3. By Variable Results and Interpretation

– “When I am learning, I am mostly passive.” (Neg.)

– “Learning means solving problems.” (Pos.)

– “While learning, one needs to concentrate on the most important issues.” (Neg.)

– “To be able to learn something, one needs a teacher.” (Neg.)

– “One can also learn without instruction.” (Pos.)

This scale gives high scores for more differentiated notions of the learning process
that go beyond old-style school- or seminar-like settings and towards more active
forms of learning – such as learning during problem solving.

• EÜ Internal Social Learning (EU_lmeth.IntSoc) consists of the question items
with five-level answering scales (disagree ... agree):

– “At the workplace one can learn well for the job.”

– “From colleagues one can learn well for the job.”

– “From family members one can learn well for the job.”

– “From friends one can learn well for the job.”

– “From superiors one can learn well for the job.”

– “Alone one can learn well for the job.”

This scale gauges the notion of social learning, i.e., whether the participant counts
discussions with others as an important part of learning.

Figure 7.15 on the facing page shows the overall effect of these two scales on learning:

• A differentiated notion of the learning process (EU_lrnProc) on average leads to
a higher learning index.

• A more social notion of learning (EU_lmeth.IntSoc) leads to a lower learning
index.

Result Interpretation – Epistemological Beliefs In two experiments, Schommer (1990)
observed that epistemological beliefs affect the nature of knowledge and the comprehension
of academic subject matter by college students. Hence this effect might also be present
in work settings.

Epistemological beliefs are closely linked to an awareness about the learning process,
e.g., that learning is an active endeavor (section 2.3.1 on page 28) and that non-traditional
problem-centered forms of learning support learning more strongly. However, a lack of this
awareness does not directly imply a reduced learning intensity. The participant without
this awareness may simply be less aware of the learning effect while working on his or her
task but may still learn useful lessons.
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Figure 7.15.: A Positive Association of the Learning Process-oriented Epistemo-
logical Beliefs with Learning and a Negative Association of the so-
cially oriented Epistemological Beliefs with Learning shown with a
Model Shape Graphic (see p. 215).

Thus two reasons for the effect of a differentiated awareness of learning processes on
the learning outcome are conceivable:

• A more differentiated awareness of the learning process may be associated with a
more reflective approach to learning and allow systematic improvement (Dahl et al.,
2005)47. Only the conscious awareness of an ongoing learning process allows a
conscious reflection on this process, involving an assessment of its efficacy and an
iterative improvement (see section 2.3.6 on page 48).

• A wider notion of learning processes will cause the participant to classify a larger
47“As hypothesized, the more students believe that learning ability is fixed, the fewer the strategies they

report using to connect their prior knowledge with new knowledge that is to be learned, or to think
critically about the information that they are processing”, Dahl et al. (2005, p. 269).
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7.3. By Variable Results and Interpretation

number of events that occurred while working on the task as learning episodes. In
other words, a wider understanding of the question used to calculate the learning
index will also lead to a higher learning index, without necessarily actually increasing
the learning effect.

Hence EU_lrnProc may cover the real effect of reflective learning but may also be
related to a possible bias in the learning index.

Figure 7.15 on the previous page further suggests that a more social notion of learning
(EU_lmeth.IntSoc) leads to a lower learning index. Inspecting the real data, it becomes
evident that most of the collected samples are clustered around numerical values corre-
sponding to the scale points “neutral” and “agree”, which suggests that this result is not as
robust as the result for EU_lrnProc with a more uniform data density – see section 4.2.2
on page 123.

Yet combined with the results regarding learning strategies (section 7.3.1 on page 226),
which suggest that discussion alone is not as helpful as discussion combined with other
learning strategies, such as reading, a negative effect of an overly strong focus on social
learning is plausible.

Given its low statistical robustness, the results from the social epistemological belief
scale are not further considered.

In summary, both epistemological belief variables appear to have a strong effect on
learning. However, given the open questions surrounding the links of the two variables with
artifacts of the learning index and low robustness of the statistical results, further research
for clarification is required, and thus this result was not included in the implications.

7.3.7. Task Type Variable Group

Statistical Results – Task Type The variable group grp.TaskType contains effectively
three dummy variables indicating what type of project or task the participant chose as a
concrete example during the survey.

• Innovations (isInnovation)

• Larger (and Longer) Projects (no dummy variable included, since when the two other
variables are zero, then the task branch must be “larger projects”) (isLargePrj)

• the Normal Work of the Past Four Weeks (isNormalWork)

See also the details on the survey task branch in section 5.7 on page 153.
Figure 7.16 on the next page shows a positive effect on learning when an innovation

project was chosen, hardly any effect for large projects and a negative effect for the normal
work of the past four weeks.
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Figure 7.16.: A Positive Association of Innovation Tasks with Learning and a
Negative Association of Normal (Non-Project) Work with Learn-
ing shown with a Model Shape Graphic (see p. 215).
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7.3. By Variable Results and Interpretation

Result Interpretation – Task Type These statistical results support the insights from
literature: In their case study at the civil engineering company Arup, Salter and Gann
(2003) found that more openly defined projects provide more opportunities for innovations
rather than projects following a very detailed specification – with most of the solution
already described or implied in the specification.

In addition, the statistical results could also be caused by correlations with other
variables. As described in section 5.12.1 on page 163, employees with a higher education
level are more likely to participate in larger projects, including innovation projects. This
correlation may suggest that education level acts as a latent variable on learning and
that the task branch derives its predictive power only from the correlation with education
level. However, since the interaction of education and task branch was not found to add
predictive power to the model, there is no evidence that supports the hypothesis that
education level acts as a latent variable here.

In summary, the type of task affects learning. Of the three different task types, in-
novation projects by their very nature lead into uncharted territory and thus will pose
many inspiring challenges that require finding innovative solutions and thus also lead to
a strong learning effect.

7.3.8. Description Detail-Level of Procedures

The variable proc.TaskDetail gauges the level of detail of the instructions for the par-
ticipant’s task. The participant is asked the following question:

“How accurately do working instructions describe how the work for your task
needs to be done?” Answering scale: (“very inaccurate” ... “very accurate”)

This question is the opposite to asking about the openness of a task.
From theory, there are two plausible ways this detail level of task description may act

on learning:

1. Strictly described and thus standardized tasks, when combined with statistical pro-
cess control measures48, open up opportunities for learning from the process data
(European Foundation for Quality Management, 2003; Liker, 2004).

2. Open-ended tasks (or ‘weak situations’ (Mischel, 1977)) feature more challenges
and opportunities to learn and to innovate (Salter and Gann, 2003). Following this
argument, tasks with a very detailed description (and instruction) are expected to
lead to less learning.

48A simple variant of statistical process control is tracking key performance indicators (measures to assess
the process performance) over time and dependent on changes made in “run chart” to improve the
process (Devor et al., 1992).
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Figure 7.17.: A Negative Association of Procedural Description Detail with
Learning shown with a Model Shape Graphic (see p. 215).

The statistical results in figure 7.17 suggest an (on average) negative dependency of the
learning index on procedural description detail and thus support the second hypothesis.

Further support can be drawn from a question item on task routine level49 that was
posed for each workstep involved in the chosen example task:

“How frequently have you worked on tasks similar to <the workstep of the
chosen example task> in the past?”

Figure 7.18 on the following page shows that a high routine level50 decreases the
learning intensity – i.e., there is weakly negative average dependency of the learning
index, which also supports the second hypothesis.

In summary, the results from the BOGER model and the task detail variable as well
as from the routine level variable support the second hypothesis: openly formulated tasks
lead to more learning. However, the results do not contradict the first hypothesis: stan-
dardization of tasks may still support learning, since task standardization only becomes
learning-effective when used in combination with key performance measures and statistical
process control – which might not have been the case for the participant’s task51.
49The task routine level could not be added as a variable to the BOGER model in a sensible way, since

the routine level has been surveyed for each workstep (and person), and an average for each person
across multiple worksteps is not very meaningful.

50The figure shows the raw routine level samples for all worksteps and not for each person in an average.
51Standardization of process steps and close monitoring of the process within control limits has been

proven to be very useful in many industrial applications (Devor et al., 1992). However, many of the
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Figure 7.18.: Learning Index vs. Routine Level for each Person and Workstep – suggesting
a Negative Effect of Routine on Learning.

7.3.9. Number of Seminars

The survey asked participants about the number of seminars they have participated in
during the past year. This variable, n.seminar, shows a strong positive effect on learning
– see fig. 7.19 on the next page.

A number of explanations for this association of number of seminars with learning are
plausible:

• Seminars provide a theoretical background that also facilitates on-the-job learning
when the new theoretical knowledge is transferred to practical application after
participation in the seminar. This would be a direct effect.

• Learning skills and learning self-efficacy are maintained at a higher level when em-
ployees regularly participate in seminars (Roßnagel, 2008; Winne, 1995). This in-
creased or at least maintained learning skill also has a direct and positive effect on
on-the-job learning.

• Participation in seminars could be driven by a generally learning-supportive work

manufactured parts and steel assemblies at Meyer Werft change with every new product that needs to
be manufactured. Thus standardization is frequently possible, but the comparison of the process data
is difficult – yet not impossible with suitable statistical models. Given these increased challenges with
applying statistical process control (SPC) in cruise ship construction, it is not used for all process steps
at Meyer Werft. Nevertheless, even without SPC, task standardization may be useful, not primarily
as a learning support but for increasing and controlling process stability and quality.
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Figure 7.19.: A strongly Positive Association of Number of Seminars with Learn-
ing shown with a Model Shape Graphic (see p. 215).

environment or by the participant’s motivation to learn. In these cases, it is not
the seminar participation that acts on learning but instead a latent variable (e.g.,
motivation or a learning-supportive environment) that drives learning. Thus the
variable n.seminars is only by correlation a good predictor for learning. (Education
level, which correlates mildly with n.seminars, can be excluded as a latent variable
since it was tested as a separate variable directly in the BOGER model.)

In summary, the survey data has evidence for a spillover effect from formal learning
to informal on-the-job learning. However. the survey data is not sufficient to gain further
insights into the underlying mechanisms – which would require further research with other
methods.

7.3.10. Job Closure

The standard job description scale (JDS) inventory Kulik et al. (1988) contains a scale
that describes job closure, i.e., whether an employee, as part of his or her job, follows
the entire process of a task or only sees a small fraction of it. The scale consists of the
following question items52:

• “To what extent does your work contain holistic, self-contained tasks?”

52For participants in the innovation and large project task branches, these questions were slightly adapted
to refer to the task instead of the participant’s entire job.
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• “My works gives me the opportunity to bring all started tasks to a finish.”

• “My task is designed in such a way that I have the opportunity to work on a task
from start to finish.”

• “My task is designed in such a way that I do not have the opportunity to work on a
task from start to finish.”

As shown in figure 7.20, job closure shows a weakly positive effect on learning.
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Figure 7.20.: A Positive Association of Job Closure with Learning shown with a
Model Shape Graphic (see p. 215).

In line with the PIA-model and other sources (Cabrera et al., 2006; Deming, 1985; Liker,
2004), involving employees in holistic improvement efforts leads to a better understanding
of the processes and thus offers more opportunities for learning, innovation and process
improvement. Thus one of the best ways to support employees in finding new solutions
is to allow them to understand the entire process by having them work on all steps of the
process53.

In summary, the statistical results as well as insights from literature support the claim
that job closure (i.e., working on a bigger task from start to end) facilitates on-the-job
learning.

53This insight is also in line with Karl Marx’s claim that a Tayloristic disintegration of work into separated
and isolated worksteps leads to an alienation of workers from their work.
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7.3.11. Openness to New Experiences (Big Five)

A commonly used scale inventory for personality are the Big Five by John et al. (1991),
consisting of the following personality dimensions:

• Extraversion Extraversion encompasses traits such as talkative, energetic and as-
sertive.

• Agreeableness Includes traits such as sympathetic, kind and affectionate.

• Conscientiousness Includes traits such as organized, thorough and planned.

• Neuroticism Emotional instability. Includes traits such as tense, moody and anx-
ious.

• Openness to Experience (Also called Intellect or Imagination.) Includes traits
such as having wide interests, and being imaginative and insightful.

This survey used a shortened version, the NEO FFI (Rammstedt and John, 2007), in a
German translation (Borkenau and Ostendorf, 1993).

Only the dimension “openness to new experiences” was found to add predictive power.
The corresponding scale variable bfi.open consists of the following question items54:

• “I have only limited artistic interest.” (Neg.)

• “I have an active imagination and am imaginative.” (Pos.)

The strong positive effect that openness to new experiences has on learning confirms
the insights from theory well. As discussed in section 2.3.5 on page 45, the perspective-
refining opportunities that derive from considering other people’s perspectives require a
minimum level of (critical) openness towards others’ ideas in order to be realized. This
perspective-setting effect is particular and unique to the openness dimension of the Big
Five survey tool. Future research should investigate how much of the effect of openness
on learning is mediated via perspective setting and how much directly acts on learning.
Further support from literature can be found in Cabrera et al. (2006).

In summary, the only (Big Five) character trait that strongly supports learning is
openness to new experiences.

7.3.12. Task Difficulty

Task difficulty can be expected to drive learning. In other words, if the task has no
challenges, there is no need to solve problems and little need to learn on the job (see also
Salter and Gann (2003)).
54The NEO FFI question items were used in this unmodified and standard (German language) form from

Borkenau and Ostendorf (1993).
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Figure 7.21.: A Positive Association of Openness to New Experiences (i.e. Person-
ality) with Learning shown with a Model Shape Graphic (see p. 215).

Task difficulty was surveyed by the following question:

“How difficult was this task for you compared to other tasks of your work?”

As expected, figure 7.22 on the facing page shows a strong positive effect of task
difficulty on learning.

7.3.13. Fault Culture

If employees fear making mistakes during their work, their willingness for experimentation
and open exchange with colleagues will be limited. Therefore an overly strong fear of mis-
takes, i.e., a bad fault culture, is expected to reduce learning and continuous improvement
(Deming, 1985).

The fear of mistakes was surveyed by the following question:

“If somebody tries something and makes a mistake, this can have very serious
consequences for that colleague’s career.”

As expected, figure 7.23 on the next page shows a negative correlation between fear of
mistakes and the learning index.

Hence less fear of mistakes, i.e., a suitable fault culture, supports learning.
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Figure 7.22.: A strongly Positive Association of Task Difficulty with Learning
shown with a Model Shape Graphic (see p. 215).
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Figure 7.23.: A Negative Association of Fear of Mistakes (i.e., Fault Culture) with
Learning shown with a Model Shape Graphic (see p. 215).
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7.3.14. Surprisingly insignificant Factors (Non-Factors)

The previous sub-sections discussed only the positive statistical results. However, the
non-results are also insightful55 – i.e., factors that theoretically should support learning
but did not add predictive power to the BOGER model and were therefore left out.

The following factors surprisingly did not add predictive power:

• Communication (i.e., discussions) greatly support learning (section 7.3.1 on page 226),
and social networks are important for searching (section 2.3.7 on page 51) and di-
versity of perspective (section 2.3.5 on page 45). Not surprisingly, in the literature
the total number of contacts has been observed to support learning, depending
on the complexity of the subject (Hansen, 1999)56. Hence the number of personal
contacts as well as the intensity57 of the relationship was surveyed for. However,
none of these variables or their interactions added predictive power to the BOGER
model.

As Hansen (1999) confirms, an assessment of a social network’s value by the number
of the learner’s direct contacts is too simplistic and does not have much predictive
power. Therefore future research would need to use more refined questions regarding
the social network than the one used in this survey. Given the strong evidence in
literature for the importance of social networks, networks of personal contacts should
not be left out in future research efforts on on-the-job learning.

• Age was not a factor inhibiting learning (see section 7.3.4 on page 240) – in contrast
to popular “wisdom” that older employees have reduced learning skill.

• The theory behind the PIA-model suggests that diversity in perspectives adds to
learning (section 2.3.5 on page 45). Thus one might expect that employees who had
other professional experiences before starting to work at the shipyard would have a
broader perspective and thus learn more. Despite a careful investigation during the
model building process, having additional external professional experiences in
other companies did not contribute to the participant’s learning.

It remains unclear, however, whether the diversity of perspectives of a participant
with external professional experience supports learning among an entire group of
employees (Kearney et al., 2009).

55Looking for non-results, i.e., cases where a current problem does not occur, is also a common technique
in quality management. See, e.g., Ford’s Global 8D (eight-disciplines) problem-solving technique,
which requires finding all cases where a defect does not occur in order to gain a deeper understand-
ing of the current problem (see (Al-Mashari et al., 2005) or http://en.wikipedia.org/wiki/Eight_
Disciplines_Problem_Solving).

56The empirical results of Hansen (1999) are discussed in section 2.3.5 on page 44.
57A question item surveyed for frequency of contact as a very primitive measure for the concept of strong

links in Hansen (1999), which refers to a common understanding and shared meaning of language
among the participants.
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• As discussed in section 5.12.1 on page 163, education level was not found to be a
strong driver of learning – which may also be connected to the fact that the learning
index measures self-assessed learning intensity.

• Despite some indications from other studies (Cabrera et al., 2006), personality
traits, as measured by the psychometric construct of the Big Five, did not strongly
affect learning intensity – with the one exception of openess to new experiences
(section 7.3.11 on page 257).
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8.1. Summary of Research Findings

8.1.1. Principal Insights from Literature

As described in section 2.2 on page 23, the literature search yielded a number of important
insights from different research areas on which this study was based.

Learning, cognitive processes, knowing, individual and group decision making, and
problem solving are all different and valuable perspectives on knowledge-intensive work
and are addressed in a large number of different research fields. The different perspectives
are shaped by the use of different research paradigms, by different basic assumptions about
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science and by different terms. Given the differences in language and community, results
and insights from one field do not automatically propagate to all other fields (which is also
a knowledge management problem). This effect is further strengthened by the increasing
importance of search terms in literature databases. While research in these fields comes
to many similar conclusions, it also produces contradictory results – contradictions, which
may even prevail over time.

As discussed in section 2.7.2 on page 80, this study’s research focus is on informal in-
dividual on-the-job learning while solving job-related problems. As detailed in section 2.6
on page 77, individual learning is in this case a part of organizational learning.

Relevant insights from literature, presented in theory section 2.3 on page 28, were
condensed in the PIA-model (figure 8.1). Further insights from literature were added in
the detailed discussions of the results in section 7.3 on page 226.

  FilteringData Information /
Perspective

Knowledge
(Understanding)

Prior / Background
Knowledge

incl. Language

 Integrating Decision
Making

Data

Data
Data
Data
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1 2
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Figure 8.1.: Relevant Literature Insights Condensed in a Single Model: The Per-
spective Taking / Action / Integration (PIA) model [figure 2.1 on page 31
repeated for convenience] (Source: Author)

The PIA-model reflects the following general insights, which form the basis of this
study:

• Before a workplace problem can be solved, a knowledge worker first has to make
sense of the situation: humans are constantly faced with a very large stream of data,
which includes any visual, auditory or other sensory input and which may or may
not be relevant to the problem at hand.
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Since we as humans have limited cognitive resources, the stream of data is in most
cases too large to handle directly, and thus the data stream needs to be filtered
down to information – a set of features that an individual person considers relevant
for the application at hand. It is this skill for complexity reduction that allows
us humans to behave effectively in a world that is too complex for our cognitive
resources (section 2.3.2 on page 32).

In section 2.3.2 on page 30, this filtering step (step 1 in the PIA-model, figure 8.1
on the facing page) is described as ‘perspective taking’ – following Orr (1996)1.
Hence by filtering we assume a complexity-reducing perspective on a complex situ-
ation, which highlights certain aspects while hiding others2.

• Next, the filtered information needs to be integrated to a sound judgment that
sufficiently explains the situation or problem (step 2 in the PIA-model)3. Such ex-
planations can be compared with scientific models: they explain complex phenomena
in a simplified or approximate, and hence never perfect, manner.

Finally, with an understanding of the problem, new knowledge is created – or, in
other words, a learning episode occurs. This new knowledge can then be the basis
for decision making (step 6 in the PIA-model) or can become part of the stock of
prior knowledge for later use (link 3 in the PIA-model). For details, see section 2.3.3
on page 34.

Knowledge is then the result of integrating new information into a person’s individ-
ual web of prior knowledge. This definition draws a fairly clear distinction between
information and knowledge – as argued in section 2.5.5 on page 76. It also implies
that only information can be captured and stored in documents4.

• The data filtering and integration process partially depends on a person’s prior
knowledge (links 4 and 5 in figure 8.1 on the facing page), which has been built up
over many episodes of experience (section 2.3.4 on page 41). Thus, on the one hand,
newly created knowledge is the basis for decision making, yet on the other hand, it

1Orr (1996) presents an ethnographic study showing how copy machine technicians constantly challenge
and shape their perspective on a problem by telling narratives of past repair jobs until they find a
perspective that fits with the current feedback they have received by inspection and exchange of spare
parts, until they can integrate all the facts into a coherent explanation.

2Language can play an important role in this filtering and aspect-highlighting process as a tool for
thought – see section 2.3.5 on page 43.

3Here the recognition of relevant features and the integration of features are modeled as two discrete
steps for illustrative purposes, though technically these two stages are a continuum of a single cognitive
process beginning with feature recognition and ending with integration of features.

4The reader may think of a university textbook on the shelf. Just because a person owns the textbook,
does that imply that he or she has the knowledge? I argue here that most of the textbook’s value only
becomes realized when the person actively attempts to understand the arguments presented in the
text. According to my definition, knowledge is only created after the active and personal information
integration process.
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also sharpens one’s view: the newly added knowledge has a feedback5 effect by
refining the filtering process and thus further improving filtering and new knowledge
creation (section 2.3.6 on page 47).

Since most people live in constant interaction with others, they share their views and
even some experiences, which leads to a limited alignment of their prior knowledge
and thus also their perspectives. Hence a part of their prior knowledge will be
socially constructed – which includes the implicit rules and filtering schema that
constitute societal as well as organizational culture6 (section 2.3.4 on page 42).

This dependency of the data filtering process on prior knowledge, and indirectly on
personal history and organizational culture (link 3), makes it a personal and sub-
jective process, since it is a complexity-reducing step, which leads to a simplified
and possibly biased representation of the actual world. Hence the selection of rele-
vant information from a large stream of data is a subjective process, which is this
the basis for learning and decision making.

• Given these mechanisms of cognition, knowledge transfer involves learning and pos-
sibly also teaching. The PIA-model illustrates that humans cannot directly import
knowledge from other people. Instead, they have to process any data they receive
from other people by filtering it first and then actively integrating the extracted in-
formation into their individual and historically grown structure of prior knowledge
(steps 1 – 3 in figure 8.1 on page 264). Hence this process cannot be forced and
instead other people can only support the learner’s individual knowledge creation
effort in the filtering step by pointing him or her to relevant information7.

Hence knowledge transfer is an active endeavor, mostly on behalf of the learner.
The teacher or the employee sharing knowledge can ’only’ create a suitable environ-
ment and example situation to support the learner (see section 2.3.1 on page 28).

Since in most cases the biggest challenge is learning, the learning process is the
focus of this study. This insight also has direct implications for organizations. For
example, people and the organizational environment, rather than databases, should
be at the center of any knowledge management initiative.

• Filtering and thus also decision making can be improved by visualization (sec-
tion 2.3.3 on page 35). Visualization in this context can be the result of a manual

5The PIA-model shows an inner feedback loop (without external feedback) in steps 1, 2, 3, 4 and 5, in
addition to an outer feedback loop (with external feedback) in steps 1, 2, 6 and 7 – see also section 2.3.6
on page 47.

6This includes aspects such fault culture.
7This is the reason why the term knowledge management is misleading on the individual level as a unit
of analysis. Knowledge in people’s heads (as defined in section 2.6 on page 77) cannot be managed
directly. That limits active management to shaping and optimizing the environment and organizational
processes to support a learning activity that by itself cannot be forced.
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process, such as a sketch, as well as the result of a computer automated process –
such as the model shape graphics (figure 7.2 on page 215).

• Diversity of perspectives supports learning, since the diversity can be used to
create a single common and shared perspective, which, as a product of intense debate
and discussion, is more robust than isolated individual perspectives. Conversely, a
variety of diverse yet completely unrelated perspectives is not helpful. A common
perspective – a shared way to describe the situation with graphics or language – is
important to understanding each other, especially across different domains of exper-
tise, and can facilitate a deep and constructive discussion. See theory section 2.5.3
on page 74. For a practical example, see section 2.4.5 on page 66.

• Tacit knowledge and implicit learning poses a challenge for knowledge transfer
within organizations as well as for research design. In particular, the unconscious
nature of tacit knowledge poses challenges. For example, in teacher/learner inter-
actions, the teacher can only give limited learning support to the student, since the
teacher cannot verbalize his or her tacit knowledge that complements his explicit
knowledge on a topic or skill. Learning becomes even more challenging when the
‘knowledge’ is distributed only in the form of information in documents (section 2.3.8
on page 52).

Nevertheless, implicit learning rarely occurs in complete isolation from explicit learn-
ing, and thus a part of the learning effect is consciously noticeable in most cases.

The challenges surrounding tacit knowledge have been considered for this study, but
since explicit and tacit knowledge in most cases are created, transferred and used
jointly, this study’s research design does not contain an explicit distinction of the
two types of knowledge and learning.

It is noteworthy that a large part of knowledge management literature uses a different
paradigm: the paradigm of an object-like tacit and explicit knowledge, which suggests
that knowledge is a quasi-tangible form of capital that can be counted, stored, transferred
and managed. Although this perspective may be useful when conceptualizing knowledge
transfer across corporate divisions, it is not useful for the purpose of this study – as
discussed in detail in section 2.5 on page 68

8.1.2. Results Overview

As presented in the theory chapter 2 on page 21, on-the-job learning in an organizational
environment is a multifaceted and complex problem with many factors supporting or
hindering learning. For an actual organization with limited time and resources, it is
not practical to consider and address all of these factors to improve individual and thus
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organizational learning. Therefore the interactive survey (chapter 5 on page 137), which
is a principal part of this study, was designed to quantify learning intensity for different
participants in different working environments with the aim of obtaining a ranking of the
most important factors driving or inhibiting on-the-job learning.

The ranking of the strongest factors from the statistical analysis (chapter 7 on page 205)
confirms the main elements of the PIA-model developed from theory in chapter 2 on
page 21 (the (x)-numbers indicate the approximate importance ranking of the result with
respect to its effect strength on learning):

• (1) Perspective taking is an important prerequisite step in learning (see theory
section 2.3.2 on page 30). The results show that learners most effectively refine their
perspectives by comparing their own with the perspectives of others (section 7.3.1
on page 226). The data further suggests that perspective refinement is a stronger
driver of learning than successfully obtaining information – e.g., due to good
searching skills or availability of good information sources. This finding is particu-
larly important and surprising at first sight, since a large fraction of the knowledge
management literature is based on the implicit assumption or simplification that
there is only a single true perspective on a problem8.

• (3) Learning requires the active engagement of the learner in order refine the
learner’s prior knowledge in iterative learning feedback loops (as described in
section 2.3.6 on page 47, with confirming results in section 7.3.5 on page 243. Hence
also the strong and positive influence of topic-specific intrinsic motivation (i.e.,
personal interest) in learning (section 7.3.3 on page 238).

• (4) A person’s prior or background knowledge is built incrementally over
many episodes of experience (section 2.3.3 on page 34). Consequently, the statis-
tical results show that personal history matters (section 7.3.4 on page 240).

Furthermore, the following additional results are drawn from the statistical analysis:

• (2) Leadership is a surprisingly strong driver of learning. The data can even
isolate a particularly learning-supportive leadership profile, including the features
of supporting employee initiative, giving feedback, and fostering a group climate
and trust, but excluding the classical leadership features of focusing on goals and

8Many knowledge database systems are geared towards storing a single version of the true knowledge.
However, there are also ways to overcome this limitation. The open web encyclopedia Wikipedia
(http://www.wikipedia.org/), for example, allows for discussion threads on each topic. The result
of these discussions may eventually be consolidated in the main article. Furthermore, the different
perspectives presented in the discussion allow the reader to compare the different views and make his
or her own judgment, which in most cases will be a better judgment rather than just superficially
accepting the single version of the knowledge on the topic presented in the main article.
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clear division of responsibilities. An effect of leadership on work environment
also becomes visible, but the details remain unclear (section 7.3.2 on page 231).

• (5) Limited access to information and expert advice (e.g., by lack of IT tools
for efficient searching or by lack of availability of experts) is a serious challenge
but only for those who are already the most active learners (section 7.3.5 on
page 243).

• (6) The nature of tasks affects learning. Innovation projects, difficult tasks and
tasks with open challenges provide more opportunities for learning than other tasks
do (see sections 7.3.7, 7.3.12, 7.3.8). Furthermore, jobs that allow a person to work
on a task from start to end are the type that provide a more complete perspective
on the processes and thus support learning (section 7.3.10 on page 255).

• (7) A person’s openness to new experiences and perspectives supports perspective
refinement by comparison with others’ perspectives (section 7.3.11 on page 257).

• (8) Fault Culture: Excessive fear of mistakes hinders learning (section 7.3.13 on
page 258).

It is also worth noting the following important “Non-Results” – i.e., factors that
were expected to affect learning, based on other studies or popular belief, but that did
not add predictive power to the statistical model of this study (details in section 7.3.14
on page 260):

• Communication (i.e., discussions) greatly support learning, but the learning effect
does not increase with a higher total number of contacts. This supports the
insight by Hansen (1999)9, who concluded that the depth of personal relationships
supports knowledge transfer of complex knowledge.

• Age was not a factor inhibiting learning, thus confirming the idea of lifelong learn-
ing.

• Personality traits, as measured by psychometric constructs, did not affect learning
intensity – with the exception of openness to new experiences, from the Big-Five
psychometric survey tool (section 7.3.11 on page 257).

• The theory in section 2.3.5 on page 45 suggests that diversity of perspectives sup-
ports learning. Thus also external professional experiences should facilitate
learning. Surprisingly, however, in this study’s survey data, external experience is
not a sufficiently strong factor to appear within the above lists – which requires
further investigation.

9The empirical results of Hansen (1999) are discussed in section 2.3.5 on page 44.
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8.2. Practical Implications

The general insights from literature and the results lead to the following implications,
which provide levers for supporting on-the-job learning. Since these levers are intended
for application by organizations, they are grouped by categories that describe different
aspects of an organization (following the EFQM10 leading indicators):

• People (Human Resources)

• Processes

• Leadership

• Partnerships & Resources (including Technologies)

• Policy & Strategy (Overall Organizational Aims)

Figure 8.2.: Implications Summarized in a Mindmap

Figure 8.2 gives an overview of the implications. The numbers group the implica-
tions by their importance, based on the ranking from the statistical results (section 8.1.2
on page 267). The ranking is particularly useful for practical applications, since most
organizations have to focus their limited time and resources on a few measures to sup-
port on-the-job learning. Hence the ranking facilitates the prioritization of organizational
change according to the Pareto principle11.

The following list discusses the points of the mindmap in further detail:
10see section 2.4.4 on page 62
1180% of the success can be achieved with 20% of the conceivable effort.
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• People

– (2) Hire intrinsically motivated people with a passion for the product or
the work and support this intrinsic motivation. Only people who are personally
interested in their work will seize learning opportunities and go through enough
learning iterations.

– (New) Cultivate a pull-approach to learning in order to leverage em-
ployee learning motivation to solve a particular problem at work. Practical
measures to support pull-learning could be communicating and discussing the
pull-approach with the relevant employees, offering relevant seminars on an
as-needed basis, offering relevant documentation for immediate self-education
(e.g., with suitable online platforms) and offering coaching.

– (2) Hire open-minded people, who are open to engage with the perspectives
of others and use these comparisons as an opportunity to refine their own
perspective.

– (4) Maintain a culture of trust and integrity.

– (3) Aim for a low turnover rate for the workforce in order to support and
maintain a common language and personal relations.

– (5) Use job or task rotation12 within reasonable limits to maintain people’s
flexibility to assume different perspectives.

– (5) Since exposure to multiple perspectives on a problem supports learning,
hiring a few experienced outsiders injects new and potentially inspiring views
in order to create a sufficiently diverse organization.

• Processes

There are a number of working processes that in the short run are less efficient but
because of a learning side-effect are very effective for the organization’s performance
in the long run. For example, in many business settings it is easier – i.e., more
efficient in the short run – to find a quick fix or work-around for a concrete problem
(symptom) in a process instead of performing a structured analysis with the aim of
finding the root cause and thus learning something useful for all similar problems
in the future13. This challenge of balancing short-term effort and efficiencies with
long-term learning effect and long-term effectiveness becomes even more difficult for

12Rotate tasks in such a way that multiple people are ’experts’ on a particular topic. This forces new
people with a fresh perspective to reconsider the current solution and distributes the knowledge within
the organization without the need for expensive databases, documentation and seminars.

13Management approaches that aim to support learning therefore frequently mandate problem-solving
procedures that involve a structured analysis until the root cause is found. Examples are Toyota’s
practical problem-solving process (Liker, 2004, p. 256) and Ford’s 8 disciplines (Global 8D) approach
(Al-Mashari et al., 2005).
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processes where problems are less obvious than in many manufacturing settings –
e.g., for recruiting processes14. Therefore a learning effect should be designed into
the process.

– (1) Introduce one or more systematic perspectives on the organization.
Examples are a process map complete with key performance indicators (sec-
tion 2.4.3 on page 60), an EFQM assessment of the organization (section 2.4.4
on page 62) or a project plan that is used as a visualization of the project
status (section 2.4.2 on page 58).

The aim is to create a new level of transparency on the processes, which by
their nature will have a systematic bias but are without bias due to special
circumstances of the current situation or due to the current hopes and wishes
of individuals (section 2.4.5 on page 66). The EFQM RADAR method15 is an
example of an assessment method that combines a systematic and neutral as-
sessment with an intelligent but subjective human judgment (section 2.3.3
on page 35). Similar approaches can be used for status-reporting systems.

Aside from its neutrality, the importance of the systematic perspective lies in
the basis it provides to visualize the processes in order to create a deeper
shared understanding and facilitate deeper discussions (sections 2.3.5 on
page 44).

– (5) Use iterative processes for iterative learning in all challenging and
creatively demanding activities. For example, use iterative product design
processes, use project review sessions, set up continuous improvement pro-
cesses (which are iterative by definition), or iteratively design and deploy IT
projects16.

– (5) If possible, design inspiring tasks and leave room for the knowledge
worker’s own initiatives. Empowering employees to take responsibility for
processes in the organization is a central concept in both the Toyota Production
System (TPS) as well as the EFQM excellence model (see European Foundation

14Poor recruiting practices lead to poor business performance (Collins, 2001b), but this link is not obvious
in an operational setting, since it acts in a delayed fashion and requires systematic tracking of the
results and analysis.

15See page 64.
16Corporate IT projects are traditionally executed without a feedback loop in a linear process involving

the steps of creation of the IT system’s specification, implementation and training. This approach
works well for small IT projects, where most aspects of the challenge can be overlooked and it is
feasible to create a specification covering all important aspects. In larger IT projects involving many
human actors in the design as well as the operation, it is far from trivial to create an all-encompassing
specification. Therefore iterative IT project approaches have been advocated, which involve multiple
iterations of specification, deployment and feedback Orlikowski and Hofman (1997), which allow the
involved actors to iteratively develop and refine their view on the project and make sensible design
decisions along the way.

272/343



for Quality Management (2003); Liker (2004) and section 2.4 on page 57).

– (5) Demand discipline for the maintenance of the systematic perspectives
in addition to the core value-adding work (Senge, 2004). An example is the
discipline to give regular and accurate status reports.

• Leadership

– (1) Integrate a systematic perspective with subjective perspectives in
controversial yet constructive discussions into a robust and shared perspective
on the situation or problem. Create and support a culture of controversial
discourse across all levels of the organization.

– (3) Understand and practice the leadership dimensions from the supportive
leadership profile, including personal feedback and group climate17 in or-
der to support collaboration and learning.

– (4) Take into account people’s history in discussions and when introduc-
ing change.

– (5) Establish a fault culture: Proactively engage with and reduce the fear
of working openly on finding solutions and preventive measures for mistakes.

– (5) Set stretching18 but feasible goals. Pose open challenges that allow
for personal initiative within these stretching goals as guidance.

• Resources

– (5) Use IT analysis and visualization tools to help the participating
actors refine their perspectives on complex problems in order to support them
in sound human judgment and intelligent decision making (section 2.3.3 on
page 35).

– (5) Since the learner’s active engagement is required for learning, IT sys-
tems for storing, searching and sharing information only become useful
when motivated employees start to use them on their own initiative. Hence
IT systems can be a focus second to the more human aspects of learning (e.g.,
motivation or a culture of open and controversial discourse).

Furthermore IT systems should not only provide access to information by stor-
age and searching facilities but also connect people, i.e., suggest knowledgeable
contacts on a topic, and allow for multiple opinions19.

17Note that the aspects of leadership discussed here are those that support learning. The aim is not to
describe ‘good’ leadership in general.

18‘Stretching’ as in ‘challenging’ goals.
19For example, many wiki systems, such as the web encyclopedia Wikipedia (http://www.wikipedia.

org/), feature a discussion feature that allows the discussion of the contents of a wiki page.

273/343

http://www.wikipedia.org/
http://www.wikipedia.org/


8.2. Practical Implications

– (5) Storing information may be useful for the future, but the danger of over-
investment in documentation or the danger of not being able to keep the
documentation up to date should be carefully hedged. Sparse documentation
with information suggesting knowledgeable contacts may be an effective alter-
native.

– (5) Maintain long-term partnerships with external partners – especially
customers and suppliers. Personal relationships and a common language also
support learning across organizational boundaries.

• Policy & Strategy (Overall Organizational Aims)

– With a clear corporate strategy, set an abstract perspective on the goals of
the organization. The goals should be abstract and generic enough to provide
some guidance but also pose open challenges that inspire local and contextual
solutions.

So far the organizational levers have been presented. Organizations will, however, have
to design contextually adapted organizational changes to support learning – for which a
few design criteria should be considered:

The organizational change to support learning should be ...

... self-sustainable in the long run Once organizational changes to support learning
have passed an introductory period, the utility of the change should be substantial
and widely recognized to make it independent in the long run from promotion by
individuals.

... aligned with the organizational goals and priorities in order to target the re-
sulting needs in decision making and knowledge-intensive problem solving (avoiding
a decoupling of knowledge from its uses – see (Fahey and Prusak, 1998))

... have a true focus on knowledge flows (learning), not just information with a
new label. The human side of knowledge management needs to be designed into the
organizational change.

... show early wins to gain acceptance during the introductory phase (a common
change management technique)

In summary, there are many ways to support learning, but one of the most important
is to create and maintain a shared perspective of all involved actors – based on systematic
as well as individual perspectives. The shared perspective serves as a common language
for deep discussions, leading to widely accepted and better decisions. Rather than solely
focusing on knowledge databases, IT systems can play an important role as support tool
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for generating a visualization of the shared perspective. Yet all these measures can only
be fruitful if the participating organizational actors are motivated to learn.

Not surprisingly, a number of effective industrial practice models already rely on many
of the described effects – most notably EFQM and the Toyota Production System (sec-
tion 2.4.1 on page 58). Yet a refined understanding of the drivers for the effectiveness of
these practices allows organizations to improve and better adapt these practices to new
contexts (i.e., industry- or organization-specific challenges).

8.3. Relevance of the Results to Literature

The results of this study are furthermore relevant to a number of discussion streams in
literature – as will be presented in the following.

8.3.1. Relevance to Organizational Learning

A major challenge in the field of organizational learning is to measure the learning effect.
In some cases the productive effect of learning can be used to indirectly measure individual
learning – such as in the study by Argote (1999), who uses the increase of shipbuilding
tonnage as an indirect gauge for the learning effect. Along the same lines, in their study on
a consulting firm, Haas and Hansen (2005) compare the fraction of successful consulting
pitches with and without the incentivized use of a knowledge database. Similarly, learning
can be indirectly measured in all settings in which productivity trends over time are driven
only (or mostly) by learning. Examples are error rates in classical production or yield
learning in the semi-conductor industry.

Using performance measures as an indirect measure for learning has the advantage
that it is an indirect yet external and not self-reported measurement. Not relying on
self-reports eliminates self-reporting biases (see section 5.4.1 on page 146). Yet both of
the abovementioned example studies measured performance, not learning. While perfor-
mance is in many cases preceded by learning, learning alone is a necessary but insufficient
condition for improving performance. In the study by Haas and Hansen (2005), experi-
enced teams were more successful with their pitches when they relied on their personal
contacts to gain access to knowledge rather than on the electronic knowledge database.
Yet the cause of their superior performance may still have been their superior level of
experience, which caused them to rely on personal contacts and succeed with the pitch
without intensive use of the database20.

In contrast to these indirect learning measures, the learning index used in this study
is a direct measure of experienced learning episodes. It is based on the results from a

20This is yet another example of challenges with causation in statistics – as discussed in section 4.1.5 on
page 109.
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novel interactive survey mechanism that was designed following state-of-the-art surveying
principles – e.g., asking questions about concrete learning examples rather than asking
for general statements that might be strongly biased by prior beliefs. Nevertheless, the
learning index is still a self-reported measure of learning experience. Thus there is no
need to infer the learning effect indirectly, and difficult questions regarding causation do
not arise, but researchers instead face challenges stemming from self-reporting biases (see
section 5.4.1 on page 146).

Both types of learning measures have their own different strengths and weaknesses. Fu-
ture studies would benefit from using both types of measures simultaneously in a multiple-
method approach. Using both measures would provide insights towards the magnitude of
inaccuracies caused by the respective biases21.

8.3.2. Relevance to Industrial Practice Models

While there is already a lot of literature on the application and effectiveness of industrial
practice models such as the EFQM, the Toyota Production System and the Balanced
Score Card, there is hardly any literature aiming to explain why and how these models
work using scientific evidence (Kujala and Lillrank, 2004, p. 43).

As discussed in section 2.4.1 on page 58, the three industrial practice models share the
following features:

• Create a shared understanding first (e.g., creating transparency by visualization).

• Repeat and iteratively improve.

• Engage in deep discussions regarding to create a contextually adapted solution –
rather than following “best practices” blindly.

The PIA-model, which is based on scientific evidence from scholarly literature and
the survey data from this study, is one way to explain how these common features of
the industrial practice models are effective (see also section 2.4 on page 57) in many
circumstances.

Since organizations, including businesses, operate in many different environments and
face many different challenges, successfully applying these industrial practice models in
new contexts will require some adaptation of these “best practice” models to the particular
organization (instead of blind imitation).

A deep understanding of how a particular industrial practice model works will thus
increase the chances for successful adaptation to a new context. The insights from the
PIA-model would for example direct the practitioner’s focus on the visualizations used
21In principle, a similar multiple-method approach was used for the variable-importance measure in

section 7.1.1 on page 206, where two different variants of variable importances with different weaknesses
are used.
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and draw the attention to the careful and suitable designs of these visualizations in a way
that highlights the key points of the particular business context.

In summary, a scientifically based model, such as the PIA-model, can be a helpful
guide to gaining a deeper understanding of a particular industrial practice model and can
support the effective adaptation and application of the industrial practice model.

8.3.3. Relevance to Sense Making, Problem Solving and Knowing

In the literature, the field of knowledge-intensive work has been approached by a wide
variety of methods. Insights have come from qualitative as well as quantitative (usually
laboratory experiment-based) research efforts – e.g. Orr (1996) or Siegler (2005).

Using a fully structured survey to obtain empirical data for this study has a few
challenges (see section 8.4 on page 280), but two important advantages can complement
the existing body of knowledge: the survey can be economically applied to a large sample
of participants in real organizational settings, and it allows a quantitative ranking of
many factors driving learning.

Many of the ranking results are not very surprising and confirm existing literature.
For example, intrinsic motivation to learn has received a high ranking from the survey
data, which is confirmed by a number of scholars (see section 7.3.3 on page 238).

Nevertheless, some ranking results are surprising and therefore suggest further inves-
tigation. For example, judging from the survey data, exposure to different perspectives
on a problem is an important factor driving learning in knowledge-intensive work (see
sections 7.2.2 on page 219 and 7.3.1 on page 226). In the literature, some but not many
studies (e.g., (Orr, 1996; Prusak, 2005; Schreyögg and Geiger, 2007; von Krogh and Grand,
2000)) mention this factor and highlight its importance. Thus the results from this study
point towards a closer investigation of this frequently overlooked factor.

8.3.4. Relevance to Statistics

The large number of variables potentially driving learning and the properties of the data
(e.g., much noise – see section 5.12 on page 163) created a number of challenges for the
statistical analysis that could not be dealt with using conventional methods (see section 6.1
on page 172). Therefore a substantial effort had to be put into creating the BOGER
algorithm (section 6.2 on page 179) combining state-of-the-art statistical methods in a
novel way in order to meet the special requirements stemming from the properties of the
dataset and the desired analysis output.

The resulting BOGER algorithm features:

• A robust mechanism to systematically build a statistical model (based on full
model selection) in a data-efficient manner for metric scales (see section 6.3.3
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on page 202). The predictive power of the model was superior (section 6.3.2 on
page 199) to any other existing algorithm that was tested on this study’s dataset
(section 6.1.3 on page 175).

• Breiman’s variable importance measure was used and improved (section 7.1.1 on
page 206) to provide a ranking of factors (section 6 on page 171) that makes it
possible to draw inferences from the robust but opaque BOGER model.

• Finally, a special type of frequency plots has been developed to compare the raw
data with the model shape not by a single number but graphically (section 7.1.3
on page 213). Numerical (single scalar) indicators for effect strength and model
fit are an extreme form of complexity reduction. They are commonly calculated
to answer the following two underlying questions: 1.) What is the nature of a
particular relationship? and 2.) How good is the model that this insight about the
relationship is based on? Yet the conventional R2 model-fit estimator, for example,
occasionally gives biased results and thus provides a non-robust answer to question
2 (see figure 4.2 on page 127).

As illustrated by figure 7.2 on page 215, a suitable graphical representation can
provide a better overview and more robust insights on model fit as well as effect
strength. The graphical approach is therefore proposed as a standard tool for com-
paring (in this case metric) statistical data with a statistical model. Using suitable
graphics in the early analysis steps is useful as a complementary approach to using
numerical indicators, in a second step, to quantify results that have been found to
be robust.

All these statistical tools are generic enough to be useful in other studies with a
similar data structure (many variables, many conceivable models, metric scales, strong
collinearities and a high level of noise).

8.3.5. Relevance to Knowledge Management

In section 2.5 on page 68 a number of concepts frequently used in the literature on knowl-
edge management are contrasted against partly opposing concepts derived from other
theories and the results of this study, which have been condensed in the PIA-model. Most
noteworthy are:

Knowledge is framed in the PIA-model as a personal skill, which includes and
highlights the notion that knowledge depends on an individual, partly shared and histor-
ically evolved perspective on facts. The term “knowledge”, which triggers an immediate
association of knowledge as an object that can be stored, transferred and managed
(directly), is therefore a metaphor that is at least a strongly simplifying description of the
processes on the individual level (see section 2.5.5 on page 76).
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The effect is not surprising: higher-quality articles frequently address the human side
of knowledge, while simpler treatments of this subject do not cover this important facet
of the topic. The popularity of the knowledge metaphor in the knowledge management
literature can in part be explained by the focus of much of this literature on knowledge
processes between groups of employees or different parts of large organizations (see, for
example, (Argote et al., 2003; Augier and Knudsen, 2004)).

Using the knowledge as a personal skill perspective has profound implications that are
not considered in large parts of the knowledge management literature, such as:

• Since knowledge is the integration of information with a person’s background knowl-
edge, knowledge can hardly be identified as a set of small knowledge objects that
are meaningful without the person’s background knowledge. Thus mapping of
knowledge can only be the mapping of information, not person-bound knowledge.
Mapping of information can be useful but its value only comes to bear when moti-
vated learners use the information to learn (see section 2.5.2 on page 73).

• Rather than a single version of the truth, true mastery of a subject derives from
critical examination with multiple expert perspectives (see section 2.5.3 on page 74).

• Valuation of knowledge is very difficult, given that one can hardly identify in-
dividual knowledge objects (as mentioned above) and given that the usability of
knowledge is difficult to predict (see section 2.5.4 on page 75). Therefore, intel-
lectual capital balance reporting approaches (e.g., (Bornemann and Alwert, 2007)),
with the intention of assessing the value of knowledge within firms, can only be very
rough approximations of the value of the knowledge within the heads of the firm’s
employees.

The results of this study highlight some important aspects of knowledge management
that have in many studies received little attention but are generally accepted principles
in other literature streams.

8.3.6. Selection of a Few from Many Plausible Explanations

Many insights related to on-the-job learning can be found in the literature – especially
when not only studies under the heading ‘learning’ are considered (see section 2.2 on
page 23). Most of these insights are plausible and are supported more or less well by
evidence. These studies frequently focus on a few factors and test their effect on learning.

This study’s data can support a subset of these insights, and thus a number of the
results are in themselves not completely new. Yet a number of insights popular in the liter-
ature did not find very strong support in the survey data (see section 7.3.14 on page 260).
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8.4. Limitations

Therefore part of the value of this study’s results is in selecting insights from a larger
set of plausible insights and underpinning them with empirical evidence.

The statistical ranking results guided an additional second wave of literature research
with new and refined search terms (section 3.2 on page 97). Thus the ranking results
were a useful tool for iterative perspective refinement on the challenge of supporting
on-the-job learning (section 3.1.6 on page 93).

Thus this study’s results contribute to the literature by the collection and
selection of partly existing insights scattered across many research fields as
well as by the complexity-reducing integration of these findings in the PIA-
model (figure 2.1 on page 31) – i.e., the creation of a suitable inter-disciplinary perspec-
tive specialized for the challenge of on-the-job learning – all supported by empirical
evidence.

8.4. Limitations

Research is rarely without compromises. In particular, requirements and constraints in
the following dimensions are frequently contradictory in their nature and thus need to
be traded off against each other: suitable perspective, validity and reliability constructs,
suitable choice of participants and case studies, limited resources (including time) and
limited overall duration of the study (section 3.1.8 on page 96).

The research design really aims at achieving the best compromise among all the design
requirements and limitations mentioned above. Since research designs are principally
concerned with minimizing the total risk of obtaining false results, the risks should be
reduced in a balanced manner – i.e. the biggest risk should be the first target for risk
mitigation22. In addition couplings among the different risks should be considered: e.g.
estimation errors of effect strengths may be overshadowed by a weak statistical model
(with low predictive power).

In particular, this study’s research design is subject to the following risks:

• Construct validity – The participants (or sub-groups of them) may have misin-
terpreted some of the questions. In addition, some aspects of on-the-job learning
are difficult to survey directly with a fully structured survey – an example is the
professional background and experience of the participant. In addition, despite the
pilot phase, some questions might have been misunderstood. Thus there is a risk
that some components of the survey measure something other than what they are
intended to measure.

22The aim of research design should be the reduction of the total risk of false results. Thus, following
general risk management techniques, the probability of a false results by a particular flaw or bias
should be multiplied by it negative impact on the accuracy of the results. Then for all possible flaws
or biases the result of the multiplication should be summed to obtain the total risk.
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• Surveying Detail Level of the Important Factors – Some factors, such as the
question item on “personal interest” for an intrinsic motivation (see section 7.3.3 on
page 238) have come into an unexpectedly strong focus following the results of this
study. In hindsight, a more detailed coverage of motivation with multiple facets by
using multiple question items – that are suitable for this type of learning situation
– would have been desirable. Hence with the results of this study, future studies
on this topic would be able to refine the surveying technique, concentrating on the
most important factors with more detailed question items.

• Omission of Important Variables – Important variables describing relevant as-
pects of the work environment (including the organization), which could have led
to an improved predictive power of the model, could have been omitted23.

• Biases – The variables may be biased due to various reasons, e.g., social desirability
or self-selection effects. This risk also applies to the learning index as outcome
variable but was mitigated as far as possible – see sections 5.4 on page 145 and 5.11
on page 162.

• Robustness – Despite the efforts to make the BOGER algorithm perform robustly
on the data (section 6.2 on page 179) and the subsequent investigation of its actual
performance (section 6.3.2 on page 199), there remain some smaller risks of getting
spurious results.

• Small but Pivotal Effects – Some factors may have a small yet causally pivotal
effect – which makes them hard to detect given the high level of noise in the data.
An example is the importance of getting additional ‘hard’ information by experi-
mentation for validation of a refined perspective on a problem – see section 7.3.1 on
page 230.

• Misinterpretation of Causal Mechanisms – The statistical results only provide
insights on associations, not causal links (section 4.1.5 on page 109). Therefore,
in section 7.3 on page 226, the statistical results were fused with insights from
literature to draw inferences on the causal mechanisms. Yet integrating literature
findings with statistical results requires sound judgment, which is never completely
free of subjective bias (section 3.1.3 on page 86). Hence there are few situations in
which a claim for a plausible explanation with support from the literature can be
made without the smallest doubt.

23As discussed in section 5.12.2 on page 166, certain situation-specific aspects of the learning episode
were not and could not be surveyed and thus become latent variables. However, there might also be
variables that can be surveyed and have been overlooked and omitted.
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• Generalization Beyond the Surveyed Organization The ranking results from
section 7.2 on page 217 are based on a survey from a single organization: Meyer
Werft in Papenburg, Germany. Thus the question arises whether and to what extent
these results may be used to generalize about other organizations.

Nevertheless, the survey covered all departments and thus a wide variety of different
tasks and working environments24. Therefore, given the solid support for the results
in the literature (section 7.3 on page 226), applying the same data collection and
analysis method to other organizations would most likely lead to similar ranking
results. Yet a few properties of the organization Meyer Werft apply in the same
way to all employees. In another organization with other properties, other effects
may be observed. At the same time, such effects might not be detectable with the
dataset from a single organization. Conversely, some properties of the organization,
such as the level of competitive pressure from the global shipbuilding market, may
not by shared by other organizations, and thus effects due to such properties would
not generalize to other, principally different organizations.

Given these risks, which overall could not be further mitigated by the research design25,
the best test for these results is inspection and validation by other researchers with new
data in other studies – i.e., by an external research iteration 3.1.6 on page 93.

8.5. Areas for Future Research

The analysis and the interpretation of the results raised a number of questions for future
research in two main directions:

• the mechanisms driving on-the-job learning

• the methods – including the statistical tools and the survey instrument

Future Research on the Mechanisms of On-The-Job Learning Section 7.3 on page 226,
on the detailed interpretation of the results, discussed various questions that could not be
clarified fully with the information about the association of the factors with learning and
literature. The following list summarizes the most important open questions (details can
be found in section 7.3 on page 226):

• Learning strategies that involve the views of others have been found to be most
supportive of learning (section 7.3.1 on page 226). Yet there is more to investigate

24Compare, e.g., the work of a welder with that of a technician from the IT department.
25The risks could not be further mitigated without reaching a different design point, e.g., by increasing

the research cost/effort substantially.
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about how these strategies are effective. In particular, an investigation of the weaker
strategies, such as experimentation, would be worth the effort.

• Personal interest has been identified as a strong intrinsic motivator for learning
(section 7.3.3 on page 238). Yet questions arise about whether and how this personal
interest depends on the nature of the task, and whether and how learning and
problem-solving success conversely affects the personal interest. Personality traits
also appear to interact with motivation (Judge and Ilies, 2002). In addition, it should
be investigated whether extrinsic motivators such as monetary reward systems
have a similar effect as intrinsic motivators, since some organizations use bonus
systems to promote knowledge sharing and searching (Haas and Hansen, 2005).

Furthermore, as mentioned in the limitations section 8.4 on page 280, motivation
is covered in a very simple manner – yet from theory, and as supported by the
statistical results, it is an important factor that deserves more detailed coverage
with more facets. Thus future research should focus on dominant theories on work
motivation (Steers et al., 2004), such as the “expectancy theory” by (Vroom, 1964)
– with suitably detailed surveying tools in order to be able to clearly separate the
motivational elements mentioned in theory26.

• A particular leadership profile has been found to have a strong effect on learning
(section 7.3.2 on page 231). Yet a number of questions about the detailed mech-
anisms remain open, e.g.: How does leadership shape a knowledge-conducive task
design? How do the properties of these knowledge-conducive tasks affect learning?

• As predicted in the literature, a person’s individual professional history strongly
shapes learning (section 7.3.4 on page 240). However, more knowledge about which
kinds of professional experiences support learning would provide useful guidance for
human resource development. Further investigations regarding the detailed mecha-
nisms that cause professional experience to have an effect on learning, as well as the
development of improved survey tools to assess the professional biography, would
be valuable.

• As discussed in section 7.3.5 on page 243, the effect of learning barriers in the
context of the learning feedback loops is non-trivial. It would be insightful to inves-
tigate the barriers in detail, as well as their effect, e.g., with ethnographic research

26Valence, Instrumentality and Expectancy are similar constructs that have somewhat redundant predic-
tive power. Yet the product of all three factors (i.e., the AND connection of the factors – as predicted
by Vroom’s theory) in the meta-analytic study by Van Eerde and Thierry (1996, p. 581) does not
yield more predictive power than the individual components, which may be due to some challenges of
the meta-analytic design of the study.
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approaches27.

• A significant association of epistemological beliefs with learning has been found
in the survey data ( 7.3.6 on page 247). However, the causal direction remains
unclear. Therefore future research should include an assessment of epistemological
beliefs – preferably with alternative measures for learning in order to understand
the effect of epistemological beliefs on possible biases in the learning index. If there
is such an effect, this would be very relevant to organizations, since the form of
secondary education, which employees have received during their upbringing, affects
epistemological beliefs (Schommer et al., 1997).

• An effect of education level on the learning index, a relative and self-reported
learning measure, was not found (section 7.3.14 on page 260). However, is the
absolute (not self-reported but independently measured) learning effect truly inde-
pendent of the type and level of education?

• The variables regarding the personal network of contacts have not shown an
association with the learning index (section 7.3.14 on page 260). However, in the
literature a number of authors cite a causal but non-trivial connection. The effect
of the personal network should therefore be reassessed with different methods, in
particular with different surveying tools.

Aside from laboratory studies and surveys, ethnographic research (Orr, 1996), natu-
ral experiments (Starbuck, 2004) or the actor’s approach (Arbnor and Bjerke (1997) in
section 3.1.3 on page 89), in addition to reflective practical applications in actual organiza-
tions, lend themselves to the investigation of these questions. To monitor the overall effect
on the organization, a framework such as the EFQM model could be used (section 2.4.4
on page 62) to yield standardized assessments that would allow for comparisons across
organizations28.

Future Research on the Methods Even though substantial effort has already gone
into validating the learning index as a survey tool for the learning effect (sections 5.11 on
page 162 and A.4 on page 290), further validation, e.g. against other measures for learning,
would certainly be helpful to gain a deeper understanding of the accuracy and biases in
this surveying tool. For the survey in this study, a self-reported learning assessment was
the only type of measure that was feasible within the time restrictions given the large
number of other factors assessed (chapter 5 on page 137). Therefore, a comparison of the
27Similar to the ethnographic research approach of Orr (1996), who followed Xerox copy technicians in

their normal work for months.
28Following the spirit of the RADAR approach in the EFQM model, such a comparison would not be a

simple comparison of criteria scores but a good judgment with the help of various results from the
RADAR assessment (EFQM, 2001).
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learning index with an absolute (and independent) measure of the learning effect would be
insightful. Possibly a research approach similar to the one introduced by Siegler (2005),
which mixes qualitative with quantitative methods, should be considered.

The BOGER algorithm, with its screening stage and the final interactive model build-
ing stage, is a significant improvement compared to other algorithms (e.g., ordinary multi-
variate regression or step-wise regression) for similar applications with similar datasets,
since it robustly and efficiently29 allows the researcher to perform a full-model search (sec-
tion 6.3.3 on page 202). Yet the algorithm would benefit from the development of more
efficient search strategies for the final full-model search stage (section 6.2.6 on page 192).

29BOGER is efficient regarding the required sample size, computational effort and required researcher
interaction.
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A.1. Writing Style and Conventions

The writing style I used in this thesis follows the following recommendations of the pub-
lication manual of the American Psychological Association (Association, 2002):
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A.2. Searching in Literature

• reducing wordiness – e.g. “several students completed...” instead of “there were
several students who completed...”

• avoid passive tense – use ’I’ or ’we’ instead of ’the researchers’ and passive tense
for clarity

• use pronouns only in as clear and unambiguous reference

• consistent use of tenses

• avoid colloquial expressions

• word choice – adhere closely to official and strict meaning (unless redefined)

• mix short with long sentences

• clear comparisons

The APA recommendations were chosen for their emphasis on clarity and economy of
expression.

A.2. Searching in Literature

Electronic Search Early knowledge management literature, aside from explicating knowl-
edge and storing it (Wexler, 2001), frequently focused mostly on electronic searching – for
documents or other bits of information in knowledge databases (DeMocker, 1998; Kauf-
man, 2002).

Yet many authors quickly recognized that electronic search is much less popular than
a search via networks of personal contacts (social networks) (Jacobson and Prusak, 2006;
Salter and Gann, 2003; Sandow and Allen, 2005; Voelpel et al., 2005).

Haas and Hansen (2005) even found that searching electronically rather than via social
networks can actually hurt performance. In his case study on a consulting firm, the con-
sultants were formally incentivized to use electronic search on a new knowledge database,
rather than relying on their social networks. Comparing the average business success of
the teams with these incentives and some teams without incentives (and thus a more so-
cial search behavior), especially highly experienced teams showed a reduced performance
when using electronic search rather than relying on their rich social networks.

A part of this effect might be explained by the fact that electronic search itself is a
skill that is trainable (Debowski et al., 2001; Weiss et al., 2004) – yet formal trainings on
using electronic search tools are rare.
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Searching – a Filtering Challenge Another challenge with electronic searching is to
filter the results. Good search terms certainly go a long way toward reducing and refining
the results, but in the end the user, not the machine, needs to perform an intelligent
selection (i.e., filtering) task, which non-intelligent computers cannot perform.

Consequently it is in this filtering task that some authors see a challenge of information
overload:

“[...] while knowledge search and management efforts to date have been valu-
able, future payoffs will depend less on enhancing systems that track down
information than on devising strategies to help employees use what they’ve
found.”, (Jacobson and Prusak, 2006, p. 34)

However, relying on personal contacts is different: other humans perform the intelligent
filtering task, based on their associative knowledge of information sources, for those who
ask. Salter and Gann (2003) observed this effect with technical design engineers, who dealt
more effectively with information overload by relying on personal connections rather than
ICT search engines.

The idea that humans are very effective at filtering will not come as a surprise to the
reader after the arguments presented in section 2.3.2 on page 30.

Social Networks for Search Consequently, social network theory became relevant for
analyzing knowledge flows within organizations (Cross et al., 2001) and researchers began
to analyze the structure of these networks and the nature of the links:

Hansen (1999)’s study of an engineering firm found that very large yet shallow social
networks were effective in obtaining simple information efficiently, but small networks of
personal relationships, built over a long time, were more effective in transferring complex
knowledge – which is in line with the theory of mental models and shared perspective
from section 2.3.6 on page 47. The perspectives of people with a lot of social interaction
are likely to develop in a similar (socially constructed) direction (Tsoukas, 2005b).

In summary, the literature on searching indicates that social searching is frequently
more effective than electronic searching, which is not surprising given that asking other
humans is like leveraging a very intelligent search engine, which applies an effective filter
and strongly reduces the challenge of information overload for those who search. Further-
more, all of these insights regarding searching fit will into the PIA-model in figure 2.1 on
page 31.

A.3. Company Profile – Meyer Werft

The Meyer Werft shipyard is located in the town of Papenburg in northwest Germany.
Together with its sister shipyard Neptun Werft in Warnemünde (near Rostock in northeast
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Germany), Meyer Werft specializes in high-value ships, with a focus on cruise ships, river
cruise liners, gas carriers and ferries.

With over 213 years’ history with smaller vessels, Meyer Werft entered the cruise ship
market in 1985 with the cruise ship Homeric for Home Lines. The MV Homeric was about
200m long and had a size of 42,000 GT (gross tons1). Since then the sizes have almost
tripled to 122,000 GT and 315m with the delivery of the Celebrity Solstice in 2008.

In 2009, two larger cruise ships were delivered. A cruise ship is a very large project of
around half a billion euros, of which Meyer Werft and Neptun Werft outsource roughly
70% to suppliers and contractors.

In contrast to cargo ships, cruise ships are commonly built in small series of two
to six ships, since cruise ship operators compete by continually offering new cruising
experiences to their passengers. Therefore the shipyard custom designs each ship for its
owner, which involves the classical ship and steel design, system integration of various
machinery, accommodation design (following the design of the ship owner’s architects)
and the purchasing and subcontracting of about 70% of the ship’s value. During the
design as well as the construction phase, the ship owner closely collaborates with the
shipyard on any open detail design decisions and for further optimization of the ships.

The production process resembles a large flow line that begins with the automatized
manufacturing of simple steel assemblies (e.g., a plate with stiffeners), continues with the
assembly of blocks and sections, which are also outfitted with pipes, cable trays and A/C
ducts. The ship is then assembled in a few months in one of two large covered dry docks.
Each of the assembled pieces is unique, hence mass-production principles are applied in
an adapted manner.

Thus it is an important competitive factor for the yard to be able to develop highly
optimized and customized prototypes as well as to build cruise vessels successfully and
efficiently in small series and additionally to accept design change requests from the ship
owner during the process.

As of 2009 Meyer Werft has about 2,500 employees, including more than 300 engi-
neers and administrative staff. Employee turnover is very low. The survey was targeted
at all employees from the production departments as well as the technical design and
administration departments.

A.4. Validity Investigation of the Learning Index in Detail

Given the novelty of the learning index, its reliability and validity needs to be verified.
Thus in the following the consistency of the learning index – internally and with other
question items and constructs – is verified:

1Gross tons are metric tons of displacement with a rough correction factor for the value and complexity
of the vessel.
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A.4.1. Inspection of the Input Data to the Learning Index

Learning Situations in Numbers

The learning index is composed by data about learning situations as well as learning
importance and usefulness ratings. Therefore the quality of this input data is inspected
here before inspecting the learning index directly.

Mean No. of Learning Sit-
uations per Workstep

% of all Learning Sit-
uations

Work Step 1 1.25 38 %
Work Step 2 1.16 34 %
Work Step 3 1.16 28 %

Table A.1.: Usage of Worksteps
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Figure A.1.: Frequencies of Learning Situations Levels

Table A.1 shows a fairly equal distribution of learning situations per work step. The
fewer learning situations for work step 3 are explainable, since the participants were asked
to split their example project into two or three tasks or to select two or three tasks from
their normal work of the last four weeks.

In more detail, this is confirmed by figure A.1. The left sub-figure shows the absolute
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A.4. Validity Investigation of the Learning Index in Detail

frequency of learning situation levels grouped by work step, while the right sub-figure
shows the relative frequency of learning situation levels for each work step. The fall-off of
learning situation frequencies over increasing learning situation levels (learning situation
entry slots) is expected, since the participants will always use the first slot first, and only
if there was another learning situation would they also fill in the next slot. Not having
this fall-off here would have been an alarming sign.

One question during the design of the survey was whether participants actually get
bored while going through the many iterations of the learning index survey tool. Given
that participants listed a substantial amount of learning situations in work step 3, this
concern thus cannot be confirmed.

Learning Situation Importance
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Figure A.2.: Frequencies of Learning Importance Levels by Workstep

Figures A.2 and A.3 on the next page illustrate the answering behavior for learning
importance – distributions grouped by work step and by learning situation. Again the
absolute frequencies are at left and the relative frequencies of the learning importance
level are at right for each work step.

It is striking that at first the dominant overall rating is “very important” (the reader
may look for learning importance level 5 in the left sub-figure). This result implies that
participants who experienced a learning situation mostly rated it as “very important”.
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Figure A.3.: Frequencies of Learning Importance Levels by Learning Situation

This is not surprising, given that we remember events we consider important better than
marginal events (Anderson, 1988). It is also likely that the participants prefer to mention
important learning situations rather than unimportant lessons.

Thus the learning importance scale is used fairly unevenly with a strong bias to the
“very important” end. Similar to the biases described in section 5.4.2 on page 150, this
bias is systematic and applies independently of the independent variables and therefore
does not degrade the usefulness of the learning index.

The right sub-figure of figure A.2 on the preceding page furthermore shows that the
fraction of frequency of a particular learning importance level remains fairly constant of
the work steps. This implies that there is only a very weak dependence of the work step
on the learning importance. The left sub-figure A.2 on the facing page further reveals
that this weak dependence exists only for learning situations rated as “very important”. If
there had been a strong dependency, this would be a clear sign for an undesirable survey
artifact.

The right sub-figure of figure A.3 presents a similar picture. There is only a weak
dependence of the learning situation slot2 on learning importance (the frequency fractions
stay fairly constant).

2Learning situation slot 3 refers here to the actual entry field number 3 in the respective survey webpage.
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A.4. Validity Investigation of the Learning Index in Detail

Learning Situation Importance and Usefulness
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Figure A.4.: Frequencies of Learning Usefulness Levels by Workstep

A similar picture presents itself for the rating of the usefulness of a particular learning
situation. Figures A.4 and A.5 on the next page show an even weaker dependence on
work step or learning situation entry slot.

294/343



1
2

3
4

5

Frequency of the Learning Usefulness Levels per Person

L
e
a
rn

in
g
 U

s
e
fu

ln
e
s
s
 L

e
v
e
ls

 /
/ 
B

a
r 

W
id

th
 =

 N
o
. 
o
f 
S

a
m

p
le

s

0.0 0.2 0.4 0.6 0.8 1.0 1.2

LearnSit 1

LearnSit 2

LearnSit 3

LearnSit 4

LearnSit 1 LearnSit 2 LearnSit 3

Learning Situation // Width = No. of Samples

P
e
rc

e
n
t 
L
e
a
rn

in
g
 U

s
e
fu

ln
e
s
s
 L

e
v
e
ls

0
2

0
4

0
6

0
8

0
1

0
0

Learning Usefulness = 1
Learning Usefulness = 2
Learning Usefulness = 3

Learning Usefulness = 4
Learning Usefulness = 5

Figure A.5.: Frequencies of Learning Usefulness Levels by Learning Situation

Relationship between Learning Importance and Usefulness

With the reduced definition (equation 5.2 on page 151) of the learning index based only
on learning importance and not also on the learning usefulness, as in the full definition
(equation 5.1 on page 150), the learning importance is effectively used as an imputation3

value for missing values of learning usefulness (for those participants with a lower survey
reduction level).

Thus figure A.6 on the next page is used to investigate whether learning importance
and usefulness are related. The kernel density estimation plot with a scatterplot as overlay
shows a mildly strong relationship (Pearson correlation = 0.358).

Thus both measures behave as expected from theory. Important learning experiences
are important because they are likely to become useful in the future. In addition, the
effective imputation strategy with the two definitions of the learning index is acceptable.

A.4.2. Distribution of the Learning Index

The distribution of the learning index in figure A.7(a) on the following page shows that
many participants have not learned much in their example projects, which is not overly
surprising – given that participants were asked to choose any example project or task, not

3For more on imputation, see appendix section A.5.2 on page 303.
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A.4. Validity Investigation of the Learning Index in Detail
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Figure A.6.: Relationship between Mean Learning Usefulness and Learning Importance

Summed Learning Index (per Person)
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Figure A.7.: Distribution of the Learning Index
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necessarily an extraordinarily learning-intensive example (see section 5.4.1 on page 146).
Still, there is a substantial fraction of participants who had learning experiences.

The picture in figure A.7(b) on the facing page is more moderate, showing the (partial)
learning index not summed over all work steps but just over the learning situations for each
step. It shows that the learning index is dominated by many smaller learning episodes.

At first sight, it is striking that both distributions have a substantial amount of partic-
ipants who did not cite any specific learning episodes for their example task and thus got
a learning index equal to zero. Yet this is a good indication regarding the validity of the
learning index, since it is not surprising that many tasks at the shipyard are performed
without a consciously noticed learning effect. Therefore the large fraction of zeros is also
an indication that the bias due to social desirability4 is small – especially when compared
to the results from the much simpler question on the general learning effect without a link
to a concrete learning episode (section A.4.3). Hence the context-specific link to learning
episodes, which the participant can name, has achieved the desired ‘objectifying’ effect of
bias reduction for the recollection of past events (section 5.4.1 on page 146).

Despite the many zero-learning cases, both distributions in figure A.4.2 on the facing
page also have many small but non-zero learning cases, and thus the distributions appear
to follow a continuous function similar to a log-normal distribution (with ρ around 1).
Hence the distribution of the learning index has a shape that is common for many natural
stochastic processes.

A.4.3. Cross-Validation of the Learning Index with Related Questions

General Learning Impression

Figure A.8 on the next page shows the dependence of the Learning Index vs. the General
Learning Impression expressed in the following question (asked after the learning part):

Question for general learning impression (li.total):

“When you consider your <Task> as a whole in comparison with other tasks
of work, did you learn much during <Task>?”

“Wenn Sie <Aufgabe> insgesamt betrachten und im Vergleich mit Ihren an-
deren Aufgaben bei der Arbeit setzen, haben Sie bei <Aufgabe> viel gelernt?”
[German Orginal]

The various features of figure A.8 on the following page are explained in text box 5.12.1
on page 166 and with more background and an annotated figure in section 7.1.3 on
page 213.

The graph shows a weak dependence, while there should be a strong dependence.
Noteworthy is the distribution of the general learning impression (shown in the lower part

4Social desirability is discussed in section 5.4.2 on page 150.
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A.4. Validity Investigation of the Learning Index in Detail

of fig. A.8), which is heavily centered on the scale midpoint and appears similar to a
normal distribution.

The darker the blue in figure A.8, the denser the population of samples in the respective
square. Hence this type of colorized plot visualizes the distribution of samples in this 2D-
space better than a simple scatterplot (additionally provided by the grey circles).

The fact that the highest point density is located around ’average’ for the general
learning impression and a learning index below 10 suggests that a significant social de-
sirability effect is acting on the simple general learning impression data. Still, there is a
significant correlation of 0.421.

General Learning Impression

L
e
a
rn

in
g
 I
n
d
e
x

0

20

40

60

nothing little average much very much

l l

l

l

l

l

l

l

l

Figure A.8.: Distribution of Learning Index vs. General Learning Impression

Aside from the correlations:

• Correlation between the two real variables: 0.421

• Correlation between the two simulated variables: 0.043

figure A.8 suggests a linear but weak relationship. Aside from the social desirability
effects, a strong linear relationship is expected from theory.

Average Post-Task Self-Efficacy

The question on post-task self-efficacy (Sicherheit) for similar tasks correlates highly with
the learning index (see figure A.9 on the facing page) – a good sign.
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Question for task assurance / self-efficacy:

“Did you become more self-assured while working on <Work Step> for similar
jobs in the future?”

“Sind sie beim Bearbeiten des <Arbeitsschritt> für ähnliche Arbeiten in der
Zukunft sicherer geworden?” [German Orginal]

This question is asked for each work step. For all valid work steps, the mean of these
answers is calculated to obtain an overall self-efficacy increase for the task as a whole.

The correlation between the two real variables is 0.161.

Mean Post−Task Self−Efficacy (Task Assurance)
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Figure A.9.: Distribution of Learning Index vs. Post-Task Self-Efficacy for each Person
and Workstep

Summed Post-Task Self-Efficacy

In addition to the previous section, I investigate here whether the summed post-task
self-efficacy is a better predictor for the learning index. As for the mean, the summed
post-task self-efficacy is summed over all valid working steps and NA only if all working
steps have this variable as NA.

The correlation between the two real variables is 0.342. As reasonable from theory,
the learning index correlates highly, and the relationship in figure A.10 on the next page
appears to be linear. This supports the learning index as a measure for learning.

Given that the summed Post-Task Self-Efficacy effectively (by the summing mecha-
nism) includes the number of working steps (correlation = 0.735), it is not surprising
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A.4. Validity Investigation of the Learning Index in Detail

Summed Post−Task Self−Efficacy (Task Assurance)
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Figure A.10.: Distribution of Learning Index vs. Summed Post-Task Self-Efficacy

that – given the correlation between number of working steps and learning index (0.300)
– the summed measure correlates more highly with the learning index (0.342) than the
averaging measure (0.161).

Post-Task Self-Efficacy for each WorkStep

In the two previous sections, the post-task self-efficacy has been aggregated by either
summing or averaging over the work steps in order to get a single measure for a person.
To avoid this loss of data, in this section the data used is not aggregated by person, but
instead data for each person and work step is used – thus n = 3 times the number of
participants.

Since this measure does not include any side effects, such as the correlation with the
number of working steps, it is a better test of the learning index than the summed or
averaged measure. Correlation = 0.156.

See also figure A.11 on the facing page.
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Figure A.11.: Distribution of Learning Index vs. Post-Task Self-Efficacy for each Person
and Workstep

Mean Learning Strategy

For each task, after surveying for learning episodes, a question battery of six items starting
with “How much have you learned during <Task> by XYZ” is posed to the participant,
where XYZ is any of the following learning strategies: demonstration, discussion, analysis,
reading, experimentation or other. The aim of these questions is to rank different methods
of learning against each other. Hence the mean of the items for each person was subtracted
from the items.

However, the mean of these question items is similar to asking six different facets of
“How much have you learned during <Task> in general?” – thus it should highly correlate
(like general learning) with the learning index. And as figure A.12 on the next page shows
– it does correlate highly with 0.350.
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A.5. Data Pre-Processing Details

Mean of Learning Strategy Items
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Figure A.12.: Dependence of Learning Index on Mean of Learning Strategy Items

A.5. Data Pre-Processing Details

A.5.1. Filtering and Outlier Removal

The raw dataset downloaded from the survey tool contains 1,583 rows of data – even
though there were only 446 participants. On the other hand, improper outlier removal
can falsify the results. Thus data pre-processing, including various stages of filtering, is
documented in this section.

Filtering was performed in the following stages:

1. First, all data from the pilot phase and from failed attempts is removed by using
date stamps and similar criteria – reducing the data down to 446 datasets.

2. As Chatfield (1995, p. 427) argues, the deletion of outliers leads to an overestimation
of predictive power. Thus outliers should only be deleted on very strong subject
matter grounds. Following this insight, there is no outlier removal in the classical
sense – i.e., removing data points that appear to fall off very far from the fitted
model in order to refit the model afterwards.

However, especially since the survey contains free text input fields in the learning
frequency survey tool, the text entries were inspected manually and removed if it
became clear that the participant did not understand or became uninterested in the
survey5. Non-understandable answers (e.g., when participants used acronyms) were
left in the data.

5For example, one participant entered ‘dog’, ‘cat’ and ‘mouse’ as learning opportunities.
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In addition, and despite various precautions (by using additional validation questions
– see section 5.7 on page 153), a number of participants clearly went into the wrong
branch (innovation, large project, short repetitive task) judging from the text entries.
Hence their data is not valid and needed to be removed.

All these removals, which all are solidly based on theoretical grounds rather than
the model fit, lead to a further reduction of the data down to 329 datasets.

3. For simplicity of the analysis, the datasets of 27 apprentices were removed, since
their exposure to the organization was not long enough yet and their working envi-
ronment and embedding in the organization is different from an ordinary employee.
Hence the learning experiences of apprentices are likely to be driven by other factors
(or the same factors with different effect strengths).

4. As detailed further below, datasets with very high numbers of missing values
were removed, leading to a further reduction down to 292 datasets. The criteria
for this filtering step were: the dataset of a person must not have more than 40%
missing values (NA) – see also the actual distribution of missing data per person in
figure A.13 on the next page. One case also had a missing value for the outcome
variable (learning index), which was removed as well.

The number of variables were also pruned at this step. When a variable had more
than 20% missing values, it was removed from the dataset – see actual distribution
in figure A.14 on page 305.

The result of all these filtering steps are 292 high-quality datasets – from participants
who appeared to have understood the survey.

A.5.2. Imputation and Missing Value Filtering

Given that there are multiple paths through the survey, and some of the questions are
mutually exclusive, not a single participant could provide a 100% complete dataset. Yet
the amount of missing values for most participants lies well below 20% – see figure A.13
on the next page. This is a good result, considering that the automatic survey-reduction
mechanism may reduce the number of questions posed (section 5.7 on page 153) and thus
introducing missing values for those questions that were not posed. Also when considering
the missing values by variable, the results are good: most variables have 20% or fewer
missing values – as shown in figure A.14 on page 305.

Even though the fraction of missing values is acceptably small, most algorithms re-
quire a 100% complete dataset. Thus imputation of the missing data with some neutral
replacement value is necessary in this case without any 100% complete datasets.

Current statistical literature and software offers a number of advanced imputation
algorithms, e.g., the Expectation-Maximization Algorithm (EM) (Rueda et al., 2005),
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Fraction of Missing Values in each Data Row
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Figure A.13.: Distribution of the Fraction of Missing Values per Data Row (Participant)

Bayesian Imputation (MICE) (van Buuren, 2008) and rfImpute – RandomForest-based
imputation (Liaw and Wiener, 2002). All of these algorithms aim to make a prediction
for the missing value by using any of the other variables as input.

Hence using any of these imputation algorithms might improve the results but may
also introduce additional risks, since the results of the following statistical analysis also
relies on the correct behavior of the imputation algorithm.

In experiments with these advanced algorithms, it became clear that the correctness
of the imputation behavior is not easy to assess. Given the increased risk introduced
by complicated imputation algorithms (leading to reduced robustness of the entire pro-
cess), I decided to use one of simplest and most predictable imputation methods: mean
imputation.

In mean imputation, missing values are replaced with the mean of the respective
variable. Inserting the mean of a variable effectively replaces the missing value with the
most neutral value of that variable. Thus mean imputation will weaken any effects of
this variable that are visible in the data. Hence if the statistical analysis finds an effect
for a particular variable, the effect must have been in the data and could not have been
introduced in the imputation process. Even though mean imputation thus also leads
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Fraction of Missing Values for each Variable
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Figure A.14.: Distribution of the Fraction of Missing Values per Variable

to an underestimation of variable effects (i.e., parameter strength in regression), it is a
conservative and robust approach. Hence robustness is traded for sensitivity in detecting
an effect.

Given its importance, no imputation was used for the outcome variable (the learning
index). Instead, the case with a missing value for the outcome variable was removed from
the data.

In summary, due to the interactive survey process, there is no single 100% complete
dataset. The data has a substantial but non-critical fraction of missing values. Since most
algorithms require 100% complete datasets, imputation was performed with one of the
most simple, predictable and conservative methods: mean imputation.

A.6. Details on BOGER

A.6.1. Generating Data Frequency Equalized Bootstrapping Samples

For each bootstrapping iteration, random and “equalized” training and test bootstrapping
samples are generated with the following steps:
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A.6. Details on BOGER

1. The data is split into a few (e.g., 10) bootstrapping sample groups6) by labelling each
data point (i.e., each data line in the sample database) randomly with bootstrapping
sample group number (e.g., from 1 to 10). From these groups, bootstrapping samples
will later be assembled. The algorithm parameter bootstrapping fraction determines
how many groups will be assembled for each iteration to a training bootstrapping
sample. The remaining groups will be assembled to a test bootstrapping sample for
model fit cross-validation. For a bootstrapping fraction of 0.7, the training sample
of iteration 1 would be assembled by seven groups and the test sample of the three
remaining groups.

2. To prepare the assembling of the training and test bootstrapping samples for each
iteration, BOGER generates all unique combinations of training groups. In the
above example, it would generate all unique combinations of seven groups drawn
from 10 available groups. The test groups are automatically determined as the
remaining groups (in the example, this would be the three non-selected groups for
each combination).

3. The algorithm is commonly used with a number of groups that leads to a number
of unique combinations that is higher than the requested number of bootstrapping
iterations. With more unique group combinations than bootstrapping iterations,
BOGER automatically chooses the unique group combinations in order to level out
the frequency of use of each group for the training data – as much as possible. The
aim of this procedure is that each data point of the sample data is used as equally
often for training and testing as any other data point in the bootstrapping iterations
– as far as possible. Hence the equalization is not perfect but still good. Thus
the genetic solver from section 6.2.3 on page 183 is used to equalize the frequency
of each group for training in the bootstrapping iterations as far as possible by
optimization. Since the test groups are the exact complement of the training group
choice, equalizing the training group choice also equalizes the test group choice.

4. Based on the equalized sub-set of group combinations, for each iteration bootstrap-
ping training and test samples are generated. Since each data point was assigned
randomly to a group and the group choice for the training and test bootstrapping
samples is frozen at this point, this step is now fully deterministic. Note that despite
the deterministic equalization by optimization in the previous step, the resultant
composition of the bootstrapping samples (both training and test) is still random,
since the assignment of bootstrapping group to data point is random. At this point
BOGER has for each of the nboot bootstrapping iterations, a training and a test

6The number of bootstrapping sample groups mostly depends on the number of requested bootstrapping
iterations (nboot).
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bootstrapping sample, which is equalized for data point frequency but still random.

Some bootstrapping algorithms generate training samples that have as many data
points as the original sample by using a few data points multiple times. This process is
called bootstrapping with replacement (Strobl et al., 2007). Such an approach is needed
if the model fit result depends directly on the sample size, and thus sample size needs to
be kept constant for comparison. Since BOGER’s results are not directly dependent on
the sample size, bootstrapping without replacement is used, leading to a smaller training
sample size. In BOGER, combining a training and a corresponding test bootstrapping
sample yields the original data sample (only with a new and random sequence).

The user may set the relative sizes of the training and the test bootstrapping samples.
Common sizes are: the training bootstrapping sample has 70% of the size of the original
sample, while the test sample contains the remaining 30% of the data points.

A.6.2. Implementation Details of BOGER in R

For use in this study, the BOGER algorithm is implemented in the statistical high-level
language R – using its object-oriented extensions (S4). R was also used to filter and
pre-process the data and in conjunction with LATEX to generate automated reports that
facilitated analysis and the debugging of the algorithm.

Reasons for Choosing R R was chosen for a number of reasons:

• R is a flexible modern high-level language (including object-oriented features), which
was designed specifically for statistics (R Development Core Team, 2007) and is
popular in research on statistics and bio-informatics (Gentleman et al., 2004). Some
readers may know MATLAB, Scilab or Octave, which are remotely similar scripted
matrix calculation languages. In contrast to statistical software such as SPSS or
Stata, R was designed as a programming language rather than a software package
that can be scripted.

• Anything in R can and must be scripted. Thus any new user faces a steep learning
curve, but once overcome, scripting can automate many analysis steps and thus
allows for much more experimentation. In addition, it is difficult to use R mindlessly
without understanding it – which is not the case with GUI driven statistical software.

• It is an interpreted language, which removes the need for a compilation step, makes
the language and debugging simpler. This makes R slower than most compiled
languages such as C or C++. Yet R code be optimized for speed by using matrix
operations instead of loops and by using linked binary modules that can be written,
e.g., in C or C++. Thus R is still faster than many other scripted languages and
software such as MS Excel.
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A.6. Details on BOGER

• It is open-source7 and runs on many different operating systems. The openness of
the source and the licence allows anybody to develop extensions for R – as simple
extension packages or also at the core of R with the following effect:

• There exist 1,700 extension packages for R – of which the large majority is open-
source as well. The additional features range from simple calculation functions
to various choices of interfaces for computer clusters for high performance parallel
computing.

• The graphics generating capabilities are very feature rich, flexible and modular
enough to allow further extension by the user8.

• Rather than displaying many graphics in individual windows and tables again sep-
arately, R code can be embedded in so-called weave .rnw files, which mix R and
LATEXcode. This mixed code is then first run through the Sweave package9 (Leisch,
2002), which executes the R code to perform the calculations and to automatically
create PDF and LATEX files for the generated figures and tables. The output of this
step is a plain LATEX file, which contains the documentation contents of the .rnw

file and refers to the figure PDFs and table .tex files. In a final step, these files are
compiled by the LATEX compiler to a single high-quality PDF file – including all of
the advanced document-generation features of LATEX, e.g., bibliography references
or formulas. Most of the figures and tables in this thesis are automatically generated
using these steps. Thus this combination of open-source software packages provides
the functionality of flexible and high-quality automated report generation.

• R code is stored in simple text files and thus will be (human-) readable for many
decades without needing to run R.

Details of the BOGER Implementation The BOGER algorithm (without data prepa-
ration or analysis) was implemented in about 4,000 lines of R code (that is equivalent to
about 200 single-spaced pages).

Performance-critical portions of the code are execution speed-optimized by using the
built-in (and highly optimized) matrix operations of RḞor an illustration and general im-
pression, see the screenshot in figure A.15 on the next page. (sapply is used as accelerated
matrix command instead of a for-loop.)

Given the computational intensity of the task, the BOGER algorithm was parallelized
to allow for parallel model fitting of different bootstrapping samples on different CPUs or

7The open-source licence GPL v2.1 guarantees that one can freely use one’s code for a very long time –
i.e., until there is nobody anymore maintaining the language for modern computer systems.

8The R user community constantly adds new types of graphs. For example, the user-run R Graphics
Gallery at http://addictedtor.free.fr/graphiques/ features 160 types of graphics.

9The author of this thesis has modified and extended the Sweave package.
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Figure A.15.: BOGER R Code in the Editor Emacs

even different computers. The parallel execution of the model fitter was implemented with
the snowFT package for R (Sevcikova and Rossini, 2005), which provides simple cluster
computing features.

The interpreted and functional nature of the language allowed another performance
optimization: the expression for calculating the prediction of the BOGER mathematical
model with a particular term configuration is regenerated and parsed as an R expression
for each iteration. Thus a model with 30 active terms contains also only 30 terms in R
and not 70 terms with parameters set to the neutral position (zero) and 30 truly active
parameters.

Software Features of the BOGER Implementation A number of BOGER’s software
features greatly facilitated the use and the debugging of BOGER:

• There is a history or logging function that stores and can restore any previously
tested model, including the test results from a data file.

• This history function also allows the user to restart BOGER at various points within
a long calculation run, e.g., if the algorithm has crashed or the results at some point
of the development are not as desired.

• The bootstrapping samples are generated randomly but then can be frozen (i.e.,
stored in a data file), to allow for precise comparison of the algorithm results without
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having to wonder if slight changes in the results are due to changes in the algorithm
or in the bootstrapping samples.

• The user interaction is provided by a command line. While not the most fashionable
form of user interface, it gives the user much flexibility to analyze intermediate
results even while running BOGER.

• Each variable can be tagged with multiple variable groups, which greatly facilitates
filtering groups of variables by this tag. While tags have no hierarchy, a variable
can have multiple tags and thus belong to multiple variable groups.

Thus R turned out to be a good choice of statistical software, given the complexity of
the statistical modelling task and the resulting need for flexibility, custom visualization,
speed-optimization as well as iterative analyzing (by automatic analysis report genera-
tion).

A.6.3. Flexible Model Fitting - an Interesting Accident

At the end of the full (and 6.5-day long) screening run, an interesting accident occurred10:
Due to a bug in step 5 of figure 6.1 on page 186, the Pre-Selection Model (step 6

of fig. 6.1) did not contain a much reduced set of parameters (using the by-parameter
instability measure) – as desired – but instead contained 502 parameters (i.e., almost all
parameters).

Given the large number of parameters that needed to be optimized for fit by the genetic
algorithm, the time to fit an individual bootstrapping model rose from 5–10 min to 10–24
hrs.

The large number of variables (502) compared to a sample of 292 (see section A.5.1
on page 302) leads to a very flexible model – despite the parametric nature of BOGER’s
math model (eq. 6.1 on page 182). As theoretically explained in section 4.2.2 on page 123,
this high model flexibility leads to a high risk of overfitting – which is confirmed by the
model fit results shown in table A.2.

Training Fit Test Fit

Rabs 0.163 0.134
Rabs 0.322 0.223
Rabs 0.428 0.205

. . . . . .

Table A.2.: Accident Model Fit Summary

10The accident was later rectified by restarting a debugged version of BOGER with the screening data
generated so far (stored with the history feature) just before step 5 in figure 6.1 on page 186. Hence
the accident did not affect the final results.
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Thus as expected, with too many variables compared to the sample size, also BOGER
performs poorly. Yet with a reasonably small number of parameters, BOGER shows much
less overfitting – as the final model fitting results with approximately 4% overfitting in
table 6.4 on page 200 show.

A.6.4. Residuals

Even though the BOGER algorithm does not require the assumption of homoscedac-
ity11, residual12 plots are useful to detect non-linearities. Figures A.16 on the next page
and A.17 on page 313 show the same residuals as scatterplots and as distributions (fre-
quency plots). Overall, the residuals appear independent of the independent variables and
often even normally distributed, which suggests that the BOGER model has treated the
non-linearities in the data with sufficient accuracy.

11Homoscedacity means the variance of the residuals is constant for (i.e., not a function of) any of the
independent variables.

12The vector of residuals is the vector of differences between an individual model estimation and the
corresponding true (i.e., surveyed) value. This residual vector is plotted against the corresponding
independent variables in scatterplots and distribution (i.e., frequency) plots.
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Figure A.16.: Residual Scatterplots for each Independent Variable (in the final model)
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Figure A.17.: Residual Distributions for each Independent Variable (in the final model)
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A.6. Details on BOGER

A.6.5. Empirical Robustness of Model Fit Measures

This section provides an empirical analysis of the robustness of R2 vs. Rabs and the
different biases of the training and test estimates by comparing the model fit measures as
distributions over the different individual bootstrapping models.

The BOGERmodel fit results in table 6.4 on page 200 for the survey data are somewhat
surprising, since the R2 estimate for the individual models and the internal test data is
higher than the corresponding R2 estimate for the training data. That would imply
underfitting13, i.e., the model fits the data worse than the real underlying statistical
process. The equivalent estimates for Rabs, however, suggest the opposite: the internal
test fit and thus the predictive power is lower than the fit to the training data, and thus
the model slightly overfits the data.

Training Fit Rsquared

F
re

q
u

e
n

c
y

0.0 0.1 0.2 0.3 0.4 0.5

0
2

0
4

0
6

0

Internal Test Fit Rsquared

F
re

q
u

e
n

c
y

0.0 0.1 0.2 0.3 0.4 0.5

0
2

0
4

0
6

0

Training Fit Rabs

F
re

q
u

e
n

c
y

0.0 0.1 0.2 0.3 0.4 0.5

0
2

0
4

0
6

0

Internal Test Fit Rabs

F
re

q
u

e
n

c
y

0.0 0.1 0.2 0.3 0.4 0.5

0
2

0
4

0
6

0

Figure A.18.: Distributions of the different R2 and Rabs estimates – for all fitted individual
models

Hence the question arises: which measure – R2 or Rabs – is more accurate and robust?

13Underfitting is the opposite of overfitting. For more details on overfitting and the conditions under
which it occurs, see section 4.2.2 on page 123.
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Figure A.18 on the preceding page, showing the distributions of the two measures over the
different individual models in the bag, gives a clear answer. For the internal test data, R2

(top row of graphs) has a rather uniform distribution without any visible peak, while Rabs

(bottom row of graphs) has a distribution that resembles a skewed normal distribution
with much less variance than that of R2. The variance for Rabs and R2 estimated based
on the training data is very similar, however. These qualitative results remain the same
even when the independent variables in the model are changed or when the number of
individual models in the bag is increased.

Thus these results are further evidence for the claim from section 6.2.7 on page 195
that Rabs is more robust than R2 for measuring model fit using the internal test data. As
mentioned in section 6.2.7 on page 195, the square function in R2 (purposely) amplifies
outliers, i.e., those samples with a large deviation from the model and thus large residuals.
Rabs, using the absolute value function, treats all samples in the same manner, indepen-
dent of the magnitude of their residual. Since the effect is not strong on the larger training
dataset but occurs only on the internal test dataset (only 30% the size of the training
dataset), Rabs seems to be more robust and accurate than R2 only when the sample size
is very small.

Note that figure A.18 on the facing page shows the model fit estimates for all fitted
individual models based on different bootstrapping data but based on the same set of
independent variables. As described in section 6.2.6 on page 192, the bagged model
contains only a subset of “good” models: the best 25% of all bootstrapping models. The
distributions of the model fit estimates for the “good” models have much more defined
peaks and less variance – as figure A.19 on the following page shows14. Thus any measure
estimated by the average of the “good” model’s fit will be rather accurate with both
measures R2 and Rabs.

Furthermore, the comparison of figures A.18 on the preceding page and A.18 on the
facing page illustrates the effectiveness of the model filtering strategy: the bagged model
quality increases by filtering for the “good” bootstrapping models.

Moreover, the two figures empirically support the claim regarding different biases
and thus the claim for robustness of BOGER’s model fit estimate from section 6.2.7 on
page 195. Given the lower sample size of the test data, the test model fit has a higher
variance and thus is more affected by the sampling bias than the training data, while the
training data is more affected by biases linked to overfitting (as argued in other sections).

Finally, the low variance of both the training and the test model fit estimates for
the filtered “good” models (in figure A.19 on the following page) further supports the
robustness of the model predictive power estimation method described in section 6.2.7
on page 195 – leading to a positive quality assessment of the final BOGER model in
14Since the “good” models have been selected by a combination of internal training data fit and internal

test data fit, it is not very surprising that these graphs have more defined peaks and less variance.
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Figure A.19.: Distributions of the different R2 and Rabs estimates – only for the individual
filtered (“good”) models in the bag

section 6.3.2 on page 199.
Note that BOGER internally exclusively uses Rabs – see section 6.2.7 on page 195.
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