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i 

Abstract 

This report provides an overview of the existing wire-wrapped fuel bundle friction fac-

tor/pressure drop correlations and evaluates qualitatively which of the existing friction factor 

correlations are the best in retracing the results of a large set of the experimental data avail-

able on wire-wrapped fuel assemblies tested under different coolant conditions. 
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Zusammenfassung  

Dieser Bericht gibt einen Überblick über die bestehenden Korrelationen für Reibbeiwerte und 

Druckverluste in Brennstabbündeln mit Wendeldrahtabstandshaltern. Es wird qualitativ 

bewertet, welche der bestehenden Korrelationen die Ergebnisse einer großen Reihe von 

experimentellen Daten für die verschiedensten Bedingungen des Kühlmittels am besten 

wiedergeben.    
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1 Introduction 

Different authors provide us with friction factor correlations for wire-wrapped fuel bun-

dles based on a particular set of experimental data. These correlations usually are very good 

for the prediction of friction factors for wire-wrapped fuel bundle within the parameter range 

for which they were derived based on certain fluid and certain fuel bundle parameters. But 

when one tries to apply these friction factor correlations to another fluid (coolant) or different 

fuel bundle parameters, one often obtains predictions of the friction factor that are not always 

correlateable to the experimental data. So an important question arises, which friction factor 

correlation should one use in order to obtain reliable prediction of the friction factor for any 

coolant and any set of fuel bundle parameters. This report tries to address this very important 

issue, based on the qualitative evaluation of the most commonly used friction factor correla-

tions provided to us by different authors, while analyzing more than ten different sets of ex-

perimental data that are available today on the internet. These experiments were conducted 

using different coolants (water, sodium, air), different sets of fuel bundle parameters, by dif-

ferent scientists in different countries and organizations.    

2 Fuel assembly pressure drop correlations 

The total pressure drop in a fuel assembly is usually calculated using the following 

formula: 

ΔpFA = Δpinlet + Δpoutlet + Δporf + Δpfric + Δpspacer .             (1) 

Fuel assembly inlet, outlet and orificing pressure losses are determined by: 

 Δpinlet + Δpoutlet + Δporf = (Kinlet + Koutlet + Korf) * 0.5 * ρ * v2 ,           (2) 

with ρ  being the density and v the velocity of the coolant and K as the associated pressure 

loss coefficients. Pressure loss due to the flow friction along a smooth pipe is calculated as: 
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Δpfric = ffric * (L / De) * 0.5 * ρ * v2,                  (3) 

where L is the tube length, De the hydraulic diameter of the flow channel, and ffric for the tur-

bulent single phase flow can be estimated using the Blasius formula, namely 

ffric = 0.316 / Re0.25 , 

where Re represents the Reynolds number of the flow channel. In a similar manner, the 

pressure loss due to the spacer (in this case due to the wire-wrap) is calculated as: 

Δpspacer = fww * (L / De) * 0.5 * ρ * v2,                 (4) 

where fww (friction factor) correlations for the wire-wrap spacer configuration will be discussed 

in more detail in section 3 of this report. 

3 Friction factor correlations for wire-wrapped fuel 
assemblies 

The various friction factor correlations for the wire-wrapped fuel bundles that are 

available today are summarized in this section. 

3.1 Novendstern Model  

Friction factor for the wire-wrapped fuel bundle in the Novendstern model (Novend-

stern E. H., 1972) is calculated based on the following correlations: 

1

2
11
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Res – average Reynolds number for non-wire-wrap configuration of the fuel bundle, and 
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where all the various symbols are defined in the nomenclature section of this report. For our 

analysis we assumed only one averaged sub-channel, i.e. X1 = 1 and De1 = De. 

3.2 Rehme Model  

Friction factor for the wire-wrapped fuel bundle in the Rehme model (Rehme, K., 

1973) is calculated based on the following correlations: 
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where all the various symbols are defined in the nomenclature section of this report. 
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3.3 Engel, Markley and Bishop Model  

Friction factors for the wire-wrapped fuel bundle in the Engel, Markley and Bishop 

model (Engel F. C. et al, 1979) is calculated based on the following correlations: 

Laminar flow:  
Re
110

=f  for  Re < 400 ,               (9) 

Turbulent flow:  25.0Re
55.0

=f  for Re > 5000 ,               (10) 

Transition flow:  ( ) 5.0
25.0

5.0

Re
55.01

Re
110

ψψ ⋅+−⋅=f   for 400 ≤ Re ≤ 5000 ,     (11) 

where:    
4600

)400(Re−
=ψ  , and 

where all the various symbols are defined in the nomenclature section of this report. 

3.4 Cheng and Todreas Models – simplified and detailed  

Friction factor for the wire-wrapped fuel bundle in the simplified Cheng and Todreas 

model (Cheng S. K. and Todreas N. E., 1986) is calculated based on the following correla-

tions: 

Laminar flow:  
Re

fLC
f =      for     Re ≤  ReL ,              (12) 

Turbulent flow:  18.0Re
fTC

f =      for     ReT ≤  Re,             (13) 

Transition flow:  ( ) 3/1
18.0

3/1

Re
1

Re
ψψ ⋅+−⋅= fTfL CC

f   for ReL < Re < ReT ,     (14) 
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where:  
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and where all the various symbols are defined in the nomenclature section of this report. 

Friction factors for the wire-wrapped fuel bundle in the detailed Cheng and Todreas 

model is calculated based on the center, side and corner sub-channels equations that are 

described in more detail in Ref. (Cheng S. K. and Todreas N. E., 1986) as well. 

3.5 Baxi and Dalle-Donne Model  

Friction factor for the wire-wrapped fuel bundle in the Baxi and Dalle-Donne model 

(Pergamon Press, 1981) is calculated based on the following correlations: 

Laminar flow:  Re ≤ 400 
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Turbulent flow:  Re ≥ 5000 

Mff st ⋅= , where  fs = smooth friction factor in a tube (Blasius) = 0.316/Re0.25, 
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Transition flow:  400 < Re < 5000 

( ) ψψ ⋅+−⋅= tl fff 2/11  ,                     (17) 

fl = laminar friction factor, ft = turbulent friction factor, 4600/)400(Re−=ψ , and 

where all the various symbols are defined in the nomenclature section of this report. 

3.6 Sobolev Model  

Friction factor for the wire-wrapped fuel bundle in the Sobolev model (Sobolev V., 

2006) is calculated based on the following equation: 
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where all the various symbols are defined in the nomenclature section of this report. 

3.7 Antonucci Algorithm  

This algorithm was kindly provided to us by Mr. Carlomaria Antonucci (ENEA, Italy) 

for our purpose of investigating friction factors for wire-wrapped fuel bundle configurations. 

This algorithm is based on Cheng and Todreas detailed model, which is described in more 

detail in Ref. (Cheng S. K. and Todreas N. E., 1986). Friction factors for the wire-wrapped 

fuel bundle in the detailed Cheng and Todreas model are calculated based on the center, 

side and corner sub-channels equations. 
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4 Modified friction factor correlations for wire-
wrapped fuel assemblies 

After performing the analysis using the different experimental data sets, some of the 

above presented friction factor correlations for the wire-wrapped fuel bundles were slightly 

modified in order to obtain an improved agreement with the available experimental data sets. 

The modified friction factor correlations for the wire wrapped fuel bundles are presented be-

low in this section. 

4.1 Modified Engel, Markley and Bishop model  

Friction factors for the wire-wrapped fuel bundle in the modified Engel, Markley and 

Bishop model are calculated based on the following modified correlations: 

Laminar flow:  
Re
110

=f  for  Re < 400 , 

Turbulent flow:  25.0Re
37.0

=f  for Re > 5000 ,               (19) 

Transition flow:  ( ) 5.0
25.0

5.0

Re
37.01

Re
110

ψψ ⋅+−⋅=f   for 400 ≤ Re ≤ 5000 ,     (20) 

where:    
4600

)400(Re−
=ψ  ,  

and where all the various symbols are defined in the nomenclature section of this report. 

4.2 Modified Baxi and Dalle-Donne Model  

Friction factors for the wire-wrapped fuel bundle in the modified Baxi and Dalle-Donne 

model is calculated based on the following correlations: 
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Laminar flow:  Re ≤ 400 
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Turbulent flow:  Re ≥ 5000 
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Transition flow:  400 < Re < 5000 

( ) ψψ ⋅+−⋅= tl fff 2/11  ,          (22) 

fl = laminar friction factor, ft = turbulent friction factor, 5000/)400(Re−=ψ , 

and where all the various symbols are defined in the nomenclature section of this report. 

5 SIM-ADS code used for wire-wrapped fuel bundle 
friction factor correlations validation 

SIM-ADS (Schikorr W. M., 2001) is a PC-based; multi node point kinetic model that 

describes the nuclear and thermal-hydraulic characteristics of critical and sub-critical reactor 

cores. Two separate neutronic core models are run simultaneously, namely a single node PK 

model that acts as driver for a multi-node (16-axial nodes) thermo-hydraulic model, and a 

multi-node neutronic model (16 axial neutronically coupled nodes) which allows the axial 

power profile to change during the transient according to nodal temperature and nodal reac-

tivity variations. In the single node PK neutronic model, the axial power profile is assumed to 

remain unchanged during the transient.   
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Under “normal”, simple transient conditions that are not dependent on a transient ax-

ial power profile, both neutronic models (single node and 16-axial nodes) should yield identi-

cal results in core averaged parameters, thereby serving as a constant calculational cross-

check.  

The neutron kinetics of each nuclear model is described by 6-delayed neutron pre-

cursor groups on the nodal level, and a complete set of nodal dependant reactivity feedback 

coefficients (16-node neutronic model) such as Doppler, coolant, fuel expansion, diagrid ex-

pansion, void, control rod, Xenon (for thermal reactors), etc. The nodal time characteristics of 

the decay heat after shutdown is described by 6 decay heat groups.  

The 16-axial node, full-scope thermal-hydraulic model assumes an initial axial and 

radial power distribution (provided as input to the kinetics models by the detailed neutronic 

analysis performed during the core design phase), and then calculates the radial heat trans-

fer through a typical fuel pin consisting of the detailed description of the heat transfer mecha-

nisms between cladding and coolant, the heat transfer through the clad material, the heat 

transfer in the gap between clad and fuel, and the fuel matrix itself assuming appropriate 

material property data and applicable coolant type dependant heat transfer correlations (cor-

relation for Nusselt numbers, friction factors, etc.). This heat transfer analysis is performed 

for the peak pin and the average pin of the core where the radial core power distribution is 

assumed to be representable by radial power form factors. 

The primary loop is nodalized into several appropriate hydraulic nodes with corre-

sponding volumes, internal masses and surface areas (lower vessel plenum, the 16 axial 

core nodes, upper vessel plenum, the piping to and from the HX, (HX and DHRS itself are 

modeled by appropriate internal nodalization) to account for all relevant thermal-hydraulic 

effects including radiation (from vessel wall) to the ambient and all relevant pressure loss 

calculations inside the core region (i.e. due to grid or wire-wrap spacers) and the primary 

system (heat exchangers, pumps, loops, etc). 
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Particular attention is placed on the correct formulation of all relevant heat transfer 

mechanisms between cladding surface and coolant (such as for example roughened surface 

areas) in the core region and in the HX and DHRS systems, in particular accounting for the 

physical phenomena encountered in various flow regimes (i.e turbulent and laminar flow un-

der forced flow and natural convection conditions) for heavy metals (Na, or Pb, or LBE), wa-

ter or gas coolants (He, Air or CO2). 

The code system SIM-ADS has been used to perform the transient analysis of both 

the LBE-cooled and He-cooled PDS-XADS ADS designs during the PDS-XADS Project and 

during the MOST molten salt project to analyze the AMSTER molten salt reactor design 

(Vergnes J. and Lecarpentier D., 2002) as well as during the currently ongoing EUROTRANS 

project (Bianchi F. et al., 2006). SIM-ADS has been tested and validated extensively against 

actual LWR plant data (plant transient data) for both PWRs and BWRs, Superphenix (SPX1) 

plant data, and by code to code comparisons of results obtained using RELAP, SAS-SFR, 

TRAC  and other large transient code systems.  

6 Analysis of the experimental data based on water 
experiments 

6.1 Choi et al., 2003 (Choi et al, 2003) water experiments 

A schematic diagram of the experimental facility used by Choi et al (Choi et al, 2003) 

to measure the pressure drop in a 271-pin wire-wrapped fuel assembly is shown in Fig. 1. 

The experimental facility consists of water tank, main pump, water chiller, damper, flow mani-

fold and test section. In order to maintain the water temperature constant at the desired 

value, the Freon/water chiller is installed. The damper is installed to reduce the riffling of the 

water circuit, which is electrically controlled by the pressure of nitrogen cover gas. Fig. 2 

shows the test section of the fuel assembly. The inlet orifice and the hexagonal shaped duct 

that contains the fuel assembly are shown in this figure. The locations B, C, D, E, F in this 
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figure are the locations of the pressure taps. Pressure tap A is located at the side wall of the 

casing that encloses the inlet orifice.  

 

 

 

 

 

 

Fig. 1. Schematic diagram of the experimental facility. 1) water tank, 2) pump, 3) damper, 4) 
flow manifold, 5) test section: (water, Choi et al., 2003 (Choi et al, 2003)) 

 

 

 

 

Fig. 2. Test section and locations of pressure taps: (water, Choi et al., 2003 (Choi et al, 
2003)) 

 

The diameter of the fuel rod used in these experiments is 7.4 mm and the diameter of 

the wire is 1.4 mm. The rod pitch to rod diameter ratio is 1.2 and the wire lead length to rod 

diameter ratio is 24.84. The experimental range of flow rate is 2.2÷60 l/s and the experimen-

tal range of Reynolds number based on the hydraulic diameter of the fuel assembly is 

1100÷78000. A series of experiments have been conducted changing the fluid temperature 
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and the flow rate. Fig. 3a shows the relative magnitude of pressure drop (Exp.A: 19÷25°C) 

for five different sections in a fuel assembly: inlet orifice, fuel assembly inlet, wire-wrapped 

fuel assembly, fuel assembly outlet and fuel assembly upper region. Fig. 3b shows the com-

parison of the measured friction factor data (Exp.A: 19÷25°C, Exp.B: 30÷34°C, Exp.C: 

25÷29°C, Exp.D: 31÷36°C, Exp.E: 63÷65°C) with Novendstern empirical correlation for the 

pressure drop in a wire-wrapped fuel assembly. 

 

 

 

 

 

        a)                b) 

Fig. 3. a) Relative magnitude of pressure drop in the fuel assembly, b) Comparison of 
Novendstern correlation with measured data: (water, Choi et al., 2003 (Choi et al, 
2003)) 

 

Based on the data provided in Ref. (Choi et al, 2003), corresponding calculations 

were performed with SIM-ADS code and the calculation results were then compared to the 

experimental data of  Fig.3. Fig. 4 shows the comparison of the calculation results for the 

wire-wrapped FA pressure drop (in the fuel region) as calculated using different friction factor 

correlations (see section 3 and 4) with the experimental data (compare with the topmost 

curve in Fig. 3a; note different units, i.e. Pa vs mbar). As can be seen in Fig. 4, all friction 

factor correlations provide a good fit to the experimental data in the turbulent regime (flow 
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rate > 6 kg/s). The best fit to the experimental data over the entire mass flow range is ob-

served (visual inspection) to be in order: Rehme, Novendstern and Engel (modified).  

 

 

 

 

 

 

 

 

 

  

 Fig. 4. Comparison of SIM-ADS calculated and experimental pressure drop in the wire-
wrapped fuel assembly (compare with the topmost curve in Fig. 3a): (water, Choi et 
al., 2003) 

 

Fig. 5 shows the comparison for the pressure drops in different parts of the wire-

wrapped FA as calculated by SIM-ADS code and using Rehme friction factor correlation in 

the core region in comparison with the experimental data (compare with Fig. 3a).  

The following formulations of the friction coefficients were obtained for FA inlet and 

outlet regions in order to obtain excellent agreement with the experimental data: 

FA inlet friction coefficient   -   Kinlet = 1/(0.025*Re0.5); 

FA outlet friction coefficient -   Koutlet = 0.35*Re0.15. 
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As can be observed, excellent agreement with the experimental data was obtained in 

most (inlet orifice and wire-wrapped fuel assembly) regions of the FA using Rehme correla-

tion and the friction coefficients as presented above.   

 

 

 

 

 

 

 

 

Fig. 5. Comparison of experimental and SIM-ADS calculated pressure drops in the different 
regions (inlet, outlet, fuel section, etc) of the wire-wrapped fuel assembly (compare 
with Fig. 3a): (water, Choi et al., 2003) using the above FA inlet and FA outlet models 
and Rehme for the fuel section. 

 

Fig. 6 shows the comparison of the friction factor values for the wire-wrapped FA as 

calculated using the different friction factor correlations (see section 3 and 4) with the ex-

perimental data (compare with Fig. 3b). As can be seen from Fig. 6, friction factor correla-

tions best fitting experimental data over the entire flow regime (laminar and turbulent) are in 

order (visual inspection): Rehme, Novendstern and Engel (modified). Sobolev and Novend-

stern correlations should be used only in turbulent region (Re > 5000). 
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 Fig. 6. Comparison of the SIM-ADS calculated and experimental friction factor values for the 
wire-wrapped fuel assembly (compare with Fig. 3b): (water, Choi et al., 2003) 

 

6.2 Chun et al., 2001 (Chun M.H. and Seo K.W., 2001) water experiments 

The schematic diagram of the water test loop used by Chun et al (Chun M.H. and Seo 

K.W., 2001) to measure the pressure drop in a 19-pin wire wrapped fuel assembly is shown 

in Fig. 7. One test section (B2) (Chun M.H. and Seo K.W., 2001) of the 19-pin FA that was 

analyzed here using the SIM-ADS code has the following characteristics: wire lead to diame-

ter ratio is 25.0, pitch to diameter ratio is 1.256, bundle equivalent hydraulic diameter is 4.75 

mm, pin outer diameter is 8.0 mm, pin pitch is 10.04 mm, FA length is 1.3 m, wire diameter is 

2.0 mm, wire lead length is 20 cm. 
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Fig. 7. Schematic diagram of the test loop: (water, Chun et al., 2001 (Chun M.H. and Seo 
K.W., 2001)) 

 

Experimental data for the FA friction factor values obtained with B2 test section are 

presented in Fig. 8. This figure shows the friction factor versus Reynolds number curves ob-

tained by the authors of Ref. (Chun M.H. and Seo K.W., 2001) using five different friction 

factor correlations for wire-wrapped FAs along with the experimental data obtained with the 

test section B2 described above. From Fig. 8 one can deduce that the flow transition be-

tween the laminar and turbulent regions is quite smooth and continuous. The departure from 

the laminar flow occurs at a lower Reynolds number than that of the circular tube, while the 

fully turbulent flow occurs at a higher Reynolds number than that of the circular tube (Chun 

M.H. and Seo K.W., 2001). 
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Fig. 8. Reynolds number vs. friction factor (test section B2): (water, Chun et al., 2001 (Chun 
M.H. and Seo K.W., 2001)) 

 

Based on the data provided in Ref. (Chun M.H. and Seo K.W., 2001), corresponding 

calculations were performed with the SIM-ADS code and the calculation results compared to 

the experimental data (presented in Fig. 8). Fig. 9 shows the comparison of the friction factor 

values for the wire-wrapped FA as calculated using different friction factor correlations (see 

section 3 and 4) with the experimental data (compare with Fig. 8). As can be seen from Fig. 

9, friction factor correlations best fitting experimental data are in order (visual inspection): 

Engel (modified) – excellent fit, all the others – good fit. As it was already mentioned before, 

Sobolev and Novendstern correlations can be used only in the turbulent region (Re > 5000). 
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 Fig. 9. Comparison of the SIM-ADS calculated and experimental friction factor values for the 
wire-wrapped fuel assembly (compare with Fig. 8 (Chun M.H. and Seo K.W., 2001)): 
(water, Chun et al., 2001) 

 

6.3 Arwikar et al., 1979 (Arwikar K. and Fenech H, 1979) water experiments 

Fig. 10 shows a schematic diagram of the closed loop water circulation system used 

by Arwikar et al (Arwikar K. and Fenech H, 1979) for their experiments. Water is pumped 

from a storage tank through the experimental section in the downward vertical direction. To 

counteract the temperature increase resulting from the mechanical energy of the pumps and 

to control the water loop temperature, the storage tank is provided with refrigerated cooling 

coils. It is possible to operate the loop at any fixed flow rate (0.2÷30 l/s) and temperature 

(4÷43°C) ranges.  

The experimental bundle consists of 61 stainless steel tubes arranged in a triangular 

pitch layout with a pitch to diameter ratio of 1.05. The tubes have a 21.1 mm outside diame-

ter and are ~76.2 cm long. Each tube is tightly wrapped with a 1.067 mm diameter stainless 

steel wire at a helical pitch of 30.48 mm (Arwikar K. and Fenech H, 1979). The tube bundle is 
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placed in a hexagonal Plexiglas box with 25.4 mm thick walls. The inner sides of the box are 

each 10.287 cm wide and by squeezing the box with circular clamps, a tight fit between the 

box and the bundle was obtained which eliminates clearances between the wire-wraps of the 

peripheral tubes of the bundle and the inner faces of the box at all points wherever contact is 

made. 

The weighted average ∆p values obtained from the pressure tapping readings have 

been used by Arwikar et al (Arwikar K. and Fenech H, 1979) to calculate friction factors 

which have been plotted against Reynolds number (based on bundle average values of hy-

draulic diameter and velocity) in Fig. 11. For comparison, Fig. 11 also includes standard fric-

tion factor curves for pipes and the curve representing Novendstern correlation for the ex-

perimental bundle. 

 

 

 

 

 

 

Fig. 10. Schematic diagram of the water circulation system: (water, Arwikar et al., 1979 (Ar-
wikar K. and Fenech H, 1979)) 

 

The experimental curve seems to be identical to the laminar pipe curve for very low 

Reynolds numbers (Re < 400), but is slightly higher beyond the value of Re = 400 and the 

transition sets in much earlier (Re ~ 1100) as compared to pipe flow (Re = 2000). The flow 
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seems to be completely turbulent beyond Re > 2000 and the curve does not follow any of the 

turbulent pipe flow curves plotted with relative roughness as a parameter (Arwikar K. and 

Fenech H, 1979).  

 

 

 

 

 

 

Fig. 11. Friction factor versus Reynolds number: (water, Arwikar et al., 1979 (Arwikar K. and 
Fenech H, 1979)) 

 

Based on the data provided in Ref. (Arwikar K. and Fenech H, 1979), corresponding 

calculations were performed with the SIM-ADS code using the various models for wire-

wrapped FA, and the calculation results compared to the experimental data (presented in 

Fig. 11). Fig. 12 shows the comparison of the friction factor values for the wire-wrapped FA 

as calculated using different friction factor correlations (see section 3 and 4) with the experi-

mental data (compare with Fig. 11). As can be seen from Fig. 12, friction factor correlations 

best fitting experimental data are in order (visual inspection): Novendstern, Baxi and Dalle-

Donne (modified), Engel (modified). As it was already mentioned before, Sobolev and 

Novendstern correlations can be used only in turbulent region (Re > 2000). 
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 Fig. 12. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 11): (water, Arwikar et al., 1979) 

 

6.4 Chiu et al., 1979 (Chiu C. et al, 1979) water experiments 

Friction factor measurement results for wire wrapped fuel bundle as obtained by Chiu 

et al (Chiu C. et al, 1979) were presented by Carajilescov et al in Ref. (Carajilescov P. and 

Fernandez E. F., 1999) (see Fig. 13). Along with the experimental data, Fig. 13 also presents 

calculation results by Carajilescov et al (curves – ‘Present Method’) using their own devel-

oped method for friction factor calculation in wire-wrapped rod bundles (Carajilescov P. and 

Fernandez E. F., 1999), as well as calculation results obtained using friction factor correla-

tions proposed by Hawley, Engel and Novendstern. Rod bundle parameters for the Chiu et al 

(Chiu C. et al, 1979) experimental setup are: number of pins/rods is 61, pitch to diameter 

ratio is 1.063, wire lead length to diameter ratio is 8.0 and pin/rod diameter is 12.73 mm. 
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Fig. 13. Comparison of results for bundle average friction factors: (water, Chiu et al., 1979 
(Chiu C. et al, 1979; Carajilescov P. and Fernandez E. F., 1999)) 

 

Based on the Chiu et al (Chiu C. et al, 1979) data provided in Ref. (Carajilescov P. 

and Fernandez E. F., 1999), corresponding calculations were performed with the SIM-ADS 

code and the calculation results compared to the experimental data (presented in Fig. 13). 

Fig. 14 shows the comparison of the friction factor values for the wire-wrapped FA as calcu-

lated using different friction factor correlations (see section 3 and 4) with the experimental 

data (compare with Fig. 13). As can be seen from Fig. 14, friction factor correlations best 

fitting experimental data are in order: Rehme and Sobolev. As it was already mentioned be-

fore, Sobolev and Novendstern correlations can be considered only in turbulent region (Re > 

2000). 
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Fig. 14. Comparison of the SIM-ADS calculated and the experimental friction factor values 
for the wire-wrapped fuel assembly (compare with Fig. 13): (water, Chiu et al., 1979) 

 

6.5 Tong/Bishop, 1968 (Tong L.S., 1968) water experiments 

Friction factor measurement results for wire wrapped fuel bundle as obtained by 

Tong/Bishop (Tong L.S., 1968) were presented by Carajilescov et al in Ref. (Carajilescov P. 

and Fernandez E. F., 1999) (see Fig. 15). Along with the experimental data, Fig. 15 also pre-

sents calculation results by Carajilescov et al (curves – ‘Present Method’) using their own 

developed method for friction factor calculation in wire-wrapped rod bundles (Carajilescov P. 

and Fernandez E. F., 1999). Rod bundle parameters for the Tong/Bishop (Tong L.S., 1968) 

experimental setup are: number of pins/rods is 19, pitch to diameter ratio is 1.205, wire lead 

length to diameter ratios are 8, 16 and 24; pin/rod diameter is assumed to be 12.73 mm (as 

no information is provided in Ref. (Carajilescov P. and Fernandez E. F., 1999)). 
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Fig. 15. Comparison of results for bundle average friction factors: (water, Tong/Bishop, 1968 
(Carajilescov P. and Fernandez E. F., 1999; Tong L.S., 1968)) 

 

Based on the Tong/Bishop (Tong L.S., 1968) data provided in Ref. (Carajilescov P. 

and Fernandez E. F., 1999), corresponding calculations were performed with the SIM-ADS 

code and the calculation results compared to the experimental data (presented in Fig. 15). 

Figs. 16 and 17 shows the comparison of the friction factor values for the wire-wrapped FA 

as calculated using different friction factor correlations (see section 3 and 4) with the experi-

mental data (compare with Fig. 15). As can be seen from Figs. 16 and 17, friction factor cor-

relations best fitting experimental data are in order: Rehme and Engel (modified).  
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Fig. 16. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 15, case H/D=8): (water, 
Tong/Bishop, 1968) 

 

 

 

 

 

 

 

Fig. 17. Comparison of the SIM-ADS calculated and the experimental friction factor values 
for the wire-wrapped fuel assembly (compare with Fig. 15, case H/D=16): (water, 
Tong/Bishop, 1968) 
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6.6 Marten et al., 1982 (Marten K., Yonekawa S. and Hoffmann H, 1982) water 
experiments 

Friction factor measurement results for wire wrapped fuel bundle as obtained by Mar-

ten et al (Marten K., Yonekawa S. and Hoffmann H, 1982) were presented by Cheng and 

Todreas in Ref. (Cheng S.K. and Todreas N.E., 1986) (see Fig. 18). Along with the experi-

mental data, Fig. 18 also presents calculation results by Cheng and Todreas (curves – ‘Pro-

posed Correlation’) using their own developed method for friction factor calculation in wire-

wrapped rod bundles (Cheng S.K. and Todreas N.E., 1986). Rod bundle parameters for the 

Marten et al (Marten K., Yonekawa S. and Hoffmann H, 1982) experimental setup are: num-

ber of pins/rods is 37, pitch to diameter ratios are 1.041, 1.072 and 1.101, wire lead length to 

diameter ratios are 17.01, 7.78 and 12.31, correspondingly; pin/rod diameter is assumed to 

be 12.0 mm (as no information is provided in Ref. (Cheng S.K. and Todreas N.E., 1986)). 

 

 

 

 

 

 

 

 

Fig. 18. Comparison between experimental data and predictions for wire-wrapped bundle 
friction factor: (water, Marten et al., 1982 (Marten K., Yonekawa S. and Hoffmann H, 
1982; Cheng S.K. and Todreas N.E., 1986)) 
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Based on the Marten et al (Marten K., Yonekawa S. and Hoffmann H, 1982) data pro-

vided in Ref. (Cheng S.K. and Todreas N.E., 1986), corresponding calculations were per-

formed with the SIM-ADS code and the calculation results compared to the experimental 

data (presented in Fig. 18). Figs. 19 and 20 shows the comparison of the friction factor val-

ues for the wire-wrapped FA as calculated using different friction factor correlations (see sec-

tion 3 and 4) with the experimental data (compare with Fig. 18). As can be seen from Figs. 

19 and 20, friction factor correlations best fitting experimental data are in order: Novendstern 

and Sobolev. As it was already mentioned before, Sobolev and Novendstern correlations can 

be used only in turbulent region (Re > 30009). 

 

 

 

 

 

 

 

 

 

 Fig. 19. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 18, case P/D=1.041; 
H/D=17.01): (water, Marten et al., 1982) 
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Fig. 20. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 18, case P/D=1.101; 
H/D=12.31): (water, Marten et al., 1982) 

 

6.7 Itch, 1981 (Cheng S.K., 1984) water experiments 

Friction factor measurement results for wire wrapped fuel bundle as obtained by Itch 

(Cheng S.K., 1984) were presented by Cheng and Todreas in Ref. (Cheng S.K. and Todreas 

N.E., 1986) (see Fig. 21). Along with the experimental data, Fig. 21 also presents calculation 

results by Cheng and Todreas (curves – ‘Proposed Correlation’) using their own developed 

method for friction factor calculation in wire-wrapped rod bundles (Cheng S.K. and Todreas 

N.E., 1986). Rod bundle parameters for the Itch (Cheng S.K., 1984) experimental setup are: 

number of pins/rods are 127 and 169, pitch to diameter ratios are 1.176 and 1.214, wire lead 

length to diameter ratios are 38.0 and 47.39, correspondingly; pin/rod diameter is assumed 

to be 12.0 mm (as no information is provided in Ref. (Cheng S.K. and Todreas N.E., 1986)). 
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Fig. 21. Comparison between experimental data and predictions for wire-wrapped bundle 
friction factor: (water, Itch, 1981 (Cheng S.K. and Todreas N.E., 1986; Cheng S.K., 
1984)) 

 

Based on the Itch (Cheng S.K., 1984) data provided in Ref. (Cheng S.K. and Todreas 

N.E., 1986), corresponding calculations were performed with SIM-ADS code and the calcula-

tion results compared to the experimental data (see Fig. 21). Figs. 22 and 23 shows the 

comparison of the friction factor values for the wire-wrapped FA as calculated using different 

friction factor correlations (see section 3 and 4) with the experimental data (compare with 

Fig. 21). As can be seen from Figs. 22 and 23, friction factor correlations best fitting experi-

mental data are in order: all correlations – excellent fit, except Engel (modified) – good fit. As 

it was already mentioned before, Sobolev and Novendstern correlations can be considered 

only in turbulent region (Re > 3000). 
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Fig. 22. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 21, case 127-pin, P/D=1.176; 
H/D=38.0): (water, Itch, 1981) 

 

 

 

 

 

 

 

 

Fig. 23. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 21, case 169-pin, P/D=1.214; 
H/D=47.39): (water, Itch, 1981) 
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6.8 Spencer, 1980 (Cheng S.K., 1984) water experiments 

Friction factor measurement results for wire wrapped fuel bundle as obtained by 

Spencer (Cheng S.K., 1984) were presented by Cheng and Todreas in Ref. (Cheng S.K. and 

Todreas N.E., 1986) (see Fig. 21). Along with the experimental data, Fig. 21 also presents 

calculation results by Cheng and Todreas (curves – ‘Proposed Correlation’) using their own 

developed method for friction factor calculation in wire-wrapped rod bundles (Cheng S.K. and 

Todreas N.E., 1986). Rod bundle parameters for the Spencer (Cheng S.K., 1984) experi-

mental setup are: number of pins/rods is 217, pitch to diameter ratio is 1.252, wire lead 

length to diameter ratio is 51.74; pin/rod diameter is assumed to be 12.0 mm (as no informa-

tion is provided in Ref. (Cheng S.K. and Todreas N.E., 1986)). 

Based on the Spencer (Cheng S.K., 1984) data provided in Ref. (Cheng S.K. and To-

dreas N.E., 1986), corresponding calculations were performed with SIM-ADS code and the 

calculation results compared to the experimental data (see Fig. 21). Fig. 24 shows the com-

parison of the friction factor values for the wire-wrapped FA as calculated using different fric-

tion factor correlations (see section 3 and 4) with the experimental data (compare with Fig. 

21). As can be seen from Fig. 24, friction factor correlations best fitting experimental data are 

in order: Rehme, Novendstern, Sobolev and Cheng-Todreas simplified. As it was already 

mentioned before, Sobolev and Novendstern correlations can be considered only in turbulent 

region (Re > 3000). 
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Fig. 24. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 21, case 217-pin, P/D=1.252; 
H/D=51.74): (water, Spencer, 1980) 

 

6.9 Rehme, 1973 (Rehme K., 1973) water experiments 

Friction factor measurement results for wire wrapped fuel bundles as obtained by 

Rehme (Rehme K., 1973) are presented in Ref. (Rehme K., 1973) in a series of figures. Re-

sults presented in Figs. 4, 5, 6 and 8 of the Ref. (Rehme K., 1973) are analyzed below in this 

report. Experiments on wire-wraps as spacers were conducted in a water loop the water of 

which was circulated by a centrifugal pump (mass flow rate ~360 m3/h with a differential 

pressure at the test section of ∆p=12 bar) from the storage tank to a cooler, where the heat 

added in the pump was removed and then forced through the horizontal test section. The 

amount of water passing through the test section was controlled partly by a bypass and 

partly by throttling. The length of the test section was 1500 mm. The stainless steel rods of a 

diameter 12 mm and length 940 mm were inserted into a hexagonal channel. The polished 

surface of the cores resulted in a perfectly smooth surface of the channel (Rehme K., 1973).  
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Systematic measurements of the pressure loss performance of the wire wrapped rod 

bundles in hexagonal arrays were carried out by K. Rehme. The important parameters varied 

in that study are the pitch-to-diameter ratio of the rods by using different wire diameters with 

the same rod diameter, the lead of the wire wraps and the number of rods in the rod bundles. 

The pitch-to-diameter ratio studied ranged between 1.125 and 1.417, the lead of the wire 

wraps between 100 and 600 mm, and the number of rods between 7 and 61 rods (Rehme K., 

1973). 

The first set of the Rehme experimental data analyzed here - Fig. 25 demonstrates 

the effect of different leads of wire wraps on the friction factor for 19 rods and the highest 

pitch-to-diameter ratio tested - 1.417. It is obvious that the friction factor increases with de-

creasing wire wraps pitch. One can see a strong increase in the friction factor with a high 

pitch-to-diameter ratio of the rods (Rehme K., 1973).   

 

 

 

 

 

 

 

 

Fig. 25. Friction factor f as a function of the Reynolds number Re for different leads of wire 
wraps. Test parameters: pitch-to-diameter ratio 1.417, 19 rods bundle (Fig. 4, 
(Rehme K., 1973)): (water, Rehme, 1973) 
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Based on the Rehme experimental data (see Fig. 25) provided in Ref. (Rehme K., 

1973), corresponding calculations were performed with SIM-ADS code and the calculation 

results compared to the experimental data (presented in Fig. 25). Figs. 26 and 27 shows the 

comparison of the friction factor values for the wire-wrapped FA as calculated using different 

friction factor correlations (see section 3 and 4) with the experimental data (compare with 

Fig. 25). As can be seen from Figs. 26 and 27, friction factor correlations best fitting experi-

mental data are in order: Rehme and Sobolev. 

 

 

 

 

 

 

 

 

 Fig. 26. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 25, case 19-rods, P/D=1.417; 
wire lead length 300 mm): (water, Rehme, 1973) 
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Fig. 27. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 25, case 19-rods, P/D=1.417; 
wire lead length 600 mm): (water, Rehme, 1973) 

 

The second set of the Rehme experimental data analyzed here - Fig. 28 demon-

strates again the effect of different leads of wire wraps on the friction factor for 19 rods and 

the lowest pitch-to-diameter ratio tested – 1.125. It is obvious that the friction factor increase 

with decreasing wire wraps pitch is smaller with a smaller pitch-to-diameter ratio of the rods. 

This fact can be explained by the decreasing blockage of the flow area caused by the wire 

wraps with decreasing pitch-to-diameter ratio of the rods (Rehme K., 1973). 
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Fig. 28. Friction factor f as a function of the Reynolds number Re for different leads of wire 
wraps. Test parameters: pitch-to-diameter ratio 1.125, 19 rods bundle (Fig. 5, 
(Rehme K., 1973)): (water, Rehme, 1973) 

 

Based on the Rehme experimental data (see Fig. 28) provided in Ref. (Rehme K., 

1973), corresponding calculations were performed with SIM-ADS code and the calculation 

results compared to the experimental data (presented in Fig. 28). Figs. 29 and 30 shows the 

comparison of the friction factor values for the wire-wrapped FA as calculated using different 

friction factor correlations (see section 3 and 4) with the experimental data (compare with 

Fig. 28). As can be seen from Figs. 29 and 30, friction factor correlations best fitting experi-

mental data are in order: Rehme – excellent fit, others – good fit. 
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Fig. 29. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 28, case 19-rods, P/D=1.125; 
wire lead length 200 mm): (water, Rehme, 1973) 

 

 

 

 

 

 

 

 

Fig. 30. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 28, case 19-rods, P/D=1.125; 
wire lead length 300 mm): (water, Rehme, 1973) 
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The third set of the Rehme experimental data analyzed here - Fig. 31 demonstrates 

more clearly the effect of different pitch-to-diameter ratio on the friction factor for 7 rods and 

the smallest pitch of wire wraps (100 mm) configuration as a function of Reynolds number. 

The dependence of pitch-to-diameter ratio on the friction factor is much stronger for smaller 

pitch of wire wraps value (100 mm) than for higher pitch of wire wraps value (e.g. 600 mm) 

(Rehme K., 1973). 

 

 

 

 

 

 

 

Fig. 31. Friction factor f as a function of the Reynolds number Re for different pitch-to-
diameter ratios. Test parameters: lead of the wire-wrap 100 mm, 7 rods bundle (Fig. 
6, (Rehme K., 1973)): (water, Rehme, 1973) 

 

Based on the Rehme experimental data (see Fig. 31) provided in Ref. (Rehme K., 

1973), corresponding calculations were performed with SIM-ADS code and the calculation 

results compared to the experimental data (presented in Fig. 31). Figs. 32 and 33 shows the 

comparison of the friction factor values for the wire-wrapped FA as calculated using different 

friction factor correlations (see section 3 and 4) with the experimental data (compare with 

Fig. 31). As can be seen from Figs. 32 and 33, friction factor correlations best fitting experi-

mental data are in order: Rehme and Sobolev. 
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Fig. 32. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 31, case 7-rods, P/D=1.343; 
wire lead length 100 mm): (water, Rehme, 1973) 

 

 

 

 

 

 

 

Fig. 33. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 31, case 7-rods, P/D=1.275; 
wire lead length 100 mm): (water, Rehme, 1973) 
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The fourth set of the Rehme experimental data analyzed here - Fig. 34 demonstrates 

how the friction factor depends on the number of rods in a rod bundle. The friction factor in-

creases with increasing number of rods. This effect can be explained by the fact that the in-

fluence of the smooth channel wall results in a lower pressure loss. Since rod bundles with 

only a few rods include a relatively higher part of channel wall with respect to the total wetted 

perimeter, the total pressure drop is lower (Rehme K., 1973). 

 

 

 

 

 

 

 

 

Fig. 34. Friction factor f as a function of the Reynolds number Re for different numbers of 
rods in a rod bundle. Test parameters: pitch-to-diameter ratio 1.275, lead of the 
wire-wrap 150 mm for the upper 3 curves and 600 mm for the lower 3 curves (Fig. 8, 
(Rehme K., 1973)): (water, Rehme, 1973) 

 

Based on the Rehme experimental data (see Fig. 34) provided in Ref. (Rehme K., 

1973), corresponding calculations were performed with SIM-ADS code and the calculation 

results compared to the experimental data (presented in Fig. 34). Figs. 35 and 36 shows the 

comparison of the friction factor values for the wire-wrapped FA as calculated using different 
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friction factor correlations (see section 3 and 4) with the experimental data (compare with 

Fig. 34). As can be seen from Figs. 35 and 36, friction factor correlations best fitting experi-

mental data are in order: Rehme and Sobolev. 

 

 

 

 

 

 

 

 

 

Fig. 35. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 34, case 19-rods, P/D=1.275; 
wire lead length 150 mm): (water, Rehme, 1973) 
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Fig. 36. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 34, case 19-rods, P/D=1.275; 
wire lead length 600 mm): (water, Rehme, 1973) 

 

6.10 Vijayan et al., 1999 (Vijayan P.K. et al, 1999) water experiments 

Two different test facilities, one a low pressure facility (7 bar) and the other one a high 

pressure, high temperature facility (125 bar, 300 °C) were used for the experiments de-

scribed in Ref. (Vijayan P.K. et al, 1999). The low pressure facility was used for generating 

low and medium Reynolds number data (up to ~50,000) whereas the high pressure facility 

was used to generate high Reynolds number (10,000 to 550,000) data. Both these facilities 

had more or less similar features in the context of their use for pressure drop experiments.  

The schematic of the low pressure flow test facility used by Vijayan et al (Vijayan P.K. 

et al, 1999) to measure the pressure drop in a 19-rod wire wrapped fuel bundle is shown in 

Fig. 37. This facility has the possibility to connect any test section between the flanges of the 

suction and discharge headers of the pumps. Two centrifugal pumps in parallel with the flexi-

bility to operate either one or both are provided to circulate the flow through the loop. The 
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test section flow can be adjusted to the required value with the help of control valves at the 

inlet and outlet (Vijayan P.K. et al, 1999). 

 

 

 

 

 

 

 

 

 

Fig. 37. Schematic of the low pressure flow test facility : (water, Vijayan et al., 1999 (Vijayan 
P.K. et al, 1999)) 

 

Experiments were carried out in a prototype fuel channel with 12 fuel bundles stacked 

one after another. The experiments were carried out in two stages. In the first stage, pres-

sure drop under normal operating conditions was measured in a high pressure, high tem-

perature facility covering a Reynolds number range of 10,000 ± 330,000. Later, experiments 

were carried out in the low pressure test facility to generate pressure drop data in the Rey-

nolds number range of 70÷50,000. All the experiments were carried out with demineralised 

water as the working fluid. The geometric details of the fuel channel and the bundles used 

are the following: channel inside diameter 0.08255 m, flow area 0.0018851 m2, hydraulic 
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diameter 5.88 mm, total wetted perimeter 1.28226 m, number of bundles per channel 12, 

clad outside diameter 15.21 mm, centre-to-centre spacing of elements 16.43 mm, length of 

one bundle 0.4953 m, lead of the wire wrap 0.231775 m, wire diameter ~1.22 mm, wire 

length 0.4877 m, number of wires per bundle 24, pitch to diameter ratio 1.0802, wire lead to 

diameter ratio 15.24. The water flowrate ranged from 0.017 to 18.3 kg/s (Vijayan P.K. et al, 

1999).  

The values of the friction factor obtained from the experimental pressure drop data 

are presented in Fig. 38. The first two curves in Fig. 38 are the curves fitting experimental 

data as proposed by the authors of the Ref. (Vijayan P.K. et al, 1999). The next two curves 

are the curves obtained by Vijayan et al. using Engel et al. and Cheng and Todreas friction 

factor correlations for wire-wrapped FAs while trying to retrace the experimental data.   

 

 

 

 

 

 

Fig. 38. Friction factor data for 19-rod bundle (wire-wrap spacers): (water, Vijayan et al., 
1999 (Vijayan P.K. et al, 1999)) 

 

Based on the data provided in Ref. (Vijayan P.K. et al, 1999), corresponding calcula-

tions were performed with the SIM-ADS code and the calculation results compared to the 

experimental data (presented in Fig. 38). Fig. 39 shows the comparison of the friction factor 
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values for the wire-wrapped FA as calculated using different friction factor correlations (see 

section 3 and 4) with the experimental data (compare with Fig. 38). As can be seen from Fig. 

39, friction factor correlations best fitting experimental data are in order: Cheng-Todreas (de-

tailed), Cheng-Todreas (simplified) and Novendstern. As it was already mentioned before, 

Sobolev and Novendstern correlations can be considered only in turbulent region (Re > 

3000). 

 

 

 

 

 

 

 

Fig. 39. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 38): (water, Vijayan et al., 1999) 
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7 Analysis of the CFD modeling results based on 
Gajapathy et al., 2007 (Gajapathy R. et al., 2007) 
sodium cooled PFBR fuel bundle investigation 

 

The sodium cooled fuel bundle, investigated by Gajapathy et al (Gajapathy R. et al., 

2007) with a CFD code, consists of seven fuel pins of diameter 6.6 mm arranged in a triangu-

lar pitch of 8.28 mm which is that of the Indian Prototype Fast Breeder Reactor (PFBR) under 

construction at Kalpakkam. The width across flat of the hex-can is 24.52 mm. The helical 

wire diameter is 1.65 mm with a lead of 150 mm. Only one pitch height of the helical wire-

wrapped pin bundle is considered. The hydraulic diameter of the bundle with spacer wire is 

4.0 mm and the same for the bundle without spacer wire is 4.9 mm. Reynolds number in this 

study is varied from 1000 up to 100,000. The inlet mass flow rate of sodium and the inlet 

sodium temperature are 1.7 kg/s and 397 °C, respectively. The Reynolds number for this 

flow rate is 86,430 and is well in the turbulent flow regime. The heat flux, 1850 kW/m2, speci-

fied over the surface of the pins corresponds to PFBR FA at full power (Gajapathy R. et al., 

2007). 

The values of the friction factor obtained by Gajapathy et al (Gajapathy R. et al., 

2007) from the CFD study of the seven pin fuel assembly of PFBR with and without wire-

wrap are presented in Fig. 40. 
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Fig. 40. Comparison of pin bundle friction coefficient with and without helical wire-wrap: (so-
dium, Gajapathy et al., 2007 (Gajapathy R. et al., 2007)) 

 

Based on the data provided in Ref. (Gajapathy R. et al., 2007), corresponding calcu-

lations were performed with the SIM-ADS code and the calculation results compared to the 

CFD study data (presented in Fig. 40). Fig. 41 shows the comparison of the friction factor 

values for the wire-wrapped FA, as well as for the case without a wire-wrap, as calculated 

using different friction factor correlations (see section 3 and 4) with the CFD study data 

(compare with Fig. 40). As can be seen from Fig. 41, friction factor correlations best fitting 

CFD study data are: Rehme – excellent fit; Baxi and Dalle-Donne (modified), Engel (modi-

fied) – good fit. 
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Fig. 41. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly, as well as for the case without a wire-wrap (com-
pare with Fig. 40): (sodium, Gajapathy et al., 2007) 

 

8 Analysis of the experimental data by Geffraye, 
2008 (Geffraye G., 2008) based on ESTHAIR air 
experiments 

 

View of the ESTHAIR test loop, as well as the fuel assembly, used by Geffraye et al 

(Geffraye G., 2008) to measure the pressure drop in a 19-pin wire wrapped fuel assembly 

cooled by air is shown in Fig. 42. ESTHAIR air test loop was build by the CEA in the frame of 

GCFR project. ESTHAIR program aims at producing estimations of pressure drop, heat ex-

change coefficients and hot spot risks for the various ETDR fuel assembly concepts. EST-

HAIR experiments analyzed here were performed using air as a coolant and 19 electrically 

heated pins bundle in a hexagonal tube.  
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      a)                      b) 

Fig. 42. a) View of the test loop, b) View of the fuel bundle: (air, ESTHAIR exp. (Berthoux M., 
2006)) 

 

The scaling and the heating characteristics of this 19-pin bundle were such as to have 

Reynolds similitude (Re scale = 1) and the same relative variations of the physical properties 

as in the prototype. Main characteristics of the 19-pin bundle are: scale 2.44, rod diameter 16 

mm, heating length 1.65 m, wire lead 350 mm, pins pitch 19.84 mm, pitch to diameter ratio is 

1.24, wire diameter is 3.84 mm. There were five pressure sensors located along the heated 

length of the pin bundle. Distances for their location from the beginning of the heating length 

are: 0.175 m (first sensor), 4 x 0.35 m between each of the following four sensors. Rod heat-

ing power is adjustable from 0 to 2 kW (Berthoux M., 2006).   
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Experimental data for the 19-pin assembly friction factor values obtained on EST-

HAIR air loop are presented in Fig. 43 (Geffraye G., 2008). This figure shows the friction fac-

tor values versus Reynolds number obtained by the authors of Ref. (Geffraye G., 2008) for 

three test cases: unheated tests and two series of heated tests. Along with the experimental 

data one can see some predictions of the friction factors obtained by the authors of Ref. 

(Geffraye G., 2008) using several different friction factor correlations for smooth and wire-

wrapped FAs. 

 

 

 

 

 

 

Fig. 43. Friction factor vs. Reynolds number as reported in Ref. (Geffraye G., 2008): (air, 
ESTHAIR exp. (Geffraye G., 2008)) 

 

Based on the data provided in Ref. (Geffraye G., 2008), corresponding calculations 

were performed with the SIM-ADS code and the calculation results compared to the experi-

mental data (presented in Fig. 43). Fig. 44 shows the comparison of the friction factor values 

for the wire-wrapped FA as calculated using different friction factor correlations (see section 

3 and 4) with the experimental data (compare with Fig. 43). As can be seen from Fig. 44, 

friction factor correlations best fitting experimental data are in order: Rehme – excellent fit, 

Engel (modified) – good fit. 
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Fig. 44. Comparison of the SIM-ADS calculated and experimental friction factor values for 
the wire-wrapped fuel assembly (compare with Fig. 43): (air, ESTHAIR exp.) 

 

When looking at the friction factor curve in Fig. 44 and Fig. 43, one can see some dif-

ference between the two predictions. The difference here is due to the Re value used when 

calculating friction factor as proposed by Rehme. In Fig. 44 the Rehme friction factor was 

calculated using Re value for the hot SA in wire-wrap configuration, while in Fig. 43 the 

Rehme friction factor was calculated using average Re value for the smooth pin configuration 

not taking into account the existing wire-wrap.  

The latest information on the experimental data for the 19-pin assembly friction factor 

values obtained on ESTHAIR air loop are presented in Fig. 45 (Berthoux M. and Carenza A., 

2008) and should be compared to those as presented in Fig. 43 (Geffraye G., 2008). Again, 

along with the experimental data one can see some predictions of the friction factors ob-

tained by the authors of Ref. (Berthoux M. and Carenza A., 2008) using several different fric-
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tion factor correlations for smooth, as well as wire-wrapped FAs. The only difference be-

tween the two figures is that now authors of Ref. (Berthoux M. and Carenza A., 2008) used 

the modified Re value (Re value for the hot SA in wire-wrap configuration) when calculating 

friction factor as proposed by Rehme. This now nicely corresponds also to our predictions as 

shown in Fig. 44 (friction factor values obtained using the Rehme correlation).  

 

 

 

 

 

 

 

Fig. 45. Friction factor measured on the 4th winding pitch. Comparison with existing correla-
tions: (air, ESTHAIR exp. (Berthoux M. and Carenza A., 2008)) 

 

Once again it should be stressed here, that in all friction factor correlations presented 

in sections 3 and 4 of this report, all FA parameters used in these correlations should be 

taken for wire-wrap configuration and Re should be taken for the hot SA in wire-wrap con-

figuration as well. Only under those conditions could good agreement be obtained between 

calculated friction factor values and the existing experimental data.  
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9 Summary and conclusions 

This report presents an overview of the existing wire-wrapped fuel bundle friction fac-

tor/pressure drop correlations and a qualitative evaluation which of the existing friction factor 

correlations is most appropriate in universally retracing the results of a large set of openly 

available experimental data on wire-wrapped fuel assemblies using different coolants. 

For a qualitative estimation of the applicability of the various proposed wire-wrapped 

correlations, the following preliminary, somewhat arbitrary scheme, based on “engineering 

judgment, (i.e. visual inspection)”, was used (see Table 1) until a more rigorous, scientific 

methodology is applied: a “3” was assigned in a case when really excellent agreement was 

observed between calculation results and the experimental data; a “2” was assigned in a 

case when good agreement was observed between calculation results and the experimental 

data; a “1” was assigned in a case when agreement between calculation results and the ex-

perimental data was only acceptable, and a “0” was assigned in a case when unsatisfactory 

agreement was observed between calculation results and the experimental data. Following 

this judgmental evaluation scheme, all the calculational results trying to retrace the available 

experimental data sets were evaluated, i.e. judged, and are summarized in Table 1. 

A general conclusion was subsequently attempted which is the most appropriate, uni-

versally applicable friction factor correlation (model) fitting best the available experimental 

data. For the various coolants the following ordering was deduced from Table 1:  

For water tests:  Rehme, Sobolev, Novendstern, Engel (modified); 

For air tests:  Rehme, Engel (modified); 

For sodium tests:  Rehme, Engel (modified), Baxi and Dalle-Donne (modified). 
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Table. 1. Judgmental evaluation (engineering judgment) of different friction factor correlations against experimental data sets  

 

 

 

 

 

 

 

 

 

 

Water tests Air test Sodium
Wire-wrapped FA Choi et al Chun et al Arwikar et al Chiu 1979 Tong 1968 Marten et al Itch 1981 Spencer 1980 Vijayan et al ESTHAIR Indian

fric. fact. correlation N 271 19 61 61 19 37 127; 169 217 19 19 7 7-37 19 19 7
P/D 1.2 1.256 1.05 1.063 1.205 1.041-1.101 1.176; 1.214 1.252 1.417 1.125 1.125-1.417 1.275 1.0802 1.24 1.255
H/D 24.84 25 14.45 4; 8 8; 16; 24 8.34-17.01 38; 47.39 51.74 8.33-50 8.33-33.33 8.33 12.5; 50 15.24 21.88 22.73

7-217
Rehme 1.1-1.42 3 2 2 3 3 2 3 3 3 3 2 2 1 3 3

8-50
19-217

Novendstern 1.06-1.42 3 2 3 2 1 3 3 3 2 2 0 1 2 0 1
8-96

Sobolev 2 2 2 3 1 3 3 3 3 2 2 2 1 0 1

Baxi Dalle-Donne (modif.) 2 2 3 2 0 2 3 2 2 2 0 1 1 0 2

19-61
Engel et al (modif.) 1.067-1.082 3 3 3 1 2 1 2 2 1 2 1 1 1 2 2

7.7-8.0
7-217

Cheng-Todreas simpl. 1.067-1.35 2 2 2 1 0 2 3 3 2 2 0 1 2 0 0
4-52
7-217

Cheng-Todreas detail. 1.067-1.35 2 2 2 1 0 2 3 2 0 1 0 0 3 0 0
4-52

Antonucci algorithm 2 2 2 2 1 2 3 3 0 0 0 0 1 0 1

Correlation boundaries Best correlations fitting experimental data
Rehme Re = 2000 - 300000 Water tests: Rehme, Sobolev, Novendstern, Engel (modif.) Evaluation: 3 excellent agreement
Novendstern; Sobolev Re = 2600 - 200000 Air test: Rehme, Engel (modif.) 2 good agreement
Engel Re =  400 - 100000 Sodium test: Rehme, Engel (modif.), Baxi Dalle-Donne (modif.) 1 acceptable agreement
Cheng-Todreas Re =   50 -  100000 General: Rehme, Sobolev, Novendstern, Engel (modif.), Baxi Dalle-Donne (modif.) 0 unsatisfactory agreement

Parameter Rehme 1973
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Generally, the friction factor correlations providing a good fit to most of the available 

experimental data analyzed in this report (for three types of coolants) are in order: Rehme, 

Sobolev, Novendstern, Engel (modified), Baxi and Dalle-Donne (modified). 

Based on the above statement, one can state that the friction factor correlation pro-

viding generally a good fit to all the various experimental data sets for different wire-wrapped 

rod/fuel bundle configurations and different coolants is the Rehme friction factor correlation 

for wire-wraps. We thus recommend that the Rehme friction factor correlation should there-

fore be used in the thermalhydraulic evaluations in the estimation of the pressure drops in 

wire-wrapped rod/fuel bundles for all reactor types, i.e. coolants. 
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Annex A Nomenclature 

A – axial average (total) flow area, (m2) 

Ai – flow area of i-th sub-channel, (m2) 

BWR – boiling water reactor 

Dr – rod diameter, (m) 

Dw – wire (spacer) diameter, (m) 

De – bundle equivalent hydraulic diameter, (m) 

DHRS – decay heat removal system 

ETDR – Experimental Technology Demonstration Reactor  

f – friction factor 

FA – fuel assembly 

FM – flow meter 

GCFR – Gas Cooled Fast Reactor 

H – wire lead length (pitch), (m) 

HX – heat exchanger 

K – friction coefficient 

L – axial length of FA, (m) 

LBE – lead-bismuth eutectic 
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LWR – light water reactor 

Ni – number of i-th sub-channels 

Nr – number of fuel pins 

p – pressure,  (Pa) 

Pt = Dr + 1.0444 * Dw  – rod pitch for wire-wrap configuration, (m) 

Pw – wetted perimeter, (m) 

PFBR – (Indian) Prototype Fast Breeder Reactor 

PWR – pressurized water reactor 

Re – Reynolds number (for hot SA and wire-wrap configuration) 

Res – Average Reynolds number for non-wire-wrap configuration of the fuel bundle 

St – total wetted perimeter, (m) 

Tw – wall temperature, (K) 

TB – coolant bulk temperature, (K) 

v – bundle average flow velocity, (m/s) 

X – flow split parameter 

ρ - density, (kg/m3) 

μ – dynamic viscosity, (Pa·s) 

ψ – intermittency factor 
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Annex B Subscripts  

1, 2, 3 – denote center, side and corner sub-channels, respectively 

i – index of sub-channel type 

l, L – laminar 

t, T – turbulent 
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