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Abstract 
 
 
This work focuses on the study of the electronic properties of carbon nanotubes 
(CNTs) and their composites. Most attention is paid to influences related to the 
application of CNTs that can change their electronic properties, i.e. the tube-tube 
interaction (by bundling), temperature effects, and doping with Boron and Nitrogen. 
These effects were studied with Resonance Raman Scattering (RRS).  
 
The tube-tube interaction was investigated by combining the methods of RRS and 
High Resolution Transmission Electron Microscopy. With this study it was possible 
to establish a functional dependence between the relative Raman intensities and the 
nanotube bundle sizes.  

For the description of the tube-tube interaction a phenomenological model was 
developed that can be used for the characterization of samples with unknown tube 
distribution. This model allows also revealing the electronic energy changes induced 
by temperature.  

A large part of this work was devoted to the synthesis of new nano-materials. BNC-
nanotubes with various element compositions were synthesized and studied using 
Energy Dispersive X-ray Analysis giving the B and N content.  



Zusammenfassung 
 
 
Modifikation der elektronischen Eigenschaften von Kohlenstoff-
Nanoröhren durch Bündelung, Temperatur und Dotierung mit 

Bor und Stickstoff: 
Eine Untersuchung mit resonanter Ramanstreuung 

 

In dieser Arbeit werden die elektronischen Eigenschaften von Kohlenstoffnanoröhren 
(CNTs) und von den hieraus abgeleiteten Materialien untersucht. Von besonderem 
Interesse waren dabei anwendungsrelevante Einflüsse, die die elektronischen 
Zustände von Nanoröhren verändern, wie die Wechselwirkung von CNTs bei 
Bündelung, thermische Effekte sowie der Einfluss von Dotierung mit Bor und 
Stickstoff. Diese Effekte wurden mittels resonanter Ramanstreuung (RRS) untersucht. 

Zur Untersuchung von Bündelungseffekten wurde die RRS mit der hochauflösenden 
Transmissionselektronenmikroskopie kombiniert. Mit Hilfe dieser Untersuchungen 
gelang es erstmals, einen funktionalen Zusammenhang zwischen Raman-Intensität 
und Bündelgröße zu finden.  

Zur Beschreibung von Wechselwirkungseffekten zwischen CNTs in Bündeln wurde 
ein phänomenologisches Modell entwickelt, das zur Charakterisierung von Proben mit 
unbekannten CNT-Bündelungen eingesetzt werden kann. Das Modell beschreibt auch 
die durch thermische Effekte hervorgerufenen Änderungen der elektronischen 
Übergangsenergien. 

Ein weiterer Teil der Arbeit war der Herstellung dotierter Nanomaterialien gewidmet. 
Insbesondere wurden BNC-Nanoröhren mit verschiedener elementarer Zusammen-
setzung synthetisiert und untersucht. Die Zusammensetzung konnte mittels der 
Methode der energiedispersiven Röntgenspektroskopie bestimmt werden. 
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Chapter 1  

Introduction 

The fascinating era of carbon nanomaterials science started in 1991 when carbon 
nanotubes (CNTs) were first reported by Iijima [1] in their multi-walled form. These 
newly discovered objects were expected to have unique physical properties caused by 
their one-dimensional structure.  

With a shape of hollow cylinders made of one or more graphite sheets, carbon 
nanotubes are typically several µm in length and about 1 nm in diameter. Along the 
cylinder axis they can therefore be regarded as infinitely long (≈ 104 atoms per 1 µm) 
whereas their circumference contains only very few atoms (≈ 20). Such a unique one-
dimensional nature makes the electronic properties of carbon nanotubes very specific.  

Moreover, two carbon nanotubes with equal diameters can have completely different 
electronic properties: either metallic or semiconducting depending only on the 
individual geometric structure. In particular, taking into account all possible ways to 
roll up the graphite sheet into a closed cylinder, one finds that in general, 2/3 of all 
nanotube structures will be semiconducting and 1/3 will be metallic. 

Shortly after the discovery, carbon nanotubes were found to exhibit remarkable 
physical properties such as the ability to conduct huge electrical current densities up 
to 109 A/cm2 [2, 3], or their extraordinary mechanical strength. The elastic modulus of 
the nanotube rope is ≈ 1 TPa and its shear modulus is approximately 1 GPa [4, 5]. 
Strong band gap photoluminescence of individual semiconducting CNTs [6], electron 
transport properties [7] and field-emission characteristics [8] made them very 
promising objects from the application point of view. Some electronic devices based 
on single nanotubes such as field-effect transistors [9] have been recently developed. 
Due to the large aspect ratio the nanotubes can be used as tips for scanning electron 
microscopy and magnetic force microscopy [10, 11]. Some of the application ideas 
such as nanotube-based displays, X-ray sources, lamps, amplifiers, and 
electrochemical composites, have been already realized on an industrial scale. 

A comprehensive study of these nano-objects is important not only because of their 
possible applications but also because many intriguing fundamental phenomena 
appear in low-dimensional physics, for instance one-dimensional singularities in the 
density of states [12, 13], Luttinger liquid behaviour [13], and the zero-dimensional 
effect of Coulomb blockade [14]. 

The application of carbon nanotubes defines its own distinct research challenges, e.g. 
in order to achieve the cheap production of high-quality material with given electronic 
properties in large amounts. A major difficulty in the nanotube synthesis up to now is 
the variety of nanotube structures obtained in one production batch.  

In the last few years great success was achieved in the preparation and treatment of 
carbon nanotubes. A multitude of novel methods was discovered that allow handling 
and studying the nanotubes more precisely and conveniently. These are for example 
the method of separation of metallic tubes from the semiconducting ones by 
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electrophoresis [15], the controlled growth of tubes with desired properties [16], and 
the separation of the tubes from bundles inside organic micelles in solutions [6, 17]. 

The study of the effects which are important for application of nanotubes is the 
subject of this thesis. The application requirements, in particular, those of 
nanoelectronics, stimulated a strong interest to factors which can influence the 
electronic properties of carbon nanotubes. The present work, therefore, concentrates 
on studying several of those factors: the tube-tube interaction (bundling effects), 
temperature effects, and the effects of B- and N-doping. 

Since the nanotubes produced by most of the preparation methods are always joined 
in large or small bundles, the tube-tube interaction is an important factor to study. In 
general the interaction with the environment is known to modify the electronic 
properties of carbon nanotubes. In particular, it decreases the band gap values of the 
semiconducting tubes [18]. However, the correlation between the nanotube bundle 
size and the electronic energy shifts had not been studied in detail up to now. The 
knowledge of such a functional relationship would help to estimate, for example, the 
change in the emission characteristics of a semiconducting nanotube bundle of a 
certain size compared to the emission of a single nanotube.  

Temperature is another factor which plays an important role in the nanoelectronic: the 
nanotubes are expected to work in a wide temperature range. Despite the theoretically 
predicted effect of how temperature affects the electronic properties of 
semiconducting CNTs [19] it is not yet well established experimentally.  

Doping CNTs with B and N atoms was theoretically predicted to modify the nanotube 
electronic band structure very specifically. Variation of the element composition of a 
carbon nanotube will result in “tuning” of its electronic properties [20 – 22]. In this 
way, materials with metallic, semiconducting or insulating characteristics can be 
produced.  

Focusing on these important effects, the thesis is organized as follows:  
An introduction to the structure and geometry of carbon nanotubes and their 
electronic properties is given in Chapter 2 and Chapter 3. Here, the tight-binding 
model and zone folding approximation are considered. Chapter 4 presents the basics 
of the resonance Raman scattering in carbon nanotubes, and discusses its advantages 
for the nanotube characterization. The experimental results are presented in Chapters 
5, 6, and 7.  

Chapter 5 is devoted to the resonance Raman study of the influence of the tube-tube 
interaction on the electronic band structure of both semiconducting and metallic 
CNTs. A phenomenological model is developed that allows describing the Raman 
intensities observed in terms of tube-tube interaction. 

Chapter 6 presents a study of the temperature effects in CNTs using the resonance 
Raman technique. For the analysis of the results the model of Chapter 5 is modified 
and used. Chapters 5 and 6 are thus interconnected by the phenomenological model 
which can be applied to the description of both the tube-tube interaction and the 
temperature effects.  

Chapter 7 is devoted to the synthesis and the characterization of new exotic nano-
materials. Here the experience in production of boron-carbo-nitride nanostructures 
such as BxNyCz-NTs with different x, y, and z element compositions, single and multi-
walled BN-NTs, BN-nanorods, BN-nanococoons, and some others is summarized. 
Despite the common interest in all those structures and methods of their preparation, 
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most attention is paid to the influence of B- and N-doping on the electronic properties 
of CNTs, which have been used as templates in the synthesis. The electronic 
properties of BxNyCz-NTs were investigated using Raman scattering and Near-
Infrared-Visual-Ultraviolet absorption spectroscopy. 

Finally, Chapter 8 recollects the most important advances gained in the course of this 
work, and closes with some concluding remarks. 

 





Chapter 2  

Geometry and Structure 

Carbon nanotubes can be described as planar sheets of graphite (graphene) rolled up 
into hollow cylinders with a large aspect ratio (i.e. the ratio length/diameter ≈ 104 –
 105). Therefore carbon nanotubes can be considered as one-dimensional objects, 
usually having diameters of about 0.7 – 10 nm and length of several μm.   
There are many possible ways to roll up a graphene “honeycomb” sheet into a 
cylinder with the hexagons to be completed. Fig. 2.1 shows such an example of tube 
construction. Ch is the chiral vector starting at a carbon atom and pointing to another 
atom in the lattice so, that the beginning of the vector coincides with its end. By 
rolling up the hexagonal sheet along the chiral vector one would obtain the tube with 
the circumference equal to the length of the chiral vector Ch. 

(8, 2)zigzag direction

armchair direction

circumference

a1

a2

a1n

a2m
θ

T
(-2, 3)

Ch

O

B

ac-c=0.144nm 

A

C

 
Figure 2.1 The graphene “honeycomb” sheet and the schematically presented nanotube 
which can be obtained by rolling up the sheet along the direction of the chiral vector Ch; the 
cylinder built on the chiral vector Ch (equal to the nanotube circumference) and the 
translation vector T represents the unit cell of a carbon nanotube. 

 
With the sketch of Fig. 2.1 it is easy to specify the main geometric parameters of a 
carbon nanotube: the nanotube axis, i.e. the axis going through the centre of the 
nanotube cylinder parallel to its walls, and the chiral vector Ch, which can be 
expressed as the superposition of n vectors a1 and m vectors a2: 

.21h aaC mn +=  (2.1)
 
Vectors a1, and a2 are called the basis vectors the graphene lattice ([12], [13] and 
[16]). 
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The pair of integers (n, m) gives thus the length of the chiral vector Ch i.e. the 
circumference of the tube: 
 

,22
hhh mnmnaL ++=⋅== CCC  (2.2)

 
where a = 31/2ac-c = 0.246 nm is the length of the graphene basis vectors a1 and a2, and 
ac-c is the nearest-neighbor distance between two carbon atoms in the graphene lattice 
(see Fig. 2.1). The diameter d of a tube can be derived from the tube circumference as 
follows: 

.
ππ

22 mnmnaLd ++
==  

(2.3)

 
The chiral angle θ is defined as the angle between the vectors Ch and a1 (Fig. 2.1). The 
chiral angle denotes the tilt angle of the hexagons with respect to the direction of the 
nanotube axis. Due to the hexagonal symmetry of the graphite honeycomb lattice, the 
chiral angle is restricted to the range of 0300 ≤≤ θ . It can also be defined by the 
(n, m) indices as follows: 

221h

1h

2

2cos
mnmn

mn

++

+
==

aC
aCθ

,
 

(2.4)

 
where a1· a1 = a2·a2 = a2, and a1·a2  = a2/2.                (2.4’) 
All possible nanotube structures can be divided into three classes with respect to their 
chiral angles θ: tubes with θ=00 (so-called zigzag tubes), with θ= ± 300 (armchair 
tubes), and the rest of the tubes with all intermediate chiral angles 0300 << θ (chiral 
tubes). Figure 2.2 schematically shows the structure of the zigzag and the armchair 
tubes. 
 

 
 

(a) Zigzag tube 

 
 

(b) Armchair tube 
 

Figure 2.2 Schematic structure of the zigzag (a) and the armchair (b) tubes. 
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Furthermore, it is important to specify the unit cell of a carbon nanotube. As far as the 
unit cell is a part of a nanotube containing non-equivalent atoms, it can be naturally 
defined as a cylinder built on two vectors Ch and T normal to each other, where T is 
the translation vector parallel to the nanotube axis and corresponding to the first point 
of the graphite lattice through which the vector OB (normal to Ch) passes (Fig. 2.1). 
The translation vector T can be expressed in term of the basis vectors a1 and a2 as 
 

),( 212211 tttt ≡+= aaT . (2.5)
 
Here (t1, t2) are integers which do not have a common divisor except for unity. Using 
Ch·T = 0 and (2.1, 2.4’, and 2.5) one obtains the expressions for the components t1 and 
t2: 

R
1

2
d

nmt +
−= ,  and 

R
2

2
d

mnt +
= , (2.6)

 
where dR is the greatest common divisor of (2m + n) and (2n + m). Or, introducing g 
as the greatest common divisor of n and m, one can express dR [12] as follows: 
  

⎩
⎨
⎧

=
.*3 of multiple a is)(if,3 
,3 of multiple anot  is)(if,

R gn - mg
gn - mg

d  
(2.7)

 
The length of the translation vector is given by 
 

R/3 dLT == T , (2.8)

 
where L is the circumference of the nanotube given by (2.2).  
In Figure 2.1 the unit cell of the graphite is the rhombus specified by the vectors a1 
and a2 and containing two carbon atoms. The nanotube unit cell is the rectangle 
OBAC defined by the vectors Ch and T. The number of hexagons per unit cell of a 
carbon nanotube can be obtained dividing the area of the nanotube unit cell by the 
area of the graphite unit cell (the area of the rhombus is equal to the area of the 
hexagon): 
 

R
2

2

R

22

21

h 2)(2
da
L

d
mnmnN =

++
=

×
×

=
aa
TC

. 
(2.9)

 
It should be noted that each hexagon contains two carbon atoms, therefore the unit 
cell of the carbon nanotube contains 2N carbon atoms. Geometric parameters of the 
zigzag, armchair and chiral tubes are summarized in the Table 2.1. 
 
 
 
 
 
 
 

*Euclid’s law about greatest common divisor properties 
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Table 2.1 Geometric parameters of carbon nanotubes. 
 

Tube 
 

Diameter  
d, nm 

Chiral angle, 
 θ 

Number of 
atoms/unit cell, 

2N 

Translation period, 
T 

zigzag  
(n, 0) 

/πan  00 
n

d
n 44

R

2
=  

a3  

armchair 
(n, n) 

/π3an  300 
n

d
n 412

R

2
=  

a  

chiral  
(n, m) 

π

22 amnmn ++

 

222

2arccos
mnmn

mn

++

+

 
R

22 )(4
d

mnmn ++

 
R

22 )(3
d

mnmna ++

 



Chapter 3  

Electronic Properties 

3.1 Zone-folding approximation and electronic structure of CNTs 

The detailed calculations of the electronic properties of graphene developed within the 
tight-binding model are given in the Appendix. The following section considers what 
happens to the electronic properties of a graphene sheet rolled up along a certain 
direction creating a carbon nanotube. The main parameters of a carbon nanotube were 
determined in Chapter 2. These are the pair of indices (n, m), the chiral vector Ch, the 
chiral angle θ, the tube diameter d, the translation period T, and the unit cell; the 
wavevectors k1 and k2 and the first Brillouin zone of the graphene are also specified in 
the Appendix. 
Figure 3.1 shows the two-dimensional electronic energy dispersion of graphene 
calculated within the tight-binding model in the first Brillouin zone (see the Appendix 
for details). The wavevectors k1 and k2 of graphene take values 
( 32π ;32π lqlq− ], where l = qa is the size of the crystalline lattice, a is the 
lattice constant, and q is the number of unit cells in the whole crystal (Born-v. Karman 
boundary conditions) [12, 13]. 

 

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

M

K’

b1

b2

K
k1

k2

0
a
π

a
π

−
a3

2π
−

a3
2π

Г

a3
4π

0

 
Figure 3.1 The two-dimensional electronic energy dispersion of graphene (presented as 
contour plot) calculated within the tight-binding model in the first Brillouin zone (BZ) of 
graphite (white hexagon); the graphite wavevectors k1 and k2 in the first BZ, the reciprocal 
vectors b1 and b2, and the points of high symmetry Γ, K, K’ and M are also shown. 
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If the size of a crystal l is large, the difference between the values of two neighbouring 
wavevectors 2π/l becomes small, and the wavevectors k1 and k2 can be considered as 
taking continuous values. The unit cell of a carbon nanotube gives rise to the 
wavevectors kz and ⊥k defined by the conditions: 
 

,π2
,0

h

zh

=⋅
=⋅

⊥kC
kC

   
,0
,2πz

=⋅
=⋅

⊥kT
kT

 
(3.1)

 
where kz is parallel to the tube axis z, and ⊥k is directed along the tube circumference. 
In carbon nanotubes the wavevector kz along the tube axis is continuous since the tube 
is considered as infinitely long. The absolute value of the wavevector kz is given by: 
 

T
2π2π

z ==
T

k , (3.2)

 
where T is the translation period. 
In Fig. 3.2 the unit cell of a carbon nanotube defined by the cylinder built on the chiral 
vector Ch and the translation vector T is presented. 
 

T

Ch

kz

⊥k

z, tube axis

T

 
Figure 3.2 Carbon nanotube unit cell defined by the cylinder built on the chiral vector Ch and 
the translation vector T. The wavevector kz along the tube axis z takes continuous values, the 
wavevector ⊥k  along the tube circumference takes discrete values. 
 
The first Brillouin zone of a carbon nanotube extends within the interval (–π/T; π/T] in 
the z - direction. The wavevector kz, therefore, takes continuous values in this interval. 
At the same time, the wavevector along the circumference is quantized, according to 
the boundary condition: 
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μμ
λ

λ
d

kdm
h

2π2π2                  π μ,h ===⇔== ⊥ C
C . 

(3.3)

 
Here λ is the wave length, m = N is an integer, and µ takes values: –N/2 + 1, …0, N/2, 
where N is the number of hexagons in the unit cell. 
The reason for the discreteness of the wavevector along the circumference is the 
following: since the electron (or phonon) states are described with plane waves, the 
circumference of a tube must contain an integer number of those wavelengths (all 
other wavelengths will vanish due to interference). There must be exactly N 
wavevectors whose number is equal to the number of hexagons (not the number of 
atoms!).  
Analysing the confinement of the quasi-continuous graphene wavevectors k1 and k2 
inside the nanotube unit cell (the rolled up piece of the graphene sheet with the size 

TC ×h ), one should use the number of the hexagonal graphite unit cell (with the size 

21 aa ×  equal to the area of a hexagon), as far as this number determines the 

discreteness of the graphite wavevectors. The value 
21

h

aa
TC

×
×

=N  (see eq. 2.9) is 

equal to the number of hexagons in the unit cell of a carbon nanotube, and 
characterizes the discreteness of the nanotube wavevector along the nanotube 
circumference. This results in N discrete values of the wavevector ⊥k in the direction 
of the circumference. The nanotube wavevectors ⊥k and kz can be derived from the 
graphene reciprocal vectors b1 and b2 combining eqs. (2.1), (2.6), (3.1), and also (A8) 
from the Appendix: 
 

2
R

1
R

22 bbk
Nd

nm
Nd

mn +
+

+
=⊥ , (3.4)

21z bbk
N
n

N
m

+−= . 
 

(3.4’)
 

  
The construction of the first Brillouin zone of a zigzag (13, 0) tube is shown in 
Fig. 3.3 as an example. The energy dispersion of graphite in the first Brillouin zone 
(white hexagon) is shown as contour plot; letters Γ, M, and K (K’) denote the high 
symmetry points in the first hexagonal Brillouin zone of the graphite.  
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Figure 3.3 The first Brillouin zone of the zigzag (13, 0) nanotube consists of N = 2n = 26 
parallel lines (inside the reciprocal unit cell of the graphite 21 bb × ) separated by Δ ⊥k = 
2π/an; the values kz vary in the range ( aa 3π ;3π− ]. 
 
The wavevectors ⊥k and kz in the first Brillouin zone of a tube (13, 0) vary in the 
range: 

( ]dd μμ 2 ;2−=⊥k  and ( ]aa 3π ; 3πz −=k , where, µ takes values – N/2 + 1, 
…0, N/2, and N is the number of hexagons in the nanotube unit cell. The vector ⊥k is 
discrete with the step dk /2=Δ ⊥ . Therefore, the first Brillouin zone of (13, 0) 
nanotube consists of N = 26 lines parallel to the z-axis, separated by dk /2=Δ ⊥ , and 
having the length of a3π2z =k .  
This consideration is true for any tube, i.e. the Brillouin zone of a tube is a set of N 
parallel lines in the circumferential direction. The length, the number, and the 
orientation of these lines with respect to the hexagonal graphene Brillouin zone 
depend on the chiral indices (n, m) of a tube. 
The electronic structure of a nanotube can be defined now in its first Brillouin zone. 
The electronic states along the kz -direction are the Bloch functions similar to those of 
three-dimensional crystals. In the ⊥k -direction, however, they are discrete.  
The main idea of the Zone-folding approximation is that the electronic band structure 
of a nanotube is given by the electronic energies E±(kx, ky) of graphene (eqs. (A26) 
and (A27) from the Appendix), but only along the allowed ⊥k lines. 
Therefore, the energy dispersion of a tube corresponds to a set of the cross sections of 
a 3D graphene dispersion E±(kx, ky) appearing due to cutting the plot with the N 
parallel planes related to different values of the wavevector ⊥k  (Fig. 3.4). 
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Figure 3.4 The 3D energy dispersion surface E±(kx, ky) of the graphene cut by N parallel 
planes; the nanotube wavevector kz within the plane takes values ( a3π− ; a3π ); each 
plane corresponds to a certain value of the wavevector dk /2μ=⊥  depending on µ; kx and ky 
are the graphene wavevectors in Cartesian coordinates (in general, not parallel to kz and ⊥k ). 

The graphite is a semi-metallic material with the electronic bands crossing the Fermi 
energy at the K-points. In a nanotube the distances between the parallel lines (or 
planes in Fig. 3.4) corresponding to different values of the ⊥k -wavevectors and the 
orientation of planes are determined by the chiral indices (n, m). For different tubes 
the allowed ⊥k -lines either cross or do not cross the K-point depending on (n, m). 
Tubes with the wavevectors crossing the K- point are metallic. The tubes whose 
allowed wavevectors do not cross the K - point are semiconducting with a moderate 
band gap of about 0.5 eV. 
The geometric condition for the wavevector ⊥k  to cross the K-points (metallic 
properties) is fulfilled when the projection of the vector ΓK on vector Ch in Fig. 3.5 
contains an integer number µ of the ⊥k wavevectors. The distance ΓK defined by the 
vector k equals to (b1 – b2)/3. Therefore: 
 

)()(
3
12π 2121h aabbCk mn +⋅−==⋅ μ . (3.5)
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Figure 3.5 The construction of the Brillouin zone of a nanotube with metallic properties (the 
parallel ⊥k  - lines cross the K-point) (see text for details). 
 
Taking into account eq. (A.8) from the Appendix, one obtains an important relation 
between the numbers µ, n and m: 

)(
3
1 mn −=μ .  

(3.6)

 
This equation gives the condition for a tube with indices (n, m) to have metallic 
properties: the difference (n – m) must be a multiple of 3, then µ is an integer. In the 
case of a semiconducting tube, the wavevector ⊥k can approach the K-point by a 
distance of 1/3d or 2/3d. It follows from possible remainders of (n – m)/3. This means 
that 1/3 of all possible tubes are metallic and 2/3 are semiconducting.  
Finally, the band structure of any nanotube can be evaluated using the energy 
dispersions of graphene (eqs. (A26) and (A27) from the Appendix) together with 
expressions for the nanotube wavevectors ⊥k (3.4) and kz (3.4’). As an example, the 
band structure for the metallic tube (5, 5) is shown in Fig. 3.6. 
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Figure 3.6 Electronic energy dispersion (conduction and valence bands) of the metallic 
zigzag nanotube (5, 5) calculated within the tight-binding model (see text for details). 
 
The set of curves is obtained by cutting the 3D-dispersion surface (Fig. 3.4) with 
N = 5 parallel planes in the kx-direction.  
Here dk /2x μ=  and ky = ( 3π2  ;3π2− ], µ takes values – N/2+1, …0, N/2. The 
electronic transitions occur between the points of the minimum energy in the 
dispersion curves, i.e., near the K-points. These points are important for those physical 
phenomena where the electronic transitions occur, i.e. the photoluminescence or the 
resonance Raman scattering process (see Chapter 4). It is convenient to consider only 
the linear term of the energy dispersion expression (eqs. (A26) and (A27) from the 
Appendix) expanded near the K-point: 
 

kakfskE 02p002p 2
3...)()()( γεγε ±=+−±=

→→
± . 

(3.7)

 
This simplification makes the bands symmetric near the K-point and reduces the 
volume of calculation of the electronic band structure in a first approximation. 

3.2 Electronic density of states for carbon nanotubes 

The electronic density of states (DOS) is defined as the number of available electron 
states for a given energy interval. The DOS is of great importance for many physical 
phenomena like conductivity, optical emission, etc. In carbon nanotubes the one-
dimensional DOS gives rise to the resonant Raman scattering as well as intensive 
interband transitions in the spectra of the optical absorption and emission. The DOS is 
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known to depend strongly on the dimension of the system. Figure 3.7 shows 
schematically the DOS for a three- (3D), two- (2D), one (1D), and zero- (0D)-
dimensional electronic system. In 3D crystals the DOS function above the band gap 
usually rises as the inverse square root of the energy. A two-dimensional DOS 
exhibits a step-like function; in a 1D case it diverges as an inverse square root of the 
energy. Finally, in the zero-dimensional system like an atom the DOS has a delta-
function form [109]. 
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Figure 3.7 Electronic DOS plotted versus energy for three-dimensional (bulk), two-
dimensional (quantum well), one-dimensional (quantum wire, nanotube) and zero-
dimensional (quantum dot) systems (see [109]). 
  
In the general case, the electronic DOS for a 1D object can be written as [23]: 
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Here ki is given by E - E±( ⊥k , kz) = 0, and zkq  = 4π2d/(31/2a0

2) is the total area of the 
nanotube Brillouin zone and E±( ⊥k , kz) is the linear electronic energy dispersion near 
the K-point given by eq. (3.7). After some calculations [13] the DOS function of the 
nanotubes can be expressed as: 
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where a0 is the graphite lattice constant, d is a nanotube diameter, γ0 is the tight-
binding integral (see the Appendix), μ is a discrete number, characterizing the 
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quantized component of the wavevector ⊥k , Eμ is the minimum value of the  μ-th 
energy dispersion. The function g(E, Eμ) is given by: 
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Expression (3.10) leads to the divergence of g(E, Eμ) at E = Eμ, implying that the 
electronic DOS function must have μ critical points with a high amplitude. These 
divergences are called the van Hove singularities (vHs) [24] and play an important 
role in many physical phenomena. In Figure 3.8 the electronic band structure and the 
DOS for two kinds of carbon nanotubes – the metallic and the semiconducting are 
schematically presented.  
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Figure 3.8 Electronic band structure and the DOS function schematically shown for metallic 
nanotubes (a) and semiconducting nanotubes (b); Eµ ≡ E11

SE, E22
SE and Eµ ≡ E11

ME, E22
ME. 

 
Fig. 3.8 (a) shows the energy dispersion of a metallic tube whose bands cross at the 
Fermi energy EF (EF is set as zero energy). These crossing bands result in a non-zero 
DOS at E = 0 (area marked grey in Fig 3.8 (a)). 
The electronic bands of a semiconducting nanotube (Figure 3.8 (b)) do not cross the 
Fermi level. The corresponding DOS has zero value for E < Eμ (see eq. (3.10)).  
Each carbon nanotube has a unique DOS function with a set of individual van Hove 
singularity peaks separated by the energies Eμ = Eii (ii ≡ μ). DOS as well as the 
separation energies Eii are thus the “identity characteristics” of a tube. 
In order to illustrate the manifestation of DOS in CNTs a Kataura plot is presented in 
Figure 3.9. The energy separations Eii between the vHs of all the tubes with all 
possible geometries (n, m) are plotted versus the tube diameter d, in the range of 
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energies [0 – 3eV] and diameters [0 – 3nm]. The separation energy defines the energy 
gap between the minima of the conduction bands and maxima of the valence bands.  
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Figure 3.9 The Kataura plot of the energy separations Eii in DOS as a function of the tube 
diameter d for all the possible tubes in the diameter range [0 – 3 nm] and the energy range 
[0 – 3 eV]; the tight-binding model calculation done with the eq. (A29) from the Appendix. 
For the abbreviation of HipCo and NiCo-tubes see Section 5.1. 
 
The dots in the Kataura plot (energies Eii) form the branches with constant μ, i.e. the 
semiconducting tube branch with μ = 1 (first interband transition energies E11

SE), with 
μ = 2 (second interband transition eneries E22

SE), the metallic tube branch with μ = 1 
(first interband transition energies E11

ME), the semiconducting with μ = 3 …, etc. 

3.3 Models for carbon nanotube assignment 

One of the most important questions in CNT science is how to determine the (n, m) 
structural indices of a tube. It can be done directly from the experiment or with the 
help of a good theoretical model which can transform the experimental data into 
(n, m) indices. 
Several attempts were made to extract the (n, m) – indices from scanning tunnelling 
microscopy (STM) experiments [25, 26] and from Raman scattering experiments [18, 
30, 31], plenty of works are devoted to different assignment models which transform 
the experimental values {Eii, ωRBM} obtained from the Raman experiment [18] or the 
values {E11, E22} obtained from the photoluminescence (PL) experiment [6, 34, 62] 
into (n, m). 
The simplest Tight-Binding (TB) model combined with a Zone-folding (ZF) 
approximation which connects the energies of the electronic transitions Eii of 
individual tubes with their structural indices (n, m) are considered in the Appendix. As 
an example of how the TB model works for the tube assignment, the energy 
separations between the vHs were plotted as a function of the radial breathing mode 
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(RBM) frequency ωRBM (Fig. 3.10). The RBM frequencies were calculated using the 
following semi-empirical relation [13]: 
 

[ ] [ ] 5.12nm /5.223cm -1
RBM += dω . (3.11)
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Figure 3.10 Energy separations Eii between the vHs calculated within the TB model as a 
function of the RBM frequency ωRBM. 
 
From this plot one can obtain the electronic energy Eii (close to the Eexc) 
corresponding to the experimental RBM frequency of a certain tube and determine its 
diameter d using eq. (3.11). Then a pair of indices (n, m) can be extracted from an 
appropriate theoretical model.  
The simplest TB model satisfies only the qualitative description of the nanotube band 
structure. It does not need large computational resources, but it fails in the precise 
assignment of the experimental results. The first principles calculation, however, is 
not able to give a similar Kataura plot (Fig. 3.9) due to a huge volume of 
computation. 
More advanced assignment models were developed recently. These are, for example, 
a modified TB model, where the effect of curvature of the graphene sheet is taken into 
account [33, 34] as well as a TB model extended to the third nearest-neighbour 
carbon atoms [13]. Finally, a great success was achieved with introducing the semi-
empirical formulae for the first and second interband transitions of the 
semiconducting tubes (eq. (3.12) and (3.12’)). These data were derived from 
photoluminescence experiments on individual CNTs in aqueous dispersions [6]. The 
first and second interband transition frequencies (wavenumbers) are given as 
follows [6]: 
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where νii [cm-1] = (Eii [eV] · 107)/1240; A1 =  – 710 cm-1 for (n – m) mod 3 = 1, or 
A1 = 369 cm-1 for (n – m) mod 3 = 2, and A2 = 1375 cm-1 for (n – m) mod 3 = 1 or 
A2 =  1475 cm-1 for (n – m) mod 3 = 2; d is the tube diameter in nm and θ is the chiral 
angle.  
The semi-empirical expressions (3.12) and (3.12’) for the electronic energies provide 
a perfect agreement between theoretical and experimental results [34, 39]. In Fig. 3.11 
three models are compared:  

• (a) a simple tight-binding model; 
• (b) a semi-empirical model [6]; 
• (c) a model with the curvature effect of the graphite sheet (with scenarios I and 

II, see [34] for details). 
The calculated electronic energies are shown with filled symbols in plots a, b, cI and 
cII). The experimental electronic energies E11

SE and E22
SE obtained from the PL 

spectra [39] are shown as crosses in plots a, b, and c). 
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Figure 3.11 Comparison between the theoretical electronic energies (filled symbols in plots 
a, b, and c) calculated within three different models (see text for details), and the 
experimental electronic energies E11

SE and E22
SE (crosses in plots a, b, and c) obtained from 

the photoluminescence spectra [39]. 
 
In order to test the consistency of a theoretical model one should compare its 
electronic energies with the photoluminescence data on individual CNTs dispersed in 
aqueous solutions. Thus, the experimental transition energies presented in Fig. 3.11 
(crosses) were obtained from the PL spectra of the dispersions [39] containing mostly 
micelle-isolated tubes and having practically unperturbed electronic transitions. In the 
PL experiment a direct evaluation of the set of transition energies {E22

SE, E11
SE} of 

semiconducting nanotubes is possible due to the resonance excitation of the second 
electronic band with E22

SE = Eexc and the following emission of an energy quantum 
E11

SE through the band gap.  
Comparing these four plots one can easily conclude that the plot in Fig. 3.11(b) based 
on the semi-empirical formulae [6] describes the experimental data better than the 
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other models. These semi-empirical relations are commonly used for assignment of 
the E22

SE, E11
SE transition energies. 

Among the disadvantages of the semi-empirical model are its limitation for higher 
transition energies of semiconducting tubes Eii

SE
 > E22

SE
, and the absence of similar 

expressions for metallic nanotubes, as far as metallic tubes do not show any interband 
PL.  
The calculation introduced by Reich et al. [13] based on the TB model with three 
nearest-neighbors gives both semiconducting and metallic interband transitions. The 
band structure of carbon nanotubes within this model is in a good agreement with the 
ab-initio result. However, the energy values do not coincide with the interband 
transitions from the semi-empirical formulae.  
Since the experimentally available laser energy Eexc = 2.3 eV excites the high energy 
electronic bands E11

ME and E33
SE in the investigated HipCo- and NiCo-nanotube* 

samples (Fig. 3.9), neither a simple inaccurate TB model nor the semi-empirical 
formulae with their restriction for higher electronic transitions can be used in the 
present work. On the other hand, the empirical electronic transition energies obtained 
from the resonance Raman spectroscopy [18] will be applied in Chapter 5 for the 
analysis of the experimental results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*For the abbreviation of HipCo and NiCo-tubes see Section 5.1. 
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3.4 Boron-carbonitride nanotubes (BxNyCz-NTs) 

The electronic band structure of carbon nanotubes is unique, reflecting the 1D nature 
of these molecular nanocrystals. Sharp van Hove singularities in the electronic DOS 
make physical properties of carbon nanotubes very specific and highly resonant 
(section 3.2). It is reasonable to assume that the other one-dimensional objects, at 
least, the nano-objects which are very close structurally to CNTs also have a similar 
electronic band structure. Boron-carbonitride nanotubes (BxNyCz -NTs) produced 
from carbon nanotubes are the structural analogue of CNTs, where the carbon atoms 
in the graphite hexagonal sheet are partially substituted by B and N atoms. However, 
the electronic structure of BxNyCz -NTs appears to be different. Moreover, it strongly 
depends on the concentration of B and N atoms inside the carbon nanotube 
framework. In the following section, the electronic properties of BxNyCz -NTs will be 
considered from the theoretical point of view within a tight-binding (TB) model.  
Compared to CNTs, there are not so many theoretical publications on the electronic 
structure of boron-carbonitride nanotubes. So far, the calculations on the stable 
structures of BC2N, BC3, CN and BC2N [20, 21, 79, 81] have predicted some 
interesting properties of those objects such as either metallic or semiconducting 
behavior. At the same time, a BxNyCz nanotube with all possible varieties of its 
element compositions x, y, z is a very complicated system for a detailed theoretical 
study. 
In a first approximation, however, the band structure of BxNyCz -NTs as a function of 
the concentration of boron and nitrogen (x + y) has already been evaluated within a 
TB model [22]. This relatively simple model gave essential qualitative features of the 
electronic properties of boron-carbonitride NTs.  
In this approach BxNyCz-NTs are composed of randomly distributed B, N and C atoms 
(so called BxNyCz-alloys). The concentration of boron and nitrogen is considered to be 
the same for simplicity (x = y). The configuration where the equal amount of B and N 
is replaced by the carbon atoms is expected to describe actual systems obtained by 
doping of the BN-NTs with C. The calculation is performed for two types of zigzag 
nanotubes of different diameters: (metallic (9, 0) and semiconducting (10, 0). 
The TB model for BxNyCz-NTs implies some simplifications such as a uniform 
transfer integral γ0 regardless of the atomic configurations. Additionaly, the local 
energies of boron and nitrogen is considered to be symmetric around that of carbon 
(UBoron =  γ0 =  3eV, UCarbon = 0, and UNitrogen = – γ0 = – 3eV). The band gap of a BN 
sheet is given by 2γ0. The calculation starts from a pure BN nanotube with further 
replacement of (x + y) amount of B and N atoms by carbon at random.  
Fig. 3.13 shows the DOS as a function of the (x + y) concentration (bottom-up 
increasing) for the metallic (9, 0) nanotube calculated within a TB model described 
above [22]. 
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Figure 3.13 Electronic DOS as a function of boron and nitrogen concentration (x + y) 
(bottom-up increasing from 0 to 100%) for the metallic (9, 0) nanotube calculated within a 
TB model [22]; γ0 =  3eV. 
 
For two starting CNTs (9, 0) and (10, 0) the result of the evaluation of the electronic 
DOS as a function of the concentration (x + y) inside the cage of BxNyCz-NT can be 
summarized as follows: 

• broadening of the vHs peak in the DOS with increasing of the (x + y) 
concentration in both metallic and semiconducting CNTs up to (x + y) ≈ 0.6; 
further increasing of (x + y) results in more and more structured vHs peaks due 
to the transformation of a BxNyCz -nanotube into a BN-nanotube; 

• appearance of the band gap for the metallic (9, 0) CNT, which grows with 
increasing of the (x + y) concentration (up to ≈ 6 eV for a BN-NT); 
• increasing of the band gap value for the semiconducting (10, 0) CNT with 

increasing of the (x + y) concentration (up to ≈ 6 eV for a BN-NT); 
• difference between the energy gap in the DOS and the optical gap at high 

concentrations of (x + y) due to the special overlap of the wavefunctions with 
other states. 

The TB model gives the electronic band structure as a function of the concentration 
(x + y) in a first approximation. However, this result can be very useful in the analysis 
of the concentration limits (x + y) in BxNyCz -NTs at which some physical effects, 
similar for those in CNTs can still be observed. For example, the concentration limit 
(x + y) for the resonance Raman scattering in BxNyCz -NTs at Eexc = 2.3 eV is about 
0.74 (Fig. 3.14). This concentration corresponds to the band gap value ≈ 2.3 eV. 
BxNyCz-NTs with (x + y) > 0.74 cannot contribute to the Raman signal since their 
band gap values become larger than 2.3 eV (see Chapters 4 and 7). 
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Fig. 3.14 presents the band gap values of the nanotubes (10, 0) and (9, 0) vs. (x + y) 
concentration calculated within the TB model described above [22]. 
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Figure 3.14. Band gap values as a function of B and N concentration (x + y) calculated within 
the TB model [22] for the semiconducting (10, 0) and metallic (9, 0) nanotubes. 
 
This plot reflects the general tendency of the band gap increasing for the 
semiconducting nanotubes and also opening of the band gap and its increasing for the 
metallic nanotubes with increasing of the (x + y) concentration. The band gap values 
of both semiconducting and metallic nanotubes become similar (≈ 2 eV) for the 
concentration of (x + y) ≈ 0.7. For higher boron and nitrogen concentrations the tube 
chirality and diameter do not define the electronic properties (as for pure CNTs) since 
BxNyCz -NT transforms into BN-NT. For the concentration (x + y) ≈ 0.9 the band gap 
value reaches a visible range of ≈ 3 eV. At higher doping concentrations BxNyCz-NTs 
acquire insulating properties. 

3.5 Summary 

In this chapter the electronic band structure of carbon and BxNyCz-nanotubes was 
considered within the Tight-Binding (TB) model combined with Zone-Folding 
approximation. Despite the approximate character of the results some of the most 
prominent characteristics of the nanotube band structure such as DOS, the electronic 
interband transition energies Eii of CNTs and the band gap of BxNyCz-NTs as a 
function of B and N concentration could be obtained within this model. These results 
will be very helpful in the following analysis of the experimental data. 



Chapter 4  

Experimental Techniques 

In the following sections the resonance Raman scattering will be explained in relation 
to the electronic properties of carbon nanotubes. Usually the inelastic scattering of 
light in the visible range (Raman scattering) probes vibrational properties of the 
material in the center of the Brillouin zone so far as phonon excitations are the only 
energy loss mechanism. Figure 4.1(a) schematically presents the process of an 
inelastic scattering of light. 
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Figure 4.1 Process of inelastic scattering of light is presented by the incoming wavevector k1 
and scattered wavevector k2 and the wavevector transfer q; ω1, ω2 and ωph denote the 
incoming, scattered and phonon circular frequencies, respectively. 
 
Here k1 and k2 denote the wavevectors of the incoming and scattered photons, 
respectively, and q is the scattering wavevector (or wavevector transfer); ω1, ω2 and 
ωph are the incoming, scattered and phonon circular frequencies, respectively. The 
conservation of energy and quasi-momenta gives: 
 

ħω1= ħω2 ± ħωph, 
k1 = k2 ±  q, 

(4.1)

 
where the plus and the minus signs indicate the creation and annihilation of a phonon. 
The wavevector transfer q is 
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where 2φ is the angle between k1 and k2. If 21 kk ≈ , then q can be written as: 
 

ϕsin2 1kq ≈ .  (4.3)
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This approximation can be always applied to inelastic scattering of light by phonons, 
because the phonon energy is typically of 1 or 2 orders of magnitude smaller than the 
photon energy in the visible range. Thus, incoming and scattered light have almost the 
same energy and therefore, the same absolute value of the momentum. With variation 
of the angle 2φ the magnitude of the q-vector changes (Fig. 4.1, b and c). The 
maximum value of q = 2ki is fulfilled for 2φ = 1800 (backscattering geometry). 
The value of the wavevector of visible light ki = 2πn/λ = 0.5·10-2 Å-1 for λ = 500 nm 
and a material with refractive index n = 4. In contrast, the extension of the Brillouin 
zone (BZ) is π/a, i.e. the range of the phonon wave vectors is ≈ 1 Å-1. Therefore, the 
maximum momentum transfer q = 2ki is by about two orders of magnitude smaller 
then the BZ space. As a result, only the Γ-point phonons with q  ≈ 0 can be probed 
with Raman scattering. Phonons with larger q can be measured by higher-order 
Raman scattering, where two or more phonons with opposite wave vectors are 
involved (q1 + q2  ≈ 0), or in a process of scattering by a defect. 
There are some other techniques for measuring phonon dispersions through the whole 
Brillouin zone such as the inelastic neutron scattering and inelastic X-ray scattering. 
For the neutron scattering, de Broglie wavelength of the neutron depends on neutron 
energy as 

 

mE2
2πh

=λ .  
(4.4)

 
Here E is the kinetic energy of the neutron. Usually kneutron ~ 1Å-1 (two orders of 
magnitude larger then for visible light), therefore the K-phonons at the edge of the 
Brillouin Zone can be also probed.  
The neutron scattering experiment, however, requires a single crystal of the order of 
cm in size, which does not exist for CNTs. Inelastic X-ray scattering has several 
advantages such as small sample sizes and amount and is used for measuring phonon 
dispersions in CNTs [103]. 

4.1 Resonance Raman Scattering (RRS) 

Ordinary Raman scattering (RS) studies yield information on low-energy excitations 
of molecules, liquids, and solids. The phonon energy in such experiments is restricted 
to states which are typically up to 5x10-2 eV from the ground state of the system under 
study. The incoming and scattered frequencies do not carry any information about the 
system, but only their difference is important as well as the q-vector, and the 
polarization of the scattered photon. 
In contrast, Resonance Raman Scattering (RRS) allows exploring the spectrum of the 
material in the energy range of the photon energy itself, typically 1 – 3 eV for the 
experiments in visible range. For the RRS process the material under investigation 
needs electronic properties (the band gap or higher interband transition energies) to be 
in resonance with the excitation radiation, or, in other words, the laser excitation 
energy must be chosen equal to the electronic resonances of the material. In this 
respect RRS is similar to absorption and emission experiments. 
In such a resonant process the incoming photon induces not only molecular vibrations 
like for ordinary RS, but also excites electron-hole pairs, which recombine radiatively, 
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i.e., with emitting photons. Figure 4.2 shows schematically the Feynman diagram of a 
first-order resonant Raman process [35]. 

HeR,σ
HeR,ρ

Hep

(k1,ω1) (k2,ω2)

(q,ωph)

 
Figure 4.2 Feynman diagram of a first-order resonant Raman process. 

 
The process of RRS can be described to proceed in three steps:  

(i) a photon with the wavevector k1, circular frequency ω1 and polarization σ 
interacts with electrons of matter exciting an electron-hole pair. The 
Hamiltonian for the interaction of radiation with electrons is HeR,σ; 

(ii) an electron-hole pair in a process of inelastic electron-phonon scattering 
emits a phonon with frequency ωph (electron-phonon coupling 
Hamiltonian Hep); 

(iii) Finally, an electron-hole pair recombines emitting the scattered photon ω2 
with polarization ρ (electron-radiation interaction Hamiltonian HeR,σ). 

Energy and momentum are conserved in this process according to Eq. (4.1). The 
± signs in Eq. (4.1) refer to Stokes and anti-Stokes scattering. The matrix element of 
the process presented in Fig. 4.2 is given by:  
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where zyx ,,  and zyx ,,   are the incoming and outgoing energy states respectively, 
of photon (x), phonon (y), and electron (z) for each step of the RRS. For example, 

i,0,1ω  denotes the state with an incoming photon of energy 11 ωh=E , the ground 
state 0 of the phonon (no phonon excited), and the ground electronic state i; 

a,0,0 denotes the ground 0 photon energy (absorbed), the ground 0 state of phonon, 
and the electronic excited state a, The initial and the final electronic states are 
assumed to be the same; the sum is performed over all possible intermediate 
electronic states a and b. The final state of a phonon is denoted by f, the e

aiE  is the 
energy difference between the electronic states a and i; the lifetime of the excited 
states Γ was assumed to be the same [35, 36]. 
Stokes and Anti-Stokes scattering processes are shown schematically in Fig. 4.3.  
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E1 = ħω1

Eμ - Eph

Stokes Anti-Stokes

E1

Eμ

electronic ground state i

real electronic excited state

virtual state a

virtual state b

real electronic state

E2 = ħω2 E2

Eμ

Eμ + Eph

 
Figure 4.3 Single-resonant Raman scattering with both Stokes and Anti-Stokes processes. In 
a Stokes process a real electronic state Eµ is excited by the incident laser energy E1 = Eµ. 
Then, a transition to a virtual electronic state i is possible with emission of Eph and a 
following recombination of the electron-hole pair with emission of E2 = Eµ – Eph. An Anti-
Stokes process corresponds to the excitation of a virtual electronic state ii with E1 and further 
transition to a real electronic state  Eµ with emission of Eph and final recombination to a 
ground state with emission E2 = Eµ = E1 – Eph. 
 
For a Stokes process the incident laser energy E1 plus the energy of a molecular 
vibration Eph must be equal to the electronic transition energy Eμ. If this condition is 
satisfied the Raman signal becomes very high. For an Anti-Stokes process the 
electronic transition energy must be equal to E1 – Eph = Eμ. The intensity of the Anti-
Stokes signal is much lower because the vibration energy is taken from the system. 
Thus, an Anti-Stokes process can only take place if the material system is originally in 
a state excited above the ground state, i.e. in a thermally or otherwise activated state. 
The probability to be in thermally activated state at room temperature is proportional 
to the Bose-Einstein thermal factor. For this reason the Anti-Stokes line has much 
lower intensity. 

Selection rules 
The selection rules originate from symmetry considerations which determine whether 
the matrix element in eq. (4.5) is zero or not. The easiest way to solve this question is 
to consider conservation of the quasi-angular momentum μ and the parity σh (applied 
only for achiral tubes) [13] because of the difficulty of a direct evaluation of K2f, 10. 
Both k and μ vectors form Brillouin zone of a carbon nanotube, where k is the quasi-
linear momentum, and μ is considered to be a quasi-angular momentum, the scalar μ 
is a quantum number and a projection of the quasi-angular momentum on the 

⊥k direction. 
There are some restrictions for μ to be a conserved quantum number. These 
restrictions imply considering only the first-order Raman scattering process with the 
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phonon vectors q ≈ 0 (close to the Γ-point) and optical transitions in visible with 
Δk ≈ 0 (vertical electronic transitions).  
Since the initial and final electronic states for optical transitions have the same μ and 
σh, the selection rules for the electronic part will be 
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A z-polarized optical transition (E║z) conserves angular momentum μ and changes 
the mirror parity σh. Therefore, the selection rules are: 
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For the transitions polarized perpendicular to the tube axis (E ⊥ z) the selection rules 
are: 
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The change in angular momentum and parity induced by the absorption and emission 
of a photon must be compensated by a phonon. For the z-polarized incoming and 
outgoing light (zz - configuration) angular momentum μ and parity σh are fully 
conserved by photons. As a result, only A1g phonons are allowed in this scattering 
configuration [13]. In (xz) or (zy) scattering geometry Δμphonon = ± 1, and σh,phonon = – 1 
giving rise to the E1g phonon scattering. The intensity of the Raman signal is 
proportional to the square of the absolute value of the matrix element in eq. (4.5) [36]: 
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where the summation is over all possible direct vertical transitions, which we can be 
converted into an integral over energy (see [36] for details): 
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where M = MiMepMs and Mi, Mep, Ms are the matrix elements for the electron-radiation 
absorption, electron-radiation emission, and for the electron-phonon interaction, 
respectively, Elaser is the laser excitation energy (re-named from E1 in eq. (4.9)), Eμ is 
the energy of the real electronic transition, and Eph is the phonon energy, and Γ is the 
inverse lifetime for the resonant scattering process and/or a broadening factor 
determined by environment condition (tube-tube interaction or interaction with other 
surroundings). Signs “+” and “–“ are for Stokes and Anti-Stokes processes 
respectively. 
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4.2 Resonance Raman scattering and electronic DOS  

The electronic DOS of carbon nanotubes close to E1  - dependence can be directly 
observed in scanning tunnelling spectroscopy (STS) experiments, since the 
differential conductance dI/dV registered in the STS measurement is proportional to 
DOS [25, 26]. The Raman scattering experiment does not provide DOS directly. The 
RRS process, however, is highly resonant for carbon nanotubes. The intensity of the 
Raman signal rises by orders of magnitude if the excitation energy coincides with the 
energy separations between vHs. The variation of the Raman intensity with the 
excitation energy can be used for the characterisation of the van Hove singularities in 
the electronic DOS. 
The Raman intensity for the first-order modes for carbon nanotubes as a function of 
laser excitation energy Elaser can be calculated using eq. (4.10) where the sum over 
electronic transitions is substituted by the integral over the joint density of states 
(JDOS) g(Elaser, Eμ): 
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(4.11)

 
This is because the Raman intensity for carbon nanotubes rather depends on the joint 
density of states (JDOS) then on DOS given by eq. (3.11). It means that in eq. (3.11) 
the values E–( ⊥k , kz) and E+( ⊥k , kz) in ∂E± = ∂(E–  – E+) must be evaluated for the 
same kz (vertical transitions). 
The Raman scattering experiment on single tubes for the set of excitation laser 
energies reproduces a profile of the van Hove singularity. In Figure 4.4 the intensity 
of the Raman signals (both Stokes and Anti-stokes) plotted versus the laser excitation 
energy for a certain single carbon nanotube is presented [30]. Raman intensity 
measured versus the laser excitation energy is called the Raman resonance window. 
With these resonance Raman windows measured for Stokes and Anti-Stokes 
processes an individual electronic transition of a certain tube can be found as a cross-
point of two normalized resonance window profiles. For instance, the nanotube from 
Fig. 4.4 has the electronic transition energy of about 1.67 eV (see upper inset). 
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Figure 4.4 Intensities of the Raman signals (normalized Stokes and Anti-stokes) plotted 
versus the laser excitation energy for a certain single carbon nanotube having the electronic 
transition energy of about 1.67 eV [30]. 
 
In this way, the electronic transition energy can be found as the mean energy between 
the Stokes and Anti-Stokes peaks: Eμ = (ES + EAS)/2. The experimental Stokes and 
Anti-Stokes profiles, however, have different intensities and must be normalized 
according to the ratio: 
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where n(Eph) is the Bose-Einstein thermal factor given by: 
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The next question to be discussed is the position of the maxima of the Stokes and 
Anti-Stokes peaks. According to last theoretical calculations of the Raman intensities 
via the evaluation of the electron-phonon matrix elements for the radial breathing 
mode [32] the position of the Raman peak in the case of large Γ parameter in eq. 
(4.11) (the case of interacting tubes) is rather Eμ+Eph/2 than Eμ+Eph. 
In the general case, the intensity of a resonant Raman signal depends on the chiral 
angle, tube diameter and so-called family effect for semiconducting CNTs, i.e. 
whether (3 n + m) mod 3 = 1 (S1-type) or (3 n + m) mod 3 = 1 (S2-type). For these 
two S1 and S2-types of semiconducting tubes different values of the matrix elements 
were predicted [31, 31]. Such a family-behavior was also confirmed experimentally 
[18]. 
In summary, the main factors influencing the resonant Raman intensity are: 

(i) nanotube diameter d and chiral angle; 
(ii) family effect (S1, S2-types) for semiconducting CNTs; 
(iii) nanotube orientation; 
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(iv) diameter distribution in a sample; 
(v) interaction between nanotubes. 

 
For the precise theoretical calculation of the Raman intensity one has to take into 
account all these factors. In a first approximation the matrix elements M for optical 
absorption, emission and electron-phonon interaction in eq. (4.11) are assumed to be 
constant. This is certainly a good approximation for the semiconducting tubes 
belonging to the same S1 or S2-type, and in the case of similar diameters and chiral 
angles. For the bulk materials with a distribution in tube diameters d and chiral angles 
θ, the square-root singularities in joint density of states g(Elaser, Eμ) (eq. (3.13)) is 
usually approximated by a delta function at the maximum value of the van Hove 
singularity [27 – 29]. Using the property of a delta-function 
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one can finally write the Raman intensity as: 
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where A lumps up parameters like tube distribution in a sample, their orientation and 
interaction, i.e. the external factors which have no connection to the tube structure 
(n, m). 
In the following consideration the modified expression (4.15) in the form of Ref. [30] 
will be used: 
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With this important equation the Raman intensities of carbon nanotubes will be 
calculated and the experimental results will be described in Chapters 5, 6 and 7.  

4.3 Raman spectra of carbon nanotubes 

As discussed in the previous sections, the RRS process yields information not only on 
the vibrational properties but also on the electronic states of carbon nanotubes. Raman 
spectroscopy can provide nanotube diameters, (n, m) indices and chiral angles, defect 
concentration, and influence of an environment and temperature on the band gap 
value. Different spectral parts of a typical Raman spectrum of single-walled CNTs are 
shown in Fig. 4.5 (a - d). 
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Figure 4.5 Parts of a typical Raman spectrum of the sample of NiCo-nanotubes obtained at 
Eexc = 2.3 eV: (a) the radial breathing mode (RBM); (b) RBM and the intermediate 
frequencies; (c) the high energy mode (HEM) and the D-mode; (d) the second-order D*-mode. 
 
The first-order spectrum is usually divided into a low-energy (0 – 500 cm-1) and a 
high-energy (1000 – 3000 cm-1) region reflecting different properties of carbon 
nanotubes. All the first-order Raman modes originate from the Γ-point active Raman 
vibration with q = 0. The D-mode and D*-mode both are related to the second-order 
processes involing two phonons or a phonon and a defect with q1 + q2 = 0.  

RBM 
The strongest low-energy mode (around 100 – 300 cm-1) is the fully symmetric radial 
breathing mode (RBM) (Fig. 4.5, a). The RBM mode corresponds to the radial 
expansion of the tube when all carbon atoms move in phase in a radial direction 
creating a breathing-like vibration of an entire tube. The RBM frequency is widely 
applied to determine the diameter of a tube. The analytical expression for the RBM 
was derived in terms of the force constants employed in a description of the phonon 
modes in the two-dimensional graphite [12, 37]. The Lagrangian for the tube unit cell 
with 2N vibrating atoms can be expressed as 
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where m is the mass of a carbon atom, r0 is the equilibrium radius of the tube, 

00cc )( rrra −−  is the change in the bond length along the circumference,  
ac-c = 0.114 nm is the carbon nearest-neighbour distance, and 
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experimental bond-stretching force constants. After solving the eq. (4.17) for r, the 
RBM frequency can be expressed as follows: 
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where d = 2r0 is the tube diameter. 
This expression shows the general 1/d-dependence of the RBM frequency on the 
diameter but is never used for the quantitative diameter estimations because of its 
approximate character. The more advanced empirical expression for the RBM 
frequency was introduced later on in a form of: 
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The parameter C1 is constant and C2 probably depends on the diameter. These two 
values vary from paper to paper (summarized in [13] and [38]) depending on the 
model used for the estimation of the transition energies Eµ versus diameters (see 
section 3.4) and the tube environment (Chapter 5).  
For the experimental determination of C1 and C2 it is necessary to measure the 
electronic transition energies and the RBM frequencies {Eµ, ωRBM} using resonance 
Raman windows (section 4.1.2). Then the experimental values {Eµ, ωRBM} must be 
combined with the values {Eµ, d} from a reliable theoretical model for at least two 
tubes. In this way one can obtain the equations for the coefficients C1 and C2: 
 

,2theor
1

1exp
RBM1 C

d
C

+=ω  (4.20)

      
.2theor

2

1exp
RBM2 C

d
C

+=ω  

 
The RBM frequency reflects not only vibrational but also electronic properties of 
carbon nanotubes due to the strong coupling between electronic transitions and 
vibrational modes in one-dimensional systems. In Raman spectra ωRBM only from the 
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tubes having the electronic transition energies close to the laser excitation energy can 
be observed.  
The resonance nature of Raman scattering in CNTs is illustrated in Fig. 4.6 (a). Here, 
the RBM frequencies of micelle-isolated carbon HipCo-nanotubes dispersed in 
aqueous solution are shown. Fig. 4.6 (b) explains the appearance of these peaks using 
the Kataura plot (section 3.2) for the electronic transition energies plotted versus tube 
diameters. The horizontal line denotes the laser excitation energy Eexc = 1.58 eV. All 
the tubes with energies (circles in Fig. 4.6, b) close to this line give the RBM 
frequencies in the Raman spectra presented in Fig. 4.6 (a). 
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Figure 4.6 (a) Raman spectra obtained from the dispersions of HipCo-NTs in D2O/SDS 
(for detail of the dispersion preparation see Section 5.2) at Eexc = 1.58 eV; (b) the electronic 
transition energies vs. nanotube diameters calculated with semiempirical formulae (3.12) 
and (3.12’) for the semiconducting CNTs (black dots) [6] and using the tight-binding 
model for the metallic CNTs (open dots); the horizontal line denotes the excitation energy 
Eexc = 1.58 eV, the RBM frequencies of the tubes with energies close to Eexc are shown 
with arrows. 

 
The data in Fig. 4.6 (b) are generated in two ways: using the semiempirical formulae 
(3.12) and (3.12’) for the semiconducting nanotubes (black dots) [6] and the tight-
binding model for the metallic nanotubes (open dots). 
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In conclusion, RBM is one of the most interesting features of Raman spectra of CNTs 
reflecting the resonant nature of Raman scattering and the effects of the electron-
phonon coupling. RBM contains information about the nanotube intrinsic structure, as 
well as the influence of the external factors (such as temperature and interaction) on 
the electronic and vibrational properties of CNTs. 

D-mode 
The D-mode at ≈ 1350 cm-1 (see Fig. 4.5, c) does not originate from the Γ-point 
Raman-active vibration. It was found first for the graphite and after a while for carbon 
nanotubes that the D-peak is induced by disorder [13]. Its position depends on the 
defect concentration, as well as on crystallite size and, what is most intriguing, on the 
excitation energy. That was an unexpected effect since the D-mode does not 
correspond to a cage vibration of carbon nanotube like, for example, RBM.  
In the last few years a great breakthrough occurred in understanding of the D-mode 
origin. Reich et al. [13, 41, 42] proposed the double-resonance scenario caused by the 
defect-induced scattering process. In this scattering process the particular excitation 
energy selects a strictly particular phonon wavevector. Figure 4.7 schematically 
shows the double-resonance Raman scattering process. 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-3

-2

-1

0

1

2

3

E
ne

rg
y,

 e
V

Wavevector, π/a

(1)(4)

Γ

kFkF

(2)

(3)

 
Figure 4.7 Double-resonance Raman scattering process shown in four steps: (1) resonance 
excitation of an electron, (2) resonance scattering by a phonon across the Γ-point, (3) elastic 
scattering back by a defect, (4) an electron-hole recombination. 

 
Here, the electronic band structure of the zig-zag (5, 5) tube is symmetric with respect 
to the Γ-point. The double-resonant Raman process occurs in four steps marked in 
Fig. 4.7 with numbers:  

(1) electron is excited resonantly (to the real electronic state) by a quantum of 
light; 

(2) electron is scattered resonantly by a phonon across the Γ-point; 
(3) electron is elastically (with no momentum change) scattered back by a 

defect (non-resonant process); 
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(4) electron recombines with a hole (non-resonant process). 
A defect does not change the quasi-linear momentum μ. The electronic resonance 
transition occurs close to the K-point (kF = 2π/3a), were the bands cross or have 
minima. A double-resonance condition is fulfilled only for the case of scattering 
across the Γ-point to the same band. The double-resonance wave vector is then 
q0 ≈ 4π/3a (twice of the kF distance). But the positions of the band minima are not 
exactly at the K-points, and the higher dispersion the bigger distance from its 
minimum to the kF = 2π/3a (see Fig. 4.7). 
Now if the incoming laser energy increases, the resonant optical transition between 
the dispersion minima occurs at larger distance from kF and with larger value 
q0 > 4π/3a. Therefore, the higher the excitation laser energy, the larger the phonon 
wavevector, and the larger the D-mode frequency in the Raman spectrum. 
In summary, the most prominent properties of the D-mode are the following: 

•  D-mode is caused by the scattering by defects, and its intensity in general is 
proportional to the number of defects, but also depends on the excitation 
energy; 

•  D-mode is theoretically predicted to exist only for the metallic tubes [13], 
however, it is also observed for both metallic and semiconducting tubes in 
mixed samples; 

•  D-mode is not symmetrical and consists of two non-resolved peaks [13]; 
•  shift of these two peaks with Eexc is measured to be ≈ 42 and 76 cm-1/eV. 
•  number of defects can be estimated from the intensity ratio I(D)/I(D*), where 
I(D) and I(D*) are the intensities of the peaks D and D* because the intensity of 
the D* does not depend on the excitation energy. 

HEM (G-mode) 
The High Energy Mode (HEM) is the most intense and prominent peak in the Raman 
spectra of CNTs (Fig. 4.5, c). It corresponds to the graphite optical mode appearing at 
1580 cm-1 (sometimes it is called Graphite-like G-mode) where carbon atoms vibrate 
tangentially to the nanotube wall. The curvature of the tube’s walls introduces a small 
softening of the in-plane force constants compared to the graphene sheet and leads a 
slight diameter-dependence of the phonon frequencies [37]. 
The HEM consists of two optical modes with E2g-symmetries: the longitudinal LO (at 
about 1570 cm-1, with FWHM ≈ 30 cm-1) and the transverse TO (≈ 1592 cm-1, 
FWHM ≈ 16cm-1) vibrations of a tube. In contrast to the graphite peak at about 
1580 cm-1 which does not depend on the excitation, the LO and TO modes of carbon 
nanotubes both slightly vary with the excitation energy [38]. This effect is usually 
attributed to a weak diameter dependence of the optical Raman-active modes [44]. 
The general dependence of the Raman intensities on the laser excitation energy is 
discussed in Section 4.2. The Raman intensity and the peak position are both 
determined by the phonon energy Eph as well as the energy of the electronic transition 
Eμ. Since the electronic transition energies Eμ are individual for each kind of tubes, 
the form of the HEM peak in the Raman spectrum must depend on the excitation 
energy. 
In Fig. 4.8 the RBM and the HEM of two samples with different sets of tubes are 
presented: the HipCo - tubes with the diameter distribution [0.8 – 1.3 nm] (Figs. 4.8 
a,b), and the NiCo - tubes with the diameter distribution [1.3 – 2 nm] (Figs. 4.8 c,d). 
The spectra were obtained for the same laser excitation energy Eexc = 2.3 eV. 
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Figure 4.8. Parts of the Raman spectra of semiconducting and metallic CNTs (obtained at 
Eexc = 2.3 eV): (a, b) RBM and HEM of metallic CNTs; (c, d) RBM and HEM of 
semiconducting CNTs. The HEM peaks are fitted with Lorenzians. 

 
For the HipCo-tubes with smaller diameters mostly metallic tubes from the E11

ME 
branch come into the resonance at this excitation energy (see Fig. 3.9). In contrast, for 
the NiCo-tubes with larger diameters only semiconducting tubes E33

SE and E44
SE are 

excited and their RBM peaks are seen in the spectra. Therefore, by varying either the 
excitation energy or tube diameters in different samples one can selectively excite 
either metallic (Fig. 4.8, a, b) or semiconducting tubes (Fig. 4.8, c, d). 
A typical semiconducting HEM (Fig 4.8, d) consists of three lines at about 1569, 
1594, and 1613 cm-1 (Lorenzian fitting). A typical metallic HEM (Fig 4.8 b) is much 
broader and has additional components (at ≈ 1515, 1540 and 1581 cm-1).  
An alternative explanation of the dependence of HEM on the excitation energy based 
on the defect-induced double-resonance process was proposed by Reich et al. [13]. 
Following this consideration, the Raman frequency of HEM changes not because 
different tubes are excited, but instead, due to different phonons excited for the same 
tube in a double-resonant scattering process. In contrast to the D-mode, where an 
excited electron is scattered by a defect, in the case of HEM an electron is scattered by 
a phonon with relatively small momentum across the conduction-band minimum [13]. 
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Since HEM reflects a tangential C-C bond stretching vibration, it should also depend 
on pressure and temperature since the force constants between the atoms in the tube 
cage also changes [13, 38]. 
In summary, the position and the shape of HEM are found to be dependent on the 
electronic transition energies, laser excitation energy, tube diameters and also on 
temperature and pressure. 

D* - mode and Intermediate frequencies 
The strongest peak in the second order Raman spectrum is the overtone of the D-
mode at ≈ 2700 cm-1 which is called D*- or G*-mode because of the combination of 
the D and HEM frequencies. The D*-mode does not depend on the excitation or 
defects. Therefore, the intensity ratio I(D)/I(D*) can be used for calibration of the 
defect concentration [13, 103]. 
The intermediate frequencies between 600 and 1100 cm-1 appear due to the 
combination of the optical and acoustic modes and strongly depend on the excitation 
[106]. 

4.4 Experimental Raman set-up 

 The Raman set-up used in this work is schematically presented in Fig. 4.13.  
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Figure 4.13 Experimental Raman set-up consisting of the Dilor XY (800) triple-grating 
spectrometer, Olimpus confocal microscope and Nd:YAG laser (λexc = 532 nm, 1064 nm). 
 
It consists of a standard Dilor XY (800) triple-grating spectrometer equipped with an 
Olympus optical confocal microscope. The spectrometer suppresses the elastic 
Releigh scattering and disperses the Raman spectrum. Spectra are collected with a 
multi-channel charge-coupled detector (CCD) cooled with liquid nitrogen. The set-up 
is optimized for recording of the weak signals in a vicinity of the Rayleigh peaks 
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using a notch filter. The intensity of the Stokes scattering is ≈ 103 weaker than the 
intensity of the Rayleigh scattering. 
The laser light first passes a prism monochromator to remove the plasma lines of the 
laser. Then it is focused onto the sample, using one of the objectives (75x, 50x or 
25x). The scattered light is collected in backscattering geometry. The spectrometer 
works in a subtractive mode to suppress the elastically scattered Rayleigh light with 
the help of two first gratings place in a way to create a narrow band pass filter of 
variable wavelength. The line is dispersed by the last grating and collected by a CCD 
camera. The resolution for the green light was about 3 cm-1 what is smaller than the 
minimum width of the Raman peaks (10 – 15 cm-1) observed in carbon nanotubes. 
The scattering is excited by Nd:YAG diode-pumped solid state laser generating the 
wavelength 1064 nm and operating at the output power ≈ 90mW. The wavelength 
532 nm is obtained due to the frequency-doubling. The total power of the laser beam 
irradiating the sample is about 1 – 5 mW. The beam can be focused in a spot of 
different sizes using one of the objectives with magnification 75x, 50x and 25x. The 
minimum diameter of a spot ≈ 1µm was obtained with the objective 75x. The density 
of the laser power depending on the laser spot diameter, however, is a critical 
parameter in the investigation of carbon and BxNyCz-nanotubes since these materials 
are unstable against prolonged and intensive irradiation. The stability of the samples 
depends on the material density, thermal conductivity and the element composition. A 
density of the laser power, less than 109W/m2 (corresponding to 1 mW for the 
objective 75x), caused no thermal damage in any of the investigated materials. 

4.5 Summary 

In this chapter the basics of the resonance Raman scattering for CNTs were 
considered. A unique 1D structure of CNTs gives rise to a highly resonant Raman 
scattering process which characterizes thier electronic DOS. The intensities of the 
Raman spectra depend on the difference between the electronic transition energy Eµ 
of a tube and the laser excitation energy Eexc. Therefore, the electronic energies of 
CNTs can be studied analysing the resonance Raman intensities. The expression for 
the Raman intensity of a nanotube (n, m) with a certain electronic transition energy Eµ 
as a function of the laser excitation energy is also derived. This expression will be 
used in the theoretical analysis of the experimental data in Chapters 5 and 6. 
 



Chapter 5  

Bundling Effects 

In Chapter 5 the experimental and the theoretical study of the influence of tube-tube 
interaction (bundling effects) on the electronic properties of carbon nanotubes will be 
discussed. Chapter 5 has the following structure: 

• Motivation with analysis of the theoretically predicted changes in the 
electronic band structure of CNTs; manifestation of the bundling effects in 
Raman and photoluminescence experiments. 

• Preparation of nanotube samples with different degree of bundling for the 
Raman experiment. 

• Raman scattering experiments on single and bundled CNTs; comparison 
between their spectra and general conclusion about the change in the 
electronic band structure caused by the tube-tube interaction. 

• Presentation of the theoretical model for the calculation of the resonance 
Raman intensities of CNTs as a function of the electronic energy change 
caused by different degree of the nanotube bundling. 

• Comparison between the theoretical Raman intensities of CNTs and the 
experimental data obtained for the nanotube samples with different degree of 
bundling. 

• Estimation of the experimental correlation between the nanotube bundle size 
(from the high resolution transmission microscopy images) and the 
experimental Raman intensities from those bundles. 

• Finally, estimation of the semi-empirical correlation between the 
experimentally obtained nanotube bundle sizes and the theoretically 
calculated electronic energy shifts corresponding to those bundle sizes. 

5.1 Motivation 

Single-walled carbon nanotubes produced by laser vaporization using Ni and Co 
catalytic particles (NiCo-tubes) [57 – 60] or tubes grown in a process of high pressure 
catalytic decomposition of carbon monoxide CO (HipCo-tubes) [55, 56] are usually 
assembled in bundles of 20 – 100 tubes. Figure 5.1 shows a high resolution 
transmission electron microscopy (HRTEM) image of a typical bundle of the NiCo-
carbon nanotubes. 
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Figure 5.1 HRTEM image of a typical carbon nanotube bundle containing hundreds of 
tightly packed nanotubes (NiCo-sample). This image and all the following HRTEM images 
were taken by P. Schweiss (IFP, Forschungszentrum Karlsruhe). 

 
The tubes are held together by weak van-der-Waals forces. The bundles can be broken 
up by ultrasonication in aqueous solution with addition of surfactant. In this way a 
dispersion of isolated tubes with molecules of surfactant covering the tubes and 
protecting them from re-bundling can be prepared. An efficient method of creating the 
stable solutions of individualized SWNTs, which practically do not interact with each 
other, has been widely described in literature [6, 15, 18, 39] since the pioneering work 
of O’Connell et al. [17] was published. All previous research was performed on 
bundles containing nanotubes with different chiralities and diameters.  
It was shown theoretically [46 – 51] and later on experimentally [18, 52 – 54] that 
bundling can strongly influence the nanotube properties. Following theoretical 
calculations, the tube-tube interaction manifests itself in: 

• lowering the tube symmetry (the armchair (10, 10) tube, e.g. loses its mirror 
planes and changes its symmetry from D20h to D6h when bundled [48]); 

• opening of an additional pseudo-gap with a size of approximately 200 meV in 
bundled metallic armchair nanotubes [53]; 

• appearance of an additional dispersion of  100 – 200 meV perpendicular to the 
kz-axis [46]; 

• closing of the direct band gap in semiconducting tubes and opening of the 
indirect gap (Γ-K point transitions) smaller by 200 – 600 meV [46], 
appearance of metallic properties; 

• broadening of the van Hove singularities [46]; 
• appearance of the additional peaks in van Hove singularities because of the 

splitting of doubly degenerate energy bands [51]. 
 
On the other hand, there are no significant changes registered so far in vibrational 
properties. The RBM frequency position is quite stable and does not depend on 
bundling effects [52]. 
The following section is focused on interesting effects caused by bundling in 
experiments carried out at the very beginning of this work. A more detailed 
explanation follows in the next sections. 
First we found that the fine structure of the Near Infrared-visual-Ultraviolet (NIR-vis-
UV) absorption signal appears only when tubes become individualized (single) or 
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assembled in very small bundles with reduced interaction, and disappears during the 
re-bundling processes in non-stabilized solutions [39, 45]. Fig. 5.2 shows the NIR-vis-
UV absorption spectra of CNT samples with different degree of bundling. 
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Figure 5.2 NIR-vis-UV absorption spectra of CNTs with different degree of bundling: 
(a) strong interaction in a thin film, (b) reduced interaction in the D2O/SDBS dispersion (for 
detail of the dispersion preparation see Section 5.2) centrifuged at 20 000 g, (c) low 
interaction in the D2O/SDBS dispersion centrifuged at 180 000 g [39]. Spectra were taken by 
S. Lebedkin (INT, Forschungszentrum Karlsruhe). 
 
The curve (a) shows the light absorption of a thin film of pressed and strongly 
interacting CNTs. The broad bands E11

SE, E22
SE, E33

SE and E11
ME corresponding to the 

interband electronic transitions (Fig. 3.9) of an ensemble of interacting tubes do not 
show fine structure because of the smearing out of the individual peaks. 
The curve (b) was obtained from CNTs dispersed in D2O/SDBS at moderate 
ultrasonic power and centrifuged at 20 000 g. The dispersion contains bundles of 
nanotubes and does not show any distinct peaks either. In the curve (c), obtained from 
the same solution which was dispersed at high ultrasonic power and centrifuged at 
180 000 g, one can see, however, the fine structure. These sharp peaks correspond to 
the individual electronic transitions of single nanotubes.  
The influence of bundling on Raman spectra is even more intriguing. Fig. 5.3 shows 
the low-frequency Raman spectra of NiCo-nanotubes dispersed in D2O with addition 
of sodium cholate.  
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Figure 5.3 Low frequency Raman spectra obtained from dispersions of CNTs in 
D2O/NaCholate (Eexc = 1.58 eV). The upper curve is for the dispersion before sonication 
containing big bundles of CNTs, the lower curve is for the sonicated and centrifuged 
dispersion with many individual CNTs. Spectra were taken by F. Hennrich (INT, 
Forschungszentrum Karlsruhe). 
 
The upper curve is obtained from the starting material (before sonication), containing 
CNT-bundles of different sizes. The dispersion after sonication (lower curve) contains 
the same set of nanotubes as the starting material had, but in an isolated state. One can 
see that some peaks (208 cm-1 and 170 cm-1) lose their intensity, while others 
(159 cm-1, 203 cm-1 and 217 cm-1) appear after the de-bundling process.  
The next interesting phenomenon was an amazing difference between the Raman 
spectra obtained from two very close regions of the nanotube solid sample. Fig. 5.4 
presents the high-resolution transmission electron microscopy (HRTEM) image 
obtained from the film (≈ 50 μm) of tightly pressed NiCo-CNTs (so-called bucky 
paper) with the black (opaque for electrons) central part and the bundles (≈ 20-50 nm 
thick) well seen along the edge region of the particle. 
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Figure 5.4 HRTEM image of the NiCo-sample and low frequency Raman spectra 
(λexc = 2.3 eV) from different parts of it: strongly interacting tightly pressed CNTs (circle “1” 
in the HRTEM image) and bundles of tubes ≈ 50 nm (circle “2” in the HRTEM image). The 
circles indicate the laser beam size and its position. 

 
The low frequency Raman spectra (RBM) obtained from the dense material (circle 
marked as “1”) were identical in any point of the sample and in other similar samples. 
The set of spectra presented on the right side is shown for increasing laser power (i.e. 
temperature). In the case of dense material “1” only a thermal shift in the RBM peak 
position (187 cm-1 to 180 cm-1) was observed with increasing laser power, and no 
other obvious changes.  
The edge region with bundles and comparatively reduced tube-tube interaction (circle 
marked as “2”), on the contrary, demonstrates completely different Raman spectra 
(upper right panel). The component at 173 cm-1 dominates at low laser power. With 
increase of the laser power the RBM peak changes its shape. Thus, growing of the 
component 187 cm-1 with respect to 173 cm-1 together with thermal shifts (187 cm-1 to 
180 cm-1 and 173 cm-1 to 169 cm-1) was observed. The only difference between the 
areas “1” and “2” is the degree of nanotube interaction (bundling), which changes 
their electronic properties.  
In the following, the effects of bundling are studied in more detail taking into account 
the theoretical predictions of the influence of the intertube interaction on the 
electronic properties and using the resonance Raman technique. 
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5.2 Sample preparation 

In order to study bundling effects one would ideally use several samples containing 
(1) strongly bundled nanotubes, (2) fully isolated nanotubes, and finally, (3) 
intermediate samples with bundles of different sizes. It would be a great experimental 
success to obtain the samples consisting of bundles of equal sizes to study them with 
routine Raman scattering or with PL in dispersions. In reality, however, most samples 
have a distribution of bundles, with the mean bundle size depending on the 
preparation procedure. Therefore, a Raman spectrum will reflect the average response 
from a mixture of nanotube bundles of different sizes. In this work the problem was 
partially solved by stabilizing single tubes and small bundles inside thin organic films 
on Si-substrates. 

HipCo and NiCo – tubes in bundles  
In this work carbon nanotubes produced by two different methods were available: the 
HipCo – tubes prepared in a high-pressure decomposition of carbon monoxide CO 
method [55, 56] and the NiCo – produced by Pulse Laser Vaporization (PLV) method 
of carbon targets using Ni and Co particles as templates [57 – 60]. These two methods 
provide nanotubes covering a wide range of diameters from 0.8 to 1.5 nm (see 
Fig. 3.9): HipCo-tubes with a diameter distribution in the range of [0.8 – 1.2 nm], 
peaked at ≈ 1 nm, and NiCo-tubes with a narrow diameter distribution [1.2 – 1.5 nm] 
peaked at ≈ 1.3 nm. 
The as-prepared HipCo- as well as NiCo- materials are powder-like substances of 
black appearance, containing admixtures of metals such as Ni, Co, and Fe, and up to 
50% of single-walled CNTs (SWNTs) for NiCo- and up to 97% of SWNTs for 
HipCo- samples tightly packed in ropes. NiCo-materials contain a small amount of 
fullerenes, soot and other graphite-like materials. 

Dispersions  
The dispersions were prepared with the assistance of F. Hennrich and S. Lebedkin 
(INT, Forschungszentrum Karlsruhe). For the preparation of individualized nanotubes 
few milligramms of as-prepared SWNTs are added to 1 ml of heavy water D2O 
(Aldrich Inc.) containing 0.1 – 0.3 mg/ml of the Sodium Cholate surfactant and 
dispersed with an ultrasonic tip for ≈ 40 min at ≈ 100 W/cm2 power. This dispersion 
was centrifuged in a standard lab microcentrifuge for 1 hour at 100 000 g in order to 
remove large bundles and heavy metal catalyst particles. The typical final 
concentration of nanotubes was estimated to be about 20 μg/ml. No aggregation and 
precipitation was observed over weeks. 
In previous publications [6, 17, 18, 39, 52] routinely sodium dodecylsulfate cationic 
surfactant (SDS) and the Tween-80 surfactant were reported to have been used. 
Tween-80 was even preferred over SDS for the PL experiments [39] because of the 
very low ‘working’ concentration (critical micelle concentration CMC ≈ 13 μg/ml 
compared to 2.4 mg/ml for SDS) and, consequently, a negligible NIR absorption. In 
this experiment, Sodium Cholate was used in order to improve the dispersion 
characteristics (increase the number of micelle-individualized tubes). The tubes in the 
dispersions are mostly individualized with a small residual of bundled tubes. 



5 Bundling Effects 

 
 

47

CNTs deposited on Si-wafers 
Concerning the separation of CNTs, a great success was achieved by R. Krupke et al. 
in the development of a method of selective deposition of metallic tubes using 
alternating current dielectrophoresis [15]. This method results in well-aligned single 
metallic tubes deposited between gold electrodes leaving semiconducting tubes in the 
dispersion. The elaboration of an efficient method of deposition from the dispersion of 
both isolated metallic and semiconducting nanotubes still remains an unsolved 
problem. 
The nanotubes isolated inside the micelles of surfactant in dispersions are quite stable 
molecular complexes, which do not show any precipitation over weeks [39]. If one 
adds to the dispersion a pure solution with some surfactant, the chemical equilibrium 
in the system will be destroyed, resulting in re-bundling processes and tube 
sedimentation. Similar re-bundling of tubes sticking together can be observed in a 
drop of dispersion on a surface. Fig. 5.5 shows a scanning electron microscopy (SEM) 
image of such a drop of the dispersion of NiCo-nanotubes in D2O/NaCholate dried out 
on the rotating silica surface (spin-casting method). The samples produced by the 
spin-casting on Si-wafers were prepared together with F. Hennrich (INT, 
Forschungszentrum Karlsruhe). 
 

 
Figure 5.5. SEM image of a drop of the dispersion of NiCo-tubes in D2O/NaCholate dried 
out on the Si-wafer. This image and all the following SEM images were taken by S. Malik 
(INT, Forschungszentrum Karlsruhe). 
 
The tubes had been individualized in the dispersion as demonstrated by their PL and 
Raman spectra. They form on the Si-surface large and long bundles covered with 
molecules of surfactant. The spin-casting method does not efficiently prevent tubes 
from re-bundling, and such a sample brings no additional information about bundling 
compared to the sample in Fig. 5.4.  
The sizes of bundles within the 1μm-area (laser beam size) are quite large and 
inhomogeneous (40 – 100 nm thick), and the Raman signal varies from point to point, 
making the estimation of the correlation between the bundle size and the Raman 
spectrum impossible. 
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In the next step, which gave a surprisingly interesting result, the Si-wafer was heated 
up to ≈ 1000C. The thin film of the surfactant with nanotube bundles inside developed 
cracks of about 1μm due to the thermal expansion of the Si-wafer (Fig. 5.6). 
 

Laser spot

 
Figure 5.6 SEM image of the surfactant film (NaCholate) deposited on the Si-wafer with 
NiCo-nanotubes coming out of the cracks. The small bundles (≈ 10 nm) and single tubes 
appeared between cracks in the film after heating of the Si-wafer up to 100 0C. 

 
The nanotube bundles coming out of the cracks appear to be quite well aligned, thin 
(≈ 10 nm), homogeneous in their sizes (see enlarged picture in Fig. 5.7), and 
containing only few tubes. 
 

 
Figure 5.7 An enlarged SEM image of the partially aligned NiCo-nanotubes crossing the 
crack in the surfactant film.  
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The main advantage of these samples is the possibility to study separate bundles or 
very few bundles by scanning the cracks with the laser beam which can be focused 
into a spot of about 1 μm. In Fig. 5.6 the laser beam spot is shown as a dotted circle of 
1 μm. For that particular area only two bundles of about 10 nm thick are ‘trapped’ 
within the laser spot. Therefore, their Raman spectra can be related to their bundle 
size of 10 nm. The maximum resolution of the Raman microscope (objective 75x) is 
0.5 μm. The crossing cracks are thus well-distinguished. In these string-like samples 
the nanotube areas previously studied with SEM can be easily found again with an 
optical microscope. Therefore, the relation between the Raman spectra and the bundle 
sizes can be obtained with a high precision. 
The samples were stable up to temperatures of 1500C, and up to powers of 5 mW of 
the Raman laser beam. Further heating increases the cracks and, upon reaching a 
certain value destroys such a string-like structure. The samples remain unchanged 
over days and sometimes weeks, depending on the storage conditions. A somewhat 
similar picture was observed for dispersions of HipCo-tubes in D2O/NaCholate which 
were dried out on standard gold grids for HRTEM microscopy (Fig. 5.8 a, and b 
enlarged). 
 

(a) (b) 
Figure 5.8.  HRTEM images of the HipCo-tubes dispersed in D2O/NaCholate and dried out 
on an Au-grid. 

 
The open cracks appear without heating due to the surface tension in the surfactant 
film. These samples were less stable against laser power heating then those on the Si-
wafer. Moreover the films strained between the square holes of the gold grid (with a 
size ≈ 80 μm) decompose within hours. 
 

5.3 Experimental results 

Resonance Raman scattering 
In order to understand the general tendencies of bundling effects the study was started 
with solid samples of strongly bundled tubes. Then the nanotubes were individualized 
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in dispersions. The resonance Raman spectra of strongly bundled tubes and 
“individual” ones in the dispersion are compared in Fig. 5.9. The comparison is 
presented for the HipCo-tubes as having many electronic transitions (≈ 10) close to 
the resonance with Eexc = 2.3 eV, in contrast to NiCo-tubes with only two transitions 
(see Raman spectra in Fig. 5.4).  
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Figure 5.9 Low frequency Raman spectra of HipCo-nanotubes (Eexc = 2.3 eV): the strongly 
bundles tubes (powders) and individual tubes (dispersions). The (n, m) indices assignment 
was made using data from [18]. 
 
The spectra of strongly bundled and individual tubes in Fig. 5.9 have almost the same 
set of peaks (the same set of tubes) however, their relative intensities are different. 
Thus the intensity difference of the Raman peaks in spectra of single and bundled 
tubes is the most important manifestation of the bundling effects.  
In order to assign the peaks one should look at Fig. 3.9 which shows the electronic 
transitions in resonance with Eexc = 2.3 eV. The excitation energy Eexc = 2.3 eV 
corresponds to electronic energies of metallic tubes for the HipCo-tubes. For metallic 
interband transitions semiempirical formulae connecting diameter and energies 
similar to semiconducting tubes [6] do not exist.  
In this work an assignment based on the data from the resonance Raman experiment 
[18] was applied. Fantini et al. [18] managed to attribute the pairs of the experimental 
values {Eii, ωRBM} obtained from the Raman spectra to (n, m) indices of metallic tubes 
comparing the TB model and the semiempirical formulae for semiconducting tubes 
[6]. They estimated the down-shifts of the electronic energies as well as broadening of 
the resonance windows for bundled tubes with respect to isolated ones.  
According to Fantini et al. the values of the energy down-shift vary from 20 up to 
140 meV for different tubes, and the width of the resonance Raman windows changes 
from the Γ = 60 meV for micelles-isolated tubes up to Γ = 120 meV for bundled 
tubes. Figure 5.10 presents the experimental energies Eii from [18] plotted versus 
RBM frequencies for both bundled and single tubes together with their (n, m) indices.  
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Figure 5.10 Experimental transition energies Eii of metallic and semiconducting HipCo-
nanotubes plotted vs. their RBM frequencies: for micelle-isolated tubes (squares) and for 
bundled tubes (stars). Arrows show the energy down-shifts caused by bundling, for tube (7, 7) 
the “single” transition energy was not determined as well as “bundled” energy for (10, 0) tube 
(data from [18]). 
 
The points in Fig. 5.10 are derived from the maxima of the resonance Raman 
windows (the Raman intensity vs. laser excitation energy, section 4.2) for each 
nanotube. Resonance windows have some width Γ (see eq. (4.16)), therefore the 
electronic transitions are possible within Γ. The intensity of the Raman peak for each 
tube is proportional to |Eii – Eexc|: the smaller the difference, the larger the Raman 
peak intensity. 
It can be seen from Fig. 5.10 that the transition energies of bundled tubes (marked 
with squares) are red-shifted (down-shifted) with respect to the micelle-isolated tubes 
(stars) for both semiconducting and metallic tubes. Fig. 5.10 explains, thus, the 
intensity changes in the Raman spectra shown in Fig. 5.9. The single tubes with 
transition energies above the laser excitation energy (dashed line in Fig. 5.10) move 
towards resonance with increasing of bundling. Their intensities grow, since the 
difference |Eii – Eexc| decreases.  
At the same time tubes with transition energies below the excitation energy move out 
of resonance in bundled state. Their intensities decrease, since the energy difference 
|Eii – Eexc| increases. For instance, the Raman peaks of the tubes (11, 7), (12, 5), and 
(8, 5) have higher intensities in bundled samples than in dispersions (Fig. 5.9). On the 
contrary, the tubes (8, 8), (9, 6), and (10, 4) have higher Raman peaks in single state. 
The energy of the tube (9, 3) appears to be at the same distance from the Eexc in an 
isolated and bundled state, therefore, its Raman intensity should be similar in the 
single and the bundled state (Fig. 5.9). Fig. 5.10 gives an explanation of the difference 
in Raman intensities for bundled and single nanotube samples in Fig. 5.9. The 
parameters of the energy shifts are summarized in Table 5.1. 
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Table 5.1 The parameters of single and bundled tubes (from [18]). ‘S–type’ means the 
“family” of the tube, or the Mod [(n - m), 3]. For tubes (11, 7), (12, 6), (14, 2), and 
some others the values Ebundled were not detectable. 
 

 
RBM, 
cm-1 

 
(n, m) 

 
Esingle, 

eV 

 
Ebundled, 

eV 

 
Chiral 
angle, 
θ, 0 

 
S-

type 

 
Diameter, 

nm 

Metallic or 
semicond. 
transition 

Eii 
174 (11, 9) 2.427 2.41 26.7 2 1.38 E33

SE 

185.4 (11, 8) 1.9 1.87 24.8 0 1.29 E11
ME 

186 (15, 2) 2.47 2.39 6.2 1 1.29 E33
SE 

189 (11, 7) 2.61 – 22.7 1 1.27 E33
SE 

191.6 (12, 6) 1.92 – 19 0 1.25 E11
ME 

196.4 (9, 9) 2.03 2 30 0 1.22 E11
ME 

196.5 (13, 4) 1.93 1.83 13 0 1.21 E11
ME 

196.6 (13, 4) 1.93 – 13 0 1.21 E11
ME 

197 (12, 5) 2.6 2.54 16.6 1 1.21 E33
SE 

200.5 (14, 2) 1.92 – 6.6 0 1.19 E11
ME 

204.6 (15, 0) 1.88 – 0 0 1.16 E11
ME 

205.6 (10, 7) 2.07 2.02 24.2 0 1.16 E11
ME 

206 (14, 1) 2.55 2.49 3.4 1 1.16 E33
SE 

214 (11, 5) 2.06 2.02 17.8 0 1.11 E11
ME 

218.5 (8, 8) 2.22 2.14 30 0 1.09 E11
ME 

219 (12, 3) 2.04 1.95 10.9 0 1.08 E11
ME 

223 (13, 1) 2.02 – 3.7 0 1.06 E11
ME 

230 (9, 6) 2.24 2.16 23.4 0 1.03 E11
ME 

239.2 (10, 4) 2.22 2.15 16 0 0.99 E11
ME 

244.4 (11, 2) 2.19 2.13 8.2 0 0.96 E11
ME 

247 12, 0 2.16 – 0 0 0.95 E11
ME 

248 (7, 7) 2.43 – 30 0 0.95 E11
ME 

264 (8, 5) 2.43 2.33 22.4 0 0.89 E11
ME 

274 (9, 3) 2.35 2.25 13.9 0 0.85 E11
ME 

294 (10, 0) 2.36 2.26 0 1 0.79 E22
SE 

5.4 Data analysis 

In the previous section the manifestation of the bundling effects in Raman spectra was 
illustrated as the intensity difference between the RBM peaks of bundled and single 
nanotubes. Bundling causes the down-shift of the electronic energy with respect to the 
single state for both metallic and semiconducting nanotubes. The increase/decrease of 
the intensities of the RBM peaks in bundled samples with respect to single ones 
depends on the position of the nanotube electronic energy Eii with respect to the 
excitation energy (above/below). 
Following Eq. (4.16) the Raman intensity depends on the difference |Eii – Eexc|, where 
Eii can be Esingle (min bundling), Ebundled (max bundling) or an intermediate energy Ei 
corresponding to any degree of bundling between min and max. It would be 
convenient now to obtain a numerical relation for the Raman intensity as a function 
of the electronic energy change caused by bundling. 
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In order to solve this problem, the following section is devoted to the calculation of 
the Raman intensities of carbon nanotubes within the model described in Section 4.2 
using Eq. (4.16). Experimental values of Esingle and Ebundled from [18] are taken as the 
parameters. 

5.4.1 Raman intensities and electronic energy shift 
In the following theoretical model introduced for the calculation of the Raman 
intensities as a function of electronic energy E (Esingle ≤ E ≤ Ebundled) two assumptions 
have been made: 

(i) nanotubes of different kinds in a sample undergo the same interaction, i.e. 
they are all in the same bundling state; 

(ii) the relative shift α of electronic energies varies synchronously for all types 
of tubes. I.e. in the same environment the electronic energies of different 
nanotubes is described by  

)()( bundledsinglesingle EEEE −−= αα . 
Here, α is the “degree of bundling” which shows the relative energy shift (in %) with 
respect to single state and takes values from 0 to 100. In this way, Esingle corresponds 
to α = 0%, Ebundled to α = 100% of bundling.  
Experimental parameters Esingle and Ebundled are individual for different nanotubes [18] 
(see Table 5.1). In terms of the parameter α, the relative energy shift for two tubes in 
the same bundling state will be the same, i.e., α1 = α2 (assumption (ii)). 
The Raman intensities as a function of the electronic energy shift will be calculated 
using eq. (4.16), where the parameters are taken as follows: A = 1, 
Elaser = Eexc = 2.3 eV, Eµ = Ei(α), is a value of the individual electronic transition 
energy for each tube depending on the degree of bundling; Eph  is an individual 
phonon energy of the vibration, i.e. the value  

1

1
RBM

cm 9
eV 001.0cm 

−

− ⋅ω . 

The individual values Γ for different nanotubes were not given in [18]. Therefore, in 
this model the values of Γ were set to be the same for all nanotubes. The experimental 
widths of the resonance windows [18] also depend on the degree of bundling and 
were determined to be approximately: Γsingle = 60 meV for single tubes and 
Γbundled = 120 meV for bundled tubes. The parameters for the resonance window width 
Γ (α) can be modelled analogically to E(α) as:  

)()( singlebundledsingle ΓΓΓΓ −+= αα . 
Here, the degree of bundling α shows the relative change of the width (in %) of the 
resonance window. In this model, {E(α), Γ(α)} change together with α. 
Fig. 5.11 presents the Raman intensities vs. the degree of bundling α calculated as a 
function of {E(α), Γ(α)} using eq. (4.16) for 9 tubes seen in the experimental Raman 
spectra of HipCo-nanotubes (Fig. 5.9). 
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Figure 5.11 Raman intensities plotted vs. the “degree of bundling” α. The intensities of 9 
tubes seen in the Raman spectra of HipCo-samples were calculated for {E(α), Γ(α)} using 
Eq. (4.16) (see text for details). 

 
It should be noted, however, that as far as the individual values Г for different 
nanotubes were not available this introduces an additional uncertainty to the Raman 
intensity estimation.  
In order to determine how large this uncertainty can be the values Г were varied in the 
following ranges: for single tubes Γsingle = [50 – 70 meV] and for bundled tubes 
Γbundled = [110 – 130 meV]. Then the Raman intensities were calculated as a function 
of α (the same as in Fig. 5.12) but for all possible combinations of the varying Γsingle 
and Γbundled parameters. The result of the calculation is presented in Fig. 5.12 as 
vertically scattered dots around the intensity values calculated for the Γsingle = 60 meV 
and Γbundled = 120 meV (dots connected with lines). 
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Figure 5.12 Raman intensities vs. the degree of bundling α calculated using eq. (4.16).  
The vertically scattered dots are for for all possible combinations of the parameters 
Гsingle = [50 – 70 meV], and Гbundled = [110 – 130 meV] (see text for details). 
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The variation of the Raman intensities caused by possible uncertainty of the Г-
parameter (in modelled range) is quite large, especially for tubes (9, 3) and (10, 0). In 
order to check how the uncertainty of Г influences the model, the experimental 
Raman spectra from single tubes (dispersions) and strongly bundled tubes (powders) 
were presented together with the modelled Raman intensities. 
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Figure 5.13 Low frequency Raman spectra of single HipCo-tubes in the dispersion of 
D2O/NaCholate and their Raman intensities calculated for the variation of the parameters 
Гsingle = [50 – 70 meV]. Raman spectra are fitted with Lorentzian peaks. 

 
Here the experimental RBM frequencies of single HipCo-tubes (and small bundles) in 
the dispersion of D2O/NaCholate are presented with their theoretically calculated 
intensities (see Fig. 5.12, α = 0 %) taking into account the variation of the 
Гsingle = [50 – 70 meV]. The calculated intensities are shown as vertically spread 
symbols corresponding to different values of Гsingle for each tube. In Fig. 5.14 the 
analogous result for the strongly bundled nanotubes in powder samples is presented. 
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Figure 5.14 Low frequency Raman spectra of bundled HipCo-tubes in powders and their 
Raman intensities calculated for the variation of the Гbundled parameter. Raman spectra were 
fitted with Lorentzian peaks. 
 
Comparing the theoretical intensities with the experimental spectra (in Figs. 5.13 and 
5.14) one can conclude: although the experiments are not described in every detail by 
this simple model the general trends are still well reproduced. There are many reasons 
for a certain discrepancy between the calculated and the experimental intensities. The 
most influential one is that the real systems (dispersions, powders) are far from the 
ideal modeled cases: 

(i) homogeneously distributed tubes that absolutely do not interact with the 
environment, or  

(ii) highly interacting and well-aligned tubes, and in any case at constant 
temperature. 

Concerning the solid sample, the thermal down-shifts in the peak positions (≈ 2 cm-1) 
indicate the heating of the sample by the laser beam. Heating can also influence the 
electronic and vibrational properties of the nanotubes (see Chapter 6 about the 
temperature effects). 
To conclude, the nanotube dispersions and their solid powders can be approximately 
modeled by the theory described above. The general trends are clearly seen. The 
experimental Raman intensities were found to be sensitive to the following factors not 
included in the present model: 

• tube packing efficiency (in solid); 
• tube alignment (in solid); 
• relative concentration of different tubes (in dispersion and solid); 
• temperature effect due to laser heating (in solid). 
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In order to find quantitative correlations between the Raman intensity and the bundle 
size one would need to study a sample with reduced influence of the factors listed 
above. The following section is devoted to such a study. 

5.4.2 Correlation between the Raman intensity, electronic energy shift and 
bundle size 

HipCo-samples with homogeneously distributed tubes of different diameters were not 
available in this study. The dispersions of the HipCo-nanotubes obviously contain 
various partial concentrations of different tubes because of their different 
concentrations in the original material produced by the HipCo-method [55, 56]. 
Reducing the number of tube types active in Raman scattering makes it easier to 
produce a homogeneous sample of only few tube species.  
The nanotubes grown by the NiCo-method have a narrower diameter distribution 
(see Fig. 3.9) and contain only two tubes which are active in Raman spectra for the 
excitation energy Eexc = 2.3 eV (Fig. 5.15, b, c). These are the semiconducting tubes 
(11, 9) with ωRBM = 174 cm-1 and (15, 2) with ωRBM = 186 cm-1. 
Therefore, the NiCo-tubes were chosen for the estimation of the correlation between 
the Raman intensity, nanotube bundle size and the electronic energy shift. Electronic 
transition energies for two tubes (11, 9) and (15, 2) in single and bundled states can be 
found in Table 5.1. The ratio of the peak intensities y = I(174 cm-1)/I(186 cm-1) is  the 
value reflecting the predominance of a cirtain kind of tube, i.e. the position of the 
nanotube electronic energies with respect to the laser energy (Fig. 5.10). Therefore, 
the Raman peak ratio y = I(174 cm-1)/I(186 cm-1) can serve as an indicator for the 
degree of bundling of the tubes (11, 9) and (15, 2). 
In this study four kinds of NiCo-samples with tubes of different degree of bundling 
were used to determine the experimental correlation between the Raman intensity 
ratio and the nanotube bundle size. The procedure of the estimation of the 
experimental correlation is described in Section 5.2. Interesting areas of the sample 
previously studied with HRTEM or SEM could be found again with an optical 
microscope and their Raman spectra were then measured.  
Fig. 5.15 (a) presents the SEM image of the first sample: a film produced from the 
dispersion of the NiCo-nanotubes in D2O/NaCholate. The sample has cracks with 
nanotube bundles coming out of the film. These bundles can be scanned with the laser 
beam (marked as dotted circle) in order to obtain their Raman spectra. 
 

(a)  

 
 
 
 
 
 
 
 
 
Figure 5.15 (a) SEM image of small bundles 
of NiCo-CNTs and single nanotubes strained 
between cracks in a film of the surfactant 
NaCholate (a); 
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(c) 
Figure 5.15 (b, c) Typical low frequency Raman spectra from the bundles coming out of 
the cracks: (b) single tubes and bundles ≈ 2 nm; (c) bundles 10 - 13 nm. The fitting of the 
Raman spectra has been done with Lorenzian peaks. 

 
Figures 5.15 (b) and (c) present typical RBM Raman frequencies obtained by 
scanning the tube bundles along the cracks. A distribution of the bundle sizes for such 
a sample is about 2 – 13 nm (see also Fig. 5.7). The ratio between the Raman peaks 
appearing from two active tubes I(174 cm-1)/I(186 cm-1) varies from 3 for single 
tubes to 1.5 for bundles of about 10 – 13 nm.  
The TEM image of the second sample used in this study is presented in 
Figure 5.16 (a). This is a piece of solid NiCo-nanotube material put on a standard gold 
HRTEM-grid. The grid had special markers which makes it possible to find the same 
part of the sample again (for instance, the sharp spike of the particle), that was 
previously scanned with Raman.  
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(b) 

Figure 5.16 HRTEM image of the solid NiCo-sample with different degree of tube 
bundling (a); typical Raman spectra obtained from circled area in the TEM image (b, c). 
The sizes of the bundles growing from the spike are 10 – 30 nm. The fitting of the Raman 
spectra has been done with Lorenzian peaks. 

 
Typical Raman spectra from the bundles of 10 – 30 nm (circled white in Fig. 5.16 (a)) 
have the peak’s ratio I(174 cm-1)/I(186 cm-1) = 1 (Fig. 5.16 (b)). A resolution of the 
bundle sizes was not possible within the laser beam area ≈ 1 µm therefore this 
intensity ratio was attributed to the bundle size distribution 10 – 30 nm. 
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The third sample used for the estimation of the correlation was the surfactant film 
dried out on the Si-surface at room temperature (SEM image in Fig. 5.17 (a)). This 
sample showed distribution of the bundle sizes between 60 and 100 nm (with the 
mean size of about 80 nm). Here, typical Raman spectra have the peak’s ratio 
I(174 cm-1)/I(186 cm-1) ≈ 1.7 (Fig. 5.17 (b)). For the correlation this value was 
attributed to 80 nm within the distribution of the bundle sizes.  
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(b) 
Figure 5.17 SEM image of the NiCo-nanotubes inside the surfactant film (a), and typical 
RBM Raman frequencies from the area circled black in the SEM image (b). Lorenzian 
fitting. 
 
Finally, a solid sample of the NiCo- nanotubes with large bundles along its edge was 
studied with both HRTEM (Fig. 5.18, a) and Raman scattering (Fig. 5.18, b).  
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(b) 
Figure 5.18 HRTEM image of the solid NiCo-sample investigated with Raman; (a) typical 
RBM Raman frequencies from the circled area “2”. Lorenzian fitting. 
 
The Raman spectra appear to be the same for the tightly pressed solid sample (circled 
area “1” in Fig. 5.18, a) as well as for nanotube bundles ≈ 100 nm (circled area “2” in 
Fig. 5.18, a). This result leads to a conclusion about the “critical” bundle size related 
to the “strongly-bundled state” in which the tubes exhibit maximum mutual 
interaction. Further increasing of bundling does not influence the electronic properties 
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of CNTs as they are bound with crystallitic forces. The critical bundle size xcritical for 
the strongly-bundled state was found to be about ≈ 100 nm. 
All Raman spectra in Figs. (5.15) – (5.18) were fitted with Lorentzian peaks using the 
program Fityk for nonlinear fitting of analytical functions [110]. The fitting has been 
done for the same parameter of the full width at the half maximum (FWHM). 
Therefore, the maxima of the Raman peaks can be taken as the characteristic of the 
nanotube ensemble instead of the total peak area. 
The experimental correlation between the Raman intensity and the bundle size 
derived using combined HRTEM, SEM and Raman study (Figs. 5.15 – 5.18), as just 
described is presented in Fig. 5.19. 
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Figure 5.19 Experimental correlation between the intensity ratio (y) of the Raman peaks 
from tube (11, 9) and (15, 2) and the nanotube bundle size (x). Combination of HRTEM, 
SEM and Raman study (for Eexc = 2.3 eV). 
 
The data spread along the x-axis corresponds to the distribution of the bundle sizes in 
the samples in Figs. (5.15) – (5.18). For the small bundle sizes the variation of the 
intensity ratio y(x) is quite large demonstrating a strong dependence on the bundle size 
x up to x ≈ 30 nm. The relation demonstrates a decay-like character and converges to 
the value of the intensity ratio y0 = 0.58 for lerge x. This dependence can be fitted with 
an exponent y = Aexp(-x/t) + y0, where A = 2.52, t  = 10.62, and y0 = 0.58. 
The physics behind the exponential dependence is not completely clear. It provides 
only a qualitative description of the experimental data. 
Estimation of the correlation between the degree of nanotube bundling and the energy 
shift would need a combination of the experiment and theory. The data from the 
empirical correlation presented in Fig. 5.19 must be related to the theoretical Raman 
intensities vs. the electronic energy shifts calculated within the theoretical model 
described in Section 5.4.1. This calculation was carried out in two steps. First, the 
Raman intensities for two tubes (11, 9) and (15, 2) were calculated as a function of the 
degree of bundling α (Fig. 5.20). Then their ratio was calculated as a function of α 
(Fig. 5.20, b). 
 



5 Bundling Effects 

 
 

61

0 20 40 60 80 100

2000

4000

6000

Modelled data
Bundled

(11, 9)
174 cm-1

 R
am

an
 in

te
ns

ity
 (a

.u
.)

 Degree of bundling α, %

(15, 2)
186 cm-1

Variation of Γ

Single

(a) 

0 20 40 60 80 100

0.5

1.0

1.5

2.0

2.5

3.0

 Degree of bundling α, %

In
te

ns
ity

 ra
tio

, y
th

eo
r

Single

Bundled

max uncertainty ~ 12% 

Modelled data

(b) 

 
 
 
 
 
 
 
Figure 5.20 (a) 
Raman intensities for the tubes 
(11, 9) (ωRBM = 174 cm-1) and 
(15, 2) (ωRBM = 186 cm-1) vs. the 
degree of bundling α calculated 
using Eq. (4.16). 
 
 
 
 
 
 
 
 
 
 
Figure 5.20 (b) 
The ratio I(174 cm-1)/I(186 cm-1) 
between the Raman intensities of 
the tubes (11, 9) and (15, 2) vs. the 
degree of bundling α calculated 
using Eq. (4.16). 

 
The parameters for the calculation of the Raman intensities were taken as follows: for 
the tube (11, 9): Esingle = 2.43 eV, Ebundled = 2.41 eV; for the tube (15, 2): 
Esingle = 2.47 eV and Ebundled = 2.39 eV (see Table 5.1). With increasing α, the tube 
(15, 2) moves to the resonance faster than tube (11, 9) because the value of the energy 
shift Δ(Esingle – Ebundled)/Δα is larger for (15, 2) than for (11, 9). Therefore, the 
intensity of the peak of the (15, 2) tube grows faster with α then for the (11, 9) tube 
(Fig.5.20, a).  
The parameter Γ was taken to be: Γsingle = [50 – 70 meV] and Γbundled = [110 –
 130 meV]. The vertically dispersed points in Fig. 5.20, (a, b) show the intensity 
variation caused by changing of Γ (see Section 5.4.1). The maximum uncertainty of 
the theoretical intensity ratio y due to the variation of Γ is ≈ 12% (Fig. 5.20, b). 
Finally, the theoretical Raman intensity ratio ytheor vs. degree of bundling α 
(Fig. 5.20 (b)) can be combined with the experimental Raman intensity y ratio vs. 
bundle size x (Fig. 5.19.). In this way, the semiempirical correlation between the 
degree of bundling α and the bundle size x can be derived. The result of such a 
combination is presented in Fig. 5.21. 
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Figure 5.21 Semi-empirical correlation between the degree of bundling α and the nanotube 
bundle size x. Rectangles indicate the theoretical uncertainty of 12% and the experimental 
data spread. 
 
The data in Fig. 5.21 (b) are surrounded by rectangles indicating the theoretical 
uncertainty 12% (vertically) and the experimental data spread (horizontally). Fitting 
of the data had been done numerically by re-calculating the exponential dependence 
y(x) (Fig. 5.19) and the polynomial dependence ytheor(α) (Fig. 5.20, b) into α(x). The 
function in Fig. 5.21 demonstrates a saturation-like behaviour for large x.  
Although, this correlation was derived using the Raman intensity ratios of only two 
tubes, it could be considered after the theoretical re-calculation as universal for any 
kind of tube (n, m) since it describes simply the relative energy shift α in % with 
respect to the single state. Of course, one should bear in mind the assumption of the 
synchronous shifts of energies for all the tubes with bundling (Section 5.4.1). In other 
words, the correlation is valid only for the tubes whose electronic energies are 
modified by the same value α for the same x.  
 

5.5 Summary 

In this chapter an empirical correlation between the nanotube bundle size x and the 
Raman intensity ratio y was demonstrated for the first time. It was obtained by 
HRTEM and SEM techniques combined with Raman scattering. The correlation was 
fitted with the exponential function which converges to the value y = 0.58 for large 
bundle size x. Starting from xcritical ≈ 100 nm, further increasing of the bundle size 
does not detectably change the Raman intensity ratio, i.e. does not influence the 
electronic properties of CNTs as they are bound with strong crystallitic forces.  
Furthermore, a semi-empirical correlation between the relative energy shift α (or 
degree of bundling) and the bundle size x was derived combining the theoretical 
model for the calculation of the Raman intensities vs. α with the empirical correlation 
for Raman intensities vs. bundle size x. This correlation can be applicable within the 
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assumption about the synchronous energy shift of different tubes with bundling. Both 
correlations provide an idea about the saturation of the nanotube interaction at some 
value of the bundle size. 
 





Chapter 6  

Temperature Effects 

In Chapter 6 the influence of temperature on the electronic properties of carbon 
nanotubes will be considered experimentally and within the theoretical model. 
Chapter 6 has the following structure: 

• Motivation with analysis of the theoretical model for the temperature 
dependence of the band gap of semiconducting nanotubes; corrections to the 
model for study of the electronic transitions of CNTs in the present samples; 

• Combination of two models: the model for the temperature dependence of 
the electronic energies and the model developed for the influence of the 
tube-tube interaction (Chapter 5); 

• Calculation of the Raman intensities of semiconducting nanotubes within the 
combined model as a function of both temperature and degree of nanotube 
bundling; 

• Temperature-dependent Raman scattering experiments on samples with 
semiconducting CNT having different degree of bundling; 

• Comparison between the calculated and the experimental Raman intensities 
as a function of temperature; analysis of the theory applicability; 

• Finally, the temperature-dependent Raman scattering experiments on 
samples with metallic nanotubes; conclusion about the possible temperature 
dependence of their electronic structure. 

6.1 Motivation 

The influence of temperature on Raman-active modes of carbon-based materials such 
as diamond, highly oriented pyrolytic graphite (HOPG), and single-crystalline 
graphite has been widely studied [63 – 67]. Thermal shifts of the phonon modes in 
these materials usually indicate changes in the elastic modulus and reflect two effects: 
changes in the interatomic distances due to thermal expansion of the crystalline lattice 
(pure volume effect) and a softening of the elastic modulus due to the temperature 
increase (pure temperature effect). The frequency change can be written as 
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In diamond and graphite thermal shifts are caused by both volume and temperature 
effects. In contrast, single crystal graphite and HOPG, as well as carbon nanotubes 
with well graphitized structure have high thermal conductivity, and there was no 
significant in-plane thermal expansion detected by X-ray measurements [68, 69]. 
Therefore, a small downshift in their Raman frequencies is attributed to a purely 
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downshifts in Raman frequency arise due to both temperature and volume 
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It is obvious that the influence of temperature on the electronic properties of the CNT 
material provides important insight into the nature of the electron-phonon interactions.  
As mentioned in Chapter 4 the unique properties of 1D carbon nanotubes manifest 
themselves in a strong electron-phonon coupling, and their Raman spectra reflect both 
vibrational and electronic properties. Therefore, thermal shifts in Raman spectra of 
carbon nanotubes should reflect the influence of temperature on the electronic 
properties of nanotubes as well. Up to now, however, there were very few theoretical 
[19, 70] and experimental publications [18, 71] devoted to the influence of 
temperature on the band gap of semiconducting carbon nanotubes, and no information 
is currently available on the influence of temperature on metallic nanotubes. Partly, 
the lack of information can be explained by the absence of a universal model and 
experimental method for nanotube (n, m) assignment. A further reason is the necessity 
to perform measurements of the band gap value (or higher interband transition 
energies) on single nanotubes, as bundling effects substantially change their electronic 
properties (see Chapter 5). The method of individualizing tubes inside micelles was 
invented relatively recently [17]; since then there have been many successful efforts 
to find a route to (n, m) assignments using vibrational as well as photoluminescence 
spectroscopy.  
This Chapter presents the study of the temperature influence on the electronic 
properties of carbon nanotubes and is based on three main parts: 

• analysis of Raman intensities of the RBM frequencies as a function of 
temperature; 

• application of the theoretical model of the electronic energy shifts 
developed for bundling effects (see Chapter 5); 

• application of the theory of temperature dependence of the band gap of 
semiconducting carbon nanotubes recently developed by 
R. Capaz et al. [19]. 
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6.2 Theoretical model for temperature behaviour of the band gap of 
semiconducting CNTs 

The temperature dependence of the band gap (Eg) is one of the fundamental signatures 
of a semiconductor reflecting processes of electron-phonon (e-ph) interactions. 
Usually, Eg(T) curves show a monotonic decrease with increasing temperature that is 
nonlinear at low T and linear at sufficiently high T [73, 74]. Understanding Eg(T) for 
nanotubes is extremely important since experiments are often performed at room 
temperature and the corresponding predictions are usually done at T = 0.  
A model for the temperature dependence of the band gap of semiconducting single-
walled nanotubes has been proposed by Capaz et al. [19]. It is based on the direct 
evaluation of electron-phonon coupling within a “frozen-phonon” scheme for the 
single-particle band gap. A complex dependence of Eg(T) on chirality and diameter 
with an unusual nonmonotonic behavior for certain classes of tubes was found. This 
behavior arises from the difference in sign of the e-ph coupling associated with low-
energy optical phonons. Using the relation for Eg(T) derived by Capaz et al. one can 
calculate the temperature behavior of the band gap of any given SWCNT as a function 
of diameter and chirality. The common relation for the band gap energy change for a 
semiconductor within a two-phonon model [75] is 
 

1/21/1
2211)(
−

Θ
−

Θ
Θ

+
Θ

=Δ TT ee
TEg

αα , 
(6.1)

 
where Θ1 and Θ2 (Θ1 < Θ2) are “effective temperatures” for two “average phonons”, 
αjΘj = ∂Eg/∂nj are their effective e-ph coupling coefficients, and nj  = (eβћωj – 1)-1 is the 
Bose-Einstein occupation number of the phonon mode j. The parameters αj and Θj 
depend on the SWCNT’s diameter and chirality [19] as follows: the effective 
frequency for the lowest-energy phonon mode Θj dictating the behavior of Eg(T) at 
low T (< 100 K) is proportional to the inverse square of the diameter d and does not 
depend on chirality: 
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We note that Eq. (6.2) is in contradiction with the empirical 1/d dependence of the 
RBM. Taking into account the other proposed empirical dependence (Eq. (4.19)) we 
use Eq. (6.2) in the framework of Eq. (6.1) for consistency.  
The dependence on chirality can be expressed as polynomial expansions f(ξ) of a 
“chirality variable” ξ = (–1)νcos(3θ), where ν = Mod[(n-m)] is the number defining 
the family of the semiconducting tube. The second order term is then [19]: 
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where η indicates the parameter under consideration. The parameter α1 is given by 
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The parameters α1 and Θ2 effectively represent a large number of phonon modes that 
start to become “active” at temperatures between 350 and 500 K. They are given by 
the following expressions: 
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The equations (6.1) – (6.6) provide a recipe for the estimation the band gap shifts as a 
function of temperature for any tube. The ten parameters obtained by best fits [19] are 
the following: 
A = 9.45.103 K; 0

1α = – 1.70.10-5 eV/K; 1
1
αγ = 1.68.10-6 eV/K; 1

2
αγ  = 6.47.10-7 eV/K;  

∞Θ2  = 470 K; 2
1
Θγ = 1.06.103 K; 2

2
Θγ =  – 5.94 .10-2 K; B = – 4.54.10-4 eV/K;  

2
1
αγ =  – 2.68.10-3 eV/K; 2

2
αγ = – 2.23.10-5 eV/K. 

The contribution of an anharmonic term to the band gap variation with T is found to 
be quite small (≈ 0.2 meV at 300 K for the tube (10, 0)) and can be neglected in this 
consideration. Capaz et al. [19] consider an anharmonic term as caused by changes in 
C-C bond lengths and angles rather than by changes in the lattice force constants. The 
theory described above was developed for the temperature range [0 – 400 K]. At 
higher temperatures a renormalization of the bands is expected.  
In this work the maximum temperatures were ≈ 450 K, therefore, the theoretical limit 
of Tmax = 400 K was not substantially exceeded and the theory can be used. The 
theory developed by Capaz et al. [19] can be used not only for the calculation of the 
band gap values as a function of T but also for higher interband electronic transition 
energies Eii. In that case, the sign of (– 1)ν in the chirality variable ξ should be 
reversed and the parameters α1 and α2 in eqs. (6.4) and (6.6) should be rescaled by a 
corresponding factor according to the ratios between the electronic transition energies 
are E11(=Eg)/E22/E33/E44 … = 1/2/4/5 …  
Figure 6.1 presents the electronic transition energies E33 versus temperature T 
calculated with eqs. (6.1) – (6.6) for two experimentally accessible semiconducting 
nanotubes (11, 9) and (15, 2). The laser excitation energy Eexc = 2.3 eV will be in 
resonance with the third electronic interband transitions E33 of these tubes. The 
eq. (6.1) must be rescaled by a factor of 4 since Eg/E33 = 1/4.  
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Figure 6.1 Electronic transition energies E33

ME for five semiconducting nanotubes calculated 
using theory of the temperature dependence of the band gap [19] in a wide temperature range 
[0 – 700 K]. 
 
The theoretical shifts of E33

SE(T) are about the same for the tubes (15, 2), (14, 1), 
(12, 5), and (11, 7). However, they are different for the tubes (11, 9) and (15, 2): the 
thermal shift coefficient ΔE33

SE(T)/ΔT ≈ 0.13 meV/K and ≈ 0.2 meV/K, respectively. 
It means that the peak intensity of the tube (15, 2) will grow faster with temperature 
since (15, 2) moves to the resonance with Eexc faster then (11, 9) (has larger 
coefficient ΔE33

SE(T)/ΔT). 
To adapt this theory to the experiment one should take into account bundling of the 
nanotubes in real samples. Bundling shifts the electronic transition energies of the 
nanotubes depending on the bundle size (Chapter 5). In a bundled sample the initial 
electronic energies will be shifted even at room temperature. Following heating of the 
sample modifies these perturbed by tube-tube interaction energies according to the 
model described above.  
The electronic energy shifts caused by both bundling and temperature can be 
modelled using the combined code developed for bundling effects (Chapter 5) and the 
theory for temperature dependence of the band gap values proposed by 
R. Capaz et al. [19]. For that porpose, in the theory [19] the initial electronic energies 
of the semiconducting tubes (11, 9) and (15, 2) at Troom were substituted by the 
energies modified by different degree of bundling α. Then the temperature shifts of 
the electronic energies were calculated for those perturbed electronic energies using 
Eqs. (6.1) – (6.6). Finally, the Raman intensities (and their ratio) of two tubes were 
calculated using eq. (4.16) as a function of T for different degrees of bundling α. The 
result of such a calculation is presented in Fig. 6.2. Here the resonance window widths 
Γ are taken as const(T) since their variation does not substantially change the final 
result. 
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Figure 6.2 Raman intensity ratio of two tubes (11, 9) and (15, 2) versus temperature for 
different degrees of bundling α calculated within the combined model (see text). Parameters 
were taken as follows: Esingle = 2.47 eV, Ebundled = 2.39 eV (186 cm-1), Esingle = 2.43 eV, 
Ebundled = 2.41 eV (174 cm-1), Γsingle = 0.06 eV, Γbundled  = 0.12 eV, Γ = const(T). 

 
Here the intensity ratio of two Raman peaks y = I(174 cm-1)/I(186 cm-1) is plotted as a 
function of temperature for different degree of bundling α. Temperature varies in a 
range from Troom = 300 K to Tburn = 700 K (temperature of the nanotube burning). Tburn 
exceeds the limit of the Capaz’s theory applicability Tmax = 400 K. However, this 
result can be useful for the general consideration of the band gap behaviour at high 
temperature. 
The curves show a monotonic decrease of the Raman intensity ratio y with T for all 
bundle sizes up to α = 90% (bundle sizes > 60 nm). For α > 90% at T ≥ 650 K the 
electronic energy E33

SE of the tube (15, 2) crosses the resonance energy Eexc = 2.3 eV 
and further increase of T results in an increase of the ratio y.  
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6.3 Experimental results 

6.3.1 Samples and experimental details 
The samples for the study of the temperature effects were prepared from dispersions 
as described in Section 5.2. The spin-casting method provides a thin film of nanotubes 
covered with molecules of the surfactant Na/Cholate on the Si-surface. In the present 
experiment temperature of the samples can be varied in two ways: by changing the 
intensity of the laser beam or by heating up the sample on a copper heater plate. 
In the case of the heating with the laser beam temperature of the sample is unknown 
due to the absence of a preliminary procedure for temperature calibration. The usual 
method of the temperature estimation with Stokes and Anti-Stokes line ratio is not 
applicable for carbon nanotubes since their Raman spectra are excitation-energy 
dependent. It leads to the excitation of different tubes in Stokes and Anti-Stokes 
spectra for a given Eexc [72].   
Therefore, the samples were heated up with the hot copper plate after careful 
calibration of temperature with the surface thermometer. The sample temperature does 
not exceed 450 K (melting temperature of the surfactant film). 
In this study the NiCo-samples with two Raman-active (for Eexc = 2.3 eV) nanotubes 
(11, 9) and (15, 2)) were used. After a set of measurements at different temperatures 
Raman spectra were reproduced again at Troom to reassure that the investigated area 
had not changed its properties. 

6.3.2 Temperature changes in Raman spectra of semiconducting nanotubes 
The temperature-dependent Raman experiment on nanotube films had been carried 
out as follows. First, the most interesting areas of the sample, for instance, those with 
surface cracks (see Figs. 5.6, 5.7) were selected by optical microscopy. These areas 
can be easily recognized any time, even after a thermal drift of the investigated points 
due to the thermal expansion of the Si-surface. For these regions the Raman spectra 
were measured at different temperatures. The result of such a temperature-dependent 
Raman study is presented in Fig. 6.3 (a-c).  
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Figure 6.3 (a-c) Low frequency Raman 
spectra from the samples with different 
degree of bundling measured at different 
temperatures (a-c); the Lorenzian fit of the 
peaks at 174 cm-1 and 186 cm-1 (dotted 
profiles) is presented only for the lowest 
curves. 

The three sets of the Raman spectra (a – c) are obtained from areas with different 
degree of the nanotube bundling. The degree of bundling can be easily determined 
from the spectra measured at Troom simply analysing the ratio of the peaks 
y = I(174 cm-1)/I(186 cm-1). The values y are 1.27, 1 and 0.75 for the spectra (a), (b) 
and (c), respectively. In Chapter 5 two correlations for the Raman intensity ratio vs. 
bundle size (Fig. 5.20) and for the degree of bundling vs. bundle size (Fig. 5.21) were 
derived. With these correlations one can estimate the bundle size x and the degree of 
bundling α for the ratios y, i.e. x ≈ 17 nm (α = 55 %) for y = 1.27 (a); x ≈ 25 nm 
(α = 70 %) for y = 1 (b); x ≈ 40 nm (α = 85 %) for y = 0.75 (c). With increasing T of 
the sample the intensity of the peak at 186 cm-1 grows with respect to 174 cm-1 for all 
three sets of spectra in Figs. 6.3 (a – c). 
Fig. 6.4 shows the theoretical ratios of the Raman peak intensities vs. temperature 
calculated within the modified model (see Fig. 6.2) for three experimental bundling 
degrees α = 55 %, 70 % and 85%. Here, the experimental peak ratios from 
Fig. 6.3 (a – c) are also presented. The theoretical data are marked as closed squares 
connected with lines. The experimental data are marked as triangles. 
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Figure 6.4 Theoretical Raman intensity ratio y (squares) for two tubes (11, 9) and (15, 2) with 
calculated within the combined theoretical model for α = 55 %, 70 % and 85% (see text for 
details) and the experimental intensity ratios (triangles) obtained from the spectra in 
Fig. 6.3 (a – c). 
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Fig. 6.4 shows a very close agreement between the experiment and the comparatively 
simple theory bearing in mind the approximations and limitations of the model. 
Among these approximations is an assumption about the synchronous shift of the 
electronic energies for different tubes in the same invironment (Section 5.4.1). The 
agreement between the experimental and theoretical data confirms this assumption at 
least, for two semiconducting tubes (11, 9) and (15, 2). Therefore, the model 
developed in Chapter 5 for study of the bundling effects is consistent and the can be 
used for the analysis of both bundling and temperature effects. 
The set of curves in Fig. 6.2 calculated for the degree of bundling α = (0 – 100%) 
provides, thus, a ready-to-use correlation between the Raman intensity ratio for two 
nanotubes I(174 cm-1)/I(186 cm-1) and temperature at the laser excitation energy 
Eexc = 2.3 eV. From these curves one can determine for example, temperature and 
electronic energies of the nanotubes (11, 9) and (15, 2) if the experimental 
temperature T is unknown.  
The same procedure can be reproduced, in principle, for any other set of 
semiconducting tubes at different Eexc. The only critical point is the correct calculation 
of the Raman intensities which requires the evaluation of the matrix element for e-ph 
coupling. In this consideration, however, these effects were neglected (see 
Section 4.2). 
The next interesting question is: what happens to the electronic energies of metallic 
nanotubes with changing temperature? 

6.3.3 Temperature changes in Raman spectra of metallic nanotubes 
Up to the present time no experimental data as well as theoretical calculations 
concerning the influence of temperature on Eii values of metallic nanotubes were 
available in literature. This work presents first attempts of such a study.  
In order to understand the difference between ordinary metals and metallic carbon 
nanotubes one should compare their basic properties given in Table 6.1. 
 
Table 6.1 Parameters of metallic CNTs compared to the nanowire of copper [76]. 
 

Parameters Single CNT Cu 22 nm via 
node 

Resistance (Ohms) 6.5 ·103 4 
Max current density (A/cm2) ~ 109 ~ 107 
Temperature coefficient of resistivity (/0C) – 1.5·10-3 + 4·10-3 
Thermal conductivity (W/mK) 6600 400 
 
Carbon nanotubes are ballistic conductors which can support huge current densities of 
up to 109 A/cm2. Compared to metals, CNTs have a negative temperature coefficient 
of resistivity and high thermal conductivity. All these characteristics make CNTs 
attractive for the nanoelectronic applications [76]. For some applications, however, 
metallic nanotubes will be used in a wide temperature range where their electronic 
characteristics must be predictable.  
In this section the influence of temperature on the energy separations Eii of metallic 
HipCo-nanotubes was investigated using the resonance Raman spectroscopy which 
provides information about the vibrational and the electronic properties of nanotubes. 
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The temperature-dependent Raman experiment on the metallic nanotubes had been 
carried out similar to that on semiconducting NiCo-nanotubes (Section 6.3.2). The 
HipCo-nanotube films on the Si-surface were prepared from the nanotube solutions 
using the spin-casting method (Section 5.2). Temperature of the samples was 
controled varying the laser beam power in a range of 0.1 – 2.5 mW. Heating with the 
heating plate (as for semiconducting NiCo-CNTs) was not possible due to the burning 
of the smallest HipCo-tubes (with d < 1 nm and RBM > 236 cm-1) under the laser 
irradiation at relatively low T < 400 K of the plate. In that case the simultaneous 
heating of the sample by the laser beam and the plate leads to high local temperatures 
of about 700 K at which the smallest nanotubes burn out. Therefore, the present study 
is focused only on the general trends of temperature effects with no exact temperature 
values given. Figure 6.5 presents two Raman spectra of the HipCo-nanotubes 
measured at different laser powers of 0.2 and 2.5 mW.   
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Figure 6.5 Low frequency Raman spectra of the HipCo-samples. The spectra were 
measured at different laser beam power: 0.2 mW and 2.5 mW. At the laser powers > 2.5 mV 
the smallest nanotube (with d < 1 nm) burn out. 
 
Both spectra were normalized to the intensity of the RBM peak of the semiconducting 
nanotube (11, 7) (ωRBM = 189 cm-1) with known theoretical energy shift (see Fig. 6.1). 
In this way the thermal changes in the Raman peak intensities appear more obvious. 
The intensity for some peaks (248, 264 and 274 cm-1) grows with increasing of the 
laser power while for the others (218, 230 and 239 cm-1) it decreases. The explanation 
is given by the plot for the energy down-shifts caused by bundling (Fig. 6.6) (see also 
Section 5.3).  
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Figure 6.6 Electronic transition energies of semiconducting and metallic tubes in single 
state (closed squares) and bundled state (open stars) [18]. The circles mark the energies of 
the tubes with similar temperature behaviour: those above the excitation energy line move to 
the resonance (their Raman intensities increase) and those below the excitation move out of 
the resonance (their Raman intensities decrease), compare Figs. 6.5 and 6.6. 
 
Temperature leads to similar changes in the Raman intensities as bundling does! 
Analogous to bundling effects, the temperature influence on the electronic energies Eii 
of metallic nanotubes can be seen from comparison between Figs. 6.5 and 6.6. The 
tubes with Eii above the excitation energy at 2.3 eV (248, 264 and 274 cm-1) move to 
the resonance with temperature increasing and therefore, exhibit increase in the peak 
intensity. At the same time, the tubes with the energies below the excitation energy 
(218, 230 and 239 cm-1) move out of resonance and their peak intensities decrease. 
Such behaviour can be explained by the temperature-induced energy down-shift. 

6.4 Summary 

In this chapter the temperature dependence of the electronic transition energies of 
semiconducting nanotubes was studied theoretically and experimentally. The 
theoretical model for the temperature behaviour of the band gap [19] modified for 
higher electronic transitions was combined with the model for bundling effects 
developed in Chapter 5. The theoretical ratios of the Raman intensitios calculated for 
two semiconducting nanotubes (11, 9) and (15, 2) within this combined model 
provide a very close agreement with temperature-dependent Raman experiment. Such 
an agreement confirmes the concistency of the developed model which can be also 
applied for temperature estimation of the nanotube samples using Raman intensities. 
The temperature-dependent Raman scattering experiments on the metallic nanotubes 
demonstrate the energy down-shift caused by temperature. 





Chapter 7  

B- and N- Doping 

In Chapter 7 the experimental study of the newly-synthesised BxNyCz-NTs and the 
other nanostructures is presented. Chapter 7 contains the following parts: 

• Motivation with the analysis of the theoretically predicted electronic properties 
of boron carbo-nitride nanostuctures. 

• Description of the production of single-walled and multi-walled BxNyCz –
nanostructures, HRTEM study of their morphology, interlayer stacking and the 
element composition (x, y, z). 

• Non-resonance Raman scattering on BxNyCz-NTs having different x, y, and z 
element compositions; analysis of changes in the Raman spectra and the 
electronic band structure as a function of boron and nitrogen doping 
concentration x and y. 

• Near infrared-visual-ultraviolet (NIR-vis-UV) absoption spectroscopy on the 
aqueous dispersions of BxNyCz-NTs; analysis of changes in the electronic 
structure caused by B and N-doping comparing NIR-vis-UV spectra of BxNyCz-
NTs and CNTs. 

• General conclusions about the methods of production and investigation of 
BxNyCz-NTs and their electronic properties as a function of B and N-
concentration. 

7.1 Motivation 

The field of nanotube science is represented by many exotic nanostructures made of 
carbon (CNT, CNx, BC3, BxNyCz), boron and nitride (BN), and composites of 
molybdenum (MoS2), vanadium (V2O5), tungsten (WS2), etc. [77]. All these structures 
having different electronic properties were expected to be useful for nanoelectronics 
applications.  
The electronic properties of single-walled carbon nanotubes depend strongly on their 
chiralities and diameters. The commonly obtained nanotube mixtures with mean 
diameters of 1.3 nm are mostly semiconducting (2/3 of all tubes) with band gaps of 
about 0.5 eV, or metallic (1/3 part).  
BN-NTs represent a structural analogue of carbon tubes with quite different electronic 
properties. They are insulators with a large band gap (about 5.5 eV) of ionic origin, 
almost independent of chiralities, diameters and intertube interactions [20, 78]. The 
estimated band gap of BC3 nanotubes is about 0.5 eV [79], and the experimental data 
confirmed their semiconducting behavior [80]. CNx nanotubes were predicted [81] 
and confirmed [82] to be metallic.  
Among these composite nanotubes, BxNyCz-nanotubes play a special role due to their 
“tunable” electronic properties. The band gap energies of these nanotubes are not 
strongly dependent on the diameter and chirality. They show, however, essential 
changes for different atomic compositions [20 – 22], which hints at a way to control 
their electronic properties. 
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There are many experimental methods of investigating the electronic properties of 
nanostructures. Photoluminescence spectroscopy (PL) and Near-IR-vis-UV absorption 
on CNTs give directly the band gap values E11

SE of semiconducting nanotubes (PL) 
and the electronic transition energies E11

SE, E22
SE, E33

SE and E11
ME (NIR-vis-UV).  

Raman scattering is an indirect method to study both electronic and vibrational 
properties of carbon nanotubes. Raman response from CNTs is very strong, highly 
resonant and gives diameters and the electronic transition energies of metallic and 
semiconducting CNTs. This method, however, does not work that well for BN- and 
BxNyCz nanotubes.  
Raman spectra of pure BN-nanotubes having a large band gap ≈ 5 eV (> Eexc) [89] are 
much weaker compared to CNTs due to the absence of the resonance enhancement of 
Raman scattering.  
The electronic structure of BxNyCz-NTs was analysed in Section 3.4. It was shown 
[22] that doping with B and N shifts the electronic energy bands of pure CNTs and 
broadens the van Hove singularity (vHs) peaks in the electronic density of states 
(DOS). BxNyCz-nanotubes can have band gaps of 0 – 5 eV (Fig. 3.14) depending on 
the B- and N-concentration. Their electronic transitions are thus accessible with Eexc 
of the Raman experiment. However, the sharp vHs peaks disappear with doping 
making the Raman scattering non-resonant. The Raman signal from BxNyCz-NTs 
loses intensity and becomes structureless depending on the doping concentration. 
Therefore, non-resonance Raman spectra of BxNyCz-NTs characterize the tube 
composition (x, y, z). Non-resonance Raman scattering is also non-selective for a 
certain nanotube diameter (compared to pure CNTs), i.e. for BxNyCz-NTs the 
simultaneous excitation of many tubes with different diameters is possible. 
Some Raman results on BC, CN and BxNyCz nanotubes can be found in literature 
[82, 84, 90 – 94]. The main change in those Raman spectra compared to the spectra of 
CNTs was the growth of the D-mode responsible for the scattering on defects. Some 
work has already been done on correlations between the composition of BxNyCz-NTs 
and their Raman peak intensities [90, 94, 95]. However, the dependence of the RBM 
on the doping concentration was not studied so far.  
In this chapter a Raman study (as well as PL and NIR-vis-UV absorption) on BxNyCz-
NTs with different element compositions (x, y, z) is presented. The method developed 
for the synthesis of BxNyCz-NTs allows the preparation of nanotubes with various B 
and N concentrations up to 100% (pure BN-NTs). The correlation between doping 
concentrations and Raman spectra was studied combining the energy dispersive X-ray 
analysis (EDX) with Raman spectroscopy. HRTEM study gives additional 
information about the nanotube morphology and interlayer stacking.  
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7.2 Material preparation 

BxNyCz-nanotubes of different compositions and morphologies can be produced by 
various preparation methods such as substitution reaction, arc-discharge, laser 
ablation, chemical vapour deposition, and pyrolysis [80, 83 – 88].  In this work 
BxNyCz -NTs have been synthesized following the procedure of Golberg et al. [83] 
which was modified to reach better purity of the material. 
BxNyCz -NTs and BN-NTs were produced in a substitution reaction between single-
walled NiCo-CNTs and boric acid H3BO3 in NH3 atmosphere. NiCo-CNTs which 
serve as starting materials in the reaction were produced by pulsed laser vaporization 
(PLV) of carbon targets [58]. They are defect-free nanotubes with a diameter 
distribution [1.0 – 1.5 nm], peaked at ≈ 1.3 nm.  
For the synthesis of BxNyCz -NTs two kinds of CNTs were used as templates: (1) as-
prepared single-walled CNTs (black powders); (2) bucky papers (of about 50-100 μm 
thickness) produced by a treatment of as-prepared CNTs with boiling sulphuric acid, 
filtration and drying [96]. The acid treatment removes most of the Ni/Co catalyst and 
amorphous carbon particles, but causes numerous structural defects in CNTs. These 
defects are apparently responsible for production of BxNyCz -NTs with higher B-, N-
concentrations compared to those produced from as-prepared CNTs. 
 Figure 7.1 shows the experimental set-up for the BxNyCz - and BN-NTs synthesis. 

NH3, H2O, CO2 outlet

Water cooling
system

NH3 inlet

Sample 
at the 
plate

Water cooling

Inner tube

Outer 
tube High-

temperature 
oven

 
Figure 7.1. Schematics of the high temperature oven used for the BxNyCz - NTs synthesis. 

In the preparation procedure with as-prepared CNTs as templates the nanotubes were 
homogeneously mixed with H3BO3 in stoichiometric 1:3 mole ratio and placed inside 
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the alumina tube within a high temperature oven. In the case of bucky papers small 
pieces of the material were placed on the top of H3BO3 powder and covered with a 
platinum grid. During the synthesis NH3 flows through the inner tube and induces two 
types of substitution reactions: 
1) 2H3BO3 + 3C (SWNTs) + 2NH3 → BxNyCz (nanotubes) +… 
2) 2H3BO3 + 3C (SWNTs) + 2NH3 → 2BN (NTs, nanococoons, etc.) + 3CO + 3H2 + 
3H2O. 
The process of the BxNyCz-NTs formation from CNTs in B2O3 vapour is believed to 
take place as a statistical process where oxygen oxidizes carbon atoms that leaves the 
structure as CO2 molecule and creates a hole in the nanotube shell. Then boron can be 
easily incorporated into that defect [97]. As-prepared CNTs need significantly higher 
temperatures (13000C – 15000C) to reach high B- and N-doping compared to the 
bucky papers with structural defects. For the bucky-papers T = 12500C turned out to 
be sufficient for a complete transformation into BN-NTs. 
Under this thermo-chemical treatment, bucky papers did not lose their paper-like 
morphology, became thinner and change color to shades of grey, whereas the as-
prepared CNTs turned into a fine grey powder.  The samples can be studied as-
produced in powders or dispersed in D2O with addition of SDS or Ni/Cholate in order 
to destroy the big bundles and make the tubes individualized. 
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7.3 Experimental results 

7.3.1 Morphology of the BxNyCz nanostructures: HRTEM study 

BxNyCz-nanotubes 
In the course of this work a planty of different nanostructures was synthesized varying 
temperature regimes and using as-prepared CNTs and bucky paper as templates. 
Among these structures are BxNyCz-nanotubes with various B and N concentrations, 
pure BN-nanotubes (single-walled and multi-walled) of different lengths and 
diameters, exotic structures such as nanococoons and nanorods, etc. A higher purity of 
the BxNyCz-NT material (free of bulk BN) was achieved using bucky-papers as 
templates. The B- and N-doping concentrations, in general depend on the synthesis 
temperature. The mean concentration of B and N in the BxNyCz-NTs did not exceed 
x = 0.15 and y = 0.13 for samples synthesized at 11000C, or x = 0.37 and y = 0.28 at 
12500C, respectively. At higher temperature, bucky papers burned out. In samples 
produced from bucky papers at 11000C as well as 12500C, a co-existence of pure BN-
NTs and BxNyCz - NTs with high concentrations of B and N and low concentration of 
C (up to x = 0.45, y = 0.4, z = 0.15) was observed. In Figure 7.2 (g-f) high resolution 
transmission electron microscopy (HRTEM) images of some nanostructures are 
presented. 
 

(a) BxNyCz-NT bundles produced at 12500C 
(x = 0.07, y = 0.06, z = 0.87). 

(b) BxNyCz-NTs produced at 12500C 
(x = 0.24, y = 0.22, z = 0.54) and multi-
walled BN-NT with closed tip. 
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(c) Coexisting multi-walled BN-NTs and 
bundles of single wall BxNyCz-NTs 
produced at 11000C. 

(d) BxNyCz-NT bundle produced at 12000C 
(x = 0.12, y = 0.04, z = 0.84). 

(e) Pure single-walled BN-NTs produced at 
15000C. 
 

(f) Predominantly multi-walled BN-NTs 
produced at 12500C. 
 

Figure 7.2. HRTEM images of the nanostructures synthesized under different 
temperatures regimes.  

 
Figure 7.2 (a) shows typical bundles of BxNyCz-NTs with an average element 
composition x = 0.07, y = 0.06, z = 0.87. Figure 7.2 (b, c) show the co-existence of 
multi-wall BN - NT with bundles of single-wall BxNyCz-NTs; (f) shows an area with 
mostly multi-wall BN-NTs produces at 12500C. The black particles in the mixture are 
catalysts (Ni, Co, Fe). The original CNTs had diameters ranging from 1 to 1.5 nm 
with a mean value of 1.3 nm. Bundles of slightly doped BxNyCz-NTs look very similar 
to those of pure CNTs (Fig. 7.2, a, d). At higher B, N concentrations, the diameters of 
some tubes increased up to 2.8 nm (Fig.7.2, b). This could be explained by the 
formation of structural defects with open bonds [83]. In the reaction between CNTs, 
boric oxide and NH3 strongly damaged tube shells may combine to form a new 
nanotube with a larger diameter.  This is not the case for nanotubes inside the big 
bundles (Fig.7.2, a). At high temperature, nanotube ropes tend to be transformed into 
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multi-walled nanotubes. Figure 7.2 (b) shows the co-existence of such multi-walled 
BN-NT and highly doped BxNyCz-NT rope (x = 0.24, y = 0.22, z = 0.54). 
 

Multi-walled BN- nanococoons, nanorods, and bamboo-like structures 
Apart from BxNyCz-NTs of different x, y, z compositions many exotic structures were 
also synthesized. Among them are the bamboo-like BN-nanotubes (Fig. 7.3, a) and 
multiwalled BN-NTs with closed inner shells (Fig. 7.3, b), BN-nanococoons either 
empty or filled with metal particles or hexagonal BN (Fig 7. 3, c, e), nano-
polyhedrons (Fig. 7.3, d), and many others. 

 

 
(a) Multi-walled BN-NTs produced at 
12500C. 

(b) Multi-walled BN-NT produced at 
12500C. 

 
(c) BN-nanococoons (empty and filled with 
metal particles) produced at 12500C. 

 
(d) Closed BN-parallelepiped with 
hexagonal cross-section produced at 
12500C. 
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(e) Closed hexagonal BN-shells filled with 
metal produced at 15000C 

(f) BzNyCz-NTs with distorted walls 
produced at 12000C. 

Figure 7.3 HRTEM images of the BxNyCz-nanostructures synthesized in a substitution 
reaction at different temperatures. 

Interlayer stacking 
The structural peculiarities of the nanotubes are a very interesting topic to study with 
HRTEM. For multi-walled BN-NTs one can observe a different interplanar 
orientation of the BN-layers which can be either hexagonal AA...AA... or 
rhombohedral (ABC…ABC…) or simple (AB…AB…). In Fig.7.4 (a-g) three 
examples of the hexagonal, rhombohedral and AB interlayer stacking are presented. B 
and N atoms marked are shown in shades of grey inside the hexagonal BN-sheets. An 
atomically resolved HRTEM image reproduces B and N atoms aligned along the same 
direction as dark contrasts. The case of the rhombohedral stacking with the plane 
orientation 240 with respect to the BN-sheet is shown in Fig. (7.4, a, b). Figs. 7.4 (c, d) 
and (e, f) present the hexagonal and the simple AB…AB interlayer stacking together 
with sketches of corresponding orientation of the BN-sheets. 
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(b) rhombohedral ABC…ABC… 
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(f) AB…AB…AB… 

Figure 7.4 Atomically resolved HRTEM images of different interlayer stacking for BN-
sheets (a, d, and e) and sketches of corresponding orientation of the BN-planes (b, c, and f). 
 
Analysis of the interlayer stacking provides information about the process of 
nanostructure formation, their layer homogeneity and structural order. Multi-walled 
structures with well-aligned defect-free BN-shells prevail at higher temperatures when 
the process of a BN-layer formation is completed. The materials produced at lower T, 
however, have a lot of structural defects since the transformation into BN-NTs is not 
yet completed. It leads to a high output of the structures with distorted walls similar to 
those shown as in Fig. 7.3 (f).   
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7.3.2 Element composition: EDX study 
In order to obtain B and N concentrations for BxNyCz-nanotubes one can use the 
energy dispersive X-ray analysis (EDX) combined with the high resolution 
transmission electron microscopy (HRTEM).  
For the EDX element analysis of the BxNyCz-materials a very small amount of the 
samples was placed onto standard gold grids (mesh 300) with markers which allowed 
selecting certain areas for the investigations. The electron beam can be focused onto a 
1 nm-spot which allows determination the element composition of a certain nanotube. 
Figure 7.5 presents concentrations of B and N obtained by EDX for small ropes of 
BxNyCz-NTs.  
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Figure 7.5. Concentrations of B (x) and N (y) obtained by the EDX method for small ropes 
of BxNyCz-NTs. 
 
In agreement with previous reports [79, 83, 97, 98] for all the BxNyCz-NTs samples, 
the observed B-concentration x was a little higher than the N-concentration y except 
for some bundles with very low N content where B was not detectable. A linear fit y = 
0.69 x approximates this correlation between B (x) and N (y) concentration. 
Concerning the possibility of the surface deposition of B and N atoms the following 
arguments can be presented. B2O3 surface deposition is not considered to occur since 
in all EDX measurements a constant diffusive oxygen background was determined. 
Although N atoms may be adsorbed in between nanotube ropes, this possibility for 
measurements on single tubes and small bundles of 2 or 3 nanotubes can be excluded. 
Thus, the doped B and N atoms are believed to be integrated in the nanotube structure. 

7.3.3 Non-resonant Raman spectroscopy on BxNyCz-NTs 

Samples 
The Raman study is performed at room temperature for the excitation energy 
Eexc = 2.3 eV on as-produced BxNyCz-NT powders. Even for the bulk samples the 
Raman response becomes very weak due to disappearance of the sharp resonance with 
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broad vHs peaks (Section 3.4). At very low concentrations of the material (for 
instance, in dispersions) the Raman spectra of BxNyCz-NTs are not detectable at all. 
The bulk samples give thus an opportunity to obtain better signal/noise ratio. It that 
case, however, the Raman response is averaged for all the tubes inside the laser beam 
area of about 1 µm. Fortunately, the HRTEM and EDX study revealed that the areas 
of about 1μm in the BxNyCz-NTs bundles have more or less homogeneous doping 
within a variation ≤ 0.05 (x, y ± 0.05). Hence, a reasonable correlation can be 
expected between the average B- and N-doping (x and y) and the measured Raman 
spectra. 
Figure 7.6 presents the Raman spectra obtained from bundles of BxNyCz-NTs with 
various average doping concentrations (x, y) from 0 (pure CNTs) up to 0.6. 
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Figure 7.6 Raman spectra of BxNyCz-NTs with different boron- (x) and nitrogen- (y) 
concentrations from 0 (pure CNTs) up to 0.6. 
 
The main changes in Raman spectra caused by B and N doping can be summarized as 
follows: 

• the graphite-like G-mode becomes broader, loses its two-peak structure, its 
position shifts from ≈ 1587 cm-1 (for pure CNTs) to 1594 cm-1 (for doped 
BxNyCz-NTs); 

• the intensity of the defect-induced D-mode grows due to the increase of 
the number of defects (B and N atoms) in a hexagonal carbon framework; 

• the luminescent background appears, probably, due to the BN-admixtures 
whose output increases at higher synthesis temperatures; 

• RBM frequencies (see inset in Fig. 7.6), in general, decrease; their peaks 
become broader. 

All these changes will be discussed in more detail in the following section. 
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G-mode 
The graphite-like G-mode or high energy mode (HEM) in CNTs is caused by the 
zone-center phonon excitation and usually consists of two mode frequencies with 
symmetries E1g (≈ 1570 cm-1, full width at half maximum FWHM ≈ 30 cm-1) and E2g 
(1580 – 1590 cm-1, FWHM ≈ 16 cm-1). The origin of the G-mode in CNTs was 
discussed in Section 4.1.3 in more detail.  
For the BxNyCz-NTs samples the broadening of the G-mode correlates with B and N 
concentration inside a nanotube bundle. The reason for that can be the following. 
Doping by B and N atoms is expected to form new chemical bonds such as B–N, B–
C, and C–N [91, 94]. It leads to the local distortions in the graphite layers due to 
differences in atom masses, force constants and chemical bond lengths. Such a 
reduction of the crystal symmetry breaks down the selection rule k ≈ 0 (first order 
process) or the k1 ± k2 ≈ 0 (second order process) and gives rise to other phonon 
frequencies near the main peak. Therefore, in spectra of BxNyCz-NTs the broadening 
of the G-mode is observed. For pure CNTs the value of the full width at half 
maximum change FWHM ≈ 30 cm-1; for the doping concentration (x + y) ≈ 0.25 
FWHM ≈ 70 cm-1  (Fig. 7.6). 
There is also a small shift of the G-peak frequency for BxNyCz-NTs. For pure CNTs 
its position is ≈ 1587 cm-1, for BxNyCz-NTs it is ≈ 1594 cm-1. The explanations for 
such a shift could be the following:  

(i) the incorporation of B and N atoms which changes the lattice parameters 
(masses) of the carbon framework and leads to the frequency up-shift since 
boron atoms are lighter than carbon atoms (in BxNyCz-NTs the 
concentration of light boron usually is higher than that of heavier 
nitrogen); 

(ii) presence of the thermal shifts of the frequencies due to the laser heating of 
the sample. Different thermal conductivities for CNTs and BxNyCz-NTs 
lead to different local heating of the sample for the same laser power. 
Temperature dependence of ω(T) for pure and doped nanotubes is also 
different. 

Since the G-mode is an excitation-dependent mode and directly connected to the 
resonance phenomena in carbon nanotubes [13, 42, 95, 103] it can be used to point 
out changes in electronic structure of CNTs caused by B- and N- doping.  

D-mode 
The D-mode (≈ 1350 cm-1) is traditionally considered to be responsible for defects in 
the nanotube structure (voids, pentagon-heptagon pairs, kinks, incorporated atoms, 
admixtures) and finite size effects in CNTs, (i.e continues nanotube length). D-mode 
appears due to the interaction of the K-point phonons with structural defects and 
demonstrates dependence on the excitation energy via the double-resonance scattering 
process [13, 95, 103]. It is known that the D-peak intensity in carbon-based materials 
is connected to the number of defects. The relative Raman peak intensities can be 
used for the determination of the crystallite size [99]. In CNTs the ratio between the 
second and the first order peak intensities I(D)/I(D*) is found to be the value which is 
proportional to the defect concentration [42, 95, 103]. At the same time, the intensity 
ratio I(D)/I(G) used previously for the defect estimations in many publications 
[94, 100 – 102] can be applied only with a great caution since the G-mode itself 
depends on defects. 
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Fig.7.6 demonstrates the relative D-mode growth and broadening with respect to the 
G-mode and RBM. The second-order D*-mode was experimentally inaccessible. The 
explanation of the D-mode broadening can be the same as for the G-mode: the break 
down of the selection rule k1 ±  k2 ≈ 0 (second order process) and the appearance of 
the additional peaks near the main peak. Finally, the D-mode (the ratio I(D)/I(D*)) can 
be used after the corresponding calibration for the estimation of B- and N- 
concentration in BxNyCz-NTs.  

RBM 
The B- and N- doping influence on the RBM frequencies manifests itself in a 
frequency decrease and peak broadening. The decrease of the RBM frequencies can 
be explained by the appearance of tubes with larger diameters (as in Figs. 7.2 b, d) 
due to collapse of several tubes with smaller diameters at high T. 
The RBM broadening could be explained by the following arguments. According to 
the tight-binding calculations for BxNyCz-NTs having different doping concentrations 
[22] the incorporation of B and N results in broadening of the vHs-peaks in the (DOS) 
function (Section 3.4). For the atomic concentrations of B and N (x + y) ranging from 
0.1 to 0.6 the sharp vHs-peaks disappear more and more (Fig. 3.14). At the same time, 
the energy separations between the van Hove singularities increase with increasing the 
B- and N- concentration and approachs the value of Eg ≈ 4.5 eV for pure BN-NTs. 
The concentrations accessible with Raman technique depend on the excitation energy, 
therefore only the tubes with the transition energies Eii < Eexc = 2.3 eV can contribute 
to the Raman spectra. By comparison with the tight-binding calculations [22] one can 
estimate this ‘limit’ concentration of B and N to be (x + y) ≤ 0.74. It may cause 
simultaneous excitation of many tubes with different diameters and Eii. In that case, 
however, the intensities of the Raman spectra bacome very weak and unstructured. In 
Figure 7.7 (b) the RBM frequencies obtained from the low-doped bundles similar to 
those in Fig.7.7 (a) are shown.  
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Figure 7.7 (a) HRTEM image of the BxNyCz-NT bundle produced at 12000C with the mean 
element concentrations x = 0.12, y = 0.04, z = 0.84; (b) The RBM frequencies obtained from 
the bundles similar to that in Fig. 7.7 (a). 
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For low doping concentrations (< 0.15) the electronic transition energies of BxNyCz-
NT bundles are close to those of CNTs. The diameters, however, became larger 
during the synthesis process. Thus, in Fig. 7.7(b) one can see the RBM frequencies 
< 166 cm-1 corresponding to the diameters of pure CNTs > 1.46 nm with transition 
energies Eii close to Eexc = 2.3 eV (semiconducting branch E44

SE in Fig. 3.12). It 
should be possible to see all those tubes in the same Raman spectrum only if they are 
all present inside a bundle within the laser beam (spot ≈ 1µ) (as in Fig. 7.7, a). The 
broad RBM peak centered at 166 cm-1 was obtained from such a bundle with tubes of 
different diameters. The other RBM frequencies relate to different places of the 
sample with tubes having either a narrower diameter distributions or Eii far from 
Eexc = 2.3 eV.  
Finally, RBM is the most sensitive Raman mode immediately “feeling” any changes 
in the electronic properties of CNTs. These changes can be caused either by diameter 
growth or by B- and N- doping each of which influencing the band gap value and the 
electronic DOS function. The pure diameter growth (without doping) can change the 
transition energies taking the tube off the resonance with Eexc. In contrast, B- and N- 
doping can bring to resonance simultaneously many tubes with different diameters 
just because of the smearing out of the vHs peaks in DOS function. In this case, the 
intensity of the Raman signal decreases.  
For high B- and N-doping concentrations electronic transition energies Eii exceed Eexc. 
The intensity of the Raman signal decreases by orders of magnitude and the Raman 
spectra become hardly detectable. This limiting concentration was experimentally 
estimated to be of about 0.6. The theoretical value was predicted to be ≈ 0.74 (see 
Section 3.4). 

7.3.4 Photoluminescent and NIR-vis-UV absorption spectroscopy on BxNyCz- 
NTs 

Raman spectroscopy is an effective indirect technique for characterization of the 
nanotube electronic band structure since it is related to both vibrational and electronic 
properties of either CNTs or BxNyCz-NTs. It needs, however, a reliable theoretical 
model connecting the experimental Raman features with the nanotube electronic 
energies Eii, diameters d and structural (n, m) indices. Such a semi-empirical model 
exists for pure CNTs [6], namely, for the band gap energies E11

SE of the 
semiconducting CNTs (Section 3.3). Also, for some semiconducting and metallic 
CNTs the higher energies Eii were experimentally derived using the resonant Raman 
spectroscopy [18].  
For BxNyCz-NTs with different element compositions a similar assignment model is 
not available and, probably, not possible at all. The reason for that is a large 
experimental variation of the concentrations x, y, z and the non-resonant nature of the 
scattering process. At the moment non-resonant Raman spectroscopy on BxNyCz-NTs 
can provide a comparative study only, and gives no accurate information about the 
electronic band structure of individual nanotubes. 
In order to fill the gaps in the knowledge about the electronic structure of BxNyCz-NTs 
the Near-Infrared-visual-Ultraviolet absorption study (NIR-vis-UV) was carried out. 
NIR-vis-UV spectroscopy gives a direct information about the electronic interband 
transitions. 
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Samples and experimental details 
The bundling forces of all as-produced BxNyCz-NTs are ionic forces interacting 
between polar B and N atoms. Therefore, the experiments on the de-bundling of 
BxNyCz-NTs were not that efficient as for CNT bundles interacting with weak van der 
Waals forces. The bundles appeared to be quite stable against prolonged sonication 
during hours at high ultrasound powers.  
Figure 7.6 (a, b) shows scanning electronic microscopy (SEM) images of the residuals 
deposited on the Si-wafer by spin-casting from the dispersion of BxNyCz-NTs in 
SDBS/D2O. The dispersion was preliminary sonicated and centrifuged in order to 
break the big bundles and remove heavy particles (bulk BN, multi-walled BN-NTs, 
BN-nanococoons, etc) from the dispersion. The final dispersion contains a very low 
concentration of nanotubes which were not detectable with Raman scattering.  
Fig. 7.6 shows a mixture of curved and knotted nanotube bundles covered with soap 
and ‘dirt’ of the BN-hexagonal origin. These could be the BN-nanococoons filled with 
metals, MWBN-NTs, etc. similar to the structures from Fig. 7.2 (c). 
 

(a) (b) 
Figure 7.6 SEM images of the residuals deposited onto the Si-wafer from the dispersion of 
BxNyCz-NTs in SDBS/D2O after sonication and centrifugation. 
 
The strong ionic interaction in BxNyCz-NTs bundles mentioned above does not allow 
the separation of nanotubes from bundles to study them individually. Therefore, the 
photoluminescence (PL) study of the dispersions of bundled BxNyCz-NTs gave no 
result. It is known that the PL signal appears only in the dispersions of well-
individualized tubes having no structural defects. Thus, in bundled samples of CNTs 
no PL was detected. 
At the same time, the PL study on as-grown well-aligned arrays of single BxNyCz-Ts 
[92, 93, 105], has shown intense and stable PL bands in both blue-violet (3.14 –
2.55 eV) and yellow - green (2.13 – 2.34 eV) spectral regions. Their emission bands 
appeared to be broad, unstructured and adjustable by variation of the B- and N- 
concentration. 
BxNyCz-NTs investigated in the present work differ substantially from those well-
aligned array. Since they produced by the substitution reaction from highly interacting 
CNTs they stuck together due to strong ionic forces and have neither well-graphitized 
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walls nor homogenous distribution of the B and N. The observation of the PL on the 
dispersions of BxNyCz-NTs produced in this way was not possible.  
Changes in the electronic structure of BxNyCz-NTs caused by B- and N-incorporation 
must be reflected in their NIR-vis-UV absorption spectra. Therefore, NIR-vis-UV 
absorption seems to be a more convenient way giving the electronic interband 
transitions of either metallic or semiconducting nanotubes in a wide spectral range 
(350 nm to 1850 nm) covering energies E11

SE, E22
SE, and E11

ME of pure CNTs.  
Fig. 7.7 presents the NIR-vis-UV absorption spectra of the dispersions BxNyCz-NTs in 
D2O/SDBS (three middle curves) combined with the spectra from NiCo-CNTs in 
D2O/SDBS (upper curve) for comparison. The spectrum of the pure solvent 
D2O/SDBS is also presented (two lowest curves). All the spectra are normalized on its 
intensity: the original spectrum of CNTs was about 10 times higher then others; the 
peaks from D2O/SDBS were negligibly small in the original CNTs spectrum. 
The absorption peaks corresponding to D2O/SDBS are centered at ≈ 1320 nm, 1411, 
1512 and 1670 nm. The broad bands E11

SE, E22
SE, and E11

ME with several poorly 
resolved individual peaks correspond to the electronic transitions of pure NiCo-CNTs 
present in the dispersion.  
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Figure 7.7 NIR-vis-UV spectra of the dispersion of CNTs in D2O/SDBS (the upper curve), 
the dispersions of BxNyCz-NTs produced at different temperatures in D2O/SDBS (three 
middle curves), and the solution D2O/SDBS (two lower curves). 
 
It is clearly seen that the absorption spectra of BxNyCz –NTs dispersions (three middle 
spectra) in a given scale mostly reflect intense peaks of the solvent D2O/SDBS except 
for one peak at  ≈ 1560 nm (≈ 0.8 eV) similar to that appearing from the band gap 
electronic transitions E11

SE of a certain pure CNT. If one zooms in the spectral region 
≈ 500 – 1100 nm which is free from the solvent features, the resolved absorption 
spectra of BxNyCz-NTs will appear in more detail (Fig. 7.8). 
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Figure 7.8 NIR-vis-UV spectra of the dispersion of CNTs in D2O/SDBS (the upper curve), 
and the dispersions of BxNyCz-NTs with different x, y, z compositions in D2O/SDBS (four 
lower curves) in the spectral range of 500 – 1100 nm. 
 
The four lower spectra correspond to four BxNyCz-NTs samples produced at different 
temperatures (1250, 1300 and 15000C). They have various mean B and N 
concentrations. The absorption bands from different samples of BxNyCz-NTs in 
Fig. 7.8 are identical and very similar to those of pure CNTs. They appear from 
slightly-doped individual BxNyCz-NTs ((x + y) < 0.1) present in the dispersion. The 
intensity of these peaks is low due the very low concentration of BxNyCz-NTs. The 
highly doped BxNyCz-NTs (with (x + y) > 0.1) can contribute to the spectrum as well. 
They should give the unstructured broad bands. The ultra-violet range > 4 eV (< 300 
nm) where pure BN-NTs have their electronic transitions was not experimentally 
accessible.  
To conclude, the electronic band structure of BxNyCz-NTs was studied with NIR-vis-
UV absorption method. The success of the experiment depends on the degree of tube 
individualization in dispersion. BxNyCz-NTs appeared to be stuck into bundles due to 
the ionic B–N bridges between them. The method of ultrasonication does not 
efficiently break the bundles, and the following centrifugation removes heavy ropes of 
highly doped BxNyCz-NTs from the dispersion. The final dispersion has a very low 
concentration of tubes giving a weak absorption signal. This signal looks very similar 
to that of CNTs, probably because of low B- and N- doping concentrations of tubes 
left in the dispersion. BxNyCz-NTs produced from the bundled CNT-templates in a 
substitution reaction are not appropriate objects for the NIR-vis-UV absorption 
spectroscopy as well as PL study.  

7.4 Summary 

In this chapter the experience of the synthesis of BxNyCz-nanostructures, their 
morphology and the element composition are presented. The electronic properties of 
the BxNyCz-NTs as a function of the B- and N-doping were studied with the Raman 
scattering technique and the NIR-vis-UV absorption. It was shown that the electronic 
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structure of BxNyCz-NTs depends substantially on the nanotube composition x, y, z 
and can vary from metallic to insulating. B- and N-doping affects not only the 
electronic transition values but also the DOS function broadening the vHs peaks for 
both metallic and semiconducting CNTs. Such a broadening makes Raman scattering 
on BxNyCz-NTs non-resonant and structureless for high B and N concentrations. 
BxNyCz-NTs with (x + y) > 0.74 do not contribute the Raman spectrum with 
Eexc = 2.3 eV since their band gap values exceed 2.3 eV. 
 



Chapter 8  

Conclusions 

This work focuses on how the electronic properties of carbon nanotubes are affected 
by tube-tube interaction, by temperature, and by doping with different atoms. 

These effects were studied with Resonance Raman scattering (RRS) - a unique 
technique providing information about both vibrational and electronic properties of 
CNTs. The one-dimensional structure of carbon nanotubes leads to sharp singularities 
in the electronic density of states. If the energy of excitation is close or even 
corresponds to the energy difference between such singularities, the Raman response 
becomes very strong. Therefore, in Raman spectra of CNTs one detects the peaks 
predominantly from those tubes whose electronic transition energies are in resonance 
with the incoming light. The resonance conditions have, on the other hand, a certain 
width (in general of about 100 meV). By scanning this range with changing excitation 
energies one can obtain the maximum Raman response, which in turn corresponds to 
the exact coincidence of the excitation energy with the electronic transition energy. 
Thus, the RRS technique allows obtaining the electronic transition energies of CNTs 
simply by analyzing the intensities of the Raman peaks. If some factor, such as tube-
tube interaction, temperature, or doping, modifies the electronic structure of CNTs it 
will be immediately reflected in their resonance Raman spectra.  

In this work the tube-tube interaction was investigated by RRS combined with High 
Resolution Transmission Electron Microscopy (HRTEM). The relative intensities of 
the Raman peaks from an ensemble of CNTs in a bundle give the information about 
the changes in the electronic band structure caused by tube-tube interaction. At the 
same time, the HRTEM images provide information about the size of precisely those 
nanotube bundles that were investigated by RRS.  

With this combined study of the present work it was possible to establish a correlation 
between the relative Raman intensities of CNTs and the bundle size. This correlation 
is very useful for the estimation, for instance, changes in the band gap values of 
semiconducting CNTs depending on the number of tubes in a bundle – and thus, in 
turn, their light emitting characteristics. And vice versa, one can study the tube-tube 
interaction by analyzing the Raman intensities of bundles with different 
characteristics. 

A phenomenological model was developed in order to describe tube-tube interaction 
simply by measuring the intensities of the Raman spectra at fixed excitation energy. 
Within this model, Raman intensities are calculated for any intermediate degree of 
tube bundling using the parameters available from the literature for the electronic 
energy shifts and Raman resonance windows of both single and strongly interacting 
CNTs.  

The model was tested for many ensembles of CNTs having a broad diameter 
distribution from 0.8 nm to 1.5 nm. Even for the samples containing an 
inhomogeneous distribution of many tubes, the general tendency was clearly seen: 
changes of the Raman intensities reflect the shifts of the electronic transition energies. 
For samples containing only two kinds of “active-in-Raman” nanotubes the 
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correspondence between the calculated and experimental Raman intensities appeared 
to be perfect. In this way, the correlation between electron energy shifts and bundle 
size was estimated within the theoretical uncertainty of about 12%. 

This simple model also allows revealing the electronic energy changes induced by 
temperature. The good agreement between the calculated Raman intensities and the 
experimental Raman intensities measured at different temperatures confirmed the 
reliability of the developed method. 

In general, the method does have some restrictions. For example, in the calculation of 
the Raman intensities the model does not take into account the individual matrix 
elements of electron-phonon interaction, which may vary significantly for nanotubes 
belonging to different families ν = Mod[(n-m), 3]. In that case more advanced 
theoretical models would have to be developed. 

A large part of this work was devoted to the synthesis of new nano-materials. A 
number of boron carbo-nitride derivatives such as BxNyCz-NTs, BN-NTs, BN-
nanococoons, etc. have been produced in a substitution reaction between the carbon 
nanotubes and boric acid in ammonia atmosphere. The experience gained on the 
methods of synthesis is also presented in this work.  

The variation of the temperature regimes and gases (either ammonia or nitrogen) 
results in different output products. Increasing the synthesis temperature from 11000C 
to 13000C leads to an increase of the mean (B + N) doping concentrations from 
0.1 up to 0.6. Higher temperatures (≈ 15000C) result in complete substitution of 
carbon atoms by B and N in a hexagonal lattice giving rise to single- and multi-walled 
BN-NTs, BN-nanococoons and other BN-materials. 

It is known from the literature that BN-based nano-objects, particularly BN-NTs, 
show insulating properties with a large band gap of about 4.5 eV. This makes their 
interband electronic transitions not accessible with excitations in the visible range 
(from 1.7 eV to 3 eV). Raman scattering on BN-NTs, therefore loses its resonance 
character despite the presence of the sharp singularities in the electronic density of 
states (DOS).  

BxNyCz-NTs are intermediate objects between pure CNTs and fully substituted BN-
NTs, and their electronic properties are predicted to vary from metallic to insulating 
depending on the doping concentration of B and N atoms. Doping, however, was 
theoretically predicted to broaden the sharp singularities in the electronic DOS. Due to 
the smearing out of the singularities the Raman scattering becomes non-resonant and 
is no longer specific to singular types of tubes. The same laser photon energy can 
excite simultaneously many different BxNyCz-NTs with band gaps less than Eexc.  

In the frame of the present work BxNyCz-NTs with various element compositions were 
synthesized and studied with RRS and EDX (Energy Dispersive X-ray Analysis, 
giving the B and N content). The highest doping concentration of (B + N) for BxNyCz-
NTs contributing to the Raman spectra (with excitation energy 2.3 eV) was 
experimentally estimated to be ≈ 0.6. All these tubes were semiconducting with 
electronic transition energies that do not exceed 2.3 eV.  

The Raman spectra for BxNyCz-NTs with (B + N) concentrations from 0.05 up to 0.6 
are also presented. For highly doped (B + N > 0.6) nanotubes the Raman peaks 
becomes unstructured and have much lower intensity. 
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The electronic properties of BxNyCz-NTs were investigated with Near-Infrared-visual-
Ultraviolet absorption (NIR-vis-UV) and Photoluminescence (PL) spectroscopy. For 
these studies, aqueous dispersions of BxNyCz-NTs with addition of a surfactant were 
prepared. However, BxNyCz-NTs that had been expected to become individualized 
inside the surfactant micelles after sonication turned out to be strongly bound by ionic 
forces within the bundles. As a result, it was not possible to investigate the 
characteristics of individual tubes. BxNyCz-NTs synthesized in a substitution reaction 
from CNT powders are not appropriate materials for producing dispersions from 
them. 

In summary, factors such as tube-tube interaction, temperature, as well as B and N-
doping substantially influence the electronic properties of CNTs. This influence is 
estimated to shift the electronic transition energies Eii of CNTs as follows: 

• strong tube-tube interaction decreases the energies Eii of both metallic and 
semiconducting CNTs by 50 meV – 100 meV depending on the type of tube; 

• increasing temperature decreases the energies Eii of both metallic and 
semiconducting CNTs by 0.13 meV/K – 0.2 meV/K depending on the type of 
tube; 

• B- and N-doping in general increases the energies Eii of all CNTs depending 
on the B and N concentration. Both semiconducting and metallic CNTs 
transform into pure BN-NTs with a maximum band gap value of Eg = 4.5 eV. 

 

This work provides new insights into the modification and characterization of the 
electronic properties of carbon nanotubes. A simple model was developed that can be 
used for the characterization of samples with unknown tube distribution as well as for 
temperature estimates. The experience gained in synthesis and characterization of 
boron carbo-nitride nanostructures indicates ways for their possible application in the 
future. 

 





Appendix A 

A.1 Tight-binding model for graphite 

In a free-electron approximation for a crystalline solid the electrons are considered to 
move freely in a crystal. Their motion, however, is influenced by the periodic 
potential produced by the atoms of a crystal.  
The quasi-momentum of the electron in a crystal describes, thus motion in a periodic 
potential caused both by atoms periodically sited in the lattice points and their 
electrons. The points of the equivalent crystallitic potential U(r) have periodicity of 
the crystallitic lattice an: 
 

)()( narr += UU , (A1)
 
The wavefunction )(rψ  for the electron in a periodic potential U(r) can be described 
in a form of the plane waves multiplied with the function, periodic with periodicity of 
the crystallitic lattice an, n = 1,...3 (i.e. Bloch functions): 
 

)()( k rr kr ϕψ ⋅= ie , (A2)
 
where )()( nkk arr += ϕϕ , and k is the quasi-wave vector of the electron moving in a 
periodic potential. Bloch functions satisfy the Bloch’s theorem for an electron in a 
crystalline solid: 
 

)()( rr ka ψψ ⋅= ni
na eT , (A3)

 
where naT is the translation operation along the lattice vector an. 
The space periodicity of forces acting on electrons in crystals destroys the simple 
relation between the energy E and momentum E = p2/2m = ħ2k2/2m and gives rise to 
the energy dispersion E = f(p) or ω = f(k). The energy spectrum of the electron in a 
crystal has a quasy-discontinues structure with energy zones overlapping for metals 
and separated by the band gap of forbidden energy values for semiconductors and 
insulators. 
In order to find out the electronic band structure in solids, one has to solve 
Schroedinger’s equation: 
 

)()()()(
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rrrr ψψψ EU
m

=+∇−
h , 

(A4)

 
for eigen values E and eigen functions )(rψ satisfying the Bloch’s theorem (eq. (A3)). 
The solution of the Eq. (A4) can be found in a form of the plain waves (Eq. (A2)). 
The linear combination of the plane waves is commonly used in theory (ab initio 
method or free electron approximation) due to the following reasons:  

(i) possibility of easy analytical integration of the plane wavefunctions; 
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(ii) dependence of the numerical accuracy of the method only on the number 
of the plane waves. 

The method of the plane waves has also some disadvantages such as: 
(i) large volume of computation; 
(ii) difficulties in relation between the plane wavefunctions and the atomic 

orbitals in the solid. 

Brillouin zone of the two-dimensional graphite 
It is convenient to consider the electron energies E in a crystal not in the real space of 
the crystalline lattice but in the reciprocal space of the quasi-wave vectors k. For that 
purpose the reciprocal lattice should be introduced instead of the unit cell of the 
crystalline lattice. The relation between the real a and the reciprocal b lattice vectors 
is following: 
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were b1, b2, b3, and  a1, a2, a3 are reciprocal and real lattice vectors, respectively, in a 
three dimensional space, and ])[( 3210 aaa ×=V  is the volume of the parallelepiped 
built on the a-vectors. k-vectors have periodicity of the reciprocal lattice and within 
the reciprocal unit cell built on the b-vectors take non-equivalent values.  
The space of the non-equivalent values of quasi-wavevectors k (named wavevectors in 
following) is called the Brillouin zone. The first Brillouin zone can be defined by the 
following conditions: 
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(A6)

 
Construction of the Brillouin zone is defined by the reason of use. At the same time, 
for any crystalline lattice the three main conditions should be fulfilled: 

(i) the Brillouin zone must contain the point k = 0; 
(ii) the volume of the Brillouin zone must be 0

3)π2( V , where V0 is the 
volume of the real unit cell built on a – vectors; 

(iii) two arbitrary vectors ka and kb from the Brillouin zone must satisfy the 
condition: 

 
),( 321ba bbbkk ++≤−  (A7)
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In Figure A1 (a, b) the unit cell and the corresponding Brillouin zone of two-
dimensional graphite sheet (graphene) are presented. 
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Figure A1. The real (a) and the reciprocal (b) lattice of the graphene. The real unit cell 
(dotted diamond in Fig. A1 (a)) built on the unit vectors a1 and a2 contains two carbon atoms 
A and B. The reciprocal lattice is rotated by 900 with respect to the real lattice. The first 
Brillouin zone for the graphene is represented by the dashed hexagon in Fig. A1 (b); the 
reciprocal vectors b1 and b2 and the points of high symmetry Γ, K, and M are also shown. 

 
The unit cell of the graphene is marked as dotted diamond in Fig. A1(a) and contains 
two carbon atoms, A and B. The unit vectors of the graphene unit cell a1, and a2 can 
be presented as: 
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where 
o

cc A42.13 == −aa , and ac-c is the nearest-neighbor distance between two 
carbon atoms. By translation of the unit cell along the directions of the unit vectors a1, 
a2 the whole graphene sheet can be reconstructed. The wavevectors for the first 
Brillouin zone defined by eq. (A6) can be presented as: 
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Using the expressions (A8) and (A9) one can easily obtain the angle β = 300 between 
the vectors a and k from ab = abcos β. The shaded hexagon in Fig.1 (b) indicates the 
Brillouin zone of the 2D-graphite with the reciprocal lattice constant ab 3π4= . 
Letters Г (k = 0), М (k = π/a), and К (k = a3π2 )) denote the high-symmetry points 
of the Brillouin zone, which coincide with themselves during the lattice symmetry 
operations. 
The energy dispersion in the first Brillouin zone provides information about the 
electronic states of the whole crystal, similar to the unit cell of the crystalline lattice, 
which characterizes the symmetry of the whole crystal. Therefore, the calculation of 
electronic properties of solids requires deriving the energy dispersion only in the first 
Brillouin zone. 

spn – hybridization in carbon materials, valence electrons in graphite 
Within the TB model only the valence electrons of atoms are usually considered since 
they define the electronic properties of the solid in the optical range of energies [12]. 
The core electrons have bonding energies of about 10 – 102 eV, which is much larger 
than the interaction with many kinds of the external fields, and is two orders of 
magnitude larger than a quantum of energy in the optical range (≈ 1 – 2 eV). 
Therefore, considering the carbon atom, we will take into account only its valence 
electrons.  
Carbon is the sixth element of the Periodic Table and listed at the top of column IV. It 
means that carbon has six electrons, four of which are the valence electrons. The 
electrons of carbon occupy 1s22s22p2 atomic orbitals. The 1s2 orbital contains two 
strongly bound core electrons which are not taken into consideration as mentioned 
above. In the crystalline solid the valence electrons give rise to the 2s, 2px, 2py, and 
2pz orbitals forming covalent bonds in carbon compounds. The electronic wave 
functions can mix with each other, because of the small energy difference between 2s 
and 2p orbitals less than the chemical bonds. Such a mixing of the wavefunctions 
changes the occupation of the 2s and the three 2p orbitals such as to enhance the 
binding energy of the carbon atom with its neighbouring atoms. This mixing of 2s and 
2p atomic orbitals is called spn – hybridization, where n = 1, 2, 3 is the number of the 
contributing 2p atomic orbitals. 
In carbon materials, sp, sp2, and sp3 hybridizations may occur. In the one-dimensional 
chain-like molecule of acetylene (HC ≡ CH), for example, one can observe sp-
hybridization, a mixture of the 2s and one of the 2p electron orbitals (for example 
2px). The hybridized sp-orbitals (σ bonds) between two carbon atoms extend along the 
molecule chain. The non-hybridized 2py and 2pz orbitals are perpendicular to the 
molecular chain and call π bonds. 
In the molecule of polyacetylene (HC = CH -)n the 2s and two 2p orbitals (for 
example 2px and 2py) are  hybridized. The carbon atoms form a two-dimensional 
zigzag chain with an angle of 1200, where two σ – bonds of each carbon atom lay in 
the plane of the molecular chain, and the non-hybridized π – orbital is perpendicular 
to this plane. 
The three-dimensional molecules like a molecule of methane (CH4) have sp3 – 
hybridization. The molecule of carbon is bound with four hydrogen atoms which have 
maximal space separation from each other. In that case the 2s orbital and the three 2p 
orbitals are mixed with each other, forming four σ bonds. Therefore, in three 
dimensional molecules based on carbon atom, all four valence electrons occupy the σ 
bonds. Such a wide variation of the sp-hybridisations is a property of a carbon atom 
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only. The other elements from the IV group like Si and Ge show only sp3 
hybridisation. 
The sheets in graphene sheet lead to a two-dimensional hexagonal crystal lattice with 
sp2-hybridization. The three valence electrons occupy three σ bonds in the plane of 
the sheet, and one electron occupies the non-hybridized π – orbital perpendicular to 
the graphene plane. The π-electrons in graphite materials except for diamond are 
responsible for the transport, optical properties, and the weak van-der-Waals 
interaction between carbon nanotubes. The σ-bonds do not, however, play a role in 
many solid-state properties because they are too far away from the Fermi level.  
The Tight-Binding model for π-electrons of the 2D graphite sheet (graphene) 
combined with the Zone-folding (ZF) approximation gives the band structure of 
carbon nanotubes. For the nanotubes of larger diameters the results are quite accurate 
and coincide with the first principles calculation. 

A.2 Tight-binding approximation for carbon nanotubes 

The other approach in calculation of the band structure of solids (apart from the free-
electron approximation) is the Tight-Binding (TB) model. Here electrons are 
considered as parts of the atoms and described by atomic orbital functions. These 
atomic orbitals overlap due to the small atomic distances and strong interaction (tight 
binding) between neighboring atoms in a crystal lattice. To find the band structure of 
a crystalline solid one has to solve Schroedinger’s equation: 

 
)()()( kkk ψψ EH = . (A10)

 
H is the Hamiltonian, E(k) are the eigenenergies of the Hamoltonian H at wave vector 
k, and )(kψ  are the eigenfunctions. The eigenfunctions )(kψ can be presented as 
linear combination of the Bloch functions ),(j rkΦ , based on the j-the atomic orbital in 
the unit cell: 
 

),()( j
j

j rkk Φ= ∑Cψ . (A11)

 
The tight binding Bloch function ),(j rkΦ  is given by: 
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(A12)

 
where R is the position of the atom and φj denotes the atomic wavefunction in a state 
j. The number of atomic wavefunctions in the unit cell is denoted by N, i.e there are N 
Bloch functions in the solid for a given k. The wavefunctions φj in the N (≈ 1024) unit 
cells of the whole crystal are weigted by the phase factor eikR, the sum runs over all 
possible lattice vectors R of the whole crystal. 
 A carbon atom has four valence electrons, three of which belong to the sp2 – 
hybridized σ-orbitals in the plane of the graphene sheet, and one 2pz electron belongs 
to the unhybridized π-orbital perpendicular to the graphite plane. This π-bond is of the 
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interest because its dispersions cross the Fermi energy giving rise to the optical and 
electronic properties of graphite. 
The graphene unit cell contains two carbon atoms A and B (Fig. A1, a). Each atom 
has one valence electron occupying an atomic π-orbital, therefore the wavefunction 

)(kψ for two atoms in Eq. (A11) can be written as a linear combination of two 
overlapping atomic orbitals: 
 

)()()( BA rk,rk,k Φ+Φ= λψ ,  (A13)
 
where functions 
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kR −=Φ ∑ ϕ
N
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N

 

and 

)(1)( BB Rrrk,
R

kR −=Φ ∑ ϕ
N

ie
N

 

(A14)

 
are two overlapping atomic orbitals, and )(A Rr −ϕ , )(B Rr −ϕ are the 2pz 

wavefunctions for isolated atoms. The overlapping of these functions is zero, i.e. 
 

0)()( BA =−−∫ τϕϕ dRrRr .  (A15)

 
The next step can be the substitution of the )(kψ in the Schroedinger’s Eq. (A10) by 
expressions (A13) and (A14). By multiplying the both sides of (A10) with conjugate 
functions )(*

A rk,Φ and )(*
B rk,Φ and integrating over the whole space τ the coefficient 

λ can be finally eliminated from: 
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(A16)

 
where parts are defined as: 
 

AAA
*
A HdH =ΦΦ∫ τ , 

BBB
*
B HdH =ΦΦ∫ τ , 

*
BAABA

*
BB
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A HHdHdH ==ΦΦ=ΦΦ ∫∫ ττ , 

Sdd =ΦΦ=ΦΦ ∫∫ ττ B
*
BA

*
A ,    

ABB
*
AB

*
A Sdd =ΦΦ=ΦΦ ∫∫ ττ .  

 

(A17)

 
The system of linear equations for λ will be then: 
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The energy E can be extracted from (A18) as follows: 
 

⎟
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2
1 HHHHH
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Here E+ and E- are the energies of the valence and the conduction band, respectively. 
The overlap integrals are taken to be S = 1, also from the symmetry reasons 
HAA = HBB. Finally, the energy is given by: 
 

ABAA HHE ±= . (A20)

 
For the carbon atom A interacting with its first nearest-neighbors (Fig. A2, atoms 11, 
12, 13), HAA becomes constant, reflecting only the properties of the atom A.  
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Figure A2. Three nearest neighbors of the atom A inside the graphene unit cell (see also 
Fig. A1). Vectors R11, R12 and R13 point on the first nearest-neighbor atoms of the atom A. 
 
The energies E with respect to the atom A in the first nearest-neighbor approximation 
will be then: 
 

ABHE ±= .  (A21)

 
In this approximation the valence and the conduction bands of graphene are 
symmetric with respect to the Fermi level. The expression (A21) is called the “tight-
binding approximation”. It gives a satisfactory precision for the energy dispersions 
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only at the K-point (k = a32π ) of the Brillouin zone. The matrix element HAA = ε2p 

is constant for the nearest-neighbor interaction. This is the energy of the 2pz state of 
an isolated atom situated, however, in a periodic potential.  
In order to calculate HAB the Eq. (A17) must be used with the wavefunctions from Eq. 
(A14), i.e.: 
 

τϕϕ dHe
N

H i )()(1
BBAA

B

)BA(

A
AB RrRr

R

RRk

R
−−= ∫∑∑ − . 

(A22)

 
The sum runs over all three nearest neighbors of a given atom A, the vectors R = RB1i 
- RA point on the first neighboring atoms (Fig. A2):  
 

R11 = 1/3(2a1 – a2),      R12 = 1/3(– a1 + 2 a2),      R13 = 1/3(– a1 – a2). (A23)
 
The sum (A22) contains three integrals in a form of τϕϕ dH 1iBA∫ . Since the functions 

Sϕ  are radially symmetric in the graphene plane the integrals depend only on the 
distances between atoms A and B which is constant. Therefore, 
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Here, γ0 is the carbon-carbon interaction energy, or the tight-binding integral. The 
value SAB is the overlap matrix element which is defined by: 
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k iii
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where τϕϕ ds 1iBA0 ∫= . 
The intermediate calculations are presented in [12, 13]. The final eigenenergies in the 
nearest-neighbor approximation can be written as following: 
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where the function f(kx, ky) is given by: 
 

2
Cos4

2
Cos

2
3Cos41),(f y2yx

yx
aaa kkkkk ++= .  (A27)

 
Here kx and ky are the graphite wavevectors (see Fig. A1). The parameters ε2p, γ0, and 
s0 are empirical. At K-point the E = 0, and the valence and conduction cross the Fermi 
energy EF = 0, therefore, ε2p = 0. The absolute value of s0 is between zero and one (for 
normalized wave functions), and the sign is positive. Parameter γ0 must be negative 
and its value in different literature varies from 2.9 - 3.3 eV [12, 13, 38]. 
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Fig. A3 shows the three-dimensional energy dispersion for graphene obtained with 
Eqs. (A26) and (A27) through the whole Brillouin zone: aka 3/π23/π2 x ≤<− , 
and aka /π/π y ≤<− . 
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Figure A3. 3D energy dispersion for the graphene sheet calculated using Eqs. (A26) and 
(A27) through the whole Brillouin zone: aka 3/π23/π2 x ≤<− , and 

aka /π/π y ≤<− . The points of high symmetry Γ, Μ, and Κ are also shown. 

 
Expression (A27) is the famous tight-binding approximation for graphene. In order to 
describe the electronic band structure of carbon nanotubes, the wavevectors ⊥k  and kz 
must be introduced in Eq. (A27) instead of kx and ky. The orientation of the nanotube 
wavevectors ⊥k  and kz with respect to the graphene wavevectors kx and ky depends 
on the nanotube chiral angle θ (see section 3.1). Transformation of the Cartesian 
coordinates in the Eq. (A27) gives the following expression for the energy dispersion 
[107]: 
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(A28)

 
Here, the carbon nanotube wavevectors take the following values: ⊥k  = 2µ/d, µ = –
N/2 + 1, … 0, N/2, where N is the number of hexagons in the unit cell and kz is 
confined within the first Brillouin zone [- a3π2 , a3π2 ] . The states near the 
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corner of the Brillouin zone (the K-point located at ( a3π2 )(cosθ; –sinθ)) 
correspond to the low-energy states of carbon nanotubes responcible for many 
physical phenomena. The expression (A28) can be expanded then near the K-point at 
the corner of the graphite hexagonal Brillouin zone [107, 108]: 
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(A29)

 
where ⊥k  = (2/d)(j – i/3), where j = 0, m 1, m 2, … and i satisfies 2n + m = 3I – i, I – 
integer.  Thus, ⊥k  = 0; m  2/d, ± 4/d, … for metallic tubes and ⊥k  = – 2/3d, 4/3d, … 
(2/3d, – 4/3d…) for semiconducting tubes.  The edge states with kz = 0 lead to the 1D 
vHs in the DOS (see section 3.2). The electronic interband transitions also occur close 
to the K-point. Therefore, the transition electronic energies can be obtained within a 
TB approximation with eq. (A29) at kz = 0 (see Kataura plot in Fig. 3.9).  
 
The advantages of using a tight-binding function in the form of atomic orbitals can be 
summarized as follows:  

(i) small number of the basic functions compared to the number of plain waves; 
(ii) possibility to derive easily the formulae for many physical properties. 
 

Among the limitations of the tight-binding approximation are the following: 
(i) the simple formula (A26) for the energy dispersion in the first nearest-

neighbor approximation will never correctly reproduce the result of the 
ab initio calculation; 

(ii) no simple procedure to improve the numerical accuracy of the calculation; 
(iii) atomic orbitals do not describe the inter-atomic region. 
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