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Zusammenfassung 

Anwendung des Codes SVECHA/QUENCH für die Modellierung des Bündelversuches 
QUENCH-10 

Für die Modellierung des Bündelversuches QUENCH-10 wurde der Code SVE-
CHA/QUENCH mit dem sog. Effektiv-Kanal-Model angewendet. Dieses Model wurde bereits 
für die Modellierung der früheren QUENCH-Versuche verwendet. Die an beheizten Stäben 
gemessenen Temperaturen wurden bearbeitet, geglättet und dann als Randbedingungen für 
den Zentralstab angewendet. Alle Versuchsphasen (Aufheizen, Voroxidation, Übergang, 
Lufteinbruch, Wasserabschreckung) wurden analysiert. Da das Modell für die Wechselwir-
kung zwischen Zirkonium und Stickstoff noch nicht entwickelt und in den SVECHA-Code 
eingeführt ist, wird nur die Wechselwirkung zwischen dem Zr-Hüllrohr und dem Sauerstoff 
als eine Komponente der Luft beschrieben. Die Berechnungen geben die zeitliche Tempera-
turentwicklung des Zentralstabes an unterschiedlichen Bündelhöhen für die ganze Dauer des 
Versuches, auch während der Abschreckphase,  adäquat wieder. Die berechnete axiale O-
xidschichtverteilung entspricht gut der aus den gemessenen Werten. Die berechnete Was-
serstoffproduktionsrate gibt sehr gut die zeitliche Abhängigkeit der gemessenen Werte wie-
der, die absoluten Werte hingegen liegen im Vergleich zu den Messwerten niedriger. 
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Abstract 

SVECHA/QUENCH code was applied to the simulation of the QUENCH bundle test Q-10. 
The simulation was performed within the framework of the ‘effective channel approach’, 
which has been developed and applied to the simulation of a number of QUENCH bundle 
tests earlier. The experimentally measured temperatures of the heated rods were processed, 
smoothed and then used as boundary conditions for the central rod. All the stages of the Q-
10 test (heatup, preoxidation, transient, air ingression, water quenching) were considered. 
Since the specific model of zirconium-nitrogen physical-chemical interaction has not been yet 
developed and implemented in the S/Q code, only oxygen interaction with Zr cladding as one 
of the air components was described. The calculations adequately reproduce temperature 
evolution of the central rod at different elevations during the whole test duration including 
quenching phase. The calculated oxide axial profile agrees quite well with the experimental 
data. The calculated hydrogen production rate well reproduces time dependence of the ex-
perimentally measured one, but its absolute value appears to be underestimated. 
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1 Introduction 

In the present work the QUENCH bundle test Q-10 was simulated by the SVECHA/QUENCH 
(S/Q) code [1-3]. Within the framework of the S/Q code the main physical phenomena occur-
ring during quenching of fuel rods are considered.  

Zirconium oxidation leads to the heat release and hydrogen generation and affects the me-
chanical properties of the cladding. High cooling rates in the course of quenching sustain 
non-equilibrium conditions at the interface boundaries of the cladding layers and lead to the 
appearance of a temperature gradient across the cladding. The Oxidation model based on 
the partial derivative equations for the multi-layer oxygen diffusion problem describes the 
oxidation kinetics under these conditions.  

Zircaloy can dissolve large amounts of hydrogen even at high temperatures. Therefore, Zir-
caloy can act as a sink or source of hydrogen, depending on the environmental conditions. In 
this way the hydrogen solubility of the cladding material can alter the hydrogen source term. 
The Hydrogen Absorption model considers cladding interactions with hydrogen/steam mix-
tures and hydrogen absorption by Zircaloy. The model was tightly coupled with the Oxidation 
model and the two models were implemented in the S/Q code as a combined module.  

Cold water injection in the hot core gives rise to the high temperature gradients in the oxi-
dized Zircaloy cladding and initiates oxide layer cracking. The axial temperature gradient at 
the quench front elevation as well as phase transitions in the cladding materials on cool-
down (or heat-up in the case of possible temperature escalation) can lead to the through-wall 
crack formation and possible fragmentation of the oxidized Zircaloy cladding. The Mechani-
cal Deformation model accounts for the effect of the temperature gradients, β→α (Zry) and 
tetragonal-to-monoclinic (ZrO2) phase transformations on the stress state of the oxidized 
cladding under quenching conditions and correctly predicts the rod specimen failure modes 
(cracking, spalling, breaching) observed in the quench tests. 

The description of the heat exchange process requires simultaneous solution of two prob-
lems: (i) heat conduction problem inside the solid body (fuel rod) and (ii) heat convection 
problem in the surrounding two-phase water-steam media. For the solution of the first prob-
lem in the axially non-uniform multi-layer cylindrical structure (fuel pellets/gap/cladding) the 
Heat Conduction module was developed. This module is based on the 2-D finite differ-
ences numerical scheme with adaptive grid. Thermal-Hydraulic module elaborated for the 
description of the heat convection process accounts for the heat exchange and non-
stationary motion of different water-steam regions.  

The heat exchange in the core determines the temperature of the rod surface and thus the 
oxidation kinetics, hydrogen generation and mechanical deformations of the cladding. The 
heat released due to Zr oxidation considerably affects the heat exchange, especially at high 
temperatures. The mechanical behaviour of the cladding determines cladding rupture that 
provides direct access of oxygen to fresh (non-oxidized) metal surfaces and thus intensifica-
tion of oxidation and hydrogen production rates.  
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Therefore, the profound mutual influence of the studied phenomena determines complex 
behaviour of the cladding system during rod quenching. For the adequate description of this 
process the self-consistent coupling of the Oxidation, Hydrogen Absorption, Mechanical De-
formation, Heat Conduction and Thermal-Hydraulic modules within the framework of the S/Q 
code was performed.  

The S/Q code was elaborated on the basis of the FZK single rod quenching tests in close 
cooperation with the FZK QUENCH team and was intensively verified against these tests.  

The present simulation of the QUENCH bundle test by the S/Q code was performed using 
the ‘effective channel’ approach [4-8].  

Since the central rod of the bundle is not heated, its temperature evolution in the course of 
reflooding experiment is completely determined by thermal-hydraulic boundary conditions: 
temperatures of the surrounding heated rods and shroud and characteristics of the coolant 
flow (boiling regime, flooding rate, gas phase velocity and composition, etc.). In the case of 
full-scale simulation of the bundle test the temperatures of the heated rods and shroud are 
calculated by specifying the electric power time evolution and thus, the boundary conditions 
for the central rod are determined by the code. At the same time, there exists another possi-
bility to determine the boundary conditions for the central rod: instead of calculation, the tem-
peratures of the heated rods and shroud may be taken from the experiment. 

From the viewpoint of the solution of the heat conduction problem inside the central rod both 
ways are equivalent. Specification of the boundary conditions on the basis of the experimen-
tally measured temperatures even has certain advantages as it describes the thermal regime 
around the central rod very close to that in the experiment. 

Within the framework of the S/Q code the thermal boundary conditions for the central rod 
may be predetermined by specifying the temperatures of the “effective channel” inner wall on 
the basis of experimentally measured temperatures. The inner surface of the effective chan-
nel represents the surfaces of the heated rods surrounding the central rod.  

The heat exchange between the central rod and the effective channel is affected via radiation 
and heat transfer through the water-gas media filling the channel. The thermal-hydraulic 
characteristics of the effective channel (cross-section, hydraulic diameter) are determined on 
the basis of geometrical parameters of the bundle (total cross-section, number of rods and 
their diameters).  

The appropriate determination of the effective channel parameters and temperature evolution 
makes it possible to reproduce very closely the experimental thermal conditions around the 
central rod. Since the S/Q code uses fine adaptive meshing and accounts for all the details of 
the heat conduction process (layers thickness variation, different thermal properties of differ-
ent layers, etc. [1, 3]) it allows a correct solution of the temperature problem inside the rod on 
the basis of such boundary conditions.  

The correct reproduction of the rod temperature evolution in its turn allows a detailed descrip-
tion of cladding mechanical deformation, oxidation and hydrogen absorption processes dur-
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ing reflooding, which were treated by the S/Q in the most advanced mechanistic approach. In 
the present work all the stages of the Q-10 test [9, 10] (heatup, preoxidation, transient, air 
ingression, water quenching) were properly analysed by the S/Q code. A number of impor-
tant parameters (rod temperature variation, oxide layer thickness, hydrogen production rate, 
etc.) were calculated and compared with the experimentally measured ones.  

Within the framework of the effective channel approach the experimentally measured tem-
peratures at all the elevations (TFS and TSH thermocouples data) were analyzed and 
smoothed. At high elevations the TFS data were used as the basis for the averaged tem-
perature. At the elevations from 1050 mm to 750 mm the TFS data were used up to the mo-
ment of corresponding TC failure, then TSH and TCRC/TIT data were taken as such basis. 
At lower elevations (below 550 mm) only TFS data were applied.  

The calculated ‘averaged temperature field’ describing temperature evolution around central 
rod was used in the S/Q code input files for the simulation of the quench bundle tests Q-10. 
The calculated oxide thickness axial profile was compared with the experimentally measured 
one at three time moments corresponding to the withdrawn of the corner rods B and D and at 
the end of the test. The calculated hydrogen production rate was compared with the experi-
mental data. 

2 Processing of the Q-10 bundle test temperature 
data 

During the QUENCH-10 test [9, 10] the temperature was continuously measured at different 
locations of the bundle. 26 thermocouples were attached to the cladding of the heated rods 
at 15 different elevations between -250 mm and 1350 mm; 2 thermocouples were inserted in 
the centres of two corner rods at 850 and 950 mm elevations; 2 thermocouples were located 
between cladding and pellets inside central rod at 550 and 350 mm; 2 thermocouples were 
located in the centre of the central rod at 950 and 850 mm. The TCs data were processed by 
the FZK experimental team, incorrect data were deleted and now these data are available in 
the electronic format. Table 1 presents the TCs designations, corresponding rod numbers 
and elevations.  

23 thermocouples were located at the shroud outer surface at 12 different elevations be-
tween -250 mm and 1250 mm. Since the TCs were protected by the shroud wall from direct 
contact with steam, all of them survived throughout the test. Table 2 presents designations 
and elevations of the shroud thermocouples, available in the electronic format.  

The above TCs data were used for the simulation of the effective channel internal surface. 
The numerical procedure of the rod TCs data recalculation includes smoothening, averaging 
and interpolation. These operations are described below. 

1. In Figs. 1-2 the original TC readings of TFS2/17 and TFS5/17 thermocouples as well 
as the calculated averaged temperature (TFS_17) at the elevation 1350 mm are pre-
sented. The averaged temperature was calculated as arithmetic mean of the 
smoothed TFS2/17 and TFS5/17 data sets. 
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 Channel TC Elevation 

1 KAN: 04 TFS2/17 F 1350 mm 

2 KAN: 49 TFS5/17 1350 mm 

3 KAN: 37 TFS3/16 1250 mm 

4 KAN: 48 TFS5/16 1250 mm 

5 KAN: 03 TFS2/15 1150 mm 

6 KAN: 47 TFS5/15 1150 mm 

7 KAN: 09 TFS3/14 1050 mm 

8 KAN: 16 TFS5/14 1050 mm 

9 KAN: 08 TFS3/13 950 mm 

10 KAN: 11 TFS4/13 950 mm 

11 KAN: 51 TFS2/11 750 mm 

12 KAN: 06 TFS5/11 750 mm 

13 KAN: 39 TFS2/9 550 mm 

14 KAN: 34 TFS4/9 550 mm 

15 KAN: 38 TFS5/9 550 mm 

16 KAN: 43 TFS3/8 450 mm 

17 KAN: 42 TFS5/8 450 mm 

18 KAN: 23 TFS2/7 350 mm 

19 KAN: 82 TFS5/7 350 mm 

20 KAN: 76 TFS2/6 F 250 mm 

21 KAN: 81 TFS5/6 250 mm 

22 KAN: 22 TFS 2/5 150 mm 

23 KAN: 78 TFS 5/4/0 F 50 mm 

24 KAN: 79 TFS 5/4/180 50 mm 

25 KAN: 74 TFS 2/3 -50 mm 

26 KAN: 72 TFS 2/1 F -250 mm 

27 KAN: 32 TIT A/13 950 mm 

28 KAN: 33 TCRC 13 950 mm 

29 KAN: 40 TIT C/12 850 mm 

30 KAN: 50 TCRC 12 850 mm 

31 KAN: 77 TCR 9 550 mm 

32 KAN: 75 TCR 7 350 mm 

Table 1. Locations of the TCs used for the Fuel Rod Simulators temperature measurement in 
the QUENCH-10 bundle test. 
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 Channel TC Elevation 
1 KAN:  67 TSH 16/0 I 1250 mm 

2 KAN:  17 TSH 16/180 I 1250 mm 

3 KAN:  66 TSH 15/0 I 1150 mm 

4 KAN:  05 TSH 15/180 I 1150 mm 

5 KAN:  19 TSH 14/90 I 1050 mm 

6 KAN:  53 TSH 14/270 I 1050 mm 

7 KAN:  52 TSH 13/270 I 950 mm 

8 KAN:  21 TSH 12/0 I 850 mm 

9 KAN:  55 TSH 12/180 I 850 mm 

10 KAN:  20 TSH 11/0 I 750 mm 

11 KAN:  54 TSH 11/180 I 750 mm 

12 KAN:  15 TSH 10/90 550 mm 

13 KAN:  02 TSH 9/0 550 mm 

14 KAN:  35 TSH 9/90 550 mm 

15 KAN:  36 TSH 9/270 550 mm 

16 KAN:  90 TSH 7/0 350 mm 

17 KAN:  86 TSH 7/180 350 mm 

18 KAN:  89 TSH 4/0 50 mm 

19 KAN:  87 TSH 4/90 50 mm 

20 KAN:  85 TSH 4/180 50 mm 

21 KAN:  83 TSH 4/270 50 mm 

22 KAN:  84 TSH 3/180 - 50 mm 

23 KAN:  88 TSH 1/0 -250 mm 

Table 2. Locations of the TCs used for the shroud temperature measurement in the 
QUENCH-10 bundle test 

2. In Figs. 3-4 the original TC readings of TFS3/16 and TFS5/16 thermocouples as well 
as the calculated averaged temperature (TFS_16) at the elevation 1250 mm are pre-
sented. Starting from 11646 sec. (beginning of sharp temperature rise) the data of 
TFS3/16 thermocouple are considered as erroneous due to TC failure and only 
TFS5/16 data were used for the evaluation of the averaged temperature. 

3. In Figs. 5-6 the original TC readings of TFS2/15 and TFS5/15 thermocouples as well 
as the calculated averaged temperature (TFS_15) at the elevation 1150 mm are pre-
sented. Up to the moment of TFS2/15 drop down (due to possible problems with the 
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rod surface contact, 6914 sec.) the averaged temperature was calculated as arithmetic 
mean of the smoothed TFS2/15 and TFS5/15 data sets. After this moment only 
TFS5/15 data were used as the basis for TFS_15 with the assumption that the differ-
ence between TFS_15 and TFS5/15 is constant and equal to the value of this differ-
ence at the moment of TFS2/15 failure (50.1 K). 

4. In Figs. 7-8 the original TC readings of TFS3/14 and TFS5/14 thermocouples, 
TSH14/90_I and TSH14/270_I thermocouples at the elevation 1050 mm as well as the 
calculated averaged temperature (TFS_14) are presented. Here the averaged tem-
perature TFS_14 was calculated as arithmetic mean of the smoothed TFS3/14 and 
TFS5/14 data sets up to the moment of TFS3/14 inadequate behaviour beginning 
(5958 sec.). After this moment up to the 6801 sec., when the inadequate behaviour of 
TFS5/14 began only TFS5/14 data were used as the basis for TFS_14 with the as-
sumption that the difference between TFS_14 and TFS5/14 is constant and equal to 
the value of this difference at the moment of TFS3/14 failure (7.1 K).  

5. The conclusion about the inadequacy of TFS3/14 and TFS5/14 thermocouples was 
made on the basis of the comparison of the TFS type TCs located at the surface of the 
heated rods and the TSH type TCs located at the shroud outer surface and thus pro-
tected from oxidation in steam/argon atmosphere. After indicated above time moments 
the rod TCs show irregular behaviour, sharp oscillations and drops with general ten-
dency to decreasing of the temperature, whereas two shroud TCs demonstrate well-
correlated and stable behaviour at the preoxidation, transient and air ingress phases 
of the test. That is why after the failure of both TFS thermocouples we used TSH data 
in order to represent the temperature evolution at 1050 mm elevation.  

6. After 6801 sec. the arithmetic mean of the smoothed TSH14/90_I and TSH14/270_I 
data sets was used as the basis for TFS_14 with the assumption that the difference 
between TFS_14 and averaged TSH/14 data is equal to the value of this difference at 
the moment of TFS3/14 failure (265 K) during preoxidation and transient phases and 
gradually decreased during air ingress phase. Lack of rod TCs data introduces some 
uncertainty in the evaluated temperature evolution at the considered elevation. How-
ever, comparison of the calculated and measured oxide thickness (see below, subsec 
4.2) at the elevation 1050 mm implicitly confirms the correctness of the evaluated 
temperature evolution.   

7. At the elevation 950 mm (Fig. 9) the TFS3/13 and TFS4/13 thermocouples failed long 
before transient phase. The smoothed TITA/13 (corner rod thermocouple) data set 
was considered as the basis for the evaluation of the averaged temperature TFS_13 
at this elevation. 

8. At the elevation 850 mm (Fig. 10) the averaged temperature TFS_12 was calculated 
as arithmetic mean of the smoothed TITC/12 and TCRC 12 data sets.  

9. At the elevation 750 mm (Figs. 11) the average temperature TFS_11 was determined 
as arithmetic mean of smoothed TFS2/11 and TFS5/11 up to the moment of TFS2/11 
inadequate behaviour beginning (7103 sec.). After this moment up to the 9450 sec., 
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when the inadequate behaviour of TFS5/11 began only TFS5/11 data were used as 
the basis for TFS_11 with the assumption that the difference between TFS_11 and 
TFS5/11 is constant and equal to the value of this difference at the moment of 
TFS2/11 failure (42.5 K). After 9450 sec. the data sets of shroud thermocouples 
TSH11/0_I and TSH11/180_I were used as the basis for the averaged temperature 
TFS_11 at the elevation 750 mm. 

At the elevations from 650 mm to -250 mm all the TFS thermocouples survived throughout 
the test. That is why the average temperatures at these elevations were determined as 
arithmetic mean of the corresponding smoothed TFS curves. 

The calculated average temperature curves representing temperature evolution of the bundle 
at 17 elevations from 1350 mm to -250 mm are given in Figs. 12-14. These curves were 
used as the boundary conditions for the effective channel walls in the S/Q code simulation of 
the Q-10 test described below. 

3 Q-10 bundle test simulation 
3.1 Effective channel parameters determination 

The parameters of the effective channel in the present calculation were determined in the 
same way as for the previous QUENCH bundle tests simulation [4-8]. 

The following bundle parameters were used for the channel determination: 

Shroud inner diameter   = 80.0 mm; shD

Rod outside diameter   = 10.75 mm; rD

Instrumentation tube diameter  = 6.0 mm; tD

Number of rods     = 21; rN

Number of corner rods   = 4. tN

The total bundle cross-section is given by the expression: 

222

4
1

4
1

4
1

ttrrshtot DNDNDA ⋅⋅−⋅⋅−⋅= πππ . (1) 

The value of  is equal to 30.07 cmtotA 2. 

The value of the channel cross-section per one rod is equal to 
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The effective channel inner radius is connected with the value of  by: effA

mm 197.8
4

    
4
1 2

22 =+=⇒=− reff
effeffreff

DA
RADR

π
ππ . (3) 

3.2 Test simulation specifications  

The calculated average temperature curves representing temperature evolution of the bundle 
at 17 elevations from 1350 mm to -250 mm are given in Figs. 12-14. These curves were 
used as the boundary conditions for the effective channel walls in the S/Q code simulation of 
the Q-10 test described below 

The average temperature field around the central rod, determined in the Section 2 was used 
as boundary conditions for the heat exchange problem.  

On the basis of the effective channel parameters specified in the Subsection 3.1, the argon 
and steam mass flows at all the test phases were determined. By definition, inlet gas flow in 
the effective channel is connected with the total inlet gas flow by: 

tot

eff
toteff A

A
JJ = . (4) 

The value of argon total inlet flow rate was specified to be constant and equal to 3.0 g/s. The 
value of steam total flow rate was taken to be constant and equal to 3.0 g/s up to the moment 
of 11626 sec. and then replaced by of air flow reaching 1 g/s at 11658 sec.  

At 13393 sec. the air ingress was stopped and water flooding began with flow rate of 
 g/s. The estimated kinematical velocity of water level motion (without accounting 

for evaporation and two-phase water-steam regions formation) is given by 
50=floodJ

66.1==
tot

flood
flood A

J
U  cm/s. (5) 

Time step throughout the test values were: 

1.0 s up to 12794 s, 

0.1 s up to 13570 s, 

1.0 s up to the end of the calculation. 

The bundle nodalization is characterised by the following values: 
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Heat conduction module 

• The total nodes number in the radial direction:   35 

• Pellet nodes number in the radial direction:   21 

• External layer (oxide) nodes number:    7 

• Total nodes number in the vertical direction:   197 

The vertical grid used in the heat conduction module is adaptive one, with maximum density 
in the region of the maximum temperature axial gradients. 

Total number of meshes used by oxidation, mechanical deformation and hydrogen absorp-
tion modules was 98. The total central rod length considered was 1975 mm – from the upper 
point 1500 mm (adjacent to the Al2O3 plate thermal shield) to the lower point -475 mm (adja-
cent to the lower SS plate).  

3.3 Air thermo-physical properties 

Up to the present work thermal-physical properties of air were not described by the S/Q 
code. Necessary properties of nitrogen were implemented in the code material properties 
data base in the course of the S/Q code preparation for the Q-10 bundle test simulation. The 
argon-air mixture was then described as the mixture of argon, nitrogen and oxygen within the 
framework of the S/Q code gas mixture model [11].  

3.3.1 Nitrogen thermo-physical properties 

1. Molar mass  028.0
2
=Nμ   [kg]  

2. Heat capacity [J/(kg⋅K)] [12]: 

( )263
3 1044.110913.74.26

100.28
1)(

2
TTTCN ⋅⋅−⋅⋅+⋅

⋅
= −−

−
. (6) 
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3. Thermal conductivity [13]: 

Temperature [K] Thermal conductivity,  
[W/(m⋅K)] 

310−

300 26.1 

400 32.7 

600 44.8 

800 56.4 

1000 67.6 

1500 93.1 

2000 115.0 

2500 135.5 

Table 3.  Thermal conductivity of Nitrogen 
 

4. Viscosity [13]: 

Temperature [K] Viscosity,  [kg/(m⋅s)] 610−

300 17.9 

400 22.1 

500 25.9 

600 29.3 

800 35.2 

1000 40.4 

1500 54.4 

2000 66.8 

2200 71.3 

Table 4. Viscosity of Nitrogen 

3.3.2 Gas mixture properties 

In the channel gas model the values of components mass concentrations (ratio of the com-
ponent mass to the total mixture mass in a volume element)  are used in the mass balance 
equations. The sum of the mass concentrations is equal to unit: 

ic

∑ =
i

ic 1. (7) 
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In the determination of the gas mixture properties the values of the molar fractions are also 
used: 

1−

⎥
⎦

⎤
⎢
⎣

⎡
= ∑

i i

i

i

i
i

ccx
μμ

. (8) 

Here iμ  are the molar masses of the mixture components. The density of the gas mixture 
[kg/m3] is given by: 

1

),(
−

⎥
⎦

⎤
⎢
⎣

⎡
= ∑

i i

ic
RT
PTP

μ
ρ . (9) 

Heat capacity of the gas mixture [J/(kg⋅K)] is determined by: 

i
i

i cTPCTPC ⋅=∑ ),(),( . (10)

Thermal conductivity of the gas mixture [W/(m⋅K)] is determined by the following semi-
empirical relation [12, 14]: 

∑ +
=

i i

ii

TSx
TxT

)(
)()( λλ , (11)

where 

∑
≠

=
ij

ijj TxTS )()( ψ , (12)

 

( )( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−−
+= 2

142.0
41.21)()(

ji

jiji
ijij TT

μμ

μμμμ
φψ , (13)

 

( ) ( )[ ]
( ) 5.0

225.05.0

122
)()(1

)(
ji

jiji
ij

TT
T

μμ
μμλλ

φ
+

+
= , (14)

Viscosity of the gas mixture [kg/(m⋅s)] is determined by [12, 15]:  

∑∑
=

i
j

ijj

ii

Tx
TxT

)(
)()(

ϕ
ηη , 

(15)

where 

( ) ( )[ ]
( ) 5.0

225.05.0

122
)()(1

)(
ji

jiji
ij

TT
T

μμ

μμηη
ϕ

+

+
= , (16)
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3.4 Accounting for the Zirconium-air interaction effects 

Since the specific model of zirconium-nitrogen physical-chemical interaction has not been yet 
developed and implemented in the S/Q code, only oxygen interaction with Zr cladding  as 
one of the air components was described in the present work. With respect to the heat ef-
fects of zirconium-air interaction such approach is quite justified since, according to the ex-
perimental results, nitrogen uptake during air ingress phase of the test was about 10 times 
lower in comparison with oxygen uptake (8 and 84 g, respectively [9]). As for the cladding 
mechanical degradation and zirconium nitrides formation in the air atmosphere, the descrip-
tion of these phenomena requires development of the corresponding model. 

The difference of the heat effects of Zr cladding oxidation in pure oxygen and steam is due to 
the fact that in the case of steam additional energy is needed for water molecule dissociation. 
That is why heat effect of Zr oxidation in pure oxygen is higher by the heat of water dissocia-
tion reaction in comparison with oxidation in steam. Standard heat of water dissociation reac-
tion (per 1 mole of water) 

222 2
1 OHOH +→ , (17)

is given by [16]: 

TTR
G

g

OH 2960061.6
0

2 +−=
Δ

, (18)

8.314510=gR  (J/mol⋅K) - universal gas constant.  

In the temperature range of interest heat effect of Zr oxidation in pure oxygen appears to be 
500-600 kJ per mole of atomic oxygen, i.e. approximately 2 times higher than that of oxida-
tion in steam. This effect was accounted for by the S/Q code at the air ingress phase of Q-10 
test simulation. 

4 Simulation results 
4.1 Calculated temperatures  

In this subsection the calculated temperature evolution curves at the different elevations of 
the central rod are presented.  

At the elevations above 950 mm the thermocouples located at the heated rods outer surface 
survived throughout the test (elevations 1350, 1250, 1150 mm) or at least during the main 
part of the test (1050 mm). So, the calculated temperature evolution of the central rod outer 
surface can be compared with that of the heated rods. 
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In Fig. 15 the experimentally measured temperatures at the elevation 1350 mm by TFS2/17 
and TFS5/17 thermocouples as well as the calculated temperature evolution of the central 
rod outer surface at this elevation are presented.  

In Fig. 16-18 the analogous comparison between the experimentally measured temperatures 
at the elevations 1250, 1150 and 1050 mm and the calculated temperature evolution of the 
central rod outer surface at these elevations is given.  

At the elevation 950 mm the thermocouples located at the heated rods outer surface failed 
long before transient phase. At the elevation 850 mm no outer surface TCs were used. At 
these elevations the calculated temperature evolution of the central rod pellet centre can be 
compared with corresponding experimental data (readings of TCRC 13 and TCRC 12 ther-
mocouples located in the central rod pellet centre as well as TIT A/13 and TIT C/12 located 
in the centre of two corner rods). 

In Fig. 19 the experimentally measured temperatures at the elevation 950 mm by TCRC 13 
and TIT A/13 thermocouples as well as the calculated temperature evolution of the central 
rod pellet centre at this elevation are presented. 

In Fig. 20 the analogous comparison between the experimentally measured temperatures at 
the elevations 850 mm and the calculated temperature evolution of the central rod pellet cen-
tre at these elevations is given. 

In Fig. 21 the experimentally measured temperatures at the elevation 750 mm by TFS2/11 
and TFS5/11 thermocouples; by shroud thermocouples TSH11/0_I and TSH11/180_I as well 
as the calculated temperature evolution of the central rod outer surface at this elevation are 
presented.  

The presented hottest part of the bundle (elevations from 1350 to 750 mm) is of the main 
interest with respect to oxidation and hydrogen production in the Q-10 test. At the elevation 
650 mm no thermocouples located at the heated or central rod were used. Lower part of the 
bundle (550 mm and below) had relatively low temperature during the test and practically did 
not contribute to the oxidation and hydrogen production.  

Calculated temperature evolution curves at the above elevations generally show good corre-
lation with the experimentally measured ones during preoxidation, transient and air ingress 
phases of the test. All the characteristic bends of different test phases were properly repro-
duced by the calculations. At the same time, calculated temperatures are generally lower 
than the experimentally measured ones. 

In Fig. 22-24 the experimentally measured temperatures of the rod outer surface at the ele-
vations 1350, 1250 and 1150 mm and calculated temperature evolutions at these elevations 
at the quenching phase of the test (13350-13600 sec.) are presented. At the elevation 1050 
mm the heated rod TCs failed before quenching start and there is nothing to compare with 
the results of calculation. In Fig. 25 and 26 the experimentally measured temperatures in the 
central rod pellet centre at the elevations 950 and 850 mm and calculated temperature evolu-
tions at these elevations at the quenching phase of the test are presented. Finally, in Fig. 27 
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the experimentally measured temperatures of the shroud thermocouples TSH 11/0_I and 
TSH 11/180_I and the calculated temperatures of the rod outer surface at the elevation 750 
mm at the quenching phase of the test are shown. In this last case the thermocouples lo-
cated at the rod outer surface failed before quenching phase. The shroud TCs protected from 
direct contact with water-steam mixture show slow cool-down behaviour in the time period 
after 13459 sec. in contrast with the calculated temperature curve. Sharp drop of the calcu-
lated curve corresponds to the wetting of the rod surface. 

Generally, calculated temperature evolution curves at the quenching phase of the test dem-
onstrate rather good correlation with the experimental ones with respect to cool-down rate in 
the increasing steam flow and to the behaviour under rewetting conditions. 

4.2 Oxide layer thickness 

Similarly to the Q-07 and Q-08 tests simulation [6-8], in the presented work at first the main 
attention was paid to the comparison of the calculated oxide layer axial profile with the 
measured one. The experimental information about the oxide layer thickness is available at 
11373 s when the corner rod B was withdrawn, at 13275 s when the corner rod D was with-
drawn and at the end of the experiment.  

Radial temperature distribution inside the bundle during the Q-10 test was generally close to 
uniform [9-10] which was the case for other quench bundle tests [4, 6, 8]. However, some 
difference in the averaged oxide thickness of the corner rods and of the heated rods (final 
status, see below, Fig. 30) points to some radial temperature difference. Nevertheless, com-
parison of the calculated central rod oxide thickness with that of corner rod during the test 
seems to be quite reasonable.  

The obtained simulation results show that at the time moment 11373 s calculated oxide 
thickness is in good agreement with the experimental data (Fig. 28).  

For the corner rod D withdrawn at 13275 s the experimental data on the oxide thickness are 
available only up to the elevation 850 mm because of the disintegration of the upper part of 
the rod. In Fig. 29 the comparison of the calculated oxide thickness with the available ex-
perimental data at the above mentioned time moment is presented. As one can see, the cal-
culation results quite well correlate with the experimental data. However, one can expect 
some underestimation of the oxide thickness at the elevation 950 mm since there is certain 
difference of the calculated and experimental curves slope at 850 mm. 

In Fig. 30 the averaged oxide layer thickness profiles of the heated rods and of the corner 
rods, measured at the end of the test are compared with the calculated oxide layer thickness 
profile of the central rod (final status). As one can see, the calculated oxide profile generally 
reproduces the measured ones. However, certain underestimation of the oxide thickness at 
the elevations 850 mm and 1000 mm takes place.  

Since oxidation kinetics strongly depends on temperature, one may conclude that simulated 
temperature of some parts of the central rod was somewhat lower than the real temperature 
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of the heated rods during time period from 13275 s to the end of the test. This fact will lead to 
a certain underestimation of the hydrogen release rate described in the following subsection.   

4.3 Hydrogen release analysis 

Due to mentioned above uniformity of the radial temperature distribution inside the bundle 
one can say that the central rod behaviour generally represents the average behaviour of the 
20 heated rods and shroud in a QUENCH bundle test. Using this consideration one can ex-
trapolate the hydrogen production results calculated for the central rod to the whole bundle 
[4-8]. The total hydrogen production rate of the whole bundle  is connected with calcu-
lated central rod production rate  by the following relation: 

bundlem&
rodm&

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++=

rod

shroud

rod

corner
cornerheatedrodbundle R

R
R

RNNmm 1&& , (19)

 

Here  is the number of heated rods, 20=heatedN 4=cornerN  is the number of corner rods, 
,  and  are heated rod, corner rod and shroud radii correspondingly.  cornerR rodR shroudR

In Fig. 31 hydrogen production rate calculated according to relation (20) on the basis of S/Q 
code simulation and the experimental data are presented. As one can see, the calculated 
curve repeats all the bents and curvatures of the experimental one during the preoxidation 
phase of the test, but is located lower.  

The variations of the hydrogen production during preoxidation are determined by the compe-
tition of the two factors: (i) increasing temperature, which leads to intensification of oxidation 
and thus, to increase of the hydrogen production rate and (ii) growing oxide thickness leading 
to decrease of the oxidation and hydrogen production rates. Moreover, in the conditions of 
QUENCH bundle experiments temperature and oxide thickness are axially distributed values 
(different elevations contribute to hydrogen production differently).  

These considerations explain complicated behaviour of the hydrogen production rate at the 
preoxidation phase of the test when temperature varied rather smoothly or was even close to 
constant. Reproduction of the experimental curve’s shape by the S/Q code indicates that Zr 
oxidation kinetics is quite correctly described by the code.  

As for the underestimation of the absolute value of the hydrogen production rate during pre-
oxidation phase of the test, one should consider the following.  Oxidation model of the S/Q 
code is based on the mass conservation relations: every oxygen atom penetrating Zr/steam 
boundary corresponds to one released hydrogen molecule. Thus, there exists direct corre-
spondence between oxide layer thickness axial profile and amount of produced hydrogen, 
accurately accounted by the code.  

During the whole preoxidation phase the calculated hydrogen production rate was noticeably 
lower then the experimental one. At the same time, calculated oxide axial profile at the end of 
the preoxidation phase of the test (time moment 11373 s, see previous subsection, Fig. 28) 
quite well agrees with the experimental profile. Here one has a ‘mass balance’ contradiction 
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and the reason of this contradiction is not clear. The revealed discrepancy can be only par-
tially explained by the fact that not all the oxidizing materials presented in the bundle were 
taken into account in the calculations (e.g. spacer grids, thermocouples shields).   

In Fig. 31 the calculated and measured hydrogen production rate at the quenching phase of 
the test are presented. As one can see, the experimental production peak takes place sev-
eral seconds later (due to the location of mass spectrometer) and is much higher than the 
calculated one. This fact may be explained by some underestimation of the temperature 
peaks by the S/Q code during temperature escalation in the upper part of the bundle (Fig. 
22-24) as well as by possible measurement errors. 

According to the calculation results, the total amount of generated hydrogen is 34.8 g (3.4 g 
during quenching). As it is clear from the above considerations, these values are lower than 
the experimental ones (54.5 g and 5.2 g, correspondingly [9]). 
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5 Summary and conclusions 
• SVECHA/QUENCH code was applied to the simulation of the QUENCH bundle test 

Q-10. The simulation was performed within the framework of the ‘effective channel 
approach’. 

• The experimentally measured temperatures of the heated rods were processed, 
smoothed and then used as boundary conditions (average temperature field) for the 
central rod. 

• The simulation of the Q-10 test using averaged temperature field was performed.  All 
the stages of the test (heatup, preoxidation, transient, air ingression, water quench-
ing) were considered. 

• Since the specific model of zirconium-nitrogen physical-chemical interaction has not 
been yet developed and implemented in the S/Q code, only oxygen interaction with Zr 
cladding as the main air component was described. 

• The calculations adequately reproduce temperature evolution of the central rod at dif-
ferent elevations during the whole test duration including quenching phase. 

• The calculated oxide axial profile agrees quite well with the experimental data at the 
time moments 11373 s and 13275 s when the corner rods B and D were withdrawn 
from the bundle. The S/Q code slightly underestimates final oxide thickness.  

• The details of the experimentally measured time dependence of the hydrogen pro-
duction rate during preoxidation phase of the test are well reproduced by the calcula-
tions. This fact testifies that Zr oxidation kinetics is quite correctly described by the 
S/Q code. At the same time, absolute value of the hydrogen production rate appears 
to be underestimated, in ‘mass balance’ contradiction with oxide axial profile correct 
reproduction by the calculations. 
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Q-10 experimental data 
Bundle temperature evolution at 1350 mm 
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Fig 1. Bundle temperature evolution at the elevation 1350 mm measured by thermocouples 
TFS 2/17 (red line), TFS 5/17 (blue line) and averaged temperature used in the 
calculations (black line). 

Q-10 experimental data 
Bundle temperature evolution at 1350 mm. Quenching phase 
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Fig 2. Bundle temperature evolution at the elevation 1350 mm measured by thermocouples 
TFS 2/17 (red line), TFS 5/17 (blue line) and averaged temperature used in the 
calculations (black line). Quenching phase (time period 13300 – 13600 s). 
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Q-10 experimental data 
Bundle temperature evolution at 1250 mm 
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Fig 3. Bundle temperature evolution at the elevation 1250 mm measured by thermocouples 
TFS 3/16 (red line), TFS 5/16 (blue line) and averaged temperature used in the 
calculations (black line). 

Q-10 experimental data 
Bundle temperature evolution at 1250 mm. Quenching phase 
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Fig 4. Bundle temperature evolution at the elevation 1250 mm measured by thermocouples 
TFS 3/16 (red line), TFS 5/16 (blue line) and averaged temperature used in the 
calculations (black line). Quenching phase (time period 13300 – 13600 s). 
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Q-10 experimental data 
Bundle temperature evolution at 1150 mm 
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Fig 5. Bundle temperature evolution at the elevation 1150 mm measured by thermocouples 
TFS 2/15 (red line), TFS 5/15 (blue line) and averaged temperature used in the 
calculations (black line). 

Q-10 experimental data 
Bundle temperature evolution at 1150 mm. Quenching phase 
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Fig 6. Bundle temperature evolution at the elevation 1150 mm measured by thermocouple TFS 
5/15 (blue line) and averaged temperature used in the calculations (black line). 
Quenching phase (time period 13300 – 13600 s). 
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Q-10 experimental data 
Bundle temperature evolution at 1050 mm 
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Fig 7. Bundle temperature evolution at the elevation 1050 mm measured by thermocouples 
TFS 3/14 (red line), TFS 5/14 (blue line), shroud thermocouples TSH 14/90_I (coral 
line), TSH 14/270_I (grey line) and averaged temperature used in the calculations (black 
line). 

Q-10 experimental data 
Bundle temperature evolution at 1050 mm 
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Fig 8. Bundle temperature evolution at the elevation 1050 mm measured by shroud 
thermocouples TSH 14/90_I (coral line), TSH 14/270_I (grey line) and averaged 
temperature used in the calculations (black line). Quenching phase (time period 13300 
– 13600 s). 
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Q-10 experimental data 
Bundle temperature evolution at 950 mm 
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Fig 9. Bundle temperature evolution at the elevation 950 mm measured by thermocouples TFS 

3/13 (red line), TFS 4/13 (blue line), corner rod thermocouple TIT A/13 (grey line) and 
averaged temperature used in the calculations (black line, practically coincides with TIT 
A/13 data). 

Q-10 experimental data 
Bundle temperature evolution at 850 mm 
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Fig 10. Bundle temperature evolution at the elevation 850 mm measured by corner rod 

thermocouple TIT C/12 (blue line), central rod internal thermocouple TCRC 12 (red 
line) and averaged temperature used in the calculations (black line). 

 

 24



Q-10 experimental data 
Bundle temperature evolution at 750 mm 
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Fig 11. Bundle temperature evolution at the elevation 750 mm measured by thermocouples 
TFS 2/11 (blue line), TFS 5/11 (red line), shroud thermocouples TSH 11/0_I (coral 
line), TSH 11/180_I (grey line) and averaged temperature used in the calculations 
(black line). 

Q-10 experimental data 
Averaged temperatures 
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Fig 12. Averaged and smoothed curves representing temperature evolution of the QUENCH-10 
bundle at the elevations from 1350 to -250 mm. 
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Q-10 experimental data 
Averaged temperatures. Transient, air ingress and quenching phases 
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Fig 13. Averaged and smoothed curves representing temperature evolution of the QUENCH-10 
bundle at the elevations from 1350 to -250 mm. Transient, air ingress and quenching 
phases of the test. 

Q-10 experimental data 
Averaged temperatures. Quenching phase 
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Fig 14. Averaged and smoothed curves representing temperature evolution of the QUENCH-10 
bundle at the elevations from 1350 to -250 mm. Quenching phase of the test. 
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Q-10 test simulation 
Bundle temperature evolution at 1350 mm 
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Fig 15. The experimentally measured temperatures at the elevation 1350 mm: TFS2/17 data 

(blue line) and TFS5/17 data (black line) and calculated temperature evolution of the 
central rod outer surface (red line). 

Q-10 test simulation 
Bundle temperature evolution at 1250 mm 
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Fig 16. The experimentally measured temperatures at the elevation 1250 mm: TFS5/16 data 

(blue line) and TFS3/16 data (black line) and calculated temperature evolution of the 
central rod outer surface (red line). 
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Q-10 test simulation  
Bundle temperature evolution at 1150 mm 
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Fig 17. The experimentally measured temperatures at the elevation 1150 mm: TFS2/15 data 

(blue line) and TFS5/15 data (black line) and calculated temperature evolution of the 
central rod outer surface (red line). 

Q-10 test simulation  
Bundle temperature evolution at 1050 mm 
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Fig 18. The experimentally measured temperatures at the elevation 1050 mm: TFS3/14 data 

(blue line) and TFS5/14 data (black line) and calculated temperature evolution of the 
central rod outer surface (red line). 
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Q-10 test simulation 
Bundle temperature evolution at 950 mm 

300

500

700

900

1100

1300

1500

1700

1900

2100

2300

0 2000 4000 6000 8000 10000 12000 14000

Time, s

Te
m

pe
ra

tu
re

, K

TIT A/13

TCRC 13

Calculated pellet centre

 
Fig 19. The experimentally measured temperatures at the elevation 950 mm: TIT A/13 data 

(blue line) and TCRC 13 data (black line) and calculated temperature evolution in the 
central rod pellet centre (red line). 

Q-10 test simulation 
Bundle temperature evolution at 850 mm 
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Fig 20.  The experimentally measured temperatures at the elevation 850 mm: TIT C/12 data 

(blue line) and TCRC 12 data (black line) and calculated temperature evolution in the 
central rod pellet centre (red line). 
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Q-10 test simulation 
Bundle temperature evolution at 750 mm 
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Fig 21. The experimentally measured temperatures at the elevation 750 mm: TFS 2/11 data 

(blue line), TFS 5/11 data (black line), TSH 11/0_I (grey line), TSH 11/180_I (coral line) 
and calculated temperature evolution of the central rod outer surface (red line). 

Q-10 test simulation  
Bundle temperature evolution at 1350 mm 
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Fig 22. The experimentally measured temperatures at the elevation 1350 mm: TFS2/17 data 

(blue line) and TFS5/17 data (black line) and calculated temperature evolution of the 
central rod outer surface (red line). Quenching phase (time period 13350 – 13600 sec.). 
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Q-10 test simulation  
Bundle temperature evolution at 1250 mm 
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Fig 23. The experimentally measured temperatures at the elevation 1250 mm: TFS5/16 data 

(blue line) and TFS3/16 data (black line) and calculated temperature evolution of the 
central rod outer surface (red line). Quenching phase (time period 13350 – 13600 sec.). 

Q-10 test simulation 
Bundle temperature evolution at 1150 mm 
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Fig 24. The experimentally measured temperatures at the elevation 1150 mm: TFS2/15 data 

(blue line) and TFS5/15 data (black line) and calculated temperature evolution of the 
central rod outer surface (red line). Quenching phase (time period 13350 – 13600 sec.). 
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Q-10 test simulation  
Bundle temperature evolution at 950 mm 
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Fig 25. The experimentally measured temperatures at the elevation 950 mm: TIT A/13 data 

(blue line) and TCRC 13 data (black line) and calculated temperature evolution in the 
central rod pellet centre (red line). Quenching phase (time period 13350 – 13600 sec.). 

Q-10 test simulation 
Bundle temperature evolution at 850 mm 
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Fig 26. The experimentally measured temperatures at the elevation 850 mm: TIT C/12 data 

(blue line) and TCRC 12 data (black line) and calculated temperature evolution in the 
central rod pellet centre (red line). Quenching phase (time period 13350 – 13600 sec.). 
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Q-10 test simulation 
Bundle temperature evolution at 750 mm 
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Fig 27. The experimentally measured temperatures at the elevation 750 mm: TSH 11/0_I (blue 

line), TSH 11/180_I (black line) and calculated temperature evolution of the central rod 
outer surface (red line).Quenching phase (time period 13350 – 13600 sec.). 

Q-10 test results 
Calculated and measured oxide thickness. Corner rod B 
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Fig 28.  Oxide layer thickness axial profile of corner rod B (withdrawn from the test bundle at 

11373 sec.) compared to the calculated one of the central rod for the same time. 
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Q-10 test results 
Calculated and measured oxide thickness. Corner rod D 
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Fig 29. Oxide layer thickness axial profile of corner rod D (withdrawn from the test bundle at 

13275 sec.) compared to the calculated one of the central rod for the same time. 

Q-10 test results 
Calculated and measured oxide thickness. Final status 

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Elevation, mm

O
xi

de
 th

ic
kn

es
s,

  µ
m

Heated rods mean

Corner rods mean

Calculated central rod

 
Fig 30.  Measured oxide layer thickness profiles of the heated rods (average), and of the corner 

rods, both at final state, compared to the calculated oxide layer thickness profile of the 
central rod (final state). 
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Fig 31. Experimentally measured (blue line) and calculated (red line) hydrogen production rate.  
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Fig 32.  Experimentally measured (blue line) and calculated (red line) hydrogen production rate. 

Quenching phase (time period 13300 – 13600 sec.) 
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