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Abstract

The main issue of this work is to describe electronic transport through single
molecule junctions. We implemented the “standard” approach to molecular con-
ductance, namely transport calculations in a Landauer–Büttiker framework based
on Kohn–Sham orbitals extracted from density functional theory (DFT). Our par-
ticular implementation ensures, that apart from approximations inherent in the
exchange–correlation functional in DFT no further approximations are made.

Comparison of our numerical calculations with available experimental data shows,
that, while in some cases qualitative information on transport can be gained, the
experimental conductance is two to three orders of magnitude below the theoretical
estimate. Changes in bond geometry can not account for this discrepancy.

We are led to the conclusion that approximations in the exchange–correlation func-
tional may be the major underlying reason for the discrepancy. To this end, we
formulated the condition under which the “standard” approach would be exact.

Furthermore, we investigated three situations where despite these shortcomings

quantitative results can be obtained. Thereby we, for first time, calculated the

step positions in the I–V characteristics of a “diode–type” molecule quantitatively.

Zusammenfassung

Ziel dieser Arbeit ist die Beschreibung des Elektronentransports durch Einzelmo-
leküle. Als erstes wird die Implementierung der derzeitigen Standard–Methode zur
parameterfreien Beschreibung des elektronischen Transports durch Moleküle vorge-
stellt: Basierend auf effektiven Ein–Teilchen Orbitalen (Kohn–Sham Orbitalen) aus
DFT Rechnungen, wird der Leitwert unter Verwendung des Landauer–Büttiker For-
malismus berechnet. Die hier verwendete spezielle Implementierung hat den besonde-
ren Vorteil, dass, abgesehen von den Näherungen im verwendeten DFT Austausch–
Korrelationsfunktional, keine weiteren Näherungen gemacht werden.

Der Vergleich von Modellrechnungen an zwei Molekülen, zu denen experimentelle
Daten vorliegen, zeigt, dass zwar in manchen Fällen qualitativ richtige Resulta-
te erzielt werden können, der theoretisch berechnete Leitwert jedoch zwei bis drei
Größenordungen über den experimentell gemessenen Werten liegt. Änderungen der
Bindungsgeometrie können diese Diskrepanz nicht erklären.

Aufgrund dieser Ergebnisse vertreten wir die Auffassung, dass Näherungen innerhalb
des Austauschkorrelationsfunktionals ein wesentlicher Grund für diese Diskrepanz
zwischen Theorie und Experiment sind. Daher haben wir untersucht, unter welchen
Bedingungen eine exakte Formulierung der Methode möglich ist.

Des weiteren haben wir drei Situationen untersucht, in denen wir mittels DFT–

basierten Rechnungen quantitative Ergebnisse erzielen können. Hierbei ist es uns

insbesondere gelungen, erstmals die Position der Stufen in der Strom–Spannungs–

Kennlinie eines Moleküls quantitativ zu berechnen.



ii



Deutsche
Zusammenfassung

Bauelemente eines integrierten Schaltkreises auf einem handelsüblichen Mi-
krochip haben zur Zeit typische Abmessungen von ca. 100 nm. Wenn man
annimmt, dass sich das gegenwärtige Tempo, mit dem die Miniaturisierung
vorangetrieben wird, auch in Zukunft durchhalten lässt, dann werden in 12
Jahren Abmessungen von nur noch 10 nm erreicht sein. Eine darüber hin-
ausgehende Miniaturisierung ist nur möglich, wenn es gelingt, Schaltelemen-
te aus einzelnen Atom- oder Molekülkomplexen zu konstruieren (Molekulare
Elektronik). Die Erforschung von Molekülen und molekularen Drähten z.B.
im Bezug auf ihre Eigenschaften als elektrische Leiter und Schaltelemente ist
daher nicht nur von fundamentalem wissenschaftlichen Interesse sondern auch
technologisch geboten.

Die funktionalen Eigenschaften — insbesondere solche die mit dem Ladungs-
transport zusammenhängen — eines kontaktierten, d.h. chemisch an die Elek-
troden gebundenen, Moleküls lassen sich nicht unabhängig von der Natur des
Kontaktes verstehen. Das ist leicht einzusehen, wenn man bedenkt, dass nur
Hydbride aus Molekül– und Elektrodenzuständen den Strom leiten können,
da nur diese die eine mit der anderen Elektrode verbinden. Daher muss eine
vollständige Beschreibung des Transportes auch die Zuleitungen mit einbezie-
hen. Hier liegt eine der Herausforderungen in der Beschreibung des elektroni-
schen Transports durch Einzelmoleküle.

Eine zweite Herausforderung ist eng damit verknüpft, dass auf dem Molekül
die Coulombwechselwirkung der Elektronen untereinander die Energie und die
räumliche Gestalt der elektronischen Zustände wesentlich mitbestimmt. Kor-
relationseffekte spielen eine viel größere Rolle als beispielsweise in einfachen
Metallen und müssen ebenfalls mit in die Theorie einbezogen werden.

Zur Zeit stellt die Dichtefunktionaltheorie (DFT) die einzige praktikable Me-
thode dar, mit der man gleichtzeitig zumindest einen Teil der wichtigen Korre-
lationseffekte berücksichtigen, sowie eine ausreichende Zahl an Elektronen in
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Deutsche Zusammenfassung

die Rechnung einbeziehen kann, um die Ankopplung makroskopischer Zulei-
tungen richtig zu beschreiben.

Die vorliegende Arbeit wurde motiviert durch den enormen Einfluss, den solche
ab initio basierte Rechnungen in der Molekularen Elektronik voraussichtlich
haben werden. Die zur Zeit drängendste theoretische Frage auf dem Gebiet
ist die große Diskrepanz zwischen theoretischen Vorhersagen und tatsächlich
gemessenen Leitwerten von Einzelmolekülen. Die Werte unterscheiden sich oft
um mehrere Größenordnungen.

Als erstes wurde in dieser Arbeit die derzeitige Standard–Methode zur para-
meterfreien Beschreibung des elektronischen Transports durch Moleküle im-
plementiert: Basierend auf effektiven Ein–Teilchen Orbitalen (Kohn–Sham
Orbitalen) aus DFT Rechnungen, wird der Leitwert unter Verwendung des
Landauer–Büttiker Formalismus berechnet. Die hier vorgestellte spezielle Im-
plementierung hat den besonderen Vorteil, dass, abgesehen von den Näherun-
gen im verwendeten DFT Austausch–Korrelationsfunktional, keine weiteren
Näherungen gemacht werden. Insbesondere können wir eine ausreichende An-
zahl von Elektrodenatomen in die Rechnung einbeziehen um eine korrekte
Extrapolation in den thermodynamischen Limes sicherzustellen.

Mit dem implementierten Formalismus wurden zwei Modellrechnungen an-
hand von Molekülen, zu denen experimentelle Daten vorliegen, durchgeführt:
Benzol–dithiol sowie ein größeres, auf Anthrazin aufbauendes Molekül. Die
dabei gewonnenen wichtigsten Schlussfolgerungen sind:

• Im Fall des größeren Moleküls liefern Rechnungen das qualitativ (und
für die Peakpositionen auch quantiativ) richtige Resultat.

• Der theoretisch berechnete Leitwert liegt zwei bis drei Größenordnungen
über den experimentell gemessenen Werten, in Übereinstimmung mit
Rechnungen anderer Gruppen. Die Verbreiterung der Molekülzustände
durch die Ankopplung an die Zuleitung wird stark überschätzt.

• Änderung der Bindungsgeometrie, die oft als ein möglicher Grund für
die gefundenen Abweichungen angeführt werden, haben nur einen gerin-
gen Einfluss: Ändert man z.B. den Bindungsabstand, den Bindungswin-
kel, die Anzahl der Atome an die der Schwefel bindet, usw. innerhalb
physikalisch vernünftiger Grenzen, so sind die damit verbundenen Leit-
wertänderungen viel zu klein um die Abweichungen zu erklären.

Aufgrund dieser Ergebnisse vertreten wir die Auffassung, dass Näherungen
innerhalb des Austauschkorrelationsfunktionals ein wesentlicher Grund für
diese Diskrepanz zwischen Theorie und Experiment sind. Daher haben wir

iv



Deutsche Zusammenfassung

untersucht, unter welchen Bedingungen eine exakte Formulierung der Me-
thode möglich ist: Dies ist nur im quasi–statischen Grenzfall unter Verwen-
dung des exakten (nicht–Gleichgewichts–) Austauschkorrelationsfunktionals
der zeitabhängigen DFT gegeben. Jedoch wird in den zur Zeit im Feld der
molekularen Elektronik durchgeführten Rechnungen ein Gleichgewichtsfunk-
tional benutzt, meist im Rahmen der Lokalen Dichte Näherung (LDA). Bei
Verwendung dieses Funktionals werden viele wichtige, nichtlokale Effekte ver-
nachlässigt. In einer Beispielsrechnung mit Hartree–Fock Orbitalen statt der
DFT Wellenfunktionen haben wir gezeigt, dass diese Effekte für den Transport
von großer Bedeutung sein können. So ergibt sich durch die exakte Berücksich-
tigung der Austauschwechselwirkungs–Effekte, die das Selbstwechselwirkungs-
problem der DFT vermeidet, eine realistischere Beschreibung der Verbreite-
rung der Molekülzustände. Allerdings ist dies mit einem großen Qualitätsver-
lust bei den Resonanzenergien aufgrund fehlender Korrelationseffekte in der
Hartree–Fock Beschreibung verbunden.

Leider sind zur Zeit keine besseren, praktikablen Funktionale verfügbar, die
Korrelationseffekte, den exakten Austauschterm sowie weitere langreichweiti-
ge Effekte enthalten. Wir müssen deshalb fragen, in welchen Situationen wir
mittels DFT basierten Rechnungen dennoch quantitative Ergebnisse für den
Stromtransport durch einzelen Moleküle gewinnen können. Dazu haben wir
drei Beispielsfälle untersucht, in denen dies erfolgreich möglich ist:

• Einfluss der Symmetrie auf den Stromtransport
Moleküle können ausgeprägte Symmetrieeigenschaften aufweisen. Insbe-
sondere wenn der Stromtransport entlang des Schnittes von zwei Sym-
metrieebenen erfolgt, kann die Art der Ankopplung des Moleküls an die
Elektroden großen Einfluss haben: Falls die Stromeinkopplung diese Spie-
gelsymmetrie verletzt (indem z.B. der Schwefel als Bindeglied zu den
Elektroden in einem Winkel zur Symmetrieachse sitzt) wird die Ankopp-
lung und damit der gemessene Leitwert stark reduziert. Wir haben ein
solches Beispiel mittels unserer DFT Rechnungen untersucht und Er-
gebnisse in sehr guter Übereinstimmung mit den experimentellen Daten
erhalten.

• Auswirkungen externer Parameter
DFT–Rechnungen mit Gleichgewichtsfunktional erlauben es, die
Veränderung der Elektronendichte unter Einfluß eines externen Parame-
ters, wie z.B. einer Gate–Spannung zu untersuchen. Wenn die Energie
eines Molekülzustands durch die Gate–Spannung den Wert der Fermi–
Energie passiert kann sich die Elektronendichte auf dem Molekül stark
ändern. Diese “Resonanzen” in der Zustandsdichte sind mit eimem deut-
lich erhöhten Stromfluss durch das Molekül verbunden. Auf diese Weise
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ist es möglich, trotz der Verwendung eines Gleichgewichtsfunktionals,
exakte Ergebnisse für die Oszillation der Leitfähigkeit mit der Gatespan-
nung zu erhalten. Die Untersuchung solcher Coulomb–Blockade Effekte
haben wir anhand eines Beispielmoleküls (Benzol–dithiol) demonstriert.

• Verschiebung der Molekülzustände durch Polarisation
Eine weitere Anwendung dieser Methode besteht darin, zu untersuchen,
wie sich die Kohn–Sham Zustände des Moleküls verschieben, wenn man
eine endliche Spannung anlegt. Es ist uns so gelungen, für das “Dioden-
molekül” aus Abbildung 1.1 die Position von sieben der neun niedrigs-
ten Stufen in der gemessenen Strom–Spannungscharakteristik quantita-
tiv zu berechnen. Dies ist nach unserem Wissen das erste Mal, dass
der ”Leitwert–Fingerabdruck” eines Moleküls in einer Transportmessung
quantitativ berechnet werden konnte.

Da bisher noch nicht abzusehen ist, wie die Fortschritte im Bereich der Ent-
wicklung besserer Funktionale für die Dichtefunktionaltheorie in der nächsten
Zeit aussehen werden, ist es sinnvoll, mehrere verschiedene Strategien gleichzei-
tig zu verfolgen, um Fortschritte in der theoretischen Beschreibung der Trans-
porteigenschaften von Einzelmolekülen zu machen:

• Implementierung von derzeit verfügbaren Austauschkorrelationsfunktio-
nalen mit nichtlokalen Anteilen und Vergleich der Ergebnisse mit Expe-
rimenten und anderen Rechnungen.

• Untersuchen, ob es weitere experimentelle Transporteigenschaften gibt,
die sich im Rahmen der Gleichgewichtsfunktionale berechnen lassen. Dies
könnten z.B. Phononenfrequenzen oder Oszillatorstärken sein.

• Hybrid–Methoden: Verknüpfung von exakten Methoden wie Configurati-
on Interaction oder CC2, angewandt auf das “nackte” Molekül mit DFT
Rechnungen für das kombinierte System Molekül plus Elektroden.

Insgesamt gesehen werden noch viele Forschungsbeiträge aus Numerik, Theorie
und Experiment nötig sein, bis ein umfassendes Verständnis des Stromtrans-
ports durch Moleküle erreicht ist und ein systematisches Design von funktio-
nalen molekularen Schaltelementen möglich wird.
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Chapter 1

Introduction

1.1 Molecular electronics

Currently, commercially manufactured active components of integrated circuits
(e.g., transistors) have typical dimensions of about 100 nanometers. Assuming
the current rate of miniaturization can also be achieved in the future, device
dimensions of only 10 nanometers will be reached in about 12 years. Smaller
active elements can only be realized, if one manages to make use of the atom-
istic structure of matter.Then, active devices will have to be built up of single
atom or molecule complexes.

The computer manufacturer Hewlett–Packard has already taken a first step in
this direction: in the year 2006, an innovative memory chip is announced to
be sold commercially. Data bits in this chip will be stored using molecules,
organized in in self–assembled monolayers (of about 1000 molecules). Further
miniaturization of such a memory chip can be achieved by using less and
less molecules to store the information. In principle, a single molecule would
be sufficient. From this point of view, the concept of a computer, where the
integrated circuits are, at least partially, realized by (macro–) molecules, looses
its futuristic character. In consequence, the scientific investigation of molecules
and molecular wires with respect to their properties for possible use for data
storage or as building blocks for electronic devices in general is not only of
fundamental scientific interest but also of large technological relevance.

The carrier, most easily controlled in molecular systems, is the electrical
charge. Hence, a rapidly growing number of research groups worldwide is
concentrating for now on the measurement of current–voltage curves (I–Vs)
that, ideally, offer a precise fingerprint of the investigated molecules. Single
molecules of dimensions of only a few nanometers can be contacted using,
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Chapter 1. Introduction

Figure 1.1: Schematic view of a molecule designed to act as a diode in between
two gold contacts. (Design and synthesis by M. Elbing and M. Mayor [1].)

e.g., the mechanically controlled break–junction technique: a lithographically
produced, thin gold bridge is broken by controlled mechanical deformation,
resulting in an open contact where the electrode distance can be adjusted with
sub–Ångström precision, so that single molecules can be contacted. Fig. 1.1
depicts a molecule (designed by M. Mayor and M. Elbing, INT) where the I–V
characteristics have been obtained in a break–junction experiment (by H. We-
ber and R. Ochs, INT), see fig. 1.2 [1]. The current increases in a stepwise
fashion with the applied bias voltage. These steps are a fingerprint of the
energy levels of the molecule, which, one after the other, enter the voltage
window opened by the applied bias and give an individual contribution to the
current.

A lot of the physics, relevant to the understanding of charge transport through
single molecules, can be borrowed from the mesoscopic physics of quantum
dots. In fact, a molecule chemically bound to two electrodes is nothing else

Figure 1.2: Experimentally measured current voltage characteristics of the
molecule shown in fig. 1.1 [1]. Vertical lines indicate the theoretical prediction
for the step positions based on a methodology developed in the present work.

2



1.1 Molecular electronics

but a particular realization of a quantum dot. Physical concepts like resonant
and off–resonant transmission through individual energy levels of the molecule,
sequential tunneling, Coulomb-blockade and even correlation driven physics
like the Kondo-effect apply to molecular transport as well as to quantum dots
in a very similar manner.

This list of aspects of physics important to transport in molecular structures
is by no means exhaustive, however, as molecules are a very special kind of
quantum dot: typical molecules that have been investigated are at least one
order of magnitude smaller than the smallest “conventional” quantum dot
systems. In other words, molecules are quantum dots in new and possibly
very interesting parameter regimes. Furthermore, molecules can exhibit exact
geometrical symmetry properties which can lead to analogues of selection rules
for quantum transport. Moreover, molecules tend to have relatively flexible
structures. Therefore, in general, the coupling of electronic degrees of freedom
to the atomic “lattice” structure of the molecule should be quite strong. In
particular, an electron–roton coupling and a strong electron–vibron coupling
exists, which can result in polaron formation. This is quite unusual compared
to the situation in conventional quantum dots. Finally, molecular structures
can be designed at will, offering an almost unlimited playground not only
for exotic physical effects, but also for functionality. As an example we only
mention the field of molecular magnetism where genuine many body effects
can be studied in custom tailored systems, that at the same time may also
offer functionality for information processing.

All physical phenomena listed above can be subsumed under the heading of
Molecular Electronics.

Transport theory for molecular electronics based on DFT

Transport properties of a contacted molecule, chemically bound to the elec-
trodes, cannot be understood without taking into account the properties of the
contact itself. Obviously only those orbitals, connecting one electrode with the
other, can contribute to the current. These states are thus hybridized orbitals
built up of molecular states in combination with states in the leads. In con-
sequence, a complete description of transport must also include the properties
of the leads. This is one of the challenges that lie ahead of us.

A second challenge stems from the Coulomb interaction of the electrons on the
molecule, which strongly influences the energy as well as the spacial structure
of the electronic states on the molecule. Correlation effects are far more im-
portant in a molecular system than in simple metals and have to be included
in the theoretical description of transport through molecules.
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Chapter 1. Introduction

In order to predict the parameters relevant for the transport properties of an
individual molecule, like the energy levels and their broadening, these chal-
lenges — the full many body problem together with the thermodynamic limit
— have to be met simultaneously and on the same footing. This is why trans-
port calculations for single molecules turn out to be so difficult.

At present, density functional theory (DFT) is the only method that a) can
incorporate (at least some of) the important parts of the correlation physics
governing the excitation spectrum of the molecule and b) can deal with suf-
ficiently many electrons to allow for a reliable extrapolation to the thermo-
dynamic limit. Therefore, DFT based transport calculations have become the
standard tool in the field of molecular electronics.

1.2 About this work

Motivation and goals

Although DFT–based transport calculations have proven to be quite useful in
the past, e.g., for understanding the conductance of single atom contacts, they
are still far from perfect. In fact, up to now reproducible, quantitative results
for molecular wires with an experimental conductance below 0.1 g0 (where g0

is the quantum of conductance, 2e2/h) have never been obtained, so far, and
even a qualitative agreement with the experimental current-voltage (I–V) char-
acteristics can not always be achieved. Arguably, understanding the reasons
underlying this discrepancy — which in some cases can exceed two orders of
magnitude — and how to fix this problem are at present the two most pressing
issues in the field of theoretical molecular electronics. Furthermore, without a
theoretical description allowing to reliably predict the response properties of
molecules including transport, it is hard to imagine how a systematic design
of functional molecules can be achieved.

In this work we set out in order to make a contribution to resolve these fun-
damental issues. Let us emphasize already at this point that a full solution
cannot be obtained in a single shot. We will see in our analysis, that DFT
based transport calculations yield conductance values that differ the more from
the experimental data the better the extrapolation procedure is, that takes one
into the thermodynamic limit. Amongst other, possibly also experimental rea-
sons, the quality of the DFT functionals used in standard calculations has to
be questioned. Therefore, really solving the puzzle necessarily implies to im-
prove, but also to go beyond computational issues and deal with the full many
body problem in depth.
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Outline

We will begin our work with a brief review of experimental works and tech-
niques. Thereby we will focus on methods for contacting single or small as-
semblies of molecules.

In the subsequent chapter 3 we will describe the present “standard method”
for DFT based conductance calculations, which is (basically) a Landauer–
Büttiker theory in Green’s function formulation based on Kohn-Sham orbitals
and energies. The latter are obtained from a standard calculation based on
DFT. We will present in detail our implementation of the method. In order
to remind to what DFT calculations can provide reliably, and which practices
do not have a firm foundation based on the Hohenberg-Kohn theorems, we
give a brief summary of the basics of DFT in chapter 4. In particular, we
will emphasize there, that a proper treatment of the non-equilibrium situation
requires — strictly speaking — the use of time dependent (TD)DFT.

In chapter 5 we will describe how our implementation has been tested against
other known results. Thereafter, in chapter 6, we apply our machinery to two
molecules and analyze the transmission in great detail. The selected molecules
have also been thoroughly studied experimentally. The most important find-
ings of this section are twofold: a) the experimental conductance is several
orders of magnitude below its value based on the standard DFT approach. b)
changing the microscopic parameters of the DFT calculations, like bonding
angle, bond length etc., in reasonable limits does not bring down the DFT-
conductance by orders of magnitude.

The numerical findings of chapter 6 motivate an analysis of the approxima-
tions in the exchange-correlation functional that has been used in the DFT
procedure. In chapter 7 we will demonstrate that any functional local in the
electron density (like LDA, GGA etc.) is going to miss the corrections that
account for the difference between the true density (and current) response of
the molecule and its “Kohn–Sham–response”. The exact exchange–correlation
functional is known to be non–local in the density however, and by means of an
exemplary Hartree–Fock calculation we can show that including non–localities
can indeed decrease the conductance by an order of magnitude or more.

Unfortunately, at the moment transport calculations with non–local exchange–
correlation functionals are not feasible, even with advanced DFT codes like
TURBOMOLE. Therefore, we have to consider for practical purposes, whether
some limited aspects of the results from the standard (equilibrium) DFT cal-
culations for transport can actually be trusted. The next three chapters (8–10)
will deal with cases were the answer to this question is yes: in chapter 8 we will
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show that symmetry related aspects of transport can be described qualitatively
in a correct way.

In chapter 9, we will go beyond qualitative aspects and argue, that a para-
metrical dependence of the conductance, e.g. the peak distance of Coulomb
oscillations (the peak hight cannot be obtained this way), can be given (in
principle) exactly even by an equilibrium DFT calculation. As an illustration
we calculate the dependence of the transmission of benzene–1,4–di–thiol on an
external gate voltage.

A somewhat unorthodox application of the same idea will be given in chap-
ter 10. Here, we will consider the parameter to be the external voltage bias
and analyze, how the energy levels of the molecule in fig. 1.1 shift when the
gate voltage is tuned. This procedure will allow us to identify those volt-
ages at which level crossings occur, that leave a step as their signature in the
current-voltage characteristics. The vertical lines plotted in fig. 1.2, which fit
the experimentally observed step positions almost perfectly well, have been
obtained this way.

Finally, we conclude our work in chapter 11 with a more detailed summary of
the results obtained together with future perspectives.
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Chapter 2

Experimental techniques

In this chapter we will give a brief overview over some of the numerous tech-
niques used to measure the conductance of organic molecules. A detailed
discussion of all methods of this very diverse, and fast growing field is beyond
the scope of this thesis. We will only describe a selection of popular methods.

Our main focus will be on single–molecule methods as these offer the best
insight into the underlying transport mechanisms. Several different approaches
exist to measure conductance through a single molecule, each one offering
specific advantages. But note, that so far, none of them can be viewed as a
“standard method” to contact single molecules and all are far away from being
implemented on an industrial scale to yield commercial devices. Contacting
and manipulating single molecules on the nanometer scale in a reliable and
reproducible fashion still constitutes a scientific challenge.

2.1 History: pioneering ideas and experi-

ments

Historically, the field of molecular electronics experiments started off in the
late 60s with experiments on Langmuir–Blodgett films (see below), done by
Kuhn and Möbius [3].

A few years later, Aviram and Ratner [4] published their pioneering paper
suggesting in a Gedankenexperiment how to realize a single–molecule diode.
The proposed design consisted of a donor and acceptor part of the molecule,
divided by a tunneling barrier, see chapter 10 for further discussion.
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But due to the limited experimental methods on the nanoscale available at that
time, no further progress in the field was made. Only recently, after techniques
like scanning tunneling microscopy and nanofabrication techniques had been
developed, it became possible to really contact single molecules.

The breakthrough was reported by M. Reed et al. in 1997 [5]: using the me-
chanically controlled break–junction technique a single molecule was contacted
in between the tips of a broken gold bridge and current–voltage curves were
recorded. This experiment started off an enormous experimental effort in the
field, resulting in the development of many different techniques some of which
we will present in the next sections.

2.2 Mechanically controlled break–junctions

(MCBJ)

The use of mechanically controlled break–junctions (MCBJ) [6,7] for contact-
ing single molecules is a further development of single–atom contact conduc-
tance experiments [8–10]. In these experiments, metal wires are elongated until
they break. Shortly before breaking, the diameter of the smallest constriction
reduces to one single atom and—in the case of gold—further elongation yields
an atomic chain of gold atoms until the wire finally breaks.

The design principle of MCBJ devices is simple: a thin gold film is structured,
using e–beam lithography, on an elastic substrate. The substrate usually con-
sists of phosphor bronze covered by a few µm of polyimide for insulation be-
tween gold and substrate. The gold film is designed to have a constriction of
50 by 50 nanometers. By underetching this constriction, a freestanding bridge
is created, see fig. 2.1, (a).

At the INT, the following protocol is applied to contact single molecules: the
obtained chip, about 15 × 7 mm2 in size, is placed in a bending mechanism
as depicted in fig. 2.1,(b) and (c). The three–point geometry of the bending
mechanism allows for a very precise control of the bending. To avoid con-
taminations, the bending mechanism is placed in a vacuum chamber (pressure
10−7− 10−8 mbar). The pushing rod is moved upward until the bridge breaks.
Due to the conversion of the upward movement into a bending of the substrate,
the distance between the two ends of the broken gold wire can be controlled
with 0.1 Ångström precision. Now, the contact is opened and closed repeat-
edly until quantized conductance values are observed, corresponding to the
formation of an atomic point contact, i.e. the contact ends are now atomically
sharp.
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Figure 2.1: (a) Scanning electron microscope (SEM) image of a freestand-
ing (underetched) gold bridge used for a MCBJ experiment. (b) Schematic
representation of the MCBJ setup. (c) Image of the experimental setup. The
counter-supports are visible in the upper part (black) holding the sample (thin
bronze sheet).

Then, the chamber is filled with nitrogen and a diluted solution of the molecule
(with acetyl–protected terminal thiol groups) to be measured is applied on
the opened contact. The acetyl group prevents the molecules from forming
clusters and only deprotects in contact with the gold forming a stable covalent
bond between the sulfur and the gold, see section 6.4 for details. Some of the
molecules will loose their acetyl protection group and the sulfur will chemically
bond to one electrode. To remove molecules that are not chemically bond to the
gold, the junction is rinsed with the solvent THF. After evacuation, the bridge
is slowly closed with a bias voltage applied. Due to the small distance between
the electrodes, a high electric field is present, in which the molecules orient
themselves towards the opposite electrode. At one point, the first molecules
will reach the second electrode and chemically bond to it. This situation can
be recognized by a plateau in the current. Now, current–voltage curves can be
recorded. Some results of conductance measurements at our institute will be
discussed in §6.

One disadvantage of the MCBJ technique is the difficulty in obtaining low–
temperature measurements: the electrode distance changes when the sample
is cooled down, thereby breaking the contact. Also, devices requiring a gate
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electrode can not be constructed using break–junctions. Due to the large
diameter of the breaking wire, electric fields are effectively screened and can not
penetrate to the molecule in the junction, see also chapter 9. But apart from
this, break–junctions offer the best control for single–molecule experiments.

In consequence, a large amount of experiments are reported using this tech-
nique [5, 11–19]

2.3 Electromigration

Devices fabricated by electromigration offer the possibility to study the influ-
ence of a gate electrode.

Usually, a 10 to 15 nm wide wire is fabricated on a SiO2 insulating layer
using e–beam lithography [20]. A doped Si substrate underneath the SiO2

can be used as a gate electrode. After adding a solution of the molecules to
be investigated onto the wire, the single–molecule contact is then created by
breaking the wire through electromigration: at low temperature the applied
bias voltage is increased to large values until the wire breaks.

This produces a gap of about 1 to 2 nanometers, across which in about 10 %
of the samples a molecule is found, so that I–V characteristics can be recorded
[16].

Using the electromigration technique, J. Park et al. [16] managed to observe
Kondo effect and Coulomb blockade effects in single molecules consisting of a
Co ion trapped in a polypyridyl cage, see fig. 2.2, see also chapter 9.

For the longer, less conducting molecule, a conductance gap for small bias volt-
ages was observed. In dependence of the gate voltage, different threshold bias
values were necessary until the current increased, corresponding to Coulomb
blockade behavior. 2D plots of conductance in dependence of applied bias and
gate voltage yielded Coulomb diamonds.

In case of the shorter molecule, where the Co–ion acted as an “impurity spin”
a Kondo resonance was observed: at zero bias, a peak in the differential con-
ductance is reported, that has a logarithmic temperature dependence between
3 K and 20 K. As a second test, a magnetic field was applied which resulted
in a split of the peak, as would be expected from Kondo physics.

A second group, H. Park et al [21], also observed a Kondo resonance in single
molecules using electromigration techniques to contact the molecules.

There are many other experiments that make use of the electromigration tech-
nique to contact single molecules, e.g., [20, 22–24]
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Figure 2.2: Kondo effect in a single molecule device. Experiment by J. Park
et al. [16] using electromigration contacts. Left: Molecules investigated, con-
sisting of a Co ion trapped in a cage of benzene rings. Right: Observed Kondo
peak in the shorter molecule. Displayed is the differential conductance over
bias voltage in V . Different traces correspond to different temperatures. The
inset shows the decrease of the peak hight with temperature.

2.4 Electrochemical techniques

2.4.1 Electrochemical etching

The electrochemical etching technique is an excellent technique to fabricate
gated single–molecule junctions. The use of very thin planar electrodes allows
the incorporation of a gate only a few nanometers away from the electrode
[25,26]. The device fabrication consists of two major steps: evaporation of the
contact structure, and electrochemical etching of the gold to form a nanogap,
see fig 2.3.

On top of an aluminum gate electrode, covered with about 2 nm aluminum
oxide, the contact geometry is defined using e–beam lithography [25]. After
evaporation of a thin adhesion layer of titanium, the gold electrodes are de-
posited. In the central region of the contact, only a very thin (≈ 15nm) gold
layer is deposited using shadow evaporation techniques.

Then, the actual nanogap is formed by electrochemical etching: using a
counter-electrode in a bath of KAuCN2, the thin gold layer is etched and
a gap forms. The gap distance is measured via the tunneling current between
the electrodes during the etching process.

Using this method, it was possible to fabricate nanogaps with sub–Ångström
precision in the electrode distance, where at the same time the gate electrode
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Figure 2.3: Gated single–molecule contact: electrochemical etching technique.
Device by Kervennic et al. [25, 26]. Left: schematic representation of the
sample before electrochemical etching. The gate electrode (Al) is separated
from the contact by a thin aluminum oxide layer. The 15 nm thin wire region
is obtained by small–angle evaporation of gold. Right: SEM picture of the
sample. S and D denote the source and drain electrode.

is only a few nanometers away from the molecule. Kervennic et al. reported
the observation of a gate effect in organic molecules using this technique [26].
The experiment will be discussed in more detail in chapter 9.

2.4.2 Electrochemical deposition

A second electrochemical method can be used to structure nanogaps for single–
molecule measurements: by electrochemical deposition of gold, a gap of desired
length can be produced [27].

The process is relatively simple. Two electrodes with a relatively large separa-
tion (≈ 25µm) are lithographically structured on a substrate. Then the device
is put in an electrolyte and a voltage is applied between the electrodes. In con-
sequence, gold atoms are etched off from one electrode and deposited on the
other, thereby decreasing the gap width. By measuring the current between
the contacts, the distance can be estimated and the process is terminated,
when the desired distance is reached [27].

Several measurements of single molecules using electrochemical deposition have
been reported [28, 29].
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2.5 Molecular monolayer devices

Molecular film devices are far easier to produce than single–molecule exper-
iments. The device consists of a monolayer of molecules, with the substrate
acting as one of the electrodes. The second electrode is then either evaporated
on, yielding a film device, or a STM tip is used as the second electrode, re-
sulting in a single–molecule device (which will be discussed in the next section
§2.6).

Due to their simplicity in the fabrication, film devices are promising candi-
dates for first real–life applications of molecular electronics in the near future.
However, in case of film devices, a controlled deposition of the second elec-
trode is a difficult task. The monolayer can be damaged during the process.
Although working devices are achieved in most cases, the actual microscopics
of the measured device (structural integrity of the monolayer, defects) is not
clear [30]. Several devices based on sandwiching molecular films between two
electrodes have been reported [31–35].

Different techniques can be applied to produce a molecular monolayer:
Langmuir–Blodgett films and self–assembled monolayers.

2.5.1 Langmuir–Blodgett films

Langmuir–Blodgett films [36] are obtained by pulling a chip covered with a
hydrophilic substrate (e.g. metals like Al, Cr) out of a solution containing a
monolayer of molecules. The technique is depicted in fig. 2.4.

The organic molecules have to contain a hydrophilic group, e.g. acid or alcohol
group, and a hydrophobic group, usually an aliphatic chain, to allow film
formation on the surface of water (Langmuir film). In water, all molecules will
then align in the same direction with the hydrophilic end at the water side.
A continuous monolayer, which can later be transferred on the substrate is
formed by compression of the film using a movable barrier. The substrate is
slowly removed from the bath while at the same time the barrier is shifted
to keep the monolayer intact. This way, a well–ordered mononolayer of the
organic molecule is formed on the surface of the substrate.

The big disadvantage of this method is, that the molecules are not chemically
bond to the substrate, as a hydrophilic group is required on the substrate side
of the molecule and thus thiol endgroups can not be used.
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Figure 2.4: Obtaining molecular film devices. Left: Technique to obtain
Langmuir–Blodgett films. Right: How self assembled monolayers are obtained.
From [31]

2.5.2 Self–assembled monolayers (SAM)

For self–assembled monolayers, the technique is simpler, and chemical bonds
to the substrate can and have to be achieved. The spontaneous arrangement
of (organic) molecules on a surface to, ideally, defect–free structures is called
self–assembly. Here, the monolayer forms from molecules in solution on the
substrate itself, due to the properties of the molecules [31]. See [37] for a
review on the formation of SAMs.

Usually SAMs are obtained by dipping the substrate, later used as one of
the electrodes in the conductance experiment, into a dilute solution of the
molecules to be measured. These do in general have an end group that binds
covalently to the metal of the substrate on one side. After a layer has formed,
the substrate is removed from the solution, see fig. 2.4. The second electrode
can then be evaporated on top of the molecular layer. Many measurements
molecular sandwich devices using SAMs have been reported [16,32,33,35,38–
40].

2.6 STM experiments

Using monolayer film devices, it is also possible to conduct measurements
on single molecules. A scanning tunneling microscope (STM) tip is used as
second electrode. Often films, consisting of a matrix of spacer molecules plus
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the molecules to be measured are are used. By using these smaller, insulating
molecules (usually based on alkyl chains) as spacers, the molecules of interest
are separated spatially from each other enhancing the probability to contact a
single molecule with the STM tip.

As di–thiol SAMs (with sulfur groups on both ends) are difficult to produce,
the molecules can usually only be chemically bound to the substrate, the sec-
ond contact then is a tunneling contact. In consequence, STM based single–
molecule measurements always have strongly asymmetric coupling to the elec-
trodes, which makes interpretation of the experimental data more complicated.

The first demonstration of a single–molecule measurement based on STM tech-
niques was done by Bumm and Tour [41]. Here, longer molecules consisting of
several benzene rings in a SAM with shorter, insulating molecules as spacers,
were contacted using the STM tip. The molecules were covalently bound to the
substrate via thiol groups, whereas the contact to the STM tip was a tunneling
contact. Since then, many other STM based conductance measurements have
been reported [15, 31, 38, 42, 42].

Figure 2.5: Measurement of the conductance of bipyridine using an STM tip,
from [42]. The repeated formation of single–molecule junctions makes the
statistical analysis of conductance measurements possible.
Left: current over electrode displacement during two stages of opening the
contact. A) atomic wire, B) conductance of molecules, C) control experiment
without molecules.
Right: Statistical analysis of the conductance values.

In 2003, Tao and coworkers developed a method that allows the repeated for-
mation of molecular junctions using a gold STM tip in fast succession [42].
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The STM tip is moved into and out of contact with a gold substrate in a solu-
tion containing the sample molecules. When the tip is pulled out of contact,
a stepwise decrease in the conductance is observed, see fig. 2.5. These steps
are the usual conductance steps observed in metallic point contacts (see §5.2).
When the tip is pulled out further, additional plateaus appear, corresponding
to a resistance two orders of magnitude higher. By statistical analysis it was
possible to attribute these steps to the measurement of a distinct number of
molecules between the contact.

2.6.1 Single–molecule device structured on a STM tip

A completely different approach to achieve single–molecule contacts based on
STM tips has been reported by Zhitenev et al. [43]: the fabrication of the
single–molecule device on the STM tip itself.

Figure 2.6: Single molecule device fabricated on a STM tip, from [43].
Schematic of the fabrication process. The contact is formed by evaporating
electrodes on two sides of a square–shaped STM tip. The contact is formed by
evaporating gold from underneath the electrode after the molecules have been
applied.

Using a STM tip of square shape (about 20–30 nm diameter), the two elec-
trodes were evaporated on two sides of the tip, see fig. 2.6. Then, the tip can
be dipped into a solution of thiol–terminated molecules that will bond to the
electrodes. To form the actual contact, gold is evaporated from underneath
the tip while the conductance of the contact is monitored. Evaporation is
stopped, when conductance values suggest, that a stable contact with one or
a few molecules has formed.

This method offers one special advantage: in STM based experiments, the
sample can be cooled down to low temperatures, which makes the measure-
ment of vibrational modes or electron–phonon interaction possible. In other
approaches, cooling often is a problem.

Zhitenev et al. observed vibrational modes in molecules consisting of thiophene
rings [43].
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2.7 Crossed wire devices

A different promising technique is based on crossed wires: Kushmerick et al.
[44,45] reported the conductance measurement of small assemblies of molecules
using two crossed wires of about 10µm diameter as depicted in fig. 2.7 to
contact the molecules.

Figure 2.7: Schematic representation of the crossed wire setup to measure the
conductance of small assemblies of molecules. A SAM is applied to one of the
wires. The distance of the wires is controlled by the Lorentz force caused by
running a deflection current through the wires, [44].

Thereby, a SAM is applied on one of the wires. The distance of the second
wire, perpendicular to the first one, is controlled via the Lorentz force caused
by a small current (< 5 mA) through the wire. This way, the two wires can
be approached to each other until the molecules of the SAM come in contact
with the second wire.

Using this technique, I–Vs of organic molecules consisting of several benzene
rings, were reported [44].

2.8 Nanopores

Nanopores promise the possibility to measure a very small assembly of
molecules—far less than in a monolayer device. In the same year they pub-
lished their break-junction experiment, Zhou and Reed [46] also presented the
first results of molecule conductance measurements using nanopores.

The nanopore is a very small hole which is etched into a freestanding silicon
nitride layer by reactive ion etching. After the etching process, gold is evap-
orated onto the hole from underneath, then a SAM is allowed to form on the
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evaporated gold. Finally, titanium and gold are evaporated from above to
yield the molecular device, see fig. 2.8.

The big advantage of using nanopore contacts is their stability, the samples
can for example be cooled down without problems. The big disadvantage is
the same as for all monolayer devices, it is not clear how the SAM is damaged
in the second evaporation step. Also it is unclear, how the titanium interacts
with the molecules.

Figure 2.8: Schematic representation of a nanopore device for the measurement
of small assemblies of organic molecules. From Zhou et al. [46]. Top: empty
device. Bottom: device after the molecules have been applicated and the top
and bottom electrodes have been deposited.

However, several experiments on the conductance of molecules using nanopores
have been reported [46–53].
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Chapter 3

Molecular transport based on
Density Functional Theory

3.1 Introduction

The idea behind the “standard” approach of DFT based transport calculations
is, to construct scattering states from the Kohn–Sham orbitals of the DFT cal-
culation and combine those with the Landauer–Büttiker scheme. The concept
of DFT wil be described later, in chapter 4.

The Landauer–Büttiker approach to transport is based on the concept to view
the conductance through a mesoscopic system as a scattering process. Possible
scatterers include an atomic point contact, a quantum dot, an atomic wire or
a molecule. Electrons are injected into and extracted from the wire/contact
with ballistic leads. All required information about the dc–transport proper-
ties is encoded in the scattering matrix of the contact. The Landauer–Büttiker
formula [54, 55] then expresses the conductance in terms of transmission am-
plitudes through the scattering region.

In the following section, we will revisit the ideas behind the Landauer–Büttiker
transport description. We will discuss in detail its practical application to
molecular systems in the noninteracting case and to a lesser extend to inter-
acting systems, where we will describe the Meir–Wingreen approach (§3.2.3)
using the non–equilibrium Green’s–function formalism (NEGF). Then, our
implementation of calculating transport through single molecules in the scat-
tering approach will be presented. In chapter 7, we will come back to the
NEGF formalism to discuss our results on the range of applicability and on
the limitations of the DFT approach in describing transport through meso-
scopic contacts.
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3.2 Landauer–Büttiker transport formalism

3.2.1 Non–interacting electrons

reservoir
state

state of the
scattering
region

lead mode

scattererleadreservoir

ideal lead

contact region

Figure 3.1: Schematic representation of a mesoscopic contact. In the contact
region the lead has the width w, limiting the number of transverse modes.

The Landauer formula [56, 57] allows to express the transport of non–
interacting electrons through a mesoscopic scattering region (e.g., a molecule)
in terms of its transmission function T (E) and the Fermi distribution functions
of the connected leads. A schematic representation of the contact is given in
fig.3.1.

For a strictly one–dimensional system, where the transverse dimensions w of
the leads are small enough such that only the lowest transverse eigenstate is
occupied, resulting in only one conduction channel, the conductance, G, at
zero bias takes the form

G =
2e2

h
T (EF ).

T thereby is the probability with which an electron entering from one side
is transmitted through the scattering region to the other side with an energy
equal to the Fermi energy, EF . Assuming perfect transmission (T = 1) the
conductance takes the value of the quantum of conductance

G0 =
2e2

h
= 77.48µS (3.1)

(which is per definition the conductance of one single, perfect channel with
two degenerate spin states). Eq. 3.1 can be generalized to leads involving
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3.2 Landauer–Büttiker transport formalism

more than one transverse eigenstate below the Fermi energy, leading to the
well known formulation of the Landauer–Büttiker formula [54, 55].

The derivation of the Landauer–Büttiker formula, even for non–interacting
electrons, is nontrivial. Baranger and Stone [58] together with others clarified
its relation to the Kubo formula, and the regime where they are equivalent.
In section §3.2.3 we will describe its derivation from the Keldysh formalism,
where the validity is extended beyond the linear response regime. Several key
conceptual ideas are required:

• The leads are considered to be ideal Fermi liquids. Electrons entering
the contact region from the left or right have a distribution according to
the Fermi distribution fl, fr at the time–independent chemical potentials
µl, µr in the left and right lead, respectively.

• The reservoirs are reflectionless. An electron can exit from the contact
region into the reservoirs with no probability of reflection — it will be
“swallowed” completely.

• Transport is coherent. There is no inelastic scattering in the contact,
dissipation takes place only in the reservoirs. In an actual experiment,
the role of reservoirs is assumed to be taken over by the leads.

With these assumptions we will now sketch the derivation of the formula, relat-
ing conduction to transmission using scattering states for the multi–channel,
non–interacting case.
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Lead Lead

Molecule

central cluster
Figure 3.2: Schematic representation of the mesoscopic contact, consisting of
the ideal, semi–infinite leads (blue) and the central cluster (red). The coupling
between leads and cluster is depicted in green.

The Hamiltonian of our system can be partitioned into three subsystems: left
and right lead HL, HR, and the central cluster/molecule HC . Figure 3.2 depicts
a schematic contact.
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Chapter 3. Molecular transport based on Density Functional Theory

It then takes the following form

H =





HL t†l 0
tl HC tr
0 t†r HR



 . (3.2)

HL,R describe noninteracting electrons in the left and right leads which are
assumed to be perfect ballistic conductors. tl and tr describe the coupling
between the leads and the central cluster. It is assumed, that there is no
direct coupling between the two leads.

We will now introduce scattering states to describe the transmission through
the molecule. The assumption of perfectly conducting leads assures that the
scattering states moving from the left lead to right have a longitudinal mo-
mentum k and a band or channel index n. The variable k is continuous as
we consider an open system with semi–infinite leads, so that the spectrum of
the leads is smooth. The channel index n stems from the quantization of the
transverse momentum due to the finite width w of the lead. A right moving
scattering state Ψnk can thus be written as

Ψnk(x,x⊥) =

{

eikxχn(x⊥) +
∑

n′ r̂n′ne
−ik′xχn′(x⊥) (in the left lead)

∑

n′ t̂n′ne
ik′xχn′(x⊥) (in the right lead).

(3.3)
where k, k′ > 0 (and k, k′ < 0 for left moving scattering states — moving out
of the right lead towards the left lead). t̂n′n is the probability for the state in
channel n in the left lead to be transmitted into channel n′ in the right lead,
whereas r̂n′n is the respective reflection probability. The wavenumbers are fixed
by energy conservation under the condition that there is no inelastic scattering,
thus for the energies applies εnk = εn′k′. The wavefunction component in
transverse direction (x⊥) is expressed by χn(x⊥).

To calculate the transport properties we need the transmission coefficients t̂rl
where the wavevector k is fixed by E = εr(k

′) = εl(k), describing now the
probability of an electron at the energy E entering from the left lead with
quantum numbers l = (n, k) to pass through the scattering region and end up
in the right lead in a state r = (n′, k′). With these coefficients, the current can
be calculated: the contribution of the initial state |Ψkn〉 = |Ψl〉 to the current
is proportional to

∑

r

|t̂rl|
2 vr, (3.4)

where we sum over all final states r keeping εn′k′ = εnk, fixed. The factor
vr = dεn′k′/dk′ is due to the fact that the current is proportional to the square
of the wavefunction, |Ψ|2, times the velocity, vn′k′ = vr.

To retrieve the usual formulation of the Landauer formula, we need to express
the contribution to the current in terms of the incoming particle flux, whereas
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3.2 Landauer–Büttiker transport formalism

eq. 3.4 is normalized with respect to the volume. Therefore we rescale the
transmission coefficients

trl =

(

vn′

vn

)1/2

t̂rl. (3.5)

Now, |trl|
2 constitutes the fraction of the inflowing current in the left lead

which is transmitted into the right lead. The next step is to write down the
contribution to the current, dI, injected on the left side in channel n with a
wavenumber between k and k + dk, which is transmitted to the right lead:

dI = dk
2e2

h
vn

∑

n′

|tn′n|
2 (3.6)

Here, again, we have to sum over all channels n′ in the right lead with the
energy εn′k′ = εnk.

Using vn(k) = dεkn/dk|k(E), this transforms into the transmitted current which
originates from incoming states with energies between E = εnk and E + dE.
This yields for the transmission

T (E) =
dI

dE
=

2e2

h

∑

nn′

|tn′n|
2 =

2e2

h
Tr(tt†). (3.7)

Usual transport experiments in mesoscopic physics or molecular electronics do
not obtain the transmission directly. Instead, the zero bias conductance is
measured,

G =
dI

dV

∣

∣

∣

∣

V=0

, (3.8)

which is the linear response of the combined system consisting of leads and
molecule to an applied external voltage, evaluated at zero voltage. Here, the
total current I is just given by the current originating from states from the left
lead, as we are at zero temperature and thus there is no contribution from the
right in the energy window between the chemical potentials of the two leads.
For energies below the chemical potential of both leads, the contributions of
the respective leads cancel each other.

The Landauer Formula then just constitutes the fact, that the conductance,
G, equals the transmission, T , evaluated at the Fermi energy

G = T (EF ) (3.9)

in units of 2e2

h
.

To look at finite bias in the linear response regime and at zero temperature,
we have to integrate T (E) over the energy E to obtain the current in the
Landauer description

I =

∫ µr

µl

dE T (E) (3.10)
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Chapter 3. Molecular transport based on Density Functional Theory

µl and µr denote the chemical potentials in the left and right lead, respectively.
The application to finite temperatures and finite bias in the noninteracting case
will be described in section §3.2.3. The Landauer formula has been applied
successfully to many different problems like universal conductance fluctuations,
Anderson localization, integer quantum Hall effect . . .

Assuming only perfectly transmitting channels, one would expect a conduc-
tance of exactly the quantum of conductance times the number of occupied
transverse states. The first experimental verification of conductance steps by
changing the number of channels was done in a Quantum Point Contact [59],
using a 2-D electron gas (2DEG) formed of a GaAs–AlGaAs heterostructure.
In the system, the width of the constriction of the 2DEG could be controlled
by applying a gate voltage. With increasing width, the number of occupied
transverse states increases which leads to an increase in conductance in steps
of the quantum of conductance G0, as the channels are perfectly transmitting
(T = 1). Experimental data of the original experiment is shown in fig. 3.3

Figure 3.3: Observation of conductance steps in a quantum point contact.
Original data by van Wees et. al [59]. Using a gate voltage, the number of
occupied transverse states is changed, leading to a change in the number of
perfectly transmitting channels and thereby to steps of 2 e

2

h
in the conductance.

3.2.2 Landauer formula with Green’s–functions

In our transport calculations the electronic structure of the scattering region
is obtained from Density Functional Theory (DFT). DFT yields the ground–
state effective single–particle Kohn–Sham wavefunctions. These are stationary
states in a cluster Hilbert–space, whereas we would need scattering states
defined in the infinite Hilbert–space of the leads to use the Landauer formalism.
The underlying concept of DFT will be explained in chapter 4.
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3.2 Landauer–Büttiker transport formalism

Green’s–functions are a convenient concept to relate the stationary states of
the DFT calculation to the scattering description. By rewriting the Landauer
formula in terms of Green’s–functions, we can construct the scattering states
implicitly. In addition, the Green’s–function technique allows us to incorpo-
rate the continuum character of the leads (thus dissipative mechanisms) into
the discrete set of states of the central cluster through the damping. A first
orientation about the concept of the Landauer–formula in Green’s functions is
given in [60, 61].

First, we introduce the concept of the scattering matrix S, which we need
in order to do the transformation. The scattering matrix relates states of an
incoming wave-packet of the leads to outgoing states after the interaction with
the scattering region. If we consider a Hamiltonian H = H0 + H ′, the S–
matrix quantifies the probability amplitude for a scattering transition from an
initial incoming plane wave eigenstate |nk〉 of the Hamiltonian H0 (as described
above),

〈x|nk〉 = eikxχn(x⊥), (3.11)

to a final state |n′k′〉 of this Hamiltonian after the perturbation H ′ has
acted on it. This can be written using the time–evolution operator
U(t′, t)= exp (iH(t′ − t)) as

〈n′k′|Ŝ|nk〉 = lim
tf→∞

lim
ti→−∞

〈n′k′(tf)|U(tf , ti)|nk(ti)〉. (3.12)

The transmission coefficients t̂n′n are related to the S–matrix by

t̂n′n =

∫ ∞

−∞
dk′ 〈n′k′|S(εnk)|nk〉. (3.13)

(Specifications for the directions of the k–vectors are not needed, as the S–
matrix automatically selects the correct sign for k, k′ for the incoming and
outgoing states in both leads.)

We can rewrite expression (3.13) by using the following identity for the S–
matrix (see e.g. [62]):

〈n′k′|Ŝ|nk〉 = δn′k′,nk − 2iπ δ(εn′k′ − εnk) 〈n
′k′|T (εnk+iη)|nk〉. (3.14)

This results in a golden rule type expression which, due to the definition of
the tranmission matrix, T , is exact:

t̂n′n = −2iπ

∫

dk′ δ(εnk−εn′k′) 〈n′k′|T (εnk+iη)|nk〉 (3.15)

As we only consider elastic scattering, E = εnk = εn′k′, the evaluation of the
δ–function gives

t̂n′n = −2iπ v−1
n′ 〈n

′k′|T (E)|nk〉 (3.16)
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Chapter 3. Molecular transport based on Density Functional Theory

Now, as in the section above, we need to normalize the coefficients t̂n′n with
respect to the incoming particle flux in order to recover the familiar form of
the Landauer formula:

|tn′n|
2 = (2π)2 (vnvn′)−1 |〈n′k′|T (E)|nk〉|2 (3.17)

With vn′ =
dεn′k

dk′
we rewrite this, using δ–functions, as

|tn′n|
2 = (2π)2

∫

dkdk′ δ(E − εnk)δ(E − εn′k′)|〈n′k′|T (E)|nk〉|2 (3.18)

where the energy E = εnk as above. Then, summing up the contributions of the
different states, a formula for the total transmission T (E) can be constructed,
where in matrix notation, the two diagonal sub-matrices of the Hamiltonian
for the left and right lead, HL,R, enter instead of the energies εnk.

T(E) = (2π)2 Tr
[

δ(E−HL)Tδ(E−HR)T†] (3.19)

The trace has to be taken over all states in the left lead, (E = E · 1).

To arrive at the Green’s–function formulation of the Landauer formula, it
remains to replace the T–matrix by its representation in terms of the retarded
Green’s–function for the central contact region, GC . This way we will be able
to write down the transmission as a trace over the Hilbert space of the central
cluster which is of finite dimension, in contrast to the infinite–dimensional
Hilbert space of the combined system of cluster plus leads.

The Hamiltonian matrices for the leads are of infinite dimension. But the
coupling matrices, tL, tR, if we consider a representation in a basis of localized
atomic orbitals, have non–zero elements only for a small number of orbitals.
Namely those, belonging to atoms near the contact region, where the wave-
functions significantly overlap with the wavefunctions of the central cluster.
See fig. 3.2, where the coupling layers are depicted in green.

In our Green’s–function formulation, the influence of the coupling to the leads
will enter in the full Green’s–function of the central cluster only through self–
energies. These will be of finite dimension due to the finite contributing region.
Then, all information on the transport properties of the individual molecule
will be contained in the Green’s–function of the central cluster and numerical
calculations can be performed within this finite set. Thus the calculation of
this central cluster Green’s–function, that involves the inversion of (E−HC)
becomes achievable.

With our Hamiltonian from eq. 3.2 divided into

H0 =





HL 0 0
0 HC 0
0 0 HR



 H′ =





0 t†L 0
tL 0 tR
0 t†R 0



 (3.20)

26



3.2 Landauer–Büttiker transport formalism

the T–matrix is defined by [62]

T(E) = H′ + H′G(E)H′. (3.21)

The following definitions are needed to do the last transformation:

• The unperturbed retarded Green’s-functions of the leads and central clus-
ter:

gL,R = (E−HL,R + i0)−1; and gC = (E−HC + i0)−1

• The self energies in gC that account for the coupling of the leads to the
central cluster:

ΣL = tLgRt
†
L and ΣR = tRgRt

†
R

• The central block of the full Green’s–function:

〈c|GC |c
′〉 = 〈c|(E−H)−1|c′〉

where |c〉 and |c′〉 are states of the central cluster. This can be obtained
from the self energies and the unperturbed Green’s–functions of the cen-
tral cluster via

GC = [1− gC(ΣL + ΣR)]−1gC

• The coupling matrices ΓL,R, which describe the coupling of the central
cluster to the leads:

ΓL,R = i(ΣL,R −Σ†
L,R) = 2 · ImΣL,R

And with

δ(E−HL,R) = (2π)−1(gL,R − g†
L,R)

using the definition of Σ, we find the expressions within the states of the
central cluster|c〉

〈c′|ΓL|c〉 = 2π 〈c′|tLδ(E−HL)t
†
L|c〉 (3.22)

〈c′|ΓR|c〉 = 2π 〈c′|t†Rδ(E−HR)tR|c〉 (3.23)
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Chapter 3. Molecular transport based on Density Functional Theory

How the terms we have presented above come about, can be easily under-
stood by looking at the definitions of the Green’s–functions for the three sub–
Hamiltonians of the system, HL, HR and HC . The defining equations for these
Green’s–functions can be written as





E−HL −tL 0

−t†L E−HC −t†R
0 −tR E−HR









GL GLC GLR

GCL GC GCR

GRL GRC GR



 =





I 0 0
0 I 0
0 0 I





(3.24)
Looking at the equations from the second column, we have

(E−HL)GLC − tLGC = 0 (3.25)

−t†LGLC + (E−HC)GC − t†RGRC = I (3.26)

(E−HR)GRC − tRGC = 0 (3.27)

By substituting g−1
L,R from above for (E−HL,R) we obtain

GLC = gLtLGC (3.28)

GRC = gRtRGC (3.29)

which we can insert in equation 3.26 leading to

−t†LgLtLGC + (E−HC)GC − t†RgRtRGC = I, (3.30)

to obtain the Green’s–function GC for the central cluster as

GC = (E−HC −ΣL −ΣR)−1. (3.31)

This is now all we need to calculate the transport properties. All quantities can
be expressed within the finite dimensional Hilbert space of the central cluster.

We can plug all the ingredients from the list above into equation (3.19) for the
transmission to arrive at

T (E) = TrC

[

ΓLGCΓRG
†
C

]

. (3.32)

Now the trace is taken over all states in the central cluster instead of the
states in the lead. The semi–infinite leads enter only in an implicit way via
the self energy matrices ΣL,R. This makes the dimensions of the matrices
equal to the number of states in the central cluster and thus finite in contrast
to the formulation within the states in the leads. Calculations in this finite
dimensional Hilbert space are now numerically feasible.

28



3.2 Landauer–Büttiker transport formalism

3.2.3 Interacting electrons: the Meir–Wingreen for-

mula

We will now turn to the finite temperature regime and consider systems that
also include interaction. This will be done using the Keldysh/non–equilibrium
Green’s–function formalism. An introduction of the formalism can be found
in the book by Datta [63] or in [64]. Meir and Wingreen [65] have derived a
general expression for the current flowing trough a region of space, where the
carriers can interact. This can, for example, be a quantum dot, an atomic wire
or a molecule.

The Hamiltonian of the system has the same partitioning,

H = HC +HL +HR +H ′, (3.33)

as in the noninteracting case above. HC describes the central cluster of the
system, consisting of the molecule, atomic wire, point contact, or quantum dot,
plus in addition, parts of the leads, see fig. 3.2, above. To include a sufficient
portion of the leads is of crucial importance to ensure that all information
about the scattering region is included in the central cluster (see 3.3 and 7
below for details).

This central cluster, or extended molecule, is then coupled to two semi–infinite
leads with the Hamiltonians HL, HR via the coupling H ′. The bare leads are,
as above, assumed to be non–interacting

HL,R =
∑

α=l,r

εαc
†
αcα, (3.34)

where cα, c
†
α are the creation and annihilation operators for an electron in the

left or right lead. The indices α = l, r include all quantum numbers needed to
define a state in the leads.

There again is no direct coupling between the leads, so H ′ takes the form

H ′ =
∑

m,(α=l,r)

(tαmc†αdm + h.c.) (3.35)

with the hopping matrix elements, tαm, describing coupling between the lead
and the central cluster, and the creation/annihilation operators dm,d

†
m of the

central cluster.

The term for the central cluster

HC = HC({d†
m}; {dm})
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Chapter 3. Molecular transport based on Density Functional Theory

now—in contrast to the Landauer case above—does in general include
electron–electron interaction. Its detailed structure will be of no importance
to the derivation of the Meir–Wingreen formula:

I=

∫

dE Tr(flΓL−frΓR)(GC − G
†
C) + Tr(ΓL−ΓR)G<

C . (3.36)

The formula connects the retarded (advanced) Green’s functions GC (G†
C)

and the lesser Green’s–function G
<
C of the full many-body problem including

the coupling to the leads. These are again defined in the Hilbert space of the
extended molecule.

fl,r = f(E − µl,r) denote the Fermi distribution functions for the left/right
lead, respectively, which are assumed to be at chemical potentials µl,r. ΓL,R

describes the coupling of the molecule to the external leads. The dependence
on energy E has been omitted.

The coupling matrices, ΓL,R, are known from the non–interacting case above,
whereas the Green’s–functions GC and G<

C are now more complicated due to
the included interaction effects. Obtaining these, especially the lesser function
G<
C , which is more complicated as it depends on the occupation distribution

f , is difficult. The derivation of the Meir–Wingreen formula is sketched in the
appendix A.

In the non–interacting case, the lesser Green’s–function can be expressed as

G<
C = iGC(fLΓL + fRΓR)G†

C (3.37)

and GC is now the Green’s–function of the central cluster from the non–
interacting case in the subsection above. Also, we can still write for the
couplings, ΓL,R,

ΓL,R = i(ΣL,R −Σ†
L,R). (3.38)

This then reduces equation 3.36 in the non–interacting case to

I =
e

h

∫

dE[fL(E)− fR(E)]Tr(G†ΓRGΓL), (3.39)

which is the result we have obtained previously in the subsection above —
but here it is valid for finite temperatures and in the regime beyond linear
response, provided that G is calculated self–consistently, i.e., in the presence
of a finite current.
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3.3 Transport through single molecules: our

implementation

3.3.1 The matrix equations

As the conductance of molecules and atomic wires is very sensitive to details
of the molecular structure, spectral and orbital properties of the molecules
and their wavefunctions, ab initio methods are an indispensable tool for trans-
port calculations. We will see later (§3.3.2), that also parts of the electrodes
have to be included into the calculation of the orbital properties. The re-
sulting system to be calculated in general will consist of a large number of
electrons (∼ 103), so that wavefunction based methods, where the numerical
effort scales exponentially with the particle number, are too costly. Density
Functional Theory currently is the only suitable method for the calculation of
the electronic structure of an interacting many electron system with such a
large number of electrons. For this reason the current method of choice is to
use DFT to obtain an approximation for the Green’s–functions of the central
cluster (extended molecule) for the application of the Landauer scattering for-
malism. A description of the DFT formalism and used functionals is given in
chapter 4.

The DFT calculation yields effective single particle wavefunctions describing
the ground state of our system, consisting of molecule/wire plus parts of the
leads. From these we can then construct the Green’s–functions and other
required ingredients to the Landauer–Büttiker formalism. How this is done,
will be the focus of this section.

Our approach is similar to others that have been described in detail in [66–68].
Our implementation is special in contrast to previous ones in that we can
include a considerably larger number of contact gold atoms in the calculation
for the central cluster. This enables us to avoid artefacts from the coupling
to the leads. In addition, we treat leads and molecule on the same footing (in
contrast to hybrid methods involving tight–binding for the leads). This renders
our method fully ab initio, no adjustable parameters at all are required.

We make use of the program package TURBOMOLE [69] for our DFT calcula-
tions, which is currently one of the most powerful and advanced DFT packages
available.

As described in the section above, the transmission T (E) is given in the Lan-
dauer formulation by eq. 3.32 as

T (E) = TrC

[

ΓLGCΓRG
†
C

]

(3.40)
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Equation 3.40 is a matrix equation and its numerical solution is a standard
procedure. The problem lies in the detail of how the input for the different
terms—especially g0 and Σ—are obtained.

We already listed the ingredients necessary to calculate the transmission with
this formula. Here, we will first discuss how they are constructed from quan-
tum chemical data in general. In the following, a detailed description of our
procedures to construct the Green’s–function of the lead as well as the calcu-
lation of the coupling matrices will be given. There, we will also elaborate on
the advantages this special construction offers.

We need to obtain:

• The full Green’s–function G of the molecule,

G−1
C = g−1

0 −ΣL −ΣR (3.41)

calculated from

– the unperturbed Green’s–function of the central cluster, g0

– the self energies

ΣL,R = tL,RgL,Rt
†
L,R

– with the hopping matrix elements tL,R which describe the hopping
between the central cluster and the left/right lead, respectively.

– the unperturbed surface Green’s–function of the lead gL,R

• The coupling matrices ΓL,R

ΓL,R = i(ΣL,R −Σ†
L,R) (3.42)

which describe the coupling of the central cluster to the left/right lead

Quantum chemical DFT calculations usually make use of localized, but non–
orthogonal basis sets (for a description see §4.6.1). The output of the program
package TURBOMOLE used for our calculations is expanded in a localized,
non–orthogonal basis set, as well.

There are two possible approaches to work with this data: we can either stick to
the non–orthogonal quantum chemical basis set, which renders calculations in
matrix notation more complicated as we have to introduce an overlap matrix.
Or, we can orthogonalize the states using a Löwdin transformation.
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• Using a non–orthogonal basis set

We have to introduce the overlap matrix S

Sµν = 〈µ|ν〉 (3.43)

which is the overlap integral of the basis functions ϕµ(r) and ϕν(r) of
the quantum chemical basis, in order to describe matrix operations in a
non–orthogonal basis.

The orthonormality relation for states in an orthonormal basis set,
〈n|m〉 = δnm, takes for states

|Ψn〉 =
∑

µ

cµn|µ〉 (3.44)

in non–orthogonal basis a different shape as

〈Ψn|Ψm〉 = 〈Ψn|µ〉S
−1
µν 〈ν|Ψm〉 = δnm. (3.45)

• Orthogonalizing the basis set

Using the overlap matrix, we can perform a Löwdin transformation [70,
71] to obtain a localized and orthogonal basis set. The new basis states
are defined by

|ϕν〉orth = S− 1

2 |ϕν〉 (3.46)

For more information on the use of nonorthogonal basis sets see, e.g., [71].

The unperturbed Green’s–function of the central cluster

The DFT calculation yields effective single–particle wavefunctions, the Kohn–
Sham states,

Φµ =
∑

ν

cµνϕν, (3.47)

expanded in a finite basis set {ϕν}.

Due to the non–orthogonality of the quantum chemical basis sets, the equa-
tion for the unperturbed Green’s–function takes a different form. In matrix
notation, it can be calculated as

gνµ(E) =
∑

n

cnνc
∗
nµ

E − εn + iη
(3.48)

where the coefficients cnν are given by

cnν =
∑

µ

[S−1]νµ〈µ|ψn〉, (3.49)
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and |ψn〉 = cnν|ν〉 are the orthogonal Kohn–Sham ground–state wave–functions
from the quantum chemical output with the non–orthogonal basis–functions
|µ〉.

This notation can be verified by using equation 3.45 for the overlap matrix on
the modified definition of the Green’s–function for a non–orthogonal basis set:

g0(E) =
1

(E + iη)S−H
(3.50)

where the Hamiltonian H in the notation of the (non–orthogonal) chemical
basis fulfills

Hnm =
∑

µν

cnµHµνcmν = εnδnm (3.51)

and the eigenstates |ψn〉 have the energies εn.

3.3.2 Self–energies and Green’s–functions from DFT

Defining the extended molecule and the self–energies

Figure 3.4: Example for the extended molecule: here, two gold–pyramids of
55 atoms each, are added to the molecule (discussed in section 6.2). This
combined system constitutes the central cluster / extended molecule as used in
our DFT calculations.

With the program package TURBOMOLE we conduct Density Functional
Theory calculations of the central cluster (see chapter 4) to obtain the ground–
state energy, ground–state density, and the Kohn–Sham wavefunctions—
describing the ground–state in an effective single–particle picture. An example
for a central cluster is depicted in figure 3.4.
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Artefacts originating from the coupling of the molecule to the leads when
calculating the full Green’s–function of the central cluster, GC , can only be
excluded, if portions of the leads are included in the calculation of the central
cluster. Therefore, we define an extended molecule that comprises parts of the
contacts in addition to the molecule.

If we choose the extended molecule large enough, we can arrange the new
contact surfaces between the central region and the leads sufficiently far away
from the physical contact so that the outer contact atoms do not feel any
disturbance due to the molecule. Then the new self–energies again will only
depend on the type of the lead and will be completely independent of the actual
molecule under consideration. The following inequalities have to be met:

δeM < γeM � γM . (3.52)

The level spacing of the extended molecule, δeM , has to be smaller than the level
broadening of the extended molecule, γeM , caused by the coupling to the leads.
This level broadening, γeM , again has to be much smaller than the broadening
of the bare contact/molecule, γM . Only if both conditions are fulfilled, all
information on the contact is contained in the central cluster, and we can
assure that the details of the coupling to the leads via the self–energies and
the modeling of the leads do not lead to implementation dependent artefacts.
In many calculations performed previously by other groups, these conditions
were not fulfilled (e.g., [67, 72, 73]).

In fact, if such a separation of energy scales is generated, any choice of the
coupling γeM , fulfilling this inequality, will produce a suitable self–energy. We
could just use the simple replacement

ΣL,R(x,x′) = iγeMδxx′ (3.53)

with x, x′ being situated on the contact surface. The results will be completely
independent of this choice. This means as well, that if the extended molecule
includes sufficiently many lead atoms, the microscopic information carried by
the self–energies becomes trivial. Within this limit, all information on the
transport properties is carried by the matrix GC of the central cluster.

This insensitivity to the approximations made for the self–energy have a simple
experimental correlate: there is a free choice to attach leads of any sort and
shape/material to the contact region as long as the voltage drop is occurring in
the vicinity of the real molecule — which should quite obviously be the case.
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Chapter 3. Molecular transport based on Density Functional Theory

The unperturbed Green’s–function of the leads

The unperturbed Green’s–function, gL, describing the electronic structure of
the semi–infinite gold leads, is obtained from a second DFT calculation. This
time a cluster of pure gold with a large enough number of atoms is used to
characterize the structure of bulk gold. The DFT calculation gives us the
Kohn–Sham eigenvalues and the Kohn–Sham eigenstates. From these, we can
reconstruct a tight–binding Hamiltonian. This Hamiltonian has in general
hopping elements from each atom to every other atom. However, we only
consider the central atom and its hopping matrix elements with all other atoms.
If we then assume to sit in bulk gold, we can reconstruct a bulk Hamiltonian by
identifying these hopping matrix elements with the hopping matrix elements of
any atom in bulk gold. This way a Fourier transform into k–space is possible
and we can obtain a tight–binding Hamiltonian for bulk gold in k–space.

Then, the bulk Green’s–function, gL, is just given by

gL =
1

E − εk + i0
(3.54)

where εk is the spectrum of our tight–binding Hamiltonian.

For each energy value E, the Green’s–functions are calculated in k–space,
where the Brillouin zone is sampled with 61 points per dimension. It turned
out to be sufficient to consider the hopping contributions of the 12 nearest
neighbors when calculating the Green’s–function to achieve convergence (see
§5.1 below).

We chose to use an fcc bi–pyramid of 146 gold–atoms as an approximation to
bulk gold for the calculation. Testing other gold–cluster sizes like 84 atoms,
and 184 atoms, 146 proved to be sufficient to obtain an excellent approximation
to the band structure. In §5.1, we will present our results obtained from this
calculation.

The self–energies Σ and the hopping matrix elements t

In principle, in order to construct the self–energies, we need to use the surface
Green’s–function. However, in view of the large number of gold atoms included
in our extended molecule, it is legitimate to approximate the surface Green’s–
function by the bulk Green’s–function, which we will do.

In our calculations, we typically coupled on each side of the central cluster 41
of these gold atoms, i.e., the two outer layers (4x4 and 5x5 layer), to the leads,
see fig. 3.5. This number of coupling atoms proved to be sufficient, using a
larger coupling area did not change the transmission characteristics any more.
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Figure 3.5: Schematic representation of the contact surface. Hopping matrix
elements are extracted for a small set of surface atoms (depicted in green)
within the gold.

In §5.2 we will discuss in more detail the influence of the coupling region on
the conductance.

We assume the coupling to be far inside the leads (as we include a large portion
of gold atoms in the central cluster). Thus the calculation of the hopping
elements can be done using the large gold cluster representing bulk gold (as
for the Green’s–function of the leads).

As described above, the self–energy is obtained via the hopping matrix ele-
ments, t, as

ΣL,R = tL,RgL,Rt
†
L,R (3.55)

The hopping matrix elements t(x,x′), which describe the hopping of an elec-
tron at position x in the central cluster to position x′ in the lead, are the same
we extracted from the DFT–calculation for the bulk Green’s–function of the
leads.

Thus they, and the resulting self–energy matrices Σ(E) only need to be cal-
culated once per energy, independent of the molecule or wire we want to do
the transport calculation for, as long as the geometry of the coupling layers
is unchanged. They are then stored, ready to re–use for any future transport
calculations of the same or different molecules.

Again, the calculation is done in k–space, together with the calculation of
the bulk Green’s–function, described in the subsection above. The 12 nearest
neighbors are considered in the calculation of the hopping terms:

In the atomical basis, with the indices x, y′ describing the atom positions and
the orbital indices i, j, m, n, the self–energy is given by

Σim(x,x′) =
∑

j,n

∑

y,y′

tij(x,y)gL,jn(y,y
′)t†nm(y′,x′) (3.56)

where gL is the unperturbed Green’s–function of the leads from above. Using
the same approach (sit on central atom, assume bulk periodic system) we can
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again perform a Fourier transformation for the self–energy. For the Green’s–
function of the leads, gL, we thus obtain the expression 3.54 from above, and
the self–energy takes the form

Σim(x,x′) =
∑

j,n

∑

k

[tij(k)eikx]gk[e
−ikx′

tnm(k′)], (3.57)

where the x, x′ are the positions, the Kohn–Sham orbitals of the states i,m
of atomical basis are centered on.

All matrices used in the calculation of the trace in eq. 3.32 for the transmission
are of dimension [two times the number of surface states per side], as the
ingredients are projected on the surface atoms of the central cluster. Thus
the final self–energy matrix Σ(E) is then obtained by combining the matrices
ΣL,R(E), which are identical due to the symmetric definition of the contact
surface, into

(

ΣL 0
0 ΣR

)

, (3.58)

which is again of the correct dimension.

The unperturbed Green’s–function of the extended molecule

The unperturbed Green’s–function of the extended molecule is obtained from
the Kohn–Sham states |Ψn〉, which are given by the output of the DFT-
calculation for the extended molecule. The actual calculation is done as de-
scribed in §3.3.1 on page 33.

As we have seen above, the coupling between the extended molecule and the
leads is described via the self–energies. To obtain the full Green’s–function of
the device, we do not need to obtain the Green’s–function in the full Hilbert
space of the extended molecule. Instead the Hilbert space of the surface atoms,
where the coupling to the leads via the self–energies is done, is sufficient (usu-
ally 16+25 atoms in two layers of gold (4x4 and 5x5 bottom layers of the
pyramids) for each side of the extended molecule, as described above).

The matrices ΓL,R and the full device Green’s–function GC

With all ingredients obtained, we can now construct the full Green’s–function
of the device by simple matrix operations as

G(E) = (G−1
0 (E)−Σ(E))−1. (3.59)

The couplings ΓL,R, which are also identical due to our symmetric design of
the coupling layers on the left and right hand side of the central cluster, are
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obtained from Γ = Σ − Σ†. With these, again, matrices of the dimension
2·(number of surface states per lead) are constructed via:

ΓL =

(

Γ 0
0 0

)

, ΓR =

(

0 0
0 Γ

)

(3.60)

After we have calculated all the necessary matrices for every energy value, we
can evaluate the transmission contributions of each state from equation 3.32

T (E) = Tr [ΓLG
r
CΓRG

a
C ]

by matrix multiplications and then evaluate the conductance by taking the
trace.
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Chapter 4

Density Functional Theory
(DFT)

4.1 Introduction: why do we need DFT?

An important goal of the theoretical description of transport through molecules
is, to find an ab initio, i.e., parameter free approach to the quantitative descrip-
tion of the I–V characteristics of a single molecule with reasonable numerical
effort.

Density Functional Theory (DFT), in combination with the Landauer–Büttiker
approach to transport is currently the standard method for this task and DFT
is used for a great variety of problems in the field. This chapter will deal with
the basics of DFT in general and the reasons for its application to electronic
transport in nanostructures.

DFT is a very effective method for ab initio calculations of the ground–state
electron density, the ground–state energy, and the ionization potential of an
interacting many–electron system in an external potential — usually the po-
tential caused by the ion–cores in the Born–Oppenheimer approximation. It
provides the possibility to derive results free of any fitting parameters, thereby
lifting many of the restrictions of other methods like, e.g., tight–binding ap-
proaches. The foundations were laid by Hohenberg, Kohn and Sham in 1964
and 1965 [74, 75].

The popularity of DFT stems from the fact that it has been applied extremely
successfully to the calculation of bond lengths, ionization energies and binding
energies of molecular systems. Also, excellent results for ground–state electron
densities and band structures of solid state systems and molecular systems were
obtained.
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There exist many other, and often more accurate ab initio wave–function based
methods but they are numerically too costly to be applicable for large molec-
ular systems. Examples are Monte Carlo or Configuration Interaction ap-
proaches. Traditional wave–function methods, e.g. Configuration Interaction
methods, scale exponentially with the number of electrons. This makes them
unusable for larger systems (N � 10 electrons), a restriction lifted by the
numerically efficient density functional approach.

In DFT, computation time goes as t ∝ N 2···3 with the number of electrons, with
ongoing progress towards linear scaling. This is achieved by using the density
instead of the actual many–body wavefunction as the variable to work with
when calculating the ground–state electronic structure. The Hohenberg–Kohn
Theorems, which we will discuss in the next section, give the justification for
this procedure. They allow to uniquely relate the ground–state density n0(~r)
of an interacting many–body system to the external potential Vext(~r).

Expanding the density in a system of effective non–interacting particles and
using an orbital picture to describe these particles, the number of variables re-
quired is reduced tremendously. The Kohn–Sham equations, which we describe
in section §4.3 will provide a numerically efficient scheme to solve this system
for the electronic ground–state structure. In contrast to the original many–
body system, where, due to interaction, the number of variables required to
describe the many–body wavefunction grows exponentially with the number
of electrons, the variables describing the states of the effective single–particle
system in the orbital picture can be varied independently in the search of the
correct electronic structure. This way, DFT calculations for system sizes of up
to 103 − 104 electrons become feasible.

This procedure allows to reduce the many–body problem to an effective single
particle problem. Provided the correct energy functional for the density, which
is needed during this process to establish the effective single–particle system,
is known, the equations are in general exact and include all many–body effects.

Outline of this chapter

Within this work, we can only give a very brief account of the main underlying
ideas of DFT, which will be the subject of this chapter. An overview is given
in the Nobel lecture by W. Kohn [76], a more thorough discussion can be
found in the book by Dreizler and Gross [77], the manuscript by Burke [78]
or the review by Jones and Gunnarson [79]. First, the justification for using
the ground–state density instead of the many–body wave–function to describe
the interacting system, formulated in the Hohenberg–Kohn Theorem I, will be
presented. We will then explain in §4.2.2 why we can apply the variational
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principle to obtain the ground–state density of the system. In the following
section, §4.3 we will introduce the Kohn–Sham equations, a practical recipe
of how to apply the variational principle in a numerically efficient way to find
the ground–state density.

Before giving a brief overview over available choices of DFT functionals, basis
sets and their physical origin in §4.7, we will shortly describe some extensions
to DFT, like spin–DFT in §4.4. Also the derivative discontinuity problem
will be addressed (§4.5). This will be followed by a concise description of
the practical implementation of the DFT formalism and the program package
TURBOMOLE [69] used within this work.

The final section of this chapter, §4.10, will deal with time–dependent DFT, the
extension of the DFT scheme to time–dependent interacting electron systems,
which is of special interest to us as it is in many cases the more appropriate for-
malism to apply when investigating transport: for time–independent systems
in non–equilibrium as well as for time–dependent systems, equilibrium DFT
can fail in many cases. Our findings on the applicability of DFT to transport
and the problems that arise in non–equilibrium situations will be described
later, in chapter 7.

4.2 Hohenberg–Kohn theorems

— Or, why we can do it . . .

4.2.1 Hohenberg–Kohn theorem I

The Hohenberg–Theorem I [74] states:

The ground–state density n(~r) of a bound system of interacting
electrons in some external potential Vext(~r) determines this poten-
tial uniquely (up to a constant).

The proof will be given below.

For atoms, molecules or solids, the external potential usually is the potential
produced by the ion cores (at positions Ri, with nuclear charge Zi) in the Born–
Oppenheimer approximation of fixed nuclei (vext(r) =

∑

i
Zi

|Ri−r|
r
|r|). It can

include some additional potential from external fields. In case of a degenerate
ground–state, the theorem refers to any ground–state density.
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The ground–state density, by determining the external potential uniquely, in
consequence also determines the many–body system in general. We can thus
describe the Hamiltonian, and all its ground–state properties with the ground–
state density. Thus we can formulate: the ground state expectation value of
any observable Ô is a unique functional of the ground–state density, e.g., the
ground–state energy, E, can be obtained from the ground–state density,

E[n(~r)] = 〈ψ[n]|T + Vee + Vext|ψ[n]〉. (4.1)

This very powerful theorem enables us to use the density instead of the many–
particle wavefunctions to calculate the electronic structure. The functional
Ô[n] is in most cases not known, but in the case of the ground–state energy,
the research in DFT resulted in many excellent approximations that yield
good results for calculating the ground–state energy and electron density of an
interacting many–body system.

Proof of Hohenberg–Kohn theorem I

For the nondegenerate case, the bijective map n(~r) ←→ vext(~r) can
easily be proven by contradiction:

Let n(~r) be the nondegenerate ground–state density of N electrons in
the potential v1(~r), with the ground state ψ1(~r) and ground–state energy
E1. With the Hamiltonian H1 = T + Vee + V1, where T and Vee are the
kinetic and interaction part, respectively, we can write for the energy:

E1 = 〈ψ1|H1|ψ1〉 =

∫

d3rv1(~r)n(~r) + 〈ψ1|T + Vee|ψ1〉 (4.2)

If we now assume, there exists a second potential, v2(~r) 6= v1(~r)+ const.,
with the same ground–state density, and the ground–state, ψ2(~r), we
can write for the energy of this system

E2 = 〈ψ2|H2|ψ2〉 =

∫

d3rv2(~r)n(~r) + 〈ψ2|T + Vee|ψ2〉. (4.3)

As the ground state is nondegenerate, we obtain

E1 < 〈ψ2|H1|ψ2〉 =

∫

drv1(~r)n(~r) + 〈ψ2|T + Vee|ψ2〉 (4.4)

Subtracting eq.(4.3) from eq. (4.4) results in

E1 < E2 +

∫

d3r(v1(~r)− v2(~r))n(~r) (4.5)
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Similarly,

E2 ≤ 〈ψ1|H2|ψ1〉 = E1 +

∫

d3r(v2(~r)− v1(~r))n(~r) (4.6)

(4.2.1) in (4.5) leads to the contradiction E1 < E1.

Therefore, n(~r) uniquely defines the external potential, and with that,
the many–body system, its Hamiltonian and all its ground–state prop-
erties (under the given form H = T + Vee + Vext). The requirement of
non-degeneracy can easily be lifted [77].

4.2.2 Hohenberg–Kohn theorem II

The second Hohenberg–Kohn Theorem [74] provides the justification for the
use of the variational principle on the density n(~r) to obtain the electronic
ground–state density n0(~r). It states:

There exists a variational approach for the density, n, of the form

δ

[

E[n]− µ

(
∫

d3r n(r)−N

)]

= 0

, with the Lagrange multiplier µ, that yields the exact ground–state
electron density of the N electron system.

In general, we could also perform the variation directly in the space of all trial
wavefunctions ψ̃(~r) with

∫

d3r |ψ̃(~r)|2 = N , in order to obtain the ground–state
energy and density:

E = min
ψ̃
〈ψ̃|H|ψ̃〉. (4.7)

But this is by far too complex for an interacting electron system with more
than a few electrons as the dimension of the trial space growth exponentially
with the number of electrons.

V–representability

The proof of HK II is complicated by a problem called v–representability:

In the process of applying a variational principle, trial densities with
small changes from the real ground–state density are used. In order to
evaluate the energy term in the variation formula, the trial density has
to correspond to an external potential v(~r). In an actual calculation
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of the ground–state electron density within an iterative scheme, as we
will establish below with the Kohn–Sham equations in §4.3, we would in
general not even start out from a trial density close to the real ground–
state density. Thus the following question arises:

Is any well behaved density n(~r) which integrates to an integer number
of electrons, a possible ground state–density corresponding to a poten-
tial v(~r)? A density which fulfills this, is called v-representable.

There exist well–behaved densities that are not v–representable, for ex-
amples see [80]. But this issue has so far not appeared as a limitation
in practical applications of DFT. The trial–densities needed to obtain
a good approximation for the ground state can be chosen in a way
that they are all v–representable. For a more detailed discussion on
v–representability, see [77].

In order to circumvent some of the problems associated with the v–
representability we will not present the original derivation of the Hohenberg–
Kohn Theorem II [74], but the a, more succinct derivation of the applicability
of the variational principle performed by Levy and Lieb in 1982 [80,81], called
the constrained search method. There, the space of trial densities can be re-
stricted to v–representable densities.

Proof of Hohenberg–Kohn theorem II [80, 81]

We consider a system with the ground–state energy E0 and ground–
state electron density n0.

By virtue of the Rayleigh–Ritz principle, it is obvious, that for trial
densities ñ(~r),

E0 < E[ñ] for ñ 6= n0 and E0 = E[n0]. (4.8)

We define the Hohenberg–Kohn functional as

FHK [n(~r)] ≡ 〈ψ|T + Vee| ψ〉. (4.9)

The energy functional, E[n], can now be written as

E[n] =

∫

d3rv(~r)n(~r) + FHK [n]. (4.10)

FHK [n] is, if known explicitely, an extremely powerful universal func-
tional, valid for any number of particles and any external potential —
from atoms to molecules and solid state systems. Section 4.7 will deal
with the construction of appropriate functionals and the underlying ap-
proximations.

The minimization of the energy functional is done in two stages:
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4.3 Kohn–Sham equations

• First, the trial density ñ(~r) (with
∫

d3r ñ(~r) = N) is fixed. A
constrained energy minimum of all trial wavefunctions ψ̃αñ(~r) which
yield this density ñ(~r) is obtained

E[ñ(r)] ≡ min
α
〈ψ̃αñ |H|ψ̃

α
ñ 〉 (4.11)

=

∫

d3r v(~r)ñ(~r) + FHK [ñ(~r)].

As the universal FHK does not depend on the external potential
V , it can be minimized individually for all trial densities.

• In the second step, equation (4.11) is minimized over all trial den-
sities ñ(~r)

E = min
ñ
E[ñ(~r)]

= min
ñ

{
∫

d3r v(~r)ñ(~r) + FHK [ñ(~r)]

}

. (4.12)

The trial wavefunctions ψ̃(~r) from which the density is constructed,
are usually expanded in a suitably designed basis set of, e.g., localized
atomic orbitals or plane waves. See section 4.6.1 for details on how to
choose the appropriate basis sets.

4.3 Kohn–Sham equations

— Or, how can we do it . . .

In the preceeding sections we discussed why we can use the density instead of
the many–body wavefunction as an approach to find the ground–state density.
In order to do this in a numerically efficient way, we still need an explicit
scheme on how to conduct the minimization of the energy in the space of trial
densities in a numerically feasible way.

The idea behind the Kohn–Sham formalism is to define an effective single–
particle system of electrons moving in an effective external potential that yields
exactly the same ground–state electron density as the ground–state density of
the interacting system. Then, instead of a direct variation of the density, an
orbital picture is used to construct the electron density:

n(r) =

N
∑

j=1

|φj(r)|
2, (4.13)

with the states φj(r). This way, variations of the density can be carried out
by modifying these states. As we now describe a non–interacting system in
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the orbital picture, we have achieved a tremendous gain in numerical efficiency
compared to the original interacting system. The different states can be varied
independently. For the actual variation an expansion in a finite basis is used.

We will sketch the derivation of this variational scheme in the next subsection.
It will allow us to formulate a set of single–particle equations, similar to the
self–consistent Hartree equations,

{

−
1

2
∇2 + vH(r)

}

φj(r) = εj φj(r) (4.14)

with n(r) =

N
∑

j=1

|φj(r)|
2.

that can be solved numerically. However, the results obtained by this ap-
proach go beyond the level of the Hartree–Fock approximation: due to the
Hohenberg–Kohn theorems, this set of equations will yield a result that is in
principle exact, if the appropriate functional for the energy is used as the ef-
fective single–particle system yields the same density as the real system. In
terms of numerical effort, the set of single–particle equations makes the effort
comparable to a mean field calculation.

The Kohn–Sham scheme

We will now establish this Hartree–like scheme: we define an auxiliary sys-
tem of N non–interacting particles in an effective potential yielding the same
ground–state density as the real system. This non–interacting auxiliary system
with the Hamiltonian

HS = TS + Veff (4.15)

is then mapped onto the original interacting problem. By virtue of the
Hohenberg–Kohn theorem I there exists a unique energy functional for the
effective single–particle system

ES[n] = TS[n] +

∫

d3r veff(r)n(r) (4.16)

with the single–particle kinetic energy functional TS[n]. A variation δE = 0
yields the ground–state density n0(r).

The corresponding Euler–Lagrange equations

δEV [ñ] =

∫

d3r δñ(r)
{

veff(r) +
δTS[ñ]

δñ(r)
|ñ=n0

− ε
}

= 0 (4.17)
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4.3 Kohn–Sham equations

with the Lagrange–multiplier ε conserving the number of electrons N , lead to
single–particle equations of the type of eq. 4.14.

The central assumption needed to define the Kohn–Sham scheme is, that
every density of an interacting system that is v–representable is also non–
interacting v–representable, which means it can also be represented by some
non–interacting local effective potential Veff(r). As already mentioned above
(§4.2.2), this is usually not a limiting problem in practical applications of DFT
to atoms, molecules or metal clusters (see [77] for a thorough discussion). We
will therefore just assume, that this always holds.

Let us now consider the interacting system again, the energy functional has
the form of equation 4.10. We can rewrite this as

EV [n] = TS[n(r)] +

∫

d3r n(r)vext(r) +
1

2

∫

d3r′ d3r
n(r)n′(r′)

|r− r′|
+ Exc[ñ(r)],

(4.18)
where TS[n(r)] is the kinetic energy functional for non–interacting electrons.

Exc[n(r)], termed the exchange–correlation energy functional, is defined by
this equation. Its explicit form is not known completely at this point, it is
just implicitly defined by this equation. We will later discuss in §4.7, how
approximate expressions are constructed.

The corresponding Euler–Lagrange equations take the form

δEV [ñ(r)] =

∫

d3r δñ(r) · (4.19)

{

vext(r) +

∫

d3r′
n′(r′)

|r− r′|

+
δ

δñ(r)
(TS[ñ(r)] + Exc[ñ(r)])

∣

∣

ñ(r)=n0(r) − ε
}

= 0

where we can, by comparison with eq. (4.17), easily extract the effective
potential

veff(r) ≡ v(r) +

∫

d3r′
n(r′)

|r− r′|
+ vxc(r) (4.20)

with the exchange–correlation potential

vxc(r) ≡
δ

δñ(r)
Exc[ñ(r)]







ñ(r)=n(r)
. (4.21)

Now, the Euler–Lagrange equation 4.19 has the same form as equation 4.17 for
non–interacting particles, but now it contains the effective external potential
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veff(r) instead of v(r), so we can conclude that the ground–state density can
be obtained by solving the effective single–particle equations analogous to the
Hartree equations 4.14 above:

(−
1

2
∇2 + veff(r)− εj)φj(r) = 0, (4.22)

with

n(r) =
N

∑

j=1

|φj(r)|
2. (4.23)

Eq. 4.20, 4.22 and 4.23 are the so–called self–consistent Kohn–Sham equations.
Neglecting Exc and vxc they reduce to the Hartree equations. With exact
knowledge of Exc and vxc all many–body effects are in principle included and
the equations are exact. The quality of the results depends entirely on the
approximations made when constructing the exchange–correlation energy.

The wavefunctions φj(r) are usually expanded in some localized or plane–wave
basis set to do the actual iterative variation until self–consistency is achieved.
This will be discussed in more detail in section 4.6.1.

Before we discuss the different approximations for the exchange–correlation
functional and the basis sets used, we will first give a short introduction into
some extensions to DFT like including spin and allowing for fractional particle
numbers and briefly discuss the practical implementation of the Kohn–Sham
scheme.

4.4 Extensions: Spin Density Functional

Theory (SDFT)

Up to now, we did not treat the different spins independently. As the ground
state energy is a functional of the total electron density n(r) alone, this is
often sufficient with current functionals, as long as no external magnetic field
is applied.

However, dealing with spins explicitly can become important in many cases:
examples are metallic wires or clusters with an odd number of electrons or
clusters and molecules with a ground state with finite spin. The same applies,
when molecules are charged between contacts and single electrons are pulled
onto the molecule by a gate field as we will investigate in chapter 9.

A second advantage is the possibility of including additional physics into the
approximation for the not exactly known exchange–correlation functional Exc,
e.g., relativistic corrections like spin–orbit coupling.
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4.5 The derivative discontinuity

The extension of DFT to the treatment of separate spins is called Spin Density
Functional Theory (SDFT) or Unrestricted Kohn–Sham (UKS). The procedure
is straightforward (see e.g. [77], a formal justification can be found in [82]).

Two separate densities, nα and nβ for spins σ = α, β, are introduced, which
sum up to the total electron density, n = nα + nβ. With these, the energy
functional can be extended to two spin subspaces, taking the form

E[nα, nβ] ≡ TS[nα, nβ]+VH [nα, nβ]+Exc[nα, nβ]+

∫

d3r v(r)(nα+nβ) (4.24)

with expressions for TS, VH analogous to the standard DFT case above. The
exchange–correlation functional Exc[n] is modified to account for the spin, and
additional corrections (like spin–orbit coupling) can be included therein. For
calculations in an applied external magnetic field, v(r) can be modified to
include a Zeeman term for the interaction with a magnetic field.

The functional can be minimized in the same fashion as for the spin–unresolved
case. Two effective potentials vσeff(r) are introduced, yielding two sets of cou-
pled Kohn–Sham equations of the form

(−
1

2
∇2 + vαeff(r)− εαj )φ

α
j (r) = 0 (4.25)

(−
1

2
∇2 + vβeff(r)− εβj )φ

β
j (r) = 0.

The coupling is done via the effective potential

vσeff(~r) = v(~r) + vH(~r) +
δExc[nα, nβ]

δnσ(~r)
(4.26)

When solving the self–consistent equations 4.25, now in addition to the vari-
ation of the trial wavefunctions φαj (r) the number of α– and β–spin electrons
has to be varied under the constraint of particle conservation.

4.5 The derivative discontinuity

A known problem of currently used functionals in Density Functional Theory is
the incorrect value for the energy gap between the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). This
gap, Eg, is defined as the difference between the ionization potential, EI , and
the electron affinity, EA.

The ionization potential and the electron affinity are defined as the total energy
difference between the (N − 1) and N electron system and the N and (N + 1)
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electron system, respectively. Therefore, the gap can be calculated from the
ground–state energies of the systems with (N − 1), N , and (N + 1) electrons
by

Eg = EI − EA = E(N + 1) + E(N − 1)− 2E(N) (4.27)

One of the reasons for the incorrect value of the gap in DFT is the derivative
discontinuity [83, 84]. This can be understood by looking at the chemical
potential µ, defined

µN =
∂EV [nN ]

∂N
. (4.28)

Looking at this equation, we have to generalize the DFT scheme to fractional
particle numbers in order to calculate the chemical potential. The simplest
way to do this, is to introduce a statistical superposition of the N and (N +1)
electron states in the energy functional. In ensemble DFT (see e.g. [77]) the
restriction to integer occupation numbers is lifted in general, and ensembles
with fractional occupation numbers are treated. For a superposition of two
states to represent a system of N + η particles, the energy functional, EV [n],
of eq. 4.10 can be generalized by modifying the Hohenberg–Kohn functional,
FHK , in the following way:

FHK[n] ≡ min
ψ̃N ,ψ̃N+1

{

(1− η)〈ψ̃N |T + Vee|ψ̃N 〉+ η〈ψ̃N+1|T + Vee|ψ̃N+1〉
}

(4.29)
The variation is restricted to those combinations of |ψ̃N〉 and |ψ̃N+1〉 that yield
the prescribed density n.

If we now examine the chemical potential µ(N) more closely, we see that it is
linear for values of N between two neighboring integer particle numbers, but
at integer values a discontinuity is observed as the slopes are different:

µ(N − η) = E(N)− E(N − 1) = −EI (4.30)

µ(N + η) = E(N + 1)− E(N) = −EA (4.31)

This discontinuity is similar to a situation encountered in solid state physics,
where in a semiconductor the chemical potential µ jumps if one goes through a
gap in the spectrum when adding electrons. In the case of DFT, the disconti-
nuity implies that the functional derivative of the total energy functional E[n]
itself, shows a discontinuity at integer values. This is the so–called derivative
discontinuity.

The gap can also be expressed as the gap of the Kohn–Sham system, EKS
g =

εN+1 − εN for the N–electron system plus additional corrections

Eg = EKS
g + ∆xc (4.32)
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where the corrections are termed derivative discontinuity, ∆xc, and are given
by

∆xc = lim
η→0+

(

δExc[n]

δn

∣

∣

∣

∣

N+η

−
δExc[n]

δn

∣

∣

∣

∣

∣

N−η



 . (4.33)

The derivative discontinuity will become important when we are investigating
charging effects on single molecules between gold contacts via gate electrodes
(see chapter 9). In that situation it can partially obfuscate Coulomb blockade
effects — since the particle number on the only weakly coupled molecule might
increase gradually in non–integer steps when varying the gate voltage.

4.6 Practical implementation of the Kohn–

Sham scheme in TURBOMOLE

As we have seen above in §4.3, the tremendous gain in numerical efficiency in
DFT stems from going from the direct variation of the density to a representa-
tion of the density in an orbital picture, where the particles are non–interacting.

The Kohn–Sham equations are written in terms of wavefunctions instead of a
direct variation of the density. These self–consistent equations (4.20, 4.22, and
4.23) have to be solved in an iterative scheme until convergence is reached. To
do this in a numerically efficient way, the wavefunctions φi are expanded in a
predefined finite basis set {ϕi}.

φi =
∑

ν

cνiϕν (4.34)

This finite basis set has to be as small as possible — but still large enough to
span the space of possible, and “important” trial densities sufficiently well —
to be able to cope with the numerical effort. We will describe below, in §4.6.1,
how such a basis set is chosen in an appropriate way.

Using the wavefunctions φi, expanded in basis {ϕi}, the set of Kohn–Sham
equations 4.22 can be written as

ôKS(r)
∑

ν

cνiϕν(r) = εi
∑

ν

cνiϕν(r) (4.35)

with a Kohn–Sham operator

ôKS = (−
1

2
∇2 + veff(r)). (4.36)

53



Chapter 4. Density Functional Theory (DFT)

The set of equations (4.35) for the wavefunctions φi(r) can be combined into
a matrix notation

OKS · C = S · C · ε (4.37)

by defining a Kohn–Sham matrix

OKS
νµ =

∫

d3r ϕν(r)ô
KS(r)ϕµ(r), (4.38)

and an overlap matrix

Sµν =

∫

d3r ϕν(r)ϕµ(r). (4.39)

The matrix C consists of the expansion coefficients cνi of the wavefunctions
and ε is a diagonal matrix containing the eigenenergies εi.

This set of algebraic equations can then be solved by numerically efficient
algorithms. For a description of the program package TURBOMOLE, which
was used within this work, see e.g. [69, 85].

4.6.1 Optimized basis sets for DFT

In general, the wavefunctions used to construct the electron density can be
expanded in any choice of basis set. To minimize the computational effort, a
set of as few basis functions as possible is desirable. The quality of the basis
set is gauged by how well the constructed wave functions are able to yield the
physical density. In many cases, one tries to put physical meaning to the basis
sets as well by constructing functions that resemble the real atomic orbitals as
closely as possible.

In addition the resulting wave–functions should be easy to treat numerically.

For molecules, this leads to the use of a superposition of gaussians in combina-
tion with an angular dependence in the form of spherical harmonics (fµ(ϑ, ϕ)).
The resulting functions are called contracted gaussians:

φµ(r) =
∑

ν

cµνNνfµ(ϑ, ϕ)e(−ανr2) (4.40)

with the normalization constant Nν and contraction factor cµν . The individual
gaussians are characterized by their decay constant αν.

By contracting several gaussians into one contracted gaussian basis function,
the numerical effort can be reduced greatly, while at the same time using the
appropriate combination makes the resulting loss in accuracy controllable [86].
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In most basis sets, the gaussians of the inner electrons are contracted into
one single, contracted gaussian basis function without a significant loss in
accuracy [87]. The number of basis functions per atom is usually larger than
the number of valence orbitals to improve the phase–space of possible electron
densities.

We will now describe in brief the basis sets available in TURBOMOLE [85,88,
89], which we used for the calculations in this work. More information on the
choice of basis sets can be found in [86].

• Split valence polarization (SV–P) [89]

This is a fully optimized contracted gaussian basis set for all atoms used
in our calculations. It constitutes the smallest possible basis set to yield
quantitatively good results in the case of no external fields. The inner
electrons are all contracted into one basis function [87].

Beyond, it contains just two (one in the case of hydrogen) uncontracted
gaussian orbitals in the valence shell. A basis function accounting for po-
larization effects is added, as this is necessary to describe the interatomic
bonds adequately when molecules instead of single atoms are treated.
This function has the angular momentum quantum number equal to the
highest of the valence shell plus one [87].

In summary, this constitutes the minimal choice, sufficient for reliable
calculation of the electronic structure while at the same time being nu-
merically the most efficient. In accuracy it is comparable (or slightly
better) to the Pople 631-G* basis sets. For the simple organic molecules
used in our calculations, it provides excellent results as long as no exter-
nal fields are applied.

• TZVPP [90]

TZVPP stands for triple–zeta valence plus double polarization. Here, in
addition to the single contracted gaussian for the inner electrons, three
contracted gaussians per valence shell are included [90]. In addition a
large set of polarization functions is also incorporated.

This set was originally developed for higher correlated methods like MP2
or Configuration Interaction, but the large amount of polarization ba-
sis functions is also well suited to describe molecules in external fields.
The lowest angular quantum number of the polarization functions equals
the highest angular quantum number of the valence shell plus one, e.g.
for carbon this would be d-functions. In all, there are 4 polarization
functions added per atom (2d2f in the case of carbon) [87].

This constitutes the most complete basis set for our purposes. It is
well suited to describe situations, where polarization becomes important,
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e.g., when an electric field is applied (as in chapter 10), or when a gate
electrode is included in the DFT calculation as described in chapter 9.

4.6.2 Effective core potentials

The computational effort grows with the amount of electrons taken into ac-
count for a DFT calculation. When treating heavier elements like gold, it
is therefore desirable to individually consider only the electrons of the outer
shells that take part in the chemistry.

The overlap of the wave–functions of the inner electrons with the inner elec-
tron wave–functions of neighboring atoms is extremely small. In addition,
orthogonality of these wave–functions with respect to the outer electron wave–
functions ensures that they don’t change significantly when chemical bonds
are formed [77].

These properties make it possible to freeze the inner electrons of the closed
shells in a frozen–core approximation. Here, these electrons are combined with
the atomic nucleus to yield an effective ion–core potential. The used pseu-
dopotentials then lead to orbitals that are equal to the original ones beyond
some fixed radius. For distances from the nucleus below that distance, the
pseudo–orbitals are chosen to be free of unwanted nodes and oscillations to
facilitate construction of the basis set [88, 91]. See e.g. [92] for a discussion
on the justification and validity of the use of effective core potentials. In our
TURBOMOLE calculations we used effective core potentials [88] only for the
gold atoms. Only the 19 outermost electrons per atom were treated explicitly
in the DFT calculations.

4.6.3 The use of fractional occupation numbers to im-

prove convergence

In our DFT calculations, we made use of a special tool of TURBOMOLE,
called mkfermi. This allows to calculate the occupation numbers at a fictitious
finite “temperature” T , resulting in fractional occupation of orbitals close to
the Fermi energy at each iteration step in the TURBOMOLE scheme. The
main purpose of this tool is to increase the convergence performance. By
smearing out the occupation, many systems converge much faster, and some
only converge when this tool is employed.
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The occupation, ni ∈ [0, 1], of a Kohn–Sham orbital with energy, εi, is calcu-
lated by fitting an error function

ni =
1

2
erfc

(

εi − µ

fT

)

, (4.41)

where µ is the Fermi energy. The factor f = 4k√
π

ensures that the distribution
has the same slope at the Fermi energy as the Fermi distribution.

During the iterative scheme in TURBOMOLE, the calculation of fractional
occupation numbers is started, when the current HOMO–LUMO gap drops
below a predefined critical value. Starting from an initial “temperature”, Ti,
usually 300 to 500 K, fractional occupation numbers are calculated in each
iteration, while the temperature is decreased by a factor of usually 0.9 in each
step until it reaches the final “temperature”, Tf . Choosing Tf low enough, like
10 to 50 K, ensures, that the final occupation numbers are of integer value.

This scheme turned out to be extremely helpful in calculating the more com-
plex metal–(organic molecule)–metal systems, especially in situations where
external fields were present, which will be discussed in chapters 9 and 10.

4.7 Different approximations for DFT func-

tionals

The Kohn–Sham formalism is a formal mathematical framework for solving the
electronic structure of an interacting electron system. To make practical use of
it, we require numerically effective and at the same time physically sufficient
approximations to the exchange–correlation energy functional Exc[n(r)]. Most
approximations currently in use are of quasilocal form, as this reduces the
numerical effort enormously.

Usually Exc[n(r)] is written in the form

Exc[n(r)] =

∫

d3r′ d3r exc(r, [n(r′)])n(r) (4.42)

where the exchange energy per particle exc(r, [n(r′)]) depends primarily on the
density near the point r. Near means within a length scale corresponding to
the Thomas Fermi screening length (λTF = ( 4π

ρ0e2
)

1

2 ,with ρ0 beeing the density

of states) [76].
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4.7.1 Local Density Approximation (LDA)

The simplest form for an approximate exchange–correlation functional was
already proposed in 1965 by Kohn and Sham [75]: the Local Density Approxi-
mation (LDA). Here, the exchange–correlation energy exc(r, [n]) is replaced by
the exchange correlation energy exc(n) of a uniform electron gas of density n.
This leads to the local function

ELDA
xc [n(r)] ≡

∫

d3r n(r)exc(n(r)) (4.43)

The Dirac exchange (see e.g. [78]) and correlation part [93] are given in atomic
units by

ex(n) = −
3kF
4π

= −
0.458

rs
(4.44)

ec(n) = −
0.44

rs + 7.8
(4.45)

where rs is the Wigner–Seitz radius (n−1 = 4π/3r3
s) and kF the Fermi wavevec-

tor. The correlation part is obtained from an interpolation formula connecting
the high density and low density limit of the uniform electron gas [94].The
corresponding fitting parameters can be obtained from Quantum Monte–Carlo
simulations [93].

The exchange energy in the LDA approximation is usually accurate to within
∼ 10 %, but the much smaller correlation energy is generally overestimated
by a factor of two [76]. These two errors partially cancel each other in most
cases in a systematic way and thereby improve the accuracy of LDA [76]. The
derivative discontinuity (see §4.5) is a problem in LDA.

The numerical efficiency of the Kohn–Sham equations in LDA is much better
than solving the Hartree–Fock equations as the Kohn–Sham equations are
effective single–particle equations, whereas Hartree–Fock includes the Coulomb
term of the electron–electron interaction.

Even though LDA was expected to be applicable only to electronic systems
with slowly (on the scales of the local Fermi wavelength) varying density, it
turned out to be much more powerful. In atomic and molecular systems, the
density is often strongly inhomogeneous, but still LDA has been found to give
very reasonable results [76, 78].

Bond–lengths and geometries of molecules are usually predicted within an error
of only 1 % [87,95], but for ionization energies in atoms and molecules, which
are only accurate to about 10-20 % in LDA, corrections are of utmost impor-
tance. For this reason, the use of DFT in quantum chemistry started only
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after the development of corrections beyond LDA, like the Generalized Gradi-
ent Approximation and later hybrid functionals. Especially in heavy–fermion
systems, dominated by electron–electron interaction, LDA is not applicable,
it, e.g., gives a wrong band gap. In many solid state systems, however, LDA
still proves to be a very useful and often sufficient tool. Especially in metallic
structures, the uniform electron gas is a reasonable assumption and results of
LDA for the electron density/electronic structure agree very well with exper-
imental values. For a more thorough discussion of the quality of LDA (also
in the TD–DFT case) and its deficiencies see, e.g., [96]. In some cases better
results can be achieved by using localized Hartree–Fock instead of LDA, see,
e.g., [97].

4.7.2 Beyond LDA: Generalized Gradient Approxima-
tion (GGA)

The exchange–correlation hole

To describe the improvements of DFT beyond LDA, we introduce the concept
of the exchange–correlation hole. The exchange–correlation hole describes, by
which amount the electron density n(r′) is decreased at position r′ due to the
presence of an electron at position r1.

It is written as a hole–density,

nxc(r, r
′) = n(r′)− n0(r

′) (4.46)

where n(r′) is the actual electron density at position r′ in presence of the other
electron at r, and n0(r

′) is the fictional density without presence of the other
electron at r′.

The hole density is normalized to -1:
∫

d3r′ nxc(r, r
′) = −1,

reflecting the total screening of an electron at position r by the surrounding
depletion of the electron density.

The exchange–correlation hole density can be separated into the different
contributions for exchange and correlation analogous to the separation of
the energy functional in its contributions from exchange and correlation,
nxc = nx + nc. There, the exchange–correlation part is given by the difference

1The exchange–correlation hole density is related to the pair distribution function (see,
e.g., [98])
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of the total contribution of the electron–electron interaction to the energy and
the Hartree part. The exchange contribution stems from the Pauli priciple.
The correlation part is the remaining part of the total energy after kinetic,
Hartree and exchange contributions have been subtracted. The two holes have
the following properties (see e.g. [78] for details):

• Sum rule for the exchange hole:

∫

d3r′ nx(r, r
′) = −1.

This stems from the Pauli principle.

• Sum rule for the correlation hole:

∫

d3r′ nc(r, r
′) = 0

• negativity constraint:
The exchange hole is always negative, as the electron density at r′ is
always decreased by an electron at r.

All these are fulfilled by the simple LDA approximation, which is one of reasons
that LDA is that successful. Most approximations for the exchange–correlation
functional are obtained from analyzing hole properties of present approxima-
tions and suggesting improvements, or are written in terms of the (average)
exchange–correlation hole.

Generalized Gradient Approximation (GGA)

It was identified from early on that LDA is too simplistic to work for many
systems with strongly varying density. An extension was already proposed
by Hohenberg and Kohn in their original paper on DFT [74]: the gradient
expansion approximation (GEA). The idea is to expand the functional Fxc[n]
in the electron density n(r) and include first order corrections, ∇n(r).

First implementations for atoms and molecules were a complete failure. In
GEA, the sum rule of the exchange–correlation hole as well as the non–
negativity constraint were violated, resulting in a incorrect treatment of the
correlation and Pauli principle physics, worse than in the simpler LDA. But,
experience with GEA provided the basis for the generalized gradient approxi-
mation (GGA), which is currently one of the most popular types of exchange–
correlation functionals.
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Based on work by Langreth and Mehl [99, 100], this improved functional was
developed by Perdew et al. [101, 102], who devised a cutoff procedure for the
gradient expansion in real space. This procedure sharply terminates the GEA
exchange–correlation hole. This way it is possible to ensure the sum rule of
the exchange–correlation hole as well as the negativity condition, resulting in
a more appropriate treatment of the correlation physics in the functional. The
GGA corrections to Exc can be written as an analytical function, called the
enhancement factor Fxc[n(r),∇n(r)] which modifies the LDA density leading
to the new exchange–correlation functional

EGGA
xc [n(r)] =

∫

d3r n(r)eunif
xc [n(r)Fxc[n(r),∇n(r)]]. (4.47)

Usually the functional Fxc is written as a function of the Wigner–Seitz radius
rs and a dimensionless reduced density gradient s(r),

s(r) =
|∇n(r)|

2kF (r)n(r)
(4.48)

with the Fermi wavevector kF .

The actual form of Fxc is then derived by fitting the functional to experimental
data. A second way is to construct it without any semi–empirical parameters
from the limiting case of a slowly varying electron gas [103]. This cutoff–
procedure turned out to be very successful in improving DFT. Most notably
was the reduction in the over-binding character of the functional for molecules
[77, 101]. There, LDA did always overestimate the binding energy, resulting
in a HOMO–LUMO gap that was far too big. The derivative discontinuity
(§4.5), however, is still a problem in GGA.

4.7.3 Extensions: exact exchange and hybrid function-
als

Exact exchange

In DFT in the LDA or GGA approximation, each electron interacts with itself
via the Coulomb electrostatic potential in the Hartree term VH . This unphys-
ical interaction is called the self–interaction problem. In the exact formalism
(using an exact exchange–correlation energy, Exc) this fictitious term would
be canceled exactly by a contribution from the exchange–correlation energy.
In LDA, this cancellation in incomplete. This deficit led to the development
of self–interaction corrected functionals [94](see e.g., [77] for an introduction).

Self–interaction errors can be avoided by calculating the exchange part of Exc

exactly. The exact exchange is evaluated using the Hartree–Fock description,
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but thereby the Kohn–Sham wavefunctions instead of the wavefunctions from
a nonlocal Hartree–Fock potential are used.

Eexact
x [n] = −

1

2

occ
∑

i

occ
∑

j

∫

d3r d3r′
φ∗
i ([n], r′)φ∗

j ([n], r)φj([n], r′)φi([n], r)

|r− r′|
.

(4.49)

There are now no errors from artificial self–interaction contributions, but as
the correlation part is still approximated, we now do acquire an additional
error due to the fact that the systematic cancellation of errors in Ex and Ec
no longer applies.

Hybrid functionals

Many functionals currently in use for DFT calculations of atoms or molecules,
are so–called hybrid functionals. Here, several approximations for the
exchange–correlation functional are combined with various weights to result
in a mixed functional that gives much more realistic results for molecular sys-
tems. For example, Hartree–Fock/exact–exchange contributions can be mixed
into the functional. Using reference data from experiments, wave–function
methods and other highly correlated methods, the combined functional is em-
pirically fitted to yield the best result possible.

One popular functional in this class is B3LYP [104,105]. This functional con-
sists of GGA plus a 20 % exact–exchange contribution. It delivers excellent
results for organic molecules, being better than results from GGA type func-
tional like BP86. Due to the exact exchange contribution, the over-binding is
reduced. But, when metal atoms are included (as in the clusters that form
the extended molecule in our calculations) B3LYP is much less accurate then
Becke–Perdew. This stems from the failure of Hartree–Fock in metallic sys-
tems. Some transport calculations for molecules are based on B3LYP, e.g.
Heurich et al. [72], but when parts of the leads are to be included in the cal-
culation of the central cluster, they are predestined to deliver wrong results.

Popular functionals used in quantum chemistry DFT calculations today are
for example BP86 [102, 106], PBE [103, 107, 108] or B3LYP [104–106]. Most
DFT program packages allow for the use of several of these functionals.

4.7.4 Functionals used within this work

Within this work, we performed all DFT calculations with the program pack-
age TURBOMOLE, which offers a large choice of DFT functionals. In our

62



4.8 Physical quantities given exactly in Density Functional Theory

calculations we employed, unless otherwise stated, the GGA type functional
BP86 (Becke–Perdew) [106, 109]. This widely used functional yields good re-
sults throughout the whole of chemistry. It constitutes a good balance between
correct structure parameters like bond lengths and bond angles on the one
hand and bond energies and electron densities on the other hand. There exist
many other, often more sophisticated functionals that yield better results for
a special task, like structure calculations or bond energies, or that are special-
ized for a subspace of selected molecules. Most of them belong to the class of
hybrid functionals.

For our purposes, however, where we need to calculate combined systems of
organic molecules and metal clusters, the balanced Becke–Perdew GGA type
functional is suited best. In some cases, we used the PBE functional instead,
as this gives a better description of systems where van–der Waals interactions
are of importance. For comparison, we also performed some calculations with
a Hartree–Fock functional [110, 111] (see §7.1).

4.8 Physical quantities given exactly in Den-

sity Functional Theory

• Ground–state energy

The ground–state energy is per construction exact, if the exact exchange–
correlation functional is known. This is what DFT was invented for. Cur-
rently used functionals give results of very high quality for the ground–
state energy.

• Ground–state density

As we have discussed in detail above, the Hohenberg–Kohn theorem
(§4.2.1) states that the ground–state density is in principle exact, if the
exact exchange–correlation potential is known. Even though in practice
this is not exactly known, modern functionals give excellent quantitative
results for the ground–state electron density of molecular systems [76].

• Energy of the highest occupied molecular orbital (HOMO)/
ionization energy

In addition to the ground–state density, the Hohenberg–Kohn theorem
only makes a statement for the ground–state energy, which is by con-
struction exact. There is no direct conclusion on the physical meaning
of the individual eigenvalues of the fictitious Kohn–Sham system.

It was shown in 1985 by Almbladh and van Barth [112] that in addition
to the electron density, DFT in principle also provides exact results for
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the ionization energy, which equals the energy of the highest occupied
molecular orbital (HOMO). We won’t give a derivation here, but will
only mention the ideas behind the proof:

The idea is to consider the true many–body system and the corresponding
Kohn–Sham system at the same time and derive for both the asymptotic
form of the density matrix for large distances r from the finite system.
For the many body system the density matrix decays exponentially at
large distances and the decay constant is determined by the highest lying
state only. Thereby the exponent κ relates simply to the ionization
potential by

κ2

2
= E(N − 1)− E(N) = Eionisation. (4.50)

E(N) and E(N −1) are the ground–state energies of the N electron and
N − 1 electron system, respectively.

In the case of the effective single–particle system, the decay of the den-
sity at large distances is governed by the highest lying eigenstate of the
Kohn–Sham system. By comparing these two asymptotic forms with
each other, it can be deducted that the HOMO of DFT equals the ioniza-
tion energy of the corresponding many–body system. Thus, in addition
to the density, the energy of the HOMO of the Kohn–Sham system is in
principle exact as well.

4.9 Other quantities

• Energy levels of the Kohn–Sham states

From the Hohenberg–Kohn theorem we can only infer that the ground
state energy, obtained from minimizing the Hohenberg–Kohn functional,
has a physical meaning. In addition, we have now learned above, that
the HOMO energy εN is in principle exact. All other eigenvalues are
strictly speaking of no physical meaning at all.

For metallic systems, the eigenvalues of the states close to the Fermi
energy are close to the physical values. For non–metallic systems this is
not always true. But still, in many cases these eigenvalues are in close
agreement with the experimental values.

• Kohn–Sham wavefunctions

In general, the Kohn–Sham wavefunctions of the effective single–particle
system that yields the same density as the real many–body system do
not have any transparent physical meaning. By definition they are the
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wavefunctions φi(r) of the single–particle system that yield the correct
ground–state density n(r) via

n(r) =
∑

i

|φi(r)|
2 (4.51)

while minimizing the kinetic energy Ts[n(r)].

In DFT–based transport calculations, we approximate the true ground–
state by a single Slater–determinant. However, in general the true
ground–state will be a superposition of many Kohn–Sham Slater–
determinants. Vice versa, the single Slater–determinant approximation
then describes a many–body state that is not the real ground–state, but
a linear combination of the true ground–state and excitations. The mix-
ture of the latter tends to produce wavefunctions that are more extended
than the ground–state of the real system. The observed transport be-
havior turns out to be too metallic.

• Energies of the unoccupied orbitals

In standard DFT calculations, these are usually quite inaccurate. One
of the reasons is the derivative discontinuity (see §4.5). Accuracy can
be increased tremendously by using DFT methods that include excited
states.

4.10 Time–dependent Density Functional

Theory (TD–DFT)

Under quite general conditions (see 4.10.1 below) a theorem, analogous to
the Hohenberg–Kohn theorem of DFT can be formulated for time–dependent
external potentials. This extension is called the Runge–Gross theorem of time
dependent density functional theory (TD–DFT) [113]. It states, that a one
to one correspondence between time–dependent densities n(r, t) and time–
dependent external single–particle potentials vext(r, t) can be established.

This then allows again to define a fictitious system of non–interacting electrons
moving in an effective Kohn–Sham potential, which yields the same density as
that of the real system. The exchange–correlation potential is defined in an
analogous way, but now, it depends not only on the density at time t, but on
the entire history of the density n(r, t). It also depends on the initial wave–
function of the interacting system at t = 0, as well as the initial Kohn–Sham
wavefunction. This makes the functional much more complicated to deal with.
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4.10.1 Runge–Gross theorem

The Hohenberg–Kohn theorem for a system of N non–relativistic, interact-
ing electrons moving in an external potential can be extended to the time-
dependent case in the following way [113]:

We assume two different external potentials v1(r, t), v2(r, t), both
Taylor–expandable around their initial values at t = 0. If they
differ by more than a purely time–dependent function

∆v1(r, t) ≡ v1(r, t)− v2(r, t) 6= c(t) (4.52)

then, the two densities n(r, t) and n′(r, t), evolving under these two
external potentials v1, v2 from the common initial state ψ0((t = 0)),
are always different.

This is the Runge–Gross Theorem of time–dependent Density Functional The-
ory [113].

4.10.2 Time–dependent Kohn–Sham equations

After establishing the one to one correspondence between density and poten-
tial, one can construct again an auxiliary system of non–interacting particles
obeying the now time–dependent Kohn–Sham equations [113]

iφ̇i(r, t) =

(

−
∇2

2
+ veff [n(r, t)]

)

φi(r, t) (4.53)

with the density given by

n(r, t) =

N
∑

i=1

|φi(r, t)|
2. (4.54)

Again, φi(r, t) are the Kohn–Sham single–particle wavefunctions. The
exchange–correlation potential is defined in analogy to eq. 4.20 via the ef-
fective potential

veff(r, t) = v(r, t) + vH(r, t) + vxc(r, t). (4.55)

But here, the Hartree potential vH from eq. 4.20 is time–dependent due to the
time–dependent density.
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The exchange–correlation functional now is much more complex. It depends
on the whole history of the density and the initial state φ(t = 0) of the Kohn–
Sham system as well as on the initial state ψ(t = 0) of the physical system.

vxc[n(r, t), ψ(0), φ(0)](r, t) = veff [n, φ(0)](r, t)−vext(r, t)−vH[n](r, t) (4.56)

If it were known exactly, it would provide all information necessary to solve
any time–dependent interacting many–electron problems. It is obvious that
this functional, even if it were known exactly, would be far too complex to
treat numerically, so approximations are needed to render it usable.

For systems starting from a non–degenerate ground–state at t = 0, the initial
wavefunctions are functionals of the initial density (Hohenberg–Kohn theo-
rem I), so the initial state dependence disappears [114]. Then, the exchange–
correlation potential only depends on the history of n(r, t). This special case
is the so–called history dependence case.

In DFT, vxc is the functional derivative of the exchange–correlation energy
Exc (eq. 4.21), established through the variational principle. It is not as easily
possible to establish an analogous term, called exchange–correlation action, in
TD–DFT as this leads to causality problems, see e.g. [115], also for methods
how to circumvent this problem.

4.10.3 Adiabatic approximation (ALDA)

The simplest approximation for the now time–dependent and history–
dependent exchange–correlation potential is again done using the uniform elec-
tron gas, this results in the adiabatic local density approximation (ALDA).

For the adiabatic approximation, we ignore the dependence on the past, vxc
becomes a functional of the instantaneous density. This approximation is appli-
cable for very slowly (adiabatically) varying external potentials. On discussions
of the initial–state dependence and history/memory effects see e.g. [114, 116].
Combined with the Local Density Approximation this leads to

vxc[n[r, t]](r0, t0) ≈ vunif
xc (n(r0, t0)). (4.57)

We now neglected all non-locality in time and space. Strictly speaking, this
should work only for systems with very small density gradients in r and t.
However, as we have already seen in the case of ground–state DFT, it here
proves again to be useful for a far greater variety of problems, yielding excellent
quantitative results.
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Chapter 5

Testing our implementation

In this chapter we will present a few tests on our implementation to assure that
it was correctly done. First, band structure calculations obtained from our
Green’s function for the leads, which we extracted from the DFT calculation
will be compared with reference data. This will ensure, that we have made no
technical errors in the calculation of the Green’s function. Then, in the second
part, we will use the standard benchmark of DFT based transport calculations,
namely the investigation of the transmission of atomic gold chains.

5.1 Band structure of a gold cluster from DFT

— testing a tight–binding representation

Our approach to calculating transport in the scattering approach requires the
calculation of the self–energy Σ, describing the coupling to the leads. For the
calculation of the self–energy,

Σ = tgLt
† (5.1)

two ingredients are necessary:

• The unperturbed Green’s–function of the semi–infinite, ideal leads, gL

• The hopping matrix elements, t.

For details of the calculation, see also §3.3.

The easiest way of obtaining the hopping matrix elements and the Green’s–
function, gL of the semi–infinite leads, would be to use a code with periodic
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boundary conditions to model bulk gold, but TURBOMOLE does not support
this. As it is desirable to extract all data required for our ab initio calcula-
tions of transport from the same DFT calculation, we have to go this more
complicated way to obtain the ingredients.

The goal of this section is to test the convergence of our construction of the
unperturbed Green’s–function of the leads as well as for the hopping matrix
elements. This will be done by comparing band structure data with reference
data from other calculations. This can serve as a check, since the band struc-
ture calculations involve the calculation of the hopping matrix elements: in
our calculation of the Green’s–function, we do reconstruct the hopping Hamil-
tonian from a large, but finite gold cluster, a fcc bi–pyramid.

From DFT calculations, the Kohn–Sham eigenvalues and single–particle states
are obtained. As we assume, that the coupling between extended molecule
and gold electrodes takes part deep inside the electrodes (due to our large
extended molecule), we can use the hopping matrix elements of bulk gold. To
calculate those, we reconstruct a tight–binding Hamiltonian from the DFT
data, which in general does contain hopping elements from each atom to every
other atom. But we restrict ourselves to the central atom and look at the
hopping of this atom to the surrounding atoms. To reconstruct a bulk tight–
binding Hamiltonian, we assume to sit in the bulk and identify the hopping
matrix elements of the central atom with those of all atoms in the bulk. This
way a Fourier transform into k–space is possible. Our band structure data in
fig. 5.1 is the result.

There are two parameters, where we have to check the convergence of our
procedure:

• We have to check, whether a sufficient number of neighbors is taken into
account for the construction of the tight–binding Hamiltonian.

• The size of the gold cluster in DFT has to be large enough for the hopping
matrix elements to converge to a bulk value.

Testing several cluster sizes, a bi–pyramid of 146 gold atoms proved to be
sufficient to achieve convergence to the bulk limit. The number of neighbors
that needed to be considered until convergence was reached, turned out to be
12.

In figure 5.1 we show our results for the band structure obtained from the
146 atom cluster. They agree well with band structure data for bulk fcc gold,
taken from the Electronic Structure Database (ESDB) [117, 118], where the
band structure is calculated using DFT with periodic boundary conditions.
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Figure 5.1: Band structure for bulk fcc gold , extracted from our DFT calcula-
tion of a fcc bi–pyramid of 146 gold atoms. The Fermi energy / work function
(−5.1 eV ) is indicated by a dashed line.

The ESDB data is depicted in figure 5.2. Also, the almost constant density of
states close to EF is well reproduced, see fig. 5.3.

We can conclude that we have obtained a tight binding representation of bulk
gold comparable to standard results from periodic boundary condition calcu-
lations.

5.2 The conductance of atomic wires of gold

Atomic wires are a testing ground for DFT–based transport calculations. The
methods of establishing such contacts experimentally have been well estab-
lished during the last few years so that there exist large amounts of conduc-
tance measurements, and investigations on the formation of chains of single
atoms using STM techniques or mechanically controlled break junctions, for
many different materials like Au, Pt, Nb, Ag, or Al [10, 119–124]. Not all
metals do show chain formation. So far, chains have been observed in Au, Pt,
and Ir [125]. For gold, the formation of chains stems from relativistic effects.
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Figure 5.2: Band structure for bulk fcc gold, from the Electronic Structure
Database [117], tight binding parameterization using the parameters by Papa-
constantopoulos [118]. The work function of gold (−4.8 eV ) is depicted by a
dotted line. For direct comparison with fig. 5.1 an offset of 12.1 eV has to be
subtracted from the energy values.

Due to the heavy core of the gold atom, relativistic effects lead to s–orbitals
that are closer to the core and energetically closer to the d–orbitals. They
thus hybridize with the d–orbitals leading to anisotropic s–orbitals. Due to
the anisotropic orbitals, lower coordination numbers are favorable, leading to
the formation of chains.

For gold contacts, where chain formation has been observed for the first time [7,
119], the wire exhibits a stepwise decrease in conductance (plateaus), when it is
elongated until it breaks (see also §2.2). This has sparked numerous theoretical
contributions to explain the observed values of conductance and the steplike
conductance behavior when pulling the junctions apart, e.g. [67,124,126–128].

On the last plateau, when the contact consists of only a single atom of gold,
or a chain of single gold atoms, the contact exhibits a transmission close to
2 e

2

h
[119–121] over a relatively wide window of bias voltages [121, 125] (up to

0.5 V). This indicates the existence of one single propagating mode within the
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Figure 5.3: Density of States (DoS) for bulk gold. From our DFT calculation
of the 146 atom fcc gold bipyramid. Plotted are the states per atom, spin and
eV over the energy. Fermi energy, EF ≈ −5.1 eV .

Figure 5.4: 4–atom gold chain. Schematic representation of our extended
molecule used in the DFT calculations. The contact consists of the 4–atom
chain plus two 54–atom fcc pyramids of gold.

chain, which is contributed by one single valence electron per gold atom (6s
electron).

We performed several transport calculations for atomic gold wires of different
chain–length and cluster size in order to
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• verify that our implementation of transport based on density functional
theory reproduces the results of previous calculations published in the
literature [67, 127] as well as experimental results [119–121,125].

• determine the required number of gold atoms to be included in the cal-
culation for the central cluster forming the extended molecule (see §3.3.2)
to obtain the correct results, and to ensure that the results become in-
dependent of the cluster size.

• establish the minimum number of surface atoms that need to be included
in the calculation of the self energies: only a portion of the gold atoms
included in the extended molecule are required for the coupling, which
then strongly reduces the computational effort.

In figure 5.4, we display a picture of the structure used as the central cluster
for the ground–state DFT calcultation for a 4–atom gold chain. The system
consists of the chain itself plus, on both sides, a pyramid of 54 gold atoms
each. These pyramids are the additional atoms of the leads that are included
in the central cluster to form the extended molecule, described in §3.3.2.

Using our Green’s–function formalism, we calculated the transmission T in
dependence of the energy E in the linear response regime. The structure was
allowed to relax completely with the constraint that the 4 central atoms form a
chain. Our results for the 4–atom chain of figure 5.4 are displayed in figure 5.5.

Out of the 54 atoms of the pyramids, the two bottom layers, consisting of 41
atoms (4 by 4 and 5 by 5) were used as coupling atoms to define the self–
energies for the coupling to the semi–infinite leads. The Fermi energy of the
system is about −5.1 eV . For comparison, we also plotted the transmission for
only 25 coupling atoms (5 by 5 layer). Differences between the two couplings
are below 5 %. Using 25 coupling atoms proves to be sufficient to render the
transmission independent of the actual number of coupling atoms in the self–
energies. In most calculations throughout this work we did indeed even use
the larger number of 41 coupling atoms.

For energies around the Fermi energy, the calculated transmission is constant
in a wide window and has the value of about 2 e2

h
in excellent agreement with

the experimental data [120, 121].

In figure 5.6 we display our results for a four atom gold chain with different
sizes of contact pyramids. We perfomed calculations with pyramids of 14, 29,
54 and 84 gold atoms. Using pyramids of 54 gold atoms proved to be more than
sufficient. Displayed are the results for 54 (◦) and 84(�) atoms. There is no
noticeable difference in the conductance for reasonable energy values around
the Fermi energy.
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Figure 5.5: Transmission of a 4–atom gold chain. Influence of the number of
surface atoms to include in the calculation of the self–energies.
Upper panel: The contacts were made of fcc pyramids of 54 gold atoms each.
Out of these, 41 atoms (the 5 by 5 and 4 by 4 bottom layers of the pyramids)
were coupled to the leads (�). For comparison, the results with only 25 cou-
pling atoms per contact (5 by 5 layer) are shown as well(◦).
Lower panel: Same as upper panel, but now the contacts consist of pyramids
of 84 gold atoms each.
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Figure 5.6: Transmission of a 4–atom gold chain (see fig. 5.4). Influence of
the contact size on the transmission. The contacts were made of fcc pyramids
of 54 (◦) and 84(�) gold atoms each. Out of these, 41 atoms ( the 5 by 5 and
4 by 4 bottom layers of the pyramids) were coupled to the leads. For energies
close to the Fermi energy (EF ≈ −5.1 eV ), the two traces match perfectly.
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Chapter 6

DFT–based transport
calculations: numerical results
and comparison to experiments

This chapter will deal with a selection of our numerical results on the con-
ductance of organic molecules. In the first section we will present data on
two example molecules: we will study the paradigm molecule benzene–1,4–di–
thiol, for which the first single–molecule conductance measurement ever was
published [5].

This will be followed by the analysis of a larger, anthracene–based, symmetric
molecule that has been measured experimentally at our institute, the Institute
for Nanotechnology, Research Center Karlsruhe [11]. This second test case is
interesting for several reasons: experiments are expected to be more reliable
for larger molecules, as we will see below. Also, DFT is, strictly speaking,
only valid close to the uniform electron gas, which is clearly different from the
situation in an organic molecule. However, there might be classes of molecules
where DFT based calculations yield better and classes where they yield less
useful results. Thus, the calculations for this second molecule, exhibiting a
larger extended π–system will also be presented.

An analysis of our theoretical data and the comparison with experimental
observations will be given. We will see qualitative agreement in one case and
point out a quantitative discrepancy between experiment and theory that is
inherent to all current DFT based transport calculations.

Several reasons for this discrepancy will be probed. Currently intensely dis-
cussed is the influence of the actual microscopics of the contact between the
molecule and the electrodes on the transport characteristics. We performed
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extensive calculations to provide answers to the key questions arising in this
context:

First, in section §6.3 we will present our findings on the influence of mechanical
stress on the conductance.

Second, a thorough discussion of the possible types of the chemical bond
between the gold electrodes and the terminal sulfur atoms of the measured
molecules (S − Au1, S − Au2 and S − Au3) in a conductance experiment and
their influence on the I–V characteristics will be given.

6.1 Benzene

The first experiments on the conductance of single molecules were performed
on benzene-1,4-di-thiol molecules [5] by Reed et al. in 1997. The experiment
was conducted using mechanically controlled break–junctions of gold. In the
following years, several groups repeated the measurement of transport through
benzene using various single–molecule techniques like break–junctions [6,129],
scanning tunneling microscopes (STM) [15], or multi–molecule techniques like
nanopores or self–assembled monolayers (SAM)s [130].

One of the reasons for the popularity of the benzene molecule is its simplicity:
It contains a highly symmetric, stable extended π–system of just one benzene
ring. Also, it is easy to synthesize. Because of its simplicity, one might suspect
that the underlying processes that govern the transport through this molecule
could be easily understood. However, this turns out not to be the case.

For theoretical calculations, benzene-1,4-di-thiol is an attractive molecule: be-
ing small and highly symmetric it reduces the calculational effort. This enables
us to compare different approaches (like Hartree–Fock) with DFT based cal-
culations. Also, it is numerically affordable to run many calculations varying
parameters like the microscopics of the coupling to the leads. It also constitutes
one of the most simple conjugated molecules that forms reliable junctions, to
test theoretical calculations against.

Unfortunately, in experiments the small size can be an obstacle: in break–
junction experiments, the surface of the gold electrodes is rough due to the
breaking of the wire to form the electrodes. For a break–junction experiment
to be successful, the molecule needs to be of rigid, rod like structure [11, 12].
Benzene is the limiting case for this condition, as its size is comparable to the
surface roughness. Thus, parallel conduction/short–circuits are possible.

Benzol might be a useful simple molecule for understanding fundamental pro-
cesses in transport through single molecules, but it can only constitute a first

78



6.1 Benzene

step, as for functionalized molecules acting as diodes or switches, larger struc-
tures are needed. Nonetheless, for theoretical works benzene-di-thiol remains
the paradigm molecule to test implementations of transport formalisms for
molecules.

Theoretical results

Figure 6.1: Structure of the relaxed extended molecule for our benzene-1,4-di-
thiol transport calculations. The gold electrodes consist of 55 gold atoms each.
The structure of the molecule was allowed to relax in the DFT calculations.
Red: sulfur, black: carbon, grey: hydrogen, yellow: gold.

Currently, ground–state density functional theory in combination with the
Landauer–Büttiker formalism is the most widely used approach to numeri-
cal transport calculations for single molecule junctions [60, 61, 66–68, 72, 73,
131–138]. For the molecule benzene, many calculations can be found in the
literature [72, 133, 135, 136].

For our transport calculations of the molecules, we used pyramids of 55 gold
atoms each as parts of the leads to include in the DFT calculation of the
extended molecule as we have described above in §3.3.2. This proved sufficient
to avoid artefacts from the coupling to the leads via the self–energies. Fig. 6.1
depicts the geometry of the benzene molecule in between the gold contacts.
The structure of the molecule and the geometry of the coupling to the gold
pyramids was allowed to relax completely in the DFT. The sulfur is coupled
to three gold atoms in the hollow position, the coupling distance is ≈ 2.4 Å.
Our results for the transmission in dependence of the energy for benzene-1,4-
di-thiol are presented in fig. 6.2, left.

The zero bias transmission in our calculation is about 0.22 g0. A broad mini-
mum around the Fermi energy, EF ≈ −5.1 eV, is observed. The broad peak in
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Figure 6.2: Transmission of benzene-1,4-di-thiol. Left: our data, for the trans-
mission in units of g0 = 2 e

2

h
over energy. Right: For comparison of different

theoretical calculations, data by Xue and Ratner is depicted [136]. The Fermi
energy (≈ −5.1 eV) is depicted as a vertical line in both calculations.

the transmission at about −6 eV is caused by the highest occupied molecular
orbitals, broadened by the hybridization with the d–band of the gold contacts.

On the theory side, results for the conductance of benzene-1,4-di-thiol, ob-
tained from DFT based calculations, have recently converged: with increasing
level of sophistication in the implementation of the DFT based calculations,
the conductance increased, converging to values equivalent to those obtained
by us [134, 136]. To illustrate this, we depict the data by Xue et al. in the
right hand side plot of fig. 6.2. The shape of the curve as well as the absolute
value are in excellent agreement with our results.

Experimental data

In general, experimental measurements of benzene turn out to be very chal-
lenging due to the small size of the molecule. The method of choice to con-
duct the measurements of such a small molecule is the mechanically controlled
break–junction technique, as it offers the best control of the electrode distance
allowing for the measurement of molecules of very small dimension.

But still, reproducible data are extremely difficult to obtain. Often, empty
break–junctions, or contaminated junctions (presence of H2, H2O, O2 or par-
allel conductance through rough gold surface) are measured. Since it is one
of the most popular molecules to be studied theoretically, we present data
here. However, one should keep in mind that the reliability of experimental
data of larger molecules is much higher. For this reason, we will also dis-
cuss the comparison between experiment and theory for the larger, symmetric,
anthracene–based molecule of fig. 6.6, which was measured at our institute [11],
in the next section.
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6.1 Benzene

We will present in this section the experimental data of the first experiment,
done by M. Reed et al. [5], see fig. 6.3, as well as the data obtained recently
in our institute by M. Di Leo [129], fig. 6.4. We consider the more recent
data of fig. 6.4 to be more reliable due to improvements in the experimental
technique, e.g. in the distance control and sample preparation. The early
experiment has also been criticized for the large voltage window (up to 4.5V )
in which the I–V was recorded, whereas in more recent experiments, very rarely
stable I-Vs are observed for bias voltages of more than 1.5 V in break–junction
experiments [139].

Figure 6.3: I–V characteristics of benzene-1,4-di-thiol. Measurement by
M. Reed [5]. Shown are current over applied bias voltage in µA and the
differential conductance, dI

dV
in µS.

Figure 6.3 shows the conductance measurement by Reed [5]. The measure-
ments for benzene-1,4-di-thiol by M. Di Leo [129] at our institute are presented
in fig. 6.4.

Both curves show a pronounced conductance gap at low bias, and first peaks in
the differential conductance at symmetric bias voltages, when the first molec-
ular level, most likely the highest occupied molecular orbital (HOMO), comes
into the bias voltage window. This gap is due to Coulomb blockade. The zero
bias conductance in Reeds experiment is of the order of 10−5g0 and even lower
in the experiment by Di Leo ,≈ 0.3nS = 4 · 10−6g0.

In the position of the peaks, the experiments differ significantly. Whereas
Reeds data exhibits a peak in the differential conductance at 1.75 V, the mea-
surements by Di Leo put the peak at about 0.75 V. Di Leo obtained measure-
ments for several samples, resulting in peak positions between 0.6 and 1.0V .
The gap width for low bias voltages is similar in both experiments, about 0.75
V.
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Figure 6.4: I–V characteristics of benzene-1,4-di-thiol. Red: Current in nA
over applied bias voltage. Blue: differential conductance dI/dV measured in
nS. Different traces correspond to different voltage sweeps. Measurements by
M. Di Leo, INT [129].

The asymmetry, pronounced to a different extent in the two experiments, has
to be attributed to asymmetric coupling to the gold due to the contact micro-
scopics.

Comparison with theory

In fig. 6.5, the differential conductance is plotted rather than the transmission
for better comparison with experimental data. It has been obtained using
formula 3.10 ignoring polarization corrections that may exist.

The theoretical data exhibits a broad minimum near zero bias, but neither
its width nor the zero–bias conductance itself bear any resemblance to the
experimental results presented above. Neither do the theoretical calculations
exhibit a conductance gap for low bias nor do the peak positions match the
experimental data.

In all, conductance values are overestimated by several orders of magnitude:
whereas the calculated zero–bias conductance is about 0.22 g0, the experimen-
tal values are 10−5 g0 or even lower. Thus we must conclude that not even
qualitative agreement is reached in the case of benzene-di-thiol.
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Figure 6.5: Differential conductance of benzene-1,4-di-thiol. Theoretical calcu-
lations. Pyramids of 55 gold atoms each were included in the extended molecule
for the DFT calculations (see fig. 6.1).

This large quantitative discrepancy of several orders of magnitude is inherent
to all other numerical calculations based on DFT as well [66,68,72,73,133,134,
136,138]. Various explanations for this drastic discrepancy have been brought
up and will be discussed in section 6.3 as well as in chapter 7.

.

6.2 Symmetric, anthracene–based molecule

Figure 6.6: Schematic representation for the extended molecule for the
conductance calculation of the symmetric molecule, 9,10-Bis((2’-para-
mercaptophenyl)-ethynyl)-anthracene. In the calculation we considered pyra-
mids of 55 gold atoms each for the contact.
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For the symmetric, anthracene–based molecule of fig. 6.6, experimental data
for many samples was obtained by Reichert et al. at our institute [11]. The
molecule, 9,10-di(2’-para-acetylmercaptophenyl)-ethynyl)-anthracene, has an
extended π-system, formed by the central anthracene (3 benzene rings). The
two separate outer benzene rings of the molecule are connected to the con-
jugated part by acetylene bridges, which ensures that the π-system finally
extends over the whole molecule and at the same time they render it very stiff
and rod–like to ensure a reliable formation of molecular junctions. Contacting
to the gold is done via sulfur end–groups. The molecule has a length of about
2 nm.
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Figure 6.7: I–V characteristics of the symmetric molecule from fig. 6.6.
Upper graph: experimental data by Reichert et al. [11]. Dashed, black: I-V
characteristics; solid, red: differential conductance. Different lines correspond
to different voltage sweeps.
Lower graph: Theoretical calculation, the structure was relaxed completely in
the DFT calculation. Dashed, black: I-V characteristics; solid, red: differential
conductance.

Fig. 6.7 depicts the experimental data for the conductance as well as the re-
sults of our theoretical calculations. Qualitatively they agree. Both show a
pronounced peak in the differential conductance at about 0.3V . This time, in
contrast to the benzene data above, the position in energy and the broadening
of the theoretical peaks is in agreement with the experimental one.
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Again, in the experiment we observe a gap in the measured conductance at
low bias. Only for bias voltages above 0.2V the current increases significantly.
In our numerical calculation, the gap is indicated but not fully developed in
the sense that the zero–bias conductance is about 0.5 g0, only a factor of two
lower than the maximum values at 0.3V , though. Quantitatively the same
discrepancy as in the case of benzene is present: the measured differential
conductance at the peak position 0.3V , is about 2 · 10−2 g0 which is two to
three orders of magnitude smaller than the theoretical prediction, 0.8 g0.

The numerical results exhibit a far too metallic behavior. This enormous
quantitative discrepancy of several orders of magnitude between experiment
and theory is observed for all results obtained from properly performed DFT
calculations. Therefore an analysis and an understanding of the possible un-
derlying reasons is of utmost importance. In the following sections we will
discuss several sources.

6.3 Influence of stress on the conductance

The most often cited possible reason for this large quantitative, and in the case
of benzene even qualitative, discrepancy between theory and experiment is,
that the actual microscopic details of the molecular contact are unknown and
the conductance could change strongly with modifications in the microscopics
of the coupling of the molecule to the leads, see e.g., [72, 73, 134, 136].

As this large discrepancy is encountered in all molecules, we chose for simplicity
to use the benzene-1,4-di-thiol molecule again to study the influence of the
precise microscopics on the conductance.

The benzene molecule is, as in most experiments, coupled to the gold electrodes
via terminal sulfur atoms that form a stable covalent bond with the gold of
the electrodes. In a break–junction experiment, the molecular structure and
the microscopics of the coupling to the gold most likely is not completely
relaxed, as the boundary conditions in form of the electrode spacing pose hard
restrictions on the geometry.

On the other hand, gold is a very ductile material. Experimental data by
Rubio–Bollinger et al. [122, 140] suggests, that the stiffness of the first atom
layers of nanosized gold contacts is only about 6 N

m
and the corresponding force

for breaking the sulfur—gold bond should be much larger.

Usually, in break–junction experiments of single molecules, not the bond be-
tween sulfur and gold breaks when the electrode distance is enlarged, but one
or several gold atoms are pulled out of the contact during the opening. This
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results in stable I–V curves over a variable distance. Then the breaking of the
contact occurs, when this “gold chain” breaks.

The breaking force of a chain of gold atoms has been estimated experimentally
to be about 1 nN [140], which is in full agreement with molecular dynamics and
Density Functional Theory calculations [141, 142] that predict 1.2nN . There,
pulling on the molecule resulted in the formation of a monoatomic gold wire
followed by rupture of a gold-gold bond within the wire. This poses strong
limits on the actual geometrical stress the molecule will be exerted to in a
break–junction.

Figure 6.8: Different geometric degrees of freedom for the bonding of a benzene
molecule on a gold surface. Red: sulfur, yellow: gold, black: carbon, grey:
hydrogen. d: distance of the sulfur–gold bond. α: angle of rotation about the
molecular axis. β: tilting angle between molecular axis and gold surface.

To investigate the influence of this stress on the conductance, we did a study
of the influence of a change in geometric parameters on the conductance prop-
erties for the paradigmatic molecule benzene-1,4-di-thiol. Fig. 6.8 depicts the
different degrees of freedom in the bonding between the benzene molecule and
the gold electrode.

6.3.1 Sulfur–gold bond distance d

We calculated the transmission of benzene-1,4-di-thiol where the sulfur–gold
bond distance was increased by 5 and 10 pm (cf. distance of Au–atoms in bulk
gold: 240 pm) in relation to its equilibrium value. The comparison with the
relaxed equilibrium distance situation is presented in fig. 6.9.

For both elongations, the transmission is only changed slightly. Maximum
differences amount to about 10 per cent of the conductance. Around the Fermi
energy (EF ≈ −5.1 eV ) the change in the calculated zero bias conductance is
almost invisible.
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Figure 6.9: Influence of the sulfur–gold bond distance, d (see fig. 6.8), on
the conductance of benzene-1,4-di-thiol. Solid, black line: transmission for
the relaxed equilibrium distance. Red, dot–dashed line: sulfur–gold distance
increased by 5 pm. Blue, dotted line: sulfur–gold distance increased by 10 pm.

Larger deviations from the equilibrium bond distance are unlikely to occur
in experiment as the gold structure would more likely deform in reaction to
the applied forces than the sulfur–gold bond distance would increase further
[141, 142]. Krüger et al [141] observed changes of up to 10 pm in their MD
simulations for the S − Au1 bond during elongation and chain formation.

6.3.2 Tilting the molecule: angle β between molecule
and gold

A larger effect can be observed, when the molecule is tilted by changing the
angle β between the gold surface and the molecular axis (fig. 6.8). Results
for tilting the molecule by 15, and 25 degrees are displayed in fig. 6.10. Here,
deviations from the equilibrium geometry conductance for a tilt of 15 degrees
amount to less than 30 %. Again, close to the Fermi energy the difference is
small. (≤ 0.12e2

h
).

Even for an unphysically strong deviation from the relaxed structure by an
angle of 25 degrees, the change in the zero bias conductance is of the same order
of magnitude. Here, for energies different from the Fermi energy the influence
is larger, but deviations stay well below a factor of two in conductance.
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Figure 6.10: Influence of the tilting angle, β, between molecular axis and
contact (see fig. 6.8) on the conductance of benzene-1,4-di-thiol. Solid, black
line: transmission for the relaxed equilibrium distance. Red, dashed line:
tilting angle changed by 15 degrees. Blue, dotted line: angle changed by
25 degrees.
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Figure 6.11: Influence of a rotation about the symmetry axis of the molecule
by the angle α (see fig. 6.8) on the conductance of benzene-1,4-di-thiol. Solid,
black line: transmission for the relaxed equilibrium distance. Red, dashed line:
transmission after a change in α of π/24.

6.3.3 Rotating the molecule: angle α

When the molecule is rotated around the axis defined by the two sulfur atoms
(see fig. 6.8) only very small changes in the conductance are observed. Fig. 6.11
shows the influence of a rotation of α = π/24. The zero bias conductance, at
E = EF ≈ −5.1 eV , for the rotated molecule is identical with the conductance
of the relaxed structure.
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6.3 Influence of stress on the conductance

6.3.4 Strong distortion of the coupling geometry

As a final test, we performed a calculation for a situation where the microscop-
ics of the coupling to the leads is strongly distorted. In an actual experiment,
we expect that a situation like this is energetically too unfavorable to be real-
ized but it gives us an upper bound for the influence of the coupling geometry
on the conductance properties.

Especially as the first layers of the gold electrodes are extremely ductile the
gold will yield to this high stress resulting in a situation closer to the relaxed
structure. In fig. 6.12 we present the conductance for a situation where the
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Figure 6.12: Influence of a strong distortion in the coupling geometry on the
conductance of benzene-1,4-di-thiol. Tilt angle β of 30 degrees. Rotation
about angle α of 25 degrees. Solid, black line: transmission for the relaxed
equilibrium distance. Red, dashed line: transmission of the distorted situation.
Fermi energy, EF ≈ −5.1 eV .

molecule is rotated by an angle α of about 25 degrees and at the same time
tilted by an angle β of about 30 degrees.

Still, the zero bias conductance is of the same order of magnitude. The de-
viation at the Fermi energy, EF ≈ −5.1 eV , is less than a factor of two. For
energies below EF , the structure of the curve is changed significantly.

Instead of reducing the conductance, we can observe that the stress leads to an
increase of the conductance. This can be attributed to the decreased distance
of the extended π–system of the benzene ring to the gold surface coupling
better to the conduction band states of the gold due to the decrease in the
gold–ring distance, caused by the tilt.
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6.3.5 Summary

All variations of the geometric parameters of the coupling between the molecule
and the gold surface within reasonable limits did not cause a significant change
of the conductance properties. Changes stay well below an order of magnitude
and therefore cannot account for the large quantitative discrepancy between
theory and experiment.

We can summarize, that the unknown microscopic conditions are not likely to
be the only reason for the high conductance values in all present DFT–based
transport calculations.

On the other hand, the magnitude of the variations in conductance observed
in experiments between consecutive voltage sweeps after opening and reclosing
the break–junction amount to a factor of two or three [139]. Changes due to
small variations of the geometry observed in our calculations are of the same
order of magnitude.

A remaining question is the influence of the type of coupling between sulfur
and gold on the conductance, and whether this can be enough to account for
the discrepancy between theory and experiment. This will be the subject of
the next section.

6.4 Influence of the sulfur—gold coupling:

coupling to 1, 2 and 3 Au atoms

O

O

S S

Figure 6.13: Benzene-di-thiol. Benzene molecule plus the thio–acetyl pro-
tections groups (sulphur and acetyl group) that prevent the molecules from
forming chains. At the gold surface the acetyl protection group is removed
and a stable, covalent bond of the sulfur atom with the gold is formed.

Most molecules currently used in single molecule experiments are contacted
to the gold electrodes via terminal acetyl–protected mono–thiols. The end–
groups, consisting of a sulfur atom and an acetyl protection group ensure the
proper and defined bonding to the gold surface [130]. Figure 6.13 depicts
these thio–acetyl–groups in the example of benzene-di-thiol. The protection
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group prevents the formation of chains of the investigated molecules. Only
at the gold surface, the acetyl group deprotects and a stable, covalent gold—
sulphur bond is formed. The acetyl protection group also slows down the
immobilization kinetics [130]. This reduces the density of molecules on the
gold surface, leading to a reduced tendency of aggregation to larger bulks, thus
increasing the probability of really contacting single molecules. The detailed
mechanism of the deprotection process is currently unknown [130], but water
may be the mediating factor [130]. But numerous experiments made it a well
established, and controlled working procedure.

Figure 6.14: Different possible realizations of the coupling of sulphur (red) to
gold surfaces. Left: sulphur binds to one gold atom (on–top position). Center:
sulphur binds to two gold atoms. Right: sulphur binds to three gold atoms
(hollow position).

The sulfur–gold bond can occur in three different stable abundances [143],
which are depicted in fig. 6.14

• on–top position: the sulphur binds to one gold atom, the bond distance,
obtained from a DFT calculation with structure relaxation, is about
2.34 Å.

• S − Au2: the sulphur binds to two gold atoms, the bond distance is
slightly larger, at about 2.47 Å.

• hollow position: the sulphur binds to three gold atoms with the bond
distance taking a value of 2.56 Å.

It is known that on plane Au(111) surfaces sulfur tends to bind to three gold
atoms, i.e., the hollow position is the most stable one [143, 144]. Binding to
just one gold atom — the on top position — corresponds to a local minimum
of the free energy and binding to two gold atoms is unstable.

On rough surfaces exhibiting edges the situation can be completely differ-
ent. We performed density functional theory calculations for the three dif-
ferent binding possibilities. Our results show, that near an edge, the sulfur
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finds its most stable position by binding to two gold atoms, as depicted in
fig. 6.14,(center). The on top position, shown in fig. 6.14,(left), where the sul-
fur binds to only one gold atom at the tip of the contact pyramid remains a
minimum as in the plane Au(111) case, but now at a 0.7 eV higher energy.
The hollow position, displayed in fig. 6.14,(right), being the most stable one
on a plane Au(111) surface, turns unstable, when the contact is formed on an
edge.

In break–junction experiments the contact surface where the sulfur binds to
form the molecular bridge is most likely irregular due to the mechanical break-
ing of the constriction to create the contact, see §2.2 and §6.1. Thus it is
not possible to predict, which of the possible bindings is realized in the actual
experimental situation. As one might suspect that the conduction properties
are influenced by the type of bond it is worthwhile to consider all three cases
in the conductance calculations.

It might also be possible, that during the experiment the structure somewhat
changes so that a switching process between different coupling realizations
occurs. This effect could then lead to inhomogeneous broadening of the peaks in
the differential conductance, i.e. a broadening due to the different conductance
behavior of different microscopic conditions.

Figure 6.15: Schematic representation for a conductance measurement of the
symmetric molecule, (9,10-Bis((2’-para-mercaptophenyl)-ethynyl)-anthracene)
used to study the influence of the sulfur–gold coupling on the conductance. In
the calculation we considered pyramids of 55 gold atoms each for the contact.

For the symmetric, anthracene–based organic molecule depicted in figure 6.15,
which has been measured experimentally at our institute [11] (see §6.2 above
for further discussion of the experimental data and comparison with the corre-
sponding calculations), we did perform conductance calculations for all three
possible binding variants.
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Results for the conductance calculation, where we again considered pyramids of
55 gold atoms each to construct the extended molecule for the DFT calculation,
are presented in fig 6.16. The structure of the molecule was allowed to relax
in the DFT runs. The three different traces correspond to the cases in which
the sulfur binds to either one, two or three gold atoms.
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Figure 6.16: Influence of the type of coupling between sulphur and gold on the
conductance of the symmetric molecule depicted in fig. 6.15. Displayed is the
conductance for the three possible bonding variations depicted in fig. 6.14: S
coupled to one gold atom in the on–top position (black, solid line), S coupled
to two gold atoms (red, dashed line), and S coupled to three gold atoms in the
hollow position (blue, dotted line). The Fermi energy is ≈ −5.1 eV .

Qualitatively the three curves are in good agreement with experimental find-
ings [11], see discussion in §6.2 above.

The experimental data (see fig. 6.7 above) shows a conductance gap for low
bias voltages and the differential conductance exhibits for the different mea-
surements a maximum with a position between 0.3 V and 0.5 V, that would
correspond to a resonant molecular level at about 0.15 eV to 0.3 eV below the
Fermi energy (EF ≈ −5.1 eV ) in the case of symmetric couplings to the leads.
The different positions could be due to inhomogeneous broadening effects,
which is supported by our theoretical findings:

The qualitative effect of the microscopic change in contact geometry on the
transmission is small. The position of the valence peak close to −5.2 eV varies
by up to 0.2 eV , depending on the bond type. The overall shape of the trans-
mission curve remains unchanged.

Shifts of the peak position of 0.2 eV would, in the case of symmetric coupling
to the leads, correspond to a shift of the dI/dV peak in the experiment by
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about 0.4V which is comparable to the observed experimental variations of
0.3V . Since, near the Fermi energy, the transmission has a large slope in our
calculations, the zero bias conductance can depend on the type of binding in a
sensitive way. Depending on the type of coupling, the zero bias value can vary
by a factor of four. But again, the transmission remains on the same order of
magnitude, ruling out the bond type as a source of the overestimated theoret-
ical conductance. On the other hand the changes due to bonding type can be
an explanation for the different zero–bias conductance values obtained from
consecutive measurements after opening and reclosing the molecular break
junction contact. Typically these vary by a factor of 2–3 [139], which is in
good agreement with our theoretical findings for the variations due to differ-
ent couplings.

6.5 Conclusions

To summarize our findings of this chapter, we have shown that theoretical
transport calculations based on DFT have converged to one result. In the
case of benzene, DFT based calculations do not even qualitatively agree with
measurements. On the other hand, for the larger symmetric, anthracene–based
molecule, qualitative agreement with experimental data is good, whereas quan-
titative discrepancy remain high. In general DFT based calculations overesti-
mate the conductance of organic molecules by several orders of magnitude.

We have shown that neither variations in the microscopic geometry of the cou-
pling to the electrodes nor differences in the bond type between gold and sulfur
do have a large influence on the conductance. Therefore, deviations from the
geometry assumed in Fig. 6.6 in the actual experiment do not offer a plau-
sible explanation for quantitative discrepancy of several orders of magnitude
between experiment and DFT based transport calculations.

In principle, it is conceivable that virtually all experiments on the conductance
of organic molecules are affected by dirt, e.g., oxygen chemically bound to
the surface of the electrodes close to the contact region, that could reduce
the conductance substantially. While this is a logical possibility, the sum of
experimental evidence is not in favor of this interpretation, see also chapter 10.

Therefore, we will have to resort to more fundamental considerations to resolve
this open question. In the next chapter we will present our considerations on
the applicability of ground–state DFT to transport in molecular structures in
general and will argue, in which cases and for what reasons it can fail.
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Chapter 7

Exact description of transport
within TD–DFT and
Landauer–Büttiker theory for
interacting electrons

In this chapter, we will present how it is possible to obtain in principle exact re-
sults for the conductance of mesoscopic systems in non–equilibrium using time–
dependent Density Functional Theory and the appropriate non–equilibrium
exchange–correlation functional. But first, we will discuss shortly, how differ-
ent approximations made for the single particle Greens–function, i.e., LDA,
Hartree Fock, or GGA influence the calculated conductance.

7.1 Transport properties in LDA and Hartree

Fock

Before presenting our results on how to obtain in principle exact results using
time–dependent DFT, it is instructive to compare results for the transmission
curves based on different approximate single–particle theories.

One might perhaps suspect that, with increasing sophistication in the func-
tional, the quantitative discrepancy between experiment and theory decreases.
Comparing Hartree–Fock calculations with DFT based calculations, we will
gain some insight into how large the self–interaction corrections as well as
the contributions from correlation are. Again using the paradigmatic system
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benzene-1,4-di-thiol, we have conducted electronic structure calculations con-
sidering several different levels of correlation. We used the following methods:

• extended Hückel:
Extended Hückel calculations are tight binding calculations that only
include the hopping to the next neighboring atom sites in the Hamilto-
nian, when calculating the electronic structure. The calculation is not
self–consistent. The coupling constants are taken from a database, ob-
tained from DFT calculations.

• Equilibrium DFT; GGA (BP86) functional:
For comparison, we added the data from the full DFT calculation as de-
scribed above in §6.1. From the DFT calculation we gain information on
the diagonal elements of the Greens–function as

∫

dE − 1
π
ImG(r, r, E) =

n. For the off–diagonal elements — important for transport — we,
strictly speaking, don’t know the physical meaning in the general case.

• Hartree–Fock:
By using a Hartree–Fock calculation, we avoid the errors from the un-
physical self–interaction, present in DFT functionals. But at the same
time, correlation effects are not described. Hartree–Fock gives the best
single slater determinant approximation for the electronic ground state.
It is the best estimate for the full Greens–function, including the off–
diagonal matrix elements.

Our results are depicted in fig. 7.1. To facilitate the comparison to Hartree–
Fock data, all calculations were performed with gold pyramids of 14 atoms each
in the extended molecule as parts of the contacts to account for the coupling
to the leads. This reduced number of gold atoms was necessary as Hartree–
Fock calculations become numerically too costly for larger systems. In order
to estimate the influence of this restriction on the DFT results, the data for
pyramids of 55 atoms each is included as well.

The results from the DFT calculation, performed as described in the sections
above (pyramids of 55 gold atoms as contacts, . . . ) are shown as a solid
line. The DFT calculation with pyramids of 14 gold atoms is depicted in blue
(dot–dashed). Compared to the other methods, DFT gives by far the highest
conductance.

For the simplest of the three approximations, the extended Hückel calculation,
we obtain the lowest conductance. At the Fermi energy, conductance is about
3 orders of magnitude smaller.

The description closest to experiments seems to be given on the basis of
Hartree–Fock, depicted as a dotted curve. Absolute conductance levels are
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Figure 7.1: Benzene-di-thiol. Influence of the level of correlation in the elec-
tronic structure calculation on the conductance. Displayed are our results for
the transmission obtained from Hartree–Fock (dashed, red), extended Hückel
(dotted, brown) and DFT (dot-dashed, blue) calculations for the central clus-
ter. Pyramids of 14 gold atoms per side were added for the calculation of
the extended molecule. For comparison, we did also plot the calculation with
pyramids of 55 gold atoms (solid, black) as described in §6.1.

much closer to the experimental results (see §6.1) which is ascribed to the
level broadening being much weaker than in DFT.

This can be understood in two ways:

a) by looking at the Greens–function of the system. As described above,
Hartree–Fock is the best effective single particle estimate for the elements of the
Greens–function, including the nondiagonal ones, which are needed to describe
the transport properties. On the other hand, in DFT only the diagonal matrix
elements have a physical meaning by their connection to the electron density,
given exactly by DFT. The physical meaning of the nondiagonal elements of the
Greens–function obtained from DFT is not known. We know, that Hartree–
Fock gives more localized states than DFT, where the systems tend to be more
metallic. This results in a higher conductance in the DFT case.
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b) by studying the errors made by using equilibrium DFT. The real many–body
wave–function of the system is no single Slater determinant, but in the present
DFT calculations we effectively assume it to be a Slater determinant of Kohn–
Sham states. The best estimate for the ground–state (including its spatial
properties) based on a single Slater–determinant is given by Hartree–Fock. By
using DFT and assuming a single Slater determinant, we, in a sense, mix the
real ground–state with excited states, which most likely are less localized. This
results in an overestimation of the broadening.

Curves from different DFT functionals, like PBE or PW91 (see §4.7) instead
of the used Becke Purdue functional (BP86), which we do not plot here, do
not change the result in a significant way.

Hartree–Fock conductance values are closer to experiment than DFT based
calculations, but on the other hand, recall that in Hartree–Fock, correlation
physics is missing. This can result in a significant shift of the resonances
compared to their experimental values.

Conclusion

Deficiencies inherent to current DFT functionals, e.g., the self–interaction
problem, are one of the reasons for the strong overestimation of the peak
broadening. As a consequence, With the Fermi energy close to the HOMO
and LUMO of the calculated molecules, DFT predicts conductances of too
metallic character. The position of the peaks may, on the other hand, be cor-
rect. Hartree–Fock treats self–interaction correctly (see §4.7.3), so the level
broadening is less overestimated but this is at the cost of wrong peak positions
(as correlation physics is missing in Hartree–Fock).

As Hartree–Fock is numerically very expensive for larger systems, DFT remains
the only choice for transport calculations of large systems right now. We will
thus have to look at ways to circumvent the problems inherent to the present–
state DFT based calculations. This will be the topic of the next sections.
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7.2 Exact transport formalism using

TD–DFT1

Currently, ground–state density functional theory in combination with the
Landauer–Büttiker formalism is the most widely used approach to numerical
transport calculations for single molecule junctions [66–68, 72, 73, 132–137].

Despite this enormous effort, a quantitative description of transport for weakly
coupled molecules with a conductance well below the conductance quantum g0

has not been achieved, yet, as we have seen in chapter 6. Indeed, experimental
and theoretical values for the zero bias conductance of organic molecules differ
by one to (more commonly) three orders of magnitude [11, 72, 138, 145, 146].

We have seen in chapter 6, that there are large quantitative, and, in the case of
benzene even qualitative, problems in the description of transport by ground–
state DFT in the scattering approach. Most likely, geometric changes alone
can not explain the discrepancy between theory and experiment, we believe
the problems are also conceptual.

In the chapter on DFT, chap. 4, we learned that ground–state Density Func-
tional Theory does in principle give us the exact density, but not necessarily
the wavefunction or transport characteristics. The ground–state DFT based
scattering approach is motivated by the tremendous success of DFT in many
systems: even though DFT in the LDA or GGA approximation in principle
does not need to, it gives, e.g., good results for the ground–state electron den-
sity and bond geometry of many molecular systems even though these systems
are far away from the uniform electron gas.

In the following, we will present how we can obtain in principle exact results
for the current from time–dependent Density Functional Theory (TD–DFT).

Time–dependent DFT, by construction, gives us the exact time–dependent
density, n(x, t), of an interacting many–particle system, provided, the exact
exchange–correlation functional is known. From the density, it is easy to obtain
the time–dependent longitudinal current, j(x, t), via the continuity equation

∂j(x, t)

∂t
+ div j = 0. (7.1)

This is a very powerful idea, since TD–DFT is valid for arbitrary strength of the
external applied potential and is in principle exact, if we know the appropriate
exchange–correlation functional. In addition, it is possible to include electron–

1The results in this subsection have been obtained in collaboration with K. Burke, Rut-
gers, NJ.
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lattice interaction in this picture, a formalism is currently being developed,
see [147].

As the full non–equilibrium exchange–correlation functional is a very compli-
cated object, we will focus in the following on the linear response regime. This
will make an analysis of the differences to equilibrium DFT easier.

The conductivity σkl of the time–dependent system in linear response is defined
via

jk(x, ω) =

∫

dx′ σ(x,x′, ω)klE(x′, ω)l (7.2)

with the local electric field, E(x, ω) given by

E(x, ω) = Eind(x, ω) + Eext(x, ω). (7.3)

It has two contributions, the externally applied electric field, Eext(x, ω) and
the induced field, Eind(x, ω).

We can relate this now to the Kohn–Sham formalism: there, the effective
single–particle potential,veff, is given by

veff = vext + vH + vxc (7.4)

with the external potential, vext, the Hartree term, vH , and the remaining part
incorporated in the exchange–correlation potential, vxc.

Thus, we can now define a Kohn–Sham conductivity, σKSkl , via

jk(x, ω) =

∫

dx′ σKS(x,x′, ω)kl (Eext,l(x
′, ω) + EH(x′, ω) + Exc,l(x

′, ω)) (7.5)

The effective electric field within the Kohn–Sham picture thereby consists of
the external contribution, El,ext, the induced (Hartree) contribution, El,ind, and
the exchange–correlation field, EXC,l.

In the “standard” approach to transport, it is the conductance based on this
quantity σKS that is calculated:

GKS =

∫

dx⊥ dx
′
⊥x̂kσ

KS(x,x′, ω)klx̂l (7.6)

The total current, I, is related to the Kohn–Sham conductance, GKS, via the
effective Kohn–Sham voltage drop V KS, eq. 7.7.

How big are the differences between G and GKS

An important open question is, how big the differences between the Kohn–
Sham conductance, GKS, and the exact conductance, G, actually are. As we
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do not know the exact form of the exchange–correlation functional, no exact
answer is possible.

But a qualitative discussion can be done. We will now present a one-
dimensional example to analyze the differences. In 1 D the current, I, can
be written as

I(ω) = GKS

∫

dz (Eext(z, ω) + Eind(z, ω) + EXC(z, ω)). (7.7)

in terms of the effective Kohn–Sham system, with the electric field contribu-
tions as described above.

Alternatively, the current takes the form

I(ω) = GV, (7.8)

where the measured voltage is

V =

∫

dz (Eext(z) + Eind(z)). (7.9)

Note that this measured voltage is different from the effective voltage drop
that is felt by the Kohn–Sham particles, due to the long–ranged exchange–
correlation contributions (EXC).

We can now calculate the difference for the conductances of the two descrip-
tions, which yields

∆G = G−GKS =
GKS

V

∫

dz EXC(z, ω). (7.10)

How big is this difference?

The exchange–correlation field of the Kohn–Sham system should give an ad-
ditional contribution to the screening of the externally applied field. If this
screening is efficient, the conductances can differ strongly. G can be much
smaller than the Kohn–Sham value GKS.

From the results of chapter 6 we know that the difference indeed can be large for
molecular systems like benzene, where measured conductance and conductance
calculated in the scattering approach differed by several orders of magnitude.
Let us now look at the size of the exchange–correlation field within different
approximations for the exchange–correlation functional.

Within a local density approximation (ALDA in TD–DFT), there exists a
simple relationship between the exchange–correlation potential, vXC , and the
exchange–correlation field, EXC

EXC = −∂zvXC (7.11)
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So, the difference is just the difference between the exchange–correlation po-
tential on the right and on the left.

G−GKS =

∫

dz EXC(z) = −vrXC + vlXC . (7.12)

As, within LDA, the vl,rXC just depends on the local density,

vALDAXC (z) = vALDAXC (n(z)) (7.13)

and the electron densities nl,r are the same on both sides, the contribution is
zero.

∆GALDA = 0. (7.14)

This means, using time–dependent DFT within the adiabatic local density
approximation (ALDA) gives exactly the same result as equilibrium DFT. In
this approximation we gain nothing in using TD–DFT. Within GGA the result
is the same. Only long–range corrections in the exchange–correlation potential
make a difference:

In DFT, the Hartree term of the Coulomb interaction contains an unphysical
self–interaction term (see §4.7.3). This has to be canceled by the exchange part
of the exchange–correlation potential, which therefore has a long–range con-
tribution. In exact exchange, this is done correctly, but not in GGA or LDA.
So, long–range contributions exist already in the equilibrium case. For small
systems like benzene, we have seen, when comparing Hartree–Fock (where ex-
change is exact) and equilibrium DFT (§7.1), that these can account for a large
correction.

There are other long–range contributions as well, that are not contained within
the equilibrium approach. One extra term is described in [148] for large fre-
quencies and slowly varying density. This extra contribution is due to the
viscosity and elasticity of the electron fluid. We are currently working on
implementing these corrections.

7.3 Time–dependent DFT in the quasistation-

ary limit and scattering formalism

The Landauer–Büttiker formula for the transmission in the regime of linear
response and zero temperature given by eq. (3.32)

T (E) = Tr [ΓLG
r
CΓRG

a
C ] (7.15)
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holds for interacting systems if we use time–dependent DFT and if certain
assumptions are beeing made (see below). We will demonstrate this in the
following.

We will first introduce a concept how to construct a regime of quasistatic
non-equilibrium, where we can use time–dependent DFT to calculate the con-
ductance and obtain in principle exact, quantitative results.

For TD-DFT the Runge–Gross theorem, described in §4.10.1, states that the
time evolution of any two–body Hamiltonian of an electronic system in an ex-
ternal time–dependent potential can be calculated by solving a corresponding
single–particle problem in an appropriate effective potential, Veff, via

−i
d

dt
Ψn(x) = (−

1

2m
∇2 + Veff(x))Ψn(x) (7.16)

where we use the abbreviation x = (x, t) and the effective potential is given
by

Veff(x) = Vi(x) + VH [n(x)] + Vxc[n(x)] + Vext(x). (7.17)

Vi(x) denotes the ion–core potential from the Born–Oppenheimer approxi-
mation. The Hartree potential VH [n(x)] as well as the exchange correlation
potential Vxc[n(x)] are functionals of the time–dependent density and Vext(x)
represents the external probing field, e.g. the applied voltage. In addition to
the obvious explicit time dependence of the effective potential, Veff , caused by
the time–dependent probing field, an implicit dependence arises as Veff [n(x, t)]
is a functional, in general nonlinear and nonlocal in time and space, of the
density n(x, t).

For our derivation, we will now discuss the following setup: a molecule is
placed in between two leads, described by the effective single–particle equation,
eq. 7.16, in an external perturbation potential Vext(x, t) that is switched on at
time t = t0 and which is time–independent thereafter:

Vext(x, t) = Vext(x)Θ(t− t0). (7.18)

The system is in thermal equilibrium at T = 0 before the perturbation is
switched on.

This motivates us to characterize the reservoirs by their occupation numbers
fn obeying a Fermi–distribution. Then, the density can be expressed with the
Keldysh Greens–function

G<
V (x, x′) =

∑

n

fnΨn(x)Ψ
∗
n(x

′) (7.19)

where the time evolution of the wavefunctions Ψn(x, t) is given by eq. 7.16 as

n(x) = G<
V (x, x). (7.20)
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For applications to molecular electronics it is useful to regard the special case,
where the external potential Vext creates a monotonous electrical potential drop
from the potential V0 in the left lead far away from the molecule to potential
Vext = 0 far within the right lead.

In response to this potential drop a current will be created. In the initial pe-
riod we will observe transient behavior but after the perturbation has acted for
a sufficiently long period of time, the current and the density will be quasis-
tationary for a parametrically wide time interval. This situation is then equal
to the one, the Meir–Wingreen formula was derived for. At much larger times,
determined by the size of the reservoirs, the potential drop will have decayed
to zero and the current will stop to flow as the potential will be homogeneous
again.

Formally this can be translated into performing the limits for system size and
time elapsed after switching on the perturbation in the following way:

• First, increase the size of the reservoirs to infinity

• Then, perform the limit t0 → −∞.

As we are only interested in the long–time behavior (the quasi–stationary
period) the details of how the perturbation is switched on do not influence the
result. The corresponding memory will be completely erased in the reservoirs
by the time we are looking at the quasistationary current.

Before presenting the method for calculating the current, we will elaborate
some more on the conditions required to assume the system to be in a quasis-
tationary state, as this is not that straightforward.

In fact, the density for example may not become stationary if the memory of the
switch–on process is preserved by some existing conserved quantities. This can
be illustrated using the following example: a molecular contact, where current
flows from a left reservoir to a right reservoir as described above: immediately
after the external potential has been switched on, the current will start to
flow. It will be accompanied by a propagating density wave. This is due
to momentum conservation and will prevent the density to become strictly
time–independent in the entire system.

But as we are interested in a formulation of transport in terms of incoming
and outgoing scattering states, we only need to know, whether we are allowed
to approximate the occupation of the incoming waves with wavevector k by a
Fermi–Dirac distribution with a time–independent temperature and chemical
potential. For non–interacting lead electrons, this is certainly true as in that
case the incoming waves are completely decoupled from the outgoing ones. If
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the electrons in the leads are interacting, the situation becomes much more
complicated: for instance, the outgoing, propagating modes can interact with
the incoming scattering waves whose distribution can be modified. This would
then have an effect on the current in first order in the applied external voltage.
Moreover, it is known that the exact current exchange–correlation functional
has terms proportional to the current density, which are long–ranged. It is not
known, and certainly not unconceivable, that also these are going to modifiy
the Fermi–Dirac distribution of the incoming scattering states.

One of the basic assumptions underlying the scattering approach is, that the
conductivity of the leads is so large that the voltage drop occurs only in the
vicinity of the molecule with its contacts. This then implies an almost homo-
geneous chemical potential within the leads, but it does not fix its value, i.e.,
the potential in general does not need to be identical to the experimentally
observed one. For non–interacting electrons this is clearly true, but for the
Kohn–Sham system this is not necessarily the case (see previous section).

Now, we will give an argument how we can actually calculate the current in
terms of scattering states under the assumption that the occupation of the
incoming scattering states is Fermi–Dirac with some chemical potential µL,R.
Their values can (in general) not be obtained from a stationary calculation.
Instead a full time propagation is necessary.

We have just demonstrated that the time–dependent Kohn–Sham equations
can describe a quasi–stationary limit, in which the exchange–correlation func-
tional is time–independent. Thus the solution of the quasi–stationary Kohn–
Sham equations will equip us with scattering states, that in turn may be used
to construct G<, in precisely the same way that has been adopted in the
non–interacting case (§3.2.3):

G<(x,x′) =
∑

nL,nR

fLΨnL(x)Ψ∗
nL(x

′) + fRΨnR(x)Ψ∗
nR(x′) (7.21)

where the Kohn–Sham states ΨL,R(x) represent the scattering states in the
quasistationary non-equilibrium situation. Their zero temperature occupation
numbers are given by the Fermi–Dirac distributions fL,R of the respective
reservoirs.

As has been done in the non–interacting case (see §3.2.3), it is possible to
derive an equation for the Keldysh Greeen’s–function, equivalent to 3.37 in an
analogous way for the fully interacting system

G<
V = iGV (fLΓL + fRΓR)G†

V . (7.22)

Using this expression and the corresponding retarded Greens-function GV , we
can obtain an analogous equation for the dc–transmission
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T = Tr(ΓLGVΓRG
†
V ) (7.23)

where the retarded Green’s–function is defined in the usual way,

GV (E) = (G−1
0V −ΣL −ΣR)−1, (7.24)

and the unperturbed Greens–function of the central cluster is given in its
Lehmann representation

G0V (x,x′, E) =
∑

n

Ψn(x)Ψn(x
′)

E − En + iη
(7.25)

using the Kohn–Sham states,Ψn(x), obtained from the self-consistent solution
of the Kohn–Sham equations (§4.10) in the presence of a finite current.

This result constitutes a generalization of the Landauer–Büttiker formula to
interacting electron systems.

Meir and Wingreen [65] already derived this expression for the special case of
proportional couplings Γ, where ΓL and ΓR differ by a constant factor only. But
we emphasize that this condition proved to be extremely restrictive, whereas
the formula obtained by us is now valid in the general case. The condition of
proportional couplings implied, that every atom of the molecule was coupled
in precisely the same way to the left lead as it is coupled to the right lead.
Given the fact that physical couplings decay with increasing spatial distance,
the condition of proportional couplings is violated for every realistic system
with finite dimensions.

Remarks concerning the ingredients

• Defining the extended molecule and the Self–Energies

As in the noninteracting case, the self energies ΣL,R account for
the coupling of the molecule to the leads. In the interacting case,
it is well known that the self–energies of the real Green’s–function
of the molecule plus leads incorporate sophisticated many–body
effects, for example Abrikosov–Suhl resonances if we are in the
Kondo physics regime (see, e.g., [98]). So, we again have to pay
attention to including enough gold atoms in the extended molecule

to ensure that all effects of interest are included in G0V , already.

• Assumptions: T → 0, ω → 0, and linear response

We have derived expression 7.23 in the scattering picture under
some assumptions:

We restricted ourselves to the condition of vanishing temperature
and frequency in the linear response regime. Under these restric-
tions, scattering is energy conserving and therefore an effective
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single particle description of transport using scattering states is
possible.

But if we release these constraints, the incoming electrons can ex-
change energy with the molecule and thus qualitatively new phe-
nomena can occur. The scattering problem will then, in general,
become far more complicated and it will perhaps not be possible
to treat it in an effective single–particle approach any more.

One example for such an additional complication are memory
effects, as an incoming electron will find the molecule in a
state caused by the interaction of preceeding electrons with the
molecule.

However, using the TD–DFT formalism in general to obtain the
current via the time–dependent density and the continuity equa-
tion does not have these restrictions.

• Time–independence of the exchange–correlation potential

We have assumed the exchange–correlation potential V V
xc to be

time–independent in the quasistatic non-equilibrium situation.
Logically, the fact that observables are stationary does not nec-
essarily imply that the exchange–correlation functional itself is
stationary. In fact, examples are known, where this is not the
case.

Here, we will give an explicit construction of V V
xc valid in the linear

response regime, that indeed shows, that it is independent of time
in our case.

The deviation of V V
xc(x, t) from the equilibrium V 0

xc(x) can be writ-
ten as

δVxc(x) =

∫

d3x′ dt′ fxc(x,x
′, t− t′)e−η(t−t

′)δn(x′, t′) (7.26)

where the exchange–correlation kernel is given by

fxc(x,x
′) =

dVxc(x)

dn(x′)
. (7.27)

This kernel produces a linear density response of the Kohn–Sham
system, which is by construction identical to the true interacting
density response. Here, η is the usual convergence factor known
from linear response theories. This takes into account environ-
mental dissipative effects not included in the exchange–correlation
kernel fxc. For stationary densities, n(x, t)→ n(x), the time inte-
gral in eq. (7.26) exists, so that a well defined asymptotic behavior
of the exchange correlation potential as

δVxc(x) =

∫

dx′ δn(x′)dt′ fxc(x,x
′, t− t′)e−η(t−t

′) (7.28)

is ensured.
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Chapter 7. Exact description of transport within TD–DFT and
Landauer–Büttiker theory for interacting electrons

108



Chapter 8

Symmetry and transport

8.1 Motivation

Even though quantitative results from DFT–based transport calculations are
difficult to obtain, qualitative features can be given quite reliably. In this
chapter, we will discuss as an example the effect of symmetry on transport.
DFT does give the exact symmetry properties so we expect to be able to obtain
qualitatively correct results.

Molecules can have exact symmetry properties that are related to their struc-
ture. This can lead to new selection rules and additional physics compared to
quantum dots, where these effects cannot be observed. An example: conduc-
tance takes place via single, hybridized orbitals that extend over the combined
system of molecule plus neighboring gold atoms, thus connecting left and right
lead in the scattering picture. Changes in the symmetry of the system can
have a pronounced influence on the conductance by modifying the orbitals
that carry the transport and thus their transparency. Again, we will illustrate
this using the symmetric, anthracene type molecule from section §6.2.

8.2 Para and meta couplings and the conduc-

tance

The coupling of the symmetric, anthracene type molecule from §6.2 (see also
fig. 8.1), to the gold via the sulfur atom can be done in several ways by placing
the sulfur atom at different positions on the outermost benzene ring, resulting
in different symmetry properties of the molecule.
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Chapter 8. Symmetry and transport

In the molecules investigated in the chapters above, the acetyl–protected thiol
end–group was always positioned on the terminal benzene rings in the para
position, i.e., aligned with the symmetry axis of the molecule, see fig. 8.1.

x

y

z

Figure 8.1: Symmetric, anthracene type molecule of §6.2 with the sulfur (yel-
low) in para position on the terminal benzene rings. The contact to the gold
is again via covalent bonds formed between the sulfur atom and the gold elec-
trodes.

We will now first analyze the symmetry properties of the bare molecule: the
bare molecule is highly symmetric (d2h symmetry). In particular, it has three
mirror planes (x–y, y–z, x–z) and current flow is along the axis, where two
mirror planes intersect (x–axis).

If we look at the highest occupied molecular orbital (HOMO) and the states
close in energy to it, they should be symmetric with respect to the x–z plane.
In the antisymmetric case, they would have nodes along the x–axis, resulting
in a localization of the π–system, which would be costly in energy.

If we now add the sulfur in the para position, as depicted in the figure 8.1
the situation does not change: the sulfur respects all symmetries of the bare
molecule and thus can be relatively strongly coupled to the π–system. We
would therefore expect the conductance to be large in this case. The π–system
could extend into the neighboring gold atoms.

Using the symmetric anthracene type molecule, the coupling position was var-
ied: a second molecule, were the sulfurs are positioned in the meta position(see
fig. 8.2), was synthesized by M. Elbing and M. Mayor [151] at our institute.
With the sulfur in the meta position, the situation changes strongly: the sulfur
atom breaks most of the symmetries of the molecule. Two of the mirror planes
(x-z and y-z) are no longer present.

Now, the sulfur can only couple to a part of the molecule, if the structure of
the HOMO is completely changed. Strong mixing of symmetric and antisym-
metric orbitals would be necessary. But this cannot happen, as symmetric
and antisymmetric states have very different energies. If the HOMO keeps
the symmetry of the bare molecule—as changing it would be energetically
expensive—the coupling between sulfur and HOMO can only be weak. In con-

110



8.2 Para and meta couplings and the conductance

Figure 8.2: Molecule similar to the symmetric molecule of §6.2. But now, the
sulfur (yellow) is attached in the meta position on the terminal benzene rings.
The contact to the leads occurs via covalent bonds between the sulfur atoms
and the gold electrodes.

clusion, the sulfur will only couple weakly to the molecule and we expect the
conductance to be low. Electrochemical investigations [152] showed, that the
conjugation of the π–system indeed is reduced in the meta position.

8.2.1 Numerical conductance calculations

In order to see, whether in agreement with our reasoning above, the change
in symmetry reduces the conductance, we performed DFT calculations. For
our transport calculation, the extended molecule in the DFT run consisted
of the actual molecule itself plus two fcc gold pyramids of 55 atoms each, as
described previously in the section 6.2 above. The structure of the molecule
and the sulfur bond to the gold was allowed to relax completely.

Results for the molecule with sulfur in the para position were already discussed
above (see §6.2), were we considered different coupling types (sulfur coupling
to 1, 2 and 3 gold atoms). In the meta case, we also considered two different
bonding variants, the sulfur coupling to two, and to three gold atoms.

Our findings are presented in fig. 8.3. In the upper panel, the data of the
para coupled molecule, as presented in §6.2, is shown. The different traces
correspond to the sulfur coupling to one, two, and three gold atoms. The
transmission is plotted in units of the quantum of conductance, g0. The lower
panel then displays our conductance calculations for the meta coupled variant.
The transmission for the S—Au2 coupling is depicted with black4, the S—Au3

coupling as blue ×.

Comparing the transmission of the para and meta calculations we observe,
as expected, a suppression of the transmission in the meta case. Looking at
the transmission at the position of the first peak, E = −5.3 eV and E =
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Figure 8.3: Influence of symmetry on the conductance. Upper panel: Trans-
mission over energy for the symmetric, anthracene–type molecule with the
sulfur attached in the para position. The different traces correspond to the
sulfur coupling to one (red, ◦), two (black, �), and three (blue, ♦) gold atoms.
Lower panel: same as upper panel with sulfur in meta position. S coupling to
two (black, 4), and three (blue, ×) gold atoms. The insets depict the molecule
the calculation applies to.

−5.1 eV respectively, conductance in the meta case, 0.1 g0, is about an order
of magnitude smaller than the value for the para coupled molecule, 1 g0. In
accordance with this, in the meta case, the peak is very narrow, broadening
due to coupling to the leads is strongly suppressed.

If we now look at the differences caused by the sulfur–gold bond type in both
cases, a second interesting conclusion can be drawn: Whereas in the para–
coupled molecule, the different bond variants resulted in shifts of the peak
positions as well as modified peak shapes (see §6.4 above for a more detailed
discussion), the influence for the meta–coupled molecule is smaller.
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8.2 Para and meta couplings and the conductance

Considering the peak positions, we observe that in the para case, all peaks are
shifted to slightly lower energies compared to the meta coupled molecule. This
is caused by a stronger hybridization of the HOMO and LUMO with the states
of the gold in the higher conducting para molecule, resulting in a lower energy
of these orbitals. The different couplings cause only slight modifications in
the transmission behavior at the resonances when the sulfur is in the meta
position.

8.2.2 Structure of the molecular orbitals

To further support our analysis of the transport properties, we can take a
direct look at the different molecular orbitals that contribute to the conduc-
tance in both systems. The differential conductance peak slightly below the
Fermi energy corresponds to the highest occupied molecular orbital (HOMO),
therefore we plot the HOMO for the para–coupled molecule in fig. 8.4.

Figure 8.4: Highest occupied molecular orbital (HOMO) for the symmetric
molecule of fig. 8.1, with the sulfur atom in the para position. Gold electrodes
are depicted in yellow, the sulfur is displayed in green. The colors of the
orbitals visualize the sign of the wavefunction.

In agreement with the symmetry analysis above, the structure of the conju-
gated π–system, covering the benzene ring extends to the sulfur atom and
beyond well into the leads. This results in a high transparency of this orbital
for transport and thus a high conductance at the HOMO energy.

In the meta–coupled variant of the molecule, the situation is completely dif-
ferent. The HOMO is shown in fig. 8.5.
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Chapter 8. Symmetry and transport

Figure 8.5: Highest occupied molecular orbital (HOMO) for the symmetric
molecule of fig. 8.1, with the sulfur atom in the meta position. Gold electrodes
are depicted in yellow, the sulfur is displayed in green. The colors of the
orbitals visualize the sign of the wavefunction.

The reduced symmetry in the meta case results in a restriction of the conju-
gated π–system to the benzene ring only. The π–system is largely decoupled
from the sulfur as well as the adjoining gold atoms. This explains the low
transparency of the HOMO and in consequence the only weakly developed
peak in the differential conductance.

8.2.3 Experimental results

The experimental data indeed shows the expected decrease in conductance,
when the sulfur is attached in the meta position. In fig. 8.6 we present a
measured current–voltage characteristics of the meta–coupled molecule [11,
153].

The red curve shows current over voltage, whereas the differential conductance
is plotted in blue. Different traces correspond to consecutive voltage sweeps in
the experiment. For comparison, data for the molecule with sulfur in the para
position, which we have already discussed in section §6.2, is plotted in fig. 8.7.

Both I–V curves exhibit a conductance gap for low bias voltages and an onset of
the conductance at about 0.5V applied bias voltage. Looking at the differential
conductance for an applied bias of about 1V , a pronounced difference is visible:
the meta–coupled molecule exhibits a value of about 0.02µS, corresponding
to about 2.5 · 10−3 g0, whereas the para–coupled molecule has a differential
conductance of 0.2µS ≈ 2.5 · 10−2 g0. The meta–coupling in this example
reduces the differential conductance by one order of magnitude, which is in

114



8.2 Para and meta couplings and the conductance

-1 -0,5 0 0,5 1

U [V]

-0,02

0

0,02

0,04

0,06

0,08

0,1
I [

µA
]

-0,02

0

0,02

0,04

0,06

0,08

0,1

dI
/d

U
 [µ

S
]

Figure 8.6: Conductance measurement of the symmetric molecule of fig. 8.2,
with the sulfur in meta position. Red: current over applied bias voltage in µA.
Blue: differential conductance in µS. Different traces correspond to different
voltage sweeps, [11].

agreement with our theoretical calculations. For the zero–bias conductance
the effect is of similar size: the meta–coupled molecule exhibits a value about
a factor of 10 smaller than the para–coupled molecule.

For all I–Vs measured (approximately 80), the current at 1V varied in the meta
case between 5 and 25nA whereas the values for the para–coupled molecule
ranged between 25 and 150nA, corresponding to a factor of 5 to 30 for the
total conductance at 1 Volt [153].

It is thus clearly visible, that the conductance is strongly decreased by attach-
ing the sulfur in the meta position, supporting our analysis, that the conjugated
π–system is disturbed by breaking the symmetry. The main conclusion to be
drawn is that the symmetry analysis gives a qualitatively correct prediction.
Also, qualitatively our calculations for the meta coupled molecule agree with
the experimental observations, as observed previously for the para case (§6.2).
A low zero–bias conductance is followed by a transmission peak slightly below
the Fermi energy (≈ 5 eV ), at about 5.1 eV , corresponding to a peak in the
differential conductance for a bias voltage of 0.2V .
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Figure 8.7: Conductance measurement of the symmetric, anthracene–type
molecule of fig. 8.1, with the sulfur in para position. Black: current in µA
over applied bias voltage in V . Blue: differential conductance in µS. Different
traces correspond to consecutive voltage sweeps.

8.2.4 Summary

Summarizing, we have gained interesting insights from the analysis of the para
versus the meta coupling:

First, DFT calculations illustrate aspects of symmetry essential for transport
and give a correct qualitative account of the impact of symmetries on transport:

Breaking the symmetry of the molecule by attaching the sulfur in the meta
position significantly decreases the conductance by restricting the conjugated
system to the benzene rings and thus effectively decouples the gold from the
molecule.

Second, this decoupling can strongly reduce the dependence of the transport
properties on the actual microscopics of the sulfur—gold bond. And thus this
could be a method to increase the reliability and reproducibility of current–
voltage curves in break–junction experiments.
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Chapter 9

Three terminal devices:
describing a gate electrode

9.1 Motivation and idea

In the previous chapter we have seen that DFT can be a useful tool in pro-
viding qualitative information on transport—even though large quantitative
discrepancies, e.g., due to missing non–equilibrium effects in the exchange–
correlation functional exist. In this chapter, we will demonstrate that even
based on equilibrium–DFT calculations, crucial information on the transport
properties can be obtained, that are in principle exact.

The idea is, to consider an experimental setup with a tunable parameter.
A prototypical example is a molecule subjected to a gate electrode. Using
the gate voltage as an external parameter, we can study the local change
in the ground–state electron density on the molecule under a changing gate
voltage. From the evolution of the density with the gate voltage we can obtain
information on Coulomb blockade like charging effects. As this conceptually
constitutes an equilibrium situation where there is no current flow, we expect
the ground–state DFT approach to deliver in principle exact results. Their
quality is constrained only by the approximations in the equilibrium exchange–
correlation functional (§4.7). This is a tremendous advantage, as a lot is known
about the equilibrium functional, whereas at present only very little is known
about the quasistationary limit of the non–equilibrium exchange–correlation
functional.

Information pertaining to transport can be deduced by studying the evolution
of the resonances in the transmission characteristics as a function of the ap-
plied gate voltage. Fig. 9.1 shows a schematic level structure for a molecule in
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Chapter 9. Three terminal devices: describing a gate electrode

between gold leads. We assume, the molecule is weakly coupled to the elec-
trodes via the covalent sulfur bonds, i.e., level broadening γ is small compared
to the level spacing ∆ (γ � ∆). By varying the applied gate voltage, we can
shift the levels of the molecule.

U

∆
Ε F

Gate
VG

Figure 9.1: Schematic representation of a weakly coupled molecule with a gate
electrode: level scheme with level spacing ∆, Coulomb charging energy U ,
Fermi level EF . An applied gate voltage, VG, shifts the levels of the “molecular
quantum dot”. The molecule is weakly coupled; level broadening γ � ∆.

When a level crosses the Fermi energy, the level gets occupied (or vacated) by
electrons entering from the leads. The corresponding gate voltage, VG, should,
by virtue of the Hohenberg–Kohn theorems (§4.2.1), be given exactly by equi-
librium DFT. At this value of VG one should observe a peak in the differential
conductance, as a new channel opens up. Thus, studying the evolution of the
levels, we expect to be able to predict the peak positions similar to the case of
the coupled quantum double dot molecule we will study below in chapter 10.

Many important building blocks for functional molecular electronics devices
are of three terminal design, e.g., single molecule transistors. A theoretical
description of a gate electrode is an important prerequisite to study such three
terminal devices theoretically. Interesting questions include the study of trans-
port properties as a function of the gate voltage as well as charging effects,
like Coulomb blockade. Also of interest are possible structural/conformational
changes of the molecule, when a gate voltage is applied. This new and inter-
esting aspect is unique to these molecular devices and absent in conventional
quantum dot systems. New interesting physics can be studied. Also such con-
formational changes might be utilized in the design of single–molecule switches.
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Motivation: experiments

On top of the theoretical motivation there is also a strong experimental drive
that triggers our interest in gated molecular structures. Recently, fascinating
experiments that studied the influence of a gate electrode on the conductance
properties of single molecules were reported [16, 25, 26, 154]. We will now
present three, which we are currently studying theoretically: the first two ex-
periments were conducted using nanogaps fabricated by electromigration tech-
niques (see §2.3). Using a particularly designed molecular system comprised
of an organic ring system with a cobalt atom acting as the “impurity spin”, J.
Park et al. [16] observed a Kondo resonance (see also §2.3). For a similar, but
far less conducting molecule, Coulomb blockade was reported.

Figure 9.2: Coulomb blockade in a single molecule, from [154]: Gate dependent
I–V characteristics of a 5–benzene–ring molecule, studied by Kubatkin et al.
Upper graph: Current over applied gate voltage at 35mV source–drain voltage.
Lower graph: Coulomb diamonds. Conductivity in nS. X–axis: gate voltage;
y–axis: source–drain voltage. In white, the suggested charge state of the
molecule is depicted.

Kubatkin et al [154] observed Coulomb blockade effects in a 5–benzene–ring
molecule, where the rings were connected by carbon double bonds, resulting
in a rigid, planar molecule with a conjugated π–system spanning the molecule.
By applying a gate voltage they could detect Coulomb diamonds in the I–
V characteristics, corresponding to several charge states of the molecule, see
fig. 9.2. The molecule studied did not contain terminal thio–acetyl groups, so
no chemical bond to the gold electrodes was formed. Instead, it is suggested
that the two terminal benzene rings of the molecule lie on top of the gold
electrodes, with van der Waals forces between the surface and the π–system
of the ring being the binding force.

We believe, that this is also the case in the earlier experiment [16] above, as this
results in a strong hybridization of the orbitals of the gold electrodes with the
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orbitals of the molecule and only then, the relatively large conductance neces-
sary for the observation of a Kondo resonance can be achieved. We currently
perform DFT calculations on this molecule, but the somewhat uncontrolled
contact between molecule and electrode make the situation more complicated
to treat numerically.

A third set of recent experiments that we are interested in, is reported by
H. van der Zant et al. [25, 26]. There, the device is based on lithographi-
cally manufactured gold nanocontacts, where the final device gap to place the
molecule in is produced by electrochemically etching the very thin (≈ 15nm)
contact region. This process allows to control the electrode separation with
sub-nanometer precision (see also §2.4.1) in contrast to the electromigration
technique used in the two experiments above. A gate electrode is realized
by structuring the device on an aluminum surface covered with a two to four
nm thick oxide layer. This way, a very close distance of the gate electrode to
the molecule of only a few nanometers can be achieved. This, together with
the thin electrodes, ensures that the screening of the gate field by the gold is
minimized and gate effects can be studied.

Figure 9.3: Gate effect in single molecules: organic molecules studied by
H. van der Zant et al. [26]. The sulfur (yellow) for bonding to the gold elec-
trodes is included in the terminal benzene ring. Carbon: black; hydrogen:
grey.

The two molecules studied, consisted of two and three benzene rings, respec-
tively, that were connected by carbon double bonds. The sulfur atoms for
controlled contact to the gold electrodes were included within the terminal
benzene rings, see fig. 9.3.

Both molecules show a pronounced conductance gap for low bias voltages in
the experiment with an onset of the current at about 0.25 V for the 3–ring
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molecule and 0.5 V for the 2–ring molecule. This supports the idea that we
are in the Coulomb blockade regime, see fig. 9.4.

Figure 9.4: Gate effect in the 3–ring molecule of fig. 9.3. Experimental data
by Kervennic et al. [26]. Differential conductance in dependence of the applied
gate voltage Vg and the source–drain voltage V . Shown are three different
samples. Scale: blue (0) to red (40nS).

When a gate voltage is applied, a strong gate effect can be observed in the 3–
ring molecule. In fig. 9.4, the experimental data for three different samples with
the 3–ring molecule are displayed. All three measurements show a smeared
Coulomb diamond structure: for higher gate voltages, the required source–
drain voltage to arrive at the onset of the current is reduced. However, there is
no repetition of the diamonds. These are outside the experimentally accessible
voltages, as the molecular junctions are destroyed at higher voltages.

Surprisingly at first, no gate dependence can be observed for the shorter, 2–
ring molecule. We will see below (§9.2.2), that screening effects are strong.
The absence of gate dependence in the two–ring case might thus be due to
the small size of the molecule. In consequence, the field does not reach the
molecule effectively and also the charging energy is higher, so that we stay
within the low bias Coulomb blockade gap when sweeping the gate voltage.
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9.2 How the gate is realized within DFT

We will now present, how a gate electrode can be implemented within the
framework of DFT. We will also point out the considerations that have to be
taken into account when choosing the geometry of the system.

9.2.1 Implementation

Within the Density Functional Theory description, we construct the gate elec-
trode using a grid of additional point charges. These are realized as dummy
atoms with a charge, but without basis states. Thus, they just lead to an extra
electrostatic term in the Hamiltonian of our DFT system.

They are placed equidistantly in a grid, see Fig. 9.5. A gate voltage is then
applied by distributing the appropriate charge equally on all dummy atoms.

Figure 9.5: The gate electrode is realized using 49 point charges. The charges
are distributed equidistantly in a grid, depicted in white. The gold electrodes
and molecule (benzene-1,4-di-thiol) are depicted in yellow.

The electrical field caused by these charges will be screened by the cluster
consisting of molecule and parts of the gold electrodes. In a system with
macroscopic leads, the charges on the gate electrode would attract the same
amount of screening charges of the opposite sign from “infinity”. These would
screen the field created by the gate within some screening distance. To account
for this screening in an appropriate way, we have to

• add the same amount of screening charges (with opposite sign), as we
put on the gate dummy atoms, onto the extended cluster.
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• choose the system large enough, so that effectively all screening takes
place within the finite cluster.

If these conditions are satisfied, the screening is (in principle) included exactly
in our calculation. The only approximations are due to the equilibrium DFT
functional used.

The most serious defect is most likely the derivative discontinuity. It will lead
to a smearing of the excess charge evolution on the molecule with the gate
voltage, which is much bigger than the experimental width of the Coulomb
blockade peaks (see §4.5). The peak positions, however, should be given cor-
rectly.

9.2.2 Finding the right geometry

Finding the appropriate geometry that can be used for modeling a gate elec-
trode within the DFT framework is a difficult task. Thereby several parameters
need to be optimized in order to obtain useful results:

• Gate distance, extension and number of point charges

The electric field created by the gate electrode should be homogeneous,
so that the simple picture given in fig. 9.5 applies, and it should be strong
enough to pull one or several charges on the molecule in order to be able
to observe Coulomb blockade related effects.

Our tests showed, that distributing 49 point charges (7 × 7) is sufficient
to model a square gate electrode and to produce a relatively homoge-
neous field suitable to study the molecule benzene, see fig. 9.6. Here we
plot an equipotential surface of the field created by these charges. For
calculations on the molecules of the experiment by van der Zant et al.,
91 (7 × 13) point charges were used.

In an actual experiment, the gate electrode is typically about 2 nm away
from the molecule [26, 154]. A comparable distance is not achievable in
our DFT approach due to several restrictions:

Instead of applying a gate voltage, we put charges on a grid to cre-
ate the electric field. To account for screening requires us to add the
same amount of countercharges to the extended molecule. However, the
amount of charges we can add to molecule plus gold is limited. DFT
calculations converge only for a few (≤ 20) additional electrons on such
a system. As we want to create a field, large enough to pull one or
several electrons on the molecule, by the use of only a few electrons as
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gate charge, the gate needs to be much closer. Test runs resulted in an
optimum distance of about 1.5 gold lattice constants.

Current computer power restricts the system size we can treat in DFT
calculations to about 4000 electrons. This implies that we can include
about 70 gold atoms per electrode in the extended cluster (19 electrons
per gold atom are treated independently within DFT). The screening
has to be accounted for completely within this cluster, and the electron
density at outer edges of the gold blocks should be unaffected by the gate
induced field to avoid finite size effects. This results in a second limiting
factor for the number of additional charges, we can put onto the cluster.

The gate electrode was designed to only cover the area of the molecule
and not the gold electrodes, see fig. 9.5. This also ensures, that the
charges are mostly pulled onto the molecule and not onto the neighboring
gold atoms. In fig. 9.6 we depict an equipotential surface of the field
created by our gate consisting of 49 gold atoms for a contact with a
benzene-1,4-di-thiol molecule. It can be seen that the field reaches the
molecule and is relatively homogeneous.

Figure 9.6: Equipotential surface (4V ) for the electrostatic field created by
the gate. Gate charge +2e. The gate–molecule distance is approx. 1.5 gold
lattice constants.

• Shape and geometry of the gold clusters

The shape of the electrodes is not completely unimportant as it defines
the electromagnetic vacuum the molecule lives in. However, the details
of the electrodes in an actual experiment are not known and most likely
vary from sample to sample. This allows us to choose the form of the
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electrodes to our convenience. Therefore, in principle, is a large choice
in the actual shape and geometry of the gold clusters to be included in
the molecule as parts of the leads.

However, actual choices are very limited due to practical considerations,
and picking a feasible one turns out to be very difficult. The reasons
behind this apparent difficulty are manifold:

First, the geometry has to be chosen in a way that the electrodes do
not shield the electric field from the molecule. Also, no point of the
gold clusters in the extended molecule should be closer to the gate than
the actual molecule, as otherwise charge would mostly accumulate on
these gold atoms instead of on the molecule. For this reason we discard
our standard geometry using pyramids. When the appropriate (relaxed)
bond angle between sulfur and gold is satisfied, the extended molecule
does not have a surface parallel to the gate and screening of the field as
well as charge accumulation on the gold are a problem, see fig. 9.7.

Figure 9.7: Gate electrode: original geometry as used for our transport cal-
culations in chap.5. The extended molecule consists of the benzene-di-thiol
molecule plus two 55 atom gold pyramids, depicted in yellow. Screening prob-
lems: the additional screening charge, attracted by a gate charge of −2 e−, is
depicted in blue.

Tilting the pyramids to obtain a system, where one side of each pyramid
lies in a common plane with the molecule, also is no solution. Then, the
gold atoms of the two pyramids come very close to each other which leads
to a second difficulty: direct coupling between the two clusters occurs,
effectively short–circuiting the molecule when the distance between the
gold clusters is too small.

These requirement alone would not be too complicated, but third, the
actual geometry chosen should also be one, where the electronic structure
in the DFT calculation converges and gives a physically appropriate,
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i.e., similar to bulk gold, result. In other words, the Fermi energy and
density of states close to EF of the gold clusters should resemble bulk
gold values. For some highly symmetric geometries for example, the
symmetry leads to artificial degeneracies which results in an unphysically
large level spacing. Many trial systems where we used, for example, two–
layered rectangular or triangular Au(111) gold sheets, did not converge.

The system that finally turned out to be appropriate consists of two fcc
gold blocks, constructed of layers of 3×3 and 4×4 gold atoms, respec-
tively. A sample cluster is shown above in fig. 9.5. In this design, the
screening of the field the molecule is subjected to is easily minimized.
The size of the electrodes is easily scalable by adding additional layers.
Also, the fcc block structure proved to be converging best in the DFT
calculations.

• Size of the electrodes

Figure 9.8: Screening of the gate charge by the gold electrodes. The additional
screening charge pulled on the central cluster by the gate charge (+4 e) is
depicted in red. Molecule and gold atoms are depicted in yellow. Electrodes
consist of fcc blocks of 41 atoms, each.

For the chosen electrode geometry of fcc gold blocks, we tested several
cluster sizes to ensure that finite size effects are minimized in our cal-
culations. Fig. 9.8 shows the screening properties of a system where we
have used clusters of 41 gold atoms each to model the coupling to the
leads. The gate was charged with 4 positive elementary charges, whereas
4 electrons were added to the cluster. The spatial distribution of the ad-
ditional screening charge compared to the ungated system is depicted in
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red. It is clearly visible that most screening takes place in the row of
gold atoms directly adjacent to the molecular bridge. But, at the outer
row of gold atoms we still see some charge accumulation. Thus, a larger
cluster size is necessary.

Using 66 gold atoms per side to form the clusters, consisting of three 4×4
and two 3×3 layers of gold, proved to be sufficient. Screening is done
almost completely by the first three rows of gold atoms. The geometry
used is depicted in fig. 9.9, with benzene–1,4–di–thiol as molecule in
between the contacts.

Figure 9.9: Actual geometry of the electrodes and the gate used for the DFT
calculations. The electrodes consist of 66 gold atoms each, organized in an fcc
block. Electrodes and molecule (benzene-1,4-di-thiol) are depicted in yellow,
the point charges are denoted in white.

• Position of the molecule between the electrodes

The position of the molecule with respect to the gate electrode as well as
with respect to the gold contacts is of critical importance in determining
the electrostatic field, the molecule is exposed to. In gold, the Thomas–
Fermi screening length is of the order of 1 Å, so that electrostatic fields
created by a gate electrode above a narrow gap between two metal sur-
faces are usually screened within the first few atomic layers. Positioning
the molecule between the gold electrodes will therefore result in only
minimal exposure of the molecule to the applied gate field.

This poses a challenging problem to the experimental design as well. In
break–junction experiments, for example, it will be unlikely that any
gate effects can be observed, as the position of the molecule with respect
to the electrodes prohibits exposure to the field: the terminal surfaces of
the open break–junction are usually 50 by 50 nm large and the molecule–
electrode bond forms at an uncontrolled position within this surface, so
that fields will be effectively screened by the electrodes.
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The experimental technique by van der Zant (see §9.1 above) allows to
fabricate extremely thin electrodes and the gate distance to the electrodes
is only about 2 nm. Due to the thin electrodes, chances are higher to
find samples, where the molecule sits at the gate–directed end of the
electrodes so that screening is minimized.

In our model setup, we placed the molecule at the topmost gold layer of
the electrodes to minimize screening effects. To preserve the equilibrium
bond angles between the sulfur and the gold (as discussed in §6.3), we
had to place the molecule slightly above the electrodes. The equilibrium
angles were obtained from DFT calculations, where the geometry was
allowed to relax.

9.3 Results and discussion

As an exemplary case, we have studied the gate voltage dependence of the ben-
zene molecule. In fig. 9.10 several transmission traces have been depicted each
one corresponding to a different value of the gate charge, QG = 0, 2, 4 electron
charges. The most striking impact of the gate voltage on the transmission is,
that it shifts the position of the resonance located at energies ∼ 3 eV above the
Fermi energy (LUMO) to lower values. This is precisely the effect, expected
based on the simple picture explicated in fig. 9.1.

-2 0 2 4
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2e
2 /h

]

gate charge: Q
G
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Figure 9.10: Benzene: impact of a gate charge on the transmission traces.
Depicted is the transmission in 2e2/h over the energy. The different traces
correspond to different gate charges: 0e (solid black line), +2e (blue, dashed
line), and +4e (red, dotted line).

The actual position of the resonance is tied to the spectrum of the unoccupied
Kohn-Sham levels. Therefore, it is not physical and does not necessarily indi-
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cate a true resonance observable in real experiments at that particular energy.
However, when the gate voltage is swept, then this resonance approaches the
Fermi energy. In our example this roughly happens when QG ≥ 6. At the
crossing of the LUMO with the Fermi energy, charge flows onto the molecule,
which is a process that is detected properly by equilibrium DFT. Hence at
the gate voltage, at which the crossing occurs, the true LUMO, the artificial
Kohn-Sham LUMO and the Fermi energy must coincide. As a consequence,
by monitoring the shift of the Kohn-Sham LUMO we can detect the exact
positions of the spacings of the peaks in the Coulomb blockade oscillations.

Clearly, in practical calculations we are limited by the approximations in the
exchange–correlation functional employed. The most serious defect for our
present application is related to the “derivative discontinuity”, which is not
properly accounted for in the standard functionals local in the density, like
LDA or GGA. This implies, that we may be able to give a correct estimate
for the peak position, but its broadening, i.e., at which value of QG the charge
actually starts to flow onto the molecule and correspondingly at which value
the flow really stops, could be vastly overestimated. Our encounter here with
respect to the peak broadening is similar to the situation we have met before
in the context of transmission resonances, see §7.1. As is the case for all DFT
calculations for molecular systems, one needs to gauge the method using a
test set of molecules investigated experimentally, in order to find out for which
classes of molecular systems the corrections to the density functionals that
are available in practice, become small. Therefore, DFT calculations for a
molecule investigated experimentally by van der Zant [26] are under way.

It is also seen in fig. 9.10, that the gate has an impact on the transmission at
energies below EF, which is not properly described by a simple shift of energy
levels. The situation here is more complicated, as the density of states in the
electrodes (d-bands of gold) has pronounced structure at energies 1eV below
EF , cf. fig. 5.3. As a consequence, the molecular levels not only change their
position, but also the way they hybridize with the gold when they are shifted.
This does not happen in the case of the LUMO, because here, the density of
states of the electrodes is nearly constant in the relevant energy window.
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Chapter 10

Transport through a molecular
double dot system

10.1 Motivation

In chapter 9, we have given an example on how to obtain quantitative in-
formation on transport from equilibrium DFT calculations. In the following
chapter, we (ab–)use the underlying idea, applying it to a slightly different, but
closely related problem: we calculate the position of steps in the non–linear
I–V characteristics of a molecular double dot system.

Our specific choice of molecule used in this study has been motivated by re-
cent experiments. The design of the molecular species in the experiment was
directed towards fabrication of a single–molecule diode based on an asymmet-
ric, functional molecule (see fig. 10.3). It will be seen, that a large number
of steps observed in the experimental I–V characteristics can be reproduced
quantitatively by our approach.

In this project, we have benefitted from a particularly intense collaboration
with M. Mayor and M. Elbing (synthesis, INT) and H. Weber, R. Ochs (trans-
port measurements, INT).

10.1.1 The Aviram–Ratner diode

Historically, the field of molecular electronics started out from electron transfer
physics and chemistry [155–157].

In the theoretical description of electron transfer physics, single electrons are
transferred within a molecule from one orbital to another. Often these systems
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Chapter 10. Transport through a molecular double dot system

are modeled as donor–acceptor systems. The electron is transferred from the
electron–rich conjugated system that acts as a donor to a second conjugated
unit, electron–poor, which constitutes the acceptor. The transfer occurs across
non conjugated σ–bonds, that act as tunneling barrier.

In this spirit, Aviram and Ratner [4] proposed in 1974 a Gedankenexperiment
to realize a diode by connecting such a donor–(σ–bond)–acceptor system to
metallic leads. The innovative aspect compared to electron transfer physics
was, that the connection to the leads could support “a continuous sequence of
electron transfer processes”, i.e., a stationary current.

For the setup suggested by Aviram and Ratner, the I–V characteristics of a rec-
tifier was predicted. In short, the idea behind the “Aviram–Ratner approach”
can be described as follows:

They suggested to use electron pulling substituents on one conjugated system
to decrease the π–system electron density and construct the electron–poor
acceptor, and likewise electron pushing substituents on the second conjugated
system were suggested to construct the donor.
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Figure 10.1: Aviram–Ratner diode: schematic representation of the electronic
levels of the two conjugated systems, separated by a tunneling barrier. The
left system acting as a donor and the right system as an acceptor. Occupied
levels are depicted in blue, whereas unoccupied orbitals are printed in green.
The Fermi energy is indicated as a dotted line.

The electron rich donor system will have a highest occupied molecular orbital
(HOMO) higher in energy than that of the acceptor system. In the acceptor
system, the lowest unoccupied molecular orbital (LUMO) will sit just slightly
above the Fermi energy, whereas in the donor system the LUMO will be of
higher energy, see fig. 10.1.

If we now apply a bias voltage, the levels of the two subsystems will move with
respect to each other as depicted in fig. 10.2. On the left hand side, where
we display the blocking direction of the molecule, a high bias voltage will be

132



10.1 Motivation

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

Voltage

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	


�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�


�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

































Figure 10.2: Aviram–Ratner diode: schematic representation of the electronic
levels of the two conjugated systems under bias. Left: blocking direction.
Right: transmitting direction. The bias voltage is depicted with magenta
arrows. In the blocking case, a higher bias is required until levels align and
transport becomes possible.

necessary before the first two levels align and transport is possible. When the
bias sign is opposed, as depicted on the right, we need a much smaller bias
voltage so that current starts to flow.

Thus, the predicted behavior of the molecular device is that of a diode1.

Note, that underlying this simple picture is a very strong assumption, namely
that transport is governed mainly by the level sequence, i.e., the spectrum.
The spatial structure of the wavefunctions, i.e., nontrivial properties of matrix
elements, are ignored.

In fact, the molecule we will consider below is an example, where the Aviram–
Ratner rule breaks down. We will see that the transport properties cannot be
easily predicted by such simple assumptions. They crucially depend on the
level structure and matrix elements and their evolution under bias.

10.1.2 Reasons for an asymmetric I–V characteristics

Any asymmetry in the I–V characteristics of a molecule is a consequence of a
broken symmetry, which could be either a mirror plane, an inversion/rotational
symmetry or some combination of these.

In theoretical calculations, in the framework explicated in chapter 3, asymme-
tries can be seen only, if one takes into account that the transmission depends

1It is assumed here, that sufficiently many inelastic decay channels exist so that an
occupied molecular level can be evacuated even if the purely elastic, resonant channel is
blocked.
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on the voltage. This implies that any calculation based on linear response will
be oblivious to such effect.

From the point of view presented in chapter 3, the voltage enters the trans-
mission, T , in two places:

• The self–energies Σ(E + δµl,r)

The density of states of the leads may be non–constant and thus differ-
ent for left and right lead at finite bias voltage V , where the chemical
potentials,µl,r of the respective leads differ from their equilibrium values
by δµl,r, with δµl−δµr = V . This results in bias dependent self–energies.

• The Green’s–function of the extended molecule

Spectrum and wavefunctions of the extended molecule need to be calcu-
lated in the presence of a finite current. The feedback of the current into
wavefunction and spectrum is due to an induced shift of the molecular
charge that does not directly participate in the current flow. We will
refer to this as polarization induced effects.

Examples of situations leading to asymmetric I–Vs:

Asymmetric molecules

Figure 10.3: Asymmetric molecule (top) and symmetric anthracene type
molecule (bottom) of section §6.2.

Asymmetric molecules show asymmetric I–V characteristics because their po-
larizability will be bias–dependent. One example are molecules with perma-
nent electrical dipole moment: in chapter 6 we have studied a symmetric,
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anthracene type molecule, for which symmetric I–V curves were observed. To
investigate asymmetries due to the polarizability of molecules, a second, asym-
metric molecule of comparable size and structure was synthesized at our insti-
tute by M. Elbing and M. Mayor, see fig. 10.3.

Instead of the anthracene, a benzene ring with two differing side–groups was
used as the central element. On one side, NO2 is used as a substituent, which
is known as a group with high electron affinity. This should pull electrons from
the central benzene ring. On the other side, an acetyl–protected amide group
was used, which is supposed to inject electrons in the π–system of the central
ring.

This asymmetric charge distribution then leads to a permanent dipole moment
with a component parallel to the molecular axis (the axis defined by the two
terminal sulfurs). Due to this asymmetry and the resulting permanent dipole
moment, we can expect the molecule to have an asymmetric polarizability
under applied bias. Depending on the bias sign, the Kohn–Sham levels thus
could evolve differently, resulting in an asymmetric I–V characteristics.

Figure 10.4: I–V characteristics of the asymmetric molecule depicted in
fig. 10.3, top, at about 30 K. Red: current over applied bias voltage in µA.
Blue: differential conductance in µS. Different traces correspond to consecu-
tive voltage sweeps, [153].

In fig. 10.4, the experimental data for the conductance of the asymmetric
molecules is presented. The strong asymmetry is obvious: for negative bias, we
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observe a strong peak in the differential conductance at about 0.5V , whereas
in the positive bias case only small peaks can be observed.

To investigate the origin of this asymmetry, we performed DFT calculations of
the molecule between pyramids of 29 gold atoms. In the linear response regime,
where calculations are done with no external bias voltage applied, we can not
observe an asymmetry. But doing calculations under a finite applied bias
voltage of 1V can lead to polarization of the molecule resulting in asymmetric
transport characteristics. The calculation was done by supplying a constant
external electrical field, that corresponds to a voltage drop of 1V over the
length of the molecule, in the DFT run.

The amount of 29 gold atoms per contact to include into the extended cluster
is too small to do a transport calculation, but we can look at the evolution
of the electron density under bias. We will only give an illustration of the
influence of the external field on the charge distribution. Further analysis is
in progress.

In fig. 10.5, we depict the polarization of the molecule when an external field
from right to left, corresponding to 1 V bias voltage, is applied. Fig. 10.6
corresponds to the opposite situation, where the field is directed to the right.
In both cases, the additional charge accumulated in comparison to the zero–
bias case is depicted in red, whereas the charge deficit is drawn in blue.

The polarizability of the molecule is clearly asymmetric: in the positive bias
situation (fig. 10.6), on the central ring plus the substituents, additional charge
accumulates, whereas in the negative bias situation (fig. 10.5), a charge deficit
is observed. In both cases, charges accumulate on the left ring, although to
different extent. Due to the asymmetric polarizability, we expect the I–V to
be asymmetric.

Although these two figures provide a large amount of detailed information,
it is not straightforward how to extract from it which direction under bias is
better conducting. In order to address this question, calculations using our
“standard approach” to transport, but with input wavefunctions and orbitals
from the finite bias DFT calculations could be used. These calculations are in
the works.

As a check, we also conducted calculations for applied external fields in the case
of the the symmetric molecule of fig. 10.3. There, as expected, our calculations
showed symmetric polarizability for the two bias directions.

A second example of a molecular asymmetry leading to asymmetric I–V char-
acteristics are strongly asymmetric designs in the spatial molecular structure:
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Ex

Figure 10.5: Polarizability of the asymmetric molecule: depicted is the electron
density difference for an applied external electric field (arrow) corresponding
to −1V bias voltage. Red: charge accumulation relative to zero voltage case,
blue: charge deficit. For illustration, the structure of the asymmetric molecule
is depicted at the bottom

A molecule consisting of a central conjugated group, sandwiched between two
insulating molecular subunits of different lengths, results in a molecular quan-
tum dot with strongly asymmetric coupling. This is due to the spatially asym-
metric placement of the resonant system closer to one of the electrodes [158].
The voltage drop will occur mainly at the side with the larger insulating group,
resulting in different resonance conditions for the dot depending on the bias
sign.

Symmetric molecules with asymmetric coupling to the electrodes

An asymmetry in the I–V characteristics can be induced even for symmetric
molecules, by asymmetric coupling to the two metallic leads.

In fact, in STM experiments the coupling is extremely asymmetric. There, only
one of the two ends of the molecule is usually covalently bond to the electrode,
i.e., the substrate. The other electrode, i.e., the STM tip, only constitutes a
tunneling contact. In this setup, the Fermi energy of the molecule is pinned to
the electrode it is covalently bond to. Therefore, sweeping the applied voltage
will scan different molecular orbitals depending on the sign of the bias. Thus,
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Ex

Figure 10.6: Polarizability of the asymmetric molecule: depicted is the electron
density difference for an applied external electric field (arrow) corresponding
to +1V bias voltage. Red: charge accumulation relative to zero voltage case,
blue: charge deficit.

observed I–Vs are asymmetric, independent of the symmetry properties of the
molecule.

Asymmetries are usually present in all experimental setups, including break–
junction experiments. But there, due to the defined covalent bond of the sulfur
to the gold, the asymmetry is much smaller than in the STM setup, leading
to asymmetries of typically only a factor of two in the I–V characteristics in
most cases (see also §6.3).

Different electron affinities of the coupling groups to the electrodes can lead
to a coupling induced polarization even without applied bias. This is, because
these asymmetries will result in bias dependent molecular level evolution and,
thereby asymmetric I-V characteristics [11, 159, 160].

10.2 Molecular double quantum dot system

In this section, we will give a detailed study of an example of asymmetric
current–voltage characteristics for a system that has no permanent dipole mo-
ment.
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10.2.1 Design of the molecule

Experimentally, donor–σ–acceptor systems have been built using Langmuir–
Blodgett films in between two planar electrodes (see e.g., [161]) or using self–
assembled monolayers in STM experiments [38].

Figure 10.7: Diode molecule and control molecules covalently coupled to gold
electrodes, schematic representation. 1’: diode molecule, where on the left
benzene ring, the hydrogen was substituted by fluor. 2’, 3’: control molecules.
Either both sides (2’: R=F) have fluor substitutions on the outer benzene
rings, or both outer benzene rings have hydrogen atoms (3’: R=H), [1].

Following the Gedankenexperiment of Aviram and Ratner, a donor–σ–acceptor
molecule was designed and synthesized by M. Elbing and M. Mayor. In order to
make measurements using the break junction technique possible, the molecule
has to have a linear, rigid rod like structure. For connection to the leads, it
is terminated on both sides with acetyl protected sulfur groups (as has been
discussed in section §6.4). The diode molecule is depicted in fig. 10.7, labeled
with 1’.

The intended electronic asymmetry is achieved by partitioning the molecu-
lar rod into two separated π–segments of comparable structural features but
different donor/acceptor properties. It is crucial to keep both π–systems as
similar as possible in size, building blocks and anchor groups, to ensure that
effects on the electronic transparency of the molecule mainly stem from the
electronic level evolution under bias of both subsystems. This way, effects from
structural asymmetries are minimized.

One of the outer rings was functionalized with four electron–deficient fluo-
rine atoms to produce a π–system with comparable structural properties but
significantly different electronic properties.
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Instead of using a stiff linker of σ–bond character, as suggested originally by
Aviram and Ratner [4], both π–systems (consisting of two benzene rings, each)
were linked by a single C—C bond. Methyl side–groups in ortho position to the
C—C bond were added to the inner benzene rings. This way, steric repulsion
induces a large torsion angle between the two conjugated subunits, thereby
minimizing the overlap of the π–orbitals and hence the coupling. Thus, a
donor–σ–acceptor system is realized.

Our DFT calculations, where we allowed the structure of the molecule to relax,
as well as X–ray crystallography data confirm, that the two subunits are at
an angle close to 75 degrees. Thus, differing from the original design, the
molecules are separated by a torsion induced tunneling barrier provided by
side groups.

The modular strategy of synthesizing the molecule from their subunits made
it possible to also produce two control molecules, depicted in fig. 10.7. These
were either fluorized on both outer rings, (2’), or on none, (3’). They can not
only be used for control experiments, but also might offer interesting insights
into the influence of charging of the molecule on its conductance properties.

10.2.2 Experimental results

Extensive conductance measurements of the diode molecule (1’) and the two
control molecules(2’, 3’) were conducted by R. Ochs and H. Weber [1]. In
fig. 10.8, we present the data for the I–V characteristics of the diode. The
experiments were performed at low temperature, T ≈ 30K, stable I–V curves
were observed repeatedly.

Molecule 1’ shows clearly asymmetric I–V properties: for negative bias voltages
the current is much smaller than at the corresponding positive values. A
comparison of the current level at U = ±1.5V yields a “rectification ratio” of
1:4.5.

The current increases in a step–like behavior which is more pronounced for
positive bias, but also present at negative bias voltages.

Counting all stable contacts (i.e., contacts where I–Vs could be consecutively
recorded more than 5 times) 20 I–Vs were obtained. In these measurements,
the rectification ratio, again evaluated at U = ±1.5V , varied from 1.4 to 10,
with an average rectification ratio of 3.6. This shows clearly, that molecule 1’
exhibits asymmetric conductance properties.

For comparison, data for the control molecules 2’ and 3’ is depicted in fig. 10.9.
In both cases, more symmetric I–Vs were recorded for all measurements. For
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10.2 Molecular double quantum dot system

Figure 10.8: I–V characteristics of the diode molecule 1’, depicted in fig. 10.7.
Red: current [nA] over applied bias voltage, [1].

molecule 2’, fluorized on both ends, 40 measurements were taken. In the case
of control molecule 3’, 16 curves could be obtained. In all measurements the
rectification ratios, again evaluated at U = ±1.5V , were close to one, taking
values between 1 and 1.8.

There is a clear qualitative difference between the diode molecule and the other
ones adding further evidence that the asymmetric I-Vs, obtained for molecule
1’, stem from the asymmetric design of the molecule and are not artefacts
from asymmetric coupling or other environmental influences.

In their original paper, Aviram and Ratner predicted “true” diode like behavior
for their molecule, due to a current onset occurring at significantly different
voltages depending on the sign of the bias. Rectification for our molecule stems
from the significantly different slope in the I–V characteristics at different bias
signs rather than from a difference in the current onset, which depends only
weakly on the bias sign. Thus, the experimental data suggests a different
process underlying the rectification in this case.
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Chapter 10. Transport through a molecular double dot system

Figure 10.9: I–V characteristics of the control molecules 2’, 3’, depicted in
fig. 10.7. Relatively symmetric I–Vs were recorded. Different traces correspond
to consecutive voltage sweeps, [1].

10.2.3 Double dot system: principle mechanism

In this section, we offer a qualitative explanation of the relevant underlying
transport mechanism, and how it manifests itself in the experimental observa-
tions.

By design, the set–up (gold electrode)—(diode molecule)—(gold electrode)
with its two separated electronic π–systems may be viewed as two quantum
dots coupled in series. We will refer to them as the F–dot (fluorized dot), and
H–dot (not fluorized dot/ hydrogen dot) as depicted in fig. 10.10.

As the two π–systems are only very weakly overlapping, the conductance of
the molecule is low. For this reason, transport is likely to be incoherent and
transmission calculations using the scattering approach will not yield the dom-
inating contribution to the current. However, we will see that a DFT study
can nevertheless deliver quantitative results for the structure of the I–V curves.
Let us outline now, how this can be achieved.

Our DFT calculations show that the electronic orbitals are indeed localized
on either one of the dots, confirming the notion of two separate conjugated
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10.2 Molecular double quantum dot system

F−dot H−dot

Figure 10.10: Schematic view of the diode molecule in between gold contacts.
The system can be modeled as two quantum dots separated by a tunneling
barrier, caused by the torsion of the two subsystems.

subsystems. In Fig. 10.11 we show the lowest unoccupied molecular orbital
(LUMO) of both subunits obtained from the DFT calculations.

At zero bias, the states of both subsystems are occupied up to the HOMO,
see fig. 10.12. Due to the modification of the electronic structure of the F–dot
by the substitution of fluorine atoms for the hydrogen, the level positions of
both subunits differ from each other. The new level sequence is such, that the
F–dot acts as the acceptor, the H–dot as the donor system (see §10.1.1).

The zero–bias conductance is suppressed, since resonant transport is blocked.
When the bias voltage is swept, the levels of both dots are shifted with respect
to one another and at certain voltages two levels will cross. E.g., for positive
bias applied on the right–hand side, the highest occupied level (HOMO) of
the H–dot will move upward and align with the downward moving lowest
unoccupied molecular orbital (LUMO) of the F–dot. Thus, a transport channel
will open up for inelastic transmission of electrons from the F–dot to the H–dot
and from there into the right lead.

As transport by assumption is inelastic, the channel will remain open when
the bias is further increased, resulting in a step in the I–V characteristics, as
depicted in fig. 10.13. Every time the occupied level of the H–dot passes by
an unoccupied level of the F–dot, an additional transport channel opens up
for inelastic transmission and the current will increase by a certain amount,
resulting in a new step in the I–V.

In the blocking direction, depicted in fig. 10.14, less level crossings are observed
when the bias voltage is swept, resulting in fewer, larger spaced steps in the
I–V characteristics.
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Chapter 10. Transport through a molecular double dot system

Figure 10.11: Lowest unoccupied molecular orbitals (LUMO) of the fluorized
(F-dot, center) and the unfluorized (H-dot, bottom) sections of the diode
molecule attached to gold leads. DFT calculation. The gold atoms included in
the DFT run are depicted by a golden lattice. For orientation, the molecular
structure is depicted at the top. Different colors of the orbitals visualize the
sign of the wavefunctions.

10.2.4 Evolution of the Kohn–Sham levels

In order to support the qualitative analysis given above, we have carried out
extensive DFT calculations of the diode molecule. The electrodes were modeled
by including two gold blocks of 41 atoms each in the DFT calculation of the
molecule, see fig. 10.11.

Since the conductance of the molecules is very small, we performed the DFT–
calculation in a constant external electric field. The TURBOMOLE iteration
cycle was stopped, when a local equilibrium on either side of the system, i.e.,
the F–dot or the H–dot plus the associated leads, was reached.
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10.2 Molecular double quantum dot system

Figure 10.12: Schematic of the level structure for the molecular double dot at
zero bias. Left dot: fluoridized benzene ring. Right dot: benzene ring with
hydrogen.
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Figure 10.13: Schematic of the level structure, transmitting direction. A new
transport channel is opened in the molecular double dot when the levels align.
Left dot: fluoridized benzene ring. Right dot: benzene ring with hydrogen. In
this situation, several channels can contribute to the current.

The structure of the molecule was relaxed in a zero field run. We know from
other DFT calculations done by us, that the influence of the applied field along
the molecular axis is small and can be neglected, so relaxation was not to be
repeated at finite voltage. But it could be done, of course.

By studying the evolution of the single–particle Kohn–Sham energies with
the applied voltage, we can obtain quantitative information on the transport
characteristics. Applying a bias voltage to the system will shift the Kohn–
Sham energy levels of the subsystems. Due to the fluoridation of the F–dot, the
two subsystems are of different electronic structure. Thus the level evolution
will be different for the two sides.
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Figure 10.14: Schematic of the level structure for the molecular double dot in
blocking direction. Left dot: fluoridized benzene ring. Right dot: benzene ring
with hydrogen. Only two levels are available for transport in the right dot
within the voltage window opened by the applied bias, depicted in magenta.

This evolution is entirely dominated by electrostatic effects and therefore can
be studied appropriately within the standard framework of equilibrium DFT.
For the same reason, the level flow is expected to exhibit linear behavior in
the applied voltage to an excellent approximation, as long as the voltages are
not too large.

We could obtain the Kohn–Sham orbitals for three bias voltage values:
U = −0.1V , U = 0.08V , and for zero bias. All orbitals within the energy
window of interest (a few eV around the Fermi level) were plotted and char-
acterized according to their symmetry and localization on a specific dot. This
way, we were able to match the levels of the calculations for different bias
voltages with each other and thus determine their evolution under bias. In
figure 10.15 we depict the level evolution for the diode molecule under bias.
Shown are the position of the occupied levels close to the Fermi energy to-
gether with the lowest unoccupied ones for the three voltages. With dotted
(F–dot) and dashed (H–dot) lines we display the linear extrapolation to larger
biases.

The slope with which the levels evolve under bias is an indicator for the po-
larizability of the electron system of either dot. A small slope signalizes the
screening of the applied bias and points to a rather metallic character of the
dot. Higher slopes correspond to more insulating properties.

The slope for the H–dot levels (�) is larger than the slope for the F–dot levels
(◦) due to less screening of the applied electrical field, presumably because
there are less electrons available to do the screening. This thus implies a more
insulating behavior of the H–dot.
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Figure 10.15: Diode molecule: Analysis of the evolution of the Kohn–Sham
energy levels corresponding to the fluorized (F–dot,©) and unfluorized (H–
dot, �) sections of the molecule when applying a gate voltage (−0.1V , 0V ,
and 0.08V ). The lowest unoccupied molecular orbitals (LUMO) are depicted
as filled symbols. Using dotted (F–dot), and dashed (H–dot) lines, we show
the linear extrapolation of the level flow to higher bias voltages. The voltage
window, within which level crossings can be observed experimentally (•) is
indicated by the dashed, magenta lines.

Experimental data for the control molecules 2’ and 3’ are consistent with this
deduction: the zero bias conductance of the Au—2’—Au bridge, consisting of
two F–dots, is considerably higher than that of the Au—3’—Au bridge which
contains two H–dots (see fig. 10.9).

The evolution of the H–dot levels is almost bias sign independent, suggesting
a symmetric polarizability of the H–dot. In the case of the F–dot, we observe
a significant difference in the slope depending on the bias sign, pointing to an
asymmetric polarizability of the F–dot.
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10.2.5 Peak positions in the I–V characteristics

Let us now turn to the quantitative analysis of the peak position in the I–V
characteristics of the diode molecule, presented in fig. 10.8, above. As ex-
plained previously, we expect a new channel to open, each time an occupied
level of the upward moving dot crosses an unoccupied level of the downward
moving dot.

In fig. 10.15 we marked the voltage window, which indicates those level cross-
ings that can be observable experimentally. This window is defined by the
shift of the chemical potentials of the two leads with the bias voltage. It is
obtained from the evolution of those states of the extended molecule, that are
exclusively localized on one of the gold clusters. Depicted in green are the level
crossings inside the voltage window where we would expect to observe peaks
in the measured differential conductance.
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Figure 10.16: Diode molecule: analysis of the peak positions in the I–V charac-
teristics. Plot similar to fig. 10.15, but now with the experimental differential
conductance plotted in black. For easier comparison with the theoretical data,
vertical lines are inserted at the theoretical peak positions.

148



10.2 Molecular double quantum dot system

This now has to be compared with the experimental differential conductance
data for the diode molecule (i.e., the dI/dV of fig. 10.8), which we do in
the next plot, fig. 10.16. There, the experimental data is plotted as a black
curve. To make the comparison with the experimental data easier, we inserted
vertical, black lines at the expected peak positions.

We find that our calculation gives a proper quantitative account of seven out
of the nine lowest lying peaks. Deviations in peak positions are not larger
than the experimental peak width. Only two peaks seen in the experiment are
missing in our theoretical prediction. These are shown as red lines in the graph.
Indeed, all peaks predicted theoretically are also observed in experiment. The
fourth peak on the positive bias side lies narrowly outside the voltage window.
With a slightly different slope for the level evolution of the lowest orbital
considered, it would fall in place, explaining the peak position.

Three more, nontrivial experimental observations find a natural explanation
in our proposed scenario:

First, in the experimental data the number of peaks in the differential con-
ductance is larger for the branch of the I–V curve that exhibits the lower
conductance (negative bias in fig. 10.8).

The number of peaks can directly be attributed to the number of level cross-
ings. In the positive bias case, these are governed by the HOMO of the H–dot
crossing the unoccupied levels of the F–dot. These are more numerous than in
the H–dot case, due to the larger amount of electrons contributed by the fluo-
rine atoms, as seen above in the discussion of the subsystems. In the negative
bias case, the HOMO of the F–dot crosses the fewer unoccupied levels of the
H–dot, resulting in a smaller number of peaks in the differential conductance.

Second, despite the larger number of transmitting channels in the negative
branch of the I–V curve, the total current is significantly smaller than in the
positive bias case. The diode acts opposite to what one might have guessed,
perhaps.

To solve this puzzle, we have to consider the polarizability of the subsystems:
while the slopes of the H–dot levels are more or less bias sign independent, the
slopes of the F–dot levels are in general larger at negative bias, suggesting an
asymmetric polarizability of the double dot system. In similarity to a p–n–
junction, the current is larger in the direction, where the dot exhibits a larger
polarizability. In other words, differently polarized electron systems result in
different transmissions and thus we can observe a larger current in the positive
bias direction even though there are fewer, and larger spaced peaks in the
differential conductance.
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Third, let us comment on the applicability of the Aviram–Ratner scenario
to the present case. The peak appearing at the lowest bias voltage indeed
is found in the forward bias sector, at voltages V ≈ 0.1V , see fig. 10.18.
The corresponding transport channel gives the dominant contribution to the
current only until the second channel opens up at V ≈ 0.6V , which then
becomes the overwhelming one. The main features of the experimental curve
in the voltage window up to ±1V stem from the characteristics of these higher
channels which is due to polarization physics not contained in the Aviram–
Ratner picture.

10.2.6 Discussion

The excellent quantitative agreement between our theoretical calculations and
the experimental data concerning the peak positions could not be anticipated
a priori:

Taking into account the deficiencies in the GGA exchange–correlation func-
tional used in the DFT calculations, as well as our approximation to use the
equilibrium functional neglecting the current through the system, one would
expect slight deviations of the peak positions. Our data seems to suggest, that
these approximation induced changes in the level flow with applied bias could
be quite small in the present case, so that this approximation made is justified
here.

Further deviations between experiment and theory could be expected from
variations in the microscopics of the molecular contacts, as we did investigate
in chapter 6: there are several parameters in the contact and its environment,
that cannot be controlled and may therefore vary from sample to sample:

• The spatial orientation of the molecule is uncontrolled, it might not sit in
the idealized situation as depicted in fig. 10.7, resulting in stress on the
bonding geometry which can influence the transmission characteristics
(see §6.3).

• Different bonding types of the S—Au bond can shift the transmission
characteristics (see §6.4).

• The environment might provide background charges in form of other
diode molecules or water present. These can effectively dope the
molecule, resulting in a shift of the peaks.

Indeed, when the measurement is repeated after either opening and reclos-
ing the molecular bridge to form a new contact, or by using an entirely new
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break–junction, the experimental curves look qualitatively similar, but differ
nevertheless quantitatively.

Many different I–V curves were recorded, unfortunately most of them did ex-
hibit less pronounced peaks, making a direct comparison with our theoretical
data more difficult. Our choice of curve was motivated by the fact, that it
offered the most pronounced and stable peak structure to facilitate clear com-
parison between theory and experiment.

Figure 10.17: Diode molecule: Comparison of the I–V characteristics of two
different samples. Red: current over bias voltage. Green: differential conduc-
tance. The dI/dV of the sample from fig. 10.8 above is depicted in blue, [1].

For an illustration of these sample to sample variations, we show in fig. 10.17
data for a second set of I–V (red) together with the one discussed above. The
differential conductance is depicted in green.

Evidently, the new curve is inverted with respect to the bias direction, likely
because the molecule is oppositely oriented. In contrast to the curve discussed
above, it only offers few (three) pronounced peaks. In addition, the peaks
and thus the current steps have different heights and are observed at slightly
different voltage values. Note however, that the spacing between the peaks
in the forward direction is quite similar in both measurements, which is why
we believe that both traces stem from the same molecule exposed to different
environments.
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Figure 10.18: Diode molecule of fig. 10.10: measured current–voltage charac-
teristics (blue curve) and theoretically predicted step positions (black vertical
lines). The molecule behaves as a coupled double quantum dot in series. States
are localized on the subsystems (H–dot, F–dot). When a bias voltage is ap-
plied, the positions of the levels of the two subsystems move with respect to
each other. At level crossings, a step in the I–V characteristics is observed.
We predicted the position of seven out of the nine lowest lying peaks in the
differential conductance. Missing peaks are depicted by red lines.

10.2.7 Summary

We have identified the fingerprint of a molecule in a transport measurement
for the first time. Thereby, we predicted the position of seven out of the nine
lowest lying peaks in the differential conductance, see fig. 10.18.

The relevant transport mechanisms were identified, and a new method was
suggested to calculate the transport properties: using DFT calculations in a
finite external electric field, we were able to extract the evolution of the Kohn–
Sham orbitals under bias. From this, we obtained the positions of the peaks
in the differential conductance, which are in quantitative agreement with the
experiment.

We have seen that physics beyond the Aviram–Ratner picture—polarization
and the evolution of the matrix elements under bias—gives the dominant con-
tributions to the I–V characteristics in this case.
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Conclusions

11.1 Summary

This work is motivated by the strong impact that first principles based calcu-
lations are likely to have in the emerging field of molecular electronics. At the
moment, one of the most pressing problems in this context is the fact, that
the current theoretical predictions of the transmission of a molecule exceed the
experimentally measured one by much more than one order of magnitude.

As a first step in our work we have implemented the “standard” approach
to the molecular conductance, namely transport calculations in a Landauer–
Büttiker framework based on Kohn–Sham orbitals extracted from density func-
tional theory (DFT) calculations. Our particular implementation ensures, that
apart from approximations inherent in the exchange–correlation functional of
DFT no further approximations are made. In particular, we can include suf-
ficiently many contact atoms to ensure a reliable extrapolation to the limit of
macroscopic electrodes.

We made use of this implementation in order to investigate two molecules, well
studied experimentally: benzene–1,4–di–thiol, and a larger, anthracene–based
molecule.Our findings are twofold:

• The experimental conductance is two to three orders of magnitude below
the theoretical estimate in agreement with results found in the literature.
For the larger molecule, qualitative information on the transport could
be gained.

• Changing bond lengths, bond angles, number of contact atoms etc.
within reasonable limits does not bring down the theoretical value by
orders of magnitude.
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Thus we are led to the conclusion that approximations in the exchange–
correlation functional may be the major underlying reason for the discrep-
ancy. To this end, we formulated the condition, under which the “standard”
approach would be exact, namely if the quasistatic limit of the exact exchange–
correlation functional of time–dependent DFT would be used. However, in
actual calculations an approximated equilibrium functional is used, e.g., in the
local density approximation (LDA). This functional misses several pieces that
are not local in the density. In order to demonstrate that the missing terms
are important for transport we replaced the Kohn–Sham energies and orbitals
from DFT by their counterparts from Hartree-Fock. While we loose correla-
tion effects correcting the resonance energies this way, exchange effects giving
rise to non–local terms in a density functional are treated in an exact manner.
Indeed, we find that the level broadening, which is vastly overestimated in the
“standard” DFT method and responsible for the mispredicted conductance,
becomes much more realistic.

At present, better functionals that would include correlation effects, exact
exchange and also additional long range terms that originate from genuine non-
equilibrium effects are not on the market. Nevertheless, DFT based transport
calculations for single molecules can be very useful and in many situations even
quantitative results can be obtained. In order to illustrate this, three examples
have been investigated in our work.

1. Effects based on symmetry: molecules can be highly symmetric. A par-
ticularly interesting situation occurs, when the main current flow through
the molecule is right along the intersection line of two mirror planes.
In that case, depending on whether or not the current feed into the
molecule respects the mirror symmetries, the measured conductance can
be strongly different. DFT calculations are perfectly suitable to illus-
trate this effect. We have studied an appropriate example and indeed
obtained a good qualitative agreement with the experimental findings.

2. External parameters: equilibrium DFT allows to monitor the flow of
the electron density with external parameters, like a gate voltage. In
molecules, strong changes of the density can occur, when the energy of a
molecular level driven by an external parametric change passes the Fermi-
energy of the leads. The resonance situation implies a large current flow,
and therefore oscillations of the conductance with the external parameter
can be investigated exactly, even with equilibrium functionals. Again we
illustrated this procedure using the paradigm molecule benzene–1,4–di–
thiol.

3. Polarization driven shift of energy levels: a non-orthodox application
of the same idea is, to study how the single–particle levels shift in en-
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ergy when a finite bias is applied. We demonstrated this idea using the
“diode” molecule that has been described in the introduction (fig. 1.1).
Our method gives a quantitatively correct reproduction of seven out of
nine of the lowest lying steps seen in the current voltage characteristics,
see fig. 10.18. To the best of our knowledge, this is the first time that
a spectral fingerprint of a molecule in a transport experiment has been
predicted quantitatively.

11.2 Outlook

Being able to predict the peak positions of the molecule of fig. 1.1 is certainly
a major theoretical success, but by no means does it imply that we have come
much closer to the resolution of the fundamental theoretical problems at hand.
In order to calculate the step height (in addition to its position) it is necessary
to use improved, i.e., non-local, exchange–correlation functionals. At present,
the choice of possible functionals is limited. None of them incorporates all
long–range terms that are known to exist and many of them are computation-
ally much more expensive than, e.g., LDA. Therefore, it is at least conceivable
that a lot more fundamental work on the front of time–dependent DFT and
many–body physics has to be done before fully quantitative calculations with
DFT become possible.

Given this somewhat unclear perspective at the DFT front, it seems to be
advisable to follow several different paths in parallel in order to make progress
in predicting molecular properties in transport measurements:

• Implement those exchange–correlation functionals with long range ker-
nel that are available and compare results among these and with exper-
iments.

• Continue to look for more experimental features in transport that can
be understood in terms of equilibrium DFT. Those might include e.g.
phonon frequencies, oscillator strengths and electron–phonon couplings.

• Hybrid approaches: try to marry exact methods (like configuration inter-
action, CC2 etc.) performed for the bare molecule with DFT calculations
for the combined system of molecule and leads.

In order to grasp the full picture, a similar amount of work also needs to be
done at the experimental front. Taking everything together, it seems fairly
plausible that we have to go through a longer process that involves many dif-
ferent contributions made from different fields — conceptional, computational
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and experimental — before we arrive at a state in which a systematical design
of functional molecular units is possible.
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Appendix A

The Meir–Wingreen Formula

The Meir–Wingreen formula [65]

I=

∫

dE Tr(fLΓL−fRΓR)(GC − G
†
C) + Tr(ΓL−ΓR)G<

C (A.1)

connects the retarded (advanced) Green’s functions G (G†) and the lesser
Green’s–function G

< of the full many-body problem including the coupling to
the leads with the dc-current I. These Green’s–functions are again defined in
the Hilbert space of the extended molecule.

fL,R = f(E − µL,R) denote the Fermi distribution functions for the left/right
lead, respectively, which are assumed to be at chemical potentials µR,L. ΓL,R

describes the coupling of the molecule to the external leads. The dependence
on energy E has been omitted.

The coupling matrices, ΓL,R, are known from the non–interacting case above,
whereas the Green’s–functions GC and G<

C are now more complicated due to
the included interaction effects. Obtaining these, especially the lesser function
G<
C , which is more complicated as it depends on the occupation distribution

f , is difficult.

Derivation:

The current I between the left lead and the central cluster follows from the
continuity equation as

I =
ie

~

∑

m;α=l

(tαm〈c
†
αdm〉 − t∗αm〈d

†
mcα〉) (A.2)
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We transform this using the Keldysh Green’s–function G<(ω) = i〈c†αdm〉 (see
e.g. [63, 98]) into

I =
e

~

∑

α=l

∫ ∞

−∞

dω

2π
[Vα,mG

<
m,α(ω)− V ∗

α,mG
<
α,m(ω)]. (A.3)

As we assume the leads to be non–interacting, we can write down the Dyson–
equations for the Keldysh Green’s–functions

G<
α,m(ω) =

∑

n

Vα,n[g
t
α,α(ω)G<

n,m(ω)− g<α,α(ω)Gt̄
n,m(ω)] (A.4)

G<
m,α(ω) =

∑

n

V ∗
kα,n[g

<
α,α(ω)Gt

m,n(ω)− g t̄α,α(ω)G<
m,n(ω)] (A.5)

where we have introduced the time–ordered (t) and anti–time–ordered (t̄)
Green’s–functions and G<

n,m(t) = i〈d†
mdn(t)〉.

In terms of left–, and right–going scattering states, Ψn(x, t), the lesser Green’s–
function, G<

n,m(t), can be written as

G<(x,x′, E) =
∑

n,α=l,r

∫

d(t− t′) Ψn(x)Ψ∗
n(x

′)fαe
iE(t−t′), (A.6)

where the index n, comprises the quantum numbers describing the states in
the left and right lead, fα=l,r are the Fermi distributions of the respective leads,
and x = (x, t).

Further ingredients required to write down the expression for the current in
the desired form are

• The known identities [98]

G>(ω) +G<(ω) = Gt(ω) +Gt̄(ω) (A.7)

G>(ω)−G<(ω) = Gr(ω)−Ga(ω) (A.8)

• The definition of the unperturbed Keldysh Green’s–functions [98]

g<α,α = 2πifL(w)δ(ω − εα) (A.9)

g>α,α = −2πi[1− fL(w)]δ(ω − εα) (A.10)

• The coupling matrices ΓL,R

Γn,m
L,R = 2π

∑

α=L,R

ρα(E)Vα,n(E)V ∗
α,m(E) (A.11)
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With the density of states ρα(ε) for a channel α in the lead we can rewrite the
expression for the current to yield

I =
ie

~

∑

n,m,α=l

∫

dερα(ε)Vα,m(ε)V ∗
α,n(ε){fL(ε)[G

R
m,n(ε)−G

A
m,n(ε)] +G<

m,n(ε)}.

(A.12)
We can derive an analogous expression for the current between the right lead
and the central cluster.

As we assume a steady state, we can symmetrize the two equations to arrive
at the final result, the Meir–Wingreen formula for interacting electrons:

I=

∫

dE Tr(fLΓL−fRΓR)(GC − G
†
C) + Tr(ΓL−ΓR)G<

C . (A.13)
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[55] M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many–
channel conductance formula with application to small rings, Phys. Rev.
B 31(10), 6207 (1985).

173



Bibliography

[56] R. Landauer, ., IBM J. Res. Dev. 1, 233 (1957).

[57] R. Landauer, Electrical resistance of disordered one–dimensional lattices,
Philosophical Magazine 21, 863 (1970).

[58] H. Baranger and A. Stone, Electrical linear-response theory in an ar-
bitrary magnetic field: A new Fermi-surface formation, Phys. Rev. B
40(12), 8169 (1989).

[59] B. van Wees, H. van Houten, C. Beenakker, J. Williamson, L. Kouwen-
hoven, D. van der Marel, and C. Foxon, Quantized conductance of point
contacts in a two-dimensional electron gas, Phys. Rev. Lett. 60(9), 848
(1988).

[60] M. Paulsson, Non Equilibrium Green’s Functions for Dummies: Intro-
duction to the One Particle NEGF equations, cond-mat/0210519 (2002).

[61] M. Paulsson, F. Zahid, and S. Datta, Resistance of a Molecule, cond-
mat/0208183 (2002).

[62] M. Marinov and B. Segev, Analytical properties of scattering amplitudes
in one–dimensional quantum theory, J. Phys. A: Math. Gen. 29, 2839
(1996).

[63] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Uni-
versity Press, 1995.

[64] J. Rammer and H. Smith, Quantum field–theoretical methods in trans-
port theory of metals, Rev. Mod. Phys. 58(2), 323 (1986).

[65] Y. Meir and N. Wingreen, Landauer Formula for the Current through
an Interacting Electron Region, Phys. Rev. Lett. 68(16), 2512 (1992).

[66] P. Damle, A. Gosh, and S. Datta, Unified description of molecular con-
duction: From molecules to metallic wires, Phys. Rev. B 64, 201403
(2001).

[67] M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro,
Density-functional method for nonequilibrium electron transport, PRB
65, 165401 (2002).

[68] Y. Xue, S. Datta, and M. Ratner, First-Principles Based Matrix-Green’s
Function Approach to Molecular Electronic Devices: General Formula-
tion, cond-mat/0112136 (2001).

[69] R. Ahlrichs, M. Br, M. Hser, H. Horn, and C. Klmel, Electronic Structure
Calculations on Workstation Computers: The Program System TURBO-
MOLE., Chemical Physics Letters 162, 165 (1989).

174



Bibliography
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[127] J. Palacios, A. Pérez-Jiménez, E. Louis, E. SanFabián, and J. Vergés,
First-principles approach to electrical transport in atomic-scale nanos-
tructures, Phys. Rev. B 66, 035322 (2002).

[128] H.-W. Lee, H.-S. Sim, D.-H. Kim, and K. Chang, Towards unified under-
standing of conductance of stretched monoatomic contacts, Phys. Rev.
B 68, 75424 (2003).

[129] M. Di Leo, Stromfluss durch organische Moleküle: Herstellung und
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