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Abstract 
 

In currently developed ceramic breeder blankets for future nuclear fusion reactors, 

both the ceramic breeder and beryllium are in form of pebbles. The thermal-mechanical be-

haviour of pebble beds strongly depends on the arrangement of the pebbles in the bed, their 

contacts with other pebbles and with walls and the related contact surfaces. The quantitative 

assessment of contact areas is of special importance for beryllium pebble beds because the 

thermal conductivity is ruled by this quantity.  

 

Results from experiments are reported where, first, pebble beds consisting of 3.5mm 

aluminium spheres, (simulating the 1mm beryllium pebbles) were uniaxially compressed in 

the Forschungszentrum Karlsruhe at different pressure levels. Then, detailed three-

dimensional microtomography experiments were performed at the European Synchrotron 

Radiation Facility in Grenoble. Three-dimensional views of the pebble arrangements and 

void fraction distributions were calculated. By further post-processing the data, the number of 

contacts between the particles, the corresponding contact areas and the angular depend-

ence of these contacts were determined.  

 

It has been shown that in uniaxial compression tests the poloidal distribution of con-

tact surfaces is non-homogeneous. This fact should be considered when using these tests as 

standard tests for the generation of thermal-mechanical pebble bed data.  

 



Bestimmung der Topologie von komprimierten Schüttbetten durch  
Röntgenstrahlen-Tomographie 

 
Zusammenfassung 

 

In derzeit entwickelten keramischen Brutblankets für Kernfusions-Reaktoren werden 

sowohl für das keramische Brutmaterial als auch für Beryllium granulare Materialien 

(Pebbles) verwendet. Das thermomechanische Verhalten dieser Schüttbetten hängt wesent-

lich von der Anordnung der Pebbles im Schüttbett ab, ihren Kontakten mit anderen Pebbles 

und Wänden und den dazugehörigen Kontaktflächen. Die Kenntnis der Kontaktflächen ist 

von besonderer Bedeutung für Beryllium-Schüttbetten, da hier die thermische Wärmeleitfä-

higkeit sensitiv von den Kontaktflächen abhängt. 

 

Es werden experimentelle Ergebnisse vorgestellt, wobei anstelle der 1mm Beryllium-

Pebbles Schüttbetten bestehend aus 3,5mm Aluminium-Kugeln verwendet wurden. Die 

Schüttbetten wurden zunächst im Forschungszentrum Karlsruhe in uniaxialen Kompressi-

onsversuchen mit unterschiedlichen Enddrücken komprimiert. Anschließend wurden in der 

European Synchrotron Radiation Facility, Grenoble, detaillierte dreidimensionale mikro-

tomographische Untersuchungen durchgeführt. Er wurden dreidimensionale Ansichten der 

Pebble-Anordnungen im Schüttbett sowie radiale und axiale Porositätsverteilungen berech-

net. Durch weitere Datenverarbeitung wurden die Kontaktzahlen der Pebbles, die dazugehö-

rigen Kontaktflächen und die Winkelabhängigkeit der Kontaktstellen bestimmt. 

 

Es zeigte sich, dass in Uniaxialen Kompressions-Versuchen die poloidale Verteilung 

der Kontaktflächen nicht homogen ist. Diese Tatsache sollte bedacht werden bei der Ver-

wendung dieser Versuche zur Gewinnung thermomechanischer Schüttbett-Daten. 
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1. INTRODUCTION 
 

In the current design of ceramic breeder blankets for future fusion reactors, both the 

ceramic breeder and beryllium are foreseen to be in form of pebbles. During operation, ther-

mal stresses cause pebble compression and with this pebble deformations. The description 

of the thermal-mechanical behaviour of these beds requires as input pebble bed data such 

as strain = f(stress, temperature), thermal creep = f(stress, temperature), thermal conductiv-

ity = f(strain, temperature), compare [1]. These data are currently obtained by performing 

uniaxial compression tests (UCTs) considering the pebble bed as a �black box�. Thus, inves-

tigations on the inner structure of the pebble beds including the arrangement of the pebble 

within the bed, the contacts of pebbles with the neighbouring pebbles or walls, and the corre-

sponding contact zones can provide an important help in interpreting the results from thermal 

mechanical pebble bed tests.  

 

 
Fig. 1.1.  HECOP-facility [2] for measurements of the thermal conductivity of beryllium pebble 
beds. 

 

The assessment of contact areas is of special importance for granular materials with a 

large thermal conductivity compared to the surrounding gas conductivity (beryllium, alumin-

ium) because in this case, the thermal conductivity depends sensitively on contact surfaces. 

Figure 1.1 shows an experimental set-up [2-3] where UCTs are combined with thermal con-

ductivity measurements. A characteristic feature is that both the pressure and the heat flux 

are in the direction of the cylinder axis. Figure 1.2 contains characteristic results [1] for the 

relation between uniaxial stress and uniaxial strain for 1mm beryllium beds. The first stress 

increase period is governed by pebble relocation and elastic/plastic pebble deformation. Dur-
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ing the stress decrease phase (steeper part of the curve) the pebble positions remain essen-

tially unchanged and there is only a small effect due to elasticity. Figure 1.2 depicts also val-

ues of the thermal conductivity k : for a bed compression of about 1%, k increases by a factor 

larger than 5 compared to the non-compressed bed. 
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Fig. 1.2. Uniaxial compression test with beryllium pebble bed at 480°C [1]. 
 

Presently, for engineering applications, the Schlünder-Bauer-Zehner (SBZ) model [4] is often 

used to predict the thermal conductivity of pebble beds. In this model, the contact ratio Ac/A 

is an open parameter, where Ac is the contact surface and A the pebble cross section. Rela-

tionships which correlate the contact ratio Ac/A with the measured strain ε are proposed in 

[2]. 

 

In order to improve heat transfer models to describe the thermal conductivity of pebble beds 

and the heat transfer coefficient between pebbles and walls, the knowledge of these contact surfaces 

and other topological quantities are required. Therefore,, a study by tomography of the 3D pebble 

bed structure, based on the use of synchrotron light, was performed in collaboration with the 

European Synchrotron Radiation Facility, a high intensity, high brilliance, 3rd generation syn-

chrotron radiation source located in Grenoble, France. As a first step, pebble beds were 

compressed in the Forschungszentrum Karlsruhe to different stress levels in UCTs. For 

higher microtomography accuracy, the experiments were performed with aluminium spheres 

instead of the 1 mm beryllium pebbles used in the blanket. As a second step, in the Euro-

pean Synchrotron Radiation Facility (ESRF) Grenoble, computer aided micro-tomography 

(CMT) scans of the compressed pebble beds were performed, which allow reconstructing 3-

D volumes of the attenuation coefficient of the X-ray beam within samples of different size, 

density and structural features, without physically damaging them. By post-processing the 

acquired data, useful quantitative information was obtained such as axial and radial void frac-
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tion distribution in the samples as well as topologic parameters of the structure. First results 

of these investigations were presented recently [5]. 

 

In parallel to these investigations, similar experiments were performed with a com-

pressed bed of 5mm aluminium spheres, where contact surfaces and coordination numbers 

were determined by optical microscopy. A comparison of first results from these experiments 

with microtomography results described in detail in this report were presented by [6]. 

 
2. EXPERIMENTAL 
 
2.1. Uniaxial Compression Tests 
 

The aluminium spheres had diameters of 3.5+-0.02 mm. The spheres were filled in cy-

lindrical aluminium containers (�cans�) with a height of 60mm, an inner diameter of 49mm 

and a wall thickness of 0.5mm. Filling was assisted by vibration; packing factors PF (ratio of 

solid volume to total volume) between 59.4 and 60.0 % were obtained, corresponding to void 

fractions γ (ratio of void volume to total volume) between 40.6 and 40%. For the UCTs, the 

filled cans were placed inside of a thick-walled cylindrical steel container, see Fig. 2.1.  

 

              
 

Fig. 2.1. Aluminium can and steel container for present experiments 
 

Figure 2.2 shows the uniaxial stress-strain curves of the experiments performed up to 

maximum pressures of 16 MPa and strains up to 10%. During stress decrease, strain 

changes only marginally, indicating that elastic stresses are negligible compared to plastic 
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pebble deformations. This is an important point because the goal was to perform the micro-

tomographic investigations with pebble beds representative for the compressed state. In or-

der to achieve this, the cans were closed under maximum piston pressures in such a way 

that after releasing the piston pressure a small residual pressure remained. For the  
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Fig. 2.2  Uniaxial compression tests with pebble beds consisting of 3.5 aluminium spheres. 
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Fig. 2.3  Thermal conductivity as a function of strain for aluminium pebble bed (2mm diame-

ter aluminium spheres). 
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microtomography, besides samples S1and S6, a sample without pre-compression (S0) was 

also used. 

 

From previous measurements, a few thermal conductivity data exist for pebble beds 

consisting of 2mm aluminium spheres, performed in air at ambient temperature. Recently 

new measurements were performed with 2.3mm aluminium spheres in helium at T=300°C 

with a maximum strain of ≈11%, see Fig. 2.3. Again, the strong increase of thermal conduc-

tivity with increasing compression is evident.  

 
2.2. Microtomography Set-up and Procedure  
 

In this section, the 3-D x-ray micro-tomography system which was used for the experi-

ments and which had been developed at the High Energy Beamline ID15A of the ESRF is 

presented. The ID15 set-up has the ability of acquiring volume image data at a very high 

speed. This speed has been made possible by combining a high efficiency CCD detector 

technology with a very intense high-energy white beam radiation. The useful x-ray energy 

spectrum for tomography applications spans from 40 keV to 250 keV and is consequently 

very suitable for high Z materials or for sizeable samples, which highly absorb the incident 

radiation. The x-ray spectrum can be modified by inserting different filters into the x-ray beam 

in order to optimise the signal-to-noise ratio (SNR) and avoid beam hardening. The main set-

up parameters are briefly described hereafter. 

 

The experimental set-up is schematically illustrated in Figure 2.4. It consists of a high 

precision stage to position the sample in the x-ray beam and an imaging detector system. 

The sample positioning system has double tilt stages and a translation stage for the align-

ment of the rotation axis with respect to the detector, as well as micro-positioning x-y-z  

stages for sample alignment. The x-rays are converted to visible light via a phosphor screen. 

Light is collected and focused by a set of optical lenses to the DALSTAR camera, compare 

[7]. The whole equipment is mounted on a marble table to reduce vibrations. 

 

Two configurations for the imaging systems are available: �low resolution� and �high 

resolution�. The low-resolution (higher than or equal to 14 µm) configuration is customarily 

used for samples with a diameter greater than 10 mm and the high-resolution one (down to 2 

µm) is recommended for sample diameters comprised between 1 and 10 mm. The low-

resolution set-up was used for our experiment and is shown in Fig. 2.5. A Cerium doped 

YAG scintillating crystal is used. The visible light emitted by the YAG:Ce scintillator is fo-

cused by a macro-objective onto the CCD camera, see [8]. Thanks to the long working dis-
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tance of the objective a 45° mirror can be placed between the scintillator and the optics in 

order to protect the lenses and the detector from the direct high-energy x-ray radiation.  
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Fig. 2.4  G 4. Schematic view of the x-ray micro-tomography experimental set-up at the 

ESRF ID15A beam-line. The radiation source is a 7-pole asymmetric wiggler. The x-ray white 

spectrum is adapted to the different samples by changing the wiggler magnetic field as well 

as by means of filters. 
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Fig. 2.5  (a) �Low resolution� and (b) �high resolution� imaging detector. 

 

The CCD consists of 1024x2048 pixels of 14x14µm2 size each. In frame transfer mode 

half the area of the chip (1024x1024 pixels) is reserved for charge storage and the other half 

for photon detection. After exposure the image is transferred in 0.84 ms to the storage region 

for read out and the data acquisition is started again. A considerable benefit of this architec-

ture is that no mechanical shutter for the x-ray beam is required. 
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The readout speed can be increased from 60 to 110 frames per second when operating 

in 2×2 binning mode. The data transfer from the camera to the computer memory is done 

using two frame grabber boards. Due to the high data rate the images are temporarily stored 

in the computer memory and only at the end of each tomographic scan they are saved onto 

disks, for details, see [9-10]. The nominal write speed is 120 MB/s. 

 

After every scan, a tomographic reconstruction of a single slice can be performed on a 

data processing computer in order to monitor the correctness of the acquisition or, if applica-

ble, the evolution of the sample. 

 

The tomographic reconstruction is performed using a filtered back projection algorithm. 

Since every sinogram is treated independently the computation has been parallelized. The 

typical reconstruction time for a volume of 1024×1024×1024 pixels is one hour. 

 

In our case a resolution of 28 µm was chosen (2x2 binning mode). About 1800 projec-

tions were recorded for every sample sub-volume at an angular rotation pace of ~0.1 deg. 

Each scanned sub-volume (elementary volume) was about 2 mm high and 30 mm wide, cor-

responding to the beam size at the sample location. Two of such elementary volumes juxta-

posed in the horizontal direction were needed in order to cover the entire sample diameter. 

Vertical stacks of elementary volumes (right and left) were swept by the beam in order to 

explore sample regions of at least 7-8 mm height. The total scan time per stack was about 8 

hours and it took 2 days for pre-processing and reconstructing each stack. Globally some 

300 GByte data had to be processed.  

 

 7



3. MORPHOLOGICAL ANALYSIS 
 

Main concepts and methods: Assessment of the void fraction distribution within a 

packed bed is essential for rigorous heat flow analysis and mechanical evaluation. The main 

morphological parameter used to characterise the heat and mass flow through a pebble bed 

is the surface and the volume ratio (or the void fraction) of the individual elements or the sta-

tistical data of the entire bed. The second parameter analysed is the influence of the wall on 

the arrangement of the pebbles in the bed, described by the axial and radial void distribu-

tions. The rationale of the morphologic analysis as described by [11] has been applied to 

exploring the surface and volume ratios of the sampled can data. The analysis of the sample 

set allows observing the influence of the compression ratio on the volume and surface ratios. 

 

Surface and Volume: The common approach to evaluate the volume and surface 

shapes in a discrete domain (computer aided analyses) is based on a voxel counting to 

evaluate volumes and surfel counting to evaluate surfaces (a cubic voxel has six surfels i.e. 

six sides). This method is extremely rapid but the associated errors can be enormous: >40% 

for the surface evaluation and >10% for the volume evaluation (depending on the object 

shape complexity). Other methods using Euclidean metrics based on triangles extraction 

over isometric surfaces like �marching cubes�, �level set� (72 times bigger in volume data 

size) or discrete surface normal/projection techniques [12] [13] are processor and memory 

consuming. These methods cannot be used over extremely large data sets (as in the present 

case). 

 

To bypass this limitation we use a volume-surface and voxel integration method [14], 

based on the analysis of the voxel neighbourhood. The method consists to labelling the sur-

face voxel by analysing its 26 surface neighbours. A label is attributed indicating the surface 

and the volume average as a function of the topology of the surrounding surface elements. 

The associated volume and surface measure error can by that be reduced to less of 2% [14] 

for large voxel size objects (10 voxel radius or more). The related algorithm runs only once 

over the data matrix in order to label and measure objects, allowing high speed and low 

memory consuming. 

 

The main pebble radii are analysed using a 3D discrete distance map [15] [16], repre-

senting the maximum spheres inscribed in the non-void volume shape. This approach needs 

to run through the data matrix only twice, using just integer labels. The associated max error 

using a 3D large mask kernel (45 elements) is less than 0.5% in length. 
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The main computational measurements illustrated here show the pebble bed surface 

and the volumes of the solid and void fractions related to the selected ROI (in this case a 

cylinder). 

 

Axial and Radial Void Fraction: The method to analyse the wall perturbation in-

duced in the pebble network arrangement (pebble connections) is similar to that reported by 

[17-20] The common voxel counting approach is followed, where the relative error has no 

influence over the data analysis. 

 

The axial void distribution is obtained by counting the void fraction for each slice in 

the Z (vertical) direction. One subdivides numerically the cylindrical can in concentric sub-

cylinders, each of 1 voxel thickness. From the external wall down to the central axis one 

counts up the void fraction of each sub-cylinder thickness. The results show the variation of 

the axial void fraction due the external wall can. This parameter shows the oscillation of the 

void fraction due the external radial wall can. Analysing these results we can observe the 

structural influence of the axial compress ratio in the pebble arrangement (all samples).  

 

3.1. Results 
 
3.2.1. General comments 
 

It should be recalled at this point that the data were acquired by small sub-domains of 

the whole cans (10 sub-domains, each of 20 mm height and 30 mm width, corresponding to 

the beam window size) owing to the required resolution (28 µm). The sample core portions to 

be analysed were assembled going through the following work steps: 

i) byte order inversion (due to using computer platforms with opposite byte or-

dering for the data acquisition and for the data analysis); 

ii) byte size re-scaling (from floating point numbers to one byte integers);  

iii) grey level scaling; 

iv) cutting of sub-domains (wherever slight overlapping occurred of juxtaposed 

sub-domains;  

v) rotation axis alignment (also due to sub-domain imperfect juxtapositions) ;  

vi) Region of Interest (ROI) definition;  

vii) threshold setting in order to obtain the final geometric volume (at this step one 

discriminates between matter and void (or, equivalently, air), by labelling each 

of them with only one colour, either white or black). The regions outside the 

ROI will be marked with grey colour; 

viii) cutting out non-ROI domains (like can walls, etc). 
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In the following, the main results are shown for the four scanned sample portions 

scanned in the three different cans. The positions of the sample core portions in each of the 

cans was shown in Section 2.2. In Table 3.1, the geometric quantities of all scanned sample 

portions are summarised. 

 

For each sample portion, the following quantities are presented:  

• the horizontal cross section at Z=0 of the ROI sample  (solid pebbles in white, 

void fraction in black and non-ROI domain in grey),  

• the vertical cross section through the central axis of the ROI, and  

• a 3D rendering view of the reconstructed volume;  

• two graphs, one displaying the axial and the other the void fraction profile, the 

first as a function of the co-ordinate Z along the cylinder axis and the second 

as a function of the radial distance d from the ROI lateral surface. The origin of 

Z is fixed at the top surface of the cylindrical irradiated ROI, whilst the origin of 

d is located at the inner wall of the can. 

 

It should be noted that:  

- the cylindrical ROI volume is smaller than the total data volume since some 

parts of the latter, like the can walls were cut out while defining a perfectly cy-

lindrical ROI. One ought to bear in mind that, strictly speaking, the can hori-

zontal cross section is not exactly circular, at least in the mathematical sense 

- also the pebbles are not mathematically spherical, thus the pebble main di-

ameter is defined as the diameter of the largest perfect sphere inscribed in the 

pebble 

- the void and the solid fraction, the total and the specific surface of the solid 

fraction refer to the ROI volume; 

- the max length measurement  error is about ±2%; 

- the experimental and therefore numerical resolution is about ±1 voxel (28 x 

10-6 [m]). 

 

Pebble visualisation 
Table 3.1 summarises the main data on the morphological quantities; the following Figs. 3.1 

� 3.12 contain details for the individual samples. 
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Table 3.1. Main results morphological quantities. 

 

Sample S0 S1 S6mid S6bot 

Compression (MPa) 0 8 16 16 

Total data volume (cm3) 23.17 18.90 16.39 20.45 

Cylindrical ROI volume (cm3) 17.42 14.24 12.30 15.37 

ROI diameter (cm) 4.83 4.83 4.83 4.83 

ROI height (mm) 9.52 7.78 4.83 4.832 

Void fraction (%) 38.76 37.41 34.65 37.01 

Solid fraction (%) 61.24 62.52 65.35 62.99 

Total solid fraction surface (without ROI edges) 

(cm2) 

164.3  
 

131.8 113.09 140.35 

Specific surface of solid fraction (in the volume 

excluding the ROI edges) (1/m) 

945.4  
 

927.63 921.75 915.10 

Mean pebble diameter (mm) 3.427 3.427 3.427 3.427 

 

 
From Figs. 3.1-3.4 it might be concluded that the arrangement of spheres is quite ir-

regular except close to the cylindrical wall where most of the spheres are in contact with the 

wall. Because the can cross section was not ideally circular, the selected ROI diameter had 

to be smaller (48.3 mm) than the average inner can diameter of 49 mm, with the conse-

quence that the outer sphere volumes were often cut, see figures c). Therefore, this flatten-

ing of the outer sphere surface must not to be mixed with flattening caused by mechanical 

deformation. Figure 3.1a) and b) contains (in red) boundaries which mark the inner volume 

which is used for the topological analyses outlined in Section 4.  

 

The different degrees of compaction and different contact surfaces are difficult to ob-

serve in the figures. However, interesting details can be detected concerning the sphere 

structures at the bottom of the core samples. As already mentioned, the exact vertical posi-

tion of the ROIs was not known but it was known that the core sample S1 was closest to the 

can bottom. Fig. 3.2b) shows that nearly all sphere centres close to the ROI bottom are on 

the same height indicating that this layer of spheres is probably in contact with the bottom 

(1st layer). The same is true for S6bot although in this case the ROI has a slightly larger dis-

tance to the can bottom. This sphere positions close to the bottom and the cylindrical walls 

will be analysed in more detail in Section 4.5.3. 
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a) horizontal cross section,  (1762 x 1762 x 340 voxel) 
 
 

 
 

b) vertical cross section  
 

 
 

c) 3D rendering of the scanned volume  
 

Fig. 3.1. Morphology of sample S0. 
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a) horizontal cross section,  (1760 x 1760 x 260 voxel) 
 
 

 
 

b) vertical cross section  
 

 
 
 

c) 3D rendering of the scanned volume  
 

Fig. 3.2. Morphology of sample S1. 
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a) horizontal cross section,  (1764 x 1764 x 240 voxel) 
 
 

 
 

b) vertical cross section  
 

 
 

c) 3D rendering of the scanned volume  
 

Fig. 3.3. Morphology of sample S6mid. 
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a) horizontal cross section, (1762 x 1762 x 300 voxel)  
 

 
 

b) vertical cross section  
 

 
 

c) 3D rendering of the scanned volume  
 

Fig. 3.4. Morphology of sample S6bot. 
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3.2.3. Void fraction distributions 

 
For fusion reactor blanket design, the knowledge of void fraction distribution within 

packed beds is essential for analyses of heat transfer characteristics within the bed and 

close to surrounding walls. In chemical engineering, packed beds are used for mass transfer 

processes. Non-homogeneous void distribution results in non-homogeneous flow distribution 

and with this non-homogeneous mass transfer [21,22]. 

 

Void fraction variations close to circular or plane walls are caused by the fact that dur-

ing filling, the outermost spheres are generally in contact with the walls, arranged in a pattern 

which is close to the hexagonal pattern. For non-compressed beds, the void fraction must be 

unity at the wall since these spheres have only point contacts. Proceeding from the wall, the 

voidage must decrease and reaches a minimum at the wall distance of about 1 sphere ra-

dius, depending on the ratio of container diameter D to sphere diameter d, compare [18]. For 

the perfect hexagonal pattern the void fraction is at this distance ≈ 18%, in practice, values 

slightly above 20% are observed. With increasing distance, the void fraction increases, how-

ever, not to 100% since the second row of spheres rests in the cusps formed by the spheres 

in the first row. Proceeding in from the wall, the pattern is repeated and, since each row is 

more random than the row which precedes it, the amplitudes of the oscillation decrease and 

are damped out after a distance of 4-5 sphere diameters. 

 

 
 

Fig. 3.5. Radial void fraction distribution [18] 
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Void fraction variations close to circular or plane walls were measured first more than 

4 decades ago using time consuming destructive techniques [18].  Figure 3.5 contains char-

acteristic results for non-compressed pebble beds and shows the radial distributions in cylin-

drical containers for two different ratios of container diameter D to sphere diameter d. First 

results on void fraction distribution obtained by microtomography were presented by [23], 

again using non-compressed pebble beds. 

 

A correlation to describe these void fraction fluctuations was first proposed by [20] and 

later modified by others [21,22]. In the following, the correlation used by [21] is applied ex-

pressing the void fraction as a function of the normalised distance from the wall z = y/(d/2)-1:  

 

for z � 0: εwall = εmin  +(1-εmin)z2                                                                             (3.1) 

for z � 0: εcore = ε0 + (εmin � ε0) exp(-z/c)cos(πz/b), 

 

where εmin  is the minimum value at z=0 and ε0 is the value far away from the wall. The follow-

ing values were used: εmin = 23%; ε0 = 39%, and c = 4. 

 

For D/d=∞, b has the value for ideal hexagonal packing, b=0.816, see below. Other-

wise, a value of b=0.876 is recommended which was found by [18] for D/d=20.3. 

 

In the present case, εmin, ε0, are taken from the experiments, and c, and b are consid-

ered as parameters. 

 

Figures 3.6b-3.9b show the radial void fraction distributions; all results are presented 

in Fig. 3.10a). For compressed beds, the void fraction at the cylindrical wall is expected to be 

smaller than 100%. The distance between the void fraction minima is d cos(35°) ≈ 0.82 d = 

2.87mm for non-compressed beds with an ideal hexagonal dense packing (face centred cu-

bic array).The curves for S1 and S6bot are influenced by the fact that the pebbles are also 

close to the bottom plate.  

 

Figure 3.10 b) shows only the results for the samples S0 and S6mid: the data are fit-

ted best using c=5 and the values for b shown in the figure. There is the tendency that with 

increasing compression the curves should shift to lower void fractions and the distance be-

tween the pebble rows becomes smaller.  
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Fig. 3.6.  Void fraction profiles for sample S0. 
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Fig. 3.7.  Void fraction profiles for sample S1. 
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Fig. 3.8.  Void fraction profiles for sample S6mid. 
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Fig. 3.9.  Void fraction profiles for sample S6bot. 
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Fig. 3.10. Radial void fraction distributions. 
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                        Fig. 3.12.  Axial void fraction profiles. 

 

In respect to the absolute void fraction values, the present measurements might not 

give the correct values because the ROIs heights are not sufficiently large compared to the 

sphere diameter of 3.5mm in order to give relevant volume averaged values. 



Concerning the axial void fraction profiles, the exact position of the core sample bottom 

is, as mentioned, not known. If it is assumed that the lowest minimum for S1 belongs to the 

1st layer of spheres, then, this layer is also partly seen in S6bot. Comparing all curves, it is 

then concluded that the minimum for S0 belongs to the 3rd layer; for larger distances from the 

bottom the void fraction becomes quite uniform, similar to the expected behaviour for S6mid. 

Figure 3.11 a) summarises al results; Fig. 3.11 b) shows the first cycles in more detail. The 

measured results are well fitted by Correlation (3.1) using a value of b = 0.82. For com-

pressed pebble beds, the void fraction at the wall should not reach the value 1. In future ex-

periments, this zone will be considered with special attention. 

 

4. TOPOLOGICAL ANALYSIS 
 

The primary goal of this analysis is to determine the main pebble radius, the position 

of the pebble centres in Cartesian co-ordinates, the contact areas and the coordination num-

ber of the individual pebbles. The coordination number is the number of connections for each 

element in the volume. The methodology employed here is based on a topologic operator 

called filtered medial line (FML) applied on the whole data volume (ML skeleton) and the cor-

responding graph representation (FML graph), as proposed by [16]. 

 

4.1. Filtered Medial Line Skeleton 
 

The starting point of this method is the data volume in binary format (black and white 

representation), which is used to generate a discrete distance map. This map represents the 

largest spheres inscribed in the individual objects of the total volume. The first step in order 

to classify these spheres consists in identifying the connections of the different objects and in 

building a completely connected skeleton called medial line. A segment of the skeleton which 

has a width (diameter) of 1 voxel is called line.   

 

The approach commonly followed in 3D analyses for identifying the ML skeleton 

would generate an extremely complex surface (not a line), preventing the recognition of sim-

ple structures over this �hyperconnected� shape. To bypass this limitation a filter is applied 

conserving the initial Euler number e0 of each connected object in the ML. The resulting topo-

logic variety is called filtered medial line (FML). For each connected object Cn of the volume 

Y (entire domain), we verify whether a voxel P belongs to the filtered skeleton by checking if 

it satisfies the relation (1): 

 

{ }( ) { }( )0 0 0,..., ,..., ,...,     and   with  n i n n i n i n i n i n i ne C P P P e C P P P C P C C Y− − −≠ ⇒ ⊂ ⊄ ∈   (1). 
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4.1.1. Filtered Medial Line Graph 
The FML Graph representation is based on the detection of the main elements and 

linking segments in the voxel structure arrangement of the FML. The classification of this 

objects set gives a complete topologic description of the volume. 

 

The graph representation of the FML is only an abstraction where connection seg-

ments (denominated arcs) between main elements (denominated nodes) are identified. 

Nodes represent the centres of the largest spheres inscribed in the elementary volumes and 

are found by inspecting the 26 neighbouring voxels over the ML. When two nodes are found 

to be adjacent pixels they are considered to constitute the same node. Adding the 26 voxel 

neighbours taken over the median line gives the complete node characterisation. This addi-

tion is necessary to prevent the formation of redundant arcs. The remaining voxels on the ML 

generate arcs which connect the different nodes already found. The above procedure has 

been tested in several situations and proven to be suitable for the description of 3D images 

with a large distribution of very fine objects, with constrictions or protuberances of 3 to 4 

voxel size: this situation is very frequent in porous structures studies.  

 
4.1.2. Graph Node Classification 

Each element (voxel) of the ML is coded either as a node or as an arc, and then each 

node can be associated to the arcs starting from it and classified following the kind of con-

nections generated. Four kinds of nodes can be identified, useful in structure identification:  

i) main nodes, which do not have connections with larger nodes;  

ii) large nodes, which have one connection with at least another large node and 

the others with smaller nodes ; 

iii) strict nodes, which have only one arc connected to a larger node;  

iv) connection nodes, which connect two or more larger nodes.  

For our purposes we needed to explore only the main and the connection nodes. 

 

In Fig. 4.1.a-b is shown a six spheres arrangement: four spheres the centres of which 

lie in the same plane, 1 sphere above this plane and 1 below (not centred on the axis pass-

ing through the geometric mid point of the centres of the four spheres and orthogonal to their 

plane). All spheres have the same radius value: 11 voxel. The ML skeleton is shown in figure 

4.1.c by its voxel representation. The corresponding ML graph is shown in Fig. 4.1.d, where 

red balls represent the main nodes; green balls represent the connection nodes; and blue 

lines and balls represent the arc elements. For this example, we have six spheres each con-

nected to four nodes (mean coordination number = 4). 
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a     b 

            
c     d 

 
Fig. 4.1. The different steps in the FML Graph extraction: a, b) a six spheres arrangement  c) 

ML skeleton (voxel view) and d) ML graph representation (main nodes in red, connection 

nodes in green, arcs in blue). 

 

 
Fig. 4.2. Sphere representation of main nodes with centres R0 and R1 (in red) and connec-

tion plane shape with centre Rc (in green) (circular area in the plane). 
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4.2. Data Model  
The main nodes and the connection nodes represent object centres by their co-

ordinates (i, j, k). The main node radius represents an ideal sphere and the connection node 

radius represents an ideal circular shape (not a volume but just only a surface). 

 
4.2.1. Pebble Classes 

Different classes of pebbles, or better spheres (Fig. 4.3) can be identified in the sam-

ples due the existence of partial can domains (irradiated can regions) resulting from the ge-

ometry of the experimental data acquisition [24].  

 

 
Fig. 4.3. The different classes of pebbles inside a partial domain, representing different radii 

and coordination numbers. 

 

The main classes are: 

1 – class C0: spheres entirely inside the domain (main coordination number, and ra-

dius RC0);  

2 – class C0*: spheres partially inside the domain (touching the top or the bottom of 

the can, coordination number is less than in class C0, and RC0 > RC0*); 

3 – class C1: full spheres touching the lateral walls (coordination number is 

less/equal  than in both classes C0 and  C0*, and RC0 ≥s RC1); 

4 – class C1*: partial spheres touching the lateral walls (coordination number is less 

than in class C0 and C0*; RC1 > RC1*); 

5 – class C2 : sphere artefacts due to a large volume cut (RC0 >> RC2); 
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6 – class C_other (not shown in Fig. 4.3): the other spheres touching the top or bot-

tom of the domain if the domain is the entire can (that is to say the X-ray 

beam scans cover ideally the whole can � it is not the case in this study); 

7- class C_noise (not shown in Fig. 4.3): residual elements, smaller than the mean 

connection radius. They can generate incorrect coordination numbers by 

multi-arc connections (geometrical artefacts in the volume). 

 

Typically there are two different configurations (Fig. 4.4.a-b): non-compressed and 

compressed spheres (pebbles). To evaluate the main radius value distributions including the 

different classes and the compression effect, one must take into account only the objects 

with a radius being nearly the same as the mean radius. The other objects (C2, C_other and 

C_noise classes) are not used to compute the mean values, but they are still considered in 

the ML graph analysis to characterise the connections and the contact surfaces of the C0, 
C0*, C1 and C1* classes. 
 

 
a 

 
b 

 
Fig. 4.4. Different pebble configuration cases: a) non-compressed pebbles; and  

b) compressed pebbles.  

 
 

4.3. Expected Results 
 

The main results shown hereafter refer to: 

1- The number of objects in the volume, i.e. the sum of C0, C0*, C1, C1* and C2 

class elements;  

2- The position of  object centres in Cartesian co-ordinates; 
3- The object radius frequency in the volume;  
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4- Coordination number distribution: the number of connections for each pebble; 
5- Total contact area distribution: the sum of all connection surfaces associated to 

the pebbles (s. blue objects in Fig. 4.4.a);  
6- Contact area ratio distribution: i.e. for each object the ratio between the total 

contact surface area referred to the ideal sphere surface (radius Rco in the 

Fig. 4.4.a);  

7- Medial line graph visualisation: a 3D view of the whole sample. 

 
Most results will be obtained basing on the analysis of the ML graph and the topology 

of connections. Some compression effects can be understood looking at Fig. 4.4.a-b, where 

a non-compressed and a compressed pebble configuration are shown. 

 

4.3.1. Compression - Contact Surface Ratio - Coordination Number 
In a non-compressed can (Fig. 4.4.a), the mean radius (i.e. the class C0) character-

ises the sphere and its four connections (coordination number = 4). If the compression in-

creases the spheres will be deformed (figure 4.4.b). For small compressions we can argue 

that the C0 radius does not undergo a significant reduction (transition to the C0* class), but 

the contact area increases. Also, we can observe in figure 4.4.b that the coordination number 

becomes 3 since only three connections are still present. In this case the decrease of the 

coordination number is associated to a real increase in the surface contact area and contact 

area ratio (shape index). 

 

4.3.2. Domain location and Edge Effects - Coordination Number 
The coordination number denotes a structural parameter related to the internal ar-

rangement of the pebbles. The can edges and the relative sample location in the can affect 

the structural arrangement. At the bottom of the can, the influence of the can edges is ex-

pected to be more important than in the can mid part, thus inducing a change of the mean 

coordination number. 

 

4.3.3. Class C2, C_other and C_noise - Coordination Number 
The C2, C_other and C_noise object classes will be used to help to determine the 

coordination number and the contact surface area but they can generate some errors. The 

most important error can be the increase of the coordination number in some objects due to 

false arc connections in the volume (long arcs). This overestimation is not expected to be 

significant with regard to the evaluation of the domain�s mean quantity values. 
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4.4. Post-Processing 
 
As already mentioned above, the main objective of this analysis is the determination 

of the main radius, the contact area and the coordination number of each object as well as 

the poloidal angle distribution which can be directly related to the SBZ model contact surface 

index. The algorithms employed are based on the post-processing of the FML graph repre-

sentation proposed in [16]. In the next sections is described the main post-processing strat-

egy adopted to evaluate the results presented in Section 2.5. 

 

Internal ROI determination to exclude object-edge contacts: An internal ROI has 

been defined to exclude from the analysis spheres in contact with the can lateral walls and 

also partial spheres (cut spheres). By that, one detects if a sphere centre (or node in the FML 

graph) is placed inside the internal ROI, otherwise the node does not count for statistics. In 

order to obtain the internal ROI radius one must subtract one sphere diameter (the diameter 

average value is 3.4 (mm)) from the radius of the ROI can. Its height is the height of the ROI 

reduced by one sphere diameter (taking one radius* from the top and one from the bottom). 

 

Connection overhead filter: A special filter has been developed, called connection 

overhead filter, which controls that the distance between two connected balls be lower than a 

maximal distance, otherwise the connection will be labelled as not valid.  

 

Determination of the contact surface index: The surface contact index is the sum 

of all contact surfaces per pebble normalised by the cross section of the pebble.  
 

Geometric contact surface index – Definition: The geometric contact surface index 

[Pieritz, 2004 b], is given by:  

 

∑=
i Rs

RcGeoIndex
)4(
)(

2

2

π
π

      (2) 

 
where: - i : i-th connection with a pebble; 

- Rc: connection node radius; 

 - Rs: pebble (sphere) radius; 

 

This index is representative of the total amount of the spherical surface in contact 

with other spheres.  
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4.5. Topology Results 
 
4.5.1. Post-processed Results 

Table 4.1 summarises the main results of the post-processed FML for all samples. 

The following figures present results for the non-compressed sample S0; the corresponding 

results for the other samples are given in the Appendix. Figure 4.5 a) contains the final post-

processed FML graph representation (main nodes in red and arcs in blue) of a set of 217 

pebbles. Figure 4.5 b) shows a perfect sphere representation of the pebble configuration. 

These pebbles have their centres (main characteristic voxels) inside the post-processed ROI 

to ensure that they are not in contact with the can walls and the pebbles cut by the ROI 

boundaries. The resulting configuration represents approximately the height of one and a half 

slice in the original pebble network. 

 

Table 4.1. Main results of the post-processed FML for all samples. 

Sample S0 S1 S6mid S6bot 

Compression (MPa) 0 8 16 16 

Total No of objects 518 458 404 564 

No of objects (Classes C0, C0*, C1 and C1*) 348 244 225 295 

No of analysed objects (Class C0) 217 137 114 198 

Average radius (m) 

standard deviation  (m) 

1.69 

0.02 

1.68 

0.02 

1.68 

0.02 

1.69 

0.02 

Average coordination No per sphere 

standard deviation  

6.35 

0.23 

6.53 

0.89 

6.19 

0.77 

5.86 

0.58 

Average contact area per sphere (mm2) stan-

dard deviation (mm2) 
2.16 

1.36 

3.07 

 9.72 

6.48 

1.12 

5.92 

1.62 

Average geometric contact surface index (%) 

standard deviation (%) 

2.33 

0.14 

6.41 

1.54 

15.74 

3.07 

13.47 

4.30 

Average contact surface index (%) 

standard deviation (%)   

0.712 

0.04 

2.01 

0.56 

4.79 

0.47 

4.60 

1.29 

 

Figure 4.6 shows the distribution of the coordination number by frequency (in red bars) 

and of the pebble average radius (green bars) as a function of the coordination number Nc. 

The average value of Nc is 6.3, compare Table 4.1, the average pebble radius is not de-

pendent on Nc. More detailed discussions of Nc will be presented in Section 4.5.4. 
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a b 

Fig. 4.5  a)  FML graph view,  b) 3D view of the analysed pebbles (217 objects) of sample 

S0. 

 

Figure 4.7 shows that the average coordination number does not depend on the pebble 

radius. The post-processing evaluation came up with the result that only 5 radius size pebble 

classes are present in the sample, namely: 1.6688, 1.68, 1.6912, 1.7024 and 1.7136 [mm]. 

The average radius value shown is 1.6887 [mm], with a standard deviation of 3.5x10-3 [mm]. 

This radius represents the maximum inscribed sphere � the maximum internal radius without 

surface effects (irregularities e.g. departures from ideal sphericity).
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Fig. 4.6. Coordination number (red bars) and pebble average radius distribution (green bars) 

in sample S0. 
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Fig. 4.7. Pebble radius size distribution frequency (red bars) and average coordination num-

ber vs. pebble radius (green bars) for sample S0. 

 

Figures 4.8 and 4.9 show the fraction of the pebbles surface in contact with other peb-

bles, respectively for the SBZ index and the geometric contact index (Section 4.4 - Eq. 2, 

spherical surface in contact with other pebbles).  
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Fig. 4.8.  SBZ Contact surface index and pebble radius size distribution frequency (in green) 

for sample S0. 
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Fig. 4.9. Geometric contact surface index by pebble radius size distribution frequency for 

sample S0.  
 
4.5.2. Sphere Positions 

As mentioned above, the MLG ROI, used for the topological analyses, is smaller than 

the ROI used in Section 3, see Fig. 3.1. Because of this, the spheres adjacent to the cylindri-

cal wall (1st row) are excluded as well as the spheres in the 1st bottom layer adjacent to the 

bottom plate.  

 

Figure 4.10 depicts the horizontal positions of the sphere centres for all samples. This 

figure shows also the circles where the sphere centres of the 1st, 2nd and 3rd rows should be 

located assuming a dense hexagonal packing neglecting the influence of curvature, compare 

[Benenati,1961]: The radius of the first row is 22.75mm; the radii of the next circles differ by 

0.82 d. The figure shows that the sphere centres of the second row are quite close to the 

corresponding circle and even a regular structure in the zone of the 3rd row is still observable.  

 

There are also sphere centres at radii larger than that for the 2nd row. This is due to im-

perfections (blanks) in the 1st row. 
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Fig. 4.10. Horizontal positions of sphere centres. 
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Fig. 4.11. Vertical positions of sphere centres. 
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The radial, and, additionally, the vertical structure are exhibited by plotting the sphere 

centres in a map with the vertical distance from the bottom z(mm) and the radius r(mm) as 

co-ordinates, see Fig. 4.11. Again, the 2nd row is clearly detectable in all samples. For S1 and 

S6bot, the vertical structure is also well expressed: the distance between 2nd and 3rd layer is 

again ≈ 2.8 mm. 

 

4.5.3. Contact Surfaces 
Figure 4.12 shows for all samples the distribution of the contact surfaces Ac normalised 

with the sphere cross section A. The first group contains the data between 0 and 1%, the 

second between 1 and 2%, etc. In the first group, nearly all data have the value of 0.11% 

which corresponds to the smallest possible detectable contact surface with a diameter of 

about 3 voxels. These surfaces are so small that they can be interpreted as point contacts. 

Figure 4.13 shows the distribution for Sample S0 with a higher resolution. For the non-

compressed bed S0, ideally all contacts should be point contacts. Therefore, the unexpected 

group with values between 2 and 3 % asks for special interpretation. 
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Fig. 4.12. Distribution of normalised contact surfaces. 
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Fig. 4.13. Details of contact surface distribution for S0: (group/Ac/A(%): 1/0.01; 2/(>0.01-0.5); 
3(0.5-1.0); 4/(>1.0-1.5); 5/(>1.5-2.0); 6/(>2.0-2.5); 7/(>2.5-3.0). 

 

 

This special group of contact surfaces might have been generated during the vibration 

assisted filling process. However, the following arguments suggest that this is not the case: 

in all previous experiments, compare e.g. [1-3], the beds were filled in the same way. As 

mentioned in Section 2.1, the measured thermal conductivity for non-compressed beds 

agrees fairly well with predictions from the SBZ model [4] for values Ac/A between 10-2 �  10-1 

%. For a value Ac/A = 2%, the SBZ model predicts a conductivity value for the aluminium 

pebble bed in helium, see Fig. 2.3 which is larger by a factor of 15 than the value for non-

compressed beds. Although the SBZ model might not be physically correct in all details, it 

should not be wrong by orders of magnitudes in respect to Ac/A. 

 

Presently, the following explanation appears to be most plausible: the aluminium 

spheres are not ideally spherical: diameter measurements using the same sphere showed 

variations of ± 25µm. In order to define mathematically spherical objects, the maximum pos-

sible sphere is defined inside the measured objects. This results in sphere diameters smaller 

than 3.5mm; in fact, the mean sphere diameter determined was to be 3.4mm. The volume 

outside then gives rise to contact surfaces as an artefact. Other possibilities are: errors from 

signal correction (volume image operations + threshold and filters operators + etc), image 

connectivity uncertainty due mathematical connectivity choice (number of active neighbours 

of the voxel), numerical error in operators, and the REV (Representative Elemental Volume) 

problem (Representative Elemental Volume) 
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Figures 4.12 and 4.13 show that with increasing compression the number of contact 

surfaces with Ac/A=0.11 decreases and the contact surfaces shift to larger values. For S1, a 

maximum occurs at Ac/A ≈ 5% and for S6 a broad plateau exists with values between 4 and 

10%. An open question is if/how the questionable smallest contacts become physical mean-

ingful contacts for compressed beds. 

 

Figure 4.14 contains for S0 the distribution of contact surfaces for the individual 

spheres sorted in such a way that the largest value is attributed to contact number 1, the 

second largest contact to n = 2 etc. Additionally, the fraction of the values Ac/A = 0.1 in each 

group is listed. 8.5% of all spheres have only contacts with Ac/A = 0.1; 64% of all spheres 

have two contacts larger than 0.1% and all contact numbers larger than 6 have values of 

Ac/A = 0.1. Figure 4.15 contains corresponding results for S1. There are no longer spheres 

with only contacts of Ac/A = 0.1. 

 

S0
                                 n:                  1    2   3   4   5   6    7  
     fraction (%) of  Ac/A=0.11%:    8,5 36 60 86 95 99 100

0
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2
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1 2 3 4 5 6 7 8 9 10

contact number n

 
Fig. 4.14. Contact surface distribution on the spheres (sample S0). 
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Fig. 4.15. Contact surface distribution on the spheres (sample S1).  

 

4.5.3. Coordination Numbers 
The number of contacts per sphere (coordination number) Nc has been of interest since 

long because the knowledge of Nc  should enable to draw conclusions in respect to the pack-

ing structure. For regular packings, Nc can have values of 6, 8 and 12. The value Nc = 12 is 

quite improbable to occur in random packings because this structure is very unstable. Figure 

4.16 contains results for measured coordination numbers [25] for non-compressed pebble 

beds consisting of 6mm ball bearings. Mean values of Nc = 6.4 were obtained. 

 Bernal & Mason:steel balls, d=1/4 inch,
 packing fraction 62%
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Fig. 4.17. Distribution of contact numbers according to [25]. 
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Fig. 4.18. Distribution of coordination numbers for all samples. 
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Fig. 4.19. Detailed distribution of coordination numbers for sample S0. 

 
 

Figure 4.18 shows the determined coordination numbers Nc for all samples. The maxi-

mum values are between 6 and 7, which is in good agreement with other work [25]. The pre-

sent experiments show no remarkable influence of deformation on Nc. 
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Fig. 4.20. Detailed distribution of contact numbers for sample S6mid. 

 

Again, it is of interest to analyse in more detail sample S0. Figure 4.20 depicts the co-

ordination numbers for the cases: a) all contacts, b) without the contacts Ac/A=0.11, c) using 

only the contacts Ac/A=0.11. Neglecting the contacts Ac/A=0.11 results in unreasonable val-

ues of Nc. Neglecting the large contact values, again the distribution is shifted to such low 

values that the data appear to be not physically meaningful. Only the use of all contacts 

gives the agreement with other data. The same tendencies is observed for sample S6mid, 

the number of contacts Ac/A=0.11 is smaller compared to S0; therefore, the tendency is less 

expressed but still existent, see Fig. 4.20.  

 

4.5.4. Poloidal Distribution of Contact Surfaces 
 

In UCTs, the pebble beds are subjected to a pressure in the vertical direction. The im-

portant question, therefore, is if this can be also seen in the angular distribution of contact 

surfaces Ac/A. Figure 4.21 shows Ac/A as a function of the poloidal angle δ (starting with 0 at 

the �North Pole�). For uncompressed beds, there is no significant dependence from poloidal 

angle (the agglomeration of data in the zone close to δ = 90° is caused by the fact that 

sphere surface increments are largest there). However, again the existence of two groups of 

data is pronounced: one group with Ac/A = 0.1 and the other with Ac/A ≈ 2.2. For compressed 

beds there is the clear tendency that the largest values concentrate in zones with δ  ≤ 45° 

and δ ≥ 145°, i.e. in zones where the contact surfaces are predominantly perpendicular to the 

uniaxial stress. 
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Fig. 4.21. Poloidal distribution of contact surfaces on the spheres. 

 

For the spheres closest to the bottom (2nd bottom layer of samples S1 and S6bot) the 

packing is expected to be close to the hexagonal dense packing structure with contacts at δ 

≈ 35°, 90° and ≈145°. If only spheres are considered at radial positions smaller than 15mm in 

order to avoid disturbances coming from the cylindrical wall, this tendency is well expressed, 

as shown in Fig. 4.22. 
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S6bot; inner spheres of second  bottom layer
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Fig. 4.22. Poloidal distribution of contact surfaces on the inner 2nd bottom spheres for sam-
ples S1 and S6bot. 
 
 
5. FUTURE EXPERIMENTS 

 

The experiments described in this report are considered as a first step of a larger 

programme to investigate the topology of compressed pebble beds. In the future, the follow-

ing investigations will be performed (ESRF contract No ME 898): 

• Calibration of contact surfaces: individual aluminium spheres will be deformed be-

tween steel plates with different forces and the contact surfaces will be measured 

by optical microscopy. The contact surfaces determined by tomography will be 

compared with the expected contact surfaces according to the maximum pressure 

in the UCT. 
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• Comparison of data with experiments where topological data were measured by mi-

croscopy, compare [6]. The detailed data evaluation of the latter experiments is un-

derway. These data will be very useful in respect to the comparison of coordination 

numbers and contact surfaces. 

• New measurements of thermal conductivity of compressed pebble bed in HECOP-

facility. 

• Performance of further microtomographical with pebble beds consisting of 2.3mm 

aluminium spheres contained in cans of the same dimensions as in the present in-

vestigations. During scanning, the spatial resolution will be increased by a factor of 

two. Besides the quantities presented in this report, the following additional quanti-

ties will be determined: 

! contact surfaces between spheres and cylindrical/bottom walls, 

! azimuthal distribution of contact surface on the spheres, 

! scans over the total height of the samples in order to obtain statis-

tically relevant data on void fraction distributions. 

 
 

6. CONCLUSIONS 
 

Microtomography has proven to be a unique technique to determine inner structures of 

pebble beds. This technique has been applied for the first time to detect coordination num-

bers, contact surfaces and their positions on spherical pebbles. It has been demonstrated 

that in uniaxial compression tests (UCTs), which are standard tests for the characterisation of 

thermal-mechanical properties of pebble beds, the poloidal distribution of contact surfaces is 

non-homogeneous. Therefore, the data generated in general by UCTs (modulus of deforma-

tion, thermal creep correlations) must be critically reviewed in respect to the extrapolation to 

blanket applications.  

 

There are some remaining open questions in respect to the accuracy of the results 

concerning the determined contact surfaces. These issues will be  investigated in the  next 

experiments. 

 

The final goal of the joint FZK-ESRF investigations is the improvement of heat transfer mod-

els to describe the thermal conductivity of pebble beds and the heat transfer coefficient be-

tween pebbles and walls. This goal requires the accurate knowledge of topological quantities 

and will be addressed in the future. 

 

 43



REFERENCES 
 

[1] J. Reimann, L. Boccaccini, M. Enoeda, A. Y. Ying, Thermomechanics of solid breeder 

and Be pebble bed materials, ISFNT-6, San Diego, USA, April 7-12, 2002, Fusion En-

gineering and Design, 61-62, 2002, pp. 319-331. 

[2] J. Reimann, G. Piazza, Z. Xu, A. Goraieb, H. Harsch, Measurements of the Thermal 

Conductivity of Compressed Beryllium Pebble Beds, Forschungszentrum Karlsruhe, 

FZKA 7096, 2005. 

[3] J. Reimann, G. Piazza, H. Harsch, Thermal conductivity of compressed beryllium peb-

ble beds, 7th Int. Symp. Fusion Nucl. Techn.,Tokyo, Japan, May 22-27, 2005. 

[4] E.V. Schlünder, Particle heat transfer, Proc. 7th Int. Heat Transfer Conf. München, Ger-

many, Washington: Hemisphere Publ. Co., Vol. 1, RK 10, 1982, pp. 195-212.  

[5] J. Reimann, R. A. Pieritz, M. di Michiel, C. Ferrero, Inner structures of compressed peb-

ble beds determined by X-ray tomography, Proceedings of the 23rd Symposium Fusion 

Technology, Venice, Italy, 20-24 Sept. 2004, Fusion Engineering and Design, in press. 

[6] J. Reimann, R. A. Pieritz, R. Rolli; Topology of Compressed Pebble Beds, 7th Int. Symp. 

Fusion Nucl. Techn., Tokyo, Japan, May 22-27, 2005. 

[7]  P. Falus, M. A. Borthwick, S. G. J. Mochrie, Rev. Sci. Instrum., 75, 4383, 2004. 

[8]  E. Zych, C. Brecher and J. Glodo, J. Phys. Condensed Matter 12, 1947, 2000. 

[9]  http://www.esrf.fr/UsersAndScience/Experiments/TBS/InstrumentSupport/ISGUnits 

/ControlElectronics/Projects/OPIOM/. 

[10] A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, page 186, 

IEEE Press, New York, USA, 1988. 

[11] J. Serra, Image analysis and mathematical Morphology, Academic Press Limited, Lon-

don, 1982. 

[12] F. Flin, R. A. Pieritz, J. B. Brzoska, B. Lesaffre, C. Coléou, Full 3D Modelling Of Curva-

ture-Dependant Metamorphism: First Results And Comparison With Experimental To-

mographic Data, Journal of Physics D: Applied Physics, 36 A49-A54, 2003. 

 [13] F. Flin, R. A. Pieritz, J. B. Brzoska,D. Coeurjolly, B. Lesaffre, C. Coléou, P. Lamboley, 

O. Teytaud, G. Vignoles, J. F. Delesse, Adaptative Estimation of Normals and Surface 

Area for Discrete 3-D Objects: Application to Snow Binary Data from X-Ray Tomogra-

phy, IEEE Trans. on Image Procesing, Vol. 14, No. 5, May 2005, pp. 585-596 

[14] J-M. Barnola, R. A. Pieritz, C. Goujon, P. Duval, E. Boller, 3D Reconstruction of the 

Vostok Firn Structure by X-Ray Tomography, XIII Glaciological Symposium, 

St.Petersburg, Russie, 2004. 

 

 44



[15] R. A. Pieritz, Development of The Medial Line Graphics And The Connected Region 

Threshold Techniques Applied To The Geometrical Porous Media Characterization, 

Master in Sciences and in Engineering Thesis, Federal University of Santa Catarina, 

Department of Mechanical Engineering � Brazil, 1994.  

[16] R. A. Pieritz, Modélisation Et Simulation De Milieux Poreux Par Réseaux Topologiques, 

Doctor Degree Thesis, Université Joseph Fourier, Grenoble I, France, 1998. 

[17] L. H. S. Roblee, R. M. Baird, J. W. Tierney, Radial Porosity Variations in Packed Beds, 

A.I.Ch.E. Journal, Vol. 4, 1958, pp. 460-464. 

[18] R. F. Benenati, C. B. Brosilow, Void Fraction Distribution In Beds Of Spheres, A.I.Ch.E. 

Journal, Vol. 8, 1961, pp. 460-464. 

[19] S. Debbas, H. Rumpf, On The Randomness Of Beds Packed With Spheres Or Irregular 

Shaped Particles, Chemical Engineering Science, Pergamon Press, Oxford, Vol. 21, 

1966, pp. 583-607.  

[20] K. Ridgway, K. J. Tarbuck, Voidage Fluctuations in Randomly-Packed Beds of Spheres 

Adjacent to a Containing Wall, Chemical Engineering Science, Pergamon Press, Ox-

ford, Vol. 23, 1968, pp. 1147-1155. 

[21] H. Martin, Low Peclet Number Particle-to-fluid Heat and Mass Transfer in Packed 

Beds, Chemical Engineering Science, Pergamon Press, Oxford, Vol. 33, 1978, pp. 913-

919. 

[22] O. Bey, G. Eigenberger, Fluid flow through catalyst filled tubes, Chem. Eng. Science, 

Vol. 52, No. 8, pp. 1365-1376, 1997. 

[23] F. Scaffidi-Argentina, G. Piazza, A. Goraieb, E. Boller, A. Elmoutaouakkil, C. Ferrero,  

J. Baruchel, Non destructive three dimensional analysis of the packing of a binary be-

ryllium pebble bed, Fus. Eng. and Design, 58-59, 2001, pp. 707-712. 

[24] R. A. Pieritz, J. B. Brzoska, F. Flin, B. Lesaffre, C. Coléou, From Snow X-Ray Microto-

mograph Raw Volume Data To Micromechanics Modelling: First Results, Annals of 

Glaciology - International Glaciological Society, Vol 38, 2004. 

[25] J. Bernal, J. Mason; Co-ordination of randomly packed spheres, Nature, Vol. 188, 

Dec.10, 1960, pp 910-911.  

 

 45



ANNEX 1 
 
 

 
a 

 
b 

Fig. A.1 a) ML graph view, b) 3D view of the analysed pebbles (137 objects) ; sample S1 
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Fig. A.2 � Coordination number (red bars) and pebble average radius (green bars) distribu-

tion for sample S1. 
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Fig. A.3 � Pebble radius size distribution frequency (red bars) and average coordination 

number vs. pebble radius (green bars) for sample S1 
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Fig. A.4 � SBZ model contact index by pebble radius size distribution frequency (in green) for 

sample 1 
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Fig. A.5 � Geometric contact surface index (as defined in section 4.4) by pebble radius size 

distribution frequency for sample 1 
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Fig. A.6 � a) ML graph view and b) 3D view of the analysed pebbles (114 objects) of sample 

S6 - middle 
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Fig. A.7 � Coordination number (red bars) and pebble average radius (green bars) distribu-

tion in sample S6 middle 
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Fig. A.8 � Pebble radius size distribution frequency (red bars) and average coordination 

number vs. pebble radius (green bars) sample S6 - middle 
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Fig. A.9 � SBZ model contact index by pebble radius size distribution frequency (in green) for 

sample 6 - middle 
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Fig. A.10 � Geometric contact surface index (as defined in Section 4.4)) by pebble radius 

size distribution frequency for sample 6 - middle 
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Fig. A.11 � a) ML graph view and b) 3D view of the analysed pebbles (198 objects) of sam-

ple S6 - bottom  
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Fig. A.25 � Coordination number (red bars) and pebble average radius (green bars) distribu-

tion in sample S6 - bottom  
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Fig. A.12 � Pebble radius size distribution frequency (red bars) and average coordination 

number vs. pebble radius (green bars)  for sample S6 - bottom 
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Fig. A.13 � SBZ model contact index by pebble radius size distribution frequency (in green) 

for sample 6 - bottom 
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Fig. A.14 � Geometric contact surface index (as defined in section 4.4)) by pebble radius size 

distribution frequency for sample 6 � bottom. 
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