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Adjungierte Sensitivitätsanalyseverfahren für Markovketten 
mit Anwendung auf Zuverlässigkeit von IFMIF 

Beschleuniger-System Anlagen 

 

Kurzfassung 
 
Das Markovketten Verfahren und sein mathematisches Modell wurde über Jahre als ein 
leistungsfähiges Werkzeug benutzt, um die Entwicklung und das Verhalten physikalischer 
Systeme zu analysieren. Der Grad der Abstraktion des physikalischen Systems, die im 
mathematischen Modell verwendeten statistischen Daten, sowie die numerischen 
Näherungen zur Lösung der Gleichungen sind nur einige Quellen von Unsicherheit, die in 
den Zuverlässigkeitsresultaten enthalten sind. 
Durch Verwenden der Sensitivitätsanalyse kann der Einfluss von Unsicherheitsdaten in 
Systembauteilen auf das Gesamtverhalten der Systemzuverlässigkeit analysiert werden und 
die Schwachpunkte im Modell können identifiziert werden. Mit den Ergebnissen der 
Sensitivitätsanalyse erhält man den Vertrauensgrad der Zuverlässigkeitsresultate. Somit 
können neue Verbesserungen oder Neuentwürfe des physikalischen Systems durchgeführt 
werden.  
 
Diese Arbeit stellt die Implementierung der Adjungierten Sensitivitätsanalyseverfahren 
(Adjoint Sensitivity Analysis Procedure - ASAP) für die Continuous Time Discrete Space 
Markovkette (CTMC) als eine Alternative zu anderen rechenintensiven Methoden dar. Um 
dieses Verfahren als Endprodukt in Zuverlässigkeitsstudien zu entwickeln, wird die 
Zuverlässigkeit der physikalischen Systeme mit einer gekoppelten Fehlerbaum-Markovketten 
Technik analysiert, d.h. die Abstraktion des physikalischen Systems erfolgt, indem als 
Schnittstelle der oberen Ebene ein Fehlerbaum benutzt wird, der danach automatisch in eine 
Markovkette umgewandelt wird. Die resultierenden Differenzialgleichungen, die auf 
Markovkettenmodellen basieren, werden danach gelöst, um die Systemzuverlässigkeit zu 
erhalten. Weitere Sensitivitätsanalysen mit ASAP, die auf die CTMC Gleichungen 
angewendet werden, werden genutzt, um den Einfluss von Änderungen in den Eingabedaten 
auf das Zuverlässigkeitsmaß zu erkennen und das Vertrauen in die abschließenden 
Zuverlässigkeitsresultate zu erhalten. 
 
Die Methoden zum Erzeugen der Markovketten und der ASAP für die Markovkettengleichung 
sind in dem neuen Computercodesystem QUEFT/MARKOMAG-S/MCADJSEN für 
Zuverlässigkeit und Sensitivitätsanalyse von physikalischen Systemen eingeführt worden. 
Die Validierung dieses Codesystems wurde mit einfachen Problemen durchgeführt, für die es 
analytische Lösungen gibt. Typische Sensitivitätsresultate zeigen, dass die mit ASAP 
erzielten numerischen Lösungen widerstandsfähig, stabil und genau sind. Die Methode und 
das Codesystem, die während dieser Arbeit entwickelt wurden, können als ein 
leistungsfähiges und stabiles Werkzeug weiter genutzt werden, um die Sensitivität von 
Zuverlässigkeitsmaßen für jedes physikalische System mit Markovketten zu analysieren.  
 
Zuverlässigkeit und Sensitivitätsanalyse sind für die IFMIF Beschleuniger-System Anlagen 
mit diesen Methoden während dieser Arbeit durchgeführt worden. Die 
Zuverlässigkeitsresultate werden um die Verfügbarkeit der Hauptuntersysteme dieses 
komplizierten physikalischen Systems während einer typischen Missionszeit konzentriert.  
Die Sensitivität Studien für zwei typische Antworten sind mit ASAP durchgeführt worden. Der 
Vergleich der Sensitivitätsresultate zwischen  ASAP und den klassischen Methoden zeigt 
eine gute Übereinstimmung, aber mit dem Vorteil der Berechnungszeit im Fall von ASAP. 
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Abstract 
 
 
 
The Markov chain technique and its mathematical model have been demonstrated over 
years to be a powerful tool to analyze the evolution and performance of physical systems. 
The degree level of abstraction for the physical system, the statistical data used in the 
mathematical model, the numerical approximations used to solve the equations, are only 
some sources of uncertainties in reliability results. By applying the sensitivity analysis, the 
influence of uncertainty data in system components to the overall behavior of the system 
reliability can be analyzed and the weak points in the model can be identified. Using the 
sensitivity results the confidence level of reliability results is obtained. Thus, new 
improvements or redesigning of the physical system can be performed.  
 
This work presents the implementation of the Adjoint Sensitivity Analysis Procedure (ASAP) 
for the Continuous Time, Discrete Space Markov chains (CTMC), as an alternative to the 
other computational expensive methods. In order to develop this procedure as an end 
product in reliability studies, the reliability of the physical systems is analyzed using a 
coupled Fault-Tree – Markov chain technique, i.e. the abstraction of the physical system is 
performed using as the high level interface the Fault-Tree and afterwards this one is 
automatically converted into a Markov chain. The resulting differential equations based on 
the Markov chain model are solved in order to evaluate the system reliability. Further 
sensitivity analyses using ASAP applied to CTMC equations are performed to study the 
influence of uncertainties in input data to the reliability measures and to get the confidence in 
the final reliability results.  
 
The methods to generate the Markov chain and the ASAP for the Markov chain equations 
have been implemented into the new computer code system QUEFT/MARKOMAG-
S/MCADJSEN for reliability and sensitivity analysis of physical systems. The validation of this 
code system has been carried out by using simple problems for which analytical solutions 
can be obtained. Typical sensitivity results show that the numerical solution using ASAP is 
robust, stable and accurate. The method and the code system developed during this work 
can be used further as an efficient and flexible tool to evaluate the sensitivities of reliability 
measures for any physical system analyzed using the Markov chain. 
 
Reliability and sensitivity analyses using these methods have been performed during this 
work for the IFMIF Accelerator System Facilities. The reliability studies using Markov chain 
have been concentrated around the availability of the main subsystems of this complex 
physical system for a typical mission time.  
The sensitivity studies for two typical responses using ASAP have been performed. The 
results given by ASAP with those obtained using the classical methods have been 
compared, showing a good agreement but with the advantage of computational time in the 
case of ASAP.  
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1 Introduction 
 

Reliability analysis of physical systems is widely applied today in many engineering fields 

including energy, aerospace, automotive, chemical processing, and even in project planning 

and financial management. The goals and sizes of this analysis vary from sector to sector and 

many methods have been developed and standardized over years. Nowadays these methods 

are growing in sophistication and are trying to depict as much as possible the real situations. 

The computer codes that perform this complex analysis have known a rapid development in 

the last decade as well.   

Despite of all these methods and their complexity in analysis, all of them are using a priori 

statistical/experimental data, which are not error free. Experience has shown that no 

measurement, however carefully made, can be completely free of uncertainties.1 These 

uncertainties are trying to be minimized, but even in these conditions they have to be 

considered in system reliability evaluation.  These input data unfortunately are not the only 

source of uncertainties, even the methods themselves can be a source of uncertainty since they 

are an abstraction of the real-world problem. The numerical methods used for solving the 

mathematics behind of these methods are also affected by numerical errors. Other sources of 

uncertainties are due to not all parameters influencing the system are considered in analysis 

because of more or less, insufficient information, or that the investigated phenomena is not 

completely known or understood,2 etc.  

Based on these uncertainties, at the end of reliability evaluation, further questions arise. What 

confidence can one have that the numerical results produced by the reliability model are 

correct? What are the implications of these uncertainties to the reliability results? How these 

results are changing with the changing in input parameters? Answers to these questions are 

provided by sensitivity and uncertainty analysis. 

The results of sensitivity analysis are used further for focusing on areas which need greater 

reliability and quality control and more careful design considerations. Based on sensitivity 

data, one can formulate system improvement suggestions and to reassess system reliability 

assuming the incorporation of the suggestions to support simulation studies, to guide or 

validate the establishment of cost-effective performance criteria and test methods.3 But as one 

can see, the sensitivity analysis is applied at the very end and, therefore, one should perform 

before the reliability analysis of the physical system. 

The study of reliability for a physical system is based on its behavior during operation to the 

various conditions, external or internal, dependent or independent by itself. Therefore, the 
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mathematical model that describes this evolution should be a dynamical model rather than a 

static one. The mathematical model used in reliability analysis to depict dynamically the 

evolution of the physical system is the Markov chain. In the past years, it has been 

demonstrated the applicability of the Markov chains for the reliability analysis for real-world 

problems in various branches of engineering.4-8 

Markov chains have also shown themselves to be a valuable analyses tool in a variety of other 

branches of science as from economic models, population forecasting, biology, etc., to 

financial planning. They have been and continue to be the method of choice for modeling 

many other systems.9  

Over years, once the number of applications using Markov chains has grown up, and the 

dynamic reliability analysis has started to be used more and more, some useful computer 

packages has been developed10-15 into the academic area and applied in various engineering 

fields such as aerospace, computing, and nuclear power plants. The commercial packages 

with Markov modeling capabilities16-19 have known also a noticeable development in the last 

decade and they are used now extensively in many branches of industry, from cell phones, 

computers, communication and networks, health equipment, etc. until aviation, aerospace, 

military and nuclear sectors, to analyse and predict system reliability and availability. 

Markov chains are used in reliability analyses whenever statistical dependences among 

failures and repairs or both must be considered. The mathematical model of Markov chain 

comprises independent and dependent variables, input parameters, and the relationship among 

these quantities through a set of ordinary differential equations. The input parameters are not 

known precisely, but may vary within some ranges that reflect the incomplete knowledge or 

uncertainty regarding them. The numerical methods used to solve the Markov chain set of 

equations introduce themselves numerical errors.20-23 The effects of such errors and parameter 

variations must be quantified in order to assess the reliability range validity. This 

quantification is made by sensitivity analysis. Afterwards, the rank of parameters importance 

in affecting the reliability measure analyzed is performed based on the sensitivity results, the 

larger sensitivities the bigger influence on the final results. Further, the effect of parameter 

uncertainties to the uncertainty about computed system reliability is performed by uncertainty 

analysis24, 25 using the previously computed sensitivities. Therefore, the components whose 

parameter’s uncertainties give large sensitivities will have severe impact on the system 

reliability and its uncertainty. 

The sensitivity analysis usually implies the derivatives of the reliability function with respect 

to system parameters. In reliability theory, the sensitivity analysis has been associated with 
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the importance analysis and has been defined in the context with the combinatorial reliability 

models as a way to assess the relative importance of a component to the reliability of a 

system. Several measures of importance have been defined, but these measures often give 

counterintuitive or inconsistent results and they have generally fallen out of favor.4, 26, 27 None 

of these methods does imply partial derivatives in their evaluation. The oldest proposed 

(Birnbaum, 1969)28 and the only measure of importance for components in reliability analysis 

which is defined as partial derivative of system reliability function with respect to component 

reliability (the classical sensitivity analysis) is Birnbaum structural importance.4, 26, 28 

Sensitivity studies on Markov chains using this classical approach have been performed 

emphasizing the difficulties that arise in the cases of systems with many components as it 

exists in real situations. The practical utility of such analyses has been pointed as well. During 

these studies has been concluded that the classical sensitivity analysis is impractical for large 

systems. Therefore, the approximate methods has been proposed and developed to avoid this 

drawback.27 An overview of these studies will be presented into the next section.  

In early eighties, Cacuci has developed a deterministic sensitivity analysis theory based on 

adjoint operators avoiding the disadvantages which the classical methods imply.29, 30 This 

theory also known as the Adjoint Sensitivity Analysis Procedure (ASAP), has not been 

considered until now on sensitivity studies in reliability engineering. 

 

1.1 Background and previous work 
 

In this section an overview of previous work on sensitivity studies and approaches using 

Markov chains in reliability engineering is presented.  

 

Markov chain represents an analytical model which is widely used for reliability studies of 

complex systems, to predict analytically or numerically measures as reliability, availability, or 

performance. As the systems become more complex, this technique becomes more difficult to 

apply. Simulation using Monte Carlo technique31, 32 can be used to perform reliability 

analysis. A representation of the physical system with its relevant parts is constructed and a 

series of random events to which the system must respond is generated. Observations are 

made of the system reaction to the events. The method is powerful for evaluating reliability 

measures because the system representation can be made to virtually any level of detail. But 

the main drawback of this method is that the whole process of simulation should be repeated 

numerous times in order to obtain a statistically significant number of trials at which the 
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simulated system behavior to be close with the behavior of the real system. If each trial 

requires an appreciable amount of computing time, then the total executing time may be 

excessive.33, 34 Therefore, the simulation method is further quite expensive for sensitivity 

analysis. The computation time required for sensitivity studies using simulation (Markov 

Chain Monte Carlo)9, 31 increase prohibitive especially when numerical difficulties occur, as 

the stiffness of the Markov chain,34 which usually appear in simulation of high reliable 

systems. Therefore, the new analytical approaches have been proposed for sensitivity analysis 

using the mathematical model of Markov chain, rather than simulation.   

The Markov chain models the physical system as a set of states in which the system can be 

during its life period and the transitions which can occur between these states. A state is a 

unique configuration of failed and operational components or subsystems. Based on these 

states and transitions a set of ordinary differential equations is defined. Considering the state 

space and the system evolution time, the Markov chain can be theoretically of the next four 

types: 

- discrete-time discrete-state Markov chain,  

- discrete-time continuous-state Markov chain, 

- continuous-time discrete-state Markov chain, 

- continuous-time continuous-state Markov chain. 

It should be mentioned here that the cases in which the state space of Markov chain are 

continuous, are called Markov processes and this term is generally used. The term Markov 

chain is used for the Markov processes in which the state space is discrete. In reliability 

engineering, the state space is considered as a countable finite space in which the system can 

be only in one of these states once at a time. Thus, it is usually met in literature the Markov 

chain as a discrete time Markov chain (DTMC), or as continuous time Markov chain 

(CTMC), for the 1st and the 3rd type, respectively. DTMC only can make transitions from one 

state to another at discrete specified intervals, while CTMC can change states at any time.7, 9 

Reliability analysis of complex systems is performed using CTMC, and has been widely used 

to predict the performance and reliability of a variety of systems. Solving the CTMC system 

of differential equations it is obtained the transient probabilities of the states in which the 

system can be during its evolution. Using these probabilities the measures of interest as 

availability, reliability, performability, mean time to failure, are obtained. Further, the 

sensitivity studies are performed to analyze the effect of uncertainties in input parameters to 

these measures. These measures of interest, i.e. the reliability functions, are named generically 

in the sensitivity theory the system responses. 
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Since the importance concept of components in reliability engineering has been proposed in 

1969 by Birnbaum28 in the way of classical sensitivity analysis which implies the derivatives 

of reliability function with respect to input parameters of components (e.g. mean time to 

failure/repair, failure rates), the subject has been treated poorly in literature until the middle of 

eighties. An alternative approach is to solve the model once with all its parameters considered 

at the nominal value, and then to repeat the all calculations modifying the input parameters 

one at a time to see the effect in results. For models which imply many parameters this 

method is time consuming. 

Due to the wide use of Markov chains to model performance and reliability of the physical 

systems, the sensitivity analysis of Markov chains started to become a field of interest for 

scientists in reliability engineering, especially into electronic and computer science, at the 

middle of eighties. Early numerical sensitivities studies on stationary probabilities of Markov 

chains have been performed by Golub et al.35 and Stewart et al.36 Monte Carlo simulation has 

been used in the same time for sensitivity analysis on stationary and transient distribution of 

Markov chain by Glynn37 and Reiman et al.38 and has been proved to be a computational 

expensive alternative. Therefore, further numerical solutions to solve the Markov chain and 

the sensitivities have been proposed. Heidelberger and Goyal39 performed sensitivities studies 

on transient distribution of CTMC using a numerical method based on uniformization 

technique. The method to compute the exact solution of the sensitivities measures directly 

from Markov Chain is based on that from Frank.40 The uniformization technique is based on 

an infinite series representation of the transient distribution. The advantages of this iterative 

technique on Markov chains has been demonstrated and extended to the computation of 

derivative of the transient distribution with respect to the input parameters. Numerical 

example on a fault-tolerant database system has been performed using the SAVE14 package 

and has been illustrated the need of the sensitivity analysis in reliability study of the system. 

The optimization of the system using sensitivity results is different depending on the 

objective, i.e. system reliability or availability. 

Blake et al.41 have discussed the extension of the Markov chains to include parametric 

sensitivity analysis for reliability and performability of multiprocessor systems. They 

performed reliability studies using Markov chains and then sensitivity analysis on the 

influence of input parameters to some measures of interest as mean time to failure (MTTF). 

They made a comparison of numerical methods as uniformization and Runge-Kutta for 

solving the original Markov chain and the system sensitivities as well as the number of 
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computation operation that each method implies. There has been emphasized the degradation 

of the numerical methods performance for stiff problems which are common in systems with 

repair or reconfiguration. Alternative to such numerical problems has been proposed.23 

Further applications of the sensitivity results has been enumerated as to provide error bounds 

on the solution when are given bounds on the input parameters (uncertainty analysis), to 

identify the portions of the model that need refinement, to optimize the system, e.g. to 

maximize the MTTF with minimal cost, etc.  

To the standard uniformization method used to compute the sensitivities of reliability 

function,39, 41 Abdallah34 proposed a new method called the uniformization power with the 

aim to reduce the computation time for stiff cases. He performed sensitivities studies using 

this method for stiff problems highlighting the advantage of uniformization power approach 

from point of view of computational cost. But he also pointed that for the cases when the 

Markov chain is non-stiff the sensitivities are computed more efficient using the standard 

uniformization method. 

The Markov chain for a complex system is often large and complex and its construction is 

difficult. Hence high level interfaces which can be used to describe the system have been 

developed. The underlying Markov chain is then automatically generated from this 

description. As high level interfaces have been used the combinatorial techniques used in 

reliability as Block Diagram (BD), Fault-Tree (FT),42-47  and Stochastic Petri Nets (SPN).7 

The dependability between components/events is described using one of these techniques and 

afterwards the Markov chain is generated and solved. Conversion algorithms between these 

combinatorial models and Markov chain are depicted in literature.33, 48, 49 These methods have 

been implemented in computer packages as SAVE14 which uses as input BD, HARP10 and 

Galileo50, 51 which use FT as input, SPNP52 which uses as input SPN, HIMAP12 which uses as 

input either FT, or SPN, or SHARPE13 which uses as input BD, FT, SPN. 

Muppala and Trivedi53 have extended the sensitivity analysis to Generalized SPN (GSPN)7 

and implemented the method in SPNP52 package. Their extension is made on the sensitivity 

analysis when are changing in the structure of the GSPN which is used further to generate the 

Markov chain. The uniformization method proposed by Heidelberger et al.39 is used to obtain 

the sensitivities of CTMC and DTMC. Sensitivity studies using as high level interface 

Deterministic and Stochastic Petri Nets (DSPN) for scheduled maintenance systems has been 

performed by Choi et al.54 for steady-state distribution and Bondavalli et al.55 for transient 

distribution. 
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Boyd33 performed sensitivity studies using HARP package using the recalculation method on 

fault tolerant hypercube computer architecture. Further sensitivities studies have been 

performed by Meyer56 for stationary distribution of Markov chain and Ramesh and Trivedi57 

for transient distribution. They focused in principal on the bounds of different sensitivities 

measures, emphasizing the usefulness of the sensitivity results in assessing the effects of 

stiffness on the Markov chain that is characteristic in reliability studies of high reliable 

systems with repairs. 

Sensitivity and uncertainty analysis using both Monte-Carlo simulation and Taylor-series 

method have been made by Haverkort et al.58 for stationary solution and Papazoglou et al.59 

and Yin et al.60 for transient distribution of Markov chain. To the limitation of the simulation 

due the intensive computation are proposed the analytical approaches which are faster and 

cheaper from computational point of view. Yet, the analytical methods are limited to few 

models and some constrains in input parameters.  

As it can be seen, all the sensitivities studies proposed refined numerical algorithms to 

simplify the computation due the increasing size of the problem. 

For studying the sensitivity of the steady-state distribution of CTMC, Cao et al.61 proposed a 

new deterministic method based on the idea that the effect of parameter change can be 

decomposed into a sum of the effects of many individual paths of Markov chain. They 

introduced two concepts, namely realization factor and performance potential for Markov 

chain, and based on either two quantities they estimated the sensitivity of steady state solution 

of the Markov chain. They proposed further algorithms for sensitivity studies on steady state 

performance of Markov chain based on these concepts.62 

To avoid the typical approach of the sensitivity analysis of Markov chain40 which consists in 

solving a set of ordinary differential equations for the transient solution of state probabilities 

and a much larger set of differential equations for sensitivities, Ou and Dugan27, 63 proposed 

an approximate approach to estimate the sensitivity without increasing the size of the 

problem, using the solution of the original Markov chain. Their approach consists in 

definition of state subsets according to the failure or operational status of the system and a 

specific component whose importance is studied. This differentiation is made during the 

Markov chain generation from a Dynamic Fault Tree. Different ways to compute the 

sensitivities for components depending on their dependencies (individual components or spare 

components) are provided. The approximate sensitivities are based only on the solution of the 

original Markov chain with the reliability functions obtained using the previous defined 
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subset of states. They implemented the method into Galileo50, 64 package and compared the 

numerical results with the exact solution which is based on recalculations. 

 

From this survey on the sensitivity analysis of Markov chains, one can see that the method 

using adjoint operators originally developed by Cacuci29,30 has not been considered in 

reliability studies yet, and represents the main purpose of this work.   

 

1.2 Goals of this work 
 

The goal of this work is the applicability and implementation of the Adjoint Sensitivity 

Analysis to Markov chains with the purpose to perform sensitivity studies using this 

approach, emphasizing the advantages of this method over the others. The role of the 

sensitivity analysis during the reliability studies is well known. Analysis of the sensitivity 

results will help to improve and optimize the physical systems to achieve the required 

reliability, to reduce the costs and to establish maintenance policies. Also the sensitivities can 

be used further for uncertainty studies and therefore to establish the confidence level of 

reliability results.  

One necessary step in achieving this goal is to develop a methodology and code system for 

performing such an analysis. The Adjoint Sensitivity Analysis Procedure together with the 

Markov chain approach for reliability analyses purposes has been implemented into a stand-

alone computer code system , i.e. QUEFT/MARKOMAG-S/MCADJSEN, and applied further 

on a real-world problem, namely on IFMIF Accelerator System Facilities. The numerical 

results on sensitivity analysis using the new code-system based on the theory developed in 

this work can be used further as basis for new uncertainty studies and optimizations, cost 

reduction, and maintenance policies, of this complex system. 

Chapter 2 presents the mathematical model of Markov chain and the concepts behind it. The 

Kolmogorov system of ordinary differential equations and the properties of this system are 

described. Due to problem complexity the automated generation of this system is performed 

based on abstraction of the physical system in terms of Markov chain. Difficulties to generate 

straightforward this system of equations are emphasized and alternatives to generate 

automatically the Markov chain equations using combinatorial models are presented. A 

simple algorithm implemented to generate the Markov chain is described and an example of 

its application on a simple problem is performed. In close of this section the reliability 

measures and the equivalent relations among them are presented as well. 



 9 

In Chapter 3, the main aspects of the local adjoint sensitivity applied to differential equations 

which describes the Markov chain are presented. As it is known the sensitivity theory based 

on adjoint functions developed by Cacuci29, 30 comprises two aspects in development, namely 

the Forward Sensitivity Analysis Procedure (FSAP), and the Adjoint Sensitivity Analysis 

Procedure (ASAP). The first two sections highlight with FSAP and ASAP applied to 

Kolmogorov differential equations. It is emphasized that the FSAP should be used for the less 

usual situations when the number of perturbations in the considered problem is smaller than 

the number of measures of interest (responses) for sensitivity analysis. On the other hand, in 

the more common real situations when the number of perturbations exceeds the number of 

responses for sensitivity analysis, ASAP must be used since from the view of computational 

cost this procedure is the only practical way to perform a complete and systematic sensitivity 

analysis for the reliability of complex systems. During the ASAP procedure the following 

fundamental characteristics have been highlighted, namely that the adjoint function are 

independent of perturbations in parameters, the adjoint functions must be computed again 

only if the system response is changed, the adjoint sensitivity system of equations can be 

solved independently using other numerical methods than the original differential system of 

equations, since it is linear in the adjoint functions, and the adjoint functions are dependent 

only on the base case solution which should be available before to solve the adjoint system.  

These two procedures applied to Markov chain are exemplified on a simple problem of a 

binary component where it is possible to have an analytical solution, since for more complex 

cases the number of differential equations is growing exponentially with the number of 

components and an analytical solution is hard or cannot be obtained. The validation of 

numerical results with the analytical solution of this simple problem is performed for various 

perturbations in system parameters. Also a brief description of the methodology which has 

been followed using the computer code system developed is presented. 

Chapter 4 presents typical results obtained using the developed code system 

QUEFT/MARKOMAG-S/MCADJSEN for transient reliability analysis of the IFMIF-

Accelerator System Facilities for a specific mission time and comparison with the reliability 

results from literature which have been obtained using a different method than Markov chain. 

Further, for two types of responses the typical sensitivity results obtained using ASAP and the 

traditional approach using recalculations are presented to illustrate the verification of 

numerical solution. The parameters importance ranking is performed afterwards based on 

relative sensitivities of each type of response highlighting the possibility of changing priority 

of the components depending of the type of response. 
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In closing are presented conclusions of this work by highlighting further possible 

developments for future research. 
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2 Reliability analysis using Markov chain 

 

 

As it has been mentioned in the previous chapter, in reliability engineering the discrete space 

Markov chain is used to perform studies of reliability, and availability for physical systems. In 

this chapter, the basic concepts and the mathematical description of Markov chain7, 9, 20, 65, 66 

are presented to prepare the field for the adjoint sensitivity analysis procedure which will be 

applied on Markov chain into the next chapter. Automatic generation of Markov chain 

considering the abstraction of the physical system in terms of Fault Tree and an algorithm to 

generate the Markov chain is presented as well. The reliability measures which can be 

computed using the results of Markov chain analysis are summarized at the end of the 

chapter. 

 

The Markov chain has been largely treated in literature, any reliability book dedicating a 

special chapter to this subject. The basic concept behind of Markov chain is that of states and 

the transitions which are occur between these states. It is possible to represent the behavior of 

a physical system by describing all the different states the system may occupy by indicating 

how the system moves from one state to another in time. The states of Markov chain are 

classified in transient, recurrent, and absorbing states. A transient state is a state in which the 

system enters, leaves this state, and never returns during its evolution. A recurrent state is 

opposite, i.e. the system can return in that state during its evolution. An absorbing state is a 

state in which the system enters and never leaves that state. 

The structure of the physical system consists in subsystems and components which are 

connected each other. These subsystems and components, depending on the requests, can be 

operational or failed. A state for the physical system is a unique combination of failed and 

operational components or subsystems. The components and subsystems are characterized by 

a probability or a frequency to be failed or operational. The transitions between states are 

defined by these probabilities or frequencies. A graphical representation of this behavior is 

usually made using a state transition diagram which illustrates the transitions from one state 

to another. 
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2.1 Mathematical representation of Markov chain 

 

In this section the concepts behind of Markov chain and the mathematical equations which 

describe it are presented mainly as in Trivedi [1982, 2002]7, Stewart [1994]20, and Norris 

[1997]9.  

The Markov chain is a stochastic process of random variables. The characteristic property of 

this kind of process is that it retains no memory where it has been in the past which means in 

other words that only the current state of the process influence where it goes next. This lack of 

memory property makes it possible to predict how a Markov chain may behave, and to 

compute the probabilities of that behavior. Mathematically, this can be expressed as 

follows.6,7,9,20 

Considering { ( ), }X t t T∈  as a discrete set of random variables which denotes the states of the 

system at time t, T being the time range, for all integers n and for any sequence t0, t1,…, tn 

such that t0< t1<…< tn< t, the conditional probability distribution of the Markov chain is: 

0 0 1 1{ ( ) | ( ) , ( ) , , ( ) } { ( ) | ( ) }n n n nP X t x X t x X t x X t x P X t x X t x≤ = = = = ≤ =�          (2.1) 

Thus, the fact that the system was in state x0 at time t0, in state x1 at time t1, and so on, up to 

state xn-1 at time tn-1 is irrelevant. The state in which the system finds itself at time t depends 

only on where it was at time tn. The state X(tn) = xn contains all the relevant information 

regarding the history of the process. This does not imply that the transitions are not allowed to 

depend on the actual time at which they occur. The state space of a Markov chain is usually 

taken to be a set of natural integers {0, 1, 2,…} or a subset of it. 

When the time range T is discrete, i.e. T = {0, 1, 2,…}, The Markov chain is called discrete 

time Markov chain (DTMC), otherwise the time range is considered continuous 

{ : 0 }T t t= ≤ ≤ +∞  and the Markov chain is a continuous time Markov chain (CTMC). When 

the transitions out of state X(t) depend on time t, the Markov chain is said to be 

nonhomogeneous and the transition probabilities are said to be transient, otherwise if they are 

independent of time the Markov chain is said to be homogeneous and the transition 

probabilities are stationary. For nonhomogeneous case, the time is considered from the start 

time since the system operates, i.e. the global time. 

The transition probabilities have the following properties7 

all 

) ( ) [0,1],  for all 

) ( ) 1

X

X i
i

a p x x

b p x

∈ ∈

=�

�

                                               (2.2) 



 13 

To satisfy the memoryless property, the time spent in a state of a Markov chain (the sojourn 

time) must be independent of the time already spent in that state. This implies that the times 

between state transitions must be exponentially distributed for a homogeneous CTMC and 

geometrically distributed for DTMC. In practical situations, this restriction may not be hold 

for nonhomogeneous CTMC. That leads to a generalization of Markov chain, i.e. semi-

Markov process,7 where the distribution of time the process spends in a given state is allowed 

to be general. The difference between a nonhomogeneous CTMC, and a semi-Markov process 

is that the time dependent transitions are considered for a global time since the system began 

to operate in the first case, while the time dependent transitions are considered for a local 

time, time measured since the system entered into a current state, in the second case. 

Taking in account whether it is considered the discrete or continuous time, the DTMC and 

CTMC are treated in similar way, with the peculiarities which are specific for each type.7, 9, 20 

This work focuses on the CTMC and this type of Markov chain is further analyzed. 

 

Let I = {0, 1, 2, … } to denote the state space of the chain, and T = [0, +�) be the time range. 

The conditional probability that a transition occurs from the state i at time 0s ≥  to the state j 

at time t s≥ , is denoted by 

( , ) { ( ) | ( ) }ijp s t P X t j X s i= = =                                             (2.3) 

where ,i j I∈ , ,s t T∈ , and, 

1,   
( , )

0,   ij

i j
p t t

i j

=�
= � ≠�

                                                     (2.4) 

These transition probabilities depend on the time interval of length �t = t – s, but not on s or t. 

It follows that for all values of �t and i, 

all 

( ) 1ij
j

p t∆ =�                                                           (2.5) 

where has been used the simplified notation pij(�t) = pij(s,t). 

In studying the Markov chain it is often required to determine the probability that the chain is 

in a given state at a particular time t, i.e. the state probabilities at time t. Let ( )j tπ  to be the 

probability that the system is in state j at time t, 

( ) { ( ) } ,   0,1, 2,...;    0j t P X t j j tπ = = = ≥                                   (2.6) 

Since at any given time the chain must be in one state, then for any 0t ≥ , 

all 

( ) 1j
j

tπ =�                                                           (2.7) 
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By using the theorem of total probability (i.e. 
1

( ) ( | ) ( ),  ,  events
n

i i
i

P A P A B P B A B
=

=�  ),7 the 

state probability can be expressed in terms of transition probabilities: 

( ) { ( ) }

         { ( ) | ( ) } { ( ) }

         ( , ) ( )

j

i I

ij i
i I

t P X t j

P X t j X s i P X s i

p s t s

π

π

∈

∈

= =

= = = =

=

�

�

                          (2.8) 

If the time s is considered as an initial time, i.e. s = 0, then 

( ) (0, ) (0)j ij i
i I

t p tπ π
∈

=�                                                   (2.9) 

Hence, the probabilistic behavior of a CTMC is completely determined once the transition 

probabilities pij(s, t) and the initial probability vector (0)π  are specified. 

The Chapman-Kolmogorov equations which describe the Markov chain may be obtained 

directly from the Markov property (2.1). They are specified by 

( , ) ( , ) ( , )  ,     ,   ,     0ij ik kj
k I

p s t p s u p u t i j I s u t
∈

= ∈ ≤ ≤ ≤�                     (2.10) 

That means that in passing from state i at time s to state j at time t, the chain must pass 

through some intermediate state k at some intermediate time u. 

The direct use of the equation (2.9) is difficult. The transition probabilities are usually 

obtained by solving a system of differential equations that are derived next.7, 20  

 

As it has been mentioned previous, the probability of a transition pij(t, t+�t) to occur from a 

given source state i to a destination state j in the interval of time [t, t+�t] depends on the 

length of interval of observation �t. As the duration of this interval becomes very small 

(continuous-time), the probability to observe a transition also becomes very small. Thus, 

when 0t∆ →  the probability ( , ) 0ijp t t t+ ∆ → , for i j≠ . From conservation of probability 

(2.2.b) follows that as 0t∆ → , ( , ) 1jjp t t t+ ∆ →  (Eq.2.4). In reverse, when �t becomes large 

the probability to observe a transition increase, and once �t becomes larger and larger the 

probability to observe multiple transitions becomes non negligible. In CTMC the purpose is to 

ensure that the observation interval �t is sufficient small that the probability to observe two or 

more transitions within this interval is negligible, instantaneously, i.e. the probability of 

observing multiple transitions is a function of �t that tends to zero faster than �t. 
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Further it is defined the transition rate which, unlike the transition probability, it does not 

depend on a time interval �t. It is an instantaneously defined quantity that denotes the number 

of transitions that occur per unit time. 

 

For each state j does exist a nonnegative function ( )iiq t  called transition rate and defined by 

0

0

( ) ( , ) |

( , ) ( , )
        lim

( , ) 1
        lim

ii ii s t

ii ii

t

ii

t

d
q t p s t

dt
p t t p t t

t
p t t t

t

=

∆ →

∆ →

=

+ ∆ −=
∆

+ ∆ −=
∆

                                         (2.11) 

for i = j, and similarly, for each i and j, i � j, there is a nonnegative function ( )ijq t  known as 

the transition rate at which the transitions occur from state i to state j at time t, defined by 

0

0

( ) ( , ) |

( , ) ( , )
        lim

( , )
        lim

ij ij s t

ij ij

t

ij

t

d
q t p s t

dt
p t t t p t t

t
p t t t

t

=

∆ →

∆ →

=

+ ∆ −
=

∆
+ ∆

=
∆

                                         (2.12) 

Given that the system is in a state i at time t, the probability that it will remains in state i must 

decrease with time, whereas the probability that it will transfer to a different state j increase 

with time. Thus, it is appropriate that the derivative at time t to be negative in the first case, 

and positive in the second. 

Then, from Eqs.(2.11) and (2.12), the transition probabilities and the transitions rates are 

related to each other through 

( , ) ( ) ( )               

( , ) 1 ( ) ( )          
ij ij

ii ii

p t t t q t t o t i j

p t t t q t t o t i j

+ ∆ = ∆ + ∆ ≠��
� + ∆ = + ∆ + ∆ =��

                              (2.13) 

where ( )o t∆  is any function of �t that tends to zero faster than �t, 

0

( )
lim 0

t

o t
t∆ →

∆ =
∆

 

Making the substitution t t t→ + ∆  into Eq.(2.10) yields 

( , ) ( , ) ( , )ij ik kj
k I

p s t t p s u p u t t
∈

+ ∆ = + ∆�  

This implies 
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( , ) ( , ) ( , ) ( , ) ( , ) ( , )

                                  ( , )[ ( , ) ( , )]

ij ij ik kj ik kj
k I k I

ik kj kj
k I

p s t t p s t p s u p u t t p s u p u t

p s u p u t t p u t

∈ ∈

∈

+ ∆ − = + ∆ −

= + ∆ −

� �

�

 

Dividing both sides by t∆  and taking the limits as 0 and t u t∆ → → , it is obtained the 

differential equations called the Kolmogorov forward equations: 

, ,

, ,

( , )
( , ) ( )

             ( , ) ( ) ( , ) ( )

ij
ik kj

i j k I

ik kj ij jj
i j k I

k j

p s t
p s t q t

t

p s t q t p s t q t

∈

∈
≠

∂
=

∂

= −

�

�
                                 (2.14) 

In a similar way are obtained the Kolmogorov backward equations:  

, ,

, ,

( , )
( , ) ( )

             ( , ) ( ) ( , ) ( )

ij
kj ik

i j k I

kj ik ij ij
i j k I

k i

p s t
p s t q t

t

p s t q t p s t q t

∈

∈
≠

∂
=

∂

= −

�

�
                                 (2.15) 

Written in matrix form, the Eqs.(2.14) and (2.15) are as follows, 

( , )
( , ) ( )

P s t
P s t Q t

t
∂ =

∂
                                                    (2.16) 

for forward equations, and 

( , )
( ) ( , )

P s t
Q t P s t

t
∂ =

∂
                                                    (2.17) 

for backward equations, where have been defined the matrices ( , ) [ ( , )]ijP s t p s t=  and 

( ) [ ( )]ijQ t q t= . The P(s,t) and Q(t) are square matrices of dimension the number of states into 

the Markov chain. The Q(t) matrix is called infinitesimal generator matrix or transition rate 

matrix and has the property that the diagonal entry qii(t) is the negated sum of the other 

elements on row or column depending on either forward or backward form is used. Thus, the 

sum of elements for Q(t) matrix on rows for forward equations, or on columns for backward 

equations is zero. This property of transition rate matrix is coming from the conservation of 

probability (i.e.
,

( , ) 1ij
i j I

p t t t
∈

+ ∆ =� , Eq.(2.2.b) ), (2.11), and (2.13), as follows 

,

,

1 ( , ) ( , )

                       ( ) ( )

ii ij
i j I
i j

ij
i j I
i j

p t t t p t t t

q t t o t

∈
≠

∈
≠

− + ∆ = + ∆

= ∆ + ∆

�

�
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Dividing by t∆ , taking the limit as 0t∆ → , and considering (2.11), yields 

,

0 0

( ) ( )
1 ( , )

lim lim

ij
i j I
i jii

t t

q t t o t
p t t t

t t

∈
≠

∆ → ∆ →

∆ + ∆
− + ∆ =

∆ ∆

�

 

,

( ) ( )ii ij
i j I
i j

q t q t
∈

≠

= −�                                                    (2.18) 

For the state probability distribution (unconditional probability), using the Eqs.(2.8) and 

(2.14), it is obtained  

,

,

( )
( ) ( )

           ( ) ( ) ( ) ( )

j
i ij

i j I

i ij j jj
i j I
i j

d t
t q t

dt

t q t t q t

π
π

π π

∈

∈
≠

=

= −

�

�
                                      (2.19) 

and from Eqs.(2.8) and (2.15), respectively 

,

,

( )
( ) ( )

           ( ) ( ) ( ) ( )

j
i ji

i j I

i ji j ii
i j I
i j

d t
t q t

dt

t q t t q t

π
π

π π

∈

∈
≠

=

= −

�

�
                                      (2.20) 

Written in matrix notation, the above expression is as follows 

( )
( ) ( )

d t
t Q t

dt
Π = Π                                                     (2.21) 

for forward form, and 

( )
( ) ( )

d t
Q t t

dt
Π = Π                                                     (2.22) 

for backward form, respectively, where the state probabilities vector ( ) [ ( )]it tπΠ =  has been 

defined as a row vector for forward equations, or as a column vector for backward equations, 

of dimension the number of states into the Markov chain. In the case of backward form, the 

elements on main diagonal of transition rate matrix have the property (2.18) as follows, 

,

( ) ( )ii ji
i j I
i j

q t q t
∈

≠

= −�                                                     (2.23) 

or in other words the transition rate matrix in forward form is transpose for the backward 

form. 

The equations (2.16) or (2.17) are used when one wants specifically to show the initial state, 

while the equations (2.21) or (2.22) are used when the initial state is implied. These last two 
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equations (2.21), and (2.22), are widely used in reliability engineering for reliability analysis 

of physical system, where the states of Markov chain are identified with the states of the 

physical system. Solving this set of ordinary differential equations it is obtained the transient 

solution of probability state vector which is used further to analyze the reliability, availability 

and performance of the physical system. The steady-state solution is used also and is obtained 

solving the linear system of equations defined by either (2.21) or (2.22) in which the left hand 

side is considered zero. For instance from Eq.(2.22) yields, 

( ) ( ) 0Q t tΠ =                                                     (2.24) 

where 1 2( ) [ ( ), ( ),...]Tt t tπ πΠ =  is the steady-state probability vector. The conservation of 

probability (i.e. 1i
i I

π
∈

=� ) is used together with the initial state vector to obtain a nonzero 

unique solution. 

The measures of reliability and the mathematical expression to compute them using the 

solution of Markov chain will be presented into the next sections of this chapter. 

 

The transient solution of CTMC solving the Kolmogorov set of ordinary differential equations 

has a closed-form only in the cases of very small CTMC or highly structured CTMC. In the 

most other cases the numerical methods are used. The general solution of backward 

Kolmogorov equations (2.22) (for forward case it is similarly), together with an initial vector 

of state probabilities 

0 1 0 2 0 0 0( ) [ ( ), ( ),..., ( )] ,  0T
nt t t t t tπ π πΠ = ≤ <                           (2.25) 

is given by 

0( ) ( ) exp[ ( )]t t tQ tΠ = Π                                                (2.26) 

where the matrix exponential function is defined by the Taylor series 

0

[ ( )]
exp[ ( )]

!

i

i

tQ t
tQ t

i

∞

=

=�                                                (2.27) 

A survey of numerical algorithms for solving the matrix exponential has been made by Moler 

and Van Loan,67 and  Golub and Van Loan.68 

The numerical solution of (2.22) with (2.25) based on (2.27) for reliability studies has been 

treated by Reibman and Trivedi,23 Stewart,20 Tombuyses and Devooght,21 Sidje and Stewart,69 

Rauzy.22 Comparison between various algorithms has been performed from point of view of 

accuracy and computation time. For instance, Marca package15 developed by Stewart 

incorporate all majority numerical methods for such problems. Depending on problems some 

numerical methods are preferably than others, especially due to the characteristics of Markov 
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chains which imply large sparse matrices that usually are touched by stiffness in the case of 

high reliable systems. The numerical algorithms based on Krylov space methods are used in 

such cases. It has been shown23 that for stiff problems is required a very small time-step to 

obtain accurate results. Computer packages which are dealing with this kind of numerical 

problems have been developed and tested in literature, and are freely distributed such as 

Expokit package,70 or various variants of LSODE, the Livermore Solver for Ordinary 

Differential Equations.71-73 

 

2.2 Automated generation of Markov chain 

 

When reliability studies are performed using Markov chain technique, the basic procedure 

consists in abstracting the physical system first, then to construct the Markov chain, and to 

build and solve the Kolmogorov set of differential equations in the case of CTMC. The 

physical system is abstracted into a set of possible states in which it can be, from the perfect 

functioning state and until the failure state. Markov chain is used then to describe and analyze 

the movement of the system among the various states. This movement can be described 

graphically using a state diagram. Based on this diagram the set of ordinary differential 

equations is built. The Markov chain analysis is primarily a quantitative analysis technique, 

but the construction of the state diagram gives us increased system knowledge. Usually this 

state diagram is constructed manually. Unfortunately, once the number of states in Markov 

chain increases, to build such a state diagram is more difficult for analyst. To avoid this 

drawback, it is used a high level interface for abstraction of the physical system and 

afterwards the underlying Markov chain is constructed automatically based on that 

abstraction. Several computer packages have been developed based on this concept.10-15, 50  

As it has been mentioned in the previous chapter, the abstraction of physical system is made 

using the high level interfaces based on combinatorial techniques as Block Diagram, Fault 

Tree, and Stochastic Petri Nets. These combinatorial techniques are based on graphical 

representation and easier to be understood. The first two have been also widely used as stand 

alone techniques for reliability analysis. The third one is a formalism specially developed as 

the interface for the automated generation and solution of Markov chain. Description of these 

techniques can be found in McCormick [1981]44, Dhillon [1981]5, Trivedi [1982, 2002]7, 

Aven [1992]6.  
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In this section, the steps in constructing the transition rate matrix for a Markov chain are 

presented. A developed algorithm for automated generation of Markov chain system of 

differential equation is presented using the Fault Tree abstraction of physical system as 

interface. This algorithm has been implemented into a stand alone computer code which is 

called MARKOMAG-S (Markov Chain Matrix Generator and Solver) and which is used 

further for numerical examples along this work. The implemented algorithm generates the 

backward Kolmogorov differential equations (2.22), and afterwards using an Ordinary 

Differential Equation (ODE) solver this set of equations is solved to get the transient state 

probability distribution. The solver used for numerical solution is based on LSODE package,71 

namely the variable-coefficient ordinary differential equation solver with the preconditioned 

Krylov method GMRES for the solution of linear system, VODPK.72, 73 The backward 

Kolmogorov differential equations are generated in matrix form, i.e. during this process the 

transition rate matrix is generated. 

 

To describe this algorithm, it will be shown first how the differential equations are generated 

for the trivial case of a binary component. Let be a component with two states, namely 

operational state (Up) and fail state (Down), which has the transition diagram as below.  

1

( )tλ

( )tµ
2 

Figure 2.1: The state transition diagram for a binary component with repair 
 

The operational state is labeled with 1 and the fail state with 2. The component passes from 

the state 1 to the state 2 with the transition rate ( )tλ , and from the state 2 to the state 1 with 

the transition rate ( )tµ . This behavior is depicted using labeled arcs which are arrowed from 

the source state to the destination state. The label of an arc is the transition rate. The transition 

rate ( )tλ  is called failure rate, and ( )tµ  repair rate. If it is considered the transition rate 

matrix ( ) [ ( )]ij n nQ t q t ×=  with n the number of possible states, in this case n = 2, the ordinary 

differential set of equations, written in matrix form is as follows, 

0
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where the column vector ( ) [ ( )]i nt tπΠ =  is the probability state vector, ( )i tπ  being the 

probability that the component to be into the state i at time t. 0 0( ) [ ( )]i nt tπΠ =  represents the 

initial probability state vector at 0t t= . As it has been showed in the previous section, for the 

backward form, the elements of main diagonal have the property (2.23), where in this case the 

state space is {1, 2}I = , and n = 2. The elements in matrix are generated on columns which 

mean that for a transition from the source state i to the destination state j with a transition rate 

( )tα , the element in matrix is ( ) ( )jiq t tα= . In the case of binary component yields: 

( ) ( )
( ) ,        ( ), ( ), 0

( ) ( )
t t

Q t t t t
t t

λ µ
λ µ

λ µ
−� �

= ≥� 	−
 �
 

Assuming that the initial time 0 0t = , the component is in the state 1, and taking into account 

the conservation of probability (2.2.b), it is constructed the next ODE system for a binary 

component. 

1 1

2 2

1 0

2 0

( ) ( )( ) ( )
( ) ( ) ( ) ( )

( 0) 1
( 0) 0

t tt td
t t t tdt

t

t

π πλ µ
π λ µ π

π
π

� −� � � �� �
=� � 	 � 	� 	−
 �
 � 
 ��

�
=� � � �� =� 	 � 	� = 
 �
 ��

 

This simple ODE system is solved analytically using usually the Laplace transform method.7 

For more complex systems where the analytical solution is not possible to be obtained, the 

numerical methods are used to find the transient solution of the state probability vector. 

 

Next, an algorithm to build the transition state diagram considering the Fault Tree abstraction 

of the physical system is proposed. Similar methodology is met in HARP package.10, 33 

Based on various scenarios, the abstraction of the physical system in terms of Fault Tree is 

performed first. The Fault Tree gates and the procedure to perform qualitative analysis are 

presented in Appendix A. The Fault Tree qualitative analysis is performed to find the 

minimal-cut-sets which are shortly the minimal combination of failed and operational 

components which can lead to the failure behavior of the physical system. Based on the 

abstraction of physical system the Markov chain is build. The states of Markov chain are 

identified and classified as operational or fail states using the previous Fault Tree qualitative 

analysis. At the end of this process the transition rate matrix is generated. The set of 

differential equations are solved afterwards to get the state transient probability distribution 

for a mission time. Using these results, the quantification of reliability function for the 

physical system is performed. These steps are presented into a flow diagram as follows, 
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Figure 2.2: The Fault-Tree Markov chain technique flow diagram 

 

Further, it is presented how the state diagram and the system of differential equations for an 

AND gate and an OR gate with two predecessors is generated. The gates with more than two 

predecessors can be reduced to the case with two predecessors. It is considered that these 

predecessors are basic events that consist in failure behavior of the respective components. 

The AND gate and OR gate are graphically represented as follows. 

 
Figure 2.3 Fault Tree gates 

a) AND gate                                                 b) OR gate 
 

The next simplifying hypotheses have been considered: 

- The components are binary, i.e. they have only two sates, namely operational and 

fail state;  

- The behavior of a component is independent of the behavior of the other 

components;  

- Two or more components do not have failure behavior at the same time ( 0t∆ → ), 

which means that the generated Markov chain will not be irreducible (in an 

irreducible Markov chain every state can be reached from every other state); 

- A repaired/replaced component is as good as new, i.e. the component parameters 

(transition rates) will be the same as for a new component. 

For a physical system that consists in two binary components with repair and which can be 

abstracted as an AND gate, that AND gate usually is defined as the failure behavior of the 

system. This behavior is reached only if both of the system components have failure behavior. 

This abstraction of the system can be represented into a Markov state diagram as follows. 
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1( )tλ

1( )tλ

2 ( )tλ

2 ( )tλ

1( )tµ

1( )tµ

2 ( )tµ

2 ( )tµ

 
Figure 2.4: The state transition diagram for an AND gate with two successors 

 

In representation of a state diagram the next conventions have been made: 

- A state is represented as a number of digits either 0 or 1. The number of digits into a 

state represents how many binary components are in system. The order of 

components in state is from left to right as in Fault-Tree representation.  

- The failure behavior of a binary component is represented with 1, otherwise with 0; 

- Each state is labeled with two indexes, an upper index which is an order number for 

the state, and a lower index which is either 0 or 1, if the state is an operational one or 

a failure one, respectively. The order numbers of states are associated with the row 

and column indexes into transition rate matrix. 

- Each component is characterized by failure and repair rate ( ( ),  ( ),  1, 2i it t iλ µ = ) 

Following the same procedure as for a component, the transition rate matrix becomes 

 

4

1 12 13 14
1
1

4

11 12 13 14 21 2 23 24
1
221 22 23 24

31 32 33 34
31 32 3

41 42 43 44

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) (
( ) ( ) ( ) ( )

j
j
j

j
j
j

j

q t q t q t q t

q t q t q t q t q t q t q t q t
q t q t q t q t

Q t
q t q t q t q t

q t q t q t
q t q t q t q t

=
≠

=
≠

−

� � −
� 	
� 	= =
� 	

−� 	
� 	
 �

�

�

4

34
1
3

4

41 42 43 4
1
4

1 2 1 2

1 1 2 2

2 1 2 1

2 1 1 2

) ( )

( ) ( ) ( ) ( )

[ ( ) ( )] ( ) ( ) 0
( ) [ ( ) ( )] 0 ( )

( )
( ) 0 [ ( ) ( )] ( )
0 ( ) ( ) [ ( ) ( )]

j
j

j
j
j

q t

q t q t q t q t

t t t t

t t t t
Q t

t t t t
t t t t

λ λ µ µ
λ µ λ µ
λ λ µ µ

λ λ µ µ

=
≠

=
≠

� �
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	
� 	

−� 	
� 	� 	
 �

− +� �
� 	− +� 	=
� 	− +
� 	− +� 	
 �

�

�

 

 



 24 

For a physical system abstracted as an OR gate, the failure behavior is reached if either one of 

its two components is failed, or both of them. Taking into account the hypotheses which have 

been made before, a state diagram in this case is as follows. 

1( )tλ 2 ( )tλ
1( )tµ 2 ( )tµ

 
Figure 2.5 The state transition diagram for an OR gate with two successors 

 

Following the same procedure as previous, the next transition matrix is obtained. 

11 12 13 1 2 1 2

21 22 23 1 1

31 32 33 2 2

( ) ( ) ( ) [ ( ) ( )] ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 0
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q t q t q t t t t t

Q t q t q t q t t t

q t q t q t t t

λ λ µ µ
λ µ
λ µ
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� 	 � 	= = −� 	 � 	
� 	 � 	−
 � 
 �

 

The procedure can be extended to more complex configurations. To show further how the 

qualitative analysis of Fault-Tree is used in automated generation of Markov chain process, it 

is consider the example of the simple 2-Out-of-3 system presented and analyzed in Appendix 

A and B. The Fault-Tree of this system is presented in Figure 2.6 and consists in five 

components, i.e. A, B, C, D, and E, respectively. The minimal-cut-sets are {D E}, {A B},    

{A C}, {B C}. Based on these minimal-cut-sets the generic fault states {11xxx}, {1x1xx}, 

{x11xx}, and {xxx11}, respectively, are defined as is explained in Appendix A.  

���

��� ���

��

��	
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Figure 2.6 The Fault-Tree for the 2-Out-of-3 system 

 

Then, based on the Fault Tree abstraction of the physical system, its associated Markov chain 

is generated. It is not known from the beginning how many possible states can exist. That 
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means that it is not generated the complete Markov chain, but the Markov chain that contains 

only the possible states of the physical system. If a failure state is identified, the Markov chain 

from that state is not developed anymore. The number of states depends by the number of 

components in system and the system architecture. The fault tree analysis that has been 

performed before is used in this stage, i.e. the generic fault states, to identify the possible 

failure states of the physical system. For the case of no repairs, the failure states of the system 

are absorbing states. 

The algorithm is starting from an initial state which is usually the state in which all 

components are operational. New states are generated considering the failure possibilities of 

components, one at a time. Using the generic fault states, it is decided if a new state is either a 

failure state or an operational state for the physical system. Afterwards, it is performed the 

checking step to see if the state is a possible state in which the system can exist. Depending on 

the failure behavior of the components from a state to another, the transition between states 

are defined and based on them and the states the transition rate matrix is generated. The 

algorithm is finished when all possible states are generated. The algorithm flow to generate 

the Markov chain is presented in Fig.2.7. 

 

}

 

Figure 2.7 The algorithm flow for automated generation of Markov chain 
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The state transition diagram for 2-Out-of-3 system is represented in Fig.2.8. For sake of 

simplicity have been drawn only the failure rates that occur between states. This development 

has been made on levels, where it has been considered on level 0 the state without any failed 

component. On the level 1 are generated further the states with only one component failed. On 

the next level, i.e. the level 2, are generated from operational states from previous level the 

states with two components failed and so forth. On the last level will be only the states that 

describe the failure behavior of physical system. A transition occurs only between the states 

that belong to two successive levels. For instance, if it is considered a transition between two 

states from two successive levels n and n+1, the state from level n+1 has the same 

combination of failure components as the state from the level n plus an additional failure 

component. Between the failure states from a level (if they exists) and the states from the next 

level does not occur any transition. Therefore, one can see that in general the transition rate 

matrix is a sparse matrix. 

 

1( )tλ
2 ( )tλ 3( )tλ 4( )tλ 5 ( )tλ

 
Figure 2.8 The state transition diagram for the 2-Out-of-3 system 

 

For the considered example it is found 25 possible states, i.e. 13 states in which the system is 

failed and 12 states in which the system is operational. The system failure states are the states 

labeled with 7, 8, 11, and 16 to 25. These states were identified using the generic fault states  

{11xxx}, {1x1xx}, {x11xx}, and {xxx11}, all the system failure states including one of 

these generic fault states, i.e. the generic fault states are subsets of the system failure states. 

The transition rate matrix for this case will be of order 25. If the system components are 

characterized only by the failure rate ( ),  1,...,5i t iλ = , i.e. it does exist in system only non-
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repairable components, the Markov chain consists in 25 states with 43 transitions. 

Considering the elements on the main diagonal, the number of nonzero elements in transition 

rate matrix is 55. If all system components are repairable, then the Markov chain has 25 states 

with 86 transitions, and the transition matrix has 111 elements.  

Either the case with repairable or non-repairable components, or various other scenarios for 

this system are considered, the Kolmogorov equations consists of a set of 25 coupled ordinary 

differential equations which give the transient solution of probability state vector. This system 

of equation is presented in matrix form in Appendix B. 

 

The number of states in Markov chain is growing exponentially with increasing of system 

complexity. For instance, for a system with n binary components, the Markov chain can have 

2n states. To avoid this drawback, methods of state space reduction has been proposed and 

used in literature. These methods consists into a more concise and smaller model 

specifications, reduction of states space considering only the relevant states, truncation of the 

number of failed components in state, decomposition of the system in subsystems and 

separate analysis of these subsystems, afterwards the results being combined to get system 

solution, etc. The last method is allowed only if the subsystems behavior is independent of 

each other.  

For systems with repairable\replaceable components which are regularly inspected at a 

specific time, each time when a certain component is found as defected, it is repaired or 

replaced, and considered as good as new. Depending on the time period between two 

inspections, the physical system will not operate with more than a certain number of failed 

components. Therefore, based on this assumption and if it is considered the previous 

abstraction on levels, one can impose a limit at which the levels in Markov chain generating 

algorithm can be developed, i.e. the maximum number of failed components into a state. Also 

the probability that the system will be in one of the states on lower levels (e.g. the level 2 or 

level 3) will decrease and usually will be more relevant the probabilities of the states on first 

levels (e.g. the level 0 or level 1). This truncation method is not recommendable to be used for 

systems without repairs, where the probability of the states from lower levels will increase in 

time. A numerical example is presented on 2-Out-of-3 system in Appendix B. This method of 

reducing the number of states in Markov chain has been implemented in the MARKOMAG-S 

code.  
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Validation of this proposed algorithm to generate the Markov chain from Fault Tree 

abstraction of physical system considering reliability studies on a complex system and 

comparisons with the results from literature are presented in Chapter 4. 

 

2.3 Reliability measures 

 

Solving the Kolmogorov equations (2.22) together with an initial probability state vector 

(2.25), the transient probability state distribution is obtained. These results are used further to 

compute various reliability measures as reliability and availability for the physical system 

which has been analyzed using Markov chain technique.  

Reliability of a component is the probability that the component survives until some time t 

considering that at a time t0 the component was operating properly, 00 t t≤ ≤ ≤ ∞ . Extended 

to a system, the reliability ( )R t  of a physical system is the probability that the system is 

functional until a time t given that the system was operating correctly at an initial time t0. The 

reliability implies that the system was not under repair until the time t. In Markov analysis for 

reliability quantification, the failure states of the system are considered absorbing states, and 

the other states transient or recurrent. 

Redundancy is used to achieve high reliability. Due to redundancy, the high reliable systems 

usually are fault tolerant and they continue to function even if one or more components have 

failed. For instance in the 2-Out-of-3 example, the system is operational even when one of its 

components is defect (the states from level 1 in transition state diagram from Fig.2.8), or in 

some cases when two of its components are failed (the operational states on level 2). 

The complementary function of reliability is called unreliability of the system ( 1 ( )R t−  ). 

For repairable systems a fundamental quantity of interest is availability. Availability ( )A t  of a 

physical system is the probability that the system is operating correctly at a requested time t. 

The complementary function of availability is unavailability of the system ( 1 ( )A t−  ). In this 

case, the failure states in Markov chain are not necessary absorbing states, since during the 

time period from t0 to t the system could have been repaired or components replaced. The 

operational states could be in this case either transient or recurrent states. 

Taking in account the peculiarities of the states in Markov chain, the availability and 

reliability are computed in the same way. If the states of Markov chain are considered 

{1, 2,...}I =  as a set of states in which the system is failed { }Down  and operational { }Up , the 

transient solution of Kolmogorov equations gives us the reliability/availability of the system, 
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( ) ( )i
i Up

R t tπ
∈

= �                                                        (2.28) 

and for complementary function, 

( ) ( ) 1 ( )i
i Down

U t t R tπ
∈

= = −�                                              (2.29) 

For the previous example of 2-Out-of-3 system these two sets are 

{7,8,11,16,17,..., 25}Down = , and {1, 2,...,6,9,10,12,13,14,15}Up = . 

Usually it is analyzed the reliability of the system when all its components are functioning 

properly, in this case the transient probability of the state in which all components are 

operational.  

The instantaneous or point availability ( )A t of a component or a system is defined as the 

probability that the component or system is properly functioning at time t. In absence of a 

repair or a replacement, availability ( )A t  is simply equal with reliability ( )R t  for a 

component. The instantaneous availability is always greater than or equal to the reliability.7 

For a component instantaneous availability is, 

( ) ( ), { }iA t t i Upπ= ∈                                                   (2.30) 

The limiting or steady-state availability is the limiting value of ( )A t  as t approaches infinity. 

This measure is usually nonzero in contrast with limiting reliability which is always zero. 

lim ( ) 0

lim ( ) 0
t

t

A A t

R R t
→∞

→∞

= ≠

= =
                                                     (2.31) 

The average or interval availability represents the expected fraction of time the system is up 

in a given interval of time 0 0[ , ],  0t t t t≤ < ≤ ∞ , 

0

1
( )

ft

I t
f

A A t dt
t

≡ �                                                   (2.32) 

The time interval 0[ , ]t t  may be for instance the design life of the system or the time to 

accomplish some particular mission. 

In CTMC the transitions between various states describe the system behavior. Considering the 

previous assumptions, a transition is related to the failure behavior of a component. The 

repairing or replacing of a component from system is characterized also by a transition. These 

transitions are instantaneous failure rates of components and represent the expected number 

of failures in a given time period. The failure rate is also known as hazard rate ( )tλ . 

The failure behavior of components is an experimental result statistically obtained and is 

described by statistical distributions. In reliability analysis using CTMC and semi-Markov 
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models are used distribution functions of continuous random variables, where the continuous 

variable of interest is the time t. 

In practice, after Dhilon and Singh,5 the continuous statistical distributions used for 

mechanical devices to approximate experimental failure numbers are the exponential 

distribution, the extreme value distribution, the Weibull distribution, the normal distribution, 

the log-normal distribution, the gamma distribution. The electric and electronic components 

follow usually an exponential distribution. Selection of the appropriate distribution for the 

analyzed devices serve two different purposes, namely to fit the experimental results, and to 

represent a mechanism-based description of the device’s failure. 

The distribution of failure numbers versus time is defined as probability density function ( )f t . 

The cumulative distribution function represents the integration of probability density function 

over a time interval [ ]0 ,t t . The cumulative distribution function is defined as the probability 

that the component will not operate successfully for a required mission time. The probability 

density functions are usually used in reliability analysis considering their functions of two 

parameters (mean and variance) that are tabulated in reliability databases or estimated from 

data collected during component\system operation. 

 

The equivalent relations between the reliability functions are as follows.44 

Failure probability function 

(Probability density function – pdf) 

( ) ( )
( ) ( ) ( )

dF t dR t
f t t R t

dt dt
λ= = − =  
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Transition rate 

(Hazard rate) 

1 ( ) ( )
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dR f t f t
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Table 2.1: Equivalent relations between functions used in reliability analysis 

 

For components and systems are also provided a mean time to failure (MTTF) and a mean 

time to repair (MTTR). The mean time between failures (MTBF) is defined as the sum of the 
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previous two, i.e. MTBF MTTF MTTR= + . Mean time to failure can be computed using 

reliability as follows, 

0
( ) ,MTTF R t dt

∞
= �                                                   (2.33) 

while the mean time to repair is obtained usually statistically, since in reality repairs take 

different leght of time, depending by many factors as the skill level, the circumstances in 

which the repairing process take place, etc.  

For the exponentially distribution, from the hazard rate formula given in Table 2.1 and the 

Eq.(2.33) it follows that the failure rates are constants, they being the parameters of 

exponential distribution, and equal with (MTTF)-1. A reasonable approximation of repairing 

rates are given using this distribution, assuming that the repairing rate is constant and equal 

with (MTTR)-1. The repairing rates are associated with the maintainability of the system which 

is a measure of how fast the system may be repaired following failure. 

For such exponentially distributed failure rates, the steady-state availability is defined as 

follows,7 

MTTF
A

MTTF MTTR
=

+
                                                 (2.34) 

 

The reliability measures can be written more general as a functional depending on transient 

probability distribution ( ), 1,...,i t i nπ =  and transition rate matrix whose elements are 

depending on some parameters ( )k tα , ( ( ) ( ( )),    , 1,..., ,    1,...,ij kq t f t i j n k mα= = = ), as 

follows, 

0
1 1 1 1 0( ,..., ; ,..., ; ) ( ,..., ; ,..., ; ) ,    0ft

n m n mt
R t F t dt t tπ π α α π π α α≡ ≤ <�              (2.35) 

where n is the number of states in Markov chain, m the number of components parameters, 

and ( ; ; )i kF tπ α  a nonlinear function of indicated arguments. 

The level of knowledge of the physical system which is analyzed, the abstraction of the 

physical system as Fault Tree, how this Fault Tree is converted into a Markov chain, 

numerical method for obtaining the solution of Kolmogorov equations, the input parameters 

in mathematical model, i.e. the transition rates of components, etc., are only some sources of 

uncertainties to the final reliability results. Thus, further analysis is necessary to get more 

confidence in results. Sensitivity analysis is used to see the influence of changing in input 

parameters to reliability results, to provide new knowledge about the model and to optimize 

its performance. A new approach to sensitivity studies using Markov chain is presented into 

the next chapter. 
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2.4 Summary 

 

The reliability of physical systems is studied dynamically using Markov chain. The physical 

system is abstracted in a set of states and its behavior is depicted using transitions which are 

occurring between these states. This behavior is mathematically described by the Kolmogorov 

set of differential equations whose solution is used to quantify the reliability measures for the 

physical system. For complex systems the number of states are increasing exponentially with 

the number of components in the system, and therefore to construct straightforward the 

attached Markov chain is difficult. In such cases combinatorial models are used as high level 

interface to abstract the physical system and based on these descriptions the Markov chain is 

generated automatically in a computer program. Based on several assumptions, an algorithm 

which can convert a Fault Tree into a Markov chain has been presented and implemented into 

a code called MARKOMAG-S. The resulted Kolmogorov equations are solved afterwards 

using VODPK71, 72 ODE solver which is embedded in MARKOMAG-S code. The numerical 

solution of transient state probability vector is used to obtain the reliability and availability of 

the analyzed system. The abstractions of the physical system or the input data in the 

mathematical model are only some of the uncertainty sources in the reliability results. How 

these results are changing with changing in the input parameters or in the abstraction of 

physical system, or how it can be improved the system to get better results request further 

analysis. Sensitivity analysis provides answers to such questions. Ranking of input parameters 

based on their relative importance in reliability results, optimization and redesigning of 

critical parts for better performances, or further uncertainties studies can be performed using 

the sensitivities results. In Chapter 3 a new deterministic approach for the sensitivity analysis 

of system’s reliability is developed. 

 

 



 33 

3 Adjoint sensitivity analysis of Markov chains 

 

The sensitivity analysis of reliability measures using Markov chains has been performed in 

literature using traditional approaches. In this chapter a new approach for sensitivity analysis 

based on adjoint functions is presented. The theory originally developed by Cacuci29, 30 and 

known as Adjoint Sensitivity Analysis Procedure is applied to the mathematical model of the 

Markov chain in continuous time, discrete state space. 

The aim of sensitivity analysis is to analyze the behavior of system responses to variations in 

input data, i.e. how the reliability measures are changing to perturbations in the transition 

rates and the initial states probabilities. The input data used in the mathematical model of 

Markov chain are not known exactly but they vary within some boundaries and further 

analysis is required to see the effect of these uncertainties to the final results.  

 

3.1 Continuous-Time Markov Chains 
 
As in the previous chapter has been presented, for a CTMC the time dependent behavior is 

described by the Kolmogorov set of ordinary differential equations written generally in matrix 

form as follows, 

[ ] [ ] [ ]
[ ] [ ]

1 1

0 01 1

( ) ( ) ( )

( )

n n n n

n n

d
t Q t t

dt
t

× × ×

× ×

� Π = Π�
�
� Π = Π�

,    for 0t ≥                                    (3.1) 

where the subscripts denote the respective dimensions of the probability vector and the 

transition rate matrix. Here, it has been considered the backward form and this set of 

equations will be used further for analysis in this chapter. For forward form the procedure is 

similar taking into account the additional transpositions for vectors and matrices. 

Let n to be the number of states of Markov chain {1, 2,..., }I n= , then the column vector ( )tΠ  

is the state probability vector. 

1 2( ) [ ( ), ( ),..., ( )]T
nt t t tπ π πΠ =                                              (3.2) 

The ith component of the state probability vector represents the probability that the system is 

in the state i at the time t. The elements of the state probability vector have the following 

properties 

( ) [0,1]  for all {1,2,.., }i t i I nπ ∈ ∈ =                                         (3.3) 
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1

( ) 1
n

i
i

tπ
=

=�                                                             (3.4) 

The column vector 0Π  represents the initial state probability vector at initial time 0t , 

00 t t≤ < , time which usually is considered zero ( 0 0t = ). If it is assumed that the starting 

point in analysis is from the initial time in which the system is in the state with all 

components operational, then the initial state probability vector is as follows 

0 [1,0,...,0]TΠ =                                                       (3.5) 

The transition rate matrix ( ) [ ( )] ,  ,ij n nQ t q t i j I×= ∈ , is a square matrix of order n, with the 

property that all its elements out of main diagonal are positive and the element on main 

diagonal negative and equal with minus sum of all other elements on column, i.e., 

1

( ) ( )
n

ii ji
i
i j

q t q t
=
≠

= −�                                                       (3.6) 

Transition rate matrix elements ( )ijq t  are considered to depend on the parameters ( )k tα , 

( ) ( ( )),    , 1,..., ,    1,...,ij kq t f t i j n k mα= = =  

where m is the number of components’ parameters. 

 

3.2 Sensitivity analysis of Markov chains 
 

To perform sensitivity analysis one must first to have well defined the system’s response 

whose sensitivity to changes in input parameters is analyzed. 

The system’s response R , i.e. the reliability measure of interest, is a functional of transient 

probability distribution ( ),  1,...,i t i nπ =  and parameters ( ),  1,...,k t k mα = , of the form 

0
1 1 1 1 0( ,..., ; ,..., ; ) ( ,..., ; ,..., ; ) ,    0ft

n m n mt
R t F t dt t tπ π α α π π α α≡ ≤ <�              (3.7) 

where ( ; ; )i kF tπ α  is a nonlinear function of indicated arguments, t0 and tf are the initial-time 

and final-time considered in analysis, respectively. 

Further it will be referred as system parameters the parameters ( ),  1,...,k t k mα =  and as 

system variables the transient probability distribution ( ),  1,...,i t i nπ = . Performing sensitivity 

studies, one wants to analyze the effect of variation in system parameters kα  to system 

response R . 
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Let 1{ ( ),..., ( )}mt tα αΑ =  to denote the set of system parameters. Conceptually, to perform the 

sensitivity analysis, the set of equations (3.1) is solved using the base case parameter values 

(also called nominal case), denoted by 0 0 0
1{ ( ),..., ( )}mt tα αΑ = , and the nominal initial 

probability vector, denoted by 0 0 0
0 1 0 0( ) [ ( ),..., ( )]T

nt t tπ πΠ = , to get the base case solution 

0 ( )tΠ  which is used further to obtain the base case response value 0 0 0( , )R Π Α . The nominal 

parameters values 0Α  are statistical data based on experiments and their numerical values are 

not known exactly but within some error bounds as tolerances, variations, etc. The bounds in 

system parameters can be represented by a perturbation set 1{ ,..., }mδ δα δαΑ =  whose 

elements are the respective parameter variations. 

When the perturbation set δΑ  is introduced in the original Markov chain equation (3.1) and 

response’ s equation (3.7), the corresponding perturbed solution becomes ( )0Π + Φ  satisfying 

the perturbed system 

[ ]
[ ] [ ]

0 0

1 1

0 0 0 01 1

( ) ( ) ( ) ( ) ( )

( ) ( )

n nn n

n n

d
t t Q t Q t t

dt
t t

δ
×× ×

× ×

�
� � � �Π + Φ = + Π + Φ� 	 
 	 


�
� Π + Φ = Π + Φ�

                            (3.8) 

where the square matrix Qδ  of order n contains the variations δΑ . The perturbed response 

would become in this case 0 0( , )R δΠ + Φ Α + Α , where 1 1[ ,..., ] [ ,..., ]T T
n nφ φ δπ δπΦ = =  

denotes the variations in the respective components of transition probabilities vector.  

The simplest way to obtain the perturbed response implies to solve repeatedly the perturbed 

system for each variation of in system’ s parameters once at a time. Such procedure becomes 

time consuming and even impractical when many variations kδα  are considered. 

The typical deterministic approach for sensitivities studies using Markov chain used in 

literature39, 41, 57, 58 is to solve the original system for the base case, and a larger set of 

differential equations for sensitivities, i.e. for each variation in system parameters must be 

solved an ODE system. This can be represented compact in matrix form as follows, 

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] [ ]

1

1 1
1

0 0 0 01 1 1 1

( )( ) 0
( ) , ( )

( ) ( ) ( )

( ) , ( ) , ,    1,...,

nn n n n

n n
k n n n n n

k k

n n n n
k k

tQ t
d d

t t
Q t Q tdt dt t

t t k m

α
α α

α α

×× ×

× ×
× × ×

× × × ×

� � �Π� �
� �∂� � � 
 �
 �Π Π = ∂ ∂
 �� �� 
 �
 �∂ Π� ��	 
 
 �
 �∂ ∂	 
� 	 

�
� � � �∂ ∂� Π Π = Π Π =
 � 
 �� ∂ ∂	 
 	 
�

            (3.9) 

where the vector/matrix subscript denotes its respective order. 
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This method becomes also expensive from computational costs and effort point of view, even 

impractical when many parameters kα  exist in the analyzed problem. 

A more effective method to avoid the drawback of the traditional sensitivity methods has been 

developed in early eighties by Cacuci,29, 30 and is based on the adjoint functions. 

 

The deterministic sensitivity theory developed by Cacuci24,29,30 comprises two complementary 

aspects in sensitivity analysis development, namely the Forward Sensitivity Analysis 

Procedure (FSAP), and the Adjoint Sensitivity Analysis Procedure (ASAP). The scope of 

these procedures is to calculate exactly and efficiently the system response sensitivity to 

variations in system parameters around their nominal values using adjoint functions. These 

sensitivities are obtained by calculating the first Gâteaux G-differential of the system 

responses (reliability measures) at the nominal value of the system dependent variables 

(transient state probabilities) and system parameters (the transition rates of components). 

Following these procedures applied to Kolmogorov ordinary differential equations that 

describe the Markov chain, the sensitivities to all parameters are obtained with the advantage 

that in this case there must not be performed repetitive calculations that the other methods 

imply. 

 

The G-differential denoted by 0( , )DF x h  of an operator ( )F x  at 0x  with increment h  is 

defined as follows,24 

{ }

{ }

0 0 0

0

0

0

1
( , ) lim ( ) ( )

                ( )

DF x h F x h F x

d
F x h

d

ε

ε

ε
ε

ε
ε

→

=

≡ + −

= +
                                      (3.10) 

for all vectors h  and scalar ε . The superscript “0” denotes the nominal values. The G-

differential 0( , )DF x h  is related to the total variation 0 0( ) ( )F x h F xε� �+ −	 
 of ( )F x  at 0x  

through the relation 

0 0 0

0

( )
( ) ( ) ( , ) ( ),   with  lim 0

h
F x h F x DF x h h

ε

εε
ε→

∆+ − = + ∆ =                   (3.11) 

In most practical cases the G-differential 0( , )DF x h  is linear in h  and, therefore, the 

Eq.(3.11) indicates that the terms in ( )h∆  are of second or higher order in h . 

Rewritten Eq.(3.7) as follows, 

0
0( , ) ( , ) ,    0ft

t
R F dt t tΠ Α ≡ Π Α ≤ <�                                       (3.12) 
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and applying the G-differential, the response’ s sensitivity 0 0( , ; , )DR δΠ Α Φ Α  is obtained, 

where the following notations have been used: ( , )x = Π Α , 0 0 0( , )x = Π Α , for the nominal 

variables and parameters, and ( , )h δ= Φ Α  for the variations in vector variables δΦ ≡ Π  and 

parameters, respectively. 

0

0 00 0 0 0

0 0 0

0

' 0 0 ' 0 0

1 ( , ) ( , )

( , ; , ) ( , )

                              ( , ) ( , )

                              ( )

f

f f

t

t

T
m t t

kt t
k k

d
DR F

d

R R

F F
dt t d

ε

δ ε εδ
ε

δ

δα
α

=

Α Π

= Π Α Π Α

� �� �Π Α Φ Α ≡ Π + Φ Α + Α� �
 �	 
� �

= Π Α Α + Π Α Φ

� �∂ ∂� �= + Φ� � � �∂ ∂Π� �� �

�

�� � t

       (3.13) 

where the column vector has been considered, 

1

,...,
T

n

F F F
π π

� �∂ ∂ ∂= 
 �∂Π ∂ ∂	 

 

For the system response defined as in Eq.(3.12), the Eq.(3.11) becomes 
2 20 0 0 0 0 0( ; ) ( , ) ( , ; , ) ( )R R DR Oδ δ δΠ + Φ Α + Α = Π Α + Π Α Φ Α + Φ + Α           (3.14) 

which indicates that the exact value of the perturbed response using recalculations is predicted 

by the sensitivity 0 0( , ; , )DR δΠ Α Φ Α  to first order accuracy in Φ  and δΑ , respectively, 

i.e., 
2 20 0 0 0 0 0( ; ) ( , ) ( , ; , ) ( )R R DR Oδ δ δΠ + Φ Α + Α − Π Α = Π Α Φ Α + Φ + Α  

The sensitivity 0 0( , ; , )DR δΠ Α Φ Α  of response ( , )R Π Α  to variations Φ  and δΑ  contains 

two parts.28 One part that is depending on the variations in systems parametersδΑ only, this is 

called the direct-effect term because it can be evaluated directly since the perturbations in 

system parameters δΑ  are known, and another part which is depending on the variations in 

system variables δΦ ≡ Π  and which is called indirect-effect term since the variations Φ  are 

not known. From Eq.(3.13) the direct-effect term is 

0 0 0

0 0 ' 0 0

1 ( , )

( , ; , ) ( , ) f
m t

d kt
k k

F
DR R dtδ δ δα

αΑ
= Π Α

� �∂Π Α Φ Α ≡ Π Α Α = � �∂� �
��                  (3.15) 

and the indirect-effect term 

0 0 0

0 0 0

0 0 ' 0 0

( , )

1 ( , )

( , ; , ) ( , )  ( )

                                                         ( )

f

f

T
t

i t

n t

it
i i

F
DR R t dt

F
t dt

δ

φ
π

Π
Π Α

= Π Α

∂� �Π Α Φ Α ≡ Π Α Φ = Φ� �∂Π� �

� �∂= � �∂� �

�

��
                   (3.16) 



 38 

The further analysis consists in evaluation of the indirect-effect term. Two procedures have 

been developed to evaluate this term, namely FSAP and ASAP. The application of these 

procedures to Markov chain equations is presented in the next sections. 

 

3.2.1 Forward Sensitivity Analysis Procedure of Markov chain 

 

In this section, the first procedure, namely FSAP, is applied to Kolmogorov set of ordinary 

differential equations which describes the Markov chain with the scope to obtain the response 

sensitivities as they are defined in Eq.(3.13). In practice, the set of system parameter 

variations is known, i.e. δΑ , around the nominal values 0Α . The systems parameters Α  and 

the system variables Π  are related to each other through Eq.(3.1), and it follows that the 

variations δΑ  and Φ  are also related each other. Therefore, the response sensitivities can be 

calculated only after the variations in system variables, i.e. Φ , are determined.  

FSAP consists in applying the G-differential to the Kolmogorov set of equations, and the 

resulted system of equations, namely the Forward Sensitivity Equations (FSE), has as solution 

the vector of variations in system parameters Φ . 

Applying the G-differential to the Kolmogorov set of equations (3.1) yields 

( ) [ ]( ){ }

[ ] [ ]
00

0 0 0 0
0 0

( ) ( ) ( ) ( ) ( )

( ) ( )

d d d
t t Q t Q t t

d dt d

d d
t t

d d

εε

ε ε

ε εδ ε
ε ε

ε ε
ε ε

==

= =

�� �� � � �Π + Φ = + Π + Φ� � � �� 
 �	 
 � ��� �
�
� � � �� Π + Φ = Π + Φ� � � ��� � � ��

             (3.17) 

Performing the additional operations and taking in account the condition that after 

differentiation all terms of second or higher order in ε  vanish leads to the next differential 

system of equations, 

[ ]0 0

0 0

( ) ( ) ( ) ( )

( )

d
t Q t t Q t

dt
t

δ�
� �Φ − Φ = Π� 	 
�

�Φ = Φ�

                                   (3.18) 

where the square matrix Qδ  of order n contains the parameter variations δΑ . 

The system of ordinary differential equations (3.18) represents the Forward Sensitivity 

Equations of Markov chain. This system of equations shows the dependency between the 

variations in vector variables and parameters. Solving this system using the same methods as 

for the original system (3.1) the vector of variations in system variables is evaluated, i.e. Φ , 

and afterwards the responses sensitivities. 
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This procedure is advantageous to be applied when the number of responses exceeds the 

number of system parameters and the parameters variations which should be considered in 

analysis. This case is rarely met in practice since it must be evaluated few responses against of 

many variations in system parameters (many transition rates vs. 2-3 reliability measures). 

That requires that the system of equations (3.18) to be solved repetitively for each variation in 

system parameters, since the vector Φ  is dependent on parameters variations δΑ  through the 

matrix Qδ . Therefore, this procedure is just as expensive as performing repeatedly the exact 

recalculations by solving the Eq.(3.8), and then recalculating the perturbed response 
0 0( , )R δΠ + Φ Α + Α . 

To avoid this dependence and the repetitive calculations of the system of equations (3.18), an 

alternative procedure has been developed, namely the Adjoint Sensitivity Analysis Procedure. 

 

3.2.2 Adjoint Sensitivity Analysis Procedure of Markov chain 

 

The Adjoint Sensitivity Analysis Procedure originally is applied further to the set of equations 

which describe the Markov chain. The practical motivation of this procedure is to avoid 

repetitive calculation of the Forward Sensitivity Equations of Markov chain (3.18), or of the 

original Kolmogorov set of equations (3.1). This goal is achieved by eliminating the 

dependency of the response’ s sensitivity 0 0( , ; , )DR δΠ Α Φ Α  to the unknown variations of 

system variables Φ . That is made by constructing an adjoint system of equations that is 

uniquely defined, independent of the vector Φ  and the variations in system parameters δΑ , 

and its solution is used to eliminate all unknown values Φ  from the expression of 
0 0( , ; , )DR δΠ Α Φ Α .  

One of the main concepts used in ASAP is that of inner product which is defined for any two 

functions ( ), ( ) ,  f x g x x∈ ∈∂Ω� , as follows 

( ), ( ) ( ) ( )f x g x f x g x dx
∂Ω

= �                                            (3.19) 

or for any two vector valued-functions [ ]1( ) ( ),..., ( )
T

nx f x f x≡f , [ ]1( ) ( ),..., ( )
T

nx g x g x≡g ,  

[ ] [ ]

1

( ), ( ) ( ) ( )

                   ( ) ( )

T

n

i i
i

x x x x dx

f x g x dx

∂Ω

= ∂Ω

=

=

�

� �

f g f g

                                      (3.20) 

where T  denotes transposition. 
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The Adjoint Sensitivity Analysis Procedure29 is based on the fact that the FSE represented by 

Eq.(3.18) is linear in Φ . That is obvious if the Eq.(3.18) is rewritten in the form 

[ ]0 0

0 0

( ) ( ) ( )

( )

d
Q t t Q t

dt
t

δ�� �� �− Φ = Π�� �	 
� ��
�Φ = Φ�

I
 

where I  is the identity matrix of order n . Therefore, it is possible to introduce an arbitrary 

vector [ ]1( ) ( ),..., ( )
T

nt t tψ ψΨ ≡  of adjoint functions by forming the inner product of Ψ  and 

FSE given by Eq.(3.18), as follows 

[ ]
0 0

0 0( ) ( ) ( ) ( ) ( )
f ft tT T

t t

d
t Q t t dt t Q t dt

dt
δ� �� �Ψ − Φ = Ψ Π� �	 
� �

� �I                    (3.21) 

to obtain, 

[ ]{ } 0 0, ( ) ( ), , ,    [ , ],   0f ft t t t
∂Ω

Ψ Φ = Ψ Φ + Ψ Φ ∂Ω = ≤ <P*L L            (3.22) 

where *L  represents the formal adjoint operator of the operator L , and [ ]{ }P ,
∂Ω

Ψ Φ  denotes 

the bilinear concomitant evaluated in computational domain 0[ , ]ft t∂Ω = . 

Further are followed the ASAP guidelines24, 29 in order to obtain the Adjoint Sensitivity 

Equations (ASE). 

To get an expression for the right-hand side of the Eq.(3.22), using the left-hand side of 

Eq.(3.18), the operator L  is defined and applied to any vector ( ). as follows, 

0( ) ( ) ( )
d

Q t
dt

� �≡ −� �
� �

L . I .                                                    (3.23) 

and applying Eq.(3.20) to the left-hand side of Eq.(3.22) yields 

0

0, ( ) ( ) ( ) ( )
ft T

t

d
t Q t t

dt
� �Ψ Φ = Ψ − Φ� �
� �

�L I                                 (3.24) 

Performing the integration by parts over the domain 0[ , ]t t∂Ω =  to transfer all the 

differentiation operations from the vector of variation in system variables Φ  to the vector of 

adjoint functions Ψ  it is obtained an expression as follows 

( )

( )
0 0

0

0, ( ) ( ) ( ) ( ) ( ) ( ) ( )

                ( ), ( ) ( )

ff

f

T
tt T T

t t

t
T

t

d
t Q t t t dt t t

dt

t t

� �� �Ψ Φ = − Ψ − Ψ Φ + Ψ Φ� �	 
� �

= Ψ Φ + Ψ Φ

�
*

L

L
               (3.25) 

and identifying with the terms from the right-hand side of Eq.(3.22), the expressions for the 

formal adjoint operator *L  and for the bilinear concomitant are as follows, 
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0( ) ( ) ( )
Td

Q t
dt

� �� �= − −� �	 
� �

*L . I .                                               (3.26) 

[ ]{ } ( )
0

0 0

, ( ) ( )

                    ( ) ( ) ( ) ( )

ft
T

t

T T
f f

t t

t t t t

∂Ω
Ψ Φ = Ψ Φ

= Ψ Φ − Ψ Φ

P
                          (3.27) 

In the Eq.(3.27) the vector of variations in system parameters Φ  is known for the initial time 

0t , but is not known for the final time ft . Therefore, the unknown values are eliminated by 

imposing the condition that the adjoint functions to vanish at the time ft t= , 

[ ]( ) 0ft tΨ = =                                                       (3.28) 

This condition reduces the expression (3.26) of bilinear concomitant to a quantity [ ]{ }ˆ ,Ψ ΦP  

containing the boundary terms involving only known values of Φ  

[ ]{ } 0 0
ˆ , ( ) ( )T t tΨ Φ = −Ψ ΦP                                            (3.29) 

Hence, the Eq.(3.22) can be written as 

[ ]{ }ˆ, ( ) ( ), ,Ψ Φ = Ψ Φ + Ψ ΦP*L L                                      (3.30) 

and further taking in account the Eq.(3.21) which has derived from the FSE (3.18), yields 

[ ] [ ]{ }0 ˆ( ), , ( ) ,Q tδΨ Φ = Ψ Π − Ψ ΦP*L                                 (3.31) 

The right-hand side of this last equation does not contain any unknown value of the vector of 

variations in system variables Φ . Therefore the indirect-effect term from the expression of 

response’ s sensitivity 0 0( , ; , )iDR δΠ Α Φ Α  should be expressed in terms of the left-hand side 

of the Eq.(3.31) to eliminate the unknown values Φ  from its expression.  

Further, it has to be found an expression to evaluate the vector of adjoint functions Ψ  which 

is subject of condition (3.28). 

The indirect effect term 0 0( , ; , )iDR δΠ Α Φ Α  can be written in inner product form as follows 

0 0 0

0 0

0 0

( , )

( , )

( , ; , )  ( )

                               ,

f
T

t

i t

F
DR t dt

F

δ
Π Α

Π Α

∂� �Π Α Φ Α = Φ� �∂Π� �

∂� �= Φ� �∂Π� �

�
                                (3.32) 

The Riesz representation theorem ensures that exists an unique vector 
F∂� �

� �∂Π� �
 that satisfies the 

Eq.(3.32).24,29 Requiring that the right-hand side of Eq.(3.32) and the left-hand side of 
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Eq.(3.31) to represent the same functional, since the vector of adjoint functions is still 

arbitrary at this stage, i.e., 

0 0( , )

( ), ,
F

Π Α

∂� �Ψ Φ = Φ� �∂Π� �

*L                                          (3.33) 

and identifying the first term from the left-side with the first term from right-side of the 

Eq.(3.33), yields 

0 0( , )

( )
F

Π Α

∂� �Ψ = � �∂Π� �

*L                                                  (3.34) 

which holds uniquely in view of the Riesz representation theorem. 

The adjoint operator *L  has been identified in Eq.(3.26) and applied to vector Ψ  yields 

0 0

0

( , )

( ) ( )
Td F

Q t t
dt Π Α

∂� � � �� �− − Ψ =� � � �	 
 ∂Π� � � �
I                                (3.35) 

The Eq.(3.35) together with Eq.(3.28) constitute the Adjoint Sensitivity Equations of Markov 

chain, i.e., 

[ ]
0 0

0

( , )

( )
( ) ( )

( ) 0

T

f

d t F
Q t t

dt

t t
Π Α

� Ψ ∂� �� �+ Ψ = −� �� 	 
 ∂Π� ��
�Ψ = =�

                             (3.36) 

 

The indirect effect-term can be written now in terms of adjoint functions, considering the 

Eqs.(3.32), (3.33), and (3.31), respectively, 

[ ] [ ]{ }0 0 0 ˆ( , ; , ) , ( ) ,iDR Q tδ δΠ Α Φ Α = Ψ Π − Ψ ΦP  

i.e.,   

[ ]
0

0 0 0
0 0( , ; , ) ( ) ( ) ( ) ( )ft T T

i t
DR t Q t dt t tδ δΠ Α Φ Α = Ψ Π + Ψ Φ�                     (3.37) 

and replacing into Eq.(3.13), the expression for the response sensitivity is obtained, 

{ }
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0
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                              ( ) ( ) ( ) ( )
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d
DR F
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dt t Q t dt t t

ε
δ ε εδ

ε

δα δ
α

=

= Π Α

Π Α Φ Α ≡ Π + Φ Α + Α

� �∂= + Ψ Π + Ψ Φ� �∂� �

�

�� �
   (3.38) 

Using ASAP, the dependency of response sensitivity on unknown vector of variations in 

system variables Φ  has been eliminated. An equivalent expression for the indirect-effect has 

been found, and depends only on the vector of adjoint functions Ψ . The vector of adjoint 

functions is the solution of ASE which does not depend on parameter variations δΑ , and 

therefore Ψ  is also independent of δΑ . 
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The FSAP and ASAP procedures are similarly for the case in which the Markov chain is 

described by the forward Kolmogorov equations taking in account that in this case the vectors  

are row vectors and the transition rate matrix is the transpose of the transition matrix from 

backwards equations. The final equations for the forward case are presented in Appendix C. 

Note that the ASE given in Eq.(3.36) is a final-time value problem and must be solved 

backward in time. It can be transformed into an initial value problem by means of changing 

the independent variable t  to ft tτ ≡ − . This change of variable leads to the equivalent 

adjoint system 

[ ]

0

( , )

( )
( ) ( )

( 0) 0

t tf f

T

f

d F
Q t

d τ τ

τ τ τ
τ
τ

− −Π Α

� Ψ ∂� �
� �+ − Ψ = −� �� 	 
 ∂Π� ��

�Ψ = =�

                         (3.39) 

 

As it can be seen from the ASE (3.36), the advantages of ASAP is that it is obtained by an 

adjoint system which is linear in Ψ , does not depend on variation in system parameters δΑ , 

but depends on functional F  from response. As computational cost, for a given response R , 

one must evaluate the base-case solution 0Π  solving the original system of equations (3.1) 

once, and to solve only once the ASE (3.36) to evaluate the adjoint functions Ψ . Afterwards, 

every time when changes in system parameters are performed it should be evaluated only the 

response’ s sensitivity in terms of adjoint functions given by Eq.(3.38). Compared with the 

FSAP, this procedure is much cheaper than solve the FSE every time a change in input 

parameters is considered to obtain the variations vector in system’ s variables Φ  and 

afterwards to evaluate system’ s sensitivity by using Eq.(3.13). 

In addition, the ASE is independent of base-case solution 0Π , and therefore, could be solved 

independent of it, since the original system of Markov chain (3.1) is linear. 

From these characteristics, it follows that the Adjoint Sensitivity Analysis procedure should 

be employed whenever the variations in system parameters exceed the number of responses of 

interest, case generally met in practice. Into reverse case should be used Forward Sensitivity 

Analysis Procedure, or the method which implies recalculation of original system each time a 

variation occurs in system parameters. 

 

Further, the ranking of system parameters uncertainty importance is performed based on the 

absolute value of relative sensitivities of response with respect to the variations in system 

parameters given by formula, 
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0

0
i

i

R
R
α

α
∂
∂

                                                             (3.40) 

The relative sensitivities are used to rank the uncertainty importance in system’ s parameters 

due to it not depends on the scale of uncertainty, i.e. for the same analyzed parameter, 

different changes in parameter’ s value give the same relative sensitivity; the larger 

sensitivities, the bigger influence of parameter’ s uncertainty to system’ s response. 

Based on the computed sensitivities, further uncertainties of system’ s response can be 

performed. For instance the use of sensitivities for uncertainty analysis can be illustrated by 

recalling that the linear approximation of the variance of a response2 is given by 

, 1

var R cov( , )
k

i j i j
i j

S S α α
=

= � , where /i iS R α= ∂ ∂  is the response sensitivity to parameter iα , 

and cov( , )i jα α  is the covariance matrix of parameters iα  and jα .  

If all parameters are uncorrelated then 2 2

1

var R
k

i i
i

S σ
=

=� , where 2
iσ  is distribution 

uncertainty (variance) of the parameter iα , considering that these uncertainties are small.  

These formulas show the role of parameter sensitivities and uncertainties to the response 

uncertainty given by var R . Therefore, if the sensitivity iS  and uncertainty 2
iσ  of parameter 

iα  are large, their contribution to response uncertainty is obvious larger to response 

uncertainty than the case in which either sensitivity iS  or uncertainty 2
iσ  is small. 

 

 

3.3 ASAP applied to a simple Markov chain: A binary component 

 

In this section, the previous procedures are applied to a simple Markov chain of a binary 

component as it has been presented in Section 2.2 during the automated generation algorithm. 

In this simple case it is possible to obtain analytical formulae for the solution of the original 

Kolmogorov system of equations, FSE, and ASE of the Markov chain, respectively, as is 

presented in Cacuci [2003],24 and to compare them with the numerical solutions, in order to 

validate the implementation of these methods in the developed computer code 

QUEFT/MARKOMAG-S/MCADJSEN.  

Considering a repairable component which can be either into an operational state (Up state) or 

failed state (Down state), its transition diagram is as follows (Fig.2.1), 
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1

λ

µ
2 

 
where the instantaneous failure rate λ  and the instantaneous repair rate µ  are constant 

parameters. 

The Kolmogorov differential equations which describes mathematically this behavior are as 

they have been presented in Section 2.2, i.e., 
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                                     (3.41) 

with additional conservation law of probability  

0 01 2 1π π+ =                                                        (3.42) 

If it is assumed that at the initial time 0 0t =  the component is in the state 1, the initial state 

vector will be 
0 00 1 2[ , ] [1,0]T Tπ πΠ ≡ = . 

The average availability given by Eq.(2.29) is considered further as the system response for 

this problem,  

0
1

1
( )

ft

t
f

A t dt
t

π≡ �                                                    (3.43) 

Using the Laplace transform method defining the next transforms 
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π π π
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� �=� �−� �

�
 

and taking in account the Eq.(3.41), the analytical solution of ODE system (3.40) for the base-

case is as follows, 
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( )

( )

t t

t t

t e

t e

λ µ

λ µ

µ µπ π
λ µ λ µ

λ µπ π
λ µ λ µ

− + −

− + −

� � �
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                            (3.44) 

where the superscript “0” denotes the nominal values. One can see that the conservation law 

of probability is verified, i.e. 0 0
1 2( ) ( ) 1t tπ π+ = .  
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To obtain the system response sensitivities using the recalculation method, the procedure 

implies to solve the original system (3.40) once for the base-case and to solve again the same 

system but with some variations in parameters how many times a variation is considered. The 

system response sensitivities are evaluated in such case using the solution (3.43) as follows 
0

REC RECA A Aδ = −                                                   (3.45) 

where the system response for the base-case is 
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t t e
t

λ µ

π

µµ π
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�
          (3.46) 

and for the perturbed parameters 
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      (3.47) 

where 

0 0 0
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0

1 1 1

δ
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δ

λ λ δλ
µ µ δµ
π π δπ

= +
= +
= +

 

 

To avoid the repetitive calculations for each variation in system parameters the FSAP and 

ASAP are used further. For this problem the system parameters are defined by 

( )
0 01 2, , ,α λ µ π π≡ , and system variables by ( )1 2,u π π≡ . 

 

The G-differential to Eq.(3.41) is applied further to get the response sensitivity 
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                        (3.48) 

where 1 2 1 2[ ( ), ( )] [ ( ), ( )]T Tt t t tφ φ δπ πΦ = =  is the vector of variations in system variables, and 

0 01 2( , , , )δα δλ δµ δπ δπ=  is the set of variations in system parameters.  
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3.3.1 FSAP for a binary component 
 
The variation Aδ  in system response represents the solution of FSE of Markov chain which 

is obtained by applying the G-differential to the ODE system (3.41). Applying G-differential 

and carrying out the additional operations yields 

0
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                (3.49) 

Taking in account the conservation law of probability (3.41) by applying the G-differential, 

for the initial conditions of FSE (3.47) stands the equality  

0 02 1φ φ= −                                                          (3.50) 

The analytical solution of FSE (3.48) considering the Eqs.(3.41) and (3.49) is as below, 
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                (3.51) 

One can see from Eq.(3.51) that 2 1( ) ( )t tφ φ= − . If the analytical solution of the original system 

of equations is replaced, i.e. Eq.(3.44) in FSE (3.49), and separate the terms after variations in 

system parameters,  yields the analytical solution of FSE as follows, 
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and using the Eq.(3.48) an analytical expression for the response sensitivity using the FSAP is 

obtained, i.e. 
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3.3.2 ASAP for a binary component 
 

The ASE are obtained following the ASAP, namely forming the inner product of the FSE 

together with a vector of adjoint functions [ ]1 2( ), ( )
T

t tψ ψΨ ≡  to obtain Eq.(3.22). 

[ ]{ }
0

, ( ) ( ), , ft

t
Ψ Φ = Ψ Φ + Ψ ΦP*L L  

 Afterwards, the next sequence of operations as presented in previous section are performed, 
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The response sensitivity can be written now in terms of adjoint functions, i.e., 
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  (3.55) 

The analytical solution of equation (3.54) is as below 
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Once the analytical solutions for the original Markov chain, FSE, and ASE are available, i.e. 

the Eqs.(3.44), (3.51), and (3.56), respectively, the response sensitivity obtained by using 

FSAP and ASAP can be compared.  

Performing additional operations in Eq.(3.55) and taking in account the Eqs.(3.42), and 

(3.50), the response sensitivity using ASAP becomes 
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It follows from the above equation that the system response sensitivities to variations in 

system parameters are 
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Replacing the analytical solutions of 0
1 ( )tπ , and ( ), 1,2i t iψ = , from Eqs.(3.44), and (3.56), 

into Eq.(3.57) yields  
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The final form of response sensitivity using ASAP is obtained after the integration, i.e. 
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Replacing the value vector [ ] [ ]1 2/ / , /
T

F F Fπ π∂ ∂Π ≡ ∂ ∂ ∂ ∂  in Eq.(3.62) considering the 

system response as was defined in Eq.(3.43), [ ] [ ]1 1 1 2/ ( ) / , ( ) / [1,0]
T TF t tπ π π π∂ ∂Π = ∂ ∂ ∂ ∂ = ,  

it is obtained an identical expression for system sensitivity using ASAP as in Eq.(3.53) where 

it have been used FSAP, i.e. 

ASAP FSAPA Aδ δ=                                                      (3.63) 

 

Either from the Eq.(3.43) or from Eq.(3.62), it follows that the response sensitivities to system 

parameters are into a final form as follows, 
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( )( )0 0
0

0 0

0 0
1 2

1 1
1

 

ft t

f

A A
e

t
λ µ

π π λ µ
− + −∂ ∂ � �= − = −� �

� �∂ ∂ +                                                   (3.66) 

It can be seen from the above sensitivities that for a large mission time, i.e. ft → ∞ , the 

sensitivities to the initial conditions (3.66) vanish as they should for a well-posed problem, i.e.  

0 01 2

lim 0 lim
f ft t

A A
π π→∞ →∞

∂ ∂= =
∂ ∂

                                                   (3.67) 

Furthermore, for ft → ∞  the transient solution (3.44) trends to the stationary solution which 

is the solution of the algebraic system of equations defined by Eq.(2.24) together with the 

conservation law of probability, and the initial state vector, i.e. the first term from the right-

hand side of the Eq.(3.44). For the response sensitivities, taking the limit as ft → ∞  yields the 

response sensitivities as for the stationary solution case, i.e., 

( )
0

20 0
lim
ft

A µ
λ λ µ→∞

∂ = −
∂ +

   and   
( )

0

20 0
lim
ft

A λ
µ λ µ→∞

∂ =
∂ +

                     (3.68) 

 

3.3.3 Numerical validation 
 

Further in this section, the numerical comparisons between the analytical solution of the 

response sensitivity obtained previously and the numerical solution obtained using 

MARKOMAG code with VODPK ODE solver integrated are presented. The input data have 

been taken from IFMIF (International Fusion Materials Irradiation Facilities)-Accelerator 

System Facilities reliability study.75, 76 The transient reliability and sensitivity study of this 

physical system will be presented into the next chapter. In this section are considered some of 
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its facilities as binary systems which can be either in operational or not-operational state. For 

each facility is performed using the procedures presented previous, sensitivity studies of the 

response given by Eq.(3.43). The response sensitivities to the variations in system parameters 

are given by the Eqs.(3.64) to (3.66). The transient analysis has been performed for a mission 

time of 168 hours which is considered to be the period of time between two scheduled 

maintenance operations. After a maintenance operation the physical system analyzed is 

considered to be as good as new. Therefore it is set further the initial time 0 0t =  and the final 

time 168ft = hours. The initial probability state vector is set to 
0 01 2[ , ] [1,0]T Tπ π = , i.e. the 

physical system is in the full operational state at the initial moment of time. The input data are 

constants as mean time to failure and repair, and therefore, the failures are considered 

exponentially distributed. Cumulative distribution function is in this case given by 

( ) ,  0tf t e tλλ −= ≤ < ∞ , where λ  is the distribution parameter. It follows from the equivalent 

relations given in Table 2.1 that the transition rate ( )tλ  is constant and equal with the 

distribution parameter. 

 

Facility MTTF(hours) MTTR(hours) 1/ MTTFλ =  1/ MTTRµ =  
Injector 156.7 2.2 6.38162E-03 4.54545E-01 
LINAC 465.0 19.0 2.15054E-03 5.26316E-02 

Cooling System 499996.0 4.0 2.00002E-06 2.5E-01 
RF System 225.5 9.0 4.43459E-03 1.11111E-01 

HEBT 224.5 7.7 4.45434E-03 1.29870E-01 
Table 3.1 The nominal values of system parameters for binary components 

 
In the above table LINAC stands for Linear Accelerator System, RF for Radio Frequency 

System, and HEBT for High Energy Beam Transport System. 

The perturbations considered further are introduced numerically and not correspond to actual 

physical reliability parameter’ s uncertainties. They are used as mathematical means to verify 

the accuracy and stability of the numerical solution of ASE. These variations in system 

parameters have been performed as follows. In practice one wishes that the MTTF for a 

component to be large and MTTR to be small. Therefore the MTTF has been perturbed by 

increasing it with a percentage of 0.1, 1.0, 5.0, and 10.0, respectively, of its base-case value, 

and the MTTR has been varied in the same way by decreasing it with the same percents from 

its nominal value as before. That leads to a decreasing of the failure rate, and to an increasing 

of repair rate. For the perturbations in the initial conditions does exist a linear dependency due 

to the conservation law of probability. Therefore, a perturbation in one of the initial state 

probability is equal and opposite in sign with the other such as the conservation of probability 
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to be satisfied. It has been considered variations in initial state probability by 0.1, 5.0, and 

10.0 percents from their nominal values. That means that for 100% probability the system to 

be in the Up state at the initial time, the perturbation with 5% in initial conditions means that 

at the initial time it is a 95% probability that the system to be in the Up state and 5% 

probability that the system to be in the Down state. That can be resumed for the perturbed 

parameters as follows: 

 
0 0

0 0

,   

,    

MTTF MTTF MTTF MTTF x MTTF

MTTR MTTR MTTR MTTR x MTTR

δ δ
δ δ

= + = ⋅
= + = − ⋅

, {0.1%,1.0%,5.0%,10%}x =  

0 0 0 0 0

0 0 0

0 0

0

0 0
1 1 1 1 1

0
2 2 1

1 2

,    ,    { 0.1%, 5.0%, 10%}

1

[0,1],  1,2i

y y

i

π π δπ δπ π

π π δπ
π π
π

= + = ⋅ = − − −

= −

+ =

∈ =

 

 

For each of the previous systems considered as binary components, the response sensitivities 

to the perturbation in initial conditions are presented into the Tables 3.2 - 3.6. The time step 

has been chosen small ( 0.6mint∆ = ) for the numerical solution by stiffness considerations. 

The comparison of ASAP numerical solution has been performed with the analytical solution, 

the numerical solution using recalculations and numerical solution given by FSAP. In this 

case the analytical solution is as in Eq.(3.66). 

 

Table 3.2 The influence of perturbations in initial state probabilities for Injector 
Perturbation 

in 
initial 

conditions 

Transient 
Duration (h) 
/No. of time 

steps 

 
Nominal 

Value 
R0 

Relative 
sensitivity 

0

0. i

i

R
R
α

α
∆
∆

 

 
ASAP 

Rpred – R0 

 
Analytical 

DR 
 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

1 / 100 .9972E+00 .8034E+00 -.8012E-03 -.8012E-03 -.8012E-03 -.8012E-03 
6 / 600 .9908E+00 .3420E+00 -.3388E-03 -.3388E-03 -.3388E-03 -.3388E-03 

12 / 1200 .9886E+00 .1821E+00 -.1801E-03 -.1801E-03 -.1801E-03 -.1801E-03 
24 / 2400 .9874E+00 .9155E-01 -.9040E-04 -.9040E-04 -.9040E-04 -.9040E-04 

-0.1% of
01π  

and 
0.1% of 

02π  
168 / 16800 .9863E+00 .1309E-01 -.1291E-04 -.1291E-04 -.1291E-04 -.1291E-04 

1 / 100 .9972E+00 .8034E+00 -.4006E-01 -.4006E-01 -.4006E-01 -.4006E-01 
6 / 600 .9908E+00 .3420E+00 -.1694E-01 -.1694E-01 -.1694E-01 -.1694E-01 

12 / 1200 .9886E+00 .1821E+00 -.9004E-02 -.9004E-02 -.9004E-02 -.9004E-02 
24 / 2400 .9874E+00 .9155E-01 -.4520E-02 -.4520E-02 -.4520E-02 -.4520E-02 

-5% of
01π  

and 
5% of 

02π  
168 / 16800 .9863E+00 .1309E-01 -.6457E-03 -.6457E-03 -.6457E-03 -.6457E-03 

1 / 100 .9972E+00 .8034E+00 -.8012E-01 -.8012E-01 -.8012E-01 -.8012E-01 
6 / 600 .9908E+00 .3420E+00 -.3388E-01 -.3388E-01 -.3388E-01 -.3388E-01 

12 / 1200 .9886E+00 .1821E+00 -.1801E-01 -.1801E-01 -.1801E-01 -.1801E-01 
24 / 2400 .9874E+00 .9155E-01 -.9040E-02 -.9040E-02 -.9040E-02 -.9040E-02 

-10% of
01π  

and 
10% of 

02π  
168 / 16800 .9863E+00 .1309E-01 -.1291E-02 -.1291E-02 -.1291E-02 -.1291E-02 
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Table 3.3 The influence of perturbations in initial state probabilities for LINAC 
Perturbation 

in 
initial 

conditions 

Transient 
Duration (h) 
/No. of time 

steps 

 
Nominal 

Value 
R0 

Relative 
sensitivity 

0

0. i

i

R
R
α

α
∆
∆

 

 
ASAP 

Rpred – R0 

 
Analytical 

DR 
 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

1 / 100 .9989E+00 .9741E+00 -.9731E-03 -.9731E-03 -.9731E-03 -.9731E-03 
6 / 600 .9942E+00 .8572E+00 -.8523E-03 -.8523E-03 -.8523E-03 -.8523E-03 

12 / 1200 .9895E+00 .7407E+00 -.7329E-03 -.7329E-03 -.7329E-03 -.7329E-03 
24 / 2400 .9826E+00 .5662E+00 -.5563E-03 -.5563E-03 -.5563E-03 -.5563E-03 

-0.1% of
01π  

and 
0.1% of 

02π  
168 / 16800 .9650E+00 .1126E+00 -.1086E-03 -.1086E-03 -.1086E-03 -.1086E-03 

1 / 100 .9989E+00 .9741E+00 -.4866E-01 -.4866E-01 -.4866E-01 -.4866E-01 
6 / 600 .9942E+00 .8572E+00 -.4261E-01 -.4261E-01 -.4261E-01 -.4261E-01 

12 / 1200 .9895E+00 .7407E+00 -.3664E-01 -.3664E-01 -.3664E-01 -.3664E-01 
24 / 2400 .9826E+00 .5662E+00 -.2782E-01 -.2782E-01 -.2782E-01 -.2782E-01 

-5% of
01π  

and 
5% of 

02π  
168 / 16800 .9650E+00 .1126E+00 -.5432E-02 -.5432E-02 -.5432E-02 -.5432E-02 

1 / 100 .9989E+00 .9741E+00 -.9731E-01 -.9731E-01 -.9731E-01 -.9731E-01 
6 / 600 .9942E+00 .8572E+00 -.8523E-01 -.8523E-01 -.8523E-01 -.8523E-01 

12 / 1200 .9895E+00 .7407E+00 -.7329E-01 -.7329E-01 -.7329E-01 -.7329E-01 
24 / 2400 .9826E+00 .5662E+00 -.5563E-01 -.5563E-01 -.5563E-01 -.5563E-01 

-10% of
01π  

and 
10% of 

02π  
168 / 16800 .9650E+00 .1126E+00 -.1086E-01 -.1086E-01 -.1086E-01 -.1086E-01 

 

 

Table 3.4 The influence of perturbations in initial state probabilities for Cooling System 
Perturbation 

in 
initial 

conditions 

Transient 
Duration (h) 
/No. of time 

steps 

 
Nominal 

Value 
R0 

Relative 
sensitivity 

0

0. i

i

R
R
α

α
∆
∆

 

 
ASAP 

Rpred – R0 

 
Analytical 

DR 
 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

1 / 100 9.99999E-01 .8848E+00 -.8848E-03 -.8848E-03 -.8848E-03 -.8848E-03 
6 / 600 9.99996E-01 .5179E+00 -.5179E-03 -.5179E-03 -.5179E-03 -.5179E-03 

12 / 1200 9.99995E-01 .3167E+00 -.3167E-03 -.3167E-03 -.3167E-03 -.3167E-03 
24 / 2400 9.99993E-01 .1663E+00 -.1663E-03 -.1663E-03 -.1663E-03 -.1663E-03 

-0.1% of
01π  

and 
0.1% of 

02π  
168 / 16800 9.99992E-01 .2381E-01 -.2381E-04 -.2381E-04 -.2381E-04 -.2381E-04 

1 / 100 9.99999E-01 .8848E+00 -.4424E-01 -.4424E-01 -.4424E-01 -.4424E-01 
6 / 600 9.99996E-01 .5179E+00 -.2590E-01 -.2590E-01 -.2590E-01 -.2590E-01 

12 / 1200 9.99995E-01 .3167E+00 -.1584E-01 -.1584E-01 -.1584E-01 -.1584E-01 
24 / 2400 9.99993E-01 .1663E+00 -.8313E-02 -.8313E-02 -.8313E-02 -.8313E-02 

-5% of
01π  

and 
5% of 

02π  
168 / 16800 9.99992E-01 .2381E-01 -.1190E-02 -.1190E-02 -.1190E-02 -.1190E-02 

1 / 100 9.99999E-01 .8848E+00 -.8848E-01 -.8848E-01 -.8848E-01 -.8848E-01 
6 / 600 9.99996E-01 .5179E+00 -.5179E-01 -.5179E-01 -.5179E-01 -.5179E-01 

12 / 1200 9.99995E-01 .3167E+00 -.3167E-01 -.3167E-01 -.3167E-01 -.3167E-01 
24 / 2400 9.99993E-01 .1663E+00 -.1663E-01 -.1663E-01 -.1663E-01 -.1663E-01 

-10% of
01π  

and 
10% of 

02π  
168 / 16800 9.99992E-01 .2381E-01 -.2381E-02 -.2381E-02 -.2381E-02 -.2381E-02 
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Table 3.5 The influence of perturbations in initial state probabilities for RF System 
Perturbation 

in 
initial 

conditions 

Transient 
Duration (h) 
/No. of time 

steps 

 
Nominal 

Value 
R0 

Relative 
sensitivity 

0

0. i

i

R
R
α

α
∆
∆

 

 
ASAP 

Rpred – R0 

 
Analytical 

DR 
 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

1 / 100 .9979E+00 .9464E+00 -.9444E-03 -.9444E-03 -.9444E-03 -.9444E-03 
6 / 600 .9893E+00 .7291E+00 -.7213E-03 -.7213E-03 -.7213E-03 -.7213E-03 

12 / 1200 .9824E+00 .5507E+00 -.5410E-03 -.5410E-03 -.5410E-03 -.5410E-03 
24 / 2400 .9746E+00 .3469E+00 -.3381E-03 -.3381E-03 -.3381E-03 -.3381E-03 

-0.1% of
01π  

and 
0.1% of 

02π  
168 / 16800 .9636E+00 .5346E-01 -.5152E-04 -.5152E-04 -.5152E-04 -.5152E-04 

1 / 100 .9979E+00 .9464E+00 -.4722E-01 -.4722E-01 -.4722E-01 -.4722E-01 
6 / 600 .9893E+00 .7291E+00 -.3607E-01 -.3607E-01 -.3607E-01 -.3607E-01 

12 / 1200 .9824E+00 .5507E+00 -.2705E-01 -.2705E-01 -.2705E-01 -.2705E-01 
24 / 2400 .9746E+00 .3469E+00 -.1690E-01 -.1690E-01 -.1690E-01 -.1690E-01 

-5% of
01π  

and 
5% of 

02π  
168 / 16800 .9636E+00 .5346E-01 -.2576E-02 -.2576E-02 -.2576E-02 -.2576E-02 

1 / 100 .9979E+00 .9464E+00 -.9444E-01 -.9444E-01 -.9444E-01 -.9444E-01 
6 / 600 .9893E+00 .7291E+00 -.7213E-01 -.7213E-01 -.7213E-01 -.7213E-01 

12 / 1200 .9824E+00 .5507E+00 -.5410E-01 -.5410E-01 -.5410E-01 -.5410E-01 
24 / 2400 .9746E+00 .3469E+00 -.3381E-01 -.3381E-01 -.3381E-01 -.3381E-01 

-10% of
01π  

and 
10% of 

02π  
168 / 16800 .9636E+00 .5346E-01 -.5152E-02 -.5152E-02 -.5152E-02 -.5152E-02 

 

 

Table 3.6 The influence of perturbations in initial state probabilities for HEBT 
Perturbation 

in 
initial 

conditions 

Transient 
Duration (h) 
/No. of time 

steps 

 
Nominal 

Value 
R0 

Relative 
sensitivity 

0

0. i

i

R
R
α

α
∆
∆

 

 
ASAP 

Rpred – R0 

 
Analytical 

DR 
 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

1 / 100 .9979E+00 .9377E+00 -.9357E-03 -.9357E-03 -.9357E-03 -.9357E-03 
6 / 600 .9896E+00 .6938E+00 -.6866E-03 -.6866E-03 -.6866E-03 -.6866E-03 

12 / 1200 .9833E+00 .5050E+00 -.4966E-03 -.4966E-03 -.4966E-03 -.4966E-03 
24 / 2400 .9767E+00 .3049E+00 -.2978E-03 -.2978E-03 -.2978E-03 -.2978E-03 

-0.1% of
01π  

and 
0.1% of 

02π  
168 / 16800 .9683E+00 .4576E-01 -.4431E-04 -.4431E-04 -.4431E-04 -.4431E-04 

1 / 100 .9979E+00 .9377E+00 -.4679E-01 -.4679E-01 -.4679E-01 -.4679E-01 
6 / 600 .9896E+00 .6938E+00 -.3433E-01 -.3433E-01 -.3433E-01 -.3433E-01 

12 / 1200 .9833E+00 .5050E+00 -.2483E-01 -.2483E-01 -.2483E-01 -.2483E-01 
24 / 2400 .9767E+00 .3049E+00 -.1489E-01 -.1489E-01 -.1489E-01 -.1489E-01 

-5% of
01π  

and 
5% of 

02π  
168 / 16800 .9683E+00 .4576E-01 -.2216E-02 -.2216E-02 -.2216E-02 -.2216E-02 

1 / 100 .9979E+00 .9377E+00 -.9357E-01 -.9357E-01 -.9357E-01 -.9357E-01 
6 / 600 .9896E+00 .6938E+00 -.6866E-01 -.6866E-01 -.6866E-01 -.6866E-01 

12 / 1200 .9833E+00 .5050E+00 -.4966E-01 -.4966E-01 -.4966E-01 -.4966E-01 
24 / 2400 .9767E+00 .3049E+00 -.2978E-01 -.2978E-01 -.2978E-01 -.2978E-01 

-10% of
01π  

and 
10% of 

02π  
168 / 16800 .9683E+00 .4576E-01 -.4431E-02 -.4431E-02 -.4431E-02 -.4431E-02 
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Figure 3.1 Relatives sensitivities to perturbations in initial state probabilities  
for binary components 

 

In Fig.3.1 it is shown the relative sensitivities, numerical and analytical solutions, for each 

binary component considering perturbations in initial state probabilities. It can be seen a good 

agreement between the numerical and analytical solution. 

 

For the perturbations in system parameters the response sensitivities are presented in the 

Tables 3.7 to 3.11. For this case the analytical solution is as in Eq.(3.64) for perturbation in 

MTTF and as in Eq.(3.65) for perturbations in MTTR. One can be see that the analytical and 

numerical sensitivity solutions given by ASAP and FSAP agree each other but for some cases 

these results are different from the exact recalculations, especially when the percentage of 

variation in system parameters is large. Also the stiffness of the problem can influence this 

difference, and that can be observed especially when are performed perturbations in MTTR 

which have small value in comparison with the perurbations in MTTF. This is a reason for 

which the sensitivities using exact recalculations agree in general better with sensitivities 

computed for perturbations in MTTF versus the perturbations in MTTR. 
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Table 3.7 The influence of perturbations in system parameters at tf =168h for Injector 

 
Par 

iα  

 
Perturbation 

0
i

i

α
α
∆

(%) 

 
Nominal 

Value 
R0 

Relative 
sensitivity 

0

0. i

i

R
R
α

α
∆
∆

 

 
ASAP 

Rpred – R0 

 
Analytical 

DR 
 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1348E-04 .1348E-04 .1348E-04 .1348E-04 
-1% .1348E-03 .1348E-03 .1348E-03 .1348E-03 
-5% .6740E-03 .6740E-03 .6744E-03 .6740E-03 

 
λ  

-10% 

-.1367E-01 
 
 .1348E-02 .1348E-02 .1350E-02 .1348E-02 

0.1% .1330E-04 .1330E-04 .1329E-04 .1330E-04 
1% .1330E-03 .1330E-03 .1317E-03 .1330E-03 
5% .6650E-03 .6650E-03 .6342E-03 .6651E-03 

 
µ  

10% 

.9863E+00 
 
 
 
 

.1349E-01 
 
 .1330E-02 .1330E-02 .1212E-02 .1330E-02 

 

 

Table 3.8 The influence of perturbations in system parameters at tf =168h for LINAC 
 

Par 

iα  

 
Perturbation 

0
i

i

α
α
∆

(%) 

 
Nominal 

Value 
R0 

Relative 
sensitivity 

0

0. i

i

R
R
α

α
∆
∆

 

 
ASAP 

Rpred – R0 

 
Analytical 

DR 
 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .3378E-04 .3379E-04 .3379E-04 .3378E-04 
-1% .3378E-03 .3379E-03 .3380E-03 .3378E-03 
-5% .1689E-02 .1689E-02 .1692E-02 .1689E-02 

 
λ  

-10% 

-.3501E-01 
 
 .3378E-02 .3379E-02 .3390E-02 .3378E-02 

0.1% .2952E-04 .2952E-04 .2950E-04 .2952E-04 
1% .2952E-03 .2952E-03 .2928E-03 .2952E-03 
5% .1476E-02 .1476E-02 .1417E-02 .1476E-02 

 
µ  

10% 

.9650E+00 
 
 
 
 

.3059E-01 
 
 .2952E-02 .2952E-02 .2726E-02 .2952E-02 

 

 

Table 3.9 The influence of perturbation in system parameters at tf =168h for RF System 
 

Par 

iα  

 
Perturbation 

0
i

i

α
α
∆

(%) 

 
Nominal 

Value 
R0 

Relative 
sensitivity 

0

0. i

i

R
R
α

α
∆
∆

 

 
ASAP 

Rpred – R0 

 
Analytical 

DR 
 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .3508E-04 .3508E-04 .3508E-04 .3508E-04 
-1% .3508E-03 .3508E-03 .3508E-03 .3508E-03 
-5% .1754E-02 .1754E-02 .1757E-02 .1754E-02 

 
λ  

-10% 

-.3641E-01 
 
 .3508E-02 .3508E-02 .3514E-02 .3508E-02 

0.1% .3310E-04 .3310E-04 .3311E-04 .3310E-04 
1% .3310E-03 .3310E-03 .3314E-03 .3310E-03 
5% .1655E-02 .1655E-02 .1663E-02 .1655E-02 

 
µ  

10% 

.9636E+00 
 
 
 
 

.3435E-01 
 
 .3310E-02 .3310E-02 .3342E-02 .3310E-02 
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Table 3.10 The influence of perturbation in system parameters at tf =168h for Cooling System 
 

Par 

iα  

 
Perturbation 

0
i

i

α
α
∆

(%) 

 
Nominal 

Value 
R0 

Relative 
sensitivity 

0

0. i

i

R
R
α

α
∆
∆

 

 
ASAP 

Rpred – R0 

 
Analytical 

DR 
 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .7809E-08 .7809E-08 .7810E-08 .7809E-08 
-1% .7809E-07 .7809E-07 .7810E-07 .7809E-07 
-5% .3905E-06 .3905E-06 .3905E-06 .3905E-06 

 
λ  

-10% 

-.7810E-05 
 
 .7809E-06 .7809E-06 .7809E-06 .7809E-06 

0.1% .7619E-08 .7619E-08 .7612E-08 .7619E-08 
1% .7619E-07 .7619E-07 .7545E-07 .7619E-07 
5% .3809E-06 .3809E-06 .3632E-06 .3810E-06 

 
µ  

10% 

9.99992E-1 
 
 
 
 

.7619E-05 
 
 .7619E-06 .7619E-06 .6942E-06 .7619E-06 

 

Table 3.11 The influence of perturbation in system parameters at tf =168h for HEBT 
 

Par 

iα  

 
Perturbation 

0
i

i

α
α
∆

(%) 

 
Nominal 

Value 
R0 

Relative 
sensitivity 

0

0. i

i

R
R
α

α
∆
∆

 

 
ASAP 

Rpred – R0 

 
Analytical 

DR 
 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .3069E-04 .3069E-04 .3069E-04 .3069E-04 
-1% .3069E-03 .3069E-03 .3070E-03 .3069E-03 
-5% .1534E-02 .1534E-02 .1537E-02 .1534E-02 

 
λ  

-10% 

-.3169E-01 
 
 .3069E-02 .3069E-02 .3079E-02 .3069E-02 

0.1% .2922E-04 .2922E-04 .2919E-04 .2922E-04 
1% .2922E-03 .2922E-03 .2895E-03 .2922E-03 
5% .1461E-02 .1461E-02 .1397E-02 .1461E-02 

 
µ  

10% 

.9683E+00 
 
 
 
 

.3018E-01 
 
 .2922E-02 .2922E-02 .2946E-02 .2922E-02 
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3.4 Implementation considerations 
 

Standard techniques for solving the Kolmogorov equations which describe the Markov chain 

are based on discretization of this set of ordinary differential equations and approximate the 

solution numerically. The methods discretize the time interval into a finite number of 

subintervals and compute the solution step by step. 

The system of Eqs.(3.1) is currently solved numerically using available differential equation 

solvers based on multistep methods such as Adams formulae and backward differential 

formulae (BDF) combined with Krylov subspace methods, since Markov chain equations are 

often very large and sparse.20,74 These methods have been proved to be applicable in various 

studies of transient solution of Markov chain.23,36 These studies have shown that the Adams 

and BDF methods are suitable for problems with long interval of integration and high 

accuracy requirements. Adams methods are employed in the case of nonstiff problems, while 

BDF methods are recommended when the system of equations is stiff.   
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For 1,...,i n=  the differential backward Kolmogorov equations (3.1), FSE (3.18), and ASE 

(3.36), can be written in component form as follows. 

Backward Kolmogorov equations (BKE): 

0

1

0

( )
( ) ( )

( )

n
i

ij j
j

i i

d t
q t t

dt

t

π π

π π
=

� =�
�
� =�

�
                                                            (3.69) 

Forward sensitivity equations (FSE) of Markov chain: 

0

0 0

1 1

0
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                                       (3.70) 

Adjoint sensitivity equations (ASE) of Markov chain: 

0
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i f
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                                              (3.71) 

All these linear ODE systems can be written generally in component form for all 1,...,i n=  as 

follows 
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1

0

( , ,..., )

( )

i
i n

i i

dy
f t y y

dt
y t y

� =�
�
� =�

                                                                 (3.72) 

Where for all 1,...,i n=  

1
1
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1 1

1 1

0
1 0
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          (3.73) 

The system of equations (3.72) is a linear system of form [ ] [ ] [ ]1 1n n n n
x b

× × ×
Α = , or in 

component form as 
1

n

ij j i
j

a x b
=

=� , 1,...i n= , where the square matrix A is 

[ ] [ ] [ ]n n n n n n
h

× × ×
Α = −I J , with I the identity matrix, h  a scalar, and J  the Jacobian-matrix 

defined as below 
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1 1 1
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,   for BKE

,    for FSE
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π
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, 1,...,i n=  

One can observe that the Jacobian-matrix is the same for the backward Kolmogorov equations 

(BKE) and FSE, i.e. the transition rate matrix ( )Q t , and minus transpose of ( )Q t  for ASE, 

and therefore the same routine for Jacobian matrix evaluation can be used for all three cases. 

The developed computer code MARKOMAG-S is using for the transient solution of the 

original system of Eqs.(3.1), FSE (3.18), and ASE (3.36), respectively, the VODPK solver 

developed by Brown, Byrne, and Hindmarsh72,73 together with the incomplete LU 

factorization for preconditioning.20 This solver uses both methods Adams and BDF with 

preconditioned Krylov method GMRES68,73 to evaluate the transient solution of stiff and 

nonstiff systems of ordinary differential equations / ( , )dy dt f t y= . The discretization for this 

type of equations and the numerical solution approximation using the methods mentioned 

previous are treated amply in Radhakrisnan and Hindmarsh [1993],71 Brown et al.[1989],72 

and Brown and Hindmarsh [1989].73 

 

System response sensitivity (3.38) written in component form for all 1,...,i n=  is as below 
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                       (3.74) 

The numerical integration of system response and response sensitivities are performed using 

one of the Newton-Cotes quadrature formulae. Applying a quadrature rule to discretize the 

above integral form of the response sensitivity would yield 
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                (3.75) 

where the superscript l denotes that the respective term is evaluated at the time lt , and 

1 1

( ) ,    1,...,
l

n m
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ij j l k
j k k
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q t i nδ π δα
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0( ) /f lN t t t= − ∆  represents the number of time steps in quadrature and should be equal with 

the total number of time steps used in numerical evaluation of the solution of BKE (3.1), and 

ASE (3.36). That implies that the time step lt∆  in both cases should be the same to assure the 

consistency with the derivatives /i kf α∂ ∂  which are evaluated during the solving process of 

ASE. Here one can see again the advantages of the ASAP, i.e. after the BKE and ASE are 

solved, in Eq.(3.75) all parameters are known, and considering the same system response, for 

a new variation kδα  in system parameters should be performed only integrations  based on 

quadrature formulae which is cheaper than to solve many times either BKE or FSE.  

 

Further, the steps of the computer code system QUEFT/MARKOMAG-S/MCADJSEN 

developed with this work for performing reliability and sensitivity analysis using Markov 

chain are presented. The flow diagram of this code system is presented in Fig.3.4. The 

abstraction of physical system as a Fault Tree together with components data (failure rates, 

distribution types, distribution parameters) are the input for code. The first module QUEFT is 

getting these data and performs a qualitative Fault-Tree Analysis using the MOCUS algorithm 

described in Appendix A to find the minimal cut sets. The output of this module represents 

the input for the next module MARKOMAG-S. This module is generating the Markov chain 

of the physical system based on the number of system components and generic fault states 

which are constructed using the minimal cut sets found by QUEFT, as it has been described in 

Section 2.2. At the end of this process the backward Kolmogorov differential system of Eqs. 

(3.69) is built symbolically. Further, depending on the type of Markov chain, the values in 

transition rate matrix are computed once for the homogeneous case, and each time step for the 

nonhomogeneous case. All the elements of the Kolmogorov system of equations are stored in 

vector form, and for transition rate matrix is used compressed row storage. All the vector 

matrix multiplications during of solving process are performed in sparse form. The VODPK 

ODE Solver is used afterwards to solve the system of differential equations and to obtain the 

transient probability distribution of the system state vector. Using the transient solution, the 

system response is computed for the base-case. At this step the reliability analysis phase is 

done. 
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Figure 3.4 The flow diagram of the QUEFT/MARKOMAG-S/MCADJSEN code system 

 

To perform sensitivity analysis of the response computed during the reliability phase, three 

options are available. First option is to make changes in input parameters once at a time and to 

run the code again with the perturbed parameters so many times how many perturbations 

exist, and afterwards to perform the difference between the recalculated responses and the 

base-case solution to get the response sensitivity to those perturbations. This way to compute 

response sensitivities implies 1n +  computations of the Kolmogorov ODE system for n  

perturbations in system parameters. 

The second choice is to compute the response sensitivities using FSAP. Using this option, the 

forward sensitivity equations (3.70) are generated using the transition rate matrix and 

numerical solution obtained for the base case of Eq.(3.69) . The FSE is solved using the same 

solver in order to obtain the transient probability distribution of perturbation state vector. The 

response sensitivities are computed afterwards using the solution of FSE. For new 

perturbations in system parameters the FSE must be solved again. This way is advantageous 

when in the considered problem are less parameters than responses, situation rarely met in 

Markov chain analysis. 

The third option is to perform sensitivity analysis using the adjoint system of equations (3.71).   

As in the FSE case, these equations are constructed during the generation of Markov-chain 

algorithm since the same transition matrix is used, but transposed. The nonhomogeneous term 

depending on the system response (the right-side of the ASE) is evaluated during the 

computation process as well. The ASE are solved using the same VODPK solver in order to 

obtain the transient vector of adjoint functions. The derivatives implied in evaluation of the 

indirect effect term of response sensitivities by Eq.(3.75) are automatically evaluated and 
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stored. The transient solution of the adjoint system and the derivatives (3.76) are given as 

outputs at the end of the computation process of ASE.  

These values are used further into the next module MCADJSEN which is performing the 

evaluation of the Eq.(3.75). Every time new variations in system parameters are considered, 

the system sensitivities are calculated based only on the parameter perturbations, the adjoint 

functions and the derivatives evaluated previous, without being necessary to be solved again 

the ODE system.  For a given response, the response sensitivities evaluation using the ASE 

option implies to solve the ODE system only two times, namely once for the base case 

solution of Markov chain equations (3.69), and once for the adjoint system of equations 

(3.75). This way is advantageous for the common case met in Markov chain analysis where 

the number of parameters exceeds by far the number of responses. 

 

The FSAP and ASAP formalisms can be applied further for the discretized set of BKE by one 

of discretization methods used for ODE systems, to obtain the discrete FSE (DFSE) and 

discrete ASE (DASE). This formalism is called as discrete adjoint sensitivity analysis 

procedures (DASAP). The discrete system response sensitivity (DDR) can be obtained similar 

applying the G-differential to the discretized system response R which is represented in 

general form as follows 
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where q
lt∆  denotes the quadrature time step. 

For ODE systems of form (3.72) has been shown by Cacuci24 using for discretization the one-

step Euler formula, that the sensitivities results given by DR and DDR are not identical with 

one another, but 

( )q
lDR DDR O t= + ∆                                                   (3.78) 

How long the consistency between ASE and DASE solution is ensured which implies that the 

quadrature time step to be identical with the time-step used to discretize the equations, either 

DASAP or discretized equations produced by ASAP can be used to evaluate response 

sensitivities. If the consistency is not ensured, it is recommended to use differential equations 

given by ASAP as it has been presented previous, and afterwards to discretize the resulting 

equations in order to solve them numerically. The DASE makes it possible to analyze the 

response sensitivity to the step size and truncation error, or some certain parameters 
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introduced by discretization process in numerical evaluation which is beyond the scope of this 

work. It must be mentioned that the differential BKE, ASE and the integral form of response 

represent the forms that contain the behaviour of the physical system, and these equations 

must be discretized and solved consistently.  

 

 

3.5 Summary 

 

In this chapter the Adjoint Sensitivity Analysis Procedure has been applied to Markov chain 

system. During this procedure the adjoint sensitivity system of equations of Markov chain has 

been constructed. A form in terms of adjoint functions for the indirect-effect term of the 

response’ s sensitivity using the ASAP guidelines has been obtained. This form is independent 

on the perturbations in system parameters (i.e. the transition rates). 

The ASAP fundamental characteristics have been highlighted: 

a) The ASE does not depend on the variations in system parameters, thus nor the solution 

of this system, i.e. the adjoint functions; 

b) From computational point of view, the sensitivities evaluation of a given response 

with respect to variations in system parameters implies only to solve once the original 

system of Markov chain, and once the ASE. Afterwards, each time a variation in 

system parameters occurs, the expression of the indirect-effect term of response 

sensitivities using the adjoint functions should be evaluated. 

c) The ASE depends on the system’ s response. Therefore, the ASE must be solved anew 

with response changing. 

The validation of this method by comparison of numerical results with traditional approach 

that implies recalculations and analytical solution, has been performed for a simple Markov 

chain of a binary component. Further reliability and sensitivity studies are performed in 

Chapter 4 using the computer code-system QUEFT/MARKOMAG-S/MCADJSEN that has 

been developed for reliability and sensitivity analysis purposes using the Markov chain 

technique.  
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4 Sensitivity studies on reliability of IFMIF-Accelerator System 

Facilities: Illustrative Example 

 

In this chapter, the methods and the code system described previous have been used for 

reliability and sensitivity analysis of the accelerator system of the International Fusion 

Irradiation Materials Facility (IFMIF).75 First, the reliability analysis using Markov chains is 

performed for the all subsystems of accelerator system facility in order to obtain the transient 

availability of this system and its subsystems for the considered mission time. Afterwards, the 

sensitivity analysis on the subsystems is performed using ASAP of Markov chains. The 

primary purpose of this analysis is to study the effect of changes in the reliability parameters 

of components/subsystems to the overall availability of the accelerator system, ranking 

afterwards, based on the computed sensitivities, the uncertainty importance of 

components/subsystems parameters in affecting accelerator’s availability. 

 

The IFMIF project has been proposed and developed to provide the necessary irradiation field 

for testing present materials, to develop new materials, and to generate a materials database 

for the design, construction, licensing and safe operation of the future fusion power reactors. 

A greater understanding of the behavior of such materials when exposed to high levels of 

irradiations is required to ensure a safe and reliable fusion reactor design. An intense source 

of radiation should provide the necessary environment to study the effects of such radiations 

on these materials. This source of irradiation is given by a linear accelerator-based neutron 

source which must provide a continuous wave of high radiation. For such continuous high 

irradiative wave, the reliability of this system is essentially. 

By the end of 1996, in the final report of IFMIF Conceptual Design Activity,75 the overall 

requirements for IFMIF has been established at 70% online performance per year, i.e. the 

system should be operational 6132 hours from a total amount of 8760 hours. In one year it has 

been allocated for scheduled maintenance one month, plus eight hours every week, which 

represents a total of 1160 hours. Thus, the scheduled operation has been established to 7600 

hours/year. The difference between the scheduled operation time and the required operation 

time, i.e. 1468 hours/year, has been allocated for unscheduled repairs due to random failures 

which can occur during the operation of IFMIF. The IFMIF comprises five main modules, 

namely test facilities, target facilities, accelerator facilities, conventional facilities, and central 

control and common instrumentation system, respectively. After reliability studies, the total 
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availability of the IFMIF to 80.7% as the result of the availabilities of its subsystems has been 

established: 

Subsystem Availability (%) 
Test facilities 97.5 
Target facilities 95.0 
Accelerator facilities 88.0 
Conventional facilities 99.5 
Central control system and common instrumentation 99.5 

Total availability (product) 80.7 
 

Table 4.1 Allocated availability for IFMIF 

The most complex subsystem and the main contributor to the total availability of IFMIF 

system is the accelerator system facilities. To provide the continuous wave of high radiation, 

and to avoid interruptions into the radiation beam, this system consists in two linear 

accelerators which operate in parallel, and which are represented schematically as in Fig.4. 

This configuration will allow also operation to continue in providing the necessary radiation 

field when one or the other of the two accelerators is temporarily removed from service for 

repair 

 
Figure 4 IFMIF Accelerator System Facilities 

The availability of 88% for accelerator system facilities has been obtained using the Fault-

Tree technique for a mission time of 168 hours (7 days) which is considered to be the period 

of time between two scheduled maintenance operations. Since this system is not yet 

physically built and operational, but still under design, all the input data for its subsystems 

and components used in reliability analysis have been taken from similar installations and 

facilities. Therefore, sensitivities studies of availability and other types of responses must be 
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performed on accelerator system facilities in order to see the influence of changes in 

components reliability to the reliability of this system, since in the final stage of physical 

building of this complex system the components parameters can be changed due to various 

reasons, as costs, easiness in maintenance, replacement or repairing, the repairing or replacing 

time which can modify the operation time of the whole system, the components life time, etc. 

Apart of that, the specified values are statistically obtained and therefore are not known 

precisely but with some uncertainty bounds. The sensitivities results performed in this chapter 

can be used further for uncertainty studies of the analyzed types of responses for the 

accelerator system using for instance the moments matching technique as is described in Hahn 

and Shapiro [1967]83, Papazoglou and Gyftopoulos [1980]25, Ronen [1988].2 

The IFMIF accelerator system comprises a sequence of acceleration and beam transport 

stages. These stages are presented in more details into IFMIF-CDA final report.75 The main 

subsystems of the accelerator system which assure these stages until the target are presented 

in Fig.4.1.  

 
Figure 4.1 The main subsystems of accelerator system  
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The transient reliability analysis for each of these subsystems is performed before sensitivity 

analysis. A simplified representation of the Fault-Tree for the Accelerator system built based 

on IFMIF-CDA,75 and Piaszczyk,76 is presented in Fig.4.2. The numbered gates with triangle 

shape represent transfer gates which mean that below part of fault tree from this gate is 

developed separately in a different part. This type of gate has been introduced only with 

purpose to simplify the representation. An AND or an OR gate having as predecessor an event 

which contains in description box the multiplication sign x followed by a number means that 

the gate has as predecessors the indicated number of identical events. The subsystems 

behaviors are mutually independent and, therefore, a structural decomposition of the 

accelerator system into subsystems, separate analysis of subsystems, and aggregation of the 

intermediate results to obtain the final solution is possible. A transient availability analysis for 

each subsystem is performed and the stationary solution is compared afterwards with the 

solution given by Piaszczyk [1996]66 to check the results validity. The transient solution is 

graphically represented for each subsystem for a time interval of 168 hours (7 days) between 

two scheduled maintenance operations. The initial state probability vector has been 

considered to be of form [1,0,…,0], i.e. at the initial time the system is starting from the state 

in which all its subsystems/components are perfect operational. Further, during the reliability 

analysis the evolution of this state is studied, i.e. the state in which all 

components/subsystems are operational, since this is the interested state for the IFMIF 

project. 

The input reliability data given as mean time to failure/repair for components and subsystem 

are presented in Table 4.2. In this analysis using the MARKOMAG-S code the complete 

Markov chain is generated and its attached differential equations for each of the above 

subsystems are solved as it has been presented in previous chapters. The results are presented 

from the top towards the base of the fault tree. In general as can be seen from the availability 

graphs, the subsystems availabilities reach the stationary solution at the end of mission time, 

but do exist some cases in which the stationary solution is reached after a longer period of 

time. In these cases the time scale is extended. A comparison with the numerical solution 

given by IFMIF-CDA,75 and Piaszczyck,76 at the end of the seven days mission time gives a 

good agreement and proves that the Markov chain generating algorithm and the assumptions 

that have been made in Section 2.2 are good enough for the purposes of this analysis. The 

numerical solutions after 168 hours given by Piaszczyk76 and those obtained by using the 

method described in Chapter 2 are present in Table 4.3. 
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Figure 4.2 The Fault Tree of IFMIF-Accelerator System Facilities 
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Table 4.2 Mean time to failure/repair and the equivalent failure rates for the subsystems and 

components of accelerator system facilities 

No.crt. Subsystem/component MTTF MTTR λ  µ  

  of Accelerator System Facilities (h) (h) (failures/h) (rep./h) 
1 Injector 156.70 2.20 6.3816E-03 4.5455E-01 
2 Ion Source 160.78 2.07 6.2197E-03 4.8309E-01 
3 RF Antenna 166.00 2.00 6.0241E-03 5.0000E-01 
4 RF Generator 49999.00 1.00 2.0000E-05 1.0000E+00 
5 Extractor 8756.00 4.00 1.1421E-04 2.5000E-01 
6 Gas Supply 23998.00 2.00 4.1670E-05 5.0000E-01 
7 High Voltage Power Supply 99976.00 24.00 1.0002E-05 4.1667E-02 
8 Turbomechanical Vacuum Pump 19996.00 4.00 5.0010E-05 2.5000E-01 
9 Support Structure 4999832.00 168.00 2.0001E-07 5.9524E-03 
10 Low Energy Beam Transport 6680.43 5.49 1.4969E-04 1.8215E-01 
11 Focusing Solenoid #1 499996.00 4.00 2.0000E-06 2.5000E-01 
12 Steering Magnet #1 499996.00 4.00 2.0000E-06 2.5000E-01 
13 Focusing Solenoid #2 499997.00 3.00 2.0000E-06 3.3333E-01 
14 Steering Magnet #2 499992.00 8.00 2.0000E-06 1.2500E-01 
15 Gas Neutralizer 23999.00 1.00 4.1668E-05 1.0000E+00 
16 Magnet Power Supply 499990.00 10.00 2.0000E-06 1.0000E-01 
17 Diagnostics 23988.00 12.00 4.1688E-05 8.3333E-02 
18 LINAC 465.00 19.00 2.1505E-03 5.2632E-02 
19 Radio Frequency Quadrupole 1178.09 10.48 8.4883E-04 9.5420E-02 
20 Cavity 4995000.00 5000.00 2.0020E-07 2.0000E-04 
21 Drive LP&Window Set.  1654.67 12.00 6.0435E-04 8.3333E-02 
22 Drive LP&Window 19988.00 12.00 5.0030E-05 8.3333E-02 
23 Turbomechanical Vacuum Pump Set. 3328.80 4.00 3.0041E-04 2.5000E-01 
24 Turbomechanical Vacuum Pump  19996.00 4.00 5.0010E-05 2.5000E-01 
25 Drift Tube LINAC 792.50 24.58 1.2618E-03 4.0683E-02 
26 Diagnostics Set. 23984.00 16.00 4.1694E-05 6.2500E-02 
27 DTL Tanks 1148.58 16.18 8.7064E-04 6.1805E-02 
28 Tank# 7012.71 16.18 1.4260E-04 6.1805E-02 
29 Ion Vacuum Pump 39996.00 4.00 2.5003E-05 2.5000E-01 
30 DTL Drift Tubes & Quads 4770.31 72.00 2.0963E-04 1.3889E-02 
31 Quadrupole Magnet Set 8901.38 72.00 1.1234E-04 1.3889E-02 
32 Drift Tube Leak Set 10530.72 72.00 9.4960E-05 1.3889E-02 
33 Cooling System 499996.00 4.00 2.0000E-06 2.5000E-01 
34 Radio Frequency System 225.50 9.00 4.4346E-03 1.1111E-01 
35 RFQ RFSys 706.54 9.03 1.4153E-03 1.1074E-01 
36 RF Station# 2146.70 9.00 4.6583E-04 1.1111E-01 
37 RF Tube 9986.00 14.00 1.0014E-04 7.1429E-02 
38 RF Transport 999990.00 10.00 1.0000E-06 1.0000E-01 
39 Circulator 49999.00 1.00 2.0000E-05 1.0000E+00 
40 Global RF Instrumentation & Controls 49998.75 1.00 2.0001E-05 1.0000E+00 
41 DTL RF Sys 346.51 9.03 2.8859E-03 1.1074E-01 
42 RF PA Tube Peripherals 7399.64 5.36 1.3514E-04 1.8657E-01 
43 Local Ph.&Amp. Controls  99963.40 10.00 1.0004E-05 1.0000E-01 
44 Struct. & Cablig 299999.00 10.00 3.3333E-06 1.0000E-01 
45 Low Voltage Power Supply 99990.00 10.00 1.0001E-05 1.0000E-01 
46 Loc Ctrl&Monit 23787.60 10.00 4.2039E-05 1.0000E-01 
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No.crt. Subsystem/component MTTF MTTR λ  µ  

  of Accelerator System Facility (h) (h) (failures/h) (rep./h) 
47 Reflectometer 999990.00 10.00 1.0000E-06 1.0000E-01 
48 Cav. Tuning Controls 99990.00 10.00 1.0001E-05 1.0000E-01 
49 System Controls 99990.00 10.00 1.0001E-05 1.0000E-01 
50 Directional Couplers 999990.00 10.00 1.0000E-06 1.0000E-01 
51 Resonance Controls 99990.00 10.00 1.0001E-05 1.0000E-01 
52 HP RF Tube 27268.63 2.73 3.6672E-05 3.6630E-01 
53 Cooling 19998.00 2.00 5.0005E-05 5.0000E-01 
54 Tube Cavity 9990.00 10.00 1.0010E-04 1.0000E-01 
55 Source & Driver 8169.76 10.24 1.2240E-04 9.7656E-02 
56 2nd Stage Tube 10987.00 13.00 9.1017E-05 7.6923E-02 
57 2nd Stage Tube Cavity 999991.00 9.00 1.0000E-06 1.1111E-01 
58 Solid State Pre-Amp. 49998.00 2.00 2.0001E-05 5.0000E-01 
59 Other SPPT Systems 2999998.00 2.00 3.3333E-07 5.0000E-01 
60 Source 99998.00 2.00 1.0000E-05 5.0000E-01 
61 High Voltage Power Supply 11393.91 9.09 8.7766E-05 1.1001E-01 
62 Crowbar Sys 18167.44 10.00 5.5044E-05 1.0000E-01 
63 Fast Current Limiter 199990.00 10.00 5.0003E-06 1.0000E-01 
64 Electrical DC Switch 199990.00 10.00 5.0003E-06 1.0000E-01 
65 Crowbar 99990.00 10.00 1.0001E-05 1.0000E-01 
66 Current Lim. Reactor 199990.00 10.00 5.0003E-06 1.0000E-01 
67 Volt Monitor 199990.00 10.00 5.0003E-06 1.0000E-01 
68 Input Bushing 199990.00 10.00 5.0003E-06 1.0000E-01 
69 Transp. Prot. 99990.00 10.00 1.0001E-05 1.0000E-01 
70 Output Bushing 199990.00 10.00 5.0003E-06 1.0000E-01 
71 AC Power Distr. 749988.12 10.00 1.3334E-06 1.0000E-01 
72 AC/DC Converter 31904.69 7.45 3.1343E-05 1.3423E-01 
73 Transformers 499990.00 10.00 2.0000E-06 1.0000E-01 
74 Thyristors 499990.00 10.00 2.0000E-06 1.0000E-01 
75 SM Reactors 499990.00 10.00 2.0000E-06 1.0000E-01 
76 DC Capacitors 199990.00 10.00 5.0003E-06 1.0000E-01 
77 Controls 99990.00 10.00 1.0001E-05 1.0000E-01 
78 Support Structure 2999990.00 10.00 3.3333E-07 1.0000E-01 
79 Cooling 99998.00 2.00 1.0000E-05 5.0000E-01 
80 High Energy Beam Transport 224.50 7.70 4.4543E-03 1.2987E-01 
81 Quadrupole Chain 575.71 2.00 1.7370E-03 5.0000E-01 
82 Dipole Chain 8330.48 2.00 1.2004E-04 5.0000E-01 
83 Dipole Assmbly 41664.38 2.00 2.4001E-05 5.0000E-01 
84 Octupole Chain 10413.84 2.00 9.6026E-05 5.0000E-01 
85 Octupole Assembly 41664.38 2.00 2.4001E-05 5.0000E-01 
86 Buncher Cavity Chain 1317.83 8.66 7.5882E-04 1.1547E-01 
87 Buncher Cavity Assembly 13288.58 8.66 7.5253E-05 1.1547E-01 
88 Beam Tube Vacuum Sys. 3318.75 10.00 3.0132E-04 1.0000E-01 
89 Ion Pump Assembly 39990.00 10.00 2.5006E-05 1.0000E-01 
90 BTVS-Hot Room 19940.01 48.00 5.0150E-05 2.0833E-02 
91 Ion Pump Assembly 39952.00 48.00 2.5030E-05 2.0833E-02 
92 Dispersion Cavity Chain -Hot Room 4924.03 48.00 2.0309E-04 2.0833E-02 
93 Dispersion Cavity Assembly 9720.01 48.00 1.0288E-04 2.0833E-02 
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For the 1st level of the fault tree (Fig.4.3) the associated Markov chain is generated completely 

as in Fig.4.4. The system of equations consists in 32 coupled equations. The structure of 

transition rate matrix is shown in Fig.4.5; the sparse matrix has 193 nonzero elements. 

 

 
Figure 4.3 The first level of the Fault-Tree for the Accelerator system 

 

 
Figure 4.4 The Markov chain for the first level of accelerator system 
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Figure 4.5 The transition rate matrix structure for the first level of accelerator system 
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The Figs 4.6 and 4.7 show the transient availabilities for the accelerator systems and its main 

subsystems. It is important to note that at the end of mission time the HEBT’s availability did 

not reach the stationary solution. 
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Figure 4.6 Transient availability of the accelerator system 

 

It can be seen that the 88% availability of the accelerator system for the considered initial 

state probability vector is reached after about 120 hours. But other situations in which due to 

different reasons the system does not start with all its subsystems fully operational may exist. 

For a scenario that at starting point the accelerator system has a probability of 15% failure 

behavior in one or all of its main subsystems, its transient availability changes as in Fig.4.7. 

Considering that the failures causes are discovered and eliminated, one can see that at the end 

of mission time the availability is 88%, due to the fact that the stationary solution which in 

this case is reached at the end of the considered mission time, does not depend on the initial 

conditions. One can see also that the expected availability in the first hours of operation with 

considered failures has various behaviors depending on the affected subsystem. In the failure 

behavior of the injector or all the subsystems case the availability is decreasing and afterwards 

is increasing until the expected value. In such situations based on various scenarios should be 

studied the minimum acceptable availability as such in minimum number of hours the overall 

system to recover and to reach the expected availability of 88%. Special maintenance policies 

for such cases should be considered during operation of this system. 
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Figure 4.6.1 Transient availability for the main subsystems of the accelerator system 
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Further, the transient availability for each subsystem together with the fault tree used to 

generate the Markov chain for transient analysis is presented as follows: 

a) Figs.4.8, and 4.9 for injector system,  

b) Figs.4.10 to 4.12 for linear accelerator system (LINAC),  

c) Figs.4.13 to 4.16 for radio frequency system (RF System),  

d) Figs.4.17 to 4.20 for high energy beam transport system (HEBT). 
 

 
Figure 4.8 The Fault Tree of Injector System 
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Figure 4.9 Transient availability of Injector and its subsystems 
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Figure 4.10 The Fault Tree of LINAC Subsystem 
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Figure 4.11 Transient availability of LINAC and its subsystems 
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Figure 4.12 Transient availability of LINAC subsystems 
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Figure 4.14 Transient availability of RF System and its subsystems 
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Figure 4.13 The Fault Tree of RF System 
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Figure 4.15 Transient availability of RF subsystems (1) 
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Figure 4.16 Transient availability of RF subsystems (2) 
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Figure 4.17 The Fault Tree of HEBT System 
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Figure 4.18 Transient availability of HEBT and its subsystems 
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Figure 4.19 Transient availability of HEBT subsystems (1) 
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One can see from the Table 4.3 that at the end of the seven day mission time the stationary 

distribution where it is available agrees with the stationary solution, this mission time being 

sufficient to obtain the steady-state solution. The steady-state solutions are compared with 

ones given by Piaszczyk76 in which it has been used the quantitative Fault Tree analysis for 

availability evaluation. For the cases in which the stationary solution has not been reached 

after the seven days mission time, it is displayed the availability computed at the end of the 

mission time with the next column stationary solution and the time this solution has been 

reached.  

IFMIF Accelerator System Facilities - Availability (steady-state solution)  
   (Mission Time = 168h)  
Top-Down     
No. Subsystem Ref.[66] MARKOMAG-S   

         

1 Accelerator Sys. 0.8814 0.8809   
2 Injector 0.9866 0.9865   
3 Ion Source 0.9874 0.9869   
4 Low Energy Beam Transport 0.9992 0.9991   
5 LINAC 0.9623 0.9614   
6 Radio Frequency Quadrupole 0.9913 0.9916   
7 Drive LP&Window 0.9928 0.9928   
8 Turbomechanical Vacuum Pump 0.9995 0.9988  
9 Drift Tube LINAC 0.9708 0.9722 0.9708 after 500h 
10 Diagnostics 0.9989 0.9960   
11 DTL Tanks 0.9863 0.9863   
12 Tank# 0.9977 0.9985 0.9976 after 2600h 
13 DTL Drift Tubes & Quads 0.9853 0.9866 0.9853 after 500h 
14 Radio Frequency System 0.963 0.9623   
15 RFQ RFSys 0.9875 0.9875   
16 RF Station# 0.9958 0.9958   
17 DTL RF Sys 0.9752 0.9752   
18 RF Station# 0.9958 0.9958   
19 RF PA Tube Peripherals 0.9993 0.9993   
20 Local Control&Monitor 0.9996 0.9996   
21 HP RF Tube 0.9999 0.9997   
22 Source & Driver 0.9987 0.9987   
23 High Voltage Power Supply 0.9992 0.9992   
24 Crowbar System 0.9995 0.9995   
25 AC Power Distribution 0.9999 0.9999   
26 AC/DC Converter 0.9998 0.9998   
27 High Energy Beam Transport 0.964 0.9643 0.9638 after 300h 
28 Dipole Chain 0.9998 0.9998   
29 Octupole Chain 0.9998 0.9998   
30 Buncher Cavity Chain 0.9935 0.9935   
31 Beam Tube Vacuum System. 0.997 0.9970   
32 BTVS-Hot Room 0.9976 0.9977 0.9976 after 350h 
33 Dispersion Cavity Chain -Hot Room 0.9904 0.9905 0.9902 after 350h 

 

Table 4.3 Steady-state availability of accelerator system and its subsystems 
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Next step in analysis is to perform sensitivity calculations of system’s responses to variations 

in system parameters. The base-case parameters are given in Table 4.2 and the local 

sensitivity analysis is performed for each system and subsystem of accelerator system 

presented before. Two types of responses have been considered in analysis, namely the 

interval and steady-state availability. The importance of parameters for each subsystem and 

component of the accelerator system based on the relative sensitivities taken in their absolute 

value of considered response to perturbations in parameters has been ranked. The relative 

sensitivities have been computed using the following formula,  

0

0

R
R

ji

i j

α
α

∆
∆

                                                           (4.1) 

where 0R i  is the system response for the base case, 1,2i = , 0
predR R Ri∆ = −  is the sensitivity 

of the considered response using ASAP, 0
jα  is the base case system parameter for which is 

analyzed the response sensitivity, 1,...,j k= , with k being the number of parameters, and  

0
j j jα α α∆ = −  is the perturbation into parameter 0

jα . 

 

 

4.1 Sensitivities of the interval availability for IFMIF-Accelerator 
system facilities 

 

 

The first type of response considered in sensitivity analysis is the interval availability as 

defined by Eq.(2.32) and which for this case is of form, 

0
1

1
( )

ft

t
f

R t dt
t

π= �                                                      (4.2) 

This type of response represents the expected fraction of time the accelerator and its 

subsystems are up with all subsystems/components operational in the given interval of time 

0 0, 168ft t h� �= =� � which is the considered mission time of 7 days between two scheduled 

maintenance operations. 

As it has been presented in Chapter 3, for this type of response the source term in the adjoint 

sensitivity system (3.36), or (3.70) is of form [ ]1/ / ,..., / [1,0,...,0]
T T

nF F Fπ π∂ ∂Π = ∂ ∂ ∂ ∂ =  

for all time steps. As in the numerical example given in Section 3.3, because the uncertainties 

in input parameters are not available, the perturbations in these parameters for which the 
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sensitivities have been computed are 0.1%, 1.0%, 5.0%, and 10.0%, respectively from their 

nominal values with the note that the MTTF has been increased with these percentages and the 

MTTR have been decreased as is the trend in practical situations. Into the Tables 4.4 to 4.24, 

for each subsystem of accelerator system facilities, the sensitivities of the interval availability 

(4.2) to variations in system parameters are presented. The sensitivities has been performed 

for comparison purposes using direct recalculations, FSAP, and ASAP, respectively.  

Tables 4.4 and 4.5 display numerical results of the first level of accelerator system for the 

cases in which perturbations in the initial state probability vector, and in system parameters, 

i.e. the failure/repair rates, are considered. For the perturbations in initial conditions the 

methods give exact numerical results. The sensitivities computed at variations in initial 

conditions are used in general for verification purposes of the implemented method. It can be 

seen that the sensitivities of the response decrease with the increasing of time, the trend being 

that for infinity time the sensitivities to variations into the initial probability vector to vanish 

as has been shown in the previous chapter (e.g. Eq.3.66). 

Of practical interest are the sensitivities computed at variations in system’s parameters, i.e. in 

the failure rates of components, which give the impact of changes in their values in affecting 

the system’s response, in this case the interval availability. 

Comparison of the relative sensitivities in Table 4.5 shows that the parameters with largest 

impact in affecting interval availability of accelerator system within their variations are those 

of RF System, namely the failure rate RFSysλ , followed by those of  LINAC, HEBT and 

Injector. The parameter’s variations with the smallest impact in interval availability of 

accelerator system are those of the Cooling system.  

For the perturbations in system’s parameters, in general, the differences in numerical results 

appears with increasing the scale of variation from the base-case value of the considered 

parameter. As it has been explained previous in Section 3.3, it can be seen that for variations 

in 1/MTTF λ=  it is a good agreement between numerical results given by either ASAP or 

FSAP and the sensitivities using recalculation method. Differences appears in general for 

sensitivities at variations in 1/MTTR µ=  larger than 5.0% from the base-case value, but still 

in close agreement.   

The computed sensitivities of the interval availability (4.2) at variations in system’s 

parameters iλ  and iµ  for the subsystems of accelerator systems facilities are displayed as 

follows: 

a) Table 4.6 through 4.8 the sensitivities for the Injector system and its subsystems, 

b) Table 4.9 through 4.13 the sensitivities for Linear Accelerator and its subsystems, 
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c) Table 4.14 through 4.23 the sensitivities for Radio Frequency System, and  

d) Table 4.24 for High Energy Beam Transport System.  

 

For the Injector system and its subsystems the largest sensitivities in absolute value are given 

by the variations in the parameters of Ion Source with RF Antenna, i.e. the variations in RF 

Antenna parameters affect the most the interval availability of Ion Source, which are affecting 

further the interval availability of the Injector. 

For LINAC, the interval availability is the most affected by perturbations in DTL’ s 

parameters. In the case of RF System whose variations in reliability parameters affect the 

most the interval availability of the Accelerator System facilities, the largest impact in its 

interval availability is given by variations in parameters of DTL RF System followed by RFQ 

RF System.  

The complete rank of uncertainty importance of reliability parameters of systems, subsystems, 

and components of IFMIF Accelerator-System Facilities in affecting interval availability 

based on the computed relative sensitivities in absolute value is shown in Fig.4.21.  

 

 

Accelerator System 
 

Table 4.4 Sensitivities to perturbations in initial state probability vector  
 

Perturbation in 
initial conditions 

(linear dependency) 

 
Transient 

Duration (h)/ 
No. of time 

steps 

 
Nominal 
Value 

R0 

Relative 
Sensitivity 

0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

1 / 100 .9920E+00 .1000E+01 -.9919E-03 -.9919E-03 -.9919E-03 
6 / 600 .9645E+00 .9875E+00 -.9525E-03 -.9525E-03 -.9525E-03 

12 / 1200 .9452E+00 .9197E+00 -.8693E-03 -.8693E-03 -.8693E-03 
24 / 2400 .9238E+00 .7281E+00 -.6726E-03 -.6726E-03 -.6726E-03 

-0.1% of 1 0( )tπ  
and 

0.1% of 32 0( )tπ  
168 / 16800 .8882E+00 .1425E+00 -.1266E-03 -.1266E-03 -.1266E-03 

1 / 100 .9920E+00 .1000E+01 -.4960E-01 -.4960E-01 -.4960E-01 
6 / 600 .9645E+00 .9875E+00 -.4762E-01 -.4762E-01 -.4762E-01 

12 / 1200 .9452E+00 .9197E+00 -.4347E-01 -.4347E-01 -.4347E-01 
24 / 2400 .9238E+00 .7281E+00 -.3363E-01 -.3363E-01 -.3363E-01 

-5% of 1 0( )tπ  
and 

5% of 32 0( )tπ  
168 / 16800 .8882E+00 .1425E+00 -.6329E-02 -.6329E-02 -.6329E-02 

1 / 100 .9920E+00 .1000E+01 -.9919E-01 -.9919E-01 -.9919E-01 
6 / 600 .9645E+00 .9875E+00 -.9525E-01 -.9525E-01 -.9525E-01 

12 / 1200 .9452E+00 .9197E+00 -.8693E-01 -.8693E-01 -.8693E-01 
24 / 2400 .9238E+00 .7281E+00 -.6726E-01 -.6726E-01 -.6726E-01 

-10% of 1 0( )tπ  
and 

10% of 32 0( )tπ  
168 / 16800 .8882E+00 .1425E+00 -.1266E-01 -.1266E-01 -.1266E-01 
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Table 4.5 Sensitivities to perturbations in system parameters (tf =168h) 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

 
Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1212E-04 .1212E-04 .1212E-04 
-1% .1212E-03 .1213E-03 .1212E-03 
-5% .6062E-03 .6066E-03 .6062E-03 

 
λ INJECTOR 

-10% 

-.1365E-01 
 
 .1212E-02 .1214E-02 .1212E-02 

0.1% .1195E-04 .1194E-04 .1195E-04 
1% .1195E-03 .1184E-03 .1195E-03 
5% .5976E-03 .5699E-03 .5976E-03 

 
µ INJECTOR 

10% 

.8882E+00 
 
 
 
 

.1346E-01 
 
 .1195E-02 .1089E-02 .1195E-02 

-0.1% .3102E-04 .3102E-04 .3102E-04 
-1% .3102E-03 .3103E-03 .3102E-03 
-5% .1551E-02 .1553E-02 .1551E-02 

 
λ LINAC 

-10% 

-.3492E-01 
 
 .3102E-02 .3112E-02 .3102E-02 

0.1% .2708E-04 .2706E-04 .2708E-04 
1% .2708E-03 .2686E-03 .2708E-03 
5% .1354E-02 .1300E-02 .1354E-02 

 
µ LINAC 

10% 

.8882E+00 
 
 
 
 

.3049E-01 
 
 .2708E-02 .2501E-02 .2708E-02 

-0.1% .6923E-08 .6923E-08 .6923E-08 
-1% .6923E-07 .6923E-07 .6923E-07 
-5% .3461E-06 .3461E-07 .3461E-06 

 
λ COOLING 

-10% 

-.7794E-05 
 
 .6923E-06 .6923E-06 .6923E-06 

0.1% .6744E-08 .6744E-08 .6744E-08 
1% .6744E-07 .6746E-07 .6744E-07 
5% .3372E-06 .3376E-06 .3372E-06 

 
µ COOLING 

10% 

.8882E+00 
 
 
 
 

.7593E-05 
 
 .6744E-06 .6762E-06 .6744E-06 

-0.1% .3226E-04 .3227E-04 .3226E-04 
-1% .3226E-03 .3228E-03 .3226E-03 
-5% .1613E-02 .1616E-02 .1613E-02 

 
λ RFSys 

-10% 

-.3632E-01 
 
 .3226E-02 .3238E-02 .3226E-02 

0.1% .3040E-04 .3041E-04 .3040E-04 
1% .3040E-03 .3043E-03 .3040E-03 
5% .1520E-02 .1454E-02 .1520E-02 

 
µ RFSys 

10% 

.8882E+00 
 
 
 
 

.3423E-01 
 
 .3040E-02 .2788E-02 .3041E-02 

-0.1% .2809E-04 .2809E-04 .2809E-04 
-1% .2809E-03 .2810E-03 .2809E-03 
-5% .1404E-02 .1407E-02 .1404E-02 

 
λ HEBT 

-10% 

-.3162E-01 
 
 .2809E-02 .2818E-02 .2809E-02 

0.1% .2670E-04 .2668E-04 .2671E-04 
1% .2670E-03 .2646E-03 .2671E-03 
5% .1335E-02 .1277E-02 .1335E-02 

 
µ HEBT 

10% 

.8882E+00 
 
 
 
 

.3007E-01 
 
 .2670E-02 .2446E-02 .2671E-02 

 
 
The computed sensitivities can be used further for uncertainty analysis of this type of 

response. For example, assuming that all parameters are uncorrelated, the variance of the 

average availability R1 is given by 2 2

1

var R
k

i i
i

S σ
=

=� , where 2
iσ  is the uncertainty (variance) 

of the parameter iα , and /i iS R α= ∂ ∂  is the response sensitivity to changes in parameter iα .  

Considering the top level of the IFMIF Accelerator-System (Table 4.5) is as follows, 
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1 2 2 1 2 2
1

1 2 2 1 2 2

5 2 2 5 2 2

var ( 0.1365 10 ) (0.1346 10 )

               ( 0.3492 10 ) (0.3049 10 )

               ( 0.7794 10 ) (0.7593 10 )

             

INJECTOR INJECTOR

LINAC LINAC

COOLING COOLING

R λ µ

λ µ

λ µ

σ σ

σ σ

σ σ

− −

− −

− −

= − ⋅ + ⋅ +

− ⋅ + ⋅ +

− ⋅ + ⋅ +
1 2 2 1 2 2

1 2 2 1 2 2

  ( 0.3632 10 ) (0.3423 10 )

               ( 0.3162 10 ) (0.3007 10 )
RFSys RFSys

HEBT HEBT

λ µ

λ µ

σ σ

σ σ

− −

− −

− ⋅ + ⋅ +

− ⋅ + ⋅

 

 

Further, knowing the uncertainties of reliability parameters for all analyzed subsystems such 

uncertainty analyses can be performed. 

This example shows the role of parameter sensitivities and uncertainties in parameters to the 

response uncertainty given by 1var R . Therefore, if the sensitivity iS  and uncertainty 2
iσ  of 

parameter iα  are large, their contribution to response uncertainty is obvious larger to response 

uncertainty than the case in which either sensitivity iS  or uncertainty 2
iσ  is small. One can 

see that all sensitivities contribute to system’ s response uncertainty. 

 
 
INJECTOR 
 

Table 4.6 Sensitivities to perturbations in system parameters (tf =168h) 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

 
Nominal 

Value 
R0 

Rel. Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1239E-04 .1239E-04 .1239E-04 
-1% .1239E-03 .1239E-03 .1239E-03 
-5% .6194E-03 .6198E-03 .6194E-03 

 
λ Ion Source 

-10% 

-.1256E-01 
 
 .1239E-02 .1240E-02 .1239E-02 

0.1% .1223E-04 .1222E-04 .1223E-04 
1% .1223E-03 .1212E-03 .1223E-03 
5% .6117E-03 .5833E-03 .6117E-03 

 
µ Ion Source 

10% 

.9867E+00 
 
 
 
 

.1240E-01 
 
 .1223E-02 .1115E-02 .1223E-02 

-0.1% .7836E-06 .7836E-06 .7836E-06 
-1% .7836E-05 .7836E-05 .7836E-05 
-5% .3918E-04 .3918E-04 .3918E-04 

 
λ LEBT 

-10% 

-.7942E-03 
 
 .7836E-04 .7837E-04 .7836E-04 

0.1% .7571E-06 .7564E-06 .7572E-06 
1% .7571E-05 .7499E-05 .7571E-05 
5% .3786E-04 .3612E-04 .3786E-04 

 
µ LEBT 

10% 

.9867E+00 
 
 
 
 

.7674E-03 
 
 .7571E-04 .6905E-04 .7572E-04 
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Table 4.7 Sensitivities to perturbations in system parameters (tf =168h) 

Ion Source 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1161E-04 .1161E-04 .1161E-04 
-1% .1161E-03 .1161E-03 .1161E-03 
-5% .5806E-03 .5810E-03 .5806E-03 

 
λ RF Ant. 

-10% 

-.1176E-01 
 
 .1161E-02 .1163E-02 .1161E-02 

0.1% .1147E-04 .1146E-04 .1146E-04 
1% .1147E-03 .1136E-03 .1147E-03 
5% .5736E-03 .5469E-03 .5736E-03 

 
µ RF Ant. 

10% 

.9871E+00 
 
 
 
 

.1162E-01 
 
 .1147E-02 .1045E-02 .1147E-02 

-0.1% .1962E-07 .1962E-07 .1962E-07 
-1% .1962E-06 .1962E-06 .1962E-06 
-5% .9812E-06 .9818E-06 .9812E-06 

 
λ RF Gen.  

-10% 

-.1988E-04 
 
 .1962E-05 .1963E-05 .1962E-05 

0.1% .1951E-07 .2010E-07 .1939E-07 
1% .1951E-06 .1938E-06 .1947E-06 
5% .9753E-06 .9292E-06 .9740E-06 

 
µ RF Gen. 

10% 

.9871E+00 
 
 
 
 

.1976E-04 
 
 .1951E-05 .1774E-05 .1949E-05 

-0.1% .4400E-06 .4400E-06 .4400E-06 
-1% .4400E-05 .4400E-05 .4400E-05 
-5% .2200E-04 .2200E-04 .2200E-04 

 
λ Extractor 

-10% 

-.4457E-03 
 
 .4400E-04 .4400E-04 .4400E-04 

0.1% .4292E-06 .4288E-06 .4256E-06 
1% .4292E-05 .4251E-05 .4280E-05 
5% .2146E-04 .2046E-04 .2143E-04 

 
µ Extractor 

10% 

.9871E+00 
 
 
 
 

.4348E-03 
 
 .4292E-04 .3911E-04 .4288E-04 

-0.1% .8127E-07 .8127E-07 .8127E-07 
-1% .8127E-06 .8127E-06 .8127E-06 
-5% .4064E-05 .4064E-05 .4064E-05 

 
λ Gas Supp.  

-10% 

-.8233E-04 
 
 .8127E-05 .8128E-05 .8127E-05 

0.1% .8029E-07 .8021E-07 .7956E-07 
1% .8029E-06 .7957E-06 .8011E-06 
5% .4014E-05 .3825E-05 .4009E-05 

 
µ Gas Supp. 

10% 

.9871E+00 
 
 
 
 

.8134E-04 
 
 .8029E-05 .7307E-05 .8019E-05 

-0.1% .2031E-06 .2031E-06 .2031E-06 
-1% .2031E-05 .2031E-05 .2031E-05 
-5% .1015E-04 .1015E-04 .1015E-04 

 
λ HVPSupp 

-10% 

-.2057E-03 
 
 .2031E-04 .2031E-04 .2031E-04 

0.1% .1695E-06 .1693E-06 .1578E-06 
1% .1695E-05 .1681E-05 .1643E-05 
5% .8474E-05 .8146E-05 .8342E-05 

 
µ HVPSupp 

10% 

.9871E+00 
 
 
 
 

.1717E-03 
 
 .1695E-04 .1568E-04 .1674E-04 

-0.1% .1927E-06 .1927E-06 .1927E-06 
-1% .1927E-05 .1927E-05 .1927E-05 
-5% .9635E-05 .9635E-05 .9635E-05 

 
λ TVP1-2  

-10% 

-.1952E-03 
 
 .1927E-04 .1927E-04 .1927E-04 

0.1% .1880E-06 .1878E-06 .1865E-06 
1% .1880E-05 .1862E-05 .1871E-05 
5% .9400E-05 .8964E-05 .9376E-05 

 
µ TVP1-2 

10% 

.9871E+00 
 
 
 
 

.1904E-03 
 
 .1880E-04 .1713E-04 .1877E-04 

-0.1% .1220E-07 .1220E-07 .1220E-07 
-1% .1220E-06 .1220E-06 .1220E-06 
-5% .6100E-06 .6100E-06 .6100E-06 

 
λ SuppStr  

-10% 

-.1236E-04 
 
 .1220E-05 .1220E-05 .1220E-05 

0.1% .3437E-08 .3436E-08 .1382E-08 
1% .3437E-07 .3429E-07 .2520E-07 
5% .1718E-06 .1699E-06 .1305E-06 

 
µ SuppStr. 

10% 

.9871E+00 
 
 
 
 

.3482E-05 
 
 .3437E-06 .3361E-06 .2757E-06 

 



 91 

 
Table 4.8 Sensitivities to perturbation in system parameters (tf =168h) 

LEBT 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .7803E-08 .7803E-08 .7803E-08 
-1% .7803E-07 .7803E-07 .7803E-07 
-5% .3901E-06 .3901E-06 .3901E-06 

λ #1.Foc.Sol, 

λ #1.Str.Mg 
-10% 

-.7809E-05 
 
 .7803E-06 .7803E-06 .7803E-06 

0.1% .7613E-08 .7803E-08 .7608E-08 
1% .7613E-07 .7539E-07 .7612E-07 
5% .3806E-06 .3629E-06 .3806E-06 

µ #1.Foc.Sol, 
µ #1.Str.Mgn 

10% 

.9992E+00 
 
 
 
 

.7619E-05 
 
 .7613E-06 .6936E-06 .7613E-06 

-0.1% .5888E-08 .5888E-08 .5888E-08 
-1% .5888E-07 .5888E-07 .5888E-07 
-5% .2944E-06 .2944E-06 .2944E-06 

 
λ #2.Foc.Sol 

-10% 

-.5893E-05 
 
 .5888E-06 .5888E-06 .5888E-06 

0.1% .5781E-08 .5775E-08 .5778E-08 
1% .5781E-07 .5725E-07 .5780E-07 
5% .2890E-06 .2755E-06 .2890E-06 

 
µ #2.Foc.Sol 

10% 

9992E+00 
 
 
 
 

.5786E-05 
 
 .5781E-06 .5264E-06 .5781E-06 

-0.1% .1523E-07 .1523E-07 .1523E-07 
-1% .1523E-06 .1523E-06 .1523E-06 
-5% .7613E-06 .7613E-06 .7613E-06 

 
λ #2.StrMgn  

-10% 

-.1524E-04 
 
 .1523E-05 .1523E-05 .1523E-05 

0.1% .1446E-07 .1445E-07 .1445E-07 
1% .1446E-06 .1433E-06 .1446E-06 
5% .7232E-06 .6905E-06 .7231E-06 

 
µ #2.StrMgn. 

10% 

9992E+00 
 
 
 
 

.1448E-04 
 
 .1446E-05 .1321E-05 .1446E-05 

-0.1% .4138E-07 .4138E-07 .4138E-07 
-1% .4138E-06 .4138E-06 .4138E-06 
-5% .2069E-05 .2072E-05 .2069E-05 

 
λ GasNeutr 

-10% 

-.4142E-04 
 
 .4138E-05 .4138E-05 .4138E-05 

0.1% .4114E-07 .4110E-07 .4114E-07 
1% .4114E-06 .4073E-06 .4114E-06 
5% .2057E-05 .1959E-05 .2057E-05 

 
µ GasNeutr 

10% 

9992E+00 
 
 
 
 

.4117E-04 
 
 .4114E-05 .3742E-05 .4114E-05 

-0.1% .1879E-07 .1879E-07 .1879E-07 
-1% .1879E-06 .1879E-06 .1879E-06 
-5% .9397E-06 .9397E-06 .9397E-06 

 
λ PwrSup1-4  

-10% 

-.1881E-04 
 
 .1879E-05 .1879E-05 .1879E-05 

0.1% .1760E-07 .1759E-07 .1759E-07 
1% .1760E-06 .1744E-06 .1760E-06 
5% .8802E-06 .8410E-06 .8801E-06 

 
µ PwrSup1-4 

10% 

9992E+00 
 
 
 
 

.1762E-04 
 
 .1760E-05 .1610E-05 .1760E-05 

-0.1% .4639E-06 .4639E-06 .4639E-06 
-1% .4639E-05 .4639E-05 .4639E-05 
-5% .2320E-04 .2320E-04 .2320E-04 

 
λ Diags 

-10% 

-.4643E-03 
 
 .4639E-04 .4639E-04 .4639E-04 

0.1% .4282E-06 .4278E-06 .4282E-06 
1% .4282E-05 .4243E-05 .4282E-05 
5% .2141E-04 .2047E-04 .2141E-04 

 
µ Diags 

10% 

9992E+00 
 
 
 
 

.4286E-03 
 
 .4282E-04 .3923E-04 .4282E-04 

-0.1% .1951E-06 .1951E-06 .1951E-06 
-1% .1951E-05 .1951E-05 .1951E-05 
-5% .9754E-05 .9754E-05 .9754E-05 

 
λ TVP 

-10% 

-.1952E-03 
 
 .1951E-04 .1951E-04 .1951E-04 

0.1% .1903E-06 .1901E-06 .1903E-06 
1% .1903E-05 .1885E-05 .1903E-05 
5% .9516E-05 .9074E-05 .9516E-05 

 
µ TVP 

10% 

9992E+00 
 
 
 
 

.1905E-03 
 
 .1903E-04 .1734E-04 .1903E-04 
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-0.1% .1235E-07 .1235E-07 .1235E-07 
-1% .1235E-06 .1235E-06 .1235E-06 
-5% .6175E-06 .6175E-06 .6175E-06 

 
λ SuppStr 

-10% 

-.1236E-04 
 
 .1235E-05 .1235E-05 .1235E-05 

0.1% .3479E-08 .3479E-08 .3421E-08 
1% .3479E-07 .3472E-07 .3461E-07 
5% .1740E-06 .1720E-06 .1735E-06 

 
µ SuppStr 

10% 

 
9992E+00 

 
 
 
 

.3482E-05 
 
 .3479E-06 .3402E-06 .3474E-06 

 
 
LINAC 

Table 4.9 Sensitivities to perturbation in system parameters (tf =168h) 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

 
Nominal 

Value 
R0 

Rel. Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .7983E-05 .7983E-05 .7984E-05 
-1% .7983E-04 .7984E-04 .7984E-04 
-5% .3992E-03 .3993E-03 .3992E-03 

 
λ RFQ 

-10% 

-.8263E-02 
 
 .7983E-03 .7990E-03 .7983E-03 

0.1% .7446E-05 .7440E-05 .7442E-05 
1% .7446E-04 .7379E-04 .7446E-04 
5% .3723E-03 .3559E-03 .3723E-03 

 
µ RFQ 

10% 

.9661E+00 
 
 
 
 

.7708E-02 
 
 .7446E-03 .6818E-03 .7446E-03 

-0.1% .2495E-04 .2495E-04 .2495E-04 
-1% .2495E-03 .2496E-03 .2495E-03 
-5% .1248E-02 .1249E-02 .1248E-02 

 
λ DTL 

-10% 

-.2583E-01 
 
 .2495E-02 .2501E-02 .2495E-02 

0.1% .2075E-04 .2073E-04 .2073E-04 
1% .2075E-03 .2058E-03 .2074E-03 
5% .1037E-02 .9981E-03 .1037E-02 

 
µ DTL 

10% 

.9661E+00 
 
 
 
 

.2147E-01 
 
 .2075E-02 .1923E-02 .2075E-02 

 
Table 4.10 Sensitivities to perturbation in system parameters (tf =168h) 

RFQ 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1649E-07 .1649E-07 .1649E-07 
-1% .1649E-06 .1649E-06 .1649E-06 
-5% .8246E-06 .8246E-06 .8246E-06 

 
λ Cavity 

-10% 

-.1662E-04 
 
 .1649E-05 .1649E-05 .1649E-05 

0.1% .1837E-09 .1837E-09 .9556E-10 
1% .1837E-08 .1836E-08 .1216E-08 
5% .9183E-08 .9179E-08 .7023E-08 

 
µ Cavity 

10% 

.9921E+00 
 
 
 
 

.1851E-06 
 
 .1837E-07 .1835E-07 .1481E-07 

-0.1% .6637E-05 .6637E-05 .6637E-05 
-1% .6637E-04 .6637E-04 .6637E-04 
-5% .3318E-03 .3320E-03 .3318E-03 

 
λ Drive LP & 

Window -10% 

-.6690E-02 
 
 .6637E-03 .6641E-03 .6637E-03 

0.1% .6127E-05 .6121E-05 .6114E-05 
1% .6127E-04 .6072E-04 .6123E-04 
5% .3063E-03 .2930E-03 .3063E-03 

 
µ Drive LP & 

Window 10% 

.9921E+00 
 
 
 
 

.6175E-02 
 
 .6127E-03 .5615E-03 .6126E-03 

-0.1% .1162E-05 .1162E-05 .1162E-05 
-1% .1162E-04 .1162E-04 .1162E-04 
-5% .5811E-04 .5812E-04 .5811E-04 

 
λ TMV Pump  

-10% 

-.1172E-02 
 
 .1162E-03 .1162E-03 .1162E-03 

0.1% .1134E-05 .1133E-05 .1132E-05 
1% .1134E-04 .1123E-04 .1133E-04 
5% .5669E-04 .5406E-04 .5668E-04 

 
µ TMV Pump 

10% 

.9921E+00 
 
 
 
 

.1143E-02 
 
 .1134E-03 .1033E-03 .1134E-03 
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-0.1% .1226E-07 .1226E-07 .1231E-07 
-1% .1226E-06 .1226E-06 .1227E-06 
-5% .6129E-06 .6129E-06 .6130E-06 

 
λ SuppStr. 

-10% 

-.1236E-04 
 
 .1226E-05 .1226E-05 .1226E-05 

0.1% .3453E-08 .3452E-08 .2386E-08 
1% .3453E-07 .3445E-07 .3009E-07 
5% .1727E-06 .1707E-06 .1609E-06 

 
µ SuppStr 

10% 

.9921E+00 
 
 
 
 

.3481E-05 
 
 .3453E-06 .3377E-06 .3286E-06 

 
 

Table 4.11 Sensitivities to perturbation in system parameters (tf =168h) 
DTL 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .8949E-05 .8949E-05 .8954E-05 
-1% .8949E-04 .8949E-04 .8952E-04 
-5% .4474E-03 .4476E-03 .4475E-03 

 
λ DTQ 

-10% 

-.9180E-02 
 
 .8949E-03 .8956E-03 .8950E-03 

0.1% .4724E-05 .4721E-05 .4639E-05 
1% .4724E-04 .4702E-04 .4693E-04 
5% .2362E-03 .2310E-03 .2355E-03 

 
µ DTQ 

10% 

.9748E+00 
 
 
 
 

.4845E-02 
 
 .4724E-03 .4519E-03 .4712E-03 

-0.1% .1225E-04 .1225E-04 .1225E-04 
-1% .1225E-03 .1225E-03 .1225E-03 
-5% .6123E-03 .6127E-03 .6124E-03 

 
λ DTL TSys 

-10% 

-.1256E-01 
 
 .1225E-02 .1226E-02 .1225E-02 

0.1% .1094E-04 .1093E-04 .1089E-04 
1% .1094E-03 .1084E-03 .1093E-03 
5% .5469E-03 .5241E-03 .5466E-03 

 
µ DTL TSys 

10% 

.9748E+00 
 
 
 
 

.1122E-01 
 
 .1094E-02 .1006E-02 .1093E-02 

-0.1% .5872E-06 .5872E-06 .5878E-06 
-1% .5872E-05 .5872E-05 .5874E-05 
-5% .2936E-04 .2936E-04 .2937E-04 

 
λ Diags1-6 

-10% 

-.6024E-03 
 
 .5872E-04 .5872E-04 .5874E-04 

0.1% .5249E-06 .5244E-06 .5157E-06 
1% .5249E-05 .5203E-05 .5215E-05 
5% .2625E-04 .2514E-04 .2615E-04 

 
µ Diags1-6 

10% 

.9748E+00 
 
 
 
 

.5384E-03 
 
 .5249E-04 .4823E-04 .5240E-04 

 
Table 4.12 Sensitivities to perturbation in system parameters (tf =168h) 

DTQ 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .4892E-05 .4892E-05 .4893E-05 
-1% .4892E-04 .4892E-04 .4893E-04 
-5% .2446E-03 .2447E-03 .2446E-03 

 
λ QMSys 

-10% 

-.4937E-02 
 
 .4892E-03 .4894E-03 .4892E-03 

0.1% .2580E-05 .2578E-05 .2572E-05 
1% .2580E-04 .2568E-04 .2577E-04 
5% .1290E-03 .1261E-03 .1289E-03 

 
µ QMSys 

10% 

.9909E+00 
 
 
 
 

.2603E-02 
 
 .2580E-03 .2468E-03 .2579E-03 

-0.1% .4137E-05 .4137E-05 .4138E-05 
-1% .4137E-04 .4137E-04 .4137E-04 
-5% .2069E-03 .2069E-03 .2069E-03 

 
λ DTLSys 

-10% 

-.4175E-02 
 
 .4137E-03 .4139E-03 .4137E-03 

0.1% .2181E-05 .2180E-05 .2175E-05 
1% .2181E-04 .2171E-04 .2179E-04 
5% .1090E-03 .1066E-03 .1090E-03 

 
µ DTLSys 

10% 

.9909E+00 
 
 
 
 

.2201E-02 
 
 .2181E-03 .2086E-03 .2180E-03 
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Table 4.13 Sensitivities to perturbation in system parameters (tf =168h) 

Tank# 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1661E-07 .1661E-07 .1661E-07 
-1% .1661E-06 .1661E-06 .1661E-06 
-5% .8303E-06 .8303E-06 .8303E-06 

 
λ Cavity 

-10% 

-.1663E-04 
 
 .1661E-05 .1661E-05 .1661E-05 

0.1% .1850E-09 .1850E-09 .7815E-10 
1% .1850E-08 .1849E-08 .5809E-09 
5% .9248E-08 .9244E-08 .6226E-08 

 
µ Cavity 

10% 

.9987E+00 
 
 
 
 

.1852E-06 
 
 .1850E-07 .1848E-07 .1312E-07 

-0.1% .5564E-06 .5564E-06 .5567E-06 
-1% .5564E-05 .5564E-05 .5564E-05 
-5% .2782E-04 .2782E-04 .2782E-04 

 
λ Drv LP & 

Window1-2 -10% 

-.5572E-03 
 
 .5564E-04 .5564E-04 .5564E-04 

0.1% .5136E-06 .5131E-06 .5080E-06 
1% .5136E-05 .5089E-05 .5115E-05 
5% .2568E-04 .2455E-04 .2563E-04 

 
µ Drv LP & 

Window1-2 10% 

.9987E+00 
 
 
 
 

.5143E-03 
 
 .5136E-04 .4705E-04 .5130E-04 

-0.1% .9749E-07 .9749E-07 .9744E-07 
-1% .9749E-06 .9748E-06 .9749E-06 
-5% .4874E-05 .4874E-05 .4874E-05 

 
λ Ion Vac 

Pump 1-2 -10% 

-.9762E-04 
 
 .9749E-05 .9749E-05 .9749E-05 

0.1% .9511E-07 .9501E-07 .9444E-07 
1% .9511E-06 .9420E-06 .9486E-06 
5% .4755E-05 .4534E-05 .4749E-05 

 
µ Ion Vac 

Pump 1-2 10% 

.9987E+00 
 
 
 
 

.9523E-04 
 
 .9511E-05 .8666E-05 .9502E-05 

-0.1% .1234E-07 .1234E-07 .1252E-07 
-1% .1234E-06 .1234E-06 .1241E-06 
-5% .6172E-06 .6172E-06 .6178E-06 

 
λ Support 

Structure. -10% 

-.1236E-04 
 
 .1234E-05 .1234E-05 .1235E-05 

0.1% .3477E-08 .3477E-08 .2533E-08 
1% .3477E-07 .3470E-07 .2757E-07 
5% .1739E-06 .1719E-06 .1525E-06 

 
µ Support 

Structure 10% 

.9987E+00 
 
 
 
 

 
.3482E-05 

 
 .3477E-06 .3400E-06 .3179E-06 

 
 
RF System 

Table 4.14 Sensitivities to perturbation in system parameters (tf =168h) 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1152E-04 .1152E-04 .1152E-04 
-1% .1152E-03 .1152E-03 .1152E-03 
-5% .5758E-03 .5761E-03 .5758E-03 

 
λ RFQ RF Sys 

-10% 

-.1194E-01 
 
 .1152E-02 .1153E-02 .1152E-02 

0.1% .1086E-04 .1085E-04 .1084E-04 
1% .1086E-03 .1076E-03 .1085E-03 
5% .5429E-03 .5188E-03 .5428E-03 

 
µ RFQ RF Sys 

10% 

.9643E+00 
 
 
 
 

.1126E-01 
 
 .1086E-02 .9936E-03 .1086E-02 

-0.1% .1917E-07 .1917E-07 .1919E-07 
-1% .1917E-06 .1916E-06 .1917E-06 
-5% .9583E-06 .9583E-06 .9585E-06 

 
λ RF 

Inst&Ctrl -10% 

-.1988E-04 
 
 .1917E-05 .1917E-05 .1917E-05 

0.1% .1905E-07 .1903E-07 .1902E-07 
1% .1905E-06 .1886E-06 .1903E-06 
5% .9524E-06 .9073E-06 .9522E-06 

 
µ RF 

Inst&Ctrl 10% 

.9643E+00 
 
 
 
 

.1975E-04 
 
 .1905E-05 .1733E-05 .1904E-05 
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-0.1% .2320E-04 .2320E-04 .2321E-04 
-1% .2320E-03 .2321E-03 .2320E-03 
-5% .1160E-02 .1161E-02 .1160E-02 

 
λ DTL RF Sys 

-10% 

-.2406E-01 
 
 .2320E-02 .2326E-02 .2320E-02 

0.1% .2188E-04 .2186E-04 .2186E-04 
1% .2188E-03 .2168E-03 .2188E-03 
5% .1094E-02 .1046E-02 .1094E-02 

 
µ DTL RF Sys 

10% 

.9643E+00 
 
 
 
 

.2269E-01 
 
 .2188E-02 .2004E-02 .2188E-02 

 
 

Table 4.15 Sensitivities to perturbation in system parameters (tf =168h) 
RF Station 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1278E-05 .1278E-05 .1279E-05 
-1% .1278E-04 .1278E-04 .1278E-04 
-5% .6392E-04 .6392E-04 .6392E-04 

 
λ RF Tube 

-10% 

-.1283E-02 
 
 .1278E-03 .1279E-03 .1278E-03 

0.1% .1162E-05 .1161E-05 .1147E-05 
1% .1162E-04 .1152E-04 .1157E-04 
5% .5811E-04 .5561E-04 .5801E-04 

 
µ RF Tube 

10% 

.9961E+00 
 
 
 
 

.1167E-02 
 
 .1162E-03 .1066E-03 .1160E-03 

-0.1% .6980E-06 .6980E-06 .6980E-06 
-1% .6980E-05 .6980E-05 .6980E-05 
-5% .3490E-04 .3490E-04 .3490E-04 

 
λ RF 

Transport -10% 

-.7007E-03 
 
 .6980E-04 .6980E-04 .6980E-04 

0.1% .6749E-06 .6743E-06 .6706E-06 
1% .6749E-05 .6685E-05 .6734E-05 
5% .3375E-04 .3219E-04 .3371E-04 

 
µ RF 

Transport 10% 

.9961E+00 
 
 
 
 

.6776E-03 
 
 .6749E-04 .6155E-04 .6744E-04 

-0.1% .1171E-05 .1171E-05 .1171E-05 
-1% .1171E-04 .1171E-04 .1171E-04 
-5% .5855E-04 .5855E-04 .5855E-04 

 
λ Circulator 

-10% 

-.1176E-02 
 
 .1171E-03 .1171E-03 .1171E-03 

0.1% .1095E-05 .1094E-05 .1085E-05 
1% .1095E-04 .1085E-04 .1091E-04 
5% .5474E-04 .5231E-04 .5466E-04 

 
µ Circulator 

10% 

.9961E+00 
 
 
 
 

.1099E-02 
 
 .1095E-03 .1002E-03 .1094E-03 

-0.1% .9367E-08 .9367E-08 .9515E-08 
-1% .9367E-07 .9367E-07 .9371E-07 
-5% .4683E-06 .4683E-06 .4683E-06 

 
λ Tube 

Peripherals -10% 

-.9404E-05 
 
 .9367E-06 .9367E-06 .9368E-06 

0.1% .8773E-08 .8765E-08 .8261E-08 
1% .8773E-07 .8692E-07 .8624E-07 
5% .4387E-06 .4191E-06 .4325E-06 

 
µ Tube 

Peripherals 10% 

.9961E+00 
 
 
 
 

.8808E-05 
 
 .8773E-06 .8025E-06 .8682E-06 

-0.1% .1980E-07 .1980E-07 .1980E-07 
-1% .1980E-06 .1980E-06 .1980E-06 
-5% .9901E-06 .9901E-06 .9901E-06 

 
λ Source 

&Drv -10% 

-.1988E-04 
 
 .1980E-05 .1980E-05 .1980E-05 

0.1% .1968E-07 .1966E-07 .1962E-07 
1% .1968E-06 .1949E-06 .1966E-06 
5% .9842E-06 .9376E-06 .9835E-06 

 
µ Source 

&Drv 10% 

.9961E+00 
 
 
 
 

.1976E-04 
 
 .1968E-05 .1790E-05 .1967E-05 

-0.1% .7510E-06 .7510E-06 .7512E-06 
-1% .7510E-05 .7510E-05 .7511E-05 
-5% .3755E-04 .3755E-04 .3755E-04 

 
λ HV Pwr 

Suppl -10% 

-.7540E-03 
 
 .7510E-04 .7511E-04 .7510E-04 

0.1% .7080E-06 .7074E-06 .7019E-06 
1% .7080E-05 .7014E-05 .7051E-05 
5% .3540E-04 .3381E-04 .3534E-04 

 
µ HV Pwr 

Suppl 10% 

.9961E+00 
 
 
 
 

.7108E-03 
 
 .7080E-04 .6473E-04 .7072E-04 
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Table 4.16 Sensitivities to perturbation in system parameters (tf =168h) 
RF PA Tube Peripherals 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .3949E-06 .3949E-06 .3950E-06 
-1% .3949E-05 .3949E-05 .3949E-05 
-5% .1975E-04 .1975E-04 .1975E-04 

 
λ LC&Monit 

-10% 

-.3952E-03 
 
 .3949E-04 .3950E-04 .3949E-04 

0.1% .3699E-06 .3696E-06 .3666E-06 
1% .3699E-05 .3665E-05 .3686E-05 
5% .1850E-04 .1767E-04 .1847E-04 

 
µ LC&Monit 

10% 

.9993E+00 
 
 
 
 

.3702E-03 
 
 .3699E-04 .3384E-04 .3695E-04 

-0.1% .9401E-07 .9401E-07 .9398E-07 
-1% .9401E-06 .9401E-06 .9402E-06 
-5% .4700E-05 .4700E-05 .4700E-05 

 
λ LP&AC 

-10% 

-.9407E-04 
 
 .9401E-05 .9401E-05 .9401E-05 

0.1% .8806E-07 .8798E-07 .8649E-07 
1% .8806E-06 .8724E-06 .8742E-06 
5% .4403E-05 .4207E-05 .4388E-05 

 
µ LP&AC 

10% 

.9993E+00 
 
 
 
 

.8812E-04 
 
 .8806E-05 .8054E-05 .8784E-05 

-0.1% .9841E-07 .9841E-07 .9840E-07 
-1% .9841E-06 .9841E-06 .9841E-06 
-5% .4921E-05 .4920E-05 .4921E-05 

 
λ HP RF Tube 

-10% 

-.9848E-04 
 
 .9841E-05 .9841E-05 .9841E-05 

0.1% .9678E-07 .9669E-07 .9641E-07 
1% .9678E-06 .9584E-06 .9665E-06 
5% .4839E-05 .4612E-05 .4835E-05 

 
µ HP RF Tube 

10% 

.9993E+00 
 
 
 
 

.9685E-04 
 
 .9678E-05 .8812E-05 .9672E-05 

-0.1% .3133E-08 .3133E-08 .3183E-08 
-1% .3133E-07 .3133E-07 .3136E-07 
-5% .1566E-06 .1566E-06 .1566E-06 

 
λ Struct&Cabl 

-10% 

-.3135E-05 
 
 .3133E-06 .3133E-06 .3134E-06 

0.1% .2934E-08 .2932E-08 .2751E-08 
1% .2934E-07 .2908E-07 .2887E-07 
5% .1467E-06 .1402E-06 .1448E-06 

 
µ Struct&Cabl 

10% 

.9993E+00 
 
 
 
 

.2936E-05 
 
 .2934E-06 .2684E-06 .2905E-06 

-0.1% .9398E-07 .9398E-07 .9395E-07 
-1% .9398E-06 .9398E-06 .9399E-06 
-5% .4699E-05 .4699E-05 .4699E-05 

 
λ LV Pwr 

Supply -10% 

-.9405E-04 
 
 .9398E-05 .9398E-05 .9398E-05 

0.1% .8803E-07 .8795E-07 .8650E-07 
1% .8803E-06 .8722E-06 .8741E-06 
5% .4402E-05 .4206E-05 .4389E-05 

 
µ LV Pwr 

Supply 10% 

.9993E+00 
 
 
 
 

.8809E-04 
 
 .8803E-05 .8052E-05 .8783E-05 

 
Table 4.17 Sensitivities to perturbation in system parameters (tf =168h) 

Loc Ctrl & Monit 
 

Param. 

iα  

Perturb. 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .9401E-08 .9401E-08 .9503E-08 
-1% .9401E-07 .9401E-07 .9396E-07 
-5% .4700E-06 .4700E-06 .4702E-06 

λ Reflectometer, 

λ Directional 

Couplers. -10% 

-.9405E-05 
 
 .9401E-06 .9401E-06 .9401E-06 

0.1% .8806E-08 .8798E-08 .8542E-08 
1% .8806E-07 .8725E-07 .8644E-07 
5% .4403E-06 .4207E-06 .4361E-06 

µ Reflectometer, 

µ Directional 

Couplers 10% 

.9996E+00 
 
 
 
 

.8809E-05 
 
 .8806E-06 .8055E-06 .8745E-06 
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-0.1% .9401E-07 .9401E-07 .9396E-07 
-1% .9401E-06 .9401E-06 .9401E-06 
-5% .4701E-05 .4701E-05 .4701E-05 

λ Cav Tunn Ctrl 

λ Syst Ctrls 1-2 

λ Resonance Ctrl -10% 

-.9405E-04 
 
 .9401E-05 .9401E-05 .9401E-05 

0.1% .8806E-07 .8798E-07 .8652E-07 
1% .8806E-06 .8725E-06 .8745E-06 
5% .4403E-05 .4207E-05 .4388E-05 

µ Cav Tunn Ctrl 

µ Syst Ctrls 1-2 

µ Resonance Ctrl 10% 

.9996E+00 
 
 
 
 

.8809E-04 
 
 .8806E-05 .8055E-05 .8786E-05 

 
 

Table 4.18 Sensitivities to perturbation in system parameters (tf =168h) 
HP RF Tube 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .9878E-07 .9878E-07 .9878E-07 
-1% .9878E-06 .9878E-06 .9878E-06 
-5% .4939E-05 .4939E-05 .4939E-05 

 
λ Cooler1-2  

-10% 

-.9881E-04 
 
 .9878E-05 .9878E-05 .9878E-05 

0.1% .9759E-07 .9749E-07 .9740E-07 
1% .9759E-06 .9664E-06 .9751E-06 
5% .4880E-05 .4650E-05 .4878E-05 

 
µ Cooler1-2 

10% 

.9997E+00 
 
 
 
 

.9762E-04 
 
 .9759E-05 .8882E-05 .9755E-05 

-0.1% .9402E-07 .9402E-07 .9405E-07 
-1% .9402E-06 .9402E-06 .9403E-06 
-5% .4701E-05 .4701E-05 .4701E-05 

 
λ Tube Cavity 

-10% 

-.9405E-04 
 
 .9402E-05 .9402E-05 .9402E-05 

0.1% .8807E-07 .8799E-07 .8683E-07 
1% .8807E-06 .8726E-06 .8751E-06 
5% .4403E-05 .4207E-05 .4391E-05 

 
µ Tube Cavity 

10% 

.9997E+00 
 
 
 
 

.8810E-04 
 
 .8807E-05 .8056E-05 .8789E-05 

 
Table 4.19 Perturbation in system’s parameters (tf =168h) 

Source & Driver 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1089E-05 .1089E-05 .1090E-05 
-1% .1089E-04 .1089E-04 .1089E-04 
-5% .5446E-04 .5446E-04 .5446E-04 

λ 2nd Stage 

Tube 
-10% 

-.1090E-02 
 
 .1089E-03 .1089E-03 .1089E-03 

0.1% .9979E-06 .9969E-06 .9853E-06 
1% .9979E-05 .9889E-05 .9941E-05 
5% .4989E-04 .4773E-04 .4981E-04 

µ 2nd Stage 

Tube 
10% 

.9988E+00 
 
 
 
 

.9990E-03 
 
 .9979E-04 .9148E-04 .9965E-04 

-0.1% .8508E-08 .8508E-08 .8610E-08 
-1% .8508E-07 .8508E-07 .8503E-07 
-5% .4254E-06 .4254E-06 .4255E-06 

λ 2nd St Tube 

Cavity 
-10% 

-.8518E-05 
 
 .8508E-06 .8508E-06 .8510E-06 

0.1% .8026E-08 .8019E-08 .7671E-08 
1% .8026E-07 .7952E-07 .7917E-07 
5% .4013E-06 .3833E-06 .3973E-06 

µ 2nd St Tube 

Cavity 
10% 

.9988E+00 
 
 
 
 

.8035E-05 
 
 .8026E-06 .7336E-06 .7955E-06 

-0.1% .3948E-07 .3948E-07 .3950E-07 
-1% .3948E-06 .3947E-06 .3948E-06 
-5% .1974E-05 .1974E-05 .1974E-05 

λ Solid State 

Pre-Amp 
-10% 

-.3952E-04 
 
 .3948E-05 .3948E-05 .3948E-05 

0.1% .3900E-07 .3897E-07 .3885E-07 
1% .3900E-06 .3864E-06 .3892E-06 
5% .1950E-05 .1859E-05 .1948E-05 

µ Solid State 

Pre-Amp 
10% 

.9988E+00 
 
 
 
 

.3905E-04 
 
 .3900E-05 .3550E-05 .3896E-05 
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-0.1% .6580E-09 .6579E-09 .6638E-09 
-1% .6580E-08 .6579E-08 .6581E-08 
-5% .3290E-07 .3290E-07 .3291E-07 

 
λ SPPT Sys. 

-10% 

-.6587E-06 
 
 .6580E-07 .6579E-07 .6583E-07 

0.1% .6500E-09 .6516E-09 .6207E-09 
1% .6500E-08 .6439E-08 .6462E-08 
5% .3250E-07 .3098E-07 .3237E-07 

 
µ SPPT Sys. 

10% 

.9988E+00 
 
 
 
 

.6508E-06 
 
 .6500E-07 .5926E-07 .6477E-07 

-0.1% .1974E-07 .1974E-07 .1977E-07 
-1% .1974E-06 .1973E-06 .1974E-06 
-5% .9869E-06 .9869E-06 .9870E-06 

 
λ Source 

-10% 

-.1976E-04 
 
 .1974E-05 .1974E-05 .1974E-05 

0.1% .1950E-07 .1949E-07 .1933E-07 
1% .1950E-06 .1931E-06 .1945E-06 
5% .9750E-06 .9291E-06 .9736E-06 

 
µ Source 

10% 

.9988E+00 
 
 
 
 

.1952E-04 
 
 .1950E-05 .1775E-05 .1948E-05 

 
 
 

Table 4.20 Sensitivities to perturbation in system parameters (tf =168h) 
HV Power Supply 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .5170E-06 .5170E-06 .5171E-06 
-1% .5170E-05 .5170E-05 .5170E-05 
-5% .2585E-04 .2585E-04 .2585E-04 

 
λ Crowbar 

System -10% 

-.5174E-03 
 
 .5170E-04 .5170E-04 .5170E-04 

0.1% .4843E-06 .4838E-06 .4820E-06 
1% .4843E-05 .4798E-05 .4836E-05 
5% .2421E-04 .2314E-04 .2420E-04 

 
µ Crowbar 

System 10% 

.9992E+00 
 
 
 
 

.4847E-03 
 
 .4843E-04 .4430E-04 .4841E-04 

-0.1% .1253E-07 .1253E-07 .1252E-07 
-1% .1253E-06 .1253E-06 .1253E-06 
-5% .6265E-06 .6265E-06 .6265E-06 

 
λ AC Pwr 

Distrib -10% 

-.1254E-04 
 
 .1253E-05 .1253E-05 .1253E-05 

0.1% .1174E-07 .1173E-07 .1155E-07 
1% .1174E-06 .1163E-06 .1164E-06 
5% .5868E-06 .5607E-06 .5845E-06 

 
µ �AC Pwr 

Distrib 10% 

.9992E+00 
 
 
 
 

.1175E-04 
 
 .1174E-05 .1074E-05 .1171E-05 

-0.1% .2229E-06 .2229E-06 .2230E-06 
-1% .2229E-05 .2229E-05 .2229E-05 
-5% .1115E-04 .1115E-04 .1115E-04 

 
λ AC/DC 

Converter -10% 

-.2231E-03 
 
 .2229E-04 .2229E-04 .2229E-04 

0.1% .2126E-06 .2124E-06 .2116E-06 
1% .2126E-05 .2106E-05 .2123E-05 
5% .1063E-04 .1015E-04 .1062E-04 

 
µ AC/DC 

Converter 10% 

.9992E+00 
 
 
 
 

.2127E-03 
 
 .2126E-04 .1941E-04 .2125E-04 
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Table 4.21 Sensitivities to perturbation in system parameters (tf =168h) 
Crowbar System 

 
Param. 

iα  

Perturb. 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .4700E-07 .4700E-07 .4700E-07 
-1% .4700E-06 .4700E-06 .4700E-06 
-5% .2350E-05 .2350E-05 .2350E-05 

λ Fast Curr. Limit 

λ Elec DC Switch 

λ Curr Lim. React. -10% 

-.4702E-04 
 
 .4700E-05 .4700E-05 .4700E-05 

0.1% .4403E-07 .4399E-07 .4402E-07 
1% .4403E-06 .4362E-06 .4403E-06 
5% .2201E-05 .2103E-05 .2201E-05 

µ Fast Curr. Limir 

µ Elec. DC Switch 

µ Curr Lim. React. 10% 

.9995E+00 
 
 
 
 

.4405E-04 
 
 .4403E-05 .4027E-05 .4403E-05 

-0.1% .9400E-07 .9400E-07 .9400E-07 
-1% .9400E-06 .9400E-06 .9400E-06 
-5% .4700E-05 .4700E-05 .4700E-05 

λ Crowbar 

λ Transp. Prot. 
-10% 

-.9405E-04 
 
 .9400E-05 .9400E-05 .9400E-05 

0.1% .8805E-07 .8797E-07 .8805E-07 
1% .8805E-06 .8724E-06 .8805E-06 
5% .4403E-05 .4207E-05 .4403E-05 

µ Crowbar 

µ Transp. Prot. 
10% 

.9995E+00 
 
 
 
 

.8809E-04 
 
 .8805E-05 .8054E-05 .8805E-05 

-0.1% .4700E-07 .4700E-07 .4700E-07 
-1% .4700E-06 .4700E-06 .4700E-06 
-5% .2350E-05 .2350E-05 .2350E-05 

λ Volt Monitor 

λ Input Bushing 

λ Output Bushing -10% 

-.4702E-04 
 
 .4700E-05 .4700E-05 .4700E-05 

0.1% .4403E-07 .4399E-07 .4402E-07 
1% .4403E-06 .4362E-06 .4403E-06 
5% .2201E-05 .2103E-05 .2201E-05 

µ Volt Monitor 

µ Input Bushing 

µ Output Bushing 10% 

.9995E+00 
 
 
 
 

.4405E-04 
 
 .4403E-05 .4027E-05 .4403E-05 

 
 

Table 4.22 Sensitivities to perturbation in system parameters (tf =168h) 
AC Power Distribut. 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .3135E-08 .3142E-08 .3136E-08 
-1% .3135E-07 .3135E-07 .3136E-07 
-5% .1567E-06 .1567E-06 .1568E-06 

 
λ Bus Lines 

-10% 

-.3135E-05 
 
 .3135E-06 .3135E-06 .3135E-06 

0.1% .2936E-08 .2940E-08 .2890E-08 
1% .2936E-07 .2903E-07 .2906E-07 
5% .1468E-06 .1403E-06 .1460E-06 

 
µ Bus Lines 

10% 

9.99987E-1 
 
 
 
 

.2936E-05 
 
 .2936E-06 .2686E-06 .2924E-06 

-0.1% .9405E-08 .9411E-08 .9403E-08 
-1% .9405E-07 .9400E-07 .9406E-07 
-5% .4702E-06 .4702E-06 .4702E-06 

 
λ SPPT 

Structure -10% 

-.9405E-05 
 
 .9405E-06 .9404E-06 .9405E-06 

0.1% .8809E-08 .8807E-08 .8659E-08 
1% .8809E-07 .8725E-07 .8757E-07 
5% .4405E-06 .4208E-06 .4391E-06 

 
µ SPPT 

Structure 10% 

9.99987E-1 
 
 
 
 

.8810E-05 
 
 .8809E-06 .8057E-06 .8790E-06 
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Table 4.23 Sensitivities to perturbation in system parameters (tf =168h) 

AC-DC Converter 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1881E-07 .1881E-07 .1892E-07 
-1% .1881E-06 .1881E-06 .1879E-06 
-5% .9403E-06 .9403E-06 .9406E-06 

λ Transf. 

λ Thyrist. 

λ SM React -10% 

-.1881E-04 
 
 .1881E-05 .1880E-05 .1881E-05 

0.1% .1762E-07 .1760E-07 .1701E-07 
1% .1762E-06 .1745E-06 .1731E-06 
5% .8808E-06 .8415E-06 .8708E-06 

µ Transf.. 

µ Thyrist. 

µ SM React 10% 

9.9978E-01 
 
 
 
 

.1762E-04 
 
 .1762E-05 .1611E-05 .1747E-05 

-0.1% .4701E-07 .4702E-07 .4721E-07 
-1% .4701E-06 .4702E-06 .4701E-06 
-5% .2351E-05 .2350E-05 .2351E-05 

 
λ DC Cap.  

-10% 

-.4702E-04 
 
 .4701E-05 .4701E-05 .4701E-05 

0.1% .4404E-07 .4400E-07 .4282E-07 
1% .4404E-06 .4363E-06 .4342E-06 
5% .2202E-05 .2104E-05 .2185E-05 

 
µ DC Cap. 

10% 

9.9978E-01 
 
 
 
 

.4405E-04 
 
 .4404E-05 .4028E-05 .4379E-05 

-0.1% .9403E-07 .9404E-07 .9407E-07 
-1% .9403E-06 .9403E-06 .9407E-06 
-5% .4701E-05 .4701E-05 .4701E-05 

 
λ Controls 

-10% 

-.9405E-04 
 
 .9403E-05 .9402E-05 .9403E-05 

0.1% .8808E-07 .8800E-07 .8669E-07 
1% .8808E-06 .8727E-06 .8715E-06 
5% .4404E-05 .4207E-05 .4380E-05 

 
µ Controls 

10% 

9.9978E-01 
 
 
 
 

.8810E-04 
 
 .8808E-05 .8056E-05 .8773E-05 

-0.1% .3134E-08 .3134E-08 .3179E-08 
-1% .3134E-07 .3134E-07 .3157E-07 
-5% .1567E-06 .1567E-06 .1567E-06 

 
λ SPPT Str.  

-10% 

-.3135E-05 
 
 .3134E-06 .3134E-06 .3132E-06 

0.1% .2936E-08 .2935E-08 .2465E-08 
1% .2936E-07 .2910E-07 .2850E-07 
5% .1468E-06 .1403E-06 .1444E-06 

 
µ SPPT Str. 

10% 

9.9978E-01 
 
 
 
 

.2936E-05 
 
 .2936E-06 .2682E-06 .2890E-06 

-0.1% .1976E-07 .1976E-07 .1978E-07 
-1% .1976E-06 .1976E-06 .1976E-06 
-5% .9879E-06 .9881E-06 .9880E-06 

 
λ Cooling 

-10% 

-.1976E-04 
 
 .1976E-05 .1976E-05 .1976E-05 

0.1% .1952E-07 .1952E-07 .1943E-07 
1% .1952E-06 .1929E-06 .1947E-06 
5% .9760E-06 .9306E-06 .9745E-06 

 
µ Cooling 

10% 

9.9978E-01 
 
 
 
 

.1952E-04 
 
 .1952E-05 .1776E-05 .1949E-05 

 
HEBT 

Table 4.24 Sensitivities to perturbation in system parameters (tf =168h) 
 

Param. 

iα  

Perturb. 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .3313E-05 .3313E-05 .3313E-05 
-1% .3313E-04 .3313E-04 .3313E-04 
-5% .1657E-03 .1657E-03 .1657E-03 

 
λ QuadCh 

-10% 

-.3420E-02 
 
  .3313E-03 .3314E-03 .3313E-03 

0.1% .3272E-05 .3269E-05 .3273E-05 
1% .3272E-04 .3241E-04 .3273E-04 
5% .1636E-03 .1559E-03 .1636E-03 

 
µ QuadCh 

10% 

.9688E+00 
 
 
 
 

.3378E-02 
 
  .3272E-03 .2979E-03 .3273E-03 
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-0.1% .2297E-06 .2297E-06 .2297E-06 
-1% .2297E-05 .2297E-05 .2297E-05 
-5% .1149E-04 .1149E-04 .1149E-04 

 
λ DipoleCh  

-10% 

-.2371E-03 
 
  .2297E-04 .2297E-04 .2297E-04 

0.1% .2269E-06 .2266E-06 .2269E-06 
1% .2269E-05 .2247E-05 .2269E-05 
5% .1134E-04 .1081E-04 .1134E-04 

 
µ DipoleCh. 

10% 

.9688E+00 
 
 
 
 

.2342E-03 
 
  .2269E-04 .2065E-04 .2269E-04 

-0.1% .1838E-06 .1838E-06 .1838E-06 
-1% .1838E-05 .1838E-05 .1838E-05 
-5% .9188E-05 .9188E-05 .9188E-05 

 
λ OctupCh 

-10% 

-.1897E-03 
  
 .1838E-04 .1838E-04 .1838E-04 

0.1% .1815E-06 .1813E-06 .1815E-06 
1% .1815E-05 .1797E-05 .1815E-05 
5% .9075E-05 .8648E-05 .9075E-05 

 
µ OctupCh 

10% 

.9688E+00 
 
 
 
 

.1873E-03 
 
 .1815E-04 .1652E-04 .1815E-04 

-0.1% .5996E-05 .5996E-05 .5996E-05 
-1% .5996E-04 .5997E-04 .5996E-04 
-5% .2998E-03 .2999E-03 .2998E-03 

 
λ BuncherCh 

-10% 

-.6189E-02 
 
 .5996E-03 .6000E-03 .5996E-03 

0.1% .5667E-05 .5662E-05 .5668E-05 
1% .5667E-04 .5615E-04 .5668E-04 
5% .2834E-03 .2707E-03 .2834E-03 

 
µ BuncherCh 

10% 

.9688E+00 
 
 
 
 

.5850E-02 
 
 .5667E-03 .5182E-03 .5668E-03 

-0.1% .3837E-05 .3837E-05 .3837E-05 
-1% .3837E-04 .3837E-04 .3837E-04 
-5% .1919E-03 .1919E-03 .1919E-03 

λ BunchRFPwr 

λ DispCav RFPowSup 
-10% 

-.3961E-02 
 
 .3837E-03 .3839E-03 .3837E-03 

0.1% .3617E-05 .3614E-05 .3617E-05 
1% .3617E-04 .3584E-04 .3617E-04 
5% .1809E-03 .1728E-03 .1809E-03 

µ BunchRFPwr 

µ DispCav RFPowSup 
10% 

.9688E+00 
 
 
 
 

.3734E-02 
 
 .3617E-03 .3308E-03 .3617E-03 

-0.1% .2735E-05 .2735E-05 .2735E-05 
-1% .2735E-04 .2735E-04 .2735E-04 
-5% .1368E-03 .1368E-03 .1368E-03 

 
λ BTVSys 

-10% 

-.2823E-02 
 
 .2735E-03 .2736E-03 .2735E-03 

0.1% .2560E-05 .2558E-05 .2560E-05 
1% .2560E-04 .2537E-04 .2560E-04 
5% .1280E-03 .1223E-03 .1280E-03 

 
µ BTVSys 

10% 

.9688E+00 
 
 
 
 

.2643E-02 
 
 .2560E-03 .2343E-03 .2560E-03 

-0.1% .2016E-05 .2016E-05 .2016E-05 
-1% .2016E-04 .2016E-04 .2016E-04 
-5% .1008E-03 .1008E-03 .1008E-03 

 
λ Dipole As HR 

-10% 

-.2081E-02 
 
 .2016E-03 .2017E-03 .2016E-03 

0.1% .1327E-05 .1326E-05 .1327E-05 
1% .1327E-04 .1319E-04 .1327E-04 
5% .6636E-04 .6445E-04 .6636E-04 

 
µ Dipole As HR  

10% 

.9688E+00 
 
 
 
 

.1370E-02 
 
 .1327E-03 .1253E-03 .1327E-03 

-0.1% .1680E-05 .1680E-05 .1680E-05 
-1% .1680E-04 .1680E-04 .1680E-04 
-5% .8401E-04 .8402E-04 .8401E-04 

 
λ BTVSys HR 

-10% 

-.1734E-02 
 
 .1680E-03 .1681E-03 .1680E-03 

0.1% .1106E-05 .1105E-05 .1106E-05 
1% .1106E-04 .1099E-04 .1106E-04 
5% .5529E-04 .5370E-04 .5529E-04 

 
µ BTVSys HR 

10% 

.9688E+00 
 
 
 
 

.1141E-02 
 
 .1106E-03 .1044E-03 .1106E-03 

-0.1% .6779E-05 .6779E-05 .6779E-05 
-1% .6779E-04 .6780E-04 .6779E-04 
-5% .3390E-03 .3391E-03 .3390E-03 

 
λ Disp Cav Ch 

-10% 

-.6997E-02 
 
 .6779E-03 .6784E-03 .6779E-03 

0.1% .4468E-05 .4465E-05 .4467E-05 
1% .4468E-04 .4441E-04 .4468E-04 
5% .2234E-03 .2170E-03 .2234E-03 

 
µ Disp Cav Ch 

10% 

.9688E+00 
 
 
 
 

.4612E-02 
 
 .4468E-03 .4217E-03 .4468E-03 
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Figure 4.21 Components importance for IFMIF Accelerator System Facilities based on the 

sensitivities of interval availability to variations in input parameters MTTF \ MTTR 
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4.2 Sensitivities of the steady-state availability for IFMIF-Accelerator 
system facilities 

 

The second type of response for which sensitivity studies of IFMIF Accelerator System 

Facilities have been performed is steady-state availability. Noting that for the most cases the 

considered mission time of seven days is enough that the stationary solution to be reached, the 

following defined type of response is similarly to the steady-state availability.  

0
1( ) ( )ft

ft
R t t t dtπ δ= −�                                                   (4.3) 

where δ  represents the Dirac-delta functional. Considering the same mission time of seven 

days, i.e. 168ft = hours, with the initial time 0 0t = , performing the integration and taking in 

account the properties of delta function, the response becomes 

1( 168 )fR t hπ= =  

This type of responses has been computed before during the reliability phase and the 

numerical results have been presented in Table 4.3, and represents the considered response in 

IFMIF-CDA study.75,76 

Replacing the source term in adjoint sensitivity equations (3.36) for this type of response, the 

source term will be [ ]1/ / ,..., / [1,0,...,0]
T T

nF F Fπ π∂ ∂Π = ∂ ∂ ∂ ∂ =  at the end of mission time, 

i.e. at 168ft = hours, and [ ]1/ / ,..., / [0,0,...,0]
T T

nF F Fπ π∂ ∂Π = ∂ ∂ ∂ ∂ =  for the rest of the 

time steps. 

The sensitivities studies for all systems and subsystems for this type of response are displayed 

as previous case as follows: 

a) Table 4.25 and 4.26 for the top level of Accelerator system, 

b) Table 4.27 through 4.29 the sensitivities for the Injector system and its subsystems, 

c) Table 4.30 through 4.34 the sensitivities for Linear Accelerator and its subsystems, 

d) Table 4.35 through 4.44 the sensitivities for Radio Frequency System, and  

e) Table 4.45 for High Energy Beam Transport System.  

For the top level of accelerator system for the steady-state availability, one can see better the 

trend of vanishing of the sensitivities at variation in initial conditions presented in Table 4.25. 

For this type of response it can be seen in general that for the same component the same 

variation in either failure or repair rate give the same effect in system response of type (4.3).  

The components parameters importance ranking based on the sensitivities of steady-state 

availability (4.3) in absolute value is presented in Fig.4.22. It can be seen by comparison with 
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the component importance performed for the interval availability presented in the previous 

section that if on subsystems the importance ranking is in general the same, the overall 

importance has been changed. As one can see from the Table 4.26, and Figs.4.21 and 4.22, if 

for the first type of response the rank of parameter’s importance was RF System, LINAC, 

HEBT, INJECTOR, and COOLING system, respectively, in this case LINAC and RF System 

changed the places, and therefore their subsystems and components as well. Thus, the 

reliability components which have the larger impact in affecting the steady-state availability 

of accelerator system facilities are those of LINAC followed by those of RF System. 

Here can be highlighted another aspect of this analysis, namely that the components 

parameters importance can be different for different type of responses, and the different type 

of responses can behave different to the same variations in system parameters.  

 

In closing, it must be mentioned that for designing of a stable reliable system, the system 

should contain components and subsystems with such characteristics that their perturbed 

parameters do not have to change significant the components priority from a type of response 

to another. If that is not possible, priority should have the importance given by the reliability 

measure of most interest for the considered system. 

 

 

Accelerator System 
 

Table 4.25 Sensitivities to perturbation in initial conditions  
 

Perturbation in 
initial conditions 

(linear dependency) 

 
Transient 

Duration (h)/ 
No. of time 

steps 

 
Nominal 
Value 

R0 

Relative 
Sensitivity 

0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

1 / 100 .9845E+00 .1000E+01 -.9845E-03 -.9845E-03 -.9845E-03 
6 / 600 .9399E+00 .9473E+00 -.8903E-03 -.8902E-03 -.8902E-03 

12 / 1200 .9148E+00 .7366E+00 -.6738E-03 -.6736E-03 -.6736E-03 
24 / 2400 .8940E+00 .3529E+00 -.3155E-03 -.3154E-03 -.3154E-03 

-0.1% of 1 0( )tπ  
and 

0.1% of 32 0( )tπ  
168 / 16800 .8809E+00 .1048E-03 -.9235E-07 -.9233E-07 -.9233E-07 

1 / 100 .9845E+00 .1000E+01 -.4923E-01 -.4922E-01 -.4922E-01 
6 / 600 .9399E+00 .9473E+00 -.4452E-01 -.4451E-01 -.4451E-01 

12 / 1200 .9148E+00 .7366E+00 -.3369E-01 -.3368E-01 -.3368E-01 
24 / 2400 .8940E+00 .3529E+00 -.1577E-01 -.1577E-01 -.1577E-01 

-5% of 1 0( )tπ  
and 

5% of 32 0( )tπ  
168 / 16800 .8809E+00 .1048E-03 -.4618E-05 -.4616E-05 -.4616E-05 

1 / 100 .9845E+00 .1000E+01 -.9845E-01 -.9845E-01 -.9845E-01 
6 / 600 .9399E+00 .9473E+00 -.8903E-01 -.8902E-01 -.8902E-01 

12 / 1200 .9148E+00 .7366E+00 -.6738E-01 -.6736E-01 -.6736E-01 
24 / 2400 .8940E+00 .3529E+00 -.3155E-01 -.3154E-01 -.3154E-01 

-10% of 1 0( )tπ  
and 

10% of 32 0( )tπ  
168 / 16800 .8809E+00 .1048E-03 -.9235E-05 -.9233E-05 -.9233E-05 
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Table 4.26 Sensitivities to perturbation in system parameters (tf =168h) 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

 
Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1221E-04 .1220E-04 .1220E-04 
-1% .1221E-03 .1220E-03 .1220E-03 
-5% .6103E-03 .6102E-03 .6098E-03 

 
λ INJECTOR 

-10% 

-.1386E-01 
 
 .1221E-02 .1221E-02 .1220E-02 

0.1% .1221E-04 .1218E-04 .1220E-04 
1% .1221E-03 .1208E-03 .1220E-03 
5% .6103E-03 .5811E-03 .6098E-03 

 
µ INJECTOR 

10% 

.8809E+00 
 
 
 
 

.1386E-01 
 
 .1221E-02 .1110E-02 .1220E-02 

-0.1% .3458E-04 .3458E-04 .3458E-04 
-1% .3458E-03 .3459E-03 .3458E-03 
-5% .1729E-02 .1732E-02 .1729E-02 

 
λ LINAC 

-10% 

-.3926E-01 
 
 .3458E-02 .3471E-02 .3458E-02 

0.1% .3455E-04 .3451E-04 .3454E-04 
1% .3455E-03 .3422E-03 .3454E-03 
5% .1727E-02 .1648E-02 .1727E-02 

 
µ LINAC 

10% 

.8809E+00 
 
 
 
 

.3922E-01 
 
 .3455E-02 .3153E-02 .3454E-02 

-0.1% .7050E-08 .7047E-08 .7048E-08 
-1% .7050E-07 .7047E-07 .7047E-07 
-5% .3525E-06 .3523E-06 .3523E-06 

 
λ COOLING 

-10% 

-.8003E-05 
 
 .7050E-06 .7047E-06 .7047E-06 

0.1% .7050E-08 .7025E-08 .7046E-08 
1% .7050E-07 .6998E-07 .7046E-07 
5% .3525E-06 .3356E-06 .3523E-06 

 
µ COOLING 

10% 

.8809E+00 
 
 
 
 

.8003E-05 
 
 .7050E-06 .6407E-06 .7047E-06 

-0.1% .3381E-04 .3381E-04 .3381E-04 
-1% .3381E-03 .3382E-03 .3381E-03 
-5% .1691E-02 .1694E-02 .1690E-02 

 
λ RFSys 

-10% 

-.3839E-01 
 
 .3381E-02 .3394E-02 .3381E-02 

0.1% .3381E-04 .3377E-04 .3381E-04 
1% .3381E-03 .3349E-03 .3381E-03 
5% .1691E-02 .1613E-02 .1690E-02 

 
µ RFSys 

10% 

.8809E+00 
 
 
 
 

.3839E-01 
 
 .3381E-02 .3084E-02 .3381E-02 

-0.1% .2922E-04 .2921E-04 .2921E-04 
-1% .2922E-03 .2922E-03 .2921E-03 
-5% .1461E-02 .1463E-02 .1461E-02 

 
λ HEBT 

-10% 

-.3317E-01 
 
 .2922E-02 .2931E-02 .2921E-02 

0.1% .2922E-04 .2918E-04 .2921E-04 
1% .2922E-03 .2893E-03 .2921E-03 
5% .1461E-02 .1393E-02 .1461E-02 

 
µ HEBT 

10% 

.8809E+00 
 
 
 
 

.3317E-01 
 
 .2922E-02 .2664E-02 .2921E-02 
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INJECTOR 
 

Table 4.27 Sensitivities to perturbation in system parameters (tf =168h) 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

 
Nominal 

Value 
R0 

Rel. Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1255E-04 .1254E-04 .1254E-04 
-1% .1255E-03 .1254E-03 .1254E-03 
-5% .6275E-03 .6274E-03 .6270E-03 

 
λ Ion Source 

-10% 

-.1272E-01 
 
 .1255E-02 .1256E-02 .1254E-02 

0.1% .1255E-04 .1253E-04 .1254E-04 
1% .1255E-03 .1242E-03 .1254E-03 
5% .6275E-03 .5975E-03 .6270E-03 

 
µ Ion Source 

10% 

.9865E+00 
 
 
 
 

.1272E-01 
 
 .1255E-02 .1141E-02 .1254E-02 

-0.1% .8103E-06 .8100E-06 .8100E-06 
-1% .8103E-05 .8100E-05 .8100E-05 
-5% .4051E-04 .4050E-04 .4050E-04 

 
λ LEBT 

-10% 

-.8214E-03 
 
 .8103E-04 .8101E-04 .8100E-04 

0.1% .8103E-06 .8092E-06 .8100E-06 
1% .8103E-05 .8020E-05 .8100E-05 
5% .4051E-04 .3857E-04 .4050E-04 

 
µ LEBT 

10% 

.9865E+00 
 
 
 
 

.8214E-03 
 
 .8103E-04 .7364E-04 .8100E-04 

 
 

Table 4.28 Sensitivities to perturbation in system parameters (tf =168h) 
Ion Source 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1176E-04 .1175E-04 .1175E-04 
-1% .1176E-03 .1175E-03 .1175E-03 
-5% .5879E-03 .5878E-03 .5874E-03 

 
λ RF Ant. 

-10% 

-.1192E-01 
 
 .1176E-02 .1176E-02 .1175E-02 

0.1% .1176E-04 .1174E-04 .1175E-04 
1% .1176E-03 .1163E-03 .1175E-03 
5% .5879E-03 .5598E-03 .5874E-03 

 
µ RF Ant. 

10% 

.9869E+00 
 
 
 
 

.1192E-01 
 
 .1176E-02 .1069E-02 .1175E-02 

-0.1% .1977E-07 .1974E-07 .1974E-07 
-1% .1977E-06 .1974E-06 .1974E-06 
-5% .9886E-06 .9899E-06 .9869E-06 

 
λ RF Gen.  

-10% 

-.2003E-04 
 
 .1977E-05 .1977E-05 .1974E-05 

0.1% .1977E-07 .1972E-07 .1974E-07 
1% .1977E-06 .1982E-06 .1974E-06 
5% .9886E-06 .9443E-06 .9869E-06 

 
µ RF Gen. 

10% 

.9869E+00 
 
 
 
 

.2003E-04 
 
 .1977E-05 .1798E-05 .1974E-05 

-0.1% .4508E-06 .4506E-06 .4506E-06 
-1% .4508E-05 .4506E-05 .4506E-05 
-5% .2254E-04 .2253E-04 .2253E-04 

 
λ Extractor 

-10% 

-.4568E-03 
 
 .4508E-04 .4507E-04 .4506E-04 

0.1% .4508E-06 .4502E-06 .4506E-06 
1% .4508E-05 .4462E-05 .4507E-05 
5% .2254E-04 .2146E-04 .2253E-04 

 
µ Extractor 

10% 

.9869E+00 
 
 
 
 

.4568E-03 
 
 .4508E-04 .4097E-04 .4506E-04 

-0.1% .8231E-07 .8224E-07 .8220E-07 
-1% .8231E-06 .8224E-06 .8224E-06 
-5% .4116E-05 .4112E-05 .4112E-05 

 
λ Gas Supp.  

-10% 

-.8340E-04 
 
 .8231E-05 .8227E-05 .8224E-05 

0.1% .8231E-07 .8216E-07 .8223E-07 
1% .8231E-06 .8170E-06 .8224E-06 
5% .4116E-05 .3924E-05 .4112E-05 

 
µ Gas Supp. 

10% 

.9869E+00 
 
 
 
 

.8340E-04 
 
 .8231E-05 .7478E-05 .8224E-05 
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-0.1% .2367E-06 .2366E-06 .2363E-06 
-1% .2367E-05 .2366E-05 .2369E-05 
-5% .1183E-04 .1183E-04 .1183E-04 

 
λ HVPSupp 

-10% 

-.2398E-03 
 
 .2367E-04 .2366E-04 .2367E-04 

0.1% .2351E-06 .2349E-06 .2347E-06 
1% .2351E-05 .2329E-05 .2348E-05 
5% .1176E-04 .1121E-04 .1173E-04 

 
µ HVPSupp 

10% 

.9869E+00 
 
 
 
 

.2383E-03 
 
 .2351E-04 .2142E-04 .2349E-04 

-0.1% .1975E-06 .1974E-06 .1974E-06 
-1% .1975E-05 .1974E-05 .1974E-05 
-5% .9873E-05 .9869E-05 .9869E-05 

 
λ TVP1-2  

-10% 

-.2001E-03 
 
 .1975E-04 .1974E-04 .1974E-04 

0.1% .1975E-06 .1972E-06 .1974E-06 
1% .1975E-05 .1954E-05 .1974E-05 
5% .9873E-05 .9402E-05 .9869E-05 

 
µ TVP1-2 

10% 

.9869E+00 
 
 
 
 

.2001E-03 
 
 .1975E-04 .1796E-04 .1974E-04 

-0.1% .2096E-07 .2096E-07 .2059E-07 
-1% .2096E-06 .2096E-06 .2092E-06 
-5% .1048E-05 .1048E-05 .1052E-05 

 
λ SuppStr  

-10% 

-.2124E-04 
 
 .2096E-05 .2096E-05 .2101E-05 

0.1% .8762E-08 .8760E-08 .4110E-08 
1% .8762E-07 .8736E-07 .6549E-07 
5% .4381E-06 .4315E-06 .3639E-06 

 
µ SuppStr. 

10% 

.9869E+00 
 
 
 
 

.8879E-05 
 
 .8762E-06 .8502E-06 .7572E-06 

 
 

Table 4.29 Sensitivities to perturbation in system parameters (tf =168h) 
LEBT 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .8027E-08 .7993E-08 .7993E-08 
-1% .8027E-07 .7993E-07 .7993E-07 
-5% .4013E-06 .3996E-06 .3996E-06 

λ #1.Foc.Sol, 

λ #1.Str.Mg 
-10% 

-.8034E-05 
 
 .8027E-06 .7993E-06 .7993E-06 

0.1% .8027E-08 .7985E-08 .7993E-08 
1% .8027E-07 .7914E-07 .7993E-07 
5% .4013E-06 .3806E-06 .3996E-06 

µ #1.Foc.Sol, 
µ #1.Str.Mgn 

10% 

.9991E+00 
 
 
 
 

.8034E-05 
 
 .8027E-06 .7266E-06 .7993E-06 

-0.1% .6029E-08 .5995E-08 .5995E-08 
-1% .6029E-07 .5995E-07 .5995E-07 
-5% .3014E-06 .2997E-06 .2997E-06 

 
λ #2.Foc.Sol 

-10% 

-.6034E-05 
 
 .6029E-06 .5995E-06 .5995E-06 

0.1% .6029E-08 .5989E-08 .5995E-08 
1% .6029E-07 .5935E-07 .5995E-07 
5% .3014E-06 .2855E-06 .2997E-06 

 
µ #2.Foc.Sol 

10% 

.9991E+00 
 
 
 
 

.6034E-05 
 
 .6029E-06 .5450E-06 .5995E-06 

-0.1% .1602E-07 .1599E-07 .1599E-07 
-1% .1602E-06 .1599E-06 .1599E-06 
-5% .8010E-06 .7993E-06 .7993E-06 

 
λ #2.StrMgn  

-10% 

-.1603E-04 
 
 .1602E-05 .1599E-05 .1599E-05 

0.1% .1602E-07 .1597E-07 .1599E-07 
1% .1602E-06 .1583E-06 .1599E-06 
5% .8010E-06 .7612E-06 .7993E-06 

 
µ #2.StrMgn. 

10% 

.9991E+00 
 
 
 
 

.1603E-04 
 
 .1602E-05 .1453E-05 .1599E-05 

-0.1% .4234E-07 .4163E-07 .4163E-07 
-1% .4234E-06 .4163E-06 .4163E-06 
-5% .2117E-05 .2082E-05 .2081E-05 

 
λ GasNeutr 

-10% 

-.4238E-04 
 
 .4234E-05 .4163E-05 .4163E-05 

0.1% .4234E-07 .4159E-07 .4163E-07 
1% .4234E-06 .4122E-06 .4163E-06 
5% .2117E-05 .1982E-05 .2081E-05 

 
µ GasNeutr 

10% 

.9991E+00 
 
 
 
 

.4238E-04 
 
 .4234E-05 .3785E-05 .4163E-05 
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-0.1% .2002E-07 .1998E-07 .1998E-07 
-1% .2002E-06 .1998E-06 .1998E-06 
-5% .1001E-05 .9991E-06 .9991E-06 

 
λ PwrSup1-4  

-10% 

-.2003E-04 
 
 .2002E-05 .1998E-05 .1998E-05 

0.1% .2002E-07 .1996E-07 .1998E-07 
1% .2002E-06 .1978E-06 .1998E-06 
5% .1001E-05 .9515E-06 .9991E-06 

 
µ PwrSup1-4 

10% 

.9991E+00 
 
 
 
 

.2003E-04 
 
 .2002E-05 .1817E-05 .1998E-05 

-0.1% .5003E-06 .4996E-06 .4996E-06 
-1% .5003E-05 .4996E-05 .4996E-05 
-5% .2501E-04 .2498E-04 .2498E-04 

 
λ Diags 

-10% 

-.5007E-03 
 
 .5003E-04 .4996E-04 .4996E-04 

0.1% .5003E-06 .4991E-06 .4996E-06 
1% .5003E-05 .4946E-05 .4996E-05 
5% .2501E-04 .2379E-04 .2498E-04 

 
µ Diags 

10% 

.9991E+00 
 
 
 
 

.5007E-03 
 
 .5003E-04 .4542E-04 .4996E-04 

-0.1% .2007E-06 .1998E-06 .1998E-06 
-1% .2007E-05 .1998E-05 .1998E-05 
-5% .1003E-04 .9991E-05 .9991E-05 

 
λ TVP 

-10% 

-.2009E-03 
 
 .2007E-04 .1998E-04 .1998E-04 

0.1% .2007E-06 .1996E-06 .1998E-06 
1% .2007E-05 .1978E-05 .1998E-05 
5% .1003E-04 .9516E-05 .9991E-05 

 
µ TVP 

10% 

.9991E+00 
 
 
 
 

.2009E-03 
 
 .2007E-04 .1817E-04 .1998E-04 

-0.1% .2122E-07 .2122E-07 .2122E-07 
-1% .2122E-06 .2122E-06 .2122E-06 
-5% .1061E-05 .1061E-05 .1061E-05 

 
λ SuppStr 

-10% 

-.2124E-04 
 
 .2122E-05 .2122E-05 .2122E-05 

0.1% .8869E-08 .8868E-08 .8785E-08 
1% .8869E-07 .8844E-07 .8844E-07 
5% .4435E-06 .4369E-06 .4433E-06 

 
µ SuppStr 

10% 

.9991E+00 
 
 
 
 

.8877E-05 
 
 .8869E-06 .8608E-06 .8870E-06 

 
 
 
LINAC 
 

Table 4.30 Sensitivities to perturbation in system parameters (tf =168h) 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

 
Nominal 

Value 
R0 

Rel. Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .8478E-05 .8477E-05 .8477E-05 
-1% .8478E-04 .8478E-04 .8477E-04 
-5% .4239E-03 .4240E-03 .4238E-03 

 
λ RFQ 

-10% 

-.8819E-02 
 
 .8478E-03 .8484E-03 .8477E-03 

0.1% .8478E-05 .8468E-05 .8477E-05 
1% .8478E-04 .8394E-04 .8477E-04 
5% .4239E-03 .4038E-03 .4238E-03 

 
µ RFQ 

10% 

.9614E+00 
 
 
 
 

.8819E-02 
 
 .8478E-03 .7712E-03 .8477E-03 

-0.1% .2890E-04 .2890E-04 .2890E-04 
-1% .2890E-03 .2891E-03 .2890E-03 
-5% .1445E-02 .1447E-02 .1445E-02 

 
λ DTL 

-10% 

-.3006E-01 
 
 .2890E-02 .2899E-02 .2890E-02 

0.1% .2872E-04 .2869E-04 .2871E-04 
1% .2872E-03 .2845E-03 .2872E-03 
5% .1436E-02 .1371E-02 .1436E-02 

 
µ DTL 

10% 

.9614E+00 
 
 
 
 

.2987E-01 
 
 .2872E-02 .2622E-02 .2872E-02 
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Table 4.31 Sensitivities to perturbation in system parameters (tf =168h) 
RFQ 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .3279E-07 .3280E-07 .3280E-07 
-1% .3279E-06 .3280E-06 .3280E-06 
-5% .1640E-05 .1640E-05 .1640E-05 

 
λ Cavity 

-10% 

-.3307E-04 
 
 .3279E-05 .3280E-05 .3280E-05 

0.1% .5479E-09 .5479E-09 .3474E-09 
1% .5479E-08 .5478E-08 .3771E-08 
5% .2739E-07 .2738E-07 .2287E-07 

 
µ Cavity 

10% 

.9916E+00 
 
 
 
 

.5525E-06 
 
 .5479E-07 .5473E-07 .4669E-07 

-0.1% .7140E-05 .7139E-05 .7139E-05 
-1% .7140E-04 .7140E-04 .7139E-04 
-5% .3570E-03 .3571E-03 .3570E-03 

 
λ Drive LP & 

Window -10% 

-.7201E-02 
 
 .7140E-03 .7144E-03 .7139E-03 

0.1% .7140E-05 .7132E-05 .7139E-05 
1% .7140E-04 .7069E-04 .7139E-04 
5% .3570E-03 .3401E-03 .3570E-03 

 
µ Drive LP & 

Window 10% 

.9916E+00 
 
 
 
 

.7201E-02 
 
 .7140E-03 .6494E-03 .7139E-03 

-0.1% .1191E-05 .1190E-05 .1190E-05 
-1% .1191E-04 .1190E-04 .1190E-04 
-5% .5953E-04 .5951E-04 .5950E-04 

 
λ TMV Pump  

-10% 

-.1201E-02 
 
 .1191E-03 .1190E-03 .1190E-03 

0.1% .1191E-05 .1189E-05 .1190E-05 
1% .1191E-04 .1178E-04 .1190E-04 
5% .5953E-04 .5667E-04 .5950E-04 

 
µ TMV Pump 

10% 

.9916E+00 
 
 
 
 

.1201E-02 
 
 .1191E-03 .1082E-03 .1190E-03 

-0.1% .2106E-07 .2106E-07 .2114E-07 
-1% .2106E-06 .2106E-06 .2108E-06 
-5% .1053E-05 .1053E-05 .1053E-05 

 
λ SuppStr. 

-10% 

-.2124E-04 
 
 .2106E-05 .2106E-05 .2106E-05 

0.1% .8804E-08 .8801E-08 .6969E-08 
1% .8804E-07 .8777E-07 .8015E-07 
5% .4402E-06 .4336E-06 .4193E-06 

 
µ SuppStr 

10% 

.9916E+00 
 
 
 
 

.8879E-05 
 
 .8804E-06 .8542E-06 .8507E-06 

 
 
 

Table 4.32 Sensitivities to perturbation in system parameters (tf =168h) 
DTL 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1309E-04 .1309E-04 .1309E-04 
-1% .1309E-03 .1309E-03 .1309E-03 
-5% .6544E-03 .6548E-03 .6545E-03 

 
λ DTQ 

-10% 

-.1351E-01 
 

 .1309E-02 .1310E-02 .1309E-02 
0.1% .9850E-05 .9844E-05 .9743E-05 
1% .9850E-04 .9790E-04 .9818E-04 
5% .4925E-03 .4779E-03 .4917E-03 

 
µ DTQ 

10% 

.9722E+00 
 
 
 
 

.1017E-01 
 
 .9850E-03 .9280E-03 .9839E-03 

-0.1% .1346E-04 .1346E-04 .1346E-04 
-1% .1346E-03 .1346E-03 .1346E-03 
-5% .6730E-03 .6734E-03 .6730E-03 

 
λ DTL TSys 

-10% 

-.1389E-01 
 
 .1346E-02 .1348E-02 .1346E-02 

0.1% .1346E-04 .1344E-04 .1346E-04 
1% .1346E-03 .1332E-03 .1346E-03 
5% .6729E-03 .6412E-03 .6728E-03 

 
µ DTL TSys 

10% 

9722E+00 
 
 
 
 

.1389E-01 
 
 .1346E-02 .1225E-02 .1346E-02 
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-0.1% .6460E-06 .6459E-06 .6461E-06 
-1% .6460E-05 .6459E-05 .6461E-05 
-5% .3230E-04 .3230E-04 .3230E-04 

 
λ Diags1-6 

-10% 

-.6667E-03 
 
 .6460E-04 .6460E-04 .6460E-04 

0.1% .6458E-06 .6451E-06 .6456E-06 
1% .6458E-05 .6394E-05 .6458E-05 
5% .3229E-04 .3075E-04 .3229E-04 

 
µ Diags1-6 

10% 

9722E+00 
 
 
 
 

.6665E-03 
 
 .6458E-04 .5871E-04 .6458E-04 

 
 

Table 4.33 Sensitivities to perturbation in system parameters (tf =168h) 
DTQ 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .7172E-05 .7172E-05 .7173E-05 
-1% .7172E-04 .7172E-04 .7172E-04 
-5% .3586E-03 .3587E-03 .3586E-03 

 
λ QMSys 

-10% 

-.7269E-02 
 
 .7172E-03 .7176E-03 .7172E-03 

0.1% .5387E-05 .5384E-05 .5380E-05 
1% .5387E-04 .5354E-04 .5385E-04 
5% .2694E-03 .2614E-03 .2693E-03 

 
µ QMSys 

10% 

.9866E+00 
 
 
 
 

.5460E-02 
 
 .5387E-03 .5075E-03 .5387E-03 

-0.1% .6067E-05 .6067E-05 .6068E-05 
-1% .6067E-04 .6067E-04 .6067E-04 
-5% .3033E-03 .3034E-03 .3033E-03 

 
λ DTLSys 

-10% 

-.6149E-02 
 
 .6067E-03 .6070E-03 .6067E-03 

0.1% .4555E-05 .4553E-05 .4549E-05 
1% .4555E-04 .4528E-04 .4554E-04 
5% .2278E-03 .2210E-03 .2277E-03 

 
µ DTLSys 

10% 

.9866E+00 
 
 
 
 

.4617E-02 
 
 .4555E-03 .4291E-03 .4555E-03 

 
Table 4.34 Sensitivities to perturbation in system parameters (tf =168h) 

Tank# 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .3303E-07 .3303E-07 .3303E-07 
-1% .3303E-06 .3303E-06 .3303E-06 
-5% .1651E-05 .1651E-05 .1651E-05 

 
λ Cavity 

-10% 

-.3307E-04 
 
 .3303E-05 .3303E-05 .3303E-05 

0.1% .5517E-09 .5517E-09 .1956E-09 
1% .5517E-08 .5517E-08 .2105E-08 
5% .2759E-07 .2757E-07 .1977E-07 

 
µ Cavity 

10% 

.9985E+00 
 
 
 
 

.5525E-06 
 
 .5517E-07 .5511E-07 .4341E-07 

-0.1% .5992E-06 .5991E-06 .5993E-06 
-1% .5992E-05 .5992E-05 .5991E-05 
-5% .2996E-04 .2996E-04 .2996E-04 

 
λ Drv LP & 

Window1-2 -10% 

-.6001E-03 
 
 .5992E-04 .5992E-04 .5991E-04 

0.1% .5992E-06 .5985E-06 .5991E-06 
1% .5992E-05 .5932E-05 .5991E-05 
5% .2996E-04 .2853E-04 .2996E-04 

 
µ Drv LP & 

Window1-2 10% 

.9985E+00 
 
 
 
 

.6001E-03 
 
 .5992E-04 .5447E-04 .5991E-04 

-0.1% .9990E-07 .9985E-07 .9985E-07 
-1% .9990E-06 .9995E-06 .9985E-06 
-5% .4995E-05 .4993E-05 .4993E-05 

 
λ Ion Vac 

Pump 1-2 -10% 

-.1000E-03 
 
 .9990E-05 .9986E-05 .9986E-05 

0.1% .9990E-07 .9976E-07 .9986E-07 
1% .9990E-06 .9887E-06 .9986E-06 
5% .4995E-05 .4755E-05 .4993E-05 

 
µ Ion Vac 

Pump 1-2 10% 

.9985E+00 
 
 
 
 

.1000E-03 
 
 .9990E-05 .9078E-05 .9986E-05 
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-0.1% .2121E-07 .2121E-07 .2156E-07 
-1% .2121E-06 .2121E-06 .2131E-06 
-5% .1060E-05 .1060E-05 .1061E-05 

 
λ Support 

Structure. -10% 

-.2124E-04 
 
 .2121E-05 .2121E-05 .2121E-05 

0.1% .8866E-08 .8863E-08 .6626E-08 
1% .8866E-07 .8839E-07 .7578E-07 
5% .4433E-06 .4366E-06 .4045E-06 

 
µ Support 

Structure 10% 

.9985E+00 
 
 
 
 

.8879E-05 
 
 .8866E-06 .8603E-06 .8299E-06 

 
 
 
 
RF System 
 

Table 4.35 Sensitivities to perturbation in system parameters (tf =168h) 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1215E-04 .1214E-04 .1214E-04 
-1% .1215E-03 .1214E-03 .1214E-03 
-5% .6073E-03 .6076E-03 .6072E-03 

 
λ RFQ RF Sys 

-10% 

-.1262E-01 
 
 .1215E-02 .1216E-02 .1214E-02 

0.1% .1215E-04 .1213E-04 .1214E-04 
1% .1215E-03 .1202E-03 .1214E-03 
5% .6073E-03 .5786E-03 .6072E-03 

 
µ RFQ RF Sys 

10% 

.9623E+00 
 
 
 
 

.1262E-01 
 
 .1215E-02 .1105E-02 .1214E-02 

-0.1% .1928E-07 .1925E-07 .1925E-07 
-1% .1928E-06 .1925E-06 .1925E-06 
-5% .9639E-06 .9623E-06 .9623E-06 

 
λ RF 

Inst&Ctrl -10% 

-.2003E-04 
 
 .1928E-05 .1925E-05 .1925E-05 

0.1% .1928E-07 .1923E-07 .1925E-07 
1% .1928E-06 .1906E-06 .1925E-06 
5% .9639E-06 .9165E-06 .9623E-06 

 
µ RF 

Inst&Ctrl 10% 

9623E+00 
 
 
 
 

.2003E-04 
 
 .1928E-05 .1750E-05 .1925E-05 

-0.1% .2444E-04 .2444E-04 .2444E-04 
-1% .2444E-03 .2445E-03 .2444E-03 
-5% .1222E-02 .1224E-02 .1222E-02 

 
λ DTL RF Sys 

-10% 

-.2540E-01 
 
 .2444E-02 .2450E-02 .2444E-02 

0.1% .2444E-04 .2442E-04 .2444E-04 
1% .2444E-03 .2420E-03 .2444E-03 
5% .1222E-02 .1165E-02 .1222E-02 

 
µ DTL RF Sys 

10% 

9623E+00 
 
 
 
 

.2540E-01 
 
 .2444E-02 .2227E-02 .2444E-02 

 
 
 
 

Table 4.36 Sensitivities to perturbation in system parameters (tf =168h) 
RF Station 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1394E-05 .1394E-05 .1394E-05 
-1% .1394E-04 .1394E-04 .1394E-04 
-5% .6971E-04 .6971E-04 .6971E-04 

 
λ RF Tube 

-10% 

-.1400E-02 
 
 .1394E-03 .1394E-03 .1394E-03 

0.1% .1394E-05 .1393E-05 .1394E-05 
1% .1394E-04 .1380E-04 .1394E-04 
5% .6971E-04 .6639E-04 .6970E-04 

 
µ RF Tube 

10% 

.9958E+00 
 
 
 
 

.1400E-02 
 
 .1394E-03 .1267E-03 .1394E-03 



 112 

-0.1% .7210E-06 .7208E-06 .7208E-06 
-1% .7210E-05 .7208E-05 .7208E-05 
-5% .3605E-04 .3604E-04 .3604E-04 

 
λ RF 

Transport -10% 

-.7241E-03 
 
 .7210E-04 .7208E-04 .7208E-04 

0.1% .7210E-06 .7201E-06 .7208E-06 
1% .7210E-05 .7137E-05 .7208E-05 
5% .3605E-04 .3432E-04 .3604E-04 

 
µ RF 

Transport 10% 

.9958E+00 
 
 
 
 

.7241E-03 
 
 .7210E-04 .6553E-04 .7208E-04 

-0.1% .1247E-05 .1247E-05 .1247E-05 
-1% .1247E-04 .1247E-04 .1247E-04 
-5% .6234E-04 .6233E-04 .6233E-04 

 
λ Circulator 

-10% 

-.1252E-02 
 
 .1247E-03 .1247E-03 .1247E-03 

0.1% .1247E-05 .1245E-05 .1247E-05 
1% .1247E-04 .1234E-04 .1247E-04 
5% .6234E-04 .5936E-04 .6233E-04 

 
µ Circulator 

10% 

.9958E+00 
 
 
 
 

.1252E-02 
 
 .1247E-03 .1133E-03 .1247E-03 

-0.1% .9960E-08 .9958E-08 .9958E-08 
-1% .9960E-07 .9958E-07 .9958E-07 
-5% .4980E-06 .4979E-06 .4979E-06 

 
λ Tube 

Peripherals -10% 

-.1000E-04 
 
 .9960E-06 .9958E-06 .9958E-06 

0.1% .9960E-08 .9948E-08 .9958E-08 
1% .9960E-07 .9859E-07 .9958E-07 
5% .4980E-06 .4742E-06 .4979E-06 

 
µ Tube 

Peripherals 10% 

.9958E+00 
 
 
 
 

.1000E-04 
 
 .9960E-06 .9053E-06 .9958E-06 

-0.1% .1995E-07 .1992E-07 .1992E-07 
-1% .1995E-06 .1992E-06 .1992E-06 
-5% .9975E-06 .9958E-06 .9958E-06 

 
λ Source 

&Drv -10% 

-.2003E-04 
 
 .1995E-05 .1992E-05 .1992E-05 

0.1% .1995E-07 .1990E-07 .1992E-07 
1% .1995E-06 .1972E-06 .1992E-06 
5% .9975E-06 .9484E-06 .9958E-06 

 
µ Source 

&Drv 10% 

.9958E+00 
 
 
 
 

.2003E-04 
 
 .1995E-05 .1811E-05 .1992E-05 

-0.1% .7940E-06 .7938E-06 .7938E-06 
-1% .7940E-05 .7938E-05 .7938E-05 
-5% .3970E-04 .3969E-04 .3969E-04 

 
λ HV Pwr 

Suppl -10% 

-.7973E-03 
 
 .7940E-04 .7939E-04 .7938E-04 

0.1% .7940E-06 .7930E-06 .7938E-06 
1% .7940E-05 .7860E-05 .7938E-05 
5% .3970E-04 .3780E-04 .3969E-04 

 
µ HV Pwr 

Suppl 10% 

.9958E+00 
 
 
 
 

.7973E-03 
 
 .7940E-04 .7217E-04 .7938E-04 

 
 

Table 4.37 Sensitivities to perturbation in system parameters (tf =168h) 
RF PA Tube Peripherals 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .4200E-06 .4199E-06 .4199E-06 
-1% .4200E-05 .4199E-05 .4199E-05 
-5% .2100E-04 .2100E-04 .2100E-04 

 
λ LC&Monit 

-10% 

-.4203E-03 
 
 .4200E-04 .4199E-04 .4199E-04 

0.1% .4200E-06 .4195E-06 .4199E-06 
1% .4200E-05 .4158E-05 .4199E-05 
5% .2100E-04 .2000E-04 .2100E-04 

 
µ LC&Monit 

10% 

.9993E+00 
 
 
 
 

.4203E-03 
 
 .4200E-04 .3817E-04 .4199E-04 

-0.1% .9997E-07 .9995E-07 .9995E-07 
-1% .9997E-06 .9995E-06 .9995E-06 
-5% .4999E-05 .4998E-05 .4998E-05 

 
λ LP&AC 

-10% 

-.1000E-03 
 
 .9997E-05 .9996E-05 .9995E-05 

0.1% .9997E-07 .9985E-07 .9995E-07 
1% .9997E-06 .9896E-06 .9995E-06 
5% .4999E-05 .4760E-05 .4998E-05 

 
µ LP&AC 

10% 

.9993E+00 
 
 
 
 

.1000E-03 
 
 .9997E-05 .9087E-05 .9995E-05 
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-0.1% .1001E-06 .1000E-06 .1000E-06 
-1% .1001E-05 .1000E-05 .1000E-05 
-5% .5005E-05 .5002E-05 .5002E-05 

 
λ HP RF Tube 

-10% 

-.1002E-03 
 
 .1001E-04 .1000E-04 .1000E-04 

0.1% .1001E-06 .9993E-07 .1000E-06 
1% .1001E-05 .9904E-06 .1000E-05 
5% .5005E-05 .4763E-05 .5002E-05 

 
µ HP RF Tube 

10% 

.9993E+00 
 
 
 
 

.1002E-03 
 
 .1001E-04 .9094E-05 .1000E-04 

-0.1% .3331E-08 .3331E-08 .3331E-08 
-1% .3331E-07 .3331E-07 .3331E-07 
-5% .1666E-06 .1665E-06 .1665E-06 

 
λ Struct&Cabl 

-10% 

-.3334E-05 
 
 .3331E-06 .3331E-06 .3331E-06 

0.1% .3331E-08 .3328E-08 .3331E-08 
1% .3331E-07 .3298E-07 .3331E-07 
5% .1666E-06 .1586E-06 .1665E-06 

 
µ Struct&Cabl 

10% 

.9993E+00 
 
 
 
 

.3334E-05 
 
 .3331E-06 .3028E-06 .3331E-06 

-0.1% .9994E-07 .9993E-07 .9993E-07 
-1% .9994E-06 .9993E-06 .9993E-06 
-5% .4997E-05 .4996E-05 .4996E-05 

 
λ LV Pwr 

Supply -10% 

-.1000E-03 
 
 .9994E-05 .9993E-05 .9993E-05 

0.1% .9994E-07 .9983E-07 .9993E-07 
1% .9994E-06 .9894E-06 .9993E-06 
5% .4997E-05 .4758E-05 .4996E-05 

 
µ LV Pwr 

Supply 10% 

.9993E+00 
 
 
 
 

.1000E-03 
 
 .9994E-05 .9084E-05 .9993E-05 

 
Table 4.38 Sensitivities to perturbation in system parameters (tf =168h) 

Loc Ctrl & Monit 
 

Param. 

iα  

Perturb. 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .9998E-08 .9996E-08 .9996E-08 
-1% .9998E-07 .9996E-07 .9996E-07 
-5% .4999E-06 .4998E-06 .4998E-06 

λ Reflectometer, 

λ Directional 

Couplers. -10% 

-.1000E-04 
 
 .9998E-06 .9996E-06 .9996E-06 

0.1% .9997E-08 .9986E-08 .9996E-08 
1% .9997E-07 .9897E-07 .9996E-07 
5% .4999E-06 .4760E-06 .4998E-06 

µ Reflectometer, 

µ Directional 

Couplers 10% 

.9996E+00 
 
 
 
 

.1000E-04 
 
 .9997E-06 .9087E-06 .9996E-06 

-0.1% .9998E-07 .9996E-07 .9996E-07 
-1% .9998E-06 .9996E-06 .9996E-06 
-5% .4999E-05 .4998E-05 .4998E-05 

λ Cav Tunn Ctrl 

λ Syst Ctrls 1-2 

λ Resonance Ctrl -10% 

-.1000E-03 
 
 .9998E-05 .9996E-05 .9996E-05 

0.1% .9997E-07 .9986E-07 .9996E-07 
1% .9997E-06 .9897E-06 .9996E-06 
5% .4999E-05 .4760E-05 .4998E-05 

µ Cav Tunn Ctrl 

µ Syst Ctrls 1-2 

µ Resonance Ctrl 10% 

.9996E+00 
 
 
 
 

.1000E-03 
 
 .9997E-05 .9087E-05 .9996E-05 

 
Table 4.39 Sensitivities to perturbation in system parameters (tf =168h) 

HP RF Tube 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1001E-06 .9997E-07 .9997E-07 
-1% .1001E-05 .9997E-06 .9997E-06 
-5% .5003E-05 .4999E-05 .4999E-05 

 
λ Cooler1-2  

-10% 

-.1001E-03 
 
 .1001E-04 .9997E-05 .9997E-05 

0.1% .1001E-06 .9987E-07 .9997E-07 
1% .1001E-05 .9898E-06 .9997E-06 
5% .5003E-05 .4760E-05 .4999E-05 

 
µ Cooler1-2 

10% 

.9997E+00 
 
 
 
 

.1001E-03 
 
 .1001E-04 .9088E-05 .9997E-05 
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-0.1% .9999E-07 .9997E-07 .9997E-07 
-1% .9999E-06 .9997E-06 .9997E-06 
-5% .4999E-05 .4999E-05 .4998E-05 

 
λ Tube Cavity 

-10% 

-.1000E-03 
 
 .9999E-05 .9997E-05 .9997E-05 

0.1% .9999E-07 .9987E-07 .9997E-07 
1% .9999E-06 .9898E-06 .9997E-06 
5% .4999E-05 .4760E-05 .4998E-05 

 
µ Tube Cavity 

10% 

.9997E+00 
 
 
 
 

.1000E-03 
 
 .9999E-05 .9088E-05 .9997E-05 

 
 

Table 4.40 Sensitivities to perturbation in system parameters (tf =168h) 
Source & Driver 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .1180E-05 .1180E-05 .1180E-05 
-1% .1180E-04 .1180E-04 .1180E-04 
-5% .5902E-04 .5902E-04 .5902E-04 

λ 2nd Stage 

Tube 
-10% 

-.1182E-02 
 
 .1180E-03 .1180E-03 .1180E-03 

0.1% .1180E-05 .1179E-05 .1180E-05 
1% .1180E-04 .1169E-04 .1180E-04 
5% .5902E-04 .5621E-04 .5901E-04 

µ 2nd Stage 

Tube 
10% 

.9987E+00 
 
 
 
 

.1182E-02 
 
 .1180E-03 .1073E-03 .1180E-03 

-0.1% .8990E-08 .8989E-08 .8989E-08 
-1% .8990E-07 .8989E-07 .8989E-07 
-5% .4495E-06 .4494E-06 .4494E-06 

λ 2nd St Tube 

Cavity 
-10% 

-.9002E-05 
 
 .8990E-06 .8989E-06 .8989E-06 

0.1% .8990E-08 .8980E-08 .8989E-08 
1% .8990E-07 .8900E-07 .8989E-07 
5% .4495E-06 .4280E-06 .4494E-06 

µ 2nd St Tube 

Cavity 
10% 

.9987E+00 
 
 
 
 

.9002E-05 
 
 .8990E-06 .8172E-06 .8989E-06 

-0.1% .3998E-07 .3995E-07 .3995E-07 
-1% .3998E-06 .3995E-06 .3995E-06 
-5% .1999E-05 .1998E-05 .1997E-05 

λ Solid State 

Pre-Amp 
-10% 

-.4003E-04 
 
 .3998E-05 .3995E-05 .3995E-05 

0.1% .3998E-07 .3991E-07 .3995E-07 
1% .3998E-06 .3955E-06 .3995E-06 
5% .1999E-05 .1902E-05 .1997E-05 

µ Solid State 

Pre-Amp 
10% 

.9987E+00 
 
 
 
 

.4003E-04 
 
 .3998E-05 .3632E-05 .3995E-05 

-0.1% .6664E-09 .6658E-09 .6658E-09 
-1% .6664E-08 .6658E-08 .6658E-08 
-5% .3332E-07 .3329E-07 .3329E-07 

 
λ SPPT Sys. 

-10% 

-.6672E-06 
 
 .6664E-07 .6658E-07 .6658E-07 

0.1% .6664E-09 .6652E-09 .6658E-09 
1% .6664E-08 .6592E-08 .6658E-08 
5% .3332E-07 .3171E-07 .3329E-07 

 
µ SPPT Sys. 

10% 

.9987E+00 
 
 
 
 

.6672E-06 
 
 .6664E-07 .6053E-07 .6658E-07 

-0.1% .1999E-07 .1997E-07 .1997E-07 
-1% .1999E-06 .1997E-06 .1997E-06 
-5% .9996E-06 .9987E-06 .9987E-06 

 
λ Source 

-10% 

-.2002E-04 
 
 .1999E-05 .1998E-05 .1997E-05 

0.1% .1999E-07 .1996E-07 .1997E-07 
1% .1999E-06 .1978E-06 .1997E-06 
5% .9996E-06 .9512E-06 .9987E-06 

 
µ Source 

10% 

.9987E+00 
 
 
 
 

.2002E-04 
 
 .1999E-05 .1816E-05 .1997E-05 
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Table 4.41 Sensitivities to perturbation in system parameters (tf =168h) 
HV Power Supply 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .5498E-06 .5497E-06 .5497E-06 
-1% .5498E-05 .5497E-05 .5497E-05 
-5% .2749E-04 .2749E-04 .2748E-04 

 
λ Crowbar 

System -10% 

-.5502E-03 
 
 .5498E-04 .5497E-04 .5497E-04 

0.1% .5498E-06 .5491E-06 .5497E-06 
1% .5498E-05 .5443E-05 .5497E-05 
5% .2749E-04 .2618E-04 .2748E-04 

 
µ Crowbar 

System 10% 

.9992E+00 
 
 
 
 

.5502E-03 
 
 .5498E-04 .4997E-04 .5497E-04 

-0.1% .1333E-07 .1332E-07 .1332E-07 
-1% .1333E-06 .1332E-06 .1332E-06 
-5% .6663E-06 .6661E-06 .6661E-06 

 
λ AC Pwr 

Distrib -10% 

-.1334E-04 
 
 .1333E-05 .1332E-05 .1332E-05 

0.1% .1332E-07 .1331E-07 .1332E-07 
1% .1332E-06 .1319E-06 .1332E-06 
5% .6662E-06 .6344E-06 .6661E-06 

 
µ �AC Pwr 

Distrib 10% 

9992E+00 
 
 
 
 

.1334E-04 
 
 .1332E-05 .1211E-05 .1332E-05 

-0.1% .2333E-06 .2333E-06 .2333E-06 
-1% .2333E-05 .2333E-05 .2333E-05 
-5% .1167E-04 .1166E-04 .1166E-04 

 
λ AC/DC 

Converter -10% 

-.2335E-03 
 
 .2333E-04 .2333E-04 .2333E-04 

0.1% .2333E-06 .2330E-06 .2333E-06 
1% .2333E-05 .2310E-05 .2333E-05 
5% .1167E-04 .1111E-04 .1166E-04 

 
µ AC/DC 

Converter 10% 

9992E+00 
 
 
 
 

.2335E-03 
 
 .2333E-04 .2121E-04 .2333E-04 

 
Table 4.42 Sensitivities to perturbation in system parameters (tf =168h) 

Crowbar System 
 

Param. 

iα  

Perturb. 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .4998E-07 .4997E-07 .4998E-07 
-1% .4998E-06 .4998E-06 .4998E-06 
-5% .2499E-05 .2499E-05 .2499E-05 

λ Fast Curr. Limit 

λ Elec DC Switch 

λ Curr Lim. React. -10% 

-.5001E-04 
 
 .4998E-05 .4998E-05 .4998E-05 

0.1% .4998E-07 .4993E-07 .4997E-07 
1% .4998E-06 .4948E-06 .4997E-06 
5% .2499E-05 .2380E-05 .2499E-05 

µ Fast Curr. Limir 

µ Elec. DC Switch 

µ Curr Lim. React. 10% 

.9995E+00 
 
 
 
 

.5001E-04 
 
 .4998E-05 .4543E-05 .4997E-05 

-0.1% .9997E-07 .9995E-07 .9995E-07 
-1% .9997E-06 .9995E-06 .9995E-06 
-5% .4998E-05 .4998E-05 .4998E-05 

λ Crowbar 

λ Transp. Prot. 
-10% 

-.1000E-03 
 
 .9997E-05 .9995E-05 .9995E-05 

0.1% .9997E-07 .9985E-07 .9995E-07 
1% .9997E-06 .9896E-06 .9995E-06 
5% .4998E-05 .4760E-05 .4997E-05 

µ Crowbar 

µ Transp. Prot. 
10% 

.9995E+00 
 
 
 
 

.1000E-03 
 
 .9997E-05 .9086E-05 .9995E-05 

-0.1% .4998E-07 .4997E-07 .4998E-07 
-1% .4998E-06 .4998E-06 .4998E-06 
-5% .2499E-05 .2499E-05 .2499E-05 

λ Volt Monitor 

λ Input Bushing 

λ Output Bushing -10% 

-.5001E-04 
 
 .4998E-05 .4998E-05 .4998E-05 

0.1% .4998E-07 .4993E-07 .4997E-07 
1% .4998E-06 .4948E-06 .4997E-06 
5% .2499E-05 .2380E-05 .2499E-05 

µ Volt Monitor 

µ Input Bushing 

µ Output Bushing 10% 

.9995E+00 
 
 
 
 

.5001E-04 
 
 .4998E-05 .4543E-05 .4997E-05 
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Table 4.43 Sensitivities to perturbation in system parameters (tf =168h) 

AC Power Distribut. 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .3334E-08 .3333E-08 .3333E-08 
-1% .3334E-07 .3333E-07 .3333E-07 
-5% .1667E-06 .1667E-06 .1667E-06 

 
λ Bus Lines 

-10% 

-.3334E-05 
 
 .3334E-06 .3333E-06 .3333E-06 

0.1% .3334E-08 .3330E-08 .3333E-08 
1% .3334E-07 .3300E-07 .3333E-07 
5% .1667E-06 .1587E-06 .1667E-06 

 
µ Bus Lines 

10% 

9.99987E-1 
 
 
 
 

.3334E-05 
 
 .3334E-06 .3030E-06 .3333E-06 

-0.1% .1000E-07 .1000E-07 .1000E-07 
-1% .1000E-06 .1000E-06 .1000E-06 
-5% .5001E-06 .5000E-06 .5000E-06 

 
λ SPPT 

Structure -10% 

-.1000E-04 
 
 .1000E-05 .1000E-05 .1000E-05 

0.1% .1000E-07 .9990E-08 .1000E-07 
1% .1000E-06 .9901E-07 .1000E-06 
5% .5001E-06 .4762E-06 .5000E-06 

 
µ SPPT 

Structure 10% 

9.99987E-1 
 
 
 
 

.1000E-04 
 
 .1000E-05 .9091E-06 .1000E-05 

 
 

Table 4.44 Sensitivities to perturbation in system parameters (tf =168h) 
AC-DC Converter 

 
Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .2000E-07 .2000E-07 .2000E-07 
-1% .2000E-06 .2000E-06 .2000E-06 
-5% .9999E-06 .9998E-06 .9998E-06 

λ Transf. 

λ Thyrist. 

λ SM React -10% 

-.2000E-04 
 
 .2000E-05 .2000E-05 .2000E-05 

0.1% .2000E-07 .1998E-07 .2000E-07 
1% .2000E-06 .1980E-06 .2000E-06 
5% .9999E-06 .9522E-06 .9998E-06 

µ Transf.. 

µ Thyrist. 

µ SM React 10% 

.9998E+00 
 
 
 
 

.2000E-04 
 
 .2000E-05 .1818E-05 .2000E-05 

-0.1% .5000E-07 .4999E-07 .4999E-07 
-1% .5000E-06 .4999E-06 .4999E-06 
-5% .2500E-05 .2499E-05 .2499E-05 

 
λ DC Cap.  

-10% 

-.5001E-04 
 
 .5000E-05 .4999E-05 .4999E-05 

0.1% .5000E-07 .4994E-07 .4999E-07 
1% .5000E-06 .4949E-06 .4999E-06 
5% .2500E-05 .2380E-05 .2499E-05 

 
µ DC Cap. 

10% 

.9998E+00 
 
 
 
 

.5001E-04 
 
 .5000E-05 .4544E-05 .4999E-05 

-0.1% .9999E-07 .9998E-07 .9998E-07 
-1% .9999E-06 .9998E-06 .9998E-06 
-5% .5000E-05 .4999E-05 .4999E-05 

 
λ Controls 

-10% 

-.1000E-03 
 
 .9999E-05 .9998E-05 .9998E-05 

0.1% .9999E-07 .9988E-07 .9998E-07 
1% .9999E-06 .9899E-06 .9998E-06 
5% .5000E-05 .4761E-05 .4999E-05 

 
µ Controls 

10% 

.9998E+00 
 
 
 
 

.1000E-03 
 
 .9999E-05 .9089E-05 .9998E-05 

-0.1% .3333E-08 .3333E-08 .3333E-08 
-1% .3333E-07 .3333E-07 .3333E-07 
-5% .1667E-06 .1666E-06 .1666E-06 

 
λ SPPT Str.  

-10% 

-.3334E-05 
 
 .3333E-06 .3333E-06 .3333E-06 

0.1% .3333E-08 .3329E-08 .3333E-08 
1% .3333E-07 .3300E-07 .3333E-07 
5% .1667E-06 .1587E-06 .1666E-06 

 
µ SPPT Str. 

10% 

.9998E+00 
 
 
 
 

.3334E-05 
 
 .3333E-06 .3030E-06 .3333E-06 
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-0.1% .2001E-07 .2000E-07 .2000E-07 
-1% .2001E-06 .2000E-06 .2000E-06 
-5% .1001E-05 .9998E-06 .9998E-06 

 
λ Cooling 

-10% 

-.2002E-04 
 
 .2001E-05 .2000E-05 .2000E-05 

0.1% .2001E-07 .1998E-07 .2000E-07 
1% .2001E-06 .1980E-06 .2000E-06 
5% .1001E-05 .9522E-06 .9998E-06 

 
µ Cooling 

10% 

.9998E+00 
 
 
 
 

.2002E-04 
 
 .2001E-05 .1818E-05 .2000E-05 

 
 
 
 
HEBT 
 

Table 4.45 Sensitivities to perturbation in system parameters (tf =168h) 
 

Param. 

iα  

Perturbation 

0
i

i

α
α
∆

(%) 

Nominal 
Value 

R0 

Rel.Sens. 
0

0

R
.
R

i

i

α
α

∆
∆

 

 
ASAP 

Rpred – R0 

 
REC 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .3341E-05 .3338E-05 .3338E-05 
-1% .3341E-04 .3338E-04 .3338E-04 
-5% .1671E-03 .1669E-03 .1669E-03 

 
λ QuadCh 

-10% 

-.3465E-02 
 
 .3341E-03 .3339E-03 .3338E-03 

0.1% .3341E-05 .3335E-05 .3338E-05 
1% .3341E-04 .3305E-04 .3338E-04 
5% .1671E-03 .1590E-03 .1669E-03 

 
µ QuadCh 

10% 

.9643E+00 
 
 
 
 

.3465E-02 
 
 .3341E-03 .3036E-03 .3338E-03 

-0.1% .2316E-06 .2314E-06 .2314E-06 
-1% .2316E-05 .2314E-05 .2314E-05 
-5% .1158E-04 .1157E-04 .1157E-04 

 
λ DipoleCh  

-10% 

-.2402E-03 
 
 .2316E-04 .2315E-04 .2314E-04 

0.1% .2316E-06 .2312E-06 .2314E-06 
1% .2316E-05 .2292E-05 .2314E-05 
5% .1158E-04 .1102E-04 .1157E-04 

 
µ DipoleCh. 

10% 

.9643E+00 
 
 
 
 

.2402E-03 
 
 .2316E-04 .2104E-04 .2314E-04 

-0.1% .1853E-06 .1852E-06 .1852E-06 
-1% .1853E-05 .1852E-05 .1852E-05 
-5% .9265E-05 .9258E-05 .9258E-05 

 
λ OctupCh 

-10% 

-.1922E-03 
 
 .1853E-04 .1852E-04 .1852E-04 

0.1% .1853E-06 .1850E-06 .1852E-06 
1% .1853E-05 .1833E-05 .1852E-05 
5% .9265E-05 .8817E-05 .9258E-05 

 
µ OctupCh 

10% 

.9643E+00 
 
 
 
 

.1922E-03 
 
 .1853E-04 .1683E-04 .1852E-04 

-0.1% .6296E-05 .6295E-05 .6295E-05 
-1% .6296E-04 .6296E-04 .6295E-04 
-5% .3148E-03 .3149E-03 .3148E-03 

 
λ BuncherCh 

-10% 

-.6530E-02 
 
 .6296E-03 .6299E-03 .6295E-03 

0.1% .6296E-05 .6289E-05 .6295E-05 
1% .6296E-04 .6233E-04 .6295E-04 
5% .3148E-03 .2999E-03 .3148E-03 

 
µ BuncherCh 

10% 

.9643E+00 
 
 
 
 

.6530E-02 
 
 .6296E-03 .5726E-03 .6295E-03 

-0.1% .4039E-05 .4039E-05 .4039E-05 
-1% .4039E-04 .4039E-04 .4039E-04 
-5% .2020E-03 .2020E-03 .2019E-03 

 
λ BunchRFPwr 

 -10% 

-.4189E-02 
 
 .4039E-03 .4040E-03 .4039E-03 

0.1% .4039E-05 .4035E-05 .4039E-05 
1% .4039E-04 .3999E-04 .4039E-04 
5% .2020E-03 .1924E-03 .2019E-03 

 
µ BunchRFPwr 

 10% 

.9643E+00 
 
 
 
 

.4189E-02 
 
 .4039E-03 .3673E-03 .4039E-03 
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-0.1% .4039E-05 .4039E-05 .4039E-05 
-1% .4039E-04 .4039E-04 .4039E-04 
-5% .2020E-03 .2020E-03 .2019E-03 

 
λ DispCav 

RFPowSup -10% 

-.4189E-02 
 
 .4039E-03 .4040E-03 .4039E-03 

0.1% .4039E-05 .4035E-05 .4039E-05 
1% .4039E-04 .3999E-04 .4039E-04 
5% .2020E-03 .1924E-03 .2019E-03 

 
µ DispCav 

RFPowSup 10% 

.9643E+00 
 
 
 
 

.4189E-02 
 
 .4039E-03 .3673E-03 .4039E-03 

-0.1% .2897E-05 .2897E-05 .2897E-05 
-1% .2897E-04 .2897E-04 .2897E-04 
-5% .1449E-03 .1449E-03 .1448E-03 

 
λ BTVSys 

-10% 

-.3005E-02 
 
 .2897E-03 .2898E-03 .2897E-03 

0.1% .2897E-05 .2894E-05 .2897E-05 
1% .2897E-04 .2868E-04 .2897E-04 
5% .1449E-03 .1380E-03 .1448E-03 

 
µ BTVSys 

10% 

.9643E+00 
 
 
 
 

.3005E-02 
 
 .2897E-03 .2634E-03 .2897E-03 

-0.1% .2696E-05 .2696E-05 .2696E-05 
-1% .2696E-04 .2696E-04 .2696E-04 
-5% .1348E-03 .1348E-03 .1348E-03 

 
λ Dipole As HR 

-10% 

-.2796E-02 
 
 .2696E-03 .2696E-03 .2696E-03 

0.1% .2404E-05 .2402E-05 .2403E-05 
1% .2404E-04 .2385E-04 .2403E-04 
5% .1202E-03 .1156E-03 .1202E-03 

 
µ Dipole As HR  

10% 

.9643E+00 
 
 
 
 

.2493E-02 
 
 .2404E-03 .2227E-03 .2403E-03 

-0.1% .2247E-05 .2247E-05 .2247E-05 
-1% .2247E-04 .2247E-04 .2247E-04 
-5% .1123E-03 .1123E-03 .1123E-03 

 
λ BTVSys HR 

-10% 

-.2330E-02 
 
 .2247E-03 .2247E-03 .2247E-03 

0.1% .2003E-05 .2001E-05 .2003E-05 
1% .2003E-04 .1987E-04 .2003E-04 
5% .1001E-03 .9634E-04 .1001E-03 

 
µ BTVSys HR 

10% 

.9643E+00 
 
 
 
 

.2077E-02 
 
 .2003E-03 .1856E-03 .2003E-03 

-0.1% .9044E-05 .9044E-05 .9044E-05 
-1% .9044E-04 .9045E-04 .9044E-04 
-5% .4522E-03 .4524E-03 .4522E-03 

 
λ Disp Cav Ch 

-10% 

-.9380E-02 
 
 .9044E-03 .9052E-03 .9044E-03 

0.1% .8075E-05 .8068E-05 .8074E-05 
1% .8075E-04 .8012E-04 .8075E-04 
5% .4038E-03 .3885E-03 .4037E-03 

 
µ Disp Cav Ch 

10% 

.9643E+00 
 
 
 
 

.8374E-02 
 
 .8075E-03 .7484E-03 .8075E-03 
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Figure 4.22 Components importance for IFMIF Accelerator System Facilities based on sensitivities 

of steady-state availability to variations in input parameters MTTF \ MTTR 
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5 Conclusions 

 

This work has highlighted the development and implementation of the deterministic local 

sensitivity analysis theory originally developed by Cacuci,29,30 for the mathematical model of 

Markov chains. During this implementation, the fundamental characteristics of Adjoint 

Sensitivity Analysis Procedure (ASAP) of Markov chains have been emphasized, namely 

that: a) the adjoint sensitivity system is linear in the adjoint functions; b) the adjoint functions 

resulted from the adjoint sensitivity system of Markov chains following ASAP guidelines are 

independent of variations in input parameters; c) the adjoint functions do not depend on the 

base-case solution of the Markov chain equations; d) the adjoint functions must be computed 

anew for every response since the adjoint sensitivity system of Markov chain depends on the 

system response by its nonhomogeneous term; e) this formalism is the practical way to 

perform inexpensively a complete and systematic sensitivity analysis of various reliability 

measures for physical systems using Markov chain technique, since the differential set of 

equations that describes Markov chain usually implies more parameters than responses. 

 

With this work, the ASAP for Markov chain has been implemented into a new computer code 

system to perform reliability and sensitivity analysis of physical systems. The Fault-Tree 

abstraction of physical system as high-level interface for this code has been used. This initial 

representation is automatically converted into a Markov chain and the associated system of 

differential equations is generated. The developed code system QUEFT/MARKOMAG-

S/MCADJSEN uses a coupled Fault-Tree Markov chain technique in order to asses 

dynamically the system’s reliability, and FSAP/ASAP for sensitivity analysis. The accuracy 

and robustness of the numerical solution of the adjoint sensitivity system has been verified 

using the analytical solution on a simple problem of a binary component/system. The typical 

sensitivity results of reliability for considered examples to perturbations in initial conditions 

and system parameters indicate that the numerical solution of ASE is as robust, stable and 

accurate as the calculations of original Markov chain equations. From computational point of 

view, the response sensitivities for these examples have been obtained more efficient and with 

a smaller computational cost using ASAP than the traditional methods.   

 

The developed code system has been used to perform a complete reliability and sensitivity 

analysis of the IFMIF Accelerator System facilities. The sensitivities of the systems and 
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subsystems of IFMIF Accelerator System Facilities are important for further studies regarding 

to reliability, costs and maintenance policies of this complex system. As an intermediate step 

in assessing all system’s sensitivities, the dynamical reliability analysis using Markov chain 

technique have been performed for the Accelerator System and all its subsystems showing for 

the first time in reliability studies of IFMIF-Accelerator system the evolution of availability of 

this complex system and its subsystems. The steady-state availability computed in this work 

for this complex system have been compared with similar results given in literature, showing 

that the algorithm developed for the conversion from Fault Tree to Markov chain is well 

implemented with the advantage that in this work the transient availability for the considered 

mission time have been analyzed for every of its subsystems. 

Sensitivities studies using ASAP of Markov chains has been performed for two types of 

responses, namely for the interval and steady-state availability of the systems and subsystems 

of IFMIF-Accelerator System Facilities. The comparisons of results given by ASAP agree 

with the traditional sensitivity methods with the advantage of computational time.  These 

studies have been performed in order to analyze the impact of changes in reliability 

parameters of components and subsystems to these reliability measures of accelerator system. 

Based on the sensitivity results, the rank of the importance of parameters uncertainties as they 

affect the analyzed availabilities has been performed.  

The sensitivities computed in this work can be used to propose new improvements in order to 

increase the availability of the Accelerator System Facilities; to perform extensive uncertainty 

analysis of either interval or steady-state availability; to eliminate unimportant data for later 

considerations in a global analysis, to establish maintenance policies for critical parts and 

components in order to maximize the efficiency of this system, but also to prioritize the 

improvements in the developed computer code system. The final results show that the ASAP 

is a valuable tool for deterministic sensitivity analysis of reliability measures obtained using 

Markov chains. 

 

Future work could concentrate in implementation of the ASAP considering other types of 

responses than those considered during numerical examples shown in this work for further 

sensitivity investigations of different reliability measures, and also to continue the validation 

of the developed code system, to perform reliability and sensitivity studies using the methods 

developed in this work for other systems than IFMIF-Accelerator System Facilities. 

These methods can be used further for sensitivity studies of any phenomena that imply 

Markov chains in analysis. 
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A. Fault-Tree: Qualitative analysis 

 

In this section is presented the qualitative Fault-Tree analysis which has been used to generate 

the Markov chain.  

Due to its simplicity, the Fault-Tree analysis has been widely applied for reliability and risk 

studies. The Fault-Tree is a combinatorial technique that abstracts the physical system through 

a logic diagram which depicts the component failure modes and other fault events. This 

description is made mainly using combinatorial logic AND/OR gates. During this analysis it 

can identify various combinations of events which lead to system fail. An event is called 

usually the failure behavior of a component or subsystem. 

The principal steps in the Fault-Tree analysis are as follows. First, the physical system must 

be abstracted defining the TOP event which is often the failure behavior of the system, and to 

identify the other events which can lead to the TOP event. That is made usually through 

decomposition of the physical system in subsystems and components until the lowest level 

where further decomposition is not possible or useful for analysis. At the lowest level of 

decomposition are only components. The failure behavior of a component is called basic 

event. All the events are related each other using combinatorial gates until are reached the 

TOP event. 

The qualitative Fault-Tree analysis consists in identifying the various sets of events that can 

result in system failure. These sets of events are called cut-sets. Because the cut-sets may 

contain repeated events, or events which are not basic events, using the rules of Boolean 

algebra further operations are performed to obtain the minimal-cut-sets. A minimal-cut-set is 

a minimal set of basic events which lead to the TOP event. If a basic event is eliminated, that 

minimal-cut-set ceases to be a cut-set. 

To obtain the complete set of minimal-cut-sets some algorithms have been developed. These 

algorithms are either top-down, or bottom-up algorithms. Due their efficiency, the most used 

algorithms are the top-down algorithms proposed by Fussel and Vesely [1972]77 and called 

MOCUS algorithm (methodology for obtaining cut-sets), and by Akers [1978]78 named BDD 

(binary decision diagram). In the last decade BDD has been developed and improved based on 

the method proposed by Bryant [1986]79 and now is the most used algorithm due its 

efficiency, against of MOCUS algorithm. Until the middle of nineties majority software 

packages for Fault-Tree analyses used the MOCUS algorithm mainly because the BDD 

method was not sufficiently developed until that time. Nowadays the BDD algorithm is 
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implemented, further developed, and is used in almost all Fault Tree software packages in 

principal because it can deal with very large Fault Trees into a quite small amount of 

computing time. In this analysis the MOCUS algorithm has been used and it is shortly 

described below. 

The algorithm begins with the TOP event and systematically goes down through the fault tree 

until the basic events. The fault tree is developed into a matrix with the event elements of the 

matrix. Each row of the matrix is a cut-set. Each time an OR gate is encountered new rows are 

produced. Each time an AND gate is encountered the length of the rows in which the gate 

appear is increased. The algorithm stops when all the elements of the matrix are basic events. 

The rules of Boolean algebra are applied after each gate development. Repeated events in the 

same row are deleted (idempotent rule), and the row that contains all elements of another row 

is deleted (absorption rule). At the end of this algorithm the complete set of minimal-cut-sets 

as rows of this matrix is obtained. 

For implementing this algorithm, the following assumptions are necessary: 

- the fault tree is coherent, i.e. does not contain negated events, 

- the components are binary, i.e. have only two states – operational or failed. 

The algorithm has been improved to manage with negated gates/events and multi-state 

components.80 The multi-state components are implemented using the Markov chain. 

 

The MOCUS algorithm has been implemented in the computer code QUEFT (Qualitative 

Evaluator for Fault-Tree) to find all the minimal-cut-sets of the fault tree which is used as a 

high level interface for further Markov analysis. This code has been tested for various fault 

trees from literature. The time of finding the complete set of minimal-cut-sets depends on 

fault tree dimension (the number of basic events and gates), and how strong is the connected 

fault tree structure. The rules of Boolean algebra and the fault tree gates which have been used 

are presented below. 

Let X, Y, and Z be boolean variables, the rules of boolean algebra are as follows. 

Absorption 
rule: 

X (X+Y) = X 
X+XY = X 

Idempotent 
rule: 

XX = X 
X+X = X 

Commutative 
rule: 

XY = YX 
X+Y = Y+X 

Associative 
rule: 

X (YZ) = (XY) Z 
X+(Y+Z) = (X+Y)+ Z 

Distributive 
rule: 

X (Y+Z) = XY+XZ 
(X+Y)(X+Z)=X+YZ 
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The fault tree gates and their graphical representation are as follows.  

Output event 

.

 
Input events 

AND gate 
 
The output event occurs if and only if all the input events occur 

Output event 

+

 
Input events 

OR gate 
 
The output event occurs if any one or more of the input events 
occur 

Output event 

K/N

 
Input events 

K-Out-of-N gate (also known as majority gate, or voting gate) 
The output event occurs if K out of N input events occur. This gate 

is decomposed into an OR gate with 
!

!( )!

K N
N K N K
� �

=� � −� �
 AND 

gates as input. These AND gates have as input combinations of K 
events from the original set of input events. 

 

Basic event – it consists in failure behavior of the component with 
known failure parameters (failure probability, failure/repair rates) 

 

For illustrative purposes it has been chosen a simple 2-Out-of-3 system.81 This example is 

originally as a block diagram in Fig.A.1.a. It consists in five components A, B, C, D, and E, 

respectively. As basic events are considered the failure behavior of components, and the block 

diagram is converted into a fault tree as is depicted in Fig.A.1.b. Further, in Fig.A1c is 

represented the majority gate transformation. 

A

2/3 2/3

B C

D E

TOP

GO1 GO2

GM

2/3
D E

A B C

TOP

GO1 GO2

D E

A B C

GM

GA4 GA5GA3

A CB

 
                     a.                                             b.                                               c. 

Fig.A.1 Simple 2-Out-of-3 system 
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The TOP event represents the system failure and is an AND gate. Additional gates were 

named GO1, GO2 (OR gates), and GM (2-Out-of-3 gate), respectively. This fault tree 

(Fig.A.1.b) is introduced as input for the QUEFT code. All minimal-cut-sets are computed 

using the MOCUS algorithm, i.e.  {D E}, {A B}, {A C}, {B C}. 

In order to find the minimal-cut-sets, the QUEFT code converts the K-Out-of-N gates into a 

combinatorial structure of OR and AND gates as in Fig.A1c. It searches the minimal-cut-sets 

starting from the TOP event after the algorithm described previous. 

{TOP (and)} → {GO1(or)  GO2(or)} → {D             GO2(or)} → {D             GM(or)} → 
{GM(or)    GO2(or)} {D              E         } 

{GM(or)    GM(or)} 
{GM(or)    E          } 

 
TOP event is the 
initial matrix 
entry 

 
TOP is an AND gate. 
Its inputs are GO1 & 
GO2. Replace it in row. 

 
GO1 is an OR gate. Its 
inputs are D & GM. 
Replace it in row with D. 
Produce another row in 
which it is replaced with 
GM. 

 
Apply the rules of 
Boolean algebra. 
Reduce 3rd row to GM 
(idempotent rule). 
Delete 1st and 4th row 
(absorption rule). 

 

The algorithm continues in the same way until in matrix are only basic events. 

{D   E    } → {D   E        } → {D E} 
{GM(or)} {GA3(and)} {A B} 
 {GA4(and)} {A C} 
 {GA5(and)} {B C} 
 

Using the minimal-cut-sets, the generic fault states are defined and used to identify the fault 

states during the automated generation of Markov chain. The concept of generic fault states 

which has been introduced in this work is explained further. For instance, the system states 

are written in form {ABCDE} considering different behavior of the components. If it is 

assumed that into the system are binary components only, and if it is made the convention that 

the fault behavior to be assigned with 1 and the operational state of the component to be 

assigned with 0, one can define based on the minimal-cut-sets {A B}, {A C}, {B C}, and    

{D E}, respectively, the next generic fault states: {11xxx}, {1x1xx}, {x11xx}, and 

{xxx11}. In the place of x can be either 1, or 0. Any state of Markov chain which is 

generated and contains in the indicated positions the failure behavior for components is 

considered a failure state, otherwise that state is an operational state. For example the state 

{10010} is an operational state in which the components A and D are not operational, but the 

state {10110} is a failure state because it includes the generic fault state {1x1xx} in which 

the components A and C have failed and leads to system failure. 
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B. 2-Out-of-3 System: Numerical Example 

 

The transition rate matrix for the 2-Out-of-3 system presented in Section 2.2 and in Appendix 

A, whose transition state diagram is depicted in Fig.2.8, has the next 25 25( ) [ ]ijQ t q ×=  transition 

rate matrix for the case with repairable components, 

 

11 1 2 3 4 5

1 22 2 3 4 5

2 33 1 3 4 5

3 44 1 2 4 5

4 55 1 2 3 5

5 66 1 2 3 4

2 1 77

3 1 88

4 1 99 2 3 5
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3 2 1111

4 2 1212 1 3 5
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where the elements A to E have the failure rates ( ),  1,...,5i t iλ = , and the repair rates  

( ),  1,...,5i t iµ = . The elements on the main diagonal follow the property (2.23), i.e., 

,

( ) ( ),    {1,..., 25}ii ji
i j I
i j

q t q t I
∈

≠

= − =�  

The probability state vector is 1 25( ) [ ( ),..., ( )] ,  ( ) [0,1]T
it t t tπ π πΠ = ∈ , and 

25

1

( ) 1i
i

tπ
=

=� . 
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For the case with no repairable components, the 

part of transition matrix above the main diagonal 

vanishes, and the elements on main diagonal are 

modified accordingly, as it is shown in the next 

figure. 

 
 

For numerical example, considering the system structure Fig.A.1.a, it is assumed that the 

failure probabilities of components are exponentially distributed, and their performances are 

given in terms of mean time to failure and repair, as follow, 

component A B C D E 
MTTF (h) 100 100 100 1000 1000 
MTTR  (h) 5 5 5 10 10 

 

In this example are analyzed two extreme cases, namely one when the system contains all 

components with repairs, and the other one when none of its components are repairable. In the 

first case it is studied the availability of system and in the second case its reliability. At the 

initial time 0 0t =  it is assumed that the system is in the state in which all its components are 

operational, i.e. 0 [1,0,...,0]TΠ = . 

Considering the system structure (Fig.A.1.a), it has been split its components in two groups, 

namely a group that contains the components A, B, and C assumed to be identically, and 

another group of components D, and E identically as well. The components from each group 

have the same characteristics. It follows that the failure\repair rates are 

component A B C D E 
1/ MTTFλ = (failure/h) 0.01 0.01 0.01 0.001 0.001 
1/ MTTRµ = (repair/h) 0.2 0.2 0.2 0.1 0.1 

 

Considering the transient analysis for a mission time of T = 500 hours, the transient 

availability and unavailability of the system, using the developed code 

QUEFT/MARKOMAG-S is obtained. As truncated model, the development of Markov chain 

until the level 2 (Fig.2.8) is considered. In the case of truncated model are 16 states, thus the 

transition rate matrix is of order 16, where four states are failure states, and the rest are 

operational states. 
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Figure B.1  Transient unavailability of 2-Out-of-3 System 
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Figure B.2  Transient availability of 2-Out-of-3 System 

 

where the graphs shows the transient until the stationary solution has been reached. 

A comparison between the transition rate matrices in case of complete Markov chain and 

truncated Markov chain of 2-Out-of-3 system is presented below 
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Complete transition rate matrix 

Order: 25 
Non-zero elements: 111 

Truncated transition rate matrix 
Order: 16 

Non-zero elements: 66 
 

In the case of the complete Markov chain, the set of operational states are 

{1, ,6,9,10,12, ,15}Up = � �  and {7,8,11,16, , 25}Down = �  for the failure states, 

respectively. In the case of the truncated model the system states are trUp Up= , and 

{7,8,11,16}trDown = , respectively. The quantification of the transient unavailability and 

availability have been made using the formulae (2.25) and (2.26), respectively. The stationary 

solution of system unavailability has been compared with the solution obtained by 

MUSTAMO82 code which uses the Fault-Tree method for reliability analysis. 

MARKOMAG-S 
   - Complete model 
   - Truncated model (lev.2)  

 
0.74884E-04 
0.74722E-04 

MUSTAMO 0.75254E-04 
For the availability it has been obtained 

Complete model 0.9831815 
Truncated model 0.9831817 

For the case without repairable components, the next transient solutions have resulted: 
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Figure B.3  Transient unreliability of 2-Out-of-3 System 
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Figure B.4  Transient reliability of 2-Out-of-3 System 

 

The stationary solution of the system with non repairable components is as follows, 

Complete model 0.112535E-06 
Truncated model 0.112535E-06 

 
From this small example, one can see that in certain situations depending on the problem, 

instead to generate the complete Markov chain, a reduced model which contains the most 

relevant states that have the most contribution to the interested results can be used. Most 

situations requests to analyze the probability that system to be in the state without any 

component defect (the state indexed 1 in Fig.2.8), and the notion of availability is extended 

also to the components inside of the system.  

In this case the numerical values at the end of the mission time are as follows, 

1( 500 )t hπ =  complete model Truncated model 

with repairs 0.98318153 0.98318169 
without repairs 0.20189651 0.20189651 

 
As it can be seen from these results, the truncated model considered trend to be more 

optimistic than the complete Markov chain.  

From the results for the case with repairable components (Figs.B.2, and B.5), one can see that 

the probability of the state with all components available has the biggest weight to the 

availability of the system, the probabilities of the other operational state being very small in 

comparison by it. 

 

Next, for this example, it is performed a sensitivity analysis which will provide the relative 

importance of the two groups of components, related to their performances. The system 
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sensitivity is analyzed using adjoint method and for comparison the recalculation and forward 

method. The system response is assumed to be of form 

0
10

1
( )ft T

t
R t dt

T
π

=

=
= �  

Performing sensitivity analysis on this type of response using the developed code 

MARKOMAG-S/MCADJSEN, it is evaluated the relative importance of the performances for 

each group of components, i.e. {A, B, C}, and {D, E}, since the structure of the system is as in 

Fig.A1a. It is considered variations in system parameters, namely in the parameters 

, , , , , ,, , ,A B C A B C D E D Eλ µ λ µ , for the case with repairs, and in the parameters , , ,,A B C D Eλ λ , for the 

case without repairs. Since the components A, B, and C are in parallel to assure a certain level 

of redundancy against of only two for the components D, and E, the parameters of the first 

group of components are more important to be considered than the others, because their effect 

on system behavior is bigger, for the considered response. This fact should be confirmed by 

sensitivity analysis. 

Doing small variations in system parameters, the effect of each of these perturbations to 

system response is analyzed. In practice, one wants to increase MTTF and to decrease MTTR 

of components, so the perturbations has been made in this idea, namely the MTTF has been 

increased with a percent of 0.1, 1.0, 5.0, and 10.0, from its value, i.e. MTTF MTTFδ+  where 

{0.1% ,1% ,5% ,10% }MTTF MTTF MTTF MTTF MTTFδ = , and the MTTR  has been 

decreased with the percents from its values, i.e. MTTR MTTRδ− . 

For the case with repairs it is obtained the next sensitivities for the mission time T=500h. 

Perturbation in system’s parameters ( tf =500h.) 
 

Par. 

iα  

 
Perturbation. 

0
i

i

α
α
∆

(%) 

 
Nominal 

Value 
R0 

Relative 
sensitivity 

0

0. i

i

R
R
α

α
∆
∆

 

 
ASAP 

Rpred – R0 

 
 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .4843E-05 .4843E-05 .4843E-05 
-1% .4843E-04 .4844E-04 .4843E-04 
-5% .2422E-03 .2422E-03 .2422E-03 

 
λ A,B,C 

-10% 

.9834E+00 
 
 

-.4925E-02 
 
 .4843E-03 .4846E-03 .4843E-03 

0.1% .4794E-05 .4789E-05 .4795E-05 
1% .4794E-04 .4747E-04 .4795E-04 
5% .2397E-03 .2285E-03 .2397E-03 

 
µ A,B,C 

10% 

.9834E+00 
 
 

.4875E-02 
 
 .4794E-03 .4364E-03 .4794E-03 

-0.1% .9627E-06 .9627E-06 .9626E-06 
-1% .9627E-05 .9627E-05 .9627E-05 
-5% .4813E-04 .4813E-04 .4813E-04 

 
λ D,E 

-10% 

.9834E+00 
 
 

-.9789E-03 
 
 .9627E-04 .9627E-04 .9627E-04 

0.1% .9430E-06 .9420E-06 .9430E-06 
1% .9430E-05 .9338E-05 .9431E-05 
5% .4715E-04 .4495E-04 .4715E-04 

 
µ D,E 

10% 

.9834E+00 
 
 

.9589E-03 
 
 .9430E-04 .8589E-04 .9430E-04 
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The relative sensitivities in absolute value are used afterwards to rank the components 

importance for considered response.  

 
 

Imp. 

 
Par. 

iα  

Relative Sensitivity 
0

0. i

i

R
R
α

α
∆
∆

 

1 λ A,B,C .4925E-02 
2 µ A,B,C .4875E-02 
3 λ D,E .9789E-03 
4 µ D,E .9589E-03 

 

For the case without repairs the results are shown below, 

Perturbation in system’s parameters ( tf =500h.) 
 

Par. 

iα  

 
Perturbation. 

0
i

i

α
α
∆

(%) 

 
Nominal 

Value 
R0 

Relative 
sensitivity 

0

0. i

i

R
R
α

α
∆
∆

 

 
ASAP 

Rpred – R0 

 
 

Rrecal – R0 

 
FSAP 

Rpred – R0 

-0.1% .9279E-04 .9280E-04 .9278E-04 
-1% .9279E-03 .9292E-03 .9278E-03 
-5% .4639E-02 .4673E-02 .4639E-02 

 
λ A,B,C 

-10% 

.4988E+00 
 
 

-.1860E+00 
 
 .9279E-02 .9412E-02 .9278E-02 

 

-0.1% .9279E-05 .9279E-05 .9278E-05 
-1% .9279E-04 .9280E-04 .9278E-04 
-5% .4639E-03 .4643E-03 .4639E-03 

 
λ D,E 

-10% 

.4988E+00 
 
 

-.1860E-01 
 
 .9279E-03 .9292E-03 .9278E-03 

 
 
 

Imp. 

 
Par. 

iα  

Relative Sensitivity 
0

0. i

i

R
R
α

α
∆
∆

 

1 λ A,B,C .1860E+00 
2 λ D,E .1860E-01 

 

The results confirm the previous observation, but for more complex systems in which are 

involved tens or hundreds of components to do such observations are quite difficult. Using the 

sensitivity analysis, the relative importance of parameters for each component of considered 

response is ranked. Further, one can establish maintenance policies, or improve the system in 

its weak points by redundancy, or by replacement of the components with others with better 

performances (e.g. MTTF higher, MTTR lower) in order to get an imposed value of system 

response. These results may be used also for further uncertainity analysis of system response. 
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C. ASAP applied to Forward Kolmogorov ODE 

 

When the Markov chain is described by the forward Kolmogorov ordinary differential 

equations as in Eq.(2.21), and making similarities with the ASAP applied to backward 

equations (3.1) from Chapter 3, the system of equations is as follows 

[ ]

0 0

( )
( ) ( )

( )

dP t
P t t

dt
P t P

� = Θ�
�
� =�

          , for 0t ≥                                        (C.1) 

where the probability transition vector is a row vector of order n -the number of  states in 

Markov chain, i.e., 

1

( ) ( )
( ) [ ( ),..., ( )]

T

n

P t t

P t p t p t

≡ Π
=

 

and transition rate matrix  

[ ] [ ]( ) ( )
T

n n n n
t Q t

× ×
Θ ≡  

where the system responses is defined by Eq.(3.12) 

0
0( , ) ( , ) ,    0ft

t
R P F P dt t tΑ ≡ Α ≤ <�                                       (C.2) 

with 1{ ,..., }mα αΑ =  the set of system parameters included in transition rate matrix 

( ) ( )ij n n
t tθ

×
� �Θ = � 	 , 

1

( ) ( ),    , 1,..., ;    1,..., ,     ( ) ( )
n

ij k ii ij
i
i j

t f i j n k m t tθ α θ θ
=
≠

= = = = −
 . 

Then, the sensitivity DR  of R  to variations PδΓ ≡  and 1{ ,..., }mδ δα δαΑ =  is given by the 

G-differential 

{ }0 0 0 0

0 0
( , ; ; ) ( ; )ft

d i

d
DR P F dt DR DR

d ε
δ ε εδ

ε =
Α Γ Α ≡ Π + Γ Α + Α = +�              (C.3) 

where 

0
1

"direct effect" term
f

m t

d k
k k

F
DR dtδα

α=

� �∂≡ =
 �∂� �

�                                                                  (C.4) 

[ ]
0 00 0 1( , )

( ) ( ) "indirect effect" term
f f

nt tT
i it t

iP i

F F
DR t t dt

P pα

γ
=

� �∂ ∂� �≡ Γ = =
 �
 �∂ ∂� � � �

� �                          (C.5) 

with 
1

,...,
n

F F F
P p p

� �∂ ∂ ∂= 
 �∂ ∂ ∂� �
  row vector 



 145 

The variations Γ  and δΑ  are related each other through the G-differential of Eq.(C.1), 

namely 

[ ]0 0

0 0

( )
( ) ( ) ( )

( )

d t
t t P t

dt
t t

δ

δ

Γ� � �− Γ Θ = Θ� � 	�
�Γ = = Γ�

                                          (C.6) 

where superscript “0” denotes nominal values. 

The adjoint system to Eq.(C.6), following the ASAP as in section 3.2, is 

0 0

0

( , )

( )
( ) ( )

( ) 0

T

P

f

d t F
t t

dt P

t t
Α

� Λ ∂� �� �+ Λ Θ = −
 �� � 	 ∂� ��
�Λ = =�

                                  (C.7) 

In terms of the adjoint function [ ]1( ) ( ),..., ( )nt t tλ λΛ = , the indirect-effect term iDR  is given 

by 

[ ]
0

0
0 0( ) ( ) ( ) ( )ft T T

i t
DR P t t dt t tδ= Θ Λ + Γ Λ�                               (C.8) 

and the response sensitivity using forward Kolmogorov equations is as follows 

[ ]
0 0

0 0 0
0 0

1

( , ; ; ) ( ) ( ) ( ) ( )
f f

m t t T T
kt t

k k

F
DR P dt P t t dt t tδ δα δ

α=

� �∂Α Γ Α = + Θ Λ + Γ Λ
 �∂� �

� �         (C.9) 
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D. Description of the computer-code system 

QUEFT/MARKOMAG-S/MCADJSEN 

 

With this work, a computer code-system has been developed with the purposes to validate 

numerical solution of the adjoint sensitivity method applied to Markov chain. A description of 

the steps which are followed in order to asses the reliability and sensitivity for a physical 

system abstracted as a Fault-Tree has been presented in Section 3.4. The code system consists 

mainly in three separate modules, namely QUEFT (Qualitative Evaluator for Fault-Tree), 

MARKOMAG-S (Markov chain Matrix Generator and Solver), and MCADJSEN (Markov 

chain Adjoint Sensitivity Module). Each module is presented further during this section. The 

code is still under development and has been tested on x86 machine architecture under 

Linux\Windows OS, on Intel XEON cluster architecture with Linux OS, and IBM RS-6000 

with Unix AIX OS. It is written in standard Fortran 77 programming language with 

extensions. It must be mentioned that this code is not into a final stage, but developed enough 

for the purposes of this work. Further developments and modifications of this code system are 

possible. 

D.1 QUEFT module 

The QUEFT code finds the minimal-cut-sets (MCS) of a fault-tree for a physical system, 

using the Top-Down MOCUS algorithm as has been described in appendix A, and using the 

hypothesis from Section 2.2. These MCS are used further by MARKOMAG-S code to 

generate the associated Markov chain. The input file for the QUEFT code consists in 

enumeration of the basic events and the logic structure among these events (the fault tree). It 

also has to be provided, the failure/repair rates or failure probability distribution for each basic 

event.  

The structure of the input file for QUEFT code must be as follows: 

1. output_file_name 
    (max. char*20) 
2. *end 
3. basic_ev distrib_type parameter_1 parameter_2 
   (char*5)   (char*6)     (real*8)   (real*8) 
            <------ maximum 60 characters -----> 
4. *end 
5. gate_id  gate_type K_out_N no_predecessors predecessors_id 
   (char*5) (char*5)  (int*4)     (int*4)         (char*5) 
6. *end 
7. top_gate 
8. info 
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The input file consists of four main sections, each section being ended with an *end marker. 

First must be provided a name for the output file which will be used further as input file for 

MARKOMAG-S code. The name of the output file must be a maximum of 20 characters. The 

output file declaration is ended using the *end marker on the next line. Afterwards, (see the 

Section 3 in input file structure) must be written the basic components identifications 

(maximum 5 characters) with the distribution type (maximum 6 characters) and the 

distribution parameters (two times of real*8 numbers). In the actual state of the code 

development, the continuous distribution type may be exponential, Weibull, extreme value, or 

as mean time to failure\repair. The declaration of basic components must be ended with an 

*end marker. It has been considered the probability distributions of two parameters for 

Weibull and extreme value functions. These distributions considering the equivalent relations 

given in table 2.1 are as follows: 

Cumulative failure probability Hazard rate 
Exponential: ( ) tf t e λλ −=  ( )tλ λ=  

Extreme Value: ( ) /( ) /( ) /
tt ef t e e

β γβ γ γ
−− −=  ( ) /( ) /tt e β γλ γ−=  

Weibull: 1 ( / )( ) ( / ) tf t t e
ββ θβ θ − −=  

1( ) /t t β βλ β θ−=  

 

where 0t ≥ , and , , , ,λ β γ θ are distributions parameters that must be as follows in the input 

file: 

- Parameter1: λ Exponential distribution – scale parameter 

                      β Extreme value distribution – location parameter 

                      θ  Weibull distribution – scale parameter 

                       MTTF 

- Parameter 2: 0.0 for the exponential distribution 

                       γ Extreme value distribution – scale parameter 

                      β Weibull distribution – shape parameter 

                       MTTR 

The following section (see the Section 5 in input file structure) consists in definition of the 

structure of fault tree. First must be written the gate id (max. 5 characters) followed by its type 

(AND, OR, MAJ). Then must be introduced an integer*4 that has to be 0 if the gate type 

is AND or OR, or a number great than 0 if the gate type is a majority gate MAJ. In this last 

case, the number represents K out of N events which have to occur simultaneously in order 

that the event defined by the majority gate to occurs. The next integer*4 represents the 
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number of predecessors which the gate contains. For the majority gate, this number (N) must 

be greater than the precedent number (K). Further in row must be written the predecessors ids, 

each of them being maximum 5 characters, and according to the number written before. The 

predecessors could be components and gates ids as well. After all structure of the fault tree 

has been defined, the next line has to contain the *end marker. The TOP gate id for which 

the fault-tree is analyzed will be written on the next line. Further in the input file (see section 

8 in input file structure) could be written additional text containing information about the 

considered problem. The TOP gate id is the last field that is read by QUEFT code.  

An input file could be as in the 2-Out-of-3 example presented along this work. Its fault-tree 

(Figures 2.6, and A.1.b) consists in a TOP AND gate which has as predecessors two OR gates 

with the ids GO1 and GO2, respectively. Each OR gate has as predecessors a basic event and 

a 2-out-of-3 majority gate with three basic events.  

The input file of QUEFT for this problem should be as follows (note that the distributions 

name and the gates type must be written using small case as mtime, expon, extval, 

weibul, for distributions, and and, or, maj for gate types; the numerical values have been  

chosen only for illustration purposes). 

2out3.mcs 
*end 
A     mtime      200.0D+00   1.0D+00 
B     expon      2.0D+00     0.0 
C     extval     1.0D+00     1.0D-01 
D     weibul     0.2D+00     0.5 
E     mtime      1.0D+04     0.3D+01 
*end 
GM23  maj   2 3  A     B     C 
GO1   or    0 2  D     GM23 
GO2   or    0 2  E     GM23 
TOP   and   0 2  GO1   GO2 
*end 
TOP 
info: 
An input file example for QUEFT code (simple 2-Out-of-3 system) 
 

After a run of QUEFT code using this input file, the results will be written in the 

2out3.mcs file that will contain the basic components id and MCS which will be used 

further by MARKOMAG code to generate the Markov chain. The output file 2out3.mcs is 

as follows, 

5 
A     mtime      200.0D+00   1.0D+00 
B     expon      2.0D+00     0.0 
C     extval     1.0D+00     1.0D-01 
D     weibul     0.2D+00     0.5 
E     mtime      1.0D+04     0.3D+01 
4 
2 
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4 
6 
8 
4 
5 
1 
2 
1 
3 
2 
3 

 

The above output file structure is as follows: 

- the number of basic events,  

- the list of basic events id, distribution functions, rates/parameters 

- the number of MCS 

- the list of numbers of BE in each MCS 

- the list of BE order numbers for each MCS 

The numbers after the basic components id define the MCS of system, namely the 

combinations of basic events (usually the failure behavior of basic components) DE, AB, AC, 

BC. These are not important for the user as long as the MARKOMAG code use these data in 

generating the Markov chain algorithm. But, for checking the accuracy the meaning of the 

numbers are as follows: each basic event is counted and receive an index, i.e. A-1, B-2, C-3, 

D-4, and E-5, respectively. The first number in column after the list of basic events represents 

the number of MCS, i.e. 4. The next four numbers in column represent the identification for 

the MCS, i.e. 1st MCS has 2 basic events, the next MCS has 4-2=2 basic events, the next one 

has 6-4=2 basic events, and so on. The number of basic events in MCS is given by the 

difference between two successive numbers in column. Afterwards, each basic event is 

identifying following the basic components indexes, e.g. starting with the row 6 after the list 

of basic events, it is known that the 1st MCS has 2 basic events and these basic events are 

indexed with 4, and 5, which means that contains the basic events for the components D, and 

E, from row 8 it follows that the 2nd MCS have also two basic events indexed with 1, and 2, 

which correspond to the basic events A, and B, and so on. 

D.1.1 QUEFT options 
The QUEFT code can be run at this stage of development from command line only as 

follows: 

$ QUEFT.exe arguments 

It must be provided at least one argument that consists in the input file name, otherwise an 

error message is shown. An optional argument is -v which can be typed after the input file 
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name argument when the user wants to check the results. In this case some additional output 

files are generated. 

check0ft.txt – the list of basic events and the Fault Tree logic structure after the 

majority maj gates have been transformed in combinations of or and and gates; Fault Tree 

logic structure, each gate containing only 2 successors - automatic id for each new gate is 

assigned, 

check123nodup.txt - this file contains a message that says that no duplicated 

subtrees/events have been found, otherwise, the next three files are generated instead: 

check1dup.txt – the list of duplicated events and how many times appear into FT, 

check2nmcs.txt – the list of duplicated events and the number of MCS for each of them, 

check3mcsdup.txt – the list of MCS for duplicated events, 

check4mcs.txt - the list of MCS for the FT that have as top gate the event defined into 

the input file with basic events id, 

check5gfst.txt - the same list as before, but with basic events order numbers which 

represents the defined generic fault states for the next process of Markov chain construction. 

For instance, for the considered example assuming that the input file name is 2out3, the 

command line is as follows: 

$ QUEFT.exe 2out3 

or with additional files option for verification 

$ QUEFT.exe 2out3 -v 

In the 1st case will be generated only the output file, namely 2out3.mcs. In the second case 

the additional files check0ft.txt, check1dup.txt, check2nmcs.txt, 

check3mcsdup.txt, check4mcs.txt, check5gfst.txt are generated. These files 

are as follows. 

 

The file check0ft.txt 

 ---------------------------------------------- 
 basic events =  5 
 ---------------------------------------------- 
 A     
 B     
 C     
 D     
 E     
 ---------------------------------------------- 
 top gate considered: TOP   
 ---------------------------------------------- 
 no. of gates in FT after MAJ transf.= 7 
 ---------------------------------------------- 
 TOP   and   G01   G02    
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 G01   or    D     GM     
 G02   or    GM    E      
 GM    or     1004  1005  1006  
  1004 and   A     B      
  1005 and   A     C      
  1006 and   B     C      
 ---------------------------------------------- 
 no. of gates in FT with only 2 pred.= 8 
 ---------------------------------------------- 
 TOP   and   G01   G02   
 G01   or    D     GM    
 G02   or    GM    E     
 GM    or     1004 10005 
 10005 or     1005  1006 
  1004 and   A     B     
  1005 and   A     C     
  1006 and   B     C     
 --end-of-FT-transf---------------------------- 
 

The file check1dup.txt 

 no. of duplicated events: 1 
 GM      2 

 

The file check2nmcs.txt 

 top  no.MCS 
 GM    3 

 

The file check3mcsdup.txt 

 2 A     B      
 2 A     C      
 2 B     C      

 

The file check4mcs.txt 

 -Minimal-Cut-Sets-  4 -for-TOP-function- TOP   - 
 2 D     E      
 2 A     B      
 2 A     C      
 2 B     C      
 --MCS-end-- 

 

The file check5gfst.txt 

 4 
 2  4  5  
 2  1  2  
 2  1  3  
 2  2  3 

 

Further, as it has been mentioned before, only the output file 2out3.mcs is necessary for 

the next module MARKOMAG-S. 
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D.2 MARKOMAG-S module 

The MARKOMAG code represents the core of the code-system. It generates the Markov 

chain for the considered problem using the data from the QUEFT code, builds the 

Kolmogorov system of ordinary differential equations for the Markov chain (3.68), solves this 

ODE system using the integrated VODPK ODE solver, builds and solves using the same 

solver the forward and adjoint sensitivity system of equations of the original Kolmogorov 

equations (3.69 and 3.70). Afterwards, depending on the chosen options, the computation of 

the defined system response is performed using the solution of original ODE system, or the 

computation of response sensitivity using the solution of forward sensitivity system. If the 

adjoint method is chosen, the additional data files comprising the adjoint functions and 

derivatives are generated to be used with the next module MCADJSEN.  

Together with the output file of QUEFT module, the MARKOMAG-S module is requesting 

also a configuration file, namely config.mc where the additional parameters must be given 

in order to perform the reliability/sensitivity analysis. The file config.mc looks currently as 

follows, where the inputs are briefly explained  

**Configuration file for MARKOMAG - MC generator/solver 
*MCgenerator options 
0        <- markov chain truncation level (integer*4) 0 - no truncation 
mcmout   <- option to save the MCMatrix 'mcmout' 
mcmin    <- option to use the MCMatrix generated previous 'mcmin' 
*MCsolver options 
0.0d0    <- initial-time for solver (real*8) 
500.0d0  <- final-time for solver (real*8) 
1.0d-0   <- time-step for solver (real*8) 
1.0D-15  <- tolerance for vector solution (real*8) 
5.0d+04  <- maximum no. of internal steps in solver (real*8>500) 
norm     <- normalization solution vector - 'norm'  
*Sensitivity analysis options 
1        <- responses type (integer*4) 1, 2, ... 
0.0      <- variation in initial conditions (%) (real*8) 
1  2     <- the indexes of the states that are varied (2 x integer*4) 
fwdss    <- solve the FSE - 'fwdss' (character*5) /or recalculate 'recal' 
nc5288   <- integration method for response - closed Newton-Cotes formulae  

 

This file contains three main parts, namely a part where are provided the options for the 

Markov chain construction algorithm, a 2nd part where are the options for the ODE solver, and 

a last part with options for sensitivity analysis using either the recalculation method or the 

forward sensitivity method. The 1st two lines, the 6th one, and the 13th line, starting with an 

asterisk are comment lines and are not read by the program.  

In Markov chain options, the truncation level represents the level of markov chain as it has 

been explained in Section 2.2 during the automated generation algorithm. The next two 

options are optional and they cannot exist simultaneously. The mcmout option is used to save 
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the Markov chain matrix into a binary file 03mcm.bin for further calculations, in situations 

in which the program fails after Markov chain generation, or in situations of changing 

parameters, as long as the saved matrix does contain the symbolic form of transition rates , i.e. 

the transition rate matrix does not contain any value but only indexes of rows, columns and 

associated indexes of transition rates, without the main diagonal which is computed 

afterwards when the numerical values are introduced. Also a binary file 03failst.bin 

containing the indexes of the fail states is generated. The mcmin option can be used only after 

the files 03mcm.bin containing the transition rate matrix and 03failst.bin containing 

the fail states indexes, have been generated before for the considered problem. These options 

have been considered for large Markov chains where the generation time of the transition 

matrix can be large. 

In solver options the initial time is the time from which the analysis is started and for which 

does exist an initial state probability vector. The final time represents the end of mission time 

for considered problem. If norm option is active, then the normalization of vector solution at 

each time step is performed. Usually this option should not be used, but it has been introduced 

for special cases when the numerical difficulties for solving the Kolmogorov equations occur 

and the conservation law of probability is not satisfied. 

The sensitivity analysis options part contains five fields and it is used for sensitivity studies 

using the recalculation and forward sensitivity method depending on which option have been 

chosen into the field four of this section, namely recal for recalculation or fwdss for 

forward sensitivity method. The 1st field of the sensitivity section contains the type response 

for which the sensitivity to variation in input parameters is analyzed. It has been implemented 

two types of responses for which the sensitivity studies has been performed along this work, 

namely the interval availability 1R , and the availability at the end of the considered mission 

time 2R  which for ft  large ( ft → ∞ ) is the steady-state availability, as follows, 

Response type 
 
1 

0
1 1

1
( )

ft

t
f

R t dt
t

π= �  

 
2 

0
2 1 1( ) ( ) ( )ft

f ft
R t t t dt tπ δ π= − =�  

 

where 0t  is the initial-time and ft  is the final-time for problem, 1( )tπ  is the probability that 

the system is in the state with all components operational, and δ  represents the Dirac-delta 

function. 
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The 2nd field contains the percentage of the variations in initial state probability vector. 

Usually but not necessary the initial state probability vector is considered of the form 

[1,0,...,0] . The next field contains the indexes of two states in which are perturbed the initial 

conditions, namely from the first state a percentage from its value is substracted and added to 

the state with the index 2, in order to keep up the probability conservation law. 

The last field in config.mc file contains the numerical quadrature method used in response 

or in response sensitivity evaluation. Has been implemented the closed Newton-cotes 

formulae as follows, 

Closed Newton-Cotes quadrature formula 
 
nc12 ( )1

0

2
0 1( ) ( )

2

t

t

h
f t dt f f O h= + +�  

 
nc13 ( )2

0

4
0 1 2( ) 4 ( )

3

t

t

h
f t dt f f f O h= + + +�  

 
nc38 ( )3

0

4
0 1 2 3

3
( ) 3 3 ( )

8

t

t

h
f t dt f f f f O h= + + + +�  

 
nc245 ( )4

0

6
0 1 2 3 4

2
( ) 7 32 12 32 7 ( )

45

t

t

h
f t dt f f f f f O h= + + + + +�  

 
nc5288 ( )5

0

6
0 1 2 3 4 5

5
( ) 19 75 50 50 75 19 ( )

288

t

t

h
f t dt f f f f f f O h= + + + + + +�  

 

where h  is the time-step, and ( )xO h  is the error’s order of the quadrature formula. It has been 

used the notation if  for ( )if t . 

If either recal or fwdss options are selected, an additional input file must be provided. 

This file should contain the percentage variations in input parameters in order to avoid the 

alteration of the base-case values. The structure of this file is similar as for the input file (i.e. 

the output file given by QUEFT). The name of this file must be rec.{inputfilename} 

if recal option is choose, and var.{inputfilename} for fwdss option, where 

{inputfilename} is the name of file given by QUEFT. For instance, for the considered 

example these files will be as follows, depending what option has been chosen. 
 

The file rec.2out3.mcs: 

 5 
 A        mtime  0.1D+0   0.0                                       
 B        mtime  0.0D+0   0.0                                       
 C        mtime  0.0D+0   0.0                                       
 D        mtime  0.0D+0   0.0                                       
 E        mtime  0.0D+0   0.0                                       

 

The file var.2out3.mcs: 
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 5 
 A        mtime -0.1D+0   0.0                                       
 B        mtime  0.0D+0   0.0                                       
 C        mtime  0.0D+0   0.0                                       
 D        mtime  0.0D+0   0.0                                       
 E        mtime  0.0D+0   0.0                                       

 

In the above example has been performed a variation in MTTF for the component A with 

0.1% of its nominal value for recalculations, and in 1/ MTTFλ =  with -0.1% of its nominal 

value for forward sensitivity case. Note that for this case the first file has variations in mean 

time to failure/repair, and in the second file the variations are in transfer rates, for the same 

input file. This is the explanation for which it is the opposite sign for the same variation of the 

parameter. If none of the options above is selected, then these files are not required by the 

program.  

The modularized structure of this code-system is advantageous if for the same fault-tree the 

base-case values of system parameters are changed. In this case the MCS have been computed 

once and the new values should be written only in the output file generated by QUEFT, 

without running the QUEFT code again. 

 

D.2.1 MARKOMAG-S options 

The call of MARKOMAG-S code from command line is as follows, 

$ MARKOMAG.exe arguments 

where the arguments are the input file (i.e. the output file from QUEFT), and some other 

optional arguments. It must be provided at least one argument, namely the input file. The 

optional arguments in the command line are 

-v for additional checking files at different steps in analysis, 

-r for the case in which one analyses systems with repairs, 

-s for the case in which the adjoint analysis is chosen. 

If either none of the optional arguments or –r argument has been chosen, at the end of the run 

of this module, the next ASCII files are generated. 

 

00trsolhom.dat - file containing the state probabilities distribution for homogeneous 

case 

00trsolnoh.dat - file containing the state probabilities distribution for 

nonhomogeneous case 
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01unavaila.dat - file containing the sum of down-states probabilities 

01unavaila.dat - file containing the sum of up-states probabilities 

 

 

If the optional argument –v has been given, then the additional files are generated 

02checkmcm.dat - check file that contains the transition rates matrix in coordinate 
format, once for homogeneous case and at each time step for the 
nonhomogeneous case 

vizmcm.mtx - file which can be used to visualize the sparse transition rate matrix 
of the original equations of Markov chain, using 
OCTAVE/GNUPlot or other packages as MATLAB, MatView, 
mtxView 

 

If in configuration file config.mc the option fwdss has been chosen, will be generated 

also the next files 

02checkvar.dat - check file that contains the variations in the system's parameters for 
forward sensitivity system 

00fwdsp.dat - file containing the transient solution for the forward sensitivity 
system when are variations in system's parameters 

00fwdic.dat - file containing the transient solution for the forward sensitivity 
system when are variations in initial probability state vector 

 

If sensitivity analysis using ASAP have been chosen, i.e. the optional argument -a, then the 

next ASCII files are generated: 

00trshomadj.dat - file containing the transient solution for the adjoint sensitivity 
system in homogeneous case 

00trsnohadj.dat - file containing the transient solution for the adjoint sensitivity 
system in nonhomogeneous case 

02checkdfda.dat - check file that contains the numerical values of derivatives 
dF/d(alpha) matrix in coordinate format used in sensitivity response 
evaluation using ASAP, see the Eqs.(3.74), (3.75) 

 

For this option, the next binary files are generated as well 

00adjfun.bin - file containing the transient solution of the adjoint sensitivity 
system 

00derivdfda.bin - file containing the derivative dF/d(alpha) matrix, Eq.(3.75) 

 

The system response for the base case or for recalculation method is written in the file 

10resp.dat, and the response variation for the sensitivity analysis using FSAP is written in 

10varrespfwd.dat.  
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The response sensitivity using recalculations is evaluated running once the code with the 

nominal values, without recal option in configuration file. Afterwards, the system response 

evaluation for base-case is obtained. Choosing recal option, writing in 

rec.{inputfilename} the percent of variation for the interested parameter and running 

the code again, the evaluation of perturbed response is obtained. The difference between 

perturbed response and the response in base-case give the response sensitivity to variation in 

that parameter. In order to get the response sensitivity at perturbation in parameters using the 

FSAP, one must choose the fwdss option in configuration file, and to write the perturbation 

of interested parameter in var.{inputfilename}. This value should be equal with the 

response sensitivity evaluated using recalculation method. 

For evaluation of the response sensitivities using ASAP the last two binary files are used in 

the next module MCADJSEN, namely the files containing the transient solution of the adjoint 

sensitivity system and the files containing the derivatives with respect to system’s parameters. 

 

D.3 MCADJSEN module 

This last module represents the implementation of the response sensitivity formula using 

adjoint functions given by Eq.(3.74). The adjoint functions and the derivatives given by 

Eq.(3.75) have been evaluated using ASAP by MARKOMAG code and are available into the 

binary files 00adjfun.bin, and 00derivdfda.bin, respectively. These files can be 

used as library files for the considered problem for a given response. They must be computed 

again once the response is changed. To keep the consistency between the input data the same 

configuration file config.mc from MARKOMAG-S module is used together with above 

binary files and the file given by QUEFT. An additional file must be provided, namely 

var.{inputfilename} in which are written the variations in all input parameters. For 

instance for the 2-out-of-3 example the file var.2out3.mcs for MCADJSEN module is as 

below, where it has been considered 0.1% variations in all input parameters 

 5 
 A        mtime  -1.0D-1   1.0D-1                                    
 B        mtime  -1.0D-1   1.0D-1                                    
 C        mtime  -1.0D-1   1.0D-1                                    
 D        mtime  -1.0D-1   1.0D-1                                    
 E        mtime  -1.0D-1   1.0D-1       

 

The code is called from command line as follows 

$ MCADJSEN.exe argument 
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where the argument is the file given by QUEFT and which has been used with 

MARKOMAG-S as well. After the code is run, the all response sensitivities are evaluated and 

written in the 10sensit.dat file. For instance, for the considered example assuming the 

input parameters given as in the case with reparation from Appendix B, with the variation file 

as above, the 10sensit.dat file looks as follows, 

Rpred-R0(   1) = 0.48432805312977E-05 
Rpred-R0(   2) = 0.48432805312977E-05 
Rpred-R0(   3) = 0.48432805312977E-05 
Rpred-R0(   4) = 0.96265268416298E-06 
Rpred-R0(   5) = 0.96265268416298E-06 
Rpred-R0(   6) = 0.47942014594720E-05 
Rpred-R0(   7) = 0.47942014594720E-05 
Rpred-R0(   8) = 0.47942014594720E-05 
Rpred-R0(   9) = 0.94297018538473E-06 
Rpred-R0(  10) = 0.94297018538473E-06 
 

where the first five sensitivities are for variations in first parameter of each component in 

considered order and the next sensitivities are for perturbations in the second parameter of 

components. 

For other variations in system parameters should be modified only the values in 

var.{inputfilename} file, and the module to be run again.  

For the variations in initial state vector, all the values in var.{inputfilename} file must 

be set to zero, and the perturbations entered in configuration file config.mc as it has been 

described in the previous section. 

The evaluated sensitivities are used further to compute the relative sensitivities of system’s 

response to variations in system’s parameters and based on their absolute value to rank the 

importance of each parameter in affecting the system’s response. 

 

Until this stage the complete analysis for homogeneous Markov chain can be performed using 

the new developed code. It can be performed a complete analysis for the nonhomogeneous 

case for the systems without repairable/replaceable components only. The nonhomogeneous 

case considering repairs is planed for future development as well as a graphic user interface in 

which the management of input and output files between modules to be automated. 
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