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3-balls-on-3-balls test for ceramic disks: A finite element study 

Abstract: 
In the usual tests to determine strength or lifetime under tension, bending or compres-
sion loading, a uniaxial stress state is present. However, in components very often 
multiaxial stresses occur. But also under uniaxial external loading, multiaxial stresses 
are possible, for instance, in notched components. Common tests are bending tests on 
thin circular disks.  
Following the description of conventional tests, a recently developed test using 3 load-
ing and 3 supporting balls shall be addressed. For this test, the maximum principal 
stresses and the biaxiality are determined for a wide range of geometries by using the 
finite element method.  
 

Eine Vorrichtung zur Bestimmung der Festigkeit von keramischen 
Scheibenproben: Finite Elemente-Berechnungen  

Kurzfassung: 
Bei der mechanischen Festigkeitscharakterisierung von keramischen Werkstoffen im 
Zug-, Biege- und Druckversuch wird das Versagen unter einachsiger Belastung ge-
prüft. In realen Bauteilen treten jedoch meist mehrachsige Spannungszustände auf. 
Deshalb wurden schon früh experimentelle Methoden entwickelt, um das Festigkeits-
verhalten unter mehrachsigen Spannungszuständen in kreisförmigen Scheiben zu 
bestimmen. Nach einer Beschreibung der bisherigen Methoden wird auf ein neues 
Verfahren mit drei Belastungs- und drei Unterstützungskugeln eingegangen. Durch 
Finite Elemente-Rechnungen werden die maximalen Hauptspannungen und die Meh-
rachsigkeit in diesem Versuch berechnet.  
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1. Introduction 

Conventional strength tests describe the failure behaviour of materials under simple stress 
conditions, in most cases, uniaxial stresses. In practical applications, however, mechanical 
loading often leads to multiaxial stresses. 
But also under uniaxial external, loading multiaxial stresses are possible, for instance, in 
notched components. Rotating structures and components under internal pressure exhibit 
multiaxial stresses. Also thermal stresses generally are multiaxial and on surfaces mostly 
equibiaxial. 
Mechanical strength characterisation of ceramic materials (for an overview see [1]) is mostly 
carried out by uniaxial tests, e.g. 

• Tensile tests [2,3] 

• Compression tests on cylindrical specimens [4] 

• Compression tests on hollow cylinders [5,6] 

• Bending tests [7-9] 

• Circular ring test [10,11] 

• C-ring test [12,13] 

In real components, however, usually multiaxial stress states appear. Therefore, experimental 
methods were developed quite early to determine the strength and deformation behaviour 
under multiaxial stress conditions:  

• Ring-on-ring test (with its modifications) [14-18] 

• Sphere-on-ring test [19-21] 

• Ball-on-3-balls test [22-24] 

• Brazilian disk test [25-33] 

• Thermal shock test [34,35] 

• Pressurised tube test [36-39] 

• Torsion test 

Most of these strength tests require high-quality specimen surfaces (except for the ball-on-3-
balls and the thermal shock tests). It is the aim of this report to analyse a simple multiaxial 
strength test that allows testing of specimens in the “as fired” state. First, the ring-on-ring test 
with modifications shall be illustrated in detail. Then, a new test with 6 balls shall be 
addressed [40]. The main part of the report shall then deal with the determination of stresses 
for a wide range of geometries.  
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2. Biaxial bending tests on disks 

2.1 Ring-on-ring test 
The principle procedure in using the concentric ring-on-ring test is illustrated in Fig. 1 (see 
e.g. [14]-[18]). A disc-shaped specimen is supported by a ring and loaded by a concentric ring 
of smaller diameter. 
The ring-on-ring test has been extensively used for strength measurements on glass and has 
been standardized. Whilst bending bars exhibit additional flaws at the edges, generated by the 
machining process, the edges of a circular disc are nearly free of stress and will not contribute 
to failure. 

 
Loading ring 

Supporting ring 

Ceramic disk 

Top view 

 

Loading force 

Fig. 1 Ring-on-ring test 

This test device provides for a well-defined stress state only under ideal loading conditions. 
For this, however, highly plane-parallel disk-shaped specimens are required. If this is not the 
case, a 3-point contact between ring and specimen will occur at the beginning of the test. Only 
at high loads will a continuous contact line develop, resulting in the correct stress distribution.  

2.2 Ring-on-bearing ring test 

In a modification of the ring-on-ring test, the supporting ring is replaced by a ball bearing ring 
(Fig. 2). This ensures reduced friction and simplified supporting conditions. Stress 
concentrations due to the Hertzian contacts are not of high importance, because the stresses 
superimposed by bending moments disappear in the supporting region. 
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 Loading force 

Loading ring 

Supporting  
bearing ring 

Ceramic disk 

Top view 

 
Fig. 2 Ring-on-bearing ring test 

2.3 Ball-on-ring test 
In order to avoid undefined supporting conditions, the ball-on-ring test was developed. In this 
test, a disk specimen is supported by a ring and loaded centrally with a ball (see Fig. 3). This 
test configuration was proposed by Shetty et al. [19][20]. To reduce friction effects between 
disk and supporting ring, the latter is sometimes replaced by a ball bearing ring (Fig. 4) as 
used in Section 2.2.  

 

Disk 

 
Fig. 3 Ball-on- ring test 
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Disk 

 
Fig. 4 Ball-on-bearing ring test 

2.4 Ball-on-3-balls test 
Another modification is the ball-on-3-balls configuration. Here, the outer ring is also replaced 
by 3 balls. This results in statically well-defined conditions. This test is described in [22]. 
Extensive computations of stress state are given in [23]. Errors resulting from misalignments 
and test specimen imperfections are discussed in [24].  

 

Disk 

 
Fig. 5 Ball-on-3-balls test 

 

 4



3. A new 3-balls-on-3-balls test 

As already mentioned before, the ball-on-3-balls test yields statically well-defined mechanical 
boundary conditions. A disadvantage of this test configuration, however, is the relatively 
small effective surface tested. Due to the strongly decreasing stresses with increasing distance 
from the disk centre, the plate regions at larger distance hardly contribute to the failure 
behaviour.  
This was the main reason why the test was modified [40] by reducing the influence of the 
point-like stress spots and significantly increasing the effective surface tested. As shown in 
Fig. 6, the outer supporting and the inner loading forces are applied by 3 spheres each. By this 
configuration, mechanically well-defined supporting conditions as well as well-defined 
loading conditions are achieved.  

 

Disk 
(2) 

(1) 

 
Fig. 6 3-balls-on-3-balls test: Loading and supporting spheres in line.  

In Fig. 6, the loading and supporting spheres are „in line“, i.e. the sphere centres are located at 
the same polar angle. Figure 7 shows the case of the inner and outer spheres being shifted by 
an angle of 60°. 
Figure 8 gives a possible design. The loading (1) and supporting balls (2) can move in radial 
grooves (3) in the two metal plates (4,5) with a small clearance in width direction. For the 
outer support rolls to move freely to outside during loading, they are pushed to the inner edge 
by soft springs (6) before the test. On the other hand, the inner loading spheres can move 
freely from the outer edge to the inside. Besides the spring solution represented in Fig. 8, also 
a magnet solution may be applied, as it is often done in bend tests. For this, the balls must be 
made of a magnetisable material (e.g. magnetisable steel). 
The exact orientation of the two metal plates (4,5) relative to each other and, hence, the exact 
location of the supporting and loading balls relative to each other is ensured by two metal pins 
(7) in the bore holes (8). These pins can be removed before load application in a testing 
machine. 
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Disk 

 
Fig. 7 3-balls-on-3-balls test: Loading and supporting spheres in line under an angle of 60°. 

Figure 9 illustrates simplified versions of the 3-balls-on-3-balls test (9a) and the ball-on-3-
balls test (9b). Two screws (only one shown in Fig. 9a) ensure centric positioning of the disk, 
resulting in a constant overhang along its circumference.    

 

 

Disk 

120° 

(1) 

(3) (6) (4) 

(8) (8) 
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Disk 

(2) 

(6) 

(3) 

(5) 

 
 

Disk 

Load  F

(4) 

(5) 

(7,8) 

 
Fig. 8 A possible design for the test, including all degrees of freedom (free movement of the balls).  

 

Disk 

Load  F
a) 
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Load  F

Disk 

b) 

 
Fig. 9 Simplified test arrangements for the 3-balls-on-3-balls test (a) and the ball-on-3-balls test (b). 

 8



4. Finite element computations  

Figure 10 shows the disk of radius R and the sphere location circles R1 (loading spheres) and 
R2 (supporting spheres). The ratio of outer to inner sphere circles was chosen to be R1/R2=2. 

Disk 

R2 R 

Disk 

R1 

R 

 
Fig. 10 Definition of the relevant radii R, R1, and R2. 

The finite element net is presented in Fig. 11. It may be used for considering the in line sphere 
application as well as 60° rotation of the inner spheres. In addition, the case of a “ball on 3 
balls” can be modelled. The disk was realised by a finite element net of about 24100 elements 
with 110400 nodes. The computations were carried out with ABAQUS version 6.3. For all FE 
computations, the radius of the circle on which the inner spheres are located was chosen 
arbitrarily as R1=1. 

 
Fig. 11 Finite element net. 
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4.1 Loading and supporting balls in line 

4.1.1 Contour plots for the maximum principal stress 

The maximum principal stress is represented in Figs. 12 and 13 for the thicknesses t/R1=0.1 
and 0.4 and ν=0.25. The stress levels are scaled according to σ1t2/F. 

 
Fig. 12 Maximum principal stress for t/R1=0.1 and ν=0.25 (blue σ1t2/F=0, green =0.5, red=1). 

 
Fig. 13 Maximum principal stress for t/R1=0.4 and ν=0.25 (blue σ1t2/F=0, green =0.5, red=1). 
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Figures 14 and 15 show the ratio of the second (not disappearing) principal stress to the 
maximum principal stress. It clearly indicates the biaxial stress state with a small variation in 
the central zone of the disk only. The value “1” represents an equibiaxial stress state. In this 
context, it should be noted that one of the principal stresses must disappear at the (free) disk 
surface. 

 
Fig. 14 Stress biaxiality at the surface for t/R1=0.1 and ν=0.25 (blue σ2/σ1=0, green=0.5, red=1). 

 

 
Fig. 15 Stress biaxiality at the surface for t/R1=0.4 and ν=0.25 (blue σ2/σ1=0, green=0.5, red=1). 
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4.1.2 Influence of the contact area of loading forces 

Figure 16 gives the stresses for varying Hertzian contact areas. The Hertzian contact radius 
was chosen to be a=0 (point forces), a=0.01R1, and a=0.003R1. Only in regions very close to 
the contact centres can slight differences in stresses be found (see Fig. 16b). Due to the 
reduced importance of point loads in the 3-balls-on-3-balls test, the small effects near the 
contact areas may be neglected. All remaining results were obtained for a Hertzian contact 
radius of a=0.003 R1. 

R1 

r 
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Fig. 16 Influence of the load application area on maximum principal stress.  

4.1.3 Influence of disk thickness 

The influence of disk thickness t on the stresses is shown in Fig. 17. General proportionality 
σ∝1/t2 can be concluded from the coincidence of the normalised stresses in the form of σt2/F 
at larger distance from the contact zones. 
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R2/R1=2 
σ1t2 
  F 

σ1t2 

  F 

-3 -2 -1 0 1 2
0 

0.2 
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1 
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Fig. 17 Maximum principal stress: Influence of specimen thickness.  
 
4.1.4 Influence of Poisson’s ratio 
Figures 18-20 show the effect of Poisson’s ratio ν. The maximum principal stress increases 
slightly with increasing ν. 

R2/R1=2 σ1t2 
  F 

σ1t2 

  F 

-2 -1 0 1 2
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

t/R1=0.1 

ν=0.2-0.3 

R/R1=2.25 

0.6 0.8 1 1.2 

0.6

0.8

1

1.2

r/R1 

R2/R1=2

t/R1=0.1

R/R1=2.25

ν=0.20.25

0.3

r/R1 
 

Fig. 18 Influence of Poisson’s ratio on the maximum principal stress for t/R1=0.1. 
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ν=0.2-0.3 

R2/R1=2 

ν=0.2
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Fig. 19 Influence of Poisson’s ratio on the maximum principal stress for t/R1=0.4.  
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Fig. 20 Maximum values of the maximum principal stress as a function of Poisson’s ratio ν. 

For a disk with R/r1=2.25 under “sphere-in-line” conditions, the FE results can be expressed 
by 

 νσ
448.0

1

196.0

1

2

max,1 274.0656.0
−−
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R
t

R
t

F
t  (1) 
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4.1.5 Influence of disk diameter and overhang 

The disk radius R was varied within 2.25≤R/R1≤3 defining the overhang. The influence of this 
parameter is visible from Figs. 21 and 22. Figure 22 and Table 4.1 list all results obtained for 
the maximum principal stress.  
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Fig. 21 Influence of the overhang on maximum principal stress. 
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Fig. 22 Maximum values of the maximum principal stress as a function of the plate thickness t and 

Poisson’s ratio ν. 

t/R1 R/R1 ν=0.2 ν=0.25 ν=0.3
0.1 2.25 1.185 1.222 1.262

 2.5 1.137 1.174 1.215
 3 1.082 1.121 1.164

0.2 2.25 1.009 1.036 1.065
 2.5 0.959 0.987 1.017
 3 0.905 0.934 0.965

0.4 2.25 0.868 0.889 0.909
 2.5 0.815 0.836 0.857
 3 0.758 0.780 0.803

Table 4.1 Maximum values of σ1t2/F. 

4.2 Stresses for a ball-on-3-balls arrangement 

The stress state of the ball-on-3-balls test was studied extensively by Börger et al.[23]. Some 
own results are given in Figs. 23 and 24 for a comparison of stresses and stress ratios with the 
results of a 3-balls-on-3-balls test. 
From Fig. 23a, it can be concluded that the stresses in the 3-balls-on-3-balls test are 
significantly reduced compared to those occurring in the ball-on-3-balls test. The reason is 
that in the 3-balls-on-3-balls test total load is divided up into 3 partial loads.  
More homogeneous stress distributions and biaxiality ratios are obvious (cf. e.g. Fig. 24b with 
Fig. 15). 
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Fig. 23 a) Maximum principal stress in a ball-on-3-balls test compared with the results of a 3-balls-on-

3-balls test (balls in line), b) normalised representation. 
 
 

 
Fig. 24 Contour plots of the stresses in a ball-on-3-balls test; left: Maximum principal stress (blue 

σ1t2/F=0, green =0.5, red=1), right: Biaxiality ratio (blue σ2/σ1=0, green=0.5, red=1). 
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4.3 Loading and supporting balls under an angle of 60° 

Figures 25-30 represent the stresses in the case of the inner balls being rotated by 60°.  

 
Fig. 25 Maximum principal stress for a disk of t/R1=0.1 (upper contour plot) and t/R1=0.4 (lower plot) 

at ν=0.25 (blue σ1t2/F=0, green =0.5, red=1). 
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Fig. 26 Stress biaxiality at the surface for a disk with t/R1=0.1 (upper contour plot) and t/R1=0.4 (lower 

plot) at ν=0.25 (blue σ2/σ1=0, green=0.5, red=1). 
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Fig. 28 Maximum principal stress: Influence of Poisson’s ratio.  
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Fig. 29 Maximum principal stress: Influence of the overhang.  
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t/R1 R/R1 ν=0.2 ν=0.25 ν=0.3
0.1 2.25 1.344 1.377 1.413

 2.5 1.283 1.316 1.353
 3 1.219 1.254 1.293

0.2 2.25 1.193 1.215 1.240
 2.5 1.131 1.154 1.178
 3 1.067 1.091 1.118

0.4 2.25 1.055 1.068 1.087
 2.5 0.991 1.007 1.025
 3 0.925 0.943 0.962

Table 4.2 Maximum values of σ1t2/F. 

For R/R1=2.25 and 0.1≤t/R1≤0.4, the maximum stress values can be approximated by 

 νσ
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