Human bony labyrinth is an indicator of population history and dispersal from Africa.

Details

Ressource 1Download: 1717873115.full.pdf (955.75 [Ko])
State: Public
Version: Final published version
Serval ID
serval:BIB_00B4361FE936
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Human bony labyrinth is an indicator of population history and dispersal from Africa.
Journal
Proceedings of the National Academy of Sciences of the United States of America
Author(s)
Ponce de León M.S., Koesbardiati T., Weissmann J.D., Milella M., Reyna-Blanco C.S., Suwa G., Kondo O., Malaspinas A.S., White T.D., Zollikofer CPE
ISSN
1091-6490 (Electronic)
ISSN-L
0027-8424
Publication state
Published
Issued date
2018
Peer-reviewed
Oui
Volume
115
Number
16
Pages
4128-4133
Language
english
Abstract
The dispersal of modern humans from Africa is now well documented with genetic data that track population history, as well as gene flow between populations. Phenetic skeletal data, such as cranial and pelvic morphologies, also exhibit a dispersal-from-Africa signal, which, however, tends to be blurred by the effects of local adaptation and in vivo phenotypic plasticity, and that is often deteriorated by postmortem damage to skeletal remains. These complexities raise the question of which skeletal structures most effectively track neutral population history. The cavity system of the inner ear (the so-called bony labyrinth) is a good candidate structure for such analyses. It is already fully formed by birth, which minimizes postnatal phenotypic plasticity, and it is generally well preserved in archaeological samples. Here we use morphometric data of the bony labyrinth to show that it is a surprisingly good marker of the global dispersal of modern humans from Africa. Labyrinthine morphology tracks genetic distances and geography in accordance with an isolation-by-distance model with dispersal from Africa. Our data further indicate that the neutral-like pattern of variation is compatible with stabilizing selection on labyrinth morphology. Given the increasingly important role of the petrous bone for ancient DNA recovery from archaeological specimens, we encourage researchers to acquire 3D morphological data of the inner ear structures before any invasive sampling. Such data will constitute an important archive of phenotypic variation in present and past populations, and will permit individual-based genotype-phenotype comparisons.

Keywords
bony labyrinth, human dispersals, morphometrics, stabilizing selection
Pubmed
Web of science
Open Access
Yes
Create date
12/04/2018 17:52
Last modification date
20/08/2019 13:23
Usage data