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Preface

Current advances in multiscale modelling of materials promise scientific and practical
benefits including simple physical interpretation based on analysis of the underlying sub-
models, as well as an improved computational scaling and acceptable amount of produced
data, which make the simulation of large and complex real-world materials feasible. These
developments give rise to an unprecedented predictive power of multiscale models allow-
ing a reliable computation of macroscopic materials properties from first principles with
sufficient accuracy. However, the development of methods which efficiently couple multi-
ple scales in materials science is still a challenge, since (i) proper coupling schemes have to
be developed which respect the physical and chemical descriptions on the different scales;
(ii) boundary conditions for e.g. mechanics, thermodynamics or hydrodynamics have to
be respected and (iii) error control and numerical stability have to be guaranteed. In ad-
dition to these physical and numerical requirements, multiscale modelling poses serious
challenges to the practical realization of coupled applications due to the complex orga-
nization of interfaces between the sub-models and heterogeneity of computational envi-
ronments. Therefore, both integrative and coordination actions, such as the Max-Planck
Initiative Multiscale Materials Modelling of Condensed Matter, FP7 projects MAPPER
and MMM@HPC, or the CECAM node MM1P Multiscale Modelling from First Princi-
ples, have been initiated which bundle the expertise of different groups (in fields such as
quantum chemistry, molecular dynamics, coarse-grained modelling methods and finite ele-
ment analysis) and move forward both the theoretical understanding as well as the practical
implementation of a multiscale simulation environment.

The knowledge of and the experience with novel multiscale techniques, such as se-
quential/hierarchical modelling or hybrid methods, as well as modelling tools should be
disseminated to a larger number of groups in the materials science and physics commu-
nity. Since the topic of multiscale modelling in materials science is still underdeveloped in
university courses, it is essential to provide tutorials by established experts to young scien-
tists working in multiscale simulations or starting in the field. In particular, postgraduate
students and postdoctoral researchers entering the field are addressed by this tutorial.

Past winter schools like Multiscale Simulation Methods in Molecular Sciences (2009)
or Hierarchical Methods for Dynamics in Complex Molecular Systems (2012), organized at
Forschungszentrum Jülich focused on dynamical aspects in molecular systems on different
time scales. They addressed non-adiabatic quantum dynamics, including descriptions of
photo-induced processes, up to non-equilibrium dynamics of complex fluids, while still
keeping the atomistic scale in the classical, quantum mechanical and mixed quantum-
classical descriptions. In the present tutorial Multiscale Modelling Methods for Appli-
cations in Materials Science we emphasize on methodologies encompassing not only the
dynamical aspects but also steady-state or/and equilibrium properties on the meso- and
macroscopic scales treated for example by coarse-grained and finite-elements methods.
Moreover, this tutorial predominantly addresses modelling of systems with modern high-
profile applications with industrial importance, such as materials for energy conversion and
storage and for next generation electronics, which are not restricted to molecular systems.
The lecture notes collected in this book reflect the course of lectures presented in the tu-
torial and include twelve chapters subdivided into two parts. The lecture notes in the first
part Methods provide a comprehensive introduction to the underlying methodology, which



assume some background knowledge in various of the theoretical methods and computa-
tional techniques employed in multiscale modelling, e.g. quantum mechanics, statistical
physics, theoretical chemistry, theoretical solid state physics, Monte Carlo and molecular
dynamics simulations. The lectures particularly explain the physical interrelations between
different scales and introduce best practices in combining the methods. The contributions
in the second part of the lecture notes, entitled Applications and Tools illustrate the combi-
nation of different approaches to treat high-profile applications, such as coarse graining of
polymers and biomolecules, and modelling of organic light-emitting diodes, electrochem-
ical energy storage devices (Li-ion batteries and fuel cells) and energy conversion devices
(organic electronics and carbon nanodevices). Furthermore, an introduction is given to
modern tools and platforms for the technical implementation of such applications, e.g. to
UNICORE or Simulink R©.

The multiscale modelling often requires novel implementations and practical ap-
proaches for performing computer simulations in an increasingly complex software en-
vironment. In contrast to standard approaches that have been used for many years in the
community, these new approaches, based e.g. on the UNICORE middleware, expose the
physics aspects of the models to the modelling scientist while hiding the technical com-
plexity of the underlying computer infrastructures. First practical experiences with such an
approach is essential to strengthen the acquired knowledge during the lecture parts. The
MMM@HPC project (www.multiscale-modelling.eu) has developed a UNICORE-based
integrated platform for multiscale materials modelling which is demonstrated during one
of the hands-on sessions, organized in cooperation with the MMM@HPC project. In fur-
ther hands-on sessions the gained knowledge from the lectures is practiced for selected
applications.

We cordially thank the lecturers for their great effort in writing the lecture notes in
due time so that the book could be edited and printed in advance to the tutorial bringing
maximal benefit for the participants. Further thanks go to the instructors who prepared
the exercises for the hands-on sessions. We are very grateful to the tutorial’s secretaries
Elke Bielitza and Britta Hoßfeld as well as to Monika Marx for compiling the lecture
notes manuscripts and producing a high-quality book. We gratefully acknowledge financial
support from Forschungszentrum Jülich, CECAM (www.cecam.org) and the MMM@HPC
project funded by the 7th Framework Programme of the European Commission within the
Research Infrastructures with grant agreement number RI-261594.

Karlsruhe and Jülich,
September 2013

Ivan Kondov
Godehard Sutmann
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Introduction to Multiscale Modelling of Materials

James A. Elliott

Department of Materials Science and Metallurgy,
University of Cambridge, 27 Charles Babbage Road,

Cambridge, CB3 0FS, UK
E-mail: jae1001@cam.ac.uk

As computing power continues to increase at a relentless pace,1 it is tempting to consider the
simulation of large and/or complex systems using brute force atomistic simulation methods
alone. However, even extrapolating from current state-of-the-art methodologies, it would still
take well over a century of continued exponential growth in computing resources to achieve
parity with ‘real time’ simulations of experimental systems of macroscopic size and, in any case,
the sheer amount of data produced would overwhelm any attempt at detailed scientific analysis.
Therefore, it is imperative that we now seek to exploit the regions of overlap between well-
established techniques for electronic structure calculations, molecular dynamics, mesoscopic
simulations and continuum modelling to allow efficient multiscale simulations of increasingly
complex condensed phase systems. In this lecture, I will introduce the concept of multiscale
modelling in Materials Science, in which there have been significant technical and scientific
advances over the last decade,2 enabling novel fields of application from nanotechnology to
biomineralization.

In these accompanying notes, I will first briefly introduce some of the basic techniques used in
multiscale modelling, including both molecular and mesoscopic particle dynamics, elementary
principles of coarse-graining, and finite element analysis, before focusing, in the lecture itself,
on several recent research highlights from my own group’s work. The first focus area will
be pharmaceutical3 and biocomposite materials,4 where multiscale models have been applied
to formulation of powders for drug tabletting, and to investigate the mechanical properties of
biomineral structures such as bone. In particular, the structure and properties of the collagen
matrix depend greatly on confinement by solvent and mineral phase. The second area will be
carbon nanomaterials, where I will present a model for predicting the strength of yarn-like car-
bon nanotube fibres,5 and relate this to earlier molecular dynamics simulations of single, double
and multi-wall nanotube bundles under hydrostatic pressure.6 These show bundles containing
nanotubes with a range of geometries ranging from cylindrical to fully collapsed, depending on
diameter and number of walls. I will describe the implications for shear stress transfer between
nanotubes in bundles in the context of improving mechanical properties of macroscopic assem-
blies of nanotubes. I will conclude by discussing the future potential of multiscale modelling in
materials science over next 5 years.

1 Introduction

One of the major driving forces for the increasing usage and applicability of computational
modelling in the physical and biological sciences over last decade has been the exponential
growth in available computing power, often represented in the form of Moore’s law, which
originally related to the observed doubling time of the number of transistors in micropro-
cessors (as shown in Figure 1), although similar relationships can also be found for many
other performance metrics, such as memory size, storage capacity and cost per floating
point operation. Of course, Moore’s ‘law’ is simply an observation, rather than a law of
nature, but with the recent advent of multiple core CPUs and low-cost, massively paral-
lel GPUs for scientific computing there is evidence that the rate of increase of computing
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Moore’s ‘law’ : 1971-2011 

[1] http://en.wikipedia.org/wiki/Moore’s_law [accessed August 2013] 
Figure 1. Moore’s law, showing increase in number of transistors on integrated microprocessors over period
1971-2013. http://en.wikipedia.org/wiki/Moore’s_law

power is higher than at any time since the invention of the transistor. However, a simple
calculation reveals that we are still very far from being able to simulate ‘large’ macroscopic
systems at an atomic level using brute force methods alone. Assuming (optimistically) lin-
ear scaling with system size and number of cores, it would take well over a century of
continued exponential growth in computing resources to achieve parity with ‘real time’
simulations of a system of order 1023 particles. Even allowing for this possibility, it is
questionable what can be learned scientifically from such a calculation, given the massive
amount of data that would be generated as a result, since the aim of simulations is not to
reproduce reality but to understand it better.

In order to close this ‘reality gap’, and make most efficient use of current computing
resources for real materials problems, we must therefore continue to make further method-
ological developments, in particular the connection of different time and length scales.
Figure 2 illustrates schematically the approximate ranges of applicability of several dif-
ferent classes of techniques for simulating materials, along with their fundamental entities
(i.e. the smallest or fastest objects on which the calculations are performed). At the low-
est end, molecular mechanical and quantum mechanical techniques are now very mature,
and it is routinely possible to perform full electronic structure calculations on systems
comprising thousands of atoms, or classical atomistic simulations with millions of atoms.
However, these limits are still very restrictive for application to large systems without the
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Figure 2. Hierarchy of multiscale modelling techniques as function of their applicable ranges of time and length
scales, with fundamental entities (electrons, particles, etc.) given in parentheses. Adapted from Elliott (2011).2

simplifying assumptions of periodicity or long-range order. At the other end of the scale
are engineering and process models, which are essentially based on solution of contin-
uum partial differential equations, and can encompass macroscopic systems. Again, these
are very mature, and routinely applied. However, there is a large gap between these two
regimes, which has increasingly become filled by what are known as mesoscale methods,
that include coarse-grained discrete particle simulations (where each particle represents a
group of atoms) and density functional methods based on free energies (e.g. phase field
method), although there is clearly some overlap between classification of such methods
depending on the exact application. This field of mesoscale modelling is somewhat less
mature, and there is no unique prescription for how to move from lower level to higher
levels. In some cases, it is best to pass parameters calculated from quantum or atomic
scale to macroscopic models (hierarchical approach), and in others it is better to carry out
explicitly linked simulations (hybrid approach).

In the remainder of these lecture notes, I will briefly outline some of the basic simu-
lation algorithms in the hierarchy shown in Figure 2, and discuss their relative advantages
and disadvantages. These will be illustrated in the lecture by some real examples from
research work in my group. However, I will not discuss in detail methods for calculating
potential energies and gradients thereof, either by electronic structure methods (e.g. den-
sity functional or molecular orbital theory) or by using classical parameterized force fields,
except when required to illustrate the applications of the algorithms themselves.

3



2 Molecular Modelling Methods

The origins of the so-called ‘molecular mechanics’7 (MM) approach to atomistic mod-
elling, whereby classical, semi-empirical potential energy functions are used to approxi-
mate the behaviour of molecular systems, can be rationalised in part by considering the
history of computer simulation as an extension of the tradition of mechanical model build-
ing that preceded it. The crystallographer J. D. Bernal describes in his Bakerian Lecture8

how, during the early 1950s, he built a structural model of a simple monatomic liquid,
which at that time could not be described by existing theories of solids and gases, from an
array of spheres randomly coordinated by rods of varying length. However, the emergence
of mechanical, and subsequently electronic, digital computers enabled a much less labour
intensive approach to modelling.

2.1 Molecular dynamics (MD)

In 1957, Alder and Wainwright published the first computer simulation of ‘hard’ spheres
moving in a periodic box.9 Hard, in this sense, means that the spheres were forbidden from
overlapping, rather like macroscopic steel ball bearings. Although this might not seem like
a very realistic model for a liquid, these simulations eventually lead to the important (and
initially controversial) conclusion that it is the harsh short-range repulsive forces between
atoms in a liquid that are primarily responsible for the freezing transition, whereas the in-
fluence of the longer range attractive forces is somewhat less important. Nowadays, even
though we can carry out MD simulations of complex macromolecules and charged particles
with continuously varying, more realistic interaction potentials, the underlying mechanical
analogies of the formalism are still evident. However, the algorithms for simulating sys-
tems evolving with a continuous potential interaction are rather different from those used
in the first ‘impulsive’ MD simulations developed by Alder and Wainwright.

2.1.1 Impulsive and continuous-time conservative MD

In a system with hard particles, the dynamics evolves ballistically between particle impacts,
with a characteristic time that depends on the frequency of collisions, τ , which is around
0.2 ns for Ar at 298 K. However, for a system where the force on each particle can be
calculated as a gradient of a continuous potential energy function (or from the Hellman-
Feynman theorem in the case of ab initio MD), then we can solve Newton’s equations of
motion numerically using some finite difference scheme, a process that is referred to as
integration. This means that we advance the system by some small, discrete time step, ∆t,
recalculate the forces and velocities, and then repeat the process iteratively. Provided that
∆t is small enough, this produces an acceptable approximate solution to the continuous
equations of motion.

However, the choice of time step length is crucial: too short and phase space is sampled
inefficiently, too long and the energy will fluctuate wildly and the simulation may become
catastrophically unstable. The instabilities are caused by the motion of atoms being ex-
trapolated into regions where the potential energy is prohibitively high, e.g. if there is any
atomic overlap. A good rule of thumb is that the time step should be an order of magni-
tude less than the period of the fastest motion in the system, which for macromolecules

4



is usually bond stretching (e.g. C–H stretch period is approximately 11 fs, so a time step
of 1 fs is often used). Clearly, we would like to make the time step as long as possible
without producing instability, as this gives us the largest amount of simulated time per unit
of computer time.

The first MD simulations of a fluid of Lennard-Jones particles were carried out by Ver-
let in 1967,10 using an integration algorithm that is still widespread today and known as
the Störmer-Verlet method. Although there are many alternative methods now available,
the Störmer-Verlet method is rather straightforward to derive and has some attractive sym-
metry properties that lead to good long-time energy conservation. It is based on a Taylor
expansion of the atomic positions, r(t), at times t+ ∆t and t−∆t, i.e. extrapolating both
forwards and backwards in time from current time, t, by some finite difference, ∆t.

r(t+ ∆t) = r(t) + v(t)∆t+ 1�2 a(t)∆t2 +O
(
∆t3

)
(1)

r(t−∆t) = r(t)− v(t)∆t+ 1�2 a(t)∆t2 −O
(
∆t3

)
(2)

where the first and second time derivatives of position r(t) with respect to time are written
as velocity, v(t), and acceleration, a(t). Adding these two series (1) and (2) together, all
the odd order terms in ∆t cancel, and we are left with:

r(t+ ∆t) + r(t−∆t) = 2r(t) + a(t)∆t2 +O
(
∆t4

)
(3)

Rearranging this expression for the new particle positions, we obtain:

r(t+ ∆t) = 2r(t)− r(t−∆t) + a(t)∆t2 +O(∆t4) (4)

The accelerations at each time step, a(t), are obtained from Newton’s second law using
the known atomic masses and summing over all the forces given by the gradient of the
potential energy, and so the new atomic positions at time t+ ∆t can be obtained from the
current positions at time, t, and previous time, t − ∆t. Equation (4) has the features that
it is accurate (locally) to terms of order ∆t4 (although the global accuracy is quadratic)
and, more importantly, upon a change of variable from ∆t to −∆t, the equation remains
invariant. This time-reversal symmetry matches exactly the microscopic reversibility of
the continuous-time particle dynamics, and helps to ensure that, even though numerical
errors in the actual particle positions accumulate exponentially, the total energy of the
system is still a conserved quantity. Numerical integrators which do not have this symmetry
property, such as some predictor-corrector methods, may have problems with long-term
energy conservation even though they have a higher numerical accuracy at each time step.11

Note that the atomic velocities at each time step are not calculated explicitly, but can be
obtained by averaging the positions between adjacent steps:

v(t) = [r(t+ ∆t)− r(t−∆t)]/(2∆t) +O(∆t2) (5)

5



2.1.2 Extended ensembles for MD

Since the forces in Section 2.1.1 are derived from the gradient of a scalar potential, and
Newton’s third law is strictly obeyed, the dynamics necessarily conserve the total energy
of system, generating configurations in the microcanonical or NVE thermodynamic ensem-
ble. However, most real systems of interest exist under conditions of constant temperature
(canonical, or NVT ensemble) or constant temperature and pressure (isothermal-isobaric,
or NpT ensemble). There are various methods for modifying MD to simulate systems
at constant temperature and/or pressure, based on both deterministic and stochastic tech-
niques or a hybrid of the two. The simplest but least accurate method of achieving constant
temperature is to artificially scale the atomic velocities to drive the instantaneous system
temperature, T (t), related to mean kinetic energy of particles, towards some target equi-
librium temperature, Teq. In the Berendsen method,12 this is achieved by setting the rate of
change of instantaneous temperature equal to:

dT (t)

dt
=

1

τt
(Teq − T (t)) (6)

where τt is a parameter controlling the rate of energy flow between system and an external
heat reservoir (often referred to as the thermostat ‘relaxation time’). As a rule of thumb,
setting ∆t/τt < 0.01 usually results in a slow enough relaxation to produce a stable equi-
librium temperature within a few tens of picoseconds. However, if τt is too short, then the
temperature will fluctuate wildly, and if τt is too long, then simulation will take a long time
to reach equilibrium.

Given that the instantaneous temperature can be estimated at each time step from the
mean atomic kinetic energy:

T (t) ≈ 1

3NkB

N∑
i=1

miv
2
i (7)

then by substitution into equation (6), some simple algebra shows that if velocities are
rescaled by a factor of λ, then the scale factor required at each step to obtain the desired
target temperature is given by:

λ2 = 1 +
∆t

τ

(
Text

T (t)
− 1

)
(8)

Although fast and simple to implement, the Berendsen method suffers from the fact that
fictitious forces are effectively applied to the atoms to change their velocities and, more
seriously, that the fluctuations in kinetic energy of atoms are not correctly reproduced,
especially for smaller systems. As a result, it is typically only used during equilibration
period of MD simulation. A superior method for producing MD configurations which
correctly sample the canonical ensemble was developed by Nosé,13 and later refined by
Hoover,14 and is based on the concept of an extended Lagrangian. It is well-known that
Newton’s equations can be reformulated variationally in terms of a Lagrangian, L:

6



L =
1

2

N∑
i

miẋ
2
i − V (x) (9)

from which follows Newton’s second law, Fi = ṗi, by substitution of (9) into the Euler-
Lagrange equation:

d
dt
∂L

∂ẋi
− ∂L

∂xi
= 0 (10)

The advantage of Lagrangian approach is that it uses generalized coordinates, which
can include variables representing the external heat reservoir, and also be used to derive
their corresponding equations of motion. For the Nosé-Hoover thermostat, the modified
form of Newton’s second law is given by:

ṗi = Fi − ζpi (11)

where ζ is a frictional coefficient that evolves in time so as to minimise the difference be-
tween the instantaneous kinetic and equilibrium temperatures according to the expression:

ζ̇ =
1
τ2

t
{T (t)/Teq − 1} (12)

where, similar to above, τt is the thermostat relaxation time.
The Nosé-Hoover thermostat correctly reproduces energy fluctuations of the system in

the canonical ensemble but, similarly to the Berendsen method above, introduces fictitious
forces (note the modified form of Newton’s law) on atoms that can interfere with momen-
tum transport on a local scale. Alternative thermostats based on pairwise thermalisation of
energy, such as that used in dissipative particle dynamics (see section 3.1.1), can improve
this situation, especially for small systems. Also, the Nosé-Hoover thermostat is prone to
poor equilibration due to resonant energy transfer between system and reservoir, resulting
in temperature oscillations that do not die away with time. In order to avoid this, it is
common to couple many, sometimes thousands, of thermostats with different relaxation
times into a so-called Nosé-Hoover chain, which has been shown to improve ergodicity of
simulations of small, stiff systems which start far from equilibrium.15 The introduction of
stochastic forces through coupling to a Langevin-type thermostat can also be effective in
improving ergodicity, at the expense of a loss of continuity of the dynamics.

The Berendsen and Nosé-Hoover methods may also be extended to allow fluctuations
in the cell volume for a periodic system, thereby allowing a constant pressure or stress to
be maintained. The details of equations of motion will not be described here, but suffice
it to say that great care must be taken to check whether isotropic or anisotropic variations
in cell parameters are required to accurately simulate the system of interest. Completely
isotropic cell box fluctuations are only suitable for elastically isotropic systems (e.g. liquids
or glasses). However, in the case that fully anisoptropic cell box fluctuations (Parinello-
Rahman method16) are required, e.g. for low-symmetry crystals, the equations of motion
for cell parameters can become very involved, with independent barostat relaxation times
required for each direction in order to achieve a stable equilibrium pressure.
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2.1.3 Enhanced sampling methods in MD

While the standard MD methods described in Sections 2.1.1 and 2.1.2 allow for simulations
in a variety of useful thermodynamic ensembles, they are fundamentally limited by the
time scale of the integration process, which is governed by the product of time step length
(limited by relaxation of fastest motions in system) and total number of steps (limited
by CPU power). In order to address this weakness, a number of sampling methods have
been developed which focus on enhancing the probability of rare events – i.e. those that
would occur with only vanishingly small probability over the time scale of a canonical
MD simulation under normal conditions of temperature and pressure. A good example is
the diffusion of atomic silver on a flat Ag(100) surface, where the real time between each
hopping event is of order 10 µs,17 which may take around one week of CPU time! The
artificial acceleration of rare events allows the extension of atomistic modelling time scales
up to the micro or even millisecond range, whereas the extension of length scales is better
handled by coarse-grained methods described in Section 3.

Time acceleration in dynamical simulations can be achieved using some of the ideas
of umbrella sampling (see section 2.2.3) in combination with either a bias potential or
transition state theory (TST),18 which gives a simple Arrhenius form for the transition rate
if the energy is assumed to vary harmonically near the minimum and barrier regions for all
the degrees of freedom other than the reaction coordinate direction. For example, in the
hyperdynamics scheme conceived by Voter,19 the original potential energy surface (PES),
V (x), is augmented by a bias potential, ∆V , which is zero at the dividing surface between
the two energy minima, and acts to increase the frequency of barrier crossing by ‘filling in’
the areas of low energy. In the regions where the bias potential is non-zero, the effective
simulation time passes more quickly by a factor of exp(β∆V ). The ratio of accumulated
hypertime to the standard MD clock time is known as the ‘boost’, and can be as large
as 106 if an appropriate form of biasing potential is chosen. Unfortunately, it is not easy
to find a general method of specifying the bias potential, and this area still is a topic of
ongoing research.20

A technique related to hyperdynamics is the metadynamics method of Laio and
Parinello,21, 22 in which a series of Gaussian functions are added to the PES in order to
flatten it and force the atom to explore other regions of phase space. Metadynamics en-
ables the rapid exploration of free energy surfaces in some chosen set of coordinates, but
there is no direct connection to a timescale and so any dynamics is largely fictitious. Laio
and Gervasio22 give the analogy of a walker trapped in an empty swimming pool at night
who, from time to time, drops packets of sand on ground as they wander in the darkness.
Given a sufficient supply of sand, they will eventually escape and, if they are able to re-
member where they dropped the sand, be able to reconstruct a negative image of the pool.
The advantages of the metadynamics method over hyperdynamics are that it requires no
a priori knowledge of the bias potential, and that the sum of Gaussians deposited up to
a particular time provides an unbiased estimate of the free energy in the region explored
during the simulation.22

Two other accelerated dynamics methods also developed by Voter and co-workers that
do not rely on biasing the PES are Parallel Replica Dynamics (PRD) and Temperature
Accelerated Dynamics (TAD).23, 24 In PRD, the canonical dynamics of a single system
is replicated on a number (say, M ) of processors running in parallel. Having allowed
the replicas to become locally uncorrelated (i.e. randomised within the original basin of
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attraction), the dynamics of allM systems are then monitored until, it is hoped, a transition
occurs in a single one corresponding to a rare event. The simulation clock is then advanced
by the elapsed time summed over all M replicas, and the replication process is continued
from the replica which made the transition, allowing for a short period in which correlated
dynamic events could occur. TAD, on the other hand, can be thought of as very similar to
“on-the-fly” Kinetic Monte Carlo (KMC),25 in which the barriers are constructed during
the course of the simulation. It is based on the concept of raising the temperature of the
system to enable rare events to occur more frequently, whilst at the same time preventing
the system from evolving along diffusion pathways only accessible at high temperature. By
confining the system to its local basin of attraction, the TAD method essentially tries to find
all possible escape routes at high temperatures, and then selects the one with the shortest
time to occur at low temperatures. Compared to other accelerated dynamics methods, TAD
is the most approximate, relying heavily on the assumption of harmonic TST, whereas PRD
is the most accurate.

2.2 Monte Carlo (MC)

MC methods derive their name from the association of statistical sampling methods with
games of chance, such as those played in the famous casinos of Monte Carlo. Although
the usage “Monte Carlo” was coined relatively recently (1949) and intimately associated
with the use of computers, statistical sampling methods are in fact much older than this,
as explained in Section 2.2.1. The goal of a typical MC simulation is to calculate the
expectation value of some mechanical quantity Q (e.g. internal energy), which is defined
by an average over all microstates of the system weighted with their Boltzmann probability:

〈Q〉 =
1

Z

∑
i

Qi exp (−βEi) (13)

where β = 1/(kBT ), Ei is the energy of microstate i and Z =
∑
i

exp (−βEi) is the

partition function.
Why not simply enumerate all the microstates and calculate the expectation value di-

rectly? Well, to borrow an illustration from Newman and Barkema,26 a litre of gas at
standard temperature and pressure contains of order 1022 molecules, each with a typical
velocity of 100 m s−1 giving a de Broglie wavelength of around 10−10 m. Thus, the total

number of microstates of this system is of order (1027)
1022

, ignoring the effects of indis-
tinguishability, which is completely beyond enumeration even using a computer. However,
if we choose only a small subset of M simulated states, selected according to a Boltzmann
probability distribution, then the desired expectation value reduces to an arithmetic average
over all sampled states, given by:

〈Q〉 =
1

M

M∑
i=1

Qi (14)

We may ask if it is valid to average over such an infinitesimal portion of phase space.
However, even real physical systems are sampling only a tiny fraction of their total number
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Buffon’s needle 

Figure 3. Screenshot of applet showing convergence of Buffon’s needle experiment to estimate value of π after
more than 500 throws of needle. http://www.angelfire.com/wa/hurben/buff.html

of microstates during the time we can make physical measurements on them. For exam-
ple, in our aforementioned litre of gas, the molecules are undergoing collisions at a rate
of roughly 109 collisions per second. This means that the system is changing microstates
at a rate of 1031 per second, so it would require of order 101023

times the current pre-
dicted lifetime of the universe for it to move through every state! Therefore, it should
not be surprising that we can perform reasonable calculations by considering a small, but
representative, fraction of these states.

2.2.1 Statistical sampling methods

As mentioned above, the idea of using statistical sampling to estimate deterministic quanti-
ties predates considerably the existence of digital computers. Perhaps the most well-known
example is the estimation of π by repeatedly dropping a needle onto a surface ruled with
equally spaced lines. The experiment is named after Georges-Louis Leclerc, Comte de
Buffon, who showed in 1777 that if a needle of length l is thrown at random onto lines of
spacing d then the probability that the needle lands intersecting a line is 2l/(πd), provided
that d ≥ l. Laplace then pointed out in 1820 that if a needle is thrown down N times, and
lands on a line M of those times, then an estimate for π is given by:

lim
N→∞

(2Nl/Md) (15)

Figure 3 shows the behaviour of expression (15) to π for system with l = d, simulated
by a JAVA applet, after more than 500 throws of the needle. As can be seen in the graph on
right-hand side, the convergence is rather poor, with the standard error decreasing only as
1/
√
N , and therefore this is not recommended as a method to calculate an accurate value

of π. Nevertheless, it demonstrates the principle of Monte Carlo by which a deterministic
quantity can be estimated from an average over states generated via a stochastic process,
subject to certain acceptance rules.
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2.2.2 Metropolis MC

In order to sample the canonical distribution, as required in Section 2.2, the Metropolis
algorithm can be used to generate an appropriate ensemble of states via a Markov pro-
cess.25, 27 Instead of simply new accepting states on the basis of their absolute Boltzmann
factor, the Metropolis algorithm is characterised by having an acceptance probability of
unity if the new state has a lower energy than the initial state, which results in a much more
efficient simulation in most cases. The algorithm can be summarised as follows:

1. Start with a system in (an arbitrarily chosen) state µ and evaluate the energy of current
state, Eµ

2. Generate a new state ν by a small ergodic perturbation to state µ, and evaluate energy
of new state, Eν

3. If Eν − Eµ < 0 then accept the new state. If Eν − Eµ > 0 then accept the new state
with probability exp[−β(Eν − Eµ)]

4. Return to step 2 and repeat until equilibrium is achieved (i.e. states appear with their
correct Boltzmann probabilities at temperature T )

The Metropolis method can be illustrated by application to a simple model for fer-
romagnet, due to Ising,28 which consists of a number of two-state (up/down) spins on a
periodic lattice. Each spin can interact with its nearest neighbour, and also with an external
magnetic field, according to the following Hamiltonian:

H = −ε
∑
i,j

sisj −B
∑
i

si (16)

where si = ±1 is the spin of state i, ε is the exchange energy and B is the strength of
applied external field.

The lattice is initialized in a random (T = ∞) or completely ordered (T = 0) con-
figuration, and then potential new states are generated by flipping single spin states (i.e.
changing the sign of a particular si chosen at random). This guarantees ergodicity, as ev-
ery microstate of the system is accessible, in principle, via this procedure. It is also very
important, as in the case of molecular dynamics, to ensure microscopic reversibility at each
step, in order to obtain the true canonical average quantities.

Since the 2D Ising model is exactly solvable by statistical mechanics techniques, it
is possible to compare the predicted results of magnetization and heat capacity against
theory.26 It is found that Metropolis MC has problems with convergence around the Curie
temperature, TC, due to large fluctuations in the magnetization near the phase transition
point. This can be improved by, for example, swapping clusters of spin states instead of
single spin states.25 Provided we generate these clusters probabilistically, the algorithm
is still ergodic, and requires many fewer MC steps per lattice site for equilibration, also
giving much better performance around the Curie point.

2.2.3 Enhanced sampling methods in MC

As seen above, there are many situations in which standard canonical MD or MC simu-
lations are inadequate to calculate certain desired thermodynamic quantities. An obvious
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example is entropies and free energies, which cannot be computed directly as averages over
configurations or time as they are related to the volume of phase space accessible to the
system. Moreover, the conventional methods sample only sparsely from unstable regions
of configuration space, such as near to a transition point, giving rise to large statistical er-
rors in the free energy differences calculated by comparing simulations of the two phases
separately in thermal equilibrium. By introducing an additional weighting function to bias
the Boltzmann distribution used in standard MC, the system can be guided to sample more
frequently from the normally unstable regions, resulting in a more accurate estimate of the
free energy.

The concept of “umbrella sampling” was originally developed by Torrie and Valleau29

in order to calculate free energy differences in systems undergoing large changes in con-
figuration, such as a first order phase transition (if the changes are not too large, more
straightforward methods such as thermodynamic integration or Widom particle insertion
can be used instead11). However, the choice of weighting functions must be determined ad
hoc, and the most efficient scheme is not always obvious. More recently, an adaptive form
of umbrella sampling was developed by Wang and Landau,30 which is related to the multi-
canonical method of Berg and Neuhaus31 in which the histogram of sampled states is first
flattened and then reweighted to enable the correct Boltzmann distribution to be deduced
at any temperature within the sampled range. However, the objective of the Wang-Landau
method is to determine the full density of states (DOS) by performing a random walk in
configurational space with a probability proportional to the reciprocal of the density of
states.

The thermodynamic reweighting method is illustrated in Figure 4 for an isolated lattice
polymer chain of length 100 segments, where the log(DOS) is shown as a function of
the number of polymer-polymer nearest-neighbour contacts, and each contact contributes
an energy, ε. The five dashed black lines show canonical histograms for the system at
five different temperatures, and the dashed coloured line shows the total histogram taking
into account the appropriately reweighted contributions from all temperatures. Once the
DOS distribution is known to sufficient precision, all other thermodynamic quantities can
easily be derived, and the inset to Figure 4 shows a plot of heat capacity versus reduced
temperature showing transitions (i.e. peaks in the heat capacity) from an extended coil at
high temperatures to a compact ‘crystal’ at low temperatures.32

3 Coarse-Grained Modelling Methods

In order to move from atomistic to mesoscopic length scales, it is necessary to integrate
out any redundant degrees of freedom, a process known as “coarse-graining”, which can
be achieved either by forcing atoms onto a lattice or by grouping them into larger particles
or ‘beads’ (often referred to as “mapping”). Conversely, the process of “reverse-mapping”
refers to the restoration of full atomistic detail. These groups of atoms interact through
some effective potential derived either through a systematic fitting procedure or by ad
hoc parameterization of soft, repulsive potentials designed to reproduce the potential-of-
mean-force between the centres-of-mass of the groups of atoms. In general, there is no
systematic procedure for coarse-graining that is applicable across all classes of material,
but many groups have developed methods for particular systems,33–36 and semi-automated
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Figure 4. Reconstruction of density of states for a lattice chain polymer by histogram reweighting, with heat
capacity versus reduced temperature shown as inset.

tools, such as the VOTCA (Versatile Object-oriented Toolkit for Coarse-graining Applica-
tions37) package are available.

An example of a polymer chain coarse-grained onto a face-centred cubic lattice was
shown in Figure 4. The processes of mapping and reverse-mapping enables the calibra-
tion of a generic lattice chain to a particular system, with specific molecular chemistry,
by matching of the densities, end-to-end distance and radial distribution functions.38 Fur-
thermore, due to the greatly reduced number of configurations, the lattice chain provides
a much more computationally convenient framework for simulating larger systems or bulk
phase behaviour.39 The length scale of mesoscopic simulations can now even be extended
to model colloids or powders through the use of dissipative particle dynamics (DPD) and
discrete (or distinct) element modelling (DEM)40, 41 in which each particle is considered
to be either a whole or part constituent of a granular medium, interacting via elastic and
dissipative force contact laws. This brings us finally almost to the top of the hierarchy of
modelling techniques shown in Figure 2, making contact with the Finite Element Method
(FEM),42 commonly used for stress analysis and heat or mass transfer problems in engi-
neering.
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3.1 Coarse-grained particle methods

3.1.1 Dissipative particle dynamics

A popular mesoscale method for simulating soft materials, such as polymer and liquids, is
Dissipative Particle Dynamics (DPD), first developed by Hoogerbrugge and Koelman43, 44

for modelling the flow of hard spheres in suspension, and reformulated on a rigorous ther-
modynamic basis by Groot and Warren45 and Español and Warren.46 It is closely related
to the Brownian Dynamics (BD) method,47 in which standard canonical MD is augmented
by dissipative and random forces between particles, representing the integrated effects of
a coarse-grained fluid medium, in addition to a soft repulsive force which can be deduced
from experiments or molecular simulations via Flory-Huggins theory. However, unlike in
BD, the forces in DPD are always pairwise acting, which guarantees the emergence of true
hydrodynamic behaviour in the limit of large system size.48 In this extended sense, DPD
can be thought of simply as local, hydrodynamics-conserving Langevin-type thermostat
for MD (compare with the Berendsen and Nosé-Hoover methods in Section 2.1.2).

The force interactions in DPD can be summarised by the following expressions:

FC
ij = (nεij/σij)ω

C (σij/rij)
n+1

r̂ij (17)

FD
ij = −κωD (r̂ij · vij) r̂ij (18)

FR
ij = λωRθij∆t

−1/2r̂ij (19)

where equation (17) is the conservative soft power law repulsive force, equation (18) is
the dissipative force and equation (19) is the random “Brownian” force which act between
two spheres i and j whose centres are connected by a vector rij and travel with relative
velocity vij . The parameters εij and σij are the soft repulsive coefficients of spheres i and
j, and θij are a set of Gaussian random numbers with zero mean and unit variance. The
exponent, n, controls the ‘hardness’ of repulsive interaction.

Español and Warren46 showed that if the weight functions ωD and ωR are chosen to
satisfy a fluctuation-dissipation theorem, then an equilibrium temperature is established in
the simulation. The functions include an explicit cut-off distance, rc, which is typically set
to twice the size of the largest particle in the simulation.

ωC =

{
1 ; r < rc
0 ; r ≥ rc

(20)

ωD =

{
(1− r/rc)2

; r < rc
0 ; r ≥ rc

(21)

ωR =

{
(1− r/rc) ; r < rc
0 ; r ≥ rc

(22)

The friction coefficient κ and the noise amplitude λ are connected by equation (23),
where Teq is the desired equilibrium temperature of the simulation. The appearance of the
timestep ∆t in the expression for the random force, equation (19), is due to the effect of
time discretization in the integration algorithm, and the origins of this have been discussed
in detail by Groot and Warren.45

λ2 = 2κkBTeq (23)
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The equations of motion for DPD system are given by expressions (24)–(27). These
are based on the combined thermostat and barostat proposed by Hoover14 and subsequently
reformulated by Melchionna,49 which is commonly used in standard NpT MD simulations.
However, in this system the thermostat has been completely removed, and the barostat has
been decoupled from the translational degrees of freedom of the particles. This is necessary
in order to ensure that collisions between particles conserve momentum. An equilibrium
temperature is then established by the DPD force interactions, given by equations (17)–
(19), which act pairwise between each component sphere so that Newton’s third law is
obeyed.

ṙi = vi + ηri (24)
ṗi = Fi (25)

η̇ =
1

τ2
p

1

NkBTeq
(p(t)− peq) (26)

V̇ = 3V η (27)

The time evolution of the particle coordinates, ri, is calculated from equation (24),
where η is a fictitious dynamical variable that compensates for any difference between
the instantaneous pressure and the desired equilibrium pressure, peq. The simulation box
volume, V , relaxes to its equilibrium value with a characteristic time, τp.

It can be shown50 that these modified equations of motion sample from a pseudo-
Boltzmann constant pressure ensemble which involves the instantaneous temperature of
the simulation. Thus, when used in combination with the DPD force interactions, the sim-
ulation as a whole relaxes to an equilibrium temperature Teq and equilibrium pressure peq.
By setting the relative levels of Teq and peq, the assemblies of particles can be mixed or
packed densely together as desired.

3.1.2 Discrete element method

The discrete (or distinct) element method (DEM), also known as granular dynamics (GD),
is a numerical technique for simulating the dynamics of semi-rigid macroscopic frictional
particles with sizes ranging from tens of metres to micrometres, such as pharmaceutical
powders, talcs, cement, sand and rocks. In the absence of an interstitial medium, these
particles interact with one another via short-range contact mechanical forces,51, 52 which
include both elastic and viscoelastic components, along with macroscopic surface friction.
The nature of the interactions coupled with the size of the particles (relative to atomic
and molecular systems) are such that the dynamics of these systems is rapidly quenched
due to the dissipative interactions, unless there is energy input in the form of mechanical
excitation. Cundall and Strack53 developed GD, or DEM, to study geophysical systems
using simple linear damped spring force models to represent the interactions. Since then
the numerical representation of the pairwise particle interactions has evolved to incorpo-
rate force-displacement (linear spring, Hertzian) and force-displacement-velocity (spring-
dashpot, Hertz-Mindlin, Hertz-Kuwabara-Kono (HKK)) models which account for exper-
imentally measured material properties such as the elastic moduli, Poisson’s ratio and sur-
face friction.54 Macroscopic surface friction between particle surfaces is accounted for via
the use of Coulomb’s yield criteria.55
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Granule structure during compaction 

[1] Antypov & Elliott Powder Tech. submitted (2012). 

Figure 5. DEM simulation of the uniaxial compaction of 400 cohesive particle agglomerates, each comprised
of 33 glued spheres (inset), as function of applied axial strain (0%, 20% and 50%, respectively). The system is
three-dimensional and periodic in the plane perpendicular to the smooth, inpenetrable compacting surfaces.

The nature of the contact forces, which act parallel and perpendicular to the vector
connecting the centres of mass of the interacting particles, require a coupling between
translational and rotational degrees of freedom, as the effective tangential force applies a
torque on the particle. Figure 5 shows a model for an assembly of cohesive particles, where
each agglomerate (identified by its individual colour) is made up of ‘glued’ spheres, fused
by normal and tangential bonded potentials with a maximum threshold fracture strength, in
order to simulate large scale plastic deformation and fracture. Such models are now provid-
ing insights into the constitutive behaviour of cohesive and crushable particle assemblies
at the macroscopic scale.

3.2 Mesh-based finite element methods

In the limit of large numbers of particles, mesoscopic simulations should ideally yield the
same solutions as the corresponding continuum constitutive equations. This is provably the
case for DPD and the Navier-Stokes equations for simple Newtonian liquids, and widely
believed to be true also for more complicated assemblies of elasto-rigid or elasto-plastic
particles (although the precise constitutive laws are often semi-empirical in nature). The
behaviour of large systems acting under such constitutive laws can be solved more effi-
ciently by using standard finite element models (FEM) on a discretized mesh connecting
nodal elements. The system of equations can be represented in matrix form by:

[K] {u} = {F} (28)

where [K] is the global stiffness matrix (assembled from the individual elements), {u} are
the nodal displacements, and {F} are the nodal forces. By enforcing the appropriate dis-
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Bulk powder represented by DEM Tablet geometry represented by FEM 
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Figure 6. Coupled methods for powder compaction, in which DEM simulation is used to derive material param-
eters (constitutive model) for larger-scale FEM study of pharmaceutical tablet compaction.

placement and/or stress conditions at the boundaries, the system of equations can be solved
to yield the unknown nodal displacements, provided that the stress-strain behaviour of each
element is known. For a complex material, such as an organic powder, this usually must
be determined experimentally from the properties of bulk material. However, increasingly,
multiscale computational simulations are able to yield useful results from first principles.

Figure 6 illustrates the relationship between a coupled DEM simulation of powder com-
paction and a corresponding FEM simulation of an axisymmetric pharmaceutical tablet.
Each element in the FEM simulation effectively contains many thousands of granules, cor-
responding to many millions of mesoscopic particles. The properties of powder material,
such as elastic moduli, Poisson’s ratio, particle size distribution, etc. are taken into account
by the DEM simulation, whereas the FEM simulation considers the process parameters
such as tablet geometry, compaction rate and friction between material and die wall or
punch. Such multiscale coupled simulations are now helping to accelerate the formula-
tion of powder blends for compaction at macroscale based on knowledge of the molecular
structure and interactions of their constituents.

4 Conclusions and Outlook

In conclusion, we may speculate tentatively on what might be the most fertile areas for
the development of multiscale over the next five years. In the author’s opinion, the de-
velopment of a general framework for transforming seamlessly from particle-based to
continuum-based representations of materials will enable large-scale simulations of failure
in granular and monolithic systems to become almost routine. On-the-fly coarse-graining
will permit use of explicit solvent in the vicinity of solute molecules or particles, whilst still
allowing the interaction of many thousands or even millions of them, facilitating the study
of self-assembly in nanocomposite or biomimetic systems. Furthermore, the inclusion of

17



unexpected rare events into dynamical simulations will yield new insights into atomistic
failure mechanisms in nanocrystalline materials, and open up the possibility of studying
very long time scale relaxations in systems containing full molecular detail. However,
these developments must be tempered by the need to advance hand-in-hand with theoret-
ical and experimental science, and thus the most likely scenario for the development of
multiscale modelling in the near future is its continued incremental growth.
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The DL POLY project is a library of classical molecular dynamics programs that have appli-
cations over a wide range of atomic and molecular systems. DL POLY 4, the CCP5 flagship
version of this project, is specifically designed to address very large simulations on massively
parallel computers in a scalable manner by stretching its parallel performance from small sys-
tems consisting of a few hundred atoms on a few compute cores, up to systems of hundreds of
millions of atoms on tens of thousands of compute cores. In this article we briefly describe the
structure of the programs, its scalability and possible workflows via UNICORE.

1 Introduction

The DL POLY initiative was conceived by W. Smith in the early 1990s. Its prime purpose
was to provide the UK CCP51 community with a classical molecular dynamics (MD) simu-
lation package that was capable of exploiting emergent parallel computers. The project has
been under continual development at STFC Daresbury Laboratory with funding streams
from EPSRC,2 CCP5 and NERC.3 Since its first release to the wider academic community,
in 1996, over 12,000 licences have been taken with current uptake per annum of ∼ 2, 000
(as of 2012/2013). The original program, DL POLY 2,4, 5 has evolved into two currently
available versions, namely DL POLY Classic8 and DL POLY 4,6, 7, 9 with still increasing
popularity amongst the modelling community world-wide. The main difference between
the two versions is their underlying parallelisation strategy – replicated data (RD) for the
former and Domain Decomposition (DD) for the latter. Both programs are available as
free-of-charge source code to academic researchers world-wide. DL POLY 4 is under ac-
tive development and, due to its excellent scalability, is installed on many HPC facilities
across the world. In this paper we will concentrate on DL POLY 4.

2 Software

The DL POLY 4 program design is based on the principles of portability, maintenance,
transparency and user verification. The code architecture adopts Fortran90 modularisation
in a C/C++ header style manner, where concepts and functionality are separated in a func-
tional way by modules. The code routines relate to features/actions by their file names,
which often relate to module names.

DL POLY 4 is provided as fully self-contained (with no dependencies), free-formatted
Fortran90 source. Additionally, the code also relies upon MPI2 (specifically Fortran90 +
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TR15581 + MPI1 + MPI-I/O only) to implement its parallelisation strategies. The source
complies strictly with the NAGWare10 and FORCHECK11 Fortran90 standards with the
only exception being the Fortran2003 feature known as TR15581, which is very rarely
unavailable in current Fortran95 compilers.

A DL POLY 4 CUDA port is also available to harness the power offered by
NVIDIA R©12 GPUs. However, it includes dependencies on NVIDIA’s CUDA libraries
and OpenMP.

3 Molecular Structures

The simplest entities recognised by DL POLY are atoms, which are regarded as point
particles interacting with neighbouring particles via a centro-symmetric potential function.
Simple atomic ions are also represented in this way. Their dynamics are described by trans-
lational motion as in a classical Newtonian treatment. Also possible are rigid molecules,
which are point atoms maintained in a fixed geometry. These entities possess both transla-
tional (Newtonian) motion and rotational (Eulerian) motion and are useful for describing
small molecules such as water. For larger and more flexible structures, such as polymers,
point atoms may be connected by rigid bonds allied with some intra-molecular interac-
tions, such as bond angle and dihedral angle potentials, which maintain the basic molecular
geometry but permit intra-molecular conformational changes, which are an essential fea-
ture of the dynamics (and chemistry) of chains. Sometimes, completely flexible molecules
are required, in which case the rigid bonds are replaced by extensible bond potentials. All
of these molecular entities are permitted in any combination by DL POLY, so a rigid body
solvent and a flexible chain polymer may be simulated together, for example.

4 Force Field

The DL POLY package does not provide any particular set of force field (FF) parameters
to describe the interatomic interactions as other packages do such as AMBER,14, 15 GRO-
MACS,16, 17 NAMD18, 19 and CHARMM.20, 21 DL POLY is designed to cater for molecular
systems of any complexity and thus it is impractical to bind the design to a set FF. In
order to handle all possible FFs DL POLY implements an enormous selection of func-
tional forms, both analytic and tabulated, for the interaction potentials arising in many of
the FFs commonly used in molecular simulations. It is also easy, due to the structure of
the software, for the user the extend the FF potentials set to their liking as well as use as
many different kinds of potentials simultaneously. Despite this freedom of unconstrained
flexibility in mixing FFs to any complexity the user may wish, this design feature, until
recently, was found to be a quite a barrier for many modellers, especially from the bio-
chemical community. However, this has now been addressed in a very elegant way by the
satellite program DL FIELD,13 a FF generator for DL POLY. DL FIELD facilitates the
conversion of a protonated PDB (also some simple ionic solids) input into DL POLY input
with minimal user intervention, using a small set of user specified options for matching
the input to a number of FF sets such as AMBER, CHARMM, AMBERs Glycam, OPLS-
AA, Dreiding23 and PCFF.24 The user is also given flexibility to design their own FF by
extending and/or overriding the default FF sets.
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The total potential energy for DL POLY can be expressed by following formula:

U(r1, r2, . . . , rN ) =

Nshell∑
ishell=1

Ushell(ishell, rcore, rshell)

+

Ntether∑
itether=1

Utether(itether, r
t=t
i , rt=0

i )

+

Nbond∑
ibond=1

Ubond(ibond, ra, rb)

+

Nangle∑
iangle=1

Uangle(iangle, ra, rb, rc)

+

Ndihed∑
idihed=1

Udihed(idihed, ra, rb, rc, rd)

+

Ninvers∑
iinvers=1

Uinvers(iinvers, ra, rb, rc, rd)

+

N−1∑
i=1

N∑
j>i

U (metal,vdw,electrostatic)
2-body (i, j, |ri − rj |) (1)

+

N∑
i=1

N∑
j 6=i

N∑
k 6=j

Utersoff (i, j, k, ri, rj , rk)

+

N−2∑
i=1

N−1∑
j>i

N∑
k>j

U3-body(i, j, k, ri, rj , rk)

+

N−3∑
i=1

N−2∑
j>i

N−1∑
k>j

N∑
n>k

U4-body(i, j, k, n, ri, rj , rk, rn)

+

N∑
i=1

Uexternal(i, ri, vi) ,

whereUshell acknowledges ion polarisation contributions coming from the extension of the
point charge ion model via the shell model of Dick and Overhauser,25 the adiabatic method
of Fincham26 or the relaxation model of Lindan.27 The tether potential (Utether) is a simple
spring potential intended to keep a particle in the vicinity of its starting position. The rest
of the intra-molecular interactions in DL POLY have a wide selection of bond potentials
(Ubond), angle potentials (Uangle), dihedral angle potentials (Udihed) and inversion angle
potentials (Uinvers) which fully covers and exceeds the variety of those available in the
custom FFs mentioned above.

The three-body (U3-body) and four-body (U3-body) interactions are non-specific angular
potentials (suitable for glasses). Many-body interactions, an increasingly common require-
ment for modelling complex systems, are available in Tersoff forms (Utersoff )28, 29 for
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covalent systems and via two-body decomposed (U (metal)
2-body) metal potentials for metals and

metal alloy systems. The latter include a wide variety of Finnis-Sinclair (FS) forms30–34 as
well as Embedded Atom Method (EAM) forms.35–40 The two-body term also includes (i)
all commonly used pair potentials (U (vdw)

2-body) including Lennard-Jones, Buckingham, 12-6,
N-M, Morse, etc. as well as allowing for input in a tabulated form, and (ii) electrostatic in-
teractions (U (electrostatic)

2-body ), available as point charge and polarisable shell models, for which
a variety of summation techniques may be selected (see Section 7).

Lastly, DL POLY permits the user to apply external force fields. This capability is
useful for modelling transport (e.g. conduction), or containment (e.g. pores) or mechanical
intervention (e.g. shearing).

5 Integration Algorithms

The integration algorithms in DL POLY handle the dynamics of the system being simu-
lated. From the current positions of the atoms, the forces may be calculated from the first
derivatives of the potential functions outlined above and then used to update the atomic
velocities and positions. The integration progresses in a sequence of finite steps in time,
each time step being of the order 0.001 up to 10 fs depending on the model system po-
tentials and initial conditions of the dynamics simulation. DL POLY 4 includes an option
for self-adjustable timestepping (variable timestep) should the user need to allow for the
feature. Although the feature is not needed for systems in equilibrium, it may be useful to
determine the most advantageous timestep size for the particular model system.

The integration algorithms in DL POLY 4 are based on the leapfrog Verlet (LFV)41, 43

and velocity Verlet (VV)42, 43 schemes. In addition to providing a numerical solution to the
equations of motion, the integration algorithm also defines the thermodynamic ensemble.
Although not all integrator implementations define ensembles, notably those of Andersen
and Berendsen, we will refer to them as such in the text below! DL POLY 4 provides ac-
cess to a variety of ensembles: NVE (constant energy ensemble), NVT (canonical) ensem-
bles of Evans44 (a.k.a iso-kinetic, gaussian-constraint kinetic energy), Langevin45, 46 (a.k.a
stochastic dynamics), Andersen,47 Berendsen,48 Nosé-Hoover49 and a gentle-stochastic
themostat.50, 51 For constant pressure work there are the isothermal-isobaric (NPT) en-
sembles of Langevin,52 Berendsen,48 Nosé-Hoover53, 54 and Martyna-Tuckerman-Klein.55

These are complemented by the anisotropic forms (NsT) for simulation of phase transitions
in solids. The latter provide for further extensions56 to constant normal pressure and sur-
face (NPnAT) and constant normal pressure and surface tension (NPnγT), which are useful
for modelling interfaces.

DL POLY 4 also accepts molecular structures defined by constraint bonds (CB) and
rigid bodies (RB). The types of molecular structures that may be accommodated in a
DL POLY 4 simulation are shown in Figure 1. It is important to note that all such struc-
tures may be present in one simulation! CBs adapt easily within the frameworks of LFV
and VV through the well-known SHAKE57 and RATTLE58 algorithms respectively. Simi-
lar constructs are used for the potential of mean force (PMF) constraints. It is worth noting
that in DL POLY 4, appropriate CB and PMF solvers are devised for all of the above
ensembles.

RBs may be used to represent structures like aromatic hydrocarbons and their deriva-
tives, which arise in all branches of chemistry. In DL POLY 4 the dynamical treatment of
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Figure 1. Molecular structures supported by DL POLY 4. Any or all such structures may be present in a given
model at the same time.

such entities is based on Euler’s prescription59 treatment of the orientation60 augmented by
a quaternion. For the LF integration scheme DL POLY 4 employs the Fincham implicit
quaternion algorithm61 and for the VV scheme the NOSQUISH algorithm of Miller et al.62

is used. The latter algorithm has the advantage of being symplectic and therefore stable for
long time integrations.62

6 Parallelisation

DL POLY 4 parallelism relies on equi-spatial domain decomposition (DD), in which the
simulation cell is divided spatially into quasi-independent domains which are allocated to
individual processor cores (MPI tasks). It follows immediately that in order to have rea-
sonable work load balancing the simulated system must be reasonably isotropic during the
simulation. The spatial division naturally does not recognise molecular entities, which are
therefore usually divided between processors, creating special communication difficulties.
The implementation of DD in DL POLY 4 is based on Hockney and Eastwoods link cell
(LC) algorithm,41 which was adapted for parallel use by Pinches et al.63 and Rapaport.64

A LC approach is not entirely essential for DD, but it provides useful constructs to aid its
implementation and yields order N scaling for large numbers of atoms, N . The structural
aspects of DD are shown in Figure 2 (a).

The MD cell is most often divided into near-cubic domains, though exception is made
for systems with slab geometries to help achieve load balance. Each domain is then sub-
divided into LCs according to the normal prescription, in which the width of a LC must
be greater than the cut-off distance applied to any one inter-atomic interaction. This crite-
rion must also include the distances between particles participating in any intra-molecular
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Figure 2. (a) Domain Decomposition (left). The MD cell (large cube) is divided into equal-sized domains
(medium-sized cubes), each of which is allocated to a specific processor. Each domain is divided into link-
cells (small cubes), the width of which must be greater than the radius of interaction cut-off applied to the
interatomic force terms. The shaded circle represents the cut-off sphere defining the interaction range. (b) Halo
data construction in Domain Decomposition (right). The central cube represents a spatial domain that is allocated
to a single processor, where it is divided into link-cells (small cubes). It is necessary to add the halo data around
the domain, which is one link-cell in width (indicated by the isolated small cube), as it is composed of the
coordinates of atoms found in the link-cells at the boundaries of the neighbouring domains. It is apparent from
this construction that the smaller the link cells, the more efficient the overall algorithm will be, since less data
will need to be transferred.

interaction, such as dihedral angle (e.g. the 1-4 distance) and any intra-molecular (like)
object such as a core-shell pair, a CB, a RB or a tether. Ideally, these requirements should
lead to better than a 3×3×3 LC partitioning of the domain in the three principal directions.
DL POLY 4 can handle fewer link cells per domain than this, but such scenarios may raise
major efficiency issues arising from the construction of the halo data.

The “halo data” represents the construction around each domain of a partial image of
all neighbouring domains so that calculation of all the forces relevant to a domain can take
place, as illustrated by Figure 2 (b). In DL POLY 4 this amounts to the transfer of the
atomic coordinates of all atoms located in link cells at the boundaries of a domain to the
processors managing the neighbouring domains. This is a six-fold transfer operation that
moves data in directions North & South, East & West, and Up & Down of each domain.
These six transfers do not happen concurrently, although they may happen in pairs as
indicated, since some data sorting is necessary to populate the “corners” of the halo data.
It is apparent from the nature of the link-cell method that these transfers are sufficient for
a complete calculation of the forces on all atoms in any domain. It is also apparent that
if the domains have relatively few link cells (or their shape is far from cubic), then the
transfer of the halo data represents the transfer of a major proportion of the contents of
a domain, which implies a large, possibly prohibitive, communication cost. This may be
avoided by running the program on fewer processors. The transfer of halo data is the main
communication cost of the basic DD strategy. After the transfer, the atomic forces may be
calculated and the equations of motion integrated independently on each processor. Atoms
that move sufficiently far may then be reallocated to a new domain.

The computation of inter-molecular forces, such as those for van der Waals (VDW),
comes straightforwardly from the LC decompositioning of the domain and its halo by
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constructing a distributed Verlet neighbour list43 (VNL) - enlisting all possible pairs on the
domain and its halo within a cut-off distance. Special care is taken that the VNL excludes
pairs with both particles lying in the domain halo./

There are particular complications arising from the DD scheme related to the compu-
tation of intra-molecular forces and the handling of intra-molecular objects. There are
two aspects to this: firstly, the description of the molecular structures (commonly called
the topology) is “broken” by the decomposition into domains; and secondly, the evolu-
tion of the system demands that the topology be partially reconstructed every time atoms
move from one domain to another. In order to accomplish this, the package of data trans-
ported with each atom that leaves a domain must contain not only its configurational data
(name, index, position, velocity and force), but also a topological description of the intra-
molecular-like term with the atom.

7 Electrostatics

The treatment of long ranged electrostatic forces represents a particular challenge in molec-
ular simulation. Direct summation of the Coulomb pair interactions is rarely adequate,
except for the treatment of atomic clusters, so more sophisticated treatments have evolved.
The main method used in DL POLY 4, the Smoothed Particle Mesh Ewald (SPME),66 is
based on the Ewald sum.65

The Ewald sum casts the sum of Coulomb pair interactions into two separate sums (plus
a correction term, which is computationally trivial). The first sum is a screened Coulomb
sum, which resembles the Coulomb formula but each term is weighted by a screening
function (the complementary error function - erfc) which compels the sum to converge in
a finite range. The second sum is a sum of structure factors, which are calculated from
reciprocal space vectors, and which are again weighted by a screening function (this time
a Gaussian) which guarantees a finite sum. The first sum is therefore set in real-space,
while the second is set in reciprocal-space. The convergence of both sums is governed by
a single parameter α, which defines the range of both convergence functions and is known
as the Ewald convergence parameter.

The calculation of the real-space components is managed in the same manner as the
VDW terms described above. The reciprocal-space terms are derived from a Fourier trans-
form of the system charge density. The method involves the global summation of the
structure factors associated with each reciprocal space vector.

In the SPME method the charge density is distributed over a regular 3D grid using
Cardinal B-splines.66 This permits the use of a 3D Fast Fourier Transform (FFT) to cal-
culate the structure factors, which accelerates the process enormously. DL POLY 4 uses
its own 3D FFT algorithm devised by Bush.67 Known as the Daresbury advanced Fourier
Transform (DaFT), this FFT employs a domain decomposition of the 3D FFT arrays which
maps neatly on to the DD structures. This means that all computations necessary to build
the (partial) arrays can take place without inter-processor communication. Furthermore,
all communication required by the FFT algorithm is handled internally. While the inser-
tion of communication processes into the heart of the FFT algorithm inevitably affects the
efficiency of the FFT calculation, DaFT nevertheless possesses excellent scaling charac-
teristics and the associated economies in data management resulting from its use makes
the DL POLY 4 SPME implementation a highly efficient algorithm.68 Overall, due to the
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Figure 3. DL POLY 4 weak scaling performance using five model systems with varied force field complexity as
described in the text. Computation times (time-per-timestep) exclude any start-up and close-down timings, and
are based on a single, non-reserved run per system for a 100 timesteps of evolution from equilibrium within the
velocity Verlet (VV) couched microcanonical ensemble (NVE) on a Cray XE6 platform.70

DaFT internal communication and FFT scalability, the electrostatics evaluation is usually
one of the most expensive parts of an MD step; it yields order N log N compute-wise
and (N log P )/P communication-wise, where N is the number of particles in the model
system and P the number of domains. Radiation damage simulations of order 10 million
atoms (and larger) are regularly performed with DL POLY 4.69

It is worth noting that DL POLY 4 also offers a number of cheaper alternatives to
handle electrostatic interactions than the default SPME. These are the direct Coulomb sum,
Coulomb sum with distance dependent dielectric, force-shifted Coulomb sum and reaction
field Coulomb sum.72 The last two are optionally extended to include screening effects
as demonstrated in.71 The alternative approaches should be used with caution as they are
specific short-ranged approximations of the Ewald sum!

8 Scalability and Performance

Figure 3 is an example that best demonstrates the scalability and performance of
DL POLY 4. It represents a comparative weak scalinga test on a set of model systems
with increasing complexity of their force fields (FFs).

The Argon system includes only short-ranged VDW interactions. The NaCl system
increases the Argon system’s FF complexity by including long-ranged electrostatic inter-

aIn a weak scaling test, the ratio of the problem size to the compute power (number of cores) is kept constant, i.e.
the system size is enlarged by a factor of two every time the core count is increased by a factor 2.
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actions - handled with SPME with a convergence factor of α = 10−6. The remaining
systems used an SPME convergence factor of α = 10−5. The transferrin system (repre-
senting polymer chains solvated in water) increases further the FF complexity by including
a wealth of intra-molecular interactions together with constraint bonds - with a relative
length convergence factor of σ = 10−5. Lastly, the CB water and the RB water systems
use the same single point charge water model FF SPC-E, but in the former the two O-H and
H-H bonds of each water molecule are handled as constraint bonds (σ = 10−5), whereas
in the latter all water molecules are handled as rigid bodiesb.

For purposes of comparison the systems were constructed to nearly the same size,
starting at ≈ 250, 000 particles on 16 cores (i.e. domains/MPI tasks), and using the same
short-ranged cutoff of 9 Å so that all algorithms related to handling short-ranged inter-
actions (LC and VNL) and minimum necessary communications (halo exchange) were in
linear-scaling regimes. Therefore, by performing the weak scaling test on these systems we
clearly expose trends related to the impact on communication and computation overheads
driven by the complexity of the model system in terms of force field related features.

First, it is clear that the Argon system performs best due to the presence of only short-
ranged interactions. Its weak scaling is hardly affected by number of cores. The NaCl sys-
tem weak scaling deviats from that trend but its relative cost, in terms of time per timestep,
is almost the highest. The deviation is due to the non-linear compute and communication
performances of the 3D FFT routine (DaFT) needed for the SPME electrostatics (as dis-
cussed in Section 7). The transferrin system has the force field that is richest in features
and shows similar weak scaling to that of the NaCl system. However, its absolute cost is
much lower. This is by and large due to the lesser accuracy of the Ewald sum (i.e. the
larger convergence factor) that was used for the simulations. Last but not least the two wa-
ter systems weak scaling lines reveal that the cost of constraint bond solvers is much larger
than that of the rigid body solvers. Thus RB dynamics offers better communication-bound
computation than CB dynamics. As discussed in,73 in the case of the CB water system, the
communication overheads rise quickly with core count and start dominating almost imme-
diately over computation in strong scaling tests, which is not the case for the RB water
system. Thus RB dynamics offer a constant communication-bound computation.

9 I/O Files and Performance

To run an MD simulation using DL POLY 4 a minimum of three files are required:

• CONFIG - contains configuration information; crystallographic and optionally some
dynamic data about the MD cell in data records following a well-documented stan-
dard. Briefly, the data includes a type of lattice image condition, lattice parameters,
level of information for the particles within, and a list of all particles with name/type
(namei), global index (i = 1, ..., N ), and coordinates (xi, yi, zi). Depending on the
level of information, particles velocities (vxi, vyi, vzi) and forces (fxi, fyi, fzi) may
be optionally included too.

bIt is worth noting that both integration methodologies, RB and CB, solve the same degrees of freedom per water
molecule. For CB dynamics this is 3×3 (for the three atoms)−3 (for the three distance constraints O-H1, O-H2,
H1-H2) or 6 in total. For RB dynamics this is also 6: 3 for the center of mass translational motion and 3 for the
unrestricted rotational motion of the water molecule.
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• FIELD - describes the necessary force field information complementing the config-
uration given in CONFIG. It contains physical, stoichiometrical, optionally intra-
molecular “like” (topology and interactions), inter-molecular (interactions) and exter-
nal field information. The information must correspond to the contents in CONFIG.
Optionally, if so indicated in FIELD, some types of interactions may be provided in a
tabulated form in extra files such as TABLE and/or TABEAM.

• CONTROL - contains simulation control directives and conditions, such as timestep
size, type of ensemble and target state point, minimisation and runtime options, etc.

After running DL POLY 4 successfully, at least four output files are produced:

• OUTPUT - contains run time information of the simulation, such as timestep timing
data, instantaneous values of measurable quantities such as pressure, temperature,
energy components, etc. as well as rolling statistical averages of these and some final
information when the simulation comes to an end. Warning and error messages may
also be found in this file.

• STATIS - contains all instantaneous data dumped at regular intervals during the sim-
ulation.

• REVCON - contains the final configuration data about the MD cell in the same format
as CONFIG. It is dumped at regular intervals, as it is necessary as a back-up solution
in case of prematurely terminated runs and at the end of a run for restart purposes.

• REVIVE - statistical accumulators holding data necessary to restart and continue a
previous simulation from where it last finished or at its last back-up point. Notice that
this file is written in binary!

There are a number of other optional files depending on what is specified in the CON-
TROL file. HISTORY is one which deserves a mention because it is often used as input for
visualisation software packages such as VMD75 to produce an animation of a simulation
run. HISTORY contains instantaneous configuration data (similar to the CONFIG file)
about the MD cell dumped at regular intervals during the simulation.

As discussed elsewhere74 DL POLY 4 has an advanced parallel I/O strategy. The con-
sequences of poor I/O parallelisation can be catastrophic in the limit of large system sizes
or/and large processor counts. There are a few simple requirements that guided the devel-
opment:

• To avoid disk contention, the data is gathered and apportioned to a subset of the pro-
cesses within the job. These, the I/O processors, then perform the reading or writing.

• To avoid disk and communication fragmentation, large sizes of I/O and data trans-
actions are required whilst being small enough to fit in the available memory and
bandwidth.

• Keep data contiguous along the particle indices when writing data. The domain de-
composition (DD) of the configuration data presents the scrambling data problem: as
particles naturally diffuse they move from one domain to another. Therefore, there is
no straight mapping of the order of reading to the order of writing via the DD map.
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This has implications for the processing of configuration data by many atomistic vi-
sualisation software packages.

The practical benefits of the parallel I/O in DL POLY 4 are that dumping of a configura-
tion frame on disk costs, in terms of computation time, the same order of magnitude as
a timestep provided the I/O options supplied by the user in the CONTROL file are tuned
for the particular architecture. If no specifications are given, reasonable preset defaults are
loaded to match best performance on a Cray XE6 platform.

It is worth mentioning that reading a configuration frame is also very fast, although not
as fast as the writing. However, this operation is carried out as a one-off only at the start
of a simulation run. The treatment of FIELD can be more problematic as the topological
information can only be digested in serial.

10 GridBeans and Workflows

Packages such as DL POLY 4 undoubtedly serve as versatile and powerful tools to help
elucidate the properties and behaviour of a diverse range of materials. However, the scope
of an individual application is typically quite narrow in terms of the physical processes
it can describe. This is mainly due to the inherent limitations of the physical model that
a particular application is based on. For example DL POLY 4, as a classical molecular
dynamics (MD) engine, could never be used to probe phenomena of a quantum nature
such as light emission or chemical bonding. The suitability of a particular simulation tool
is also constrained by the practical consideration of what is feasible computationally. For
example classical MD could, in principle, be used to simulate systems of macroscopic
dimensions, but of course the computational resources and time that would be required
for such a task make this utterly unrealistic. Nevertheless, the properties of materials are
dependent upon a range processes that collectively span a very broad range of time and
length scales. Therefore, in recent years there has been growing interest in finding ways to
integrate different models to collectively bridge this gulf.

The Multiscale Modelling of Materials on High Performance Computers
(MMM@HPC)76 is one of a number of recent projects that seek to meet this chal-
lenge. The particular focus of MMM@HPC is to couple together quantum, atomistic
and continuum level simulation techniques and calculations to fully model the behaviour
of devices such as OLEDsc, polymer and graphene based electronics and lithium ion
batteries. As well as addressing the scientific questions of how to combine the various
underlying physical models, the project has also sought to develop and promote suitable
methods for implementing the multiscale models on Grid-based compute resources. These
methods are built on UNICOREd,77 a well established Grid infrastructure that links HPC
facilities across Europe. The remainder of this section will present a brief outline of
this infrastructure and how it can be used as an efficient and flexible means of running
multiscale models in the form of workflows.

The UNICORE infrastructure, as illustrated in Figure 4, consists of three layers – client,
server and system. The client is installed on the user’s local workstation, which could be

cOrganic Light-Emitting Diode
dUniform Interface to Computing Resources
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Figure 4. Simplified schematic of the UNICORE Grid infrastructure for job and workflow submission.

virtually any PC or laptop computer, whilst the servers are based at various geographically
dispersed HPC facilities. Individual servers are accessed by the client via a central Gate-
way. A given facility may run any number of servers but each one is associated with a
single high performance machine – a so-called target system. All copies of the client and
server, which are Java based for portability, are essentially the same. Target systems on the
other hand vary greatly in terms of architecture, operating systems, queuing systems and
so forth. Therefore, each target system has a program called the Target System Interface
(TSI) installed on it that interprets the commands and information that the server passes to
it.

In essence, the relationship between these key components of the infrastructure is the
following: The user inputs information about the simulation they wish to run – the job –
into the client. The client converts the user’s specification into Job Submission Description
Language (JSDL), which is written to a single file; this is technically referred to as an ab-
stract job. The JSDL file is sent to the server where the information it contains is unpacked
and used to configure instructions for running the job. These instructions are then passed to
the target system, via the TSI, along with any files that are required as inputs to the job. The
target system is responsible for setting up a working directory for the job and submitting

32



it to the queuing system. The server monitors the progress of the job and reports its status
to the client. When the job is finished, output files can be fetched from the job directory to
the users local machine.

The unfolding of this chain of events is contingent on two main conditions: (i) that the
user has access to the target system; and (ii) that the application executable they wish to
run is installed there. Access to the UNICORE Grid infrastructure as a whole requires that
the user is in possession of an X.509 Grid certificate. The certificate is embedded within
the client and, when it connects to the central gateway, its authenticity is verified. For
access to a particular target system, the user needs a user account on that system. A user
database (UDB) on the target system’s server contains a register of all the account holders
and maps the certificate to the user credentials on the target system. A second database,
the Incarnation Database (IDB) contains a register of all applications installed on the target
system as well as a list of all the resources it offers, the latter are mostly related to the
hardware set-up, e.g. number of cores, cores per CPU, CPUs per node etc.

We will now describe in a little more detail how the client is actually used to submit
jobs to a target system. It should be added that there are two versions of the client, the UNI-
CORE Command line Client (UCC) and the UNICORE Rich Client (URC). The former is
named simply because it is controlled via command line directives whilst the latter is based
on the Eclipse Rich Client,78 a generic Java based GUI. Here we confine the discussion to
the operation of the URC.

Figure 5 shows a typical view of the URC, in so called workbench mode – the mode of
operation in which it is used to submit jobs. It is divided into three main sections:

1. The “Grid browser” is a view of all facilities connected to the UNICORE Grid, here
the user selects the particular target system on which to run a job.

2. The job editing pane, where specifications for an individual job are entered.

3. On the lower left are a collection of various tabs, by default these are: the “Navigator”
in which the files associated with all the specified jobs can be browsed, the “Keystore”
and “Truststore” which contain information about the security related certificates in-
stalled in the client and the “Client Log”, which contains a record of information,
warnings and error messages issued by the client as it runs.

To create a job, the user begins by selecting a target system in the Grid Browsere, then,
by right clicking on its icon, they can select from a drop-down menu the application they
wish to run on it. Only applications listed in the IDB of the target system server will appear
in the menu. When an application is selected, various tabs will appear in the job editing
area. Generally there are four of these, from left to right: (i) input panels, (ii) files, (iii)
variables and (iv) resources, such as number of processors. The variables tab is generic and
allows environment variables to be exported to the target system’s operating system before
the job is run. The options available in the resources tab depend on what is available on
the target system selected for the job and correspond to the system information listed in
the IDB.

The configuration of the input panels and files tabs on the other hand reflect the identity
of the particular application selected for the job. Typically, the input panels are used to enter

eNote that Grid resources must first be added to the URC by manually specifying a web address or by automatic
discovery. Access requires the user to possess a valid Grid certificate that needs to be imported into the URC.
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Figure 5. Snapshot of the UNICORE Rich Client. In the job editing pane on the right, the input parameters for
a BigDFT job are in the process of being specified.

information that controls how a simulation is run, such as the number of time steps to run
for, which algorithm to use and so forth. In the files tab the input and output files for the
application are defined, in the case of the input files, paths to their storage locations must
be specified. Input files can be stored on the user’s local workstation or in a storage area
on the target system. The software component embedded in the client that is responsible
for the appearance of the input panels and files tabs is called a GridBean. In a sense the
GridBean encapsulates the application, in as much as it controls the information that is fed
into its executable when it is run on the target system. When the user has entered all the
information required to specify his job, they ’save’ the job with a single click of an icon on
the main menu, this causes the URC to create the JSDL file. Clicking the run icon in the
main menu then submits the JSDL file to the target system server. The server subsequently
passes instructions to the target system itself to execute the ’concrete’ job so to speak,
as described above. The user can monitor the status of the job – ’submitted’, ’running’,
or ’finished’ and, at any point after submission, inspect the contents of the job’s working

34



directory on the target system in the Grid browser. When the job has finished, the output
files can be uploaded to the local machine at the click of an icon.

It should be noted that in order for the job to be executed by submitting via a Grid-
Bean, a so called Application Wrapper must be present on the target system. The Appli-
cation Wrapper, essentially, consists of two components: a bash script, called the wrapper
script, and a jar file (compiled Java source code) which we will refer to as the Application
Launcher. The location of the script on the target system is listed in the IDB so that it can
be accessed when the time comes to run the job. It is usually responsible for three things:

1. Loading any modules or libraries required by the application executable;

2. Gathering any required environment variables present on the operating system; and
finally

3. Running the Application Launcher, passing the environmental variables to it as it does
so.

The primary role of the Application Launcher is simply to issue the command that will
cause the target system to submit the job to the queue. However, it can be augmented to
perform a number of ancillary functions such as logging diagnostics, pre-processing (e.g.
converting one or more of the input files into another format), and, when the job has run,
carrying out post-processing on the output files.

Setting up and running standalone jobs as GridBeans on the URC saves the user con-
siderable effort in respect to routine tasks such as manually uploading files, setting up
working directories, managing output data and keeping records of all the jobs they have
run. Running jobs in this way also makes it unnecessary to learn about the procedures and
protocols of the target system, since the user never interacts with it directly. Also, once
a job has been specified in the URC, it can be re-run as many times as desired with the
minimum of effort. Furthermore, GridBeans for an increasing number of applications are
being developed and committed to a central repository from which they can be downloaded
by other users into their own client.

So clearly GridBeans are of great utility when it comes to running standalone jobs.
However, where they really come into their own is in the construction of workflows. A
workflow, in its simplest form, consists of a series of simulation steps carried out one after
the other, with output from one step forming the input to the next step. Thus workflows
can be used to implement multiscale models. The task of implementing such schemes
manually, even just once, would be an arduous one – a number of standalone jobs would
need to be set up (possibly on different target systems), monitored and, when each job has
finished, the outputs transferred to the working directory of the next. To have to repeat the
process numerous times would be highly impracticable and likely to be prone to human
error.

Fortunately, the URC allows the user to easily set up workflows graphically in the form
of flowcharts and then submit them in their entirety as easily as a single job. In essence,
they are constructed by connecting together individual GridBeans in the desired sequence
and then setting the specifications for each job. This is done by first right clicking on the
so-called workflow engine in the Grid browser and opening a new workflow project. The
workflow engine is a software component installed on the central gateway server men-
tioned earlier. Its role is essentially to orchestrate the distribution of individual jobs to
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Figure 6. A simple UNICORE workflow consisting of three steps: (i) the application PolyMorphBuilder sets up
an initial configuration of polymer molecules; (ii) a short DL POLY 4 run to perform a geometry optimisation
on the initial configuration; and (iii) a long DL POLY 4 run to generate an accurate morphology for the polymer
system at a certain temperature.

particular target systems, thus allowing particular steps in the workflow to be matched to
the most appropriate resources. Upon starting a new workflow project, an editing panel
into which icons representing the desired application GridBeans are dragged from a side
menu. A simple example is shown in Figure 6. More complex workflows can be con-
structed with the use of logical structures such as conditional statements and loops. Some
care has to be taken in specifying the input and output files for each step, but once a partic-
ular workflow is set up, the process does not need to be repeated. As with individual jobs,
workflows can be duplicated, modified and reused as required. Also, workflow templates
can be committed to a central repository and thereby become available to other UNICORE
users.

11 Concluding Remarks

We have given a comprehensive overview of the DL POLY 4 program, outlining the con-
cepts and methodologies that have driven its development and made it into a generic and
comprehensive toolbox for many molecular dynamics modellers world-wide. We have also
described the generic manner in which one could include the program within a UNICORE
server-client framework and get access to workflow automation with the future possibility
to include multiscale workflows.
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More information about the DL POLY 4 program and its usage can be found on the
project website,9 where we provide links to the software, its manual and test-cases, the
user forum, and least but not last some training material.

For more detailed technical descriptions of the UNICORE infrastructure components
the interested reader can download technical manuals from the UNICORE website.77

For more information about GridBeans and workflows as well as the MMM@HPC
project in general, the reader is again directed to the MMM@HPC project website,76 where
the project deliverables can be downloaded.
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The density functional tight binding (DFTB) method is based on a second-order expansion of
the Kohn-Sham total energy in density-functional theory (DFT) with respect to charge density
fluctuations. The zero order approach is equivalent to a common standard non-self-consistent
(TB) scheme, while at second order a transparent, parameter-free, and readily calculable expres-
sion for generalized Hamiltonian matrix elements can be derived. These are modified by a self-
consistent redistribution of Mulliken charges (SCC). SCC-DFTB can be successfully applied
to problems, where deficiencies within the non-SCC standard TB approach become obvious. It
provides accurate results at a fraction of the cost of a DFT evaluation through parameterization
of the integrals. Long-range interactions are described with empirical dispersion corrections
and the third order approach handles charged systems accurately. Advanced functions include
spin degrees of freedom, time dependent methods for excited state dynamics and multi-scale
QM/MM-techniques to treat reactive processes in nanostructures under environmental condi-
tions. Additionally, the combination with non-equilibrium Greens functions allows to address
quantum transport in nanostructures and on the molecular scale. An overview about the theoret-
ical background of the DFTB method is presented and a showcase example on bulk amorphous
titanium oxide to demonstrate its capabilities.

1 Introduction

In the research area of atomistic simulations there is a multiplicity of methods to cover
different time and length scales in simulating the time evolution of a given multi-atom
ensemble. These simulation techniques use either a quantum mechanical approach, i.e.
density functional theory (DFT) or classical molecular dynamics (MD) and kinetic Monte
Carlo (kMC) methods. Being computationally very demanding, the simulations using ab
initio DFT methods are limited to a small number of atoms and short simulation times in
the range of a few picoseconds. If questions should be treated taking place on larger length
and time scales predominantly classical molecular dynamics (MD) simulations are em-
ployed. The most essential input for such classical MD simulations are classical potentials
describing all interatomic interactions of the involved species. For this reason the choice
of the right potential is of paramount importance and decides on quality and validity of
the simulation. Suitable potentials for a desired combination of materials are derived from
adapting a classical potential to the results of ab initio simulations, by fitting to experimen-
tal data or by semi-empirical procedures.

However, since such classical potentials are adapted to a finite set of equilibrium situ-
ations (mostly experimental data and ab initio results for equilibrium configurations), they
usually apply well to systems that are within the parametrization space, but usually fail
far from those. Additionally, they are not transferable to different chemical situations and
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more generally to calculations of spectroscopic data relying quantitatively on the detailed
knowledge of the electronic structure.

In conclusion, for large-scale applications, a method based on quantum mechanics is
highly desirable. It should allow one to follow with confidence the structural dynamics
during the time evolution in chemical reactions and bond formation. The equilibrium con-
figurations have to be accurately described as regards details of the geometry, and cohesive
and elastic properties, including stability as well as vibrational dynamics. The method has
to perform equally well for very different types of materials and inherently should yield
electronic structure information to enable comparison of theoretical with spectroscopic
data. Furthermore, the predictive quantum mechanical treatment of the complex many-
atom structures, taking advantage of reliable approximations, should be implemented effi-
ciently for running on advanced computer architectures.

Therefore, during the last two decades we have put a strong effort into the develop-
ment of approximate methods, which try to merge the spirit and reliability of DFT with
the simplicity and efficiency of TB ansätze. In keeping the computational cost but simul-
taneously also the number of parameters as small as possible, the method described here
and related computer codes offer a high degree of transferability as well as universality for
both ground-state and excited-state properties. Thus we claim that the density functional
tight binding (DFTB) method operates at the same accuracy and efficiency whether organic
molecules or solids, clusters, insulators, semi-conductors and metals or even biomolecu-
lar systems are investigated, and, furthermore, independent of the type of atoms which
constitute the material.

In the next section we give an overview about the DFTB method, showing all its ap-
proximations with respect to ab initio DFT. Then on the example of bulk amorphous tita-
nium oxides some of the capabilities of the method for materials simulations are demon-
strated.

2 Theory of DFTB

2.1 Expansion of the density

The density functional tight binding method derives from ab initio density functional the-
ory. According to the Hohenberg-Kohn theorem,1 the total energy E of a system of elec-
trons in the external field of atomic nuclei is assumed to be a functional of the electron
density n(r)

E = E[n(r)].

Applying the Kohn-Sham one-electron approximation,2 the density is assumed to be a sum
of densities of independent one-electron wavefunctions ψ(r):

n(r) =
∑
i

fi |ψi(r)|2 .

The factor fi specifies the occupation number for the given one-particle wavefunction ψi
and the summation runs over all one-electron wavefunctions.

Following the derivation of Foulkes and Haydock,3 the true ground state electron den-
sity in the system can be written as the sum of an arbitrary reference density n0(r) and the
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deviation from that reference density δn(r):

n(r) = n0(r) + δn(r).

Expanding the total energy up to second order in δn(r), one obtains the total energy

E = Ebs[n0] + Erep[n0] + E2[n0, δn
2]

as sum of three energy terms, the so called band structure energy Ebs, the repulsive energy
Erep and the second order energy E2.

The band structure energy is calculated by summing up the occupation weighted ener-
gies of the electrons in the system (εi)

Ebs[n0] =
∑
i

fiεi =
∑
i

fi

〈
ψi

∣∣∣∣−1

2
∆ + veff[n0]

∣∣∣∣ψi〉 , (1)

with

veff = Vext + VH + Vxc = Vext +

∫
dr′

n0(r)

|r− r′|
+ Vxc

being the Kohn-Sham effective potential. (The equations are given in atomic units with
Hartree as energy unit.) The potential Vext is the external potential of the nuclei, while VH
and Vxc stand for the Coulomb-potential and the exchange-correlation potential, respec-
tively, both arising from the electron-electron interaction.

The repulsive energy is defined as

Erep[n0] = −1

2

∫
dr dr′

n0(r′)n0(r)

|r− r′|
+Exc[n0]−

∫
drVxc[n0]n0(r)+

1

2

∑
A

∑
B 6=A

ZAZB
RAB

with Exc being the exchange-correlation energy corresponding to the electron density n0.
The summation over A and B in the last term (nucleus-nucleus repulsion) is carried out
over all nuclei in the system, with ZA and ZB being the charge of nuclei A and B and
RAB the distance between them.

It is important to note, that both Ebs and Erep depend only on the reference density
n0(r). In DFTB this reference density is usually composed as a sum of confined electron
densities of neutral atoms

n0(r) =
∑
A

n
t(A)
atom (r−RA) (2)

(with nt(A)
atom being the neutral atomic density used for the atom type t(A) of atom A), so

that the sum of these two terms corresponds to the energy of a system consisting of neutral
atoms only. In order to take also the effect of the charge transfers between the atoms into
account, at least the second order term

E2[n0, δn] =
1

2

∫
dr dr′

[
1

|r− r′|
+

δ2Exc[n]

δn(r)δn(r′)

∣∣∣∣
n0

]
δn(r)δn(r′)

is needed, which depends on the reference density n0(r) as well as on the density fluctua-
tion δn(r).
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2.2 Repulsive energy

Having a reference density n0(r), theoretically both, Ebs and Erep can be calculated. In
DFTB, however, only the former is calculated explicitly, while the latter is fitted against
calculations with higher level methods or against experimental results in order to achieve
high accuracy despite the various approximations in the method (described in the following
sections). The repulsive energy is assumed to be composed of atom type specific pairwise
interactions, so that

Erep =
1

2

∑
A

∑
B 6=A

Et(A) t(B)
rep (RAB) .

The pairwise repulsive contributions Et(A) t(B)
rep depend on the atom types t(A) and t(B)

of the two interacting atoms A and B and on the distance RAB between them. In order to
obtain such distance-dependent atom type specific repulsive functions, higher-level (typi-
cally ab initio) calculations are carried out for systems containing interacting atoms of the
given species at various distances. The repulsive functions are then chosen to minimize the
weighted difference between the higher level energies and those obtained in DFTB for the
given set of atomic structures:∑

α

wα
∣∣Eαab initio −

(
Eαbs + Eα2 + Eαrep

)∣∣ = min .

The weights of the individual structures wα can be chosen according to their importance.
Apart of the energy, also other quantities (forces, vibration frequencies, etc.) can be taken
into account during the fitting procedure. Further details on it can be found in Ref. 4.

2.3 Band structure energy

In order to calculate the band structure energyEbs as defined in equation (1), one has to ob-
tain the one-electron wave functions ψi by solving the according one-electron Schrödinger-
equation with the Kohn-Sham effective potential

Hψi =

[
−1

2
∆ + veff[n0]

]
ψi = εiψi, (3)

with εi being the one-electron energies. In DFTB the one-electron wavefunctions are as-
sumed to be a linear combination of atomic orbitals ϕν(r)

ψi(r) =
∑
ν

ciν ϕ(r−RA(ν))

with coefficients ciν to be determined. The sum over ν runs over all atomic orbitals used
as basis functions and RA(ν) is the position of atom A containing the orbital ν. This turns
equation (3) into the generalized matrix eigenvalue problem∑

ν

cνi (Hµν − εiSµν) = 0 with Hµν = 〈ϕµ |H|ϕν〉 and Sµν = 〈ϕµ|ϕν〉 , (4)

where Hµν and Sµν represent the Hamiltonian matrix and the overlap matrix, respectively.
Latter is needed as atomic orbitals centered around different atoms are usually not orthog-
onal.
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The orbitalsϕµ(r) used as basis functions as well as the densities nt(A)
atom (r) used to build

the Kohn-Sham effective potential (see equation (2)) are derived from confined neutral
atoms. The confinement is typically done using a power confinement potential, so that the
atomic orbitals and the atomic density are the solutions of a modified atomic Schrödinger
equation [

−1

2
∆ + veff[natom] +

(
r

r0

)n]
ϕµ(r) = εµϕµ(r).

As the atomic density natom(r) depends on the wave functions ϕµ(r), the equation must be
solved self-consistently. The power of the compression potential n is typically chosen to
be 2 or 4. The confinement radius r0 can be chosen to be different for the confined density
and for the confined basis functions.

The basis functions in DFTB usually only contain the valence orbitals of the atoms,
enabling to keep the size of the Hamiltonian and overlap matrices rather small. Addition-
ally, in order to be able to calculate the Hamiltonian matrix elements Hµν as efficient as
possible, further approximations are made. First of all, the effective potential veff[n0] is
written as a sum of atomic contributions

veff[n0(r)] =
∑
A

veff[n
t(A)
atom (r−RA)] =

∑
A

veff[n
A
atom(r)] =

∑
A

vAeff

yielding the Hamiltonian

Hµν =

〈
ϕµ

∣∣∣∣−1

2
∆ + vAeff

∣∣∣∣ϕν〉+
∑
B 6=A

〈
ϕµ
∣∣vBeff

∣∣ϕν〉 if µ, ν ∈ A

Hµν =

〈
ϕµ

∣∣∣∣−1

2
∆ + vAeff + vBeff

∣∣∣∣ϕν〉+
∑

C 6=A6=B

〈
ϕµ
∣∣vCeff

∣∣ϕν〉 if µ ∈ A, ν ∈ B 6= A .

The notation ν ∈ A indicates that the orbital ϕν is centered around atom A. Both sums
above (crystal field terms for µ, ν ∈ A and three-center terms for µ ∈ A, ν ∈ B 6= A)
are neglected in the DFTB approach. Additionally, the on-site term is replaced by the
corresponding energy level in the free unconfined atom

Hµν = εµ δµν µ, ν ∈ A

to ensure the right energy levels in the dissociation limit. Finally, in order to take the non-
linearity of the exchange-correlation potential better into account, the effective potential
for the two-center interaction is calculated as the potential of the summed atomic densities
rather than the sum of the atomic potentials (so called density superposition):

veff[n
A
atom] + veff[n

B
atom] −→ veff[n

A
atom + nBatom].

With all the approximations described above, the Hamiltonian matrix to be diagonalized
has the form

Hµν = εµδµν if µ, ν ∈ A

Hµν =

〈
ϕµ

∣∣∣∣−1

2
∆ + veff[n

A
atom + nBatom]

∣∣∣∣ϕν〉 if µ ∈ A, ν ∈ B 6= A. (5)
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This special two-center form allows a very fast build up of the Hamiltonian matrix during
the simulations as the various two-center integrals can be calculated in advance and tab-
ulated as a function of distance between the two atomic orbitals in the integral. During
the simulation the Hamilton matrix elements are then instantantly calculated by looking up
the tabulated values for the given distances between the atoms and transforming the values
with simple geometrical transformation into the actual coordinate system.

2.4 Second order energy

The methodology described so far does not take the charge transfers into account and
corresponds to the so called non-SCC-DFTB method5 (SCC = self consistent charges). As
mentioned above, at least a second order energy term in δn must be additionally taken into
account in order to be able to describe the charge transfer between the atoms in the system
(the deviation from the reference density). In the so called SCC-DFTB method6 this is
calculated in the monopole approximation by the Coulomb-like expression

E2 =
1

2

∑
A

∑
B 6=A

γAB∆qA∆qB ,

where ∆qA and ∆qB indicate the difference in the electron population on atoms A and
B with respect of the reference neutral atoms. The Hamiltonian (5) must be corrected
accordingly by adding the correction

H2
µν =

1

2
Sµν

∑
C 6=A6=B

(γAC + γBC) ∆qC

to it. The electron populations on the individual atoms are calculated by Mulliken analy-
sis.7 Since this requires the knowledge of the one-electron wave functions ψi (the knowl-
edge of the coefficients cνi), the eigenvalue problem (4) must be solved in a self consistent
manner. Starting with some chosen initial atomic charges ∆q

(0)
A the Hamilton matrix H(0)

µν

is built up and diagonalized. Using the resulting eigenvectors one calculates the charges
of the atoms ∆q

(1)
A by the Mulliken analysis. This new charges are then used to build a

up a new Hamiltonian H(1)
µν which will be diagonalized again yielding new eigenvectors

and corresponding new atomic charges. The procedure is repeated until self-consistency
is reached, so that charges resulting from the eigenvectors of subsequent Hamiltonians do
not differ significantly any more.

The coupling term between the net charges on the atoms

γAB =
1

RAB
− s(RAB , Ut(A), Ut(B))

is composed from the long range Coulomb term 1
RAB

and a short range term
s(RAB , Ut(A), Ut(B)). Latter incorporates the exchange-correlation effects and ensures
the correct limit of γAB when the distance between the atoms RAB goes to zero. Apart of
the distance it also depends on the chemical hardness of the isolated neutral atoms, which
can be calculated as the derivative of the energy of the highest occupied orbital εhoo with
respect of its occupation f hoo for the given atom:

U =
∂εhoo

∂f hoo .
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2.5 Further extensions

In order to yield more accurate results and be able to describe a wider range of physical
phenomena, the SCC-DFTB scheme, as outlined above, has been extended in various ways
in recent years. Those extensions embrace among others the following ones:

• Calculation of magnetic systems with colinear8 and non-colinear spin including the
effect of spin-orbit coupling.9

• Using LDA+U techniques for better description of strongly correlated systems.10

• Calculating excitations in molecules in the linear response approximation.11

• Calculating electron transport phenomena using non-equilibrium Greens function
technique.12

• Expanding the total energy up to the third order in the density fluctuation to describe
charged systems more accurately.13

Detailed descriptions of the theory behind these extensions can be found in the indicated
references. All these features have been implemented in the DFTB+ code14 which is avail-
able free of charge15 for academical, educational and non-profit research use.

3 Example: Bulk Amorphous Oxides

3.1 Computational Details

The structure formation in stoichiometric amorphous TiO2 thin films has been studied
by molecular dynamics (MD) simulations applying the self-consistent-charge density-
functional-based tight-binding scheme (DFTB).5, 6, 16 This quantum method provides a
good compromise between computational efficiency and chemical accuracy in a wide
range of applications. Successful applications include studies on diamond nucleation in
amorphous carbon systems,17 or the discussion of the properties of exo-fluorinated car-
bon nanotubes.18 The recently developed tiorg set of diatomic Ti-X (X=Ti,H,C,N,O,S)
DFTB Slater-Koster integral tables,19 together with the mio set for light elements and their
atomic pairs,5, 6 has been employed (see also www.dftb.org). The tiorg set has been
shown19 to provide a reliable description of geometrical, energetic and electronic proper-
ties of all titania bulk phases and their low-index surfaces.19 The DFTB calculations have
been performed by using the open source DFTB+ software (version 1.1).14, 15

Initial structures for the MD simulations have been prepared containing 216 atoms,
spatially and chemically randomly distributed. The atoms are placed in a fixed-volume cu-
bic super-cell arrangement of varying size corresponding to the microscopic mass densities
to be studied and the given ideal 1:2 stoichiometry. The model structures with densities of
3.50, 3.80, 4.00, 4.20 and 4.50 g/cm3, respectively have been prepared by using MD sim-
ulated annealing (MD-SA). For all models a dynamical quenching path has been followed
for relaxation starting from a partly equilibrated liquid state of the model structures at 5000
K progressing a path of exponentially decreasing temperature towards room temperature
(300 K). The Newton’s equations of motion were solved using the Verlet algorithm20 with
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time step length of 1 fs, coupling the MD to a heat bath within the canonical (NVT)-
ensemble by using the Anderson thermostat. The total duration of the cooling procedure
was 23 ps.

The DFTB method has been validated by performing ab initio DFT Car-Parrinello
molecular dynamics (CPMD) simulations21 under similar conditions. The CPMD sim-
ulations have been performed on the basis of norm-conserving pseudo-potentials of the
Troullier-Martins type22, 23 and the Becke88 exchange functional.24 Due to the much higher
computational demand the simulation time was shortened to 8.6 ps, discretized in 51000
steps using time steps of 7 atomic time units, to ensure convergence of energy. Here the
Nose-Hoover thermostat ensures the conditions of a canonical ensemble, while the vol-
ume was kept constant. To address possible larger-scale modeling we validated the classi-
cal many-body potential proposed by Matsui and Akaogi (MA)25 against the CPMD and
DFTB derived models. The classical potential MD simulations are following again a 23
ps annealing path (identical to the DFTB simulation), using also the Anderson thermo-
stat. In all different method applications the same initial structure has been used. The
room temperature CPMD and DFTB structures in Ref. 26 have been subjected to further
conjugate gradient relaxation by using the Vienna Ab Initio Simulations Program (VASP)
to obtain final zero temperature models.27 An energy cutoff of 400 eV was used and the
3s and 3p semicore states of Ti have been treated as valence states within the PAW po-
tentials throughout this work. The atomic positions have been relaxed using the PBE83
(Perdew-Burke-Ernzerhof) functional, a (2x2x2) Monkhorst-Pack k-point sampling, and a
force convergence criterion of 0.01 eV/Å. Further analyzing these structures the electronic
structure, band gap and defect localization, as well as frequency-dependent optical data
have been calculated.

3.2 Structural and electronic properties of amorphous TiO2 super-cell models

3.2.1 Structural properties

By using the MD super-cell annealing simulations we have obtained metastable stoichio-
metric amorphous titanium dioxide models at different mass densities. The amorphous
bonding network at mass density of 4.2 g/cm3 are shown in selected images in Figure 1
(upper part). For better visualization of the characteristic TiOx building units, a polyhedral
representation is also given in Figure 1 (lower part). The nanoscale atomistic structure of
relaxed TiO2 models can be characterized by analyzing the mean interatomic distances and
coordination numbers, extracted from the radial distribution functions (RDF’s). The RDFs
and the corresponding structure factors are depicted in Figures 2 and 3, compared with
experimentally derived data for sputtered thin films and bulk-powder samples.28 Averaged
structural and important electronic information is summarized in Table 1. The models ob-
tained by using the CPMD method and the classical MA potential will be denoted by CP
and MA, the models obtained by using the CPMD method and the classical MA-potential
by CP and MA, while the models obtained by the DFTB method are indicated by roman
numerals (I-V), respectively.

As short-range order fingerprints of the amorphous structure, we list in Table 1 the
coordination numbers kTi-Ti, kTi-O, kO-Ti, kO-O, which represent average numbers of the
nearest neighbors for the corresponding elements in their first coordination shell. Those
numbers have been derived from element-specific length statistics, as well as from the
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Figure 1. Structural snapshots of amorphous TiO2 networks at mass density 4.20 g/cm3 (IV, CP, MA from left
to right) – upper part, and in an representation showing TiOx-building blocks – lower part.

partial radial distribution functions. Additionally, the mean pair distances RTi-Ti
1 , RTi-O

1 ,
RO-O

1 are given.

Table 1. Structural information of TiO2 models

Model kTi-Ti kTi-O kO-Ti kO-O RTi-Ti
1 RTi-O

1 RO-O
1 Egap

(Å) (Å) (Å) [eV]
a-TiO2 -(I) 6.14 4.44 2.22 9.88 3.38 1.87 2.91 3.14
a-TiO2 -(II) 7.00 4.87 2.44 9.81 3.37 1.911 2.84 2.30
a-TiO2 -(III) 7.75 5.10 2.55 10.50 3.38 1.931 2.83 2.93
a-TiO2 -(IV) 8.69 5.36 2.68 10.76 3.385 1.94 2.8 2.68
a-TiO2 -(CP) 8.50 5.83 2.92 10.14 3.38 1.993 2.78 2.74
a-TiO2 -(MA) 8.97 5.81 2.90 10.80 3.41 1.989 2.80 2.70
a-TiO2 -(V) 8.53 5.79 2.90 10.42 3.32 1.96 2.72 2.12

The detailed atomistic structure in the amorphous TiO2 models consists of short stag-
gered chains of TiO6 octahedrons, like in the crystalline modifications anatase, rutile and
brookite. According to the variation of mass density, more or less large number of coor-
dination defects (TiO5, TiO4 units) are identified, which can be found on titanium dioxide
surfaces29or in more complex substoichiometric magneli phases.30–33 An increase in the
number of TiO6 octahedral units is clearly mirrored in the Ti-O respectively O-Ti coor-
dination numbers kTi-Oi and kO-Ti, which tend towards the ”ideal” crystalline values of
kTi-O=6 and kO-Ti=3. Obviously, those ideal mean values are not reached in the amorphous
phase. Coordination numbers determined by experiments as well as reverse Monte Carlo

49



Figure 2. Reduced pair distribution function G(r) of the amorphous TiO2 models.

Figure 3. Reduced structure factors F (q) = q(S(q)− 1) for a-TiO2 models, comparison to experiments.
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simulations (RMC)28 show that amorphous TiO2 systems always stay below the ideal val-
ues. For sputtered and sol-gel processed TiO2 layers Petkov et al.28 report coordination
numbers of kTi-Ti=8.8, kTi-O=5.4, kO-Ti=2.7, kO-O=10.5 and kTi-Ti=6.5, kTi-O=4.5, kO-Ti=
2.25, kO-O=12.5, respectively, whereas for bulk-like TiO2 powders they obtain kTi-Ti=8.7,
kTi-O=5.6, kO-Ti= 2.8, and kO-O=10.0. In analyzing the structure of 4.20 g/cm3, which is
close to the rutile density, we see that the DFTB model (IV) nearly perfectly matches the
numbers given for sputtered amorphous layers, while the values from CP and MA mod-
els are closer to the bulk-like powder samples. Particularly in the case of the classical
MA potential, the slightly higher coordination numbers may be understood as resulting
from the fitting constraints to reproduce correctly the six-fold coordinated crystalline mod-
ifications.34 Contrary, the quantum mechanics approaches cover the under-coordination
chemistry more flexibly.

Considering the average values of the pair distances R1, and their deviations as char-
acteristic measures for the first neighbor coordination shells, the mean Ti-O bond length
for all densities and methods lies approximately between 1.8 - 2.1 Å, which is also found
for the crystalline modifications. Experimentally smaller values (1.79-1.93 Å) are seen for
layers produced in the sol-gel process. A value of 1.96 Å is given for layers grown by a
sputtering process, which was also confirmed by recent RMC-modeling.28 Our values for
densities near that of crystalline modifications (see model (IV) at 4.20 g/cm3) again tend
more to the numbers of sputtered amorphous titanium-dioxide materials. Here, we moni-
tor a twinned chain of octahedral TiO6 units percolating through the super-cell and flanked
by less coordinated TiO4,5 polyhedra, as building blocks of possible under-coordination
defects. The averaged bond lengths of 1.98-1.99 Å for the CPMD and MA models at the
same density are slightly larger. This is due to their increased coordination number of
5.8, caused by the slightly higher content of ideal octahedron building blocks. As shown
in Figures 2 and 3, all trends discussed above are qualitatively reflected in the calculated
reduced structure factors F (q) = q[S(q) − 1] and their Fourier transforms, the reduced
atomic pair-distribution functions G(r) (see equation (2) in Ref. 26). Comparing those
to available experimental data28 on structure factors and RDFs, the rutile-equivalent mass
density of 4.20 g/cm3 matches the reported data best and has therefore been chosen for fur-
ther analysis. Choosing a density same as for one of the crystalline phases also allows the
separation of disorder effects from effects of density variations in the electronic structure
data.

3.2.2 Electronic properties

One important pronounced feature of all amorphous TiO2 models is that no electronic
defect levels in the band gap appear which could be related to defect Ti-Ti or O-O bonds.
All participating elements are ”bridged” by their counterpart atomic species. This causes
well-defined electronic HOMO-LUMO gap width comparable to the band gap values of
crystalline TiO2. The width of the electronic band gaps, obtained from the DFTB method,
is given for all models in Table 1. The total electronic density of states (EDOS) for each
model is plotted in Figure 4, showing in Figure 5 a linear decrease with increasing mass
density. It is worth noting that the band gap of the three models with the same density of
4.20 g/cm3 but generated by the three different methods (IV, CP, MA), ideally match.
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Figure 4. Electronic density of states of a- TiO2 models. For each case the Fermi energy is shifted to 0 eV.

Figure 5. Electronic HOMO-LUMO gap of amorphous TiO2 models.
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4 Summary

We have given an overview about the density functional tight binding method. We have
demonstrated, that the DFTB method is a very efficient quantum mechanical simulation
tool, often having similar accuracy to ab initio DFT calculations while easily outperform-
ing them in time and memory requirements. We have described some results on the in-
vestigation of titanium oxide bulk properties as a selected application to demonstrate the
capabilities of the DFTB method and the DFTB+ code.
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In 2005, the EU FP6-STREP-NEST BigDFT project funded a consortium of four laboratories,
with the aim of developing a novel approach for Density Functional Theory (DFT) calcula-
tions based on Daubechies wavelets. Rather than simply building a DFT code from scratch,
the objective of this three-years project was to test the potential benefit of a new formalism in
the context of electronic structure calculations. Daubechies wavelets exhibit a set of properties
which make them ideal for a precise and optimized DFT approach. In particular, their system-
aticity allows to provide a reliable basis set for high-precision results, whereas their locality
(both in real and reciprocal space) is highly desired to improve the efficiency and the flexibility
of the treatment. In this contribution we will provide a bird’s-eye view on the computational
methods in DFT, and we then focus on DFT approaches and on the way they are implemented
in the BigDFT code, to explain how we can take benefit from the peculiarities of such basis set
in the context of electronic structure calculations.

1 Introduction

In the recent years, the development of efficient and reliable methods for studying matter at
atomistic level has become an asset for important advancements in the context of material
science. Both modern technological evolution and the need for new conception of materials
and nanoscaled devices require a deep understanding of the properties of systems of many
atoms from a fundamental viewpoint. To this aim, the support of computer simulation can
be of great importance. Indeed, via computer simulation scientists try to model systems
with many degrees of freedom by giving a set of “rules” of general validity (under some
assumptions).

Once these “rules” come from first-principles laws, these simulation have the ambi-
tion to model system properties from a fundamental viewpoint. With such a tool, the
properties of existing materials can be studied in deep, and new materials and molecules
can be conceived, with potentially enormous scientific and technological impact. In this
context, the advent of modern supercomputers represent an important resource in view of
advancements in this field. In other terms, the physical properties which can be analysed
via such methods are tightly connected to the computational power which can be exploited
for calculation. A high-performance computing electronic structure program will make
the analysis of more complex systems and environments possible, thus opening a path to-
wards new discoveries. It is thus important to provide reliable solutions to benefit from
the enhancements of computational power in order to use these tools in more challenging
systems.

2 Atomistic Simulations

As an overview, before focusing on more detailed descriptions, we will start this contribu-
tion by a brief presentation of the Kohn-Sham formalism of Density Functional Theory. A
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number of good references which treat this topic exists. Here we will present some notes,
with the aim of defining suitably the problem and fixing notations.

2.1 Born-Oppenheimer Hamiltonian

There is of course no question that a fundamental treatment of a system with many atoms
should be performed via the laws of Quantum Mechanics. The properties of the systems are
thus governed by its wavefunction, which is related to the Hamiltonian via the Schrödinger
equation. It is evident that an immediate solution to this problem does not exist. For a
system with N atoms and n electrons, the wavefunction has 3(N + n) variables, and the
Hamiltonian, in atomic units, has the following form:

H = −1

2

n∑
i=1

∇2
ri +

1

2

∑
i 6=j

1

|ri − rj |
+

−
N∑
a=1

n∑
i=1

Za
|Ra − ri|

+

+

N∑
a=1

− 1

2Ma
∇2
Ra +

1

2

∑
a6=b

ZaZb
|Ra −Rb|

. (1)

In this equation the Hamiltonian of the electrons (first two terms) is coupled with the one
of the ions (last two terms) via the electromagnetic interaction (central term). In atomic
units, the action is measured in units of ~, the mass in units of the electron mass me and
the charge in units of the electronic charge |e|. For these reasons, the kinetic term which
is associated to the nuclei is suppressed by the mass of the ions Ma, which is at least two
thousands times heavier than the electrons. It appears thus more than justified to decouple
the dynamics of the ions to the one of the electrons. In other terms, the Hamiltonian can
be split in two parts:

H = −1

2

n∑
i=1

∇2
ri +

1

2

∑
i 6=j

1

|ri − rj |
+ Vext ({r}, {R}) +Hions [{R}] . (2)

The Born-Oppenheimer (BO) approximation consists in treating the dynamic of the ions
classically. The wavefunction of the system will thus become associated only to the elec-
trons (thus with 3n variables), with an external potential Vext({r}, {R}) which depend of
the atomic positions {R}, which will then appear as external parameters to the quantum
problem.

Even though the BO approximation effectively reduces the complexity of the descrip-
tion only to the electronic part, we are still really far from a formalism which is able to treat
systems with many electrons. The number of variables of the wavefunction is still much
too high to be handled while solving the equation explicitly. One may actually wonder
whether we really need the complete wavefunction to extract the properties of the system
we are interested to. For example, the energy of the system in a given quantum state |Ψ〉 is

E[Ψ] = 〈Ψ|H|Ψ〉 , (3)

which can be interpreted as a functional of the wavefunction |Ψ〉. A closer inspection
reveals that the wavefunction contains too much information for calculating the energy.
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Since the Hamiltonian contains two-body operators (the electron-electron interaction), it
is easy to show that actually the energy is a functional of the 2-particle reduced density
matrix (2-RDM) γ2:

E = tr (Hγ2) = E[γ2] , (4)

where

γ2(x1, x2;x′1, x
′
2) =

(
n

2

)∫
dx3 · · · dxN Ψ(x1, · · · , xN )Ψ∗(x′1, x

′
2, x3, · · · , xN ) , (5)

is a function of 12 variables. The formulation of the problem seems thus simpler in this
way, but the 2-RDM cannot be a generic function. It must be chosen such that it comes
from the contraction of a wavefunction as indicated in Eq. (5). Taking into account such
a constraint (the so-called n-representability problem) is definitely a far-from-trivial task,
and still keeps the formalism difficult to handle.

A big simplification to the problem of finding the ground-state energy of the system
have been provided by Hohenberg and Kohn in 1964, via their famous theorem (HK):
Hohenberg – Kohn Theorem. For a fixed number of electrons n, the charge density of
the ground-state of a quantum system determines uniquely – up to an additive constant –
the external potential of the electronic Hamiltonian.

If we take into account that, of course, given both n and an external potential, the
charge density of the ground state is determined, the HK theorem states that there is
a one-to-one correspondence between the charge density, a functional of the 2-RDMa

ρ(r) = 2
n−1

∫
dr1γ2(r, r1; r, r1) = ρ[γ2] and the external potential which determines

the inhomogeneity of the electron gas. This implies that the ground state energy E0 is a
functional of the electronic density ρ. Such a functional reaches its minimum for the true
ground state density ρ0:

E = E[ρ] = min
γ2s.t.ρ[γ2]=ρ

{
tr
([
−1

2

n∑
i=1

∇2
ri +

1

2

∑
i 6=j

1

|ri − rj |

]
γ2

)}
+

+

∫
drρ(r)Vext({r}, {R}) , (6)

and E[ρ0] = E0, which is at the basis of the Density Functional Theory. We have assumed
here that the system has n electrons, i.e.

∫
drρ(r) = n. Via Eq. (6), we can see that in the

functional of the density there is a term which does not depends explicitly of the external
potential, which for this reason can be considered as a universal functional:

F [ρ] = min
γ2s.t.ρ[γ2]=ρ

{
tr
([
−1

2

n∑
i=1

∇2
ri +

1

2

∑
i6=j

1

|ri − rj |

]
γ2

)}
=

= min
Ψs.t.ρ[Ψ]=ρ

{〈
Ψ
∣∣∣−1

2

n∑
i=1

∇2
ri +

1

2

∑
i6=j

1

|ri − rj |

∣∣∣Ψ〉} . (7)

aIn most of the formulations the charge density is seen as a functional of the wavefunction (via e.g. the Levy’s
constrained search formulation). This allows to bypass the n-representability problem of the 2-RDM. Here we
prefer to use this formulation to show that the 2-RDM problem actually contains the HK formulation. Indeed, it
is easy to see that the minimum of the energy for all n-representable γ2 satisfies the constraint ρ[γ2] = ρ0.
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For densities of systems with n electrons, the quantity E[ρ] = F [ρ] +
∫
ρVext reaches its

minimum for the ground-state density ρ0. It is important to stress that all quantities depend
of n, which is supposed fixed.

The demonstration of the HK theorem is independent of the form of the pure elec-
tronic Hamiltonian. For an n electron system which has no Coulombic interaction the HK
functional (let us call it Ts[ρ]) has a pure kinetic term:

Ts[ρ] = min
γ2:ρ[γ2]=ρ

{
tr
([
−1

2

n∑
i=1

∇2
ri

]
γ2

)}
= min

Ψ:ρ[Ψ]=ρ

{〈
Ψ
∣∣∣−1

2

n∑
i=1

∇2
ri

∣∣∣Ψ〉} . (8)

Moreover, the pure Coulombic energy of a system with density ρ is known, and can be
seen as (half) the potential energy where the potential is the Hartree potential
VH [ρ](r) =

∫
dr′ ρ(r

′)
|r−r′| :

EH [ρ] =
1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|
=

1

2

∫
drρ(r)VH [ρ](r) . (9)

Given these quantities, we can define the Exchange and Correlation functional Exc[ρ], and
the associated Exchange and Correlation density per particle εxc(r)

Exc[ρ] =

∫
drρ(r)εxc[ρ](r) = F [ρ]− Ts[ρ]− EH [ρ] (10)

The quantity E[ρ] = Ts[ρ] + EH [ρ] + Exc[ρ] +
∫
ρVext should then be minimal in ρ0 for

all densities which sum up to n. This implies that E[ρ0 + δρ] = E[ρ0] for
∫

drδρ(r) = 0.
Hence

0 =

∫
drδρ(r)

δE

δρ(r)
=

=

∫
drδρ(r)

{
δTs[ρ]

δρ(r)
+ VH [ρ](r) +

d

dρ
(ρεxc[ρ]) (r) + Vext(r)

}
. (11)

It is easy to see that the above equation is the same that one would obtain by searching
the ground state of the non-interacting Hamiltonian HKS (so-called Kohn-Sham Hamilto-
nian):

HKS [ρ] = −1

2

n∑
i=1

∇2
ri + VH [ρ] + Vxc[ρ] + Vext , (12)

where we have defined the Exchange and Correlation potential

Vxc[ρ](r) =
d

dρ
(ρεxc[ρ]) (r) =

δ

δρ(r)
Exc[ρ] . (13)

Since the Hamiltonian is only made of one-body operators, the energy of such a system
can be expressed via the eigenfunctions of HKS and via the one particle reduced density
matrix (1-RDM) derived from them:

HKS [ρ]|ψp〉 = εKSp |ψp〉 , p ∈ N (14)

so that the 1-RDM of this system is

γKS1 =
∑
p

fp|ψp〉〈ψp| , (15)
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where the occupation numbers 0 ≤ fp ≤ 1,
∑
p fp = n guarantee the n-representability

of γKS1 . The energy of the original system is thus:

E[ρ] = tr
(
HKS [ρ]γKS1

)
− 1

2
EH [ρ] +

∫
drρ(r) (εxc[ρ](r)− Vxc[ρ](r)) , (16)

and, of course, ρ(r) = γKS1 (r; r).
We have followed the main steps of the demonstration of the

Kohn – Sham Theorem. An electronic density which is associated to the ground state of
an interacting electron system is also solution of a non-interacting problem submitted to a
mean-field potential Vxc + VH + Vext.

The consequences of this theorem are potentially important. If the quantity εxc[ρ] is
known, the energy of the system can be found iteratively: for a given ρ, the eigenvalue
problem of the KS Hamiltonian would provide a set of eigenfunctions |ψp〉, and then a
new electronic density. Convergence is reached for the density ρ0, which minimizes E[ρ].
Even though ρ0 comes from an non-interacting electron system, ρ0 is the exact charge
density of the interacting system.

2.2 LDA and GGA exchange correlation approximations

Clearly, the difficulty now resides in finding the correct εxc[ρ]. Surprisingly, if we take
as the XC density per electron from a homogeneous electron gas of density n, results of
rather good quality can already be obtained. In this way εxc[ρ](r) = εhom

xc (ρ(r)). This is the
Local Density Approximation (LDA), which can be parametrized from numerical results.
Several other approximations exist, which give good results for the extraction of several
properties of real materials.

A particularly used set of XC functionals is implemented as a functional of the density
and of its gradient (its modulus for rotational invariance). This is the so-called Generalized
Gradient Approximation (GGA):

εxc(r) = εxc (ρ(r), |∇ρ|(r)) . (17)

In this case, the exchange correlation potential has and additional term:

Vxc(r) =
δ

δρ(r)

∫
ρ(r′)εxc (ρ(r′), |∇ρ|(r′))

=
d

dρ
(ρεxc) (r) +

∫
ρ(r′)

∂εxc

∂|∇ρ|
(r′)

δ

δρ(r)
|∇ρ|(r′)dr′ (18)

= εxc(r) + ρ(r)
∂εxc

∂ρ
(r) +

∫
ρ

|∇ρ|
∂εxc

∂|∇ρ|
(r′)

∑
i=x,y,z

∂iρ(r′)
δ

δρ(r)
∂iρ(r′)dr′ .

The different components of the gradient of the density ∂iρ(r), i = 1, 2, 3 can be seen here
as a linear functional of the density. For example, for a finite-difference computation on a
grid we have

∂iρ(r) =
∑
r′

cir,r′ρ(r′) , (19)

such that δ
δρ(r)∂iρ(r′) =

∑
r′′ c

i
r′,r′′δ(r − r′′). This expression can be used to calculate

the last term of Eq. (18).
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2.3 Hybrid functionals and exact exchange operator

The Kohn-Sham theorem showed us that there exists an antisymmetric wavefunction |Φ0〉
of an n-electron system which satisfies the following properties:

1. The density originated from |Φ0〉 corresponds exactly to the density of the original
inhomogeneous electron gas:

〈Φ0|r〉〈r|Φ0〉 = ρ0(r) ; (20)

2. The wavefunction is the ground state of the non interacting Schrödinger equation:

HKS [ρ0]|Ψ0〉 = EKS0 [ρ0]|Ψ0〉 , (21)

andE0[ρ0] = EKS0 [ρ0]− 1
2EH [ρ0]+Exc[ρ0]−

∫
ρ0Vxc[ρ0] is the ground-state energy

of the interacting system;

3. The density ρ0 minimizes the value of E0, and it is a fixed point for EKS0 .

This wavefunction can be written in the basis of Slater determinants of the eigenfunctions
of the one-body Hamiltonian. In this basis, it is easy to show that EKS0 =

∑
p fpε

KS
p ,

where fp is the occupation number defined above. In this context, it is easy to see that
for a system for which the Kohn-Sham energies have a gap between εKSn and εKSn+1, the
minimum energy is attained when fp = θ(n− p) and thus |Φ0〉 is made of only one Slater
determinant. Otherwise, multideterminantal configurations are possible.

In this context it is interesting to calculate the contribution of the non-interacting sys-
tem to the two-body electron-electron interaction. This has a formal equivalence with the
Hartree-Fock exchange operator:

EHFx = −1

2

∑
σ=1,2

∑
p,q

fp,σfq,σ

∫
drdr′

ψp,σ(r)ψ∗q,σ(r)ψ∗p,σ(r′)ψq,σ(r′)

|r− r′|
, (22)

where the spin quantum number σ of the non-interacting electrons has been explicited. Of
course, the system of Kohn-Sham orbitals would now become interacting. This implies
that an operator DHF

x should be added to the Kohn-Sham Hamiltonian. The action of this
operator onto a wavefunction can be calculated knowing that EHFx originates from a trace
of such an operator over the KS wavefunctions |ψp〉:

EHFx =
∑
p,σ

fp,σ〈ψp,σ|DHF
x |ψp,σ〉 ;

〈r|DHF
x |ψp,σ〉 =

1

fp,σ

δEHFx
δψ∗p,σ(r)

(23)

= −
∑
q

fq,σ

∫
dr′

ψ∗q,σ(r′)ψp,σ(r′)

|r− r′|
ψq,σ(r) ; (24)

As already suggested in the seminal paper of Kohn and Sham, such construction can be
used to define an alternative scheme for the Kohn-Sham procedure. By defining a hybrid
Kohn-Sham – Hartree-Fock Hamiltonian

HKSHF[ρ] = −1

2

n∑
i=1

∇2
ri + VH [ρ] + V KSHFxc [ρ] + Vext + αDHF

x (25)
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and finding its eigenvalues εKSHF
p , the energy would become

E[ρ] =
∑
p

fpε
KSHF
p − 1

2
EH [ρ] + αEHFx + EKSHF

xc [ρ]−
∫
ρV KSHF

xc [ρ] ,

EKSHF
xc [ρ] = Exc[ρ]− αEHFx , (26)

V KSHF
xc [ρ] =

δEKSHF
xc [ρ]

δρ
. (27)

2.4 Finding the Kohn-Sham wavefunctions: Direct minimization algorithm

We have seen that the electronic density of the system can be constructed via the KS wave-
functions ψp(r), which are in turn eigenfunctions of the KS Hamiltonian, which also de-
pends on the density. Thus, a fixed point equation has to be solved. Once the fixed point
is reached, the energy of the system can be extracted. The HK theorem guarantees us that
the energy E[ρ] is minimal in the ground-state density ρ0. The KS construction simplifies
things a bit. The problem corresponds to minimize the energy of the KS Hamiltonian as if
such Hamiltonian does not evolve. A new Hamiltonian can then be defined. In other terms,
in the typical KS procedure the variation is performed over the wavefunctions (supposing
that the occupation numbers are integers). The interesting quantity is thus

δE[ρ[{ψp}]]
δ〈ψp|

= fpHKS [ρ]|ψp〉+

∫
dr
δρ(r)

δ〈ψp|
δE[ρ]

δρ(r)
, (28)

As already discussed, if ρ =
∑
p fp|ψp|2 the last term of the rhs of this equation is zero.

Things goes as if the KS Hamiltonian is fixed. The fixed-point solution ρ0 thus minimizes
both E[ρ] and its KS wavefunctions minimize EKS [ρ0].

This fact can be derived from the explicit form of KS Hamiltonian:

δE[ρ]

δρ(r)
=
δEKS [ρ]

δρ(r)
− VH [ρ](r) + Vxc[ρ](r)− δ

δρ(r)

∫
dr′ρ(r′)Vxc[ρ](r′)

=
∑
p

fp〈ψp|
δHKS [ρ]

δρ(r)
|ψp〉 − VH [ρ](r)− ρ(r)

dVxc[ρ]

dρ
(r) .

Let us now consider the first term:

〈ψp|
δHKS [ρ]

δρ(r)
|ψp〉 =

∫
dr′dr′′ψ∗p(r′)ψp(r

′′)〈r′|δHKS [ρ]

δρ(r)
|r′′〉 (29)

=

∫
dr′dr′′ψ∗p(r′)ψp(r

′′)

[
〈r′|δVH [ρ]

δρ(r)
|r′′〉+ 〈r′|δVxc[ρ]

δρ(r)
|r′′〉

]
.

Now the results can be written in term of the Dirac distribution:

〈r′|δVH [ρ]

δρ(r)
|r′′〉 =

δ(r′ − r′′)

|r′ − r|
, (30)

〈r′|δVxc[ρ]

δρ(r)
|r′′〉 = δ(r′ − r′′)δ(r′ − r)

dVxc[ρ]

dρ
(r) . (31)
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Hence, since the sum of the squares of the wavefunctions gives the same ρ:∑
p

fp〈ψp|
δHKS [ρ]

δρ(r)
|ψp〉 =

∫
dr′ρ(r′)

[
1

|r′ − r|
+ δ(r′ − r)

dVxc[ρ]

dρ
(r)

]
= VH [ρ](r) + ρ(r)

dVxc[ρ]

dρ
(r) , (32)

which implies the KS Lagrangian condition δE[ρ]
δρ(r) = 0.

While performing the search for the fixed point, the so-called Self Consistent Field
(SCF) cycle, the wavefunctions have to be modified between one step and the other, while
mantaining orthogonality. The latter can be implemented via a Lagrange multiplier Λpq ,
which define the Lagrangian

L[{ψp}] = E[ρ[{ψp}]]−
∑
p,q

Λpq (〈ψp|ψq〉 − δpq) . (33)

Imposing δL[{ψp}]
δ〈ψp| = 0 gives Λpq = 〈ψq|HKS [ρ]|ψp〉. Of course, only wavefunctions

which are occupied contribute to the energy. The gradient of the KS energy wrt the wave-
function is then

|gp〉 = HKS [ρ]|ψp〉 −
∑
q

〈ψq|HKS [ρ]|ψp〉|ψq〉 . (34)

The vectors {|gp〉} provide the direction in which the energy varies the most for a given
set of wavefunctions {ψp}. Different algorithms can then be used to find the fixed-point
solution. This is the so-called direct minimization algorithm. In Figure 3, the flowchart of
the operations is indicated in the case of a plane wave basis set. This flowchart is roughly
the same as in the case of other basis sets. The main limitation part for systematic basis
sets as the number of atoms increases is the orthonormalization part which scales cubically
with the number of atoms if the orbitals are extended over the whole system.

Beware that, since it only involves occupied wavefunctions, such algorithm is correctly
defined only if any KS Hamiltonian of the SCF cycle exhibits an energy gap, and if the
updated wavefunction at each step has components onto all the first n eigenspaces of the
new Hamiltonian.

2.5 Finding the Kohn-Sham wavefunctions: Diagonalization of the Hamiltonian

To calculate properly metallic system, the only possibility is to diagonalize the Hamil-
tonian at each step and populates the Kohn-Sham orbitals in function of the Kohn-Sham
eigenvalues.

In Figure 1, the self-consistent equations are shown. At each iteration, the Hamiltonian
needs to be diagonalized. We give more details in the plane wave section (see Figure 4)
about the different operations. Iterative algorithms are used to diagonalize the Hamiltonian
in the case of systematic basis sets because the number of computed orbitals are quite
small (by a factor of 100) compared to the number of components. The most used iterative
algorithms are conjugate gradient scheme, Davidson,35 Lanczos, RMM-DIIS (Residual
Minimum Method – Direct Inversion of the Iterative Subspace used in VASP code36) or
LOBPCG methods (Locally Optimal Block Preconditioned Conjugate Gradient37). Except
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Set of self-consistent equations:
{
−1

2

~2

me
∇2 + Veff

}
ψi = εiψi

with an effective potential:

Veff (r) = Vext(r) +
∫
V
dr′

ρ(r′)

|r − r′|︸ ︷︷ ︸
Hartree

+
δExc

δρ(r)︸ ︷︷ ︸
exchange−correlation

and: ρ(r) =
∑

i fi |ψi(r)|2

Poisson Equation: ∆VHartree = −4πρ (Laplacian: ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 )

Figure 1. Self-consistent equations used in the diagonalization scheme

the conjugate gradient scheme, this algorithms can be parallelized which is really important
to handle systems composed of few hundred of atoms.

3 Pseudopotentials

The KS formalism presents thus a procedure to study the electronic properties of a system
with many atoms. However, for such a system the interesting properties are determined by
the valence electrons of the atoms involved. Electrons close to the nuclei have a behaviour
which can be considered independent of the system under consideration. These electrons
contribute to the screening of the atomic charge, but have no significant influence on the
behaviour of the peripheric electrons. It may thus appear convenient to consider a system
in which only the valence electrons appear, where the electron-ion interaction potential is
substituted by another object, the pseudopotential, (PSP) which mode the effect of the core
electron.

From a computational viewpoint, the advantage of using pseudopotential approxima-
tion is twofold: on one hand, the overall number of electrons in the system is reduced,
which makes lighter the computational treatment. On the other hand, the PSP operator
makes the KS wavefunctions close to the position of the nuclei smoother than the ordinary
ion-electron potential. This is also important from the implementation viewpoint since a
smooth function is always easier to express numerically.

It can be understood easily that the PSP approximation is less severe than the XC
approximation. However, the PSP operator should be defined carefully such that several
conditions must be respected. Moreover, the influence of the core electrons on the nuclei
must be expressed by the insertion of non-local operators, since the screening of the core
electrons is different for any of the multipoles of the electron-ion potential.
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4 Kohn-Sham DFT with Daubechies Wavelets

In the recent years the KS formalism has been proven to be one of the most efficient
and reliable first-principle methods for predicting material properties and processes which
undergo a quantum mechanical behavior. The high accuracy of the results together with
the relatively simple form of the most common exchange-correlation functionals make
this method probably the most powerful tool for ab-initio simulations of the properties of
matter. The computational machinery of DFT calculations has been widely developed in
the last decade, giving rise to a plethora of DFT codes. The usage of DFT calculation has
thus become more and more common, and its domain of application comprises solid state
physics, chemistry, materials science, biology and geology.

From a computational point of view, one of the most important characteristics of a DFT
code is the set of basis functions used for expressing the KS orbitals. The domain of appli-
cability of a code is tightly connected to this choice. For example, a non-localized basis set
like plane waves is highly suitable for electronic structure calculations of periodic and/or
homogeneous systems like crystals or solids, while it is much less efficient in expanding
localized information, which has a wider range of components in the reciprocal space. For
these reasons DFT codes based on plane waves are not convenient for simulating inhomo-
geneous or isolated systems like molecules, due to the high memory requirements for such
kind of simulations.

A remarkable difference should be also made between codes which use systematic and
non-systematic basis sets. A systematic basis set allows us to calculate the exact solution
of the KS equations with arbitrarily high precision as the number of basis functions is in-
creased. In other terms, the numerical precision of the results is related to the number of
basis functions used to expand the KS orbitals. With such a basis set it is thus possible
to obtain results that are free of errors related to the choice of the basis, eliminating a
source of uncertainty. A systematic basis set allows us thus to really calculate the solution
of a particular exchange correlation functional. On the other hand, an example of a non-
systematic set is provided by Gaussian type basis, for which over-completeness may be
achieved before convergence. Such basis sets are more difficult to use, since the basis set
must be carefully tuned by hand by the user, which will sometimes require some prelimi-
nary knowledge of the system under investigation. This is the most important weakness of
this popular basis set.

Another property which has a role in the performances of a DFT code is the orthogo-
nality of the basis set. The use of nonorthogonal basis sets requires the calculation of the
overlap matrix of the basis function and performing various operations with this overlap
matrix such as inverting the matrix. This makes methods based on non-orthogonal basis
functions not only more complicated but also slower.

In Figure 2, we give an overview of the different possibilities to solve the Kohn-Sham
equations. The choice of a basis set determines strongly the accuracy of a code and the
different operations which need to be computed. The cost of each step in the self-consistent
loop is not same and can differ drastically for gaussian or plane wave basis sets.

From the point of view of the developer, some formalisms are easier to program than
the other ones. This is the case for plane wave or wavelet basis set in the case, for instance
of calculating atomic forces. Another point is the flexibility of the possible boundary
conditions (isolated or periodic systems, surfaces or wires). In Section 7, we develop this
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Figure 2. List of options for a DFT code

point applied to the calculation of the Hartree potential i.e. the Poisson solver.
We give a short list of codes which is not really exhaustive but give an idea of the

diversity of proposed solutions to solve the Kohn-Sham equations:

• Plane Waves

– ABINIT — Louvain-la-Neuve — http://www.abinit.org
This code is available under GPL licence and has a strong community of devel-
opers and users; The forum discussion are very active and are useful to help the
beginners. ABINIT can do electronic structure calculation and calculates many
properties based on the linear response as well the many-body perturbation the-
ory (GW method).

– CPMD — Zurich, Lugano — http://www.cpmd.org
The code CPMD (Car-Parrinelo Molecular Dynamics) is freely distributed and
is one the first developed code based on plane waves and massively parallel. It
is used to do geometry optimization, molecular dynamics and can be combined
with other codes in the multiscale approach of QM/MM (Quantum Mechanics,
Molecular Modelling).

– PWSCF — Italy — http://www.pwscf.org
The code PWSCF is distributed over the GPL license. It has also a strong com-
munity of users and many capabilities specially to calculate electronic properties
based on the linear response as ABINIT.

65

http://www.abinit.org
http://www.cpmd.org
http://www.pwscf.org


{
ψj =

∑
G

cjGe
iG.r

}
Basis (NG): 0, . . . , G

Orthonormalized

ρ(r) =
∑
j

fj |ψj(r)|2 Basis (23NG): 0, . . . , 2G

inv FFT

−G2VH(G) = ρ(G) VeffectiveVxc [ρ(r)] VNL({ψj})

FFT

1
2
G2cjG Kinetic Term

δcjG = −∂Etotal

∂c∗j (G)
+
∑
l

Λjlc
l
G

Λjl =< ψj |H|ψl >

FFT

cnew,j
G = cjG + hstepδc

j
G

Steepest Descent,
Conjugate Gradient,

Direct Inversion of Iterative Subspace

Stop when δcjG small

Figure 3. Direct Minimization: Flowchart for a code based on the plane wave basis set

– VASP — Vienna — http://cms.mpi.univie.ac.at/vasp
This code has been tuned to be fast and robust. This code is more dedicated
to the calculation of structural properties. This code is widely used and has a
strong community of users.

• Gaussian

– CP2K — http://cp2k.berlios.de
This code under GPL license combines a Gaussian basis set to describe the
wavefunction and plane waves or wavelet to express the electronic density and
calculates the Hartree potential.

– Gaussian — http://www.gaussian.com
Gaussian code is a well-known commercial code created by John Pople.

– DeMon — http://www.demon-software.com
DeMon was originally developed in Montreal and is freely available.

• ADF — Amsterdam —
Amsterdam Density Functional code uses Slater orbitals to express the wavefunctions.
It is a commercial code with many capabilities.

• Siesta — Madrid — http://www.uam.es/departamentos/ciencias/
fismateriac/siesta
Siesta uses a numerical basis sets to express the wavefunctions and plane wave to
calculate the electronic density and the Hartree potential.
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• Wien — Vienna — http://www.wien2k.at
This code uses a full-potential linear augmented plane wave (FPLAPW basis set tuned
to represent with few orbitals the wavefunctions in a solid.

• Real space basis set

– ONETEP — http://www.onetep.soton.ac.uk
This code uses sinus cardinal which can represent exactly a plane wave basis set
for a given energy cutoff. O(N) aproach is already implemented.

– BigDFT — http://inac.cea.fr/L_Sim/BigDFT
This is the first code based on wavelet using pseudopotential, massively parallel.
It is also integrated in the ABINIT package.

– GPAW — https://wiki.fysik.dtu.dk/gpaw/
Under GPL license, GPAW (Grid-bases projector-augmented wave method)
uses a finite difference scheme with projected-augmented-wave (PAW) pseu-
dopotentials.

During the last years, developers have tried to share common developments as
exchange-correlation library (libXC13) or input/output libraries (ETSF-IO). The idea is
to reuse as much as possible already existing code in order to decrease the cost of devel-
opment. The main part is the debugging and the maintenance of a code. Using libraries
has the advantage to force the modularity of a code and concentrate the effort only to the
orginal part.

Systematic basis sets, such as plane waves or wavelets, have the advantage to permit an
easy control over the accuracy of the calculation. We develop first the specificity of plane
wave basis sets and then concentrate on wavelet basis sets.

4.1 Plane wave basis sets

Plane waves are widely used as an orthogonal systematic basis set. They are well adapted
for periodic systems and based on the Fast Fourier Transform (FFT). The idea from R. Car
and M. Parrinello is to express the operators involved in Hamiltonian in the Fourier space
for the kinetic operator and in the real space for the local potential. Each time, the operator
is diagonal and easy to calculate.

In Figure 3, the flowchart of operations is indicated in the case of the direct minimiza-
tion. As we mentioned already, the main cost becomes the orthonormalization of wave-
functions which is cubic versus the number of atoms because the number of scalar products
grows quadratically and the cost of one scalar product is linear. The cost of the application
of the Hamiltonian on one wavefunction is Nlog(N) due to the Fast Fourier Transform
which is almost linear. So the cost of calculating the Hamiltonian over the whole set of the
wavefunctions grows quadratically.

This means that the use of plane wave basis sets for the Kohn-Sham equations is limited
to a few hundred of atoms.

We show in Figure 4, the flowchart of the diagonalization scheme applied to the plane
wave basis sets. The advantage is that metallic systems or systems with a small gap can be
properly calculated. What we need is to have a good family of pseudopotentials and a good
density mixing. If the electronic density coming from the new set of wavefunctions is used
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Figure 4. Diagonalization Scheme: Flowchart

directly, the calculation does not converge which is a consequence of the non-linearity of
the equations in function of the electronic density. To circumvent this problem, density
mixing is used as Anderson, Broyden, DIIS mixing. The robustness of a code is mainly
due to the choice of good density mixing.

4.2 Daubechies wavelets family

Daubechies wavelets3 have virtually all the properties that one might desire for a basis
set. They form a systematic orthogonal and smooth basis that is localized both in real and
Fourier space and that allows for adaptivity. A DFT approach based on such functions will
meet both the requirements of precision and localization found in many applications. We
will in the following describe in detail a DFT method based on a Daubechies wavelets basis
set. This method is implemented in a DFT code, named BigDFT, distributed under GNU-
GPL license and integrated in the ABINIT4 software package. In the next few paragraphs
we will discuss the importance of the properties of Daubechies wavelets in the context of
electronic structure calculations.

A wavelet basis consists of a family of functions generated from a mother function and
its translations on the points of a uniform grid of spacing h. The number of basis functions
is increased by decreasing the value of h. Thanks to the systematicity of the basis, this
will make the numerical description more precise. The degree of smoothness determines
the speed with which one converges to the exact result as h is decreased. The degree of
smoothness increases as one goes to higher order Daubechies wavelets. In our method we
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use Daubechies wavelets of order 16. This together with the fact that our method is quasi
variational gives a convergence rate of h14. Obtaining such a high convergence rate is
essential in the context of electronic structure calculations where one needs highly accurate
results for basis sets of acceptable size. The combination of adaptivity and a high order
convergence rate is typically not achieved in other electronic structure programs using
systematic real space methods.6 An adaptive finite element code, using cubic polynomial
shape functions,7 has a convergence rate of h6. Finite difference methods have sometimes
low8 h3 or high convergence rates9 but are not adaptive.

The most important property of these functions is that they satisfy the so-called refine-
ment equations

φ(x) =
√

2

m∑
j=1−m

hj φ(2x− j) (35)

ψ(x) =
√

2

m∑
j=1−m

gj φ(2x− j)

which establishes a relation between the scaling functions on a grid with grid spacing h
and another one with spacing h/2. hj and gj = (−1)jh−j+1 are the elements of a filter
that characterizes the wavelet family, and m is the order of the scaling function-wavelet
family. All the properties of these functions can be obtained from the relations (35). The
full basis set can be obtained from all translations by a certain grid spacing h of the mother
function centered at the origin. The mother function is localized, with compact support.
The maximally symmetric Daubechies scaling function and wavelet of order 16 that are
used in this work are shown in Figure 5.
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Figure 5. Daubechies scaling function φ and wavelet ψ of order 16. Both are different from zero only in the
interval from -7 to 8.

For a three-dimensional description, the simplest basis set is obtained by a set of prod-
ucts of equally spaced scaling functions on a grid of grid spacing h′

φi,j,k (r) = φ(x/h′ − i)φ(y/h′ − j)φ(z/h′ − k) . (36)

In other terms, the three-dimensional basis functions are a tensor product of one dimen-
sional basis functions. Note that we are using a cubic grid, where the grid spacing is the
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same in all directions, but the following description can be straightforwardly applied to
general orthorombic grids.

The basis set of Eq. (36) is equivalent to a mixed basis set of scaling functions on a
twice coarser grid of grid spacing h = 2h′

φ0
i,j,k(r) = φ(x/h− i)φ(y/h− j)φ(z/h− k) (37)

augmented by a set of 7 wavelets

φ1
i,j,k(r) = ψ(x/h− i)φ(y/h− j)φ(z/h− k)

φ2
i,j,k(r) = φ(x/h− i)ψ(y/h− j)φ(z/h− k)

φ3
i,j,k(r) = ψ(x/h− i)ψ(y/h− j)φ(z/h− k)

φ4
i,j,k(r) = φ(x/h− i)φ(y/h− j)ψ(z/h− k) (38)

φ5
i,j,k(r) = ψ(x/h− i)φ(y/h− j)ψ(z/h− k)

φ6
i,j,k(r) = φ(x/h− i)ψ(y/h− j)ψ(z/h− k)

φ7
i,j,k(r) = ψ(x/h− i)ψ(y/h− j)ψ(z/h− k)

This equivalence follows from the fact that, from Eq. (56), every scaling function and
wavelet on a coarse grid of spacing h can be expressed as a linear combination of scaling
functions at the fine grid level h′ and vice versa.

The points of the simulation grid fall into 3 different classes. The points which are
very far from the atoms will have virtually zero charge density and thus will not carry
any basis functions. The remaining grid points are either in the high resolution region
which contains the chemical bonds or in the low resolution regions which contains the
exponentially decaying tails of the wavefunctions. In the low resolution region one uses
only one scaling function per coarse grid point, whereas in the high resolution region one
uses both the scaling function and the 7 wavelets. In this region the resolution is thus
doubled in each spatial dimension compared to the low resolution region. Figure 6 shows
the 2-level adaptive grid around a water molecule.

A wavefunction Ψ(r) can thus be expanded in this basis:

Ψ(r) =
∑
i1,i2,i3

si1,i2,i3φ
0
i1,i2,i3(r) +

∑
j1,j2,j3

7∑
ν=1

dνj1,j2,j3φ
ν
j1,j2,j3(r) (39)

The sum over i1, i2, i3 runs over all the grid points contained in the low resolution region
and the sum over j1, j2, j3 over all the points contained in the smaller high resolution
region.

The decomposition of scaling function into coarser scaling functions and wavelets can
be continued recursively to obtain more than 2 resolution levels. We found however that a
high degree of adaptivity is not of paramount importance in pseudopotential calculations.
In other terms, the pseudopotentials smooth the wavefunctions so that two levels of resolu-
tion are enough in most cases to achieve good computational accuracy. In addition, more
than two resolution levels lead to more complicated algorithms such as the non-standard
operator form15 that, in turn, lead to larger prefactors.

The transformation from a pure fine scaling function representation (a basis set which
contains only scaling functions centered on a finer grid of spacing h′) to a mixed coarse
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Figure 6. A 2-level adaptive grid around a H2O molecule. The high resolution grid points carrying both scaling
functions and wavelets are shown in blue (larger points), the low resolution grid points carrying only a single
scaling function are shown in yellow (smaller points).

scaling function/wavelet representation is done by the fast wavelet transformation14 which
is a convolution and scales linearly with respect to the number of basis functions being
transformed.

The wavefunctions are stored in a compressed form where only the nonzero scaling
function and wavelets coefficients are stored. The basis set being orthogonal, several op-
erations such as scalar products among different orbitals and between orbitals and the pro-
jectors of the non-local pseudopotential can directly be done in this compressed form. In
the following sections we will illustrate the main operations which must be performed in
the context of a DFT calculation.

5 Overview of the Method

The KS wavefunctions |Ψi〉 are eigenfunctions of the KS Hamiltonian, with pseudopoten-
tial Vpsp: (

−1

2
∇2 + VKS[ρ]

)
|Ψi〉 = εi|Ψi〉 . (40)

The KS potential

VKS[ρ] = VH [ρ] + Vxc[ρ] + Vext , (41)

contains the Hartree potential, solution of the Poisson’s equation ∇2VH = −4πρ, the
exchange-correlation potential Vxc and the external ionic potential Vext acting on the elec-
trons. The method we illustrate in this paper is conceived for isolated systems, namely free
boundary conditions.

In our method, we choose the pseudopotential term Vext =
∑N
a=1 V

(a)
psp (r −Ra) to be

of the form of norm-conserving GTH-HGH pseudopotentials,16–18 which have a local and
a nonlocal term, Vpsp = Vlocal + Vnonlocal. For each of the ions these potentials have this
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form:
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where Y`m are the spherical harmonics, and rloc, r` are, respectively, the localization radius
of the local pseudopotential term and of each projector.

The analytic form of the pseudopotentials together with the fact that their expression
in real space can be written in terms of a linear combination of tensor products of one
dimensional functions is of great utility in our method.

Each term in the Hamiltonian is implemented differently, and will be illustrated in
the following sections. After the application of the Hamiltonian, the KS wavefunctions
are updated via a direct minimization scheme,19 which in its actual implementation is
fast and reliable for non-zero gap systems, namely insulators. Since we are using direct
minimization algorithm, at present we have concentrated on systems with a gap, however
we see no reason why the method can not be extended to metallic systems.

6 Treatment of Kinetic Energy

The matrix elements of the kinetic energy operator among the basis functions of our mixed
representation (i.e. scaling functions with scaling functions, scaling function with wavelets
and wavelets with wavelets) can be calculated analytically.20 For simplicity, let us illustrate
the application of the kinetic energy operator onto a wavefunction Ψ that is only expressed
in terms of scaling functions.

Ψ(x, y, z) =
∑
i1,i2,i3

si1,i2,i3φ(x/h− i1)φ(y/h− i2)φ(z/h− i3)

The result of the application of the kinetic energy operator on this wavefunction, projected
to the original scaling function space, has the expansion coefficients

ŝi1,i2,i3 = − 1

2h3

∫
φ(x/h− i1)φ(y/h− i2)φ(z/h− i3)×

×∇2Ψ(x, y, z)dxdydz .

Analytically the coefficients si1,i2,i3 and ŝi1,i2,i3 are related by a convolution

ŝi1,i2,i3 =
1

2

∑
j1,j2,j3

Ki1−j1,i2−j2,i3−j3sj1,j2,j3 (44)
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where

Ki1,i2,i3 = Ti1Ti2Ti3 , (45)

where the coefficients Ti can be calculated analytically via an eigenvalue equation:

Ti =

∫
φ(x)

∂2

∂x2
φ(x− i)dx

=
∑
ν,µ

2hνhµ

∫
φ(2x− ν)

∂2

∂x2
φ(2x− 2i− µ)dx

=
∑
ν,µ

2hνhµ22−1

∫
φ(y − ν)

∂2

∂y2
φ(y − 2i− µ)dy

=
∑
ν,µ

hνhµ22

∫
φ(y)

∂2

∂yl
φ(y − 2i− µ+ ν)dy

=
∑
ν,µ

hνhµ 22 T2i−ν+µ

Using the refinement equation (56), the values of the Ti can be calculated analytically,
from a suitable eigenvector of a matrix derived from the wavelet filters.20 For this reason
the expression of the kinetic energy operator is exact in a given Daubechies basis.

Since the 3-dimensional kinetic energy filter Ki1,i2,i3 is a product of three one-
dimensional filters (Eq. (45)) the convolution in Eq. (44) can be evaluated with 3N1N2N3L
operations for a three-dimensional grid of N1N2N3 grid points. L is the length of the one-
dimensional filter which is 29 for our Daubechies family. The kinetic energy can thus
be evaluated with linear scaling with respect to the number of nonvanishing expansion
coefficients of the wavefunction. This statement remains true for a mixed scaling function-
wavelet basis where we have both nonvanishing s and d coefficients and for the case where
the low and high resolution regions cover only parts of the cube of N1N2N3 grid points.

The Daubechies wavefunctions of degree 16 have an approximation error of h8, i.e.
the difference between the exact wavefunction and its representation in a finite basis set
(Eq. (39)) is decreasing as h8. The error of the kinetic energy in a variational scheme
decreases then as h2·8−2 = h14.21 As we will see the kinetic energy is limiting the conver-
gence rate in our scheme and the overall convergence rate is thus h14. Figure 7 shows this
asymptotic convergence rate.

6.1 Treatment of local potential energy

In spite of the striking advantages of Daubechies wavelets the initial exploration of this
basis set22 did not lead to any algorithm that would be useful for practical electronic struc-
ture calculations. This was due to the fact that an accurate evaluation of the local potential
energy is difficult in a Daubechies wavelet basis.

By definition, the local potential V (r) can be easily known on the nodes of the uniform
grid of the simulation box. Approximating a potential energy matrix element Vi,j,k;i′,j′,k′

Vi,j,k;i′,j′,k′ =

∫
drφi′,j′,k′(r)V (r)φi,j,k(r)
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Figure 7. Convergence rateO(h14) of the wavelet code for a test run on a carbon atom. For this run the interpo-
lation parameters are found to be, within 2% accuracy: A = 344, B = −1239, C = 1139. Using lower powers
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by

Vi,j,k;i′,j′,k′ ≈
∑
l,m,n

φi′,j′,k′(rl,m,n)V (rl,m,n)φi,j,k(rl,m,n)

gives an extremely slow convergence rate with respect to the number of grid points used
to approximate the integral because a single scaling function is not very smooth, i.e. it has
a rather low number of continuous derivatives. A. Neelov and S. Goedecker24 have shown
that one should not try to approximate a single matrix element as accurately as possible
but that one should try instead to approximate directly the expectation value of the local
potential. The reason for this strategy is that the wavefunction expressed in the Daubechy
basis is smoother than a single Daubechies basis function. A single Daubechies scaling
function of order 16 (i.e. the corresponding wavelet has 8 vanishing moments) has only
2 continuous derivatives. More precisely its index of Hölder continuity is about 2.7 and
the Sobolev space regularity with respect to p = 2 is about 2.91.23 A single Daubechies
scaling function of order 16 has only 4 continuous derivatives. By suitable linear com-
binations of Daubechies 16 one can however exactly represent polynomials up to degree
7, i.e functions that have 7 non-vanishing continuous derivatives. The discontinuities get
thus canceled by taking suitable linear combinations. Since we use pseudopotentials, our
exact wavefunctions are analytic and can locally be represented by a Taylor series. We
are thus approximating functions that are approximately polynomials of order 7 and the
discontinuities nearly cancel.

Instead of calculating the exact matrix elements we therefore use matrix elements with
respect to a smoothed version φ̃ of the Daubechies scaling functions.

Vi,j,k;i′,j′,k′ ≈
∑
l,m,n

φ̃i′,j′,k′(rl,m,n)V (rl,m,n)φ̃i,j,k(rl,m,n) =

∑
l,m,n

φ̃0,0,0(rl−i′,m−j′,n−k′)V (rl,m,n)φ̃0,0,0(rl−i,m−j,n−k) (46)

where the smoothed wavefunction is defined by

φ̃0,0,0(rl,m,n) = ωlωmωn
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and ωl is the “magic filter”. The relation between the true functional values, i.e. the
scaling function, and ω is shown in Figure 8. Even though Eq. (46) is not a particulary
good approximation for a single matrix element it gives an excellent approximation for the
expectation values of the local potential energy∫

dx

∫
dy

∫
dzΨ(x, y, z)V (x, y, z)Ψ(x, y, z)

and also for matrix elements between different wavefunctions∫
dx

∫
dy

∫
dzΨi(x, y, z)V (x, y, z)Ψj(x, y, z)

in case they are needed. Because of this remarkable achievement of the filter ω we call it
the magic filter.

In practice we do not explicitly calculate any matrix elements but we apply only filters
to the wavefunction expansion coefficients as will be shown in the following. This is
mathematically equivalent but numerically much more efficient.
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Figure 8. The magic filter ωi for the least asymmetric Daubechies-16 basis.

Since the operations with the local potential V are performed in the computational box
on the double resolution grid with grid spacing h′ = h/2, we must perform a wavelet
transformation before applying the magic filters. These two operations can be combined
in one, giving rise to modified magic filters both for scaling functions and wavelets on the
original grid of spacing h. These modified magic filters can be obtained from the original
ones using the refinement relations and they are shown in Figures 9 and 10. Following
the same guidelines as the kinetic energy filters, the smoothed real space values Ψ̃i,j,k

of a wavefunction Ψ are calculated by performing a product of three one-dimensional
convolutions with the magic filters along the x, y and z directions. For the scaling function
part of the wavefunction the corresponding formula is :

Ψ̃i1,i2,i3 =
∑

j1,j2,j3

sj1,j2,j3v
(1)
i1−2j1

v
(1)
i2−2j2

v
(1)
i3−2j3

where v(1)
i is the filter that maps a scaling function on a double resolution grid. Similar

convolutions are needed for the wavelet part. The calculation is thus similar to the treat-
ment of the Laplacian in the kinetic energy.
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Figure 9. The fine scale magic filter v(1)i (combination of a wavelet transform and the magic filter in Figure 8)
for the least asymmetric Daubechies-16 basis, scaled by

√
2 for comparison with the scaling function. The values

of the filter on the graph are almost undistinguishable from the values of the scaling function. However, there is
a slight difference which is important for the correct asymptotic convergence at small values of grid spacing h.
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Figure 10. The fine scale magic filter v(2)i (combination of a wavelet transform and the magic filter in Figure 8)
for the least asymmetric Daubechies-16 wavelet, scaled by

√
2 for comparison with the wavelet itself.

Once we have calculated Ψ̃i,j,k the approximate expectation value εV of the local po-
tential V for a wavefunction Ψ is obtained by simple summation on the double resolution
real space grid:

εV =
∑

j1,j2,j3

Ψ̃j1,j2,j3Vj1,j2,j3Ψ̃j1,j2,j3

The evaluation of the local potential energy εV converges with a convergence rate of
h16 to the exact value where h is the grid spacing. Therefore, the potential energy has a
convergence rate two powers of h faster than the rate for the kinetic energy.

6.2 Treatment of the non-local pseudopotential

The energy contributions from the non-local pseudopotential have for each angular mo-
ment l the form ∑

i,j

〈Ψ|pi〉hij〈pj |Ψ〉
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where |pi〉 is a pseudopotential projector. Once applying the Hamiltonian operator, the
application of one projector on the wavefunctions requires the calculation of

|Ψ〉 → |Ψ〉+
∑
i,j

|pi〉hij〈pj |Ψ〉 .

If we use for the projectors the representation of Eq. (39) (i.e. the same as for the wave-
functions) both operations are trivial to perform. Because of the orthogonality of the basis
set we just have to calculate scalar products among the coefficient vectors and to update the
wavefunctions. The scaling function and wavelet expansion coefficients for the projectors
are given by14 ∫

p(r)φi1,i2,i3(r)dr ,

∫
p(r)ψνi1,i2,i3(r)dr . (47)

where we used the notation (37),(38).
The GTH-HGH pseudopotentials16, 17 have projectors which are written in terms of

gaussians times polynomials. This form of projectors is particularly convenient to be ex-
panded in the Daubechies basis. In other terms, since the general form of the projector
is

〈r|p〉 = e−cr
2

x`xy`yz`z ,

the 3-dimensional integrals can be calculated easily since they can be factorized into a
product of 3 one-dimensional integrals.∫

〈r|p〉φi1,i2,i3(r)dr = Wi1(c, `x)Wi2(c, `y)Wi3(c, `x) , (48)

Wj(c, `) =

∫ +∞

−∞
e−ct

2

t`φ(t/h− j)dt (49)

The one-dimensional integrals are calculated in the following way. We first calculate
the scaling function expansion coefficients for scaling functions on a one-dimensional grid
that is 16 times denser. The integration on this dense grid is done by the well-known
quadrature introduced in,28 that coincides with the magic filter.24 This integration scheme
based on the magic filter has a convergence rate of h16 and we gain therefore a factor of
1616 in accuracy by going to a denser grid. This means that the expansion coefficients are
for reasonable grid spacings h accurate to machine precision. After having obtained the
expansion coefficients with respect to the fine scaling functions we obtain the expansion
coefficients with respect to the scaling functions and wavelets on the required resolution
level by one-dimensional fast wavelet transformations. No accuracy is lost in the wavelet
transforms and our representation of the projectors is therefore typically accurate to nearly
machine precision. In order to treat with the same advantages other pseudopotentials which
are not given under the form of gaussians it would be necessary to approximate them by a
small number of gaussians.

6.3 XC functionals and implementation of GGA’s

To calculate the exchange correlation energy per particle εxc[ρ](r) and the associated XC
potential Vxc(r) it is important to have a real-space representation of the density. The
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magic filter procedure described in Section 6.1 can be used also to express the real-point
values of the charge density.

ρ(r) =
∑
i

n(i)
occ|Ψ̃i(r)|2 , (50)

Evidently, any real-space based implementation of the XC functionals fits well with this
density representation. In our program we use the XC functionals as implemented in
libXC13 exchange-correlation library.

A traditional finite difference scheme of fourth order is used on the double resolution
grid to calculate the gradient of the charge density

∂wρ(ri1,i2,i3) =
∑

j1,j2,j3

c
(w)
i1,i2,i3;j1,j2,j3

ρj1,j2,j3 , (51)

where w = x, y, z. For grid points close to the boundary of the computational volume
the above formula requires grid points outside the volume. For free boundary conditions
the values of the charge density outside the computational volume in a given direction are
taken to be equal to the value at the border of the grid.

As described in Section 2.2, the relation between the gradient and the density must
be taken into account when calculating Vxc in the standard White-Bird approach,27 where
the density gradient is considered as an explicit functional of the density. There the XC
potential can be split in two terms:

Vxc(ri1,i2,i3) = V oxc(r) + V cxc(r) , (52)

where

V oxc(ri1,i2,i3) = εxc(r) + ρ(r)
∂εxc

∂ρ
(r) , (53)

V cxc(ri1,i2,i3) =
∑

j1,j2,j3

ρ

|∇ρ|
∂εxc

∂|∇ρ|
(rj1,j2,j3)×

×
∑

w=x,y,z

∂wρ(rj1,j2,j3)c
(w)
j1,j2,j3;i1,i2,i3

,

where the “ordinary” part V oxc is present in the same form of LDA functionals, while the
White-Bird “correction” term V cxc appears only when the XC energy depends explicitly on
|∇ρ|. The c(w) are the coefficients of the finite difference formula used to calculate the
gradient of the charge density (51).

The evaluation of the XC terms and also, when needed, the calculation of the gradient
of the charge density, may easily be performed together with the Poisson solver used to
evaluate the Hartree potential. This allows us to save computational time.

7 Calculation of Hartree Potential

Electrostatic potentials play a fundamental role in nearly any field of physics and chem-
istry. Having efficient algorithms to find the electrostatic potential V arising from a charge
distribution ρ or, in other words, to solve the Poisson’s equation

∇2V = −4πρ , (54)
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is therefore essential. The large variety of situations in which this equation can be found
lead us to face this problem with different choices of the boundary conditions (BC). The
long-range behavior of the inverse Laplacian operator make this problem to be strongly
dependent on the BC of the system.

The most immediate approach to the Poisson equation can be achieved for periodic BC,
where a traditional reciprocal space treatment is both rapid and simple, since the Laplacian
matrix is diagonal in a plane wave representation. If the density ρ is originally given in real
space, a first Fast Fourier Transformation (FFT) is used to transform the real space data
in reciprocal space. The Poisson equation is then solved in reciprocal space and finally
the result is transformed back into real space by a second FFT. Because of the FFT’s, the
overall computational scaling is O(N logN) with respect to the number of grid points N .

The situation is different if one considers the same problem for different BC, like for
example free (isolated) BC. In this case the solution of Poisson’s equation can formally be
obtained from a three-dimensional integral:

V (r) =

∫
dr′G(|r− r′|)ρ(r′) , (55)

whereG(r) = 1/r is the Green function of the Laplacian operator in the unconstrained R3

space. The long range nature of the kernel operator G does not allow us to mimic free BC
with a very large periodic volume. Consequently, the description of non-periodic systems
with a periodic formalism always introduces long-range interactions between super-cells
that falsify the results. Due to the simplicity of the plane wave methods, various attempts
have been made to generalize the reciprocal space approach to free BC.40–42 All of them
use a FFT at some point, and have thus a O(N logN) scaling. These methods have some
restrictions and cannot be used blindly. For example, the method by Füsti-Molnar and
Pulay is efficient only for spherical geometries, and the method by Martina and Tuckerman
requires artificially large simulation boxes that are expensive numerically. Nonetheless, the
usefulness of reciprocal space methods has been demonstrated for a variety of applications,
and plane-wave based codes are widely used in the chemical physics community.

Another choice of the BC that is of great interest is for systems that are periodically
replicated in two dimensions but with finite extent in the third, namely surface systems.
The surface-specific experimental techniques developed in recent years produced impor-
tant results,43 that can benefit from theoretical prediction and analysis. The development
of efficient techniques for systems with such boundary conditions thus became of great
importance. Explicit Poisson solvers have been developed in this framework,44–46 with a
reciprocal space based treatment. Essentially, these Poisson solvers are built following a
suitable generalization for surfaces BC of the same methods that were developed for iso-
lated systems. As for the free BC case, screening functions are present to subtract the
artificial interaction between the super-cells in the non-periodic direction. Therefore, they
exhibit the same kind of intrinsic limitations, as for example a good accuracy only in the
bulk of the computational region, with the consequent need for artificially large simulation
boxes which may increase the computational overhead.

Electrostatic potentials can either be calculated by solving the differential Poisson
equation or by solving the equivalent integral equation Eq. (55). The methods that solve the
differential equation are iterative and they require various tuning. A good representative
of these methods is the multigrid approach.47 Several different steps such as smoothing,
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restriction and prolongation are needed in this approach. Each of these steps has to be
tuned to optimize speed and accuracy. Approaches based on the integral equation are in
contrast straightforward and do not require such tuning.

In the following, we will describe two Poisson solvers compatible with free and sur-
faces boundary conditions respectively. Contrary to Poisson solvers based on reciprocal
space treatment, the fundamental operations of these Poisson solver are based on a mixed
reciprocal-real space representation of the charge density. This allows us to naturally sat-
isfy the boundary conditions in the different directions. Screening functions or other ap-
proximations are thus not needed.

7.1 Interpolating scaling functions

Interpolating scaling functions (ISF)49 arise in the framework of wavelet theory .3, 14 They
are one-dimensional functions, and their three main properties are:

• The full basis set can be obtained from all the translations by a certain grid spacing h
of the mother function φ centered at the origin.

• They satisfy the refinement relation:

φ(x) =

m∑
j=−m

hj φ(2x− j) (56)

where the hj’s are the elements of a filter that characterizes the wavelet family, and m
is the order of the scaling function. Eq. (56) establishes a relation between the scaling
functions on a grid with grid spacing h and another one with spacing h/2.

• The mother function φ is symmetric, with compact support from−m tom. It is equal
to one at the origin and to zero at all other integer points (in grid spacing units). The
expansion coefficients of any function in this basis are just the values of the function
on the grid.

• Given a function in the ISF basis

f(x) =
∑
j

fjφ(
x

h
− j) (57)

the firstm discrete and continous moments are identical for am-th order interpolating
wavelet family, i.e.

h`
∑
j

j`fj =

∫
dxx`f(x) , (58)

if ` < m. This follows from the fact, proven in reference48 that the first m moments
of the scaling function obey the formula:

Ml =

∫
φ(x)xldx = δl, l = 0, ..,m− 1 (59)
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Figure 11. Plots of interpolating scaling functions and wavelets of 14-th and 100-th order.

Shift the integration variable, we have∫
φ(x− j)xldx =

∫
φ(t)(t+ j)ldt =

=

∫
φ(t)

l∑
p=0

Cpl t
pjl−pdt = jl

Since the various multipoles of the charge distribution determine the major features of the
potential the above equalities tell us that a scaling function representation gives the most
faithful mapping between a continuous and discretized charge distribution for electrostatic
problems. Figure 11 shows an 14-th order and 100-th order interpolating scaling function.

7.2 Poisson solver for Free BC

Continuous charge distributions are represented in numerical work typically by their values
ρi,j,k on a grid. It follows from the above described properties of interpolating scaling
functions that the corresponding continous charge density is given by:

ρ(r) =
∑
i1,i2,i3

ρi1,i2,i3φ(x− i1) φ(y − i2) φ(z − i3) (60)

Denoting the potential on the grid point: rj1,j2,j3 = (xj1 , yj2 , zj3) by
Vj1,j2,j3 = V (rj1,j2,j3) we have:

Vj1,j2,j3 = (61)

=
∑
i1,i2,i3

ρi1,i2,i3

∫
dr′

φi1(x′) φi2(y′) φi3(z′)

|rj1,j2,j3 − r′|
.

The above integral defines the discrete kernel:

K(i1, j1; i2, j2; i3, j3) =

=

∫
dr′φi1(x′) φi2(y′) φi3(z′)

1

|rj1,j2,j3 − r′|
. (62)
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Since the problem is invariant under combined translations of both the source point
(i1, i2, i3) and the observation point (j1, j2, j3) the kernel depends only on the difference
of the indices:

K(i1, j1; i2, j2; i3, j3) = K(i1 − j1, i2 − j2, i3 − j3) (63)

and the potential Vj1,j2,j3 can be obtained from the charge density ρi1,i2,i3 by the following
3-dimensional convolution:

Vj1,j2,j3 =
∑
i1,i2,i3

K(i1 − j1, i2 − j2, i3 − j3)ρi1,i2,i3 . (64)

Once the kernel is available in Fourier space, this convolution can be evaluated with
two FFTs at a cost of O(N logN) operations where N = n1 n2 n3 is the number of
3-dimensional grid points. Since all the quantities in the above equation are real, real-
to-complex FFT’s can be used to reduce the number of operations compared to the case
where one would use ordinary complex-complex FFT’s. Obtaining the kernel in Fourier
space from the kernel K(j1, j2, j3) in real space requires another FFT.

It remains now to calculate the values of all the elements of the kernel K(k1, k2, k3).
Solving a 3-dimensional integral for each element would be much too costly and we use
therefore a separable approximation of 1/r in terms of Gaussians,12, 50

1

r
'
∑
k

ωke
−pkr2

. (65)

In this way all the complicated 3-dimensional integrals become products of simple 1-
dimensional integrals. Using 89 Gaussian functions with the coefficients ωk and pk suit-
ably chosen, we can approximate 1

r with an error less than 10−8 in the interval [10−9 , 1].
If we are interested in a wider range, e.g. a variable R going from zero to L, we can use
r = R

L :

L

R
=
∑
k

ωke
− pk
L2R

2

, (66)

1

R
=

1

L

∑
k

ωke
−PkR2

, (67)

Pk =
pk
L2

. (68)

With this approximation, we have that

Kj1,j2,j3 =

89∑
k=1

ωkKj1(pk)Kj2(pk)Kj3(pk) , (69)

where

Kj(pk) =

∫
ϕj(x)e−pkx

2

dx (70)

=

∫
ϕ0(x)e−pk(x−j)2

dx . (71)
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So we only need to evaluate 89 ×max ({n1, n2, n3}) integrals of the type

Kj(p) =

∫
ϕ0(x)e−p(x−j)

2

dx , (72)

for some value of p chosen between 3 · 10−5 and 3 · 1016.
The accuracy in calculating the integrals can be further improved by using the refine-

ment relation for interpolating scaling functions (56).
From (72), we can evaluate Ki(4p) as:

Ki(4p) =

∫
ϕ(x)e−4p(x−i)2

dx (73)

=
1

2

∫
ϕ(x/2)e−p(x−2i)2

dx (74)

=
1

2

∑
j

hj

∫
ϕj(x)e−p(x−2i)2

dx (75)

=
1

2

∑
j

hjK2i−j(p) . (76)

The best accuracy in evaluating numerically the integral is attained for p < 1. For a fixed
value of p given by Eq. (65), the relation (76) is iterated n = [log4(p)] times starting with
p0 = p

4n . So the numerical calculation of the integrals Ki(p) is performed as follows: for
each p, we compute the number n of required recursions levels and calculate the integral
Ki(p0). The value of n is chosen such that p0 ' 1 so we have a gaussian function not
too sharp. The evaluation of the interpolating scaling functions is fast on a uniform grid of
points so we perform a simple summation over all the grid points.

7.3 Poisson solver for Surface Boundary conditions

Consider a three-dimensional domain, periodic (with period Lx and Ly) in x and y direc-
tions, and non-periodic in z. Without loss of generality, a function f that lives in such a
domain can be expanded as:

f(x, y, z) =
∑
px,py

e
−2πi( pxLx x+

py
Ly
y)
fpx,py (z) . (77)

We indicate with fpx,py (z) the one-dimensional function associated to the vector
~p = (px/Lx, py/Ly) in the reciprocal space of the two dimensional surface. Following
these conventions, the Poisson equation (54) becomes a relation between the reciprocal
space components of V and ρ:

Vpx,py (z) = −4π

∫ +∞

−∞
dz′G(2π |~p|; z − z′)ρpx,py (z) , (78)

where |~p|2 = (px/Lx)2 + (py/Ly)2, and G(µ; z) is the Green function of the one-
dimensional Helmholtz equation:(

∂2
z − µ2

)
G(µ; z) = δ(z) . (79)
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The free BC on the z direction fix the form of the Green function:

G(µ; z) =

{
− 1

2µe
−µ|z| µ > 0 ,

1
2 |z| µ = 0 .

(80)

In numerical calculations continuous charge distributions are typically represented by
their values on a grid. The mixed representation of the charge density given above imme-
diately suggests to use a plane wave expansion in the periodic directions, which may be
easily treated with conventional FFT techniques. For the non-periodic direction z we will
use interpolating scaling functions representation. The corresponding continuous charge
distribution is thus given by:

ρ(x, y, z) =

Nx
2∑

px=−Nx2

Ny
2∑

py=−Ny2

Nz∑
jz=0

ρpx,py ;jz×

× exp

{
−2πi

(
px
Lx

x+
py
Ly
y

)}
φ
( z
h
− jz

)
, (81)

where h is the grid spacing in the z direction, and φ(j) = δj,0, j ∈ Z.
Combining Eq. (78) with (81), the discretized Poisson problem thus becomes:

Vpx,py ;jz = −4πh
∑
j′z

K(2π |~p|; jz − j′z)ρpx,py ;j′z
, (82)

where the quantity (kernel):

K(µ; j) =

∫ +∞

−∞
duG(µ;h(j − u))φ(u) (83)

is defined via an integral in the dimensionless variable u. Due to the symmetry of φ, the
kernel is symmetric in the non-periodic direction K(µ; jz) = K(µ;−jz). The integral
bounds can be restricted from −m to m, thanks to the compact support of φ.

Once we have calculated the kernel, which will be described below, our numerical
procedure is the following. We perform a two-dimensional FFT on our real space charge
density to obtain the Fourier coefficients ρpx,py ;j′z

for all the periodic planes. Then we
have to solve Eq. (82). Since this equation is a convolution it can be calculated by zero-
padded FFT’s. Finally the potential is transformed back from the mixed representation
to real space to obtain the potential on the grid by another two-dimensional FFT. Due to
the FFT’s, the total computational cost is O(N logN). Since all quantities are real, the
amount of memory and the number of operations for the FFT can be reduced by using
real-to-complex FFT’s instead of complex-complex FFT’s.

It remains now to calculate the values of the kernel function K(µ; j). The core of the
calculation is represented by the function

K̃(λ; j) =

{∫
du e−λ|u−j|φ(u) λ > 0 ,∫
du |u− j|φ(u) λ = 0 .

(84)

The kernel has the properties K(µ; j) = −K̃(µh; j)/(2µ) for µ > 0 and
K(0; j) = K̃(0; j)/2. A simple numerical integration with the trapezoidal rule is inef-
ficient since G(µ; z) is not smooth in z = 0 while the scaling function varies significantly
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around the integer points. Thanks to the compact support of the scaling function, this prob-
lem can be circumvented with a simple and efficient recursive algorithm. We define two
functions K̃(+) and K̃(−) such that K̃(λ; j) = K̃(+)(λ; j) + K̃(−)(λ; j), where we have,
for λ > 0

K̃(+)(λ; j) =

∫ j

−∞
du eλ(u−j)φ(u) , (85)

K̃(−)(λ; j) =

∫ +∞

j

du e−λ(u−j)φ(u) , (86)

while with λ = 0

K̃(±)(0; j) = ±j Z(±)
0 (j)∓ Z(±)

1 (j) , (87)

Z
(+)
` (j) =

∫ j

−∞
duu`φ(u) , (88)

Z
(−)
` (j) =

∫ +∞

j

dxu`φ(u) , ` = 0, 1 . (89)

These objects satisfy recursion relations:

K̃(±)(λ; j + 1) = e∓λ
[
K̃(±)(λ; j)± e∓λjD(±)

λ (j)
]
,

Z
(±)
` (j + 1) = Z

(±)
` (j)± C`(j) , ` = 0, 1 , (90)

where

D
(±)
λ (j) =

∫ j+1

j

du e±λuφ(u) , (91)

C`(j) =

∫ j+1

j

duu`φ(u) , ` = 0, 1 . (92)

From Eq. (85 – 92), and the properties

K̃(λ; j) = K̃(λ;−j) , K̃(+)(λ; 0) = K̃(−)(λ; 0) , (93)

Z
(+)
1 (0) = Z

(−)
1 (0) , Z

(+)
0 (0) = Z

(−)
0 (0) =

1

2
,

the function K̃(λ; j) can be calculated recursively for each j ∈ N, by knowing K̃(+)(λ; 0)

andZ(+)
1 (0), then evaluatingD(±)

λ (j) andC`(j) for each value of j. The integrals involved
can be calculated with high accuracy with a simple higher-order polynomial quadrature.
They are integral of smooth, well-defined quantities, since the interpolating scaling func-
tion goes to zero at their bounds. Moreover, for values of j lying outside the support of φ
we can benefit of a functional relation for calculating the values of the kernel. The support
of a m-th order scaling function goes from −m to m, then we have ∀p > 0

K(µ;m+ p) = e−µhpK(µ;m) , µ > 0 ,

K(0;m+ p) = K(0;m) + pZ
(+)
0 (m) . (94)

To summarize, we have found an efficient method for evaluating equation (83) for
j = 0, · · · , Nz and a fixed µ. Instead of calculating Nz + 1 integrals of range 2m, we
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can obtain the same result by calculating 2 integrals of range m and 4m integrals of range
1, with the help of relation (94). This will also increase accuracy, since the integrands are
always smooth functions, which would not be the case with a naive approach.

The accuracy in calculating the integrals can be further improved by using the refine-
ment relation (56) for interpolating scaling functions. For positive λ we have

K̃(2λ; i) =

∫
du e−2λ|u−i|φ(u)

=
1

2

∫
du e−λ|u−2i|φ(u/2)

=
1

2

∑
j

hj

∫
du e−λ|u−2i|φ(u− j) (95)

=
1

2

∑
j

hjK̃(λ; 2i− j) .

This relation is useful to improve the accuracy in evaluating the kernel for high λ. Since
in this case the exponential function is very sharp, it is better to calculate the kernel for
lower λ and an enlarged domain and then apply relation (95) as many times as needed.
The relation (94) allows us to enlarge the domain with no additional computational cost.
With the help of the above described properties the computational time for evaluating the
kernel in Fourier space can be considerably optimized, becoming roughly half of the time
needed for its application on a real space density.

7.4 Numerical results and comparison with other methods

These Poisson solvers have a convergence rate of hm, where m is the order of the inter-
polating scaling functions used to express the Poisson kernel. Since we use interpolating
scaling functions of order 16 the convergence rate of the electrostatic potential is faster
than the rate for the kinetic energy. All these Poisson Solvers have one thing in common,
they perform explicitly the convolution of the density with the Green’s functions of the
Poisson’s equation. The necessary convolutions are done by a traditional zero-padded FFT
procedure which leads to an O(N logN) operation count with respect to the number of
grid points N . The accuracy of the potential is uniform over the whole volume and one
can thus use the smallest possible volume compatible with the requirement that the tails
of the wavefunctions have decayed to very small values at the surface of this volume. The
fraction of the computational time needed for the solution of the Poisson’s equation de-
creases with increasing system size and is roughly 1% for large systems, see Section 12.
Moreover, the explicit Green’s function treatment of the Poisson’s solver allows us to treat
isolated systems with a net charge directly without the insertion of compensating charges.

7.4.1 Free BC

For Free BC, we have compared our method with the plane wave methods by Hock-
ney40 and Martyna and Tuckerman41 as implemented in the CPMD electronic structure
program.38 As expected Hockney’s method does not allow to attain high accuracy. The
method by Martyna and Tuckerman has a rapid exponential convergence rate which is
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Figure 12. Accuracy comparison between our method with interpolating scaling functions of different orders and
the Hockney or Martyna-Tuckerman method as implemented in CPMD. The accuracy of our method is finally
limited by the accuracy of the expansion of Eq. (65) with 89 terms.

characteristic for plane wave methods. Our new method has an algebraic convergence rate
of hm with respect to the grid spacing h. By choosing very high order interpolating scaling
functions we can get arbitrarily high convergence rates. Since convolutions are performed
with FFT techniques the numerical effort does not increase as the order m is increased.
The accuracy shown in Figure 12 for the Martyna and Tuckerman method is the accuracy
in the central part of the cube that has 1/8 of the total volume of the computational cell.
Outside this volume errors blow up. So the main disadvantage of this method is that a very
large computational volume is needed in order to obtain accurate results in a sufficiently
large target volume. For this reason the less acurate Hockney method is generally prefered
in the CPMD program.30

A strictly localized charge distribution, i.e. a charge distribution that is exactly zero
outside a finite volume, can not be represented by a finite number of plane waves. This is an
inherent contradiction in all the plane wave methods for the solution of Poisson’s equation
under free boundary conditions. For the test shown in Figure 12 we used a Gaussian charge
distribution whose potential can be calculated analytically. The Gaussian was embedded
in a computational cell that was so large that the tails of the Gaussian were cut off at an
amplitude of less than 1.e-16. A Gaussian can well be represented by a relatively small
number of plane waves and so the above described problem is not important. For other
localized charge distributions that are less smooth a finite Fourier representation is worse
and leads to a spilling of the charge density out of the original localization volume. This
will lead to inaccuracies in the potential.

Table 1 shows the required CPU time for a 1283 problem as a function of the number
of processors on a Cray parallel computer. The parallel version is based on a parallel
3-dimensional FFT.
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1 2 4 8 16 32 64
.92 .55 .27 .16 .11 .08 .09

Table 1. The elapsed time in seconds required on a Cray XT3 (based on AMD Opteron processors) to solve
Poisson’s equation on a 1283 grid as a function of the number of processors. Since Poisson’s equation is typically
solved many times, the time for setting up the kernel is not included. Including the set up time of the kernel
increases the total timing by about 50 percent, since one additional FFT is needed.
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Figure 13. Accuracy comparison (Max. difference between the computed and the analytical result) between our
method with scaling functions of different orders and the Mortensen solver for surface systems as implemented
in CPMD. The results of the Hockney method are not shown since they are much less precise. The h8 curve is
plotted to show the algebraic decrease of the precision with respect to the grid space h. The accuracy is finally
limited by the evaluation of the integral (84), which is computed with nearly machine precision.

7.4.2 Surfaces BC

Our method was compared with the reciprocal space methods by Hockney46 and
Mortensen45 (which is a suitable generalization for 2D slab geometries of the method de-
scribed in41) as implemented in the CPMD electronic structure program.38

The accuracy tests shown in Figure 13 are performed with an analytical charge dis-
tribution that is the Laplacian of V (x, y, z) = exp(cos( 2π

Lx
x) + cos( 2π

Ly
y)) exp(− z2

50L2
z
−

tan( π
Lz
z)2). Its behavior along the xy surface is fully periodic, with all the reciprocal

space components taken into account. The function exp(− tan( π
Lz
z)2) guarantees a local-

ized behavior in the non-periodic direction with the potential going explicitly to zero at the
borders. This makes also this function suitable for comparison with reciprocal space based
approach.

The Gaussian factor is added to suppress high frequency components. Tests with other
analytical functions gave comparable accuracies. The reciprocal space Poisson solvers turn
out to be much less precise than our approach, which explicitly preserves the BC along each
direction. Moreover, the accuracy shown for the Mortensen approach is calculated only for
planes that lies in the bulk of the non-periodic direction (30% of the total volume). Outside
of this region, errors in the potential blow up.

Table 2 shows the behaviour of the errors in computing the Hartree energy following
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the size of the system in the nonperiodic direction. To obtain the same accuracy of our
approach with the Mortensen method we need a sytem which is roughly twice larger, which
will imply that a very large computational volume is needed to obtain accurate results in a
sufficiently large domain of the non-periodic direction.

L0/L 0.5 0.6 0.7 0.8 0.9 1
m=14 1·10−12 7·10−12 4·10−6 2·10−3 3·10−2 2·10−1

Mortensen 0.2 1.3 3.7 6.0 6.8 6.2

Table 2. Evaluation error of the Hartree energy (Ha) for different values of the sizeL of the nonperiodic direction,
for a system with an electrostatic density which is localized in the nonperiodic direction with characteristic length
L0. The density of this system is identical to the one used for the accuracy tests of Figure 13, with 2L0 = Lz

(see text). The accuracy of the Mortensen approach with L = 2L0 is of the same order of the accuracy obtained
by our approach with L = L0, which means that to obtain the same precision with Mortensen method the size
of the system must be roughly doubled.

To show that our method genuinely preserves the boundary conditions appropriate for
surfaces we calculated the electrostatic potential for a plane capacitor. For this system only
the zero-th Fourier components in the plane are non-vanishing.

z

y

V

z z

y

V

z z

y

V

z

Figure 14. Electrostatic potential V for a system with two periodic planes charged with opposite sign (plane
capacitor), oriented along the z direction, calculated by different Poisson solvers. The values of V are taken in
the middle of the x (periodic) direction. The position of the positive (black, dashed line) and the negative (red,
solid) charged plane is schematically shown in the figure. The represented solutions are, from top to bottom, the
results from the Mortensen, the Hockney and our Poisson solver.

Figure 14 shows the results either in the Mortensen/Hockney reciprocal space methods
or with our approach. For the plane capacitor, the screening function used in the Mortensen
approach vanishes, and the solution is equal to what we would have obtained with a fully
periodic boundary conditions. To obtain the good “zero electric field” behavior in the
borders that we obtain directly with our method one would have to postprocess the solution
obtained from the Mortensen method, by adding to the potential a suitable linear function
along the non-periodic direction. This is legitimate since a linear function is annihilated by
the Laplace operator and the modified potential is thus also a valid solution of the Poisson
equation just with different boundary conditions. The Hockney method presents a better
qualitative behavior, though the results are not accurate. Only with our approach we get
both accurate and physically sound results.

Table 3 shows the required CPU time for solving the Poisson equation on a grid of 1283

grid points as a function of the number of processors on a Cray XT3 parallel computer. The
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1 2 4 8 16 32 64 128
.43 .26 .16 .10 .07 .05 .04 .03

Table 3. The elapsed time in seconds required on a Cray XT3 (based on AMD Opteron processors) to solve
Poisson’s equation with surface BC on a 1283 grid as a function of the number of processors. The time for setting
up the kernel (around 50% of the total time) is not included. For a large number of processors, the communication
time needed to gather the complete potential to all the processors becomes dominant.

parallel version is based on a parallel 3-dimensional FFT, where the input/output is prop-
erly distributed/gathered to all the processors. The FFT’s are performed using a modified
version of the algorithm described in Ref.51 that gives high performances on a wide range
of computers.

To summarize, we have presented a method that allows us to obtain accurate potentials
arising from charge distributions on surfaces with a O(N logN) scaling in a mathemati-
cally clean way. This method preserves explicitly the required boundary conditions, and
can easily be used for applications inside electronic structure codes where the charge den-
sity is either given in reciprocal or in real space. The potential applications of these Poisson
solver are of great interest in the electronic strcuture calculations community.

7.5 Exact Exchange operator with ISF Poisson Solver

An example of the applications of the above described Poisson solvers may be found in the
calculation of the Exact exchange operator of Eq. (22). One may write this operator in the
following way:

EHFx = −1

2

∑
σ=1,2

∑
p,q

∫
drρp,q,σ(r)Vp,q,σ(r) , (96)

ρp,q,σ(r) = ψp,σ(r)ψ∗q,σ(r) , (97)

Vp,q,σ(r) =

∫
dr′

ρq,p,σ(r)

|r− r′|
, (98)

DHF
x |ψpσ〉 = −

∑
q

fq,σVq,p,σ|ψq,σ〉 . (99)

The features of the Poisson Solver make the calculation of the objects above convenient
for several reasons. First of all, the ISF Poisson solver technology implements the correct
BC automatically, with optimal efficiency and accuracy. Moreover, the advantage of using
a basis set which is independent from the atomic position make simpler the calculation
of the atomic forces, since no Pulay terms have to be inserted as corrections. Different
parallelization schemes of the Poisson solver application can be implemented, thanks to
the flexibility of the real-space implementation of the ISF basis.

8 Calculation of Forces

Atomic forces can be calculated with the same method used for the application of the
Hamiltonian onto a wavefunction. Since the scaling function/wavelet basis is not moving
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together with atoms, we have no Pulay forces31 and atomic forces can be evaluated directly
through the Feynman-Hellmann theorem. Except for the force arising from the trivial ion-
ion interaction, which for the i-th atom is

F
(ionic)
i =

∑
j 6=i

ZiZj
R3
ij

(Ri −Rj) , (100)

the energy terms which depend explicitly on the atom positions are related to the pseu-
dopotentials. As shown in the previous sections, the GTH-HGH pseudopotentials we are
using are based on separable functions,16, 17 and can be splitted into a local and a non-local
contribution.

For an atom i placed at position Ri, the contribution to the energy that comes from the
local part of the pseudopotential is

Elocal(Ri) =

∫
dr ρ(r) Vlocal(|r−Ri|) . (101)

Where the local pseudopotential can be split into long and a short-ranged terms
Vlocal(λ) = VL(λ) + VS(λ), and

VL(λ) = −Zi
λ

erf
(

λ√
2r`

)
,

VS(λ) = exp

(
− λ2

2r2
`

)[
C1 + C2

(
λ

r`

)2

+ (102)

+ C3

(
λ

r`

)4

+ C4

(
λ

r`

)6
]
,

where the Ci and r` are the pseudopotential parameters, depending on the atom of atomic
number Zi under consideration. The energy contribution Elocal(Ri) can be rewritten in an
equivalent form. It is straightforward to verify that

Elocal(Ri) =

∫
dr ρL(|r − Ri|)VH(r) +

∫
dr ρ(r)VS(|r − Ri|), (103)

where VH is the Hartree potential, and ρL is such that

∇2
rVL(|r−Ri|) = −4πρL(|r−Ri|) .

This analytical transformation remains also valid in our procedure for solving the dis-
cretized Poisson’s equation. From equation (103) we can calculate

ρL(λ) = − 1

(2π)3/2

Zi
r3
`

e
− λ2

2r2
` , (104)

which is a localized (thus short-ranged) function. The forces coming from the local pseu-
dopotential are thus

F
(local)
i = −∂E`(Ri)

∂Ri
(105)

=
1

r`

∫
dr

r−Ri

|r−Ri|

[
ρ′L(|r−Ri|)VH(r) + V ′S(|r−Ri|)ρ(r)

]
, (106)
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where

ρ′L(λ) =
1

(2π)3/2

Zion

r4
loc
λe
− λ2

2r2
` ,

V ′S(λ) =
λ

r`
e
− λ2

2r2
`

[
(2C2 − C1) + (4C3 − C2)

(
λ

r`

)2

+

+ (6C4 − C3)

(
λ

r`

)4

− C4

(
λ

r`

)6]
. (107)

Within this formulation, the contribution to the forces from the local part of pseudopo-
tential is written in terms of integrals with localized functions (gaussian functions times
polynomials) times the charge density and the Hartree potential. This allows us to per-
form the integrals only in a relatively small region around the atom position and to assign
different integrations to different processors. Moreover, the calculation is performed with
almost linear (O(N logN)) scaling.

The contribution to the energy that comes from the nonlocal part of the pseudopotential
is, as we saw in Section 6.2,

Enonlocal(Ri) =
∑
l

∑
mn

〈Ψ|plm(Ri)〉hlmn〈pln(Ri)|Ψ〉 , (108)

where we wrote explicitly the dependence of the projector on the atom position Ri. The
contribution of this term to the atomic forces is thus

F
(nonlocal)
i = −

∑
l

∑
m,n

〈Ψ|∂p(Ri)

∂Ri
〉hmn〈p(Ri)|Ψ〉

−
∑
〈Ψ|p(Ri)〉hmn〈

∂p(Ri)

∂Ri
|Ψ〉 . (109)

Expressing the derivatives of the projectors in the Daubechies basis, the evaluation of the
scalar products is straightforward. The scaling functions - wavelets expansion coefficients
of the projector derivatives can be calculated with machine precision accuracy in the same
way as the projectors themselves were calculated. This is due to the fact that the derivative
of the projectors are like the projectors themselves products of gaussians and polynomials.

9 Preconditioning

As already mentioned, direct minimization of the total energy is used to find the converged
wavefunctions. The gradient gi of the total energy with respect to the i-th wavefunction
|Ψi〉 is given by

|gi〉 = H|Ψi〉 −
∑
j

Λij |Ψj〉 , (110)

where Λij = 〈ψj |H|ψi〉 are the Lagrange multipliers enforcing the orthogonality con-
straints. Convergence is achieved when the average norm of the residue 〈gi|gi〉1/2 is below
an user-defined numerical tolerance.

Given the gradient direction at each step, several algorithms can be used to improve
convergence. In our method we use either preconditioned steepest-descent algorithm or
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preconditioned DIIS method.29, 30 These methods work very well to improve the conver-
gence for non-zero gap systems if a good preconditioner is available.

The preconditioning gradient |g̃i〉 which approximately points in the direction of the
minimum is obtained by solving the linear system of equations obtained by discretizing
the equation (

1

2
∇2 − εi

)
g̃i(r) = gi(r) . (111)

The values εi are approximate eigenvalues obtained by a subspace diagonalization in a min-
imal basis of atomic pseudopotential orbitals during the generation of the input guess. For
isolated systems, the values of the εi for the occupied states are always negative, therefore
the operator of Eq. (111) is positive definite.

Eq. (111) is solved by a preconditioned conjugate gradient (CG) method. The precon-
ditioning is done by using the diagonal elements of the matrix representing the operator
1
2∇

2−εi in a scaling function-wavelet basis. In the initial step we use ` resolution levels of
wavelets where ` is typically 4. To do this we have to enlarge the domain where the scaling
function part of the gradient is defined to a grid that is a multiple of 2`. This means that the
preconditioned gradient g̃i will also exist in a domain that is larger than the domain of the
wavefunction Ψi. Nevertheless this approach is useful since it allows us to obtain rapidly
a preconditioned gradient that has the correct overall shape. In the following iterations of
the conjugate gradient we use only one wavelet level in addition to the scaling functions
for preconditioning. In this way we can do the preconditioning exactly in the domain of
basis functions that are used to represent the wavefunctions (Eq. (39)). A typical number
of CG iterations necessary to obtain a meaningful preconditioned gradient is 5.

10 Orthogonalization

We saw the need of keeping the wavefunctions Ψi orthonormal at each step of the mini-
mization loop. This means that the overlap matrix S, with matrix elements

Sij = 〈Ψj |Ψi〉 (112)

must be equal to the identity matrix.
All the orthogonalization algorithms have a cubic complexity causing this part of the

program to dominate for large systems, see Figure 18. We therefore optimized this part
carefully and found that a pseudo-Gram-Schmidt algorithm that uses a Cholesky factor-
ization of the overlap matrix S is the most efficient method on parallel computers. In the
following, we discuss the reasons for this choice by comparing it to two other orthogonal-
ization algorithms: classical Gram-Schmidt and Loewdin orthogonalizations.

10.1 Gram-Schmidt orthogonalization

The classical Gram-Schmidt orthonormalization algorithm generates an orthogonal set of
orbitals

{
|Ψi〉

}
out of a non-orthogonal set {|Ψi〉}, by processing separately each orbital.

The overlap of the currently processed orbital |Ψi〉 with the set of the already processed
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orbitals
{
|Ψj〉

}
j=1,··· ,i−1

is calculated and is removed from |Ψi〉. Thereafter, the trans-

formed orbital |Ψi〉 is normalized.

|Ψi〉 = |Ψi〉 −
i−1∑
j=1

〈Ψj |Ψi〉|Ψj〉 (113)

|Ψj〉 −→
|Ψj〉√
〈Ψj |Ψj〉

(114)

The algorithm consists of the calculation of n(n + 1)/2 scalar products and wavefunc-
tion updates. If the coefficients of each orbital are distributed among several processors
n(n + 1)/2 communication steps are needed to sum up the various contributions from
each processor to each scalar product. Such a large number of communication steps leads
to a large latency overhead on a parallel computer and therefore to poor performances.

10.2 Loewdin orthogonalization

The Loewdin orthonormalization algorithm is based on the following equation:

|Ψi〉 =
∑
j

S
− 1

2
ij |Ψj〉 , (115)

where a new set of orthonormal orbitals |Ψi〉 is obtained by multiplying the inverse square-
root of the overlap matrix S with the original orbital set.

The implementation of this algorithm requires that the symmetric overlap matrix S is
calculated. In contrast to the classical Gram-Schmidt algorithm the matrix elements Sij
depend on the original set of orbitals and can be calculated in parallel in the case where each
processor holds a certain subset of the coefficients of each wavefunction. At the end of this
calculation a single communication step is needed to sum up the entire overlap matrix out
of the contributions to each matrix element calculated by the different processors. Since S
is an hermitian positive definite matrix, there exist a unitary matrix U which diagonalizes
S = U?ΛU , where Λ is a diagonal matrix with positive eigenvalues. The inverse square-
root of S is then given by S−

1
2 = U†Λ−

1
2U . Hence, an eigenvalue problem must be solved

in order to find U and Λ.

10.3 Pseudo Gram-Schmidt using Cholesky Factorization

In this scheme a Cholesky factorization of the overlap matrix S = LLT is calculated. The
new orthonormal orbitals are obtained by

|Ψi〉 =
∑
j

(
L−1
ij

)
|Ψj〉 , (116)

and are equivalent to the orbitals obtained by the classical Gram-Schmidt. The procedure
for calculating the overlap matrix out of the contributions calculated by each processor is
identical to the Loewdin case. Instead of solving an eigenvalue problem we have however
to calculate the decomposition of the overlap matrix. This can be done much faster. This
algorithm also requires only one communication step on a parallel computer but has a
lower pre-factor than the Loewdin scheme.

94



ψ5

ψ4

ψ3

ψ2

ψ1

MPI 0 MPI 1 MPI 2

ψ5

ψ4

ψ3

ψ2

ψ1
MPI 0

MPI 1

MPI 2

Figure 15. Coefficient distribution scheme on the left and orbital distribution scheme on the right

11 Parallelization

Two data distribution schemes are used in the parallel version of our program. In the or-
bital distribution scheme, each processor works on one or a few orbitals for which it holds
all its scaling function and wavelet coefficients. In the coefficient distribution scheme (see
Figure 15) each processor holds a certain subset of the coefficients of all the orbitals. Most
of the operations such as applying the Hamiltonian on the orbitals, and the preconditioning
is done in the orbital distribution scheme. This has the advantage that we do not have to
parallelize these routines and we therefore achieve almost perfect parallel speedup. The
calculation of the Lagrange multipliers that enforce the orthogonality constraints onto the
gradient as well as the orthogonalization of the orbitals is done in the coefficient distribu-
tion scheme (Figure 15). For the orthogonalization we have to calculate the matrix 〈Ψj |Ψi〉
and for the Lagrange multipliers the matrix 〈Ψj |H|Ψi〉. So each matrix element is a scalar
product and each processor is calculating the contribution to this scalar product from the
coefficients it is holding. A global reduction sum is then used to sum the contributions
to obtain the correct matrix. Such sums can easily be performed with the very well opti-
mized BLAS-LAPACK libraries. Switch back and forth between the orbital distribution
scheme and the coefficient distribution scheme is done by the MPI global transposition
routine MPI ALLTOALL. For parallel computers where the cross sectional bandwidth34

scales well with the number of processors this global transposition does not require a lot of
CPU time. The most time consuming communication is the global reduction sum required
to obtain the total charge distribution from the partial charge distribution of the individual
orbital.

11.1 OpenMP parallelization

In the parallelization scheme of the BigDFT code another level of parallelization was added
via OpenMP directive. In particular, all the convolutions and the linear algebra part can
be executed in multi-threaded mode. This adds further flexibility on the parallelization
scheme. At present, several strategies are under analysis for systems with different sizes to
understand the best repartition of the data between nodes such as to minimize the compu-
tational overhead.
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Figure 16. Absolute precision (not precision per atom) as a function of the number of degrees of freedom for a
cinchonidine molecule (44 atoms). Our method is compared with a plane wave code. In the case of the plane
wave code the plane wave cutoff and the volume of the computational box were chosen such as to obtain the
required precision with the smallest number of degrees of freedom. In the case of our wavelet program the grid
spacing h and the localzation radii were optimized. For very high accuracies the exponential convergence rate
of the plane waves beats the algebraic convergence rate of the wavelets. Such high accuracies are however not
required in practice. Since convolutions can be executed at very high speed the wavelet code is faster than the
plane wave code at any accuracy even if the number of degrees of freedom are similar (see Table 4).

12 Performance Results

We have applied our method on different molecular systems in order to test its perfor-
mances. As expected, the localization of the basis set allows us to reduce considerably the
number of degrees of freedom (i.e. the number of basis functions which must be used) to
attain a given absolute precision with respect to a plane wave code. This fact reduces the
memory requirements and the number of floating point operations. Figure 16 shows the
comparison of the absolute precision in a calculation of a 44 atom molecule as a function
of the number of degrees of freedom used for the calculation. In table 4 the comparison
of the timings of a single SCF cycle with respect to two other plane wave based codes are
shown. Since the system is relatively small the cubic terms do not dominate. For large
systems of several hundred atoms the gain in CPU time compared to a plane wave program
is proportional to the reduction in the number of degrees of freedom (compare Eq. (117))
and can thus be very significant as one can conclude from Figure 16.

The parallelization scheme of the code has been tested and has given the efficiency
detailed in Figure 17. The overall efficiency is always higher than 88%, also for large
systems with a big number of processors.

It is also interesting to see which is the computational share of the different sections
of the code with respect to the total execution time. Figure 18 shows the percentage of
the computational time for the different sections of the code as a function of the number of
orbitals while keeping constant the number of orbitals per processor. The different sections
considered are the application of the Hamiltonian (kinetic, local plus nonlocal potential),
the construction of the density, the Poisson solver for creating the Hartree potential, the
preconditioning-DIIS, and the operations needed for the orthogonality constraint as well as
the orthogonalization, which are mainly matrix-matrix products or matrix decompositions.
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Ec (Ha) ABINIT (s) CPMD (s) Abs. Precision Wavelets(s)
40 403 173 3.7 · 10−1 30
50 570 207 1.6 · 10−1 45
75 1123 422 2.5 · 10−2 94
90 1659 538 9.3 · 10−3 129

145 4109 2 · 10−4 474

Table 4. Computational time in seconds for a single minimization iteration for different runs of the cinchonidine
molecule used for the plot in Figure 16. The timings for different cutoff energies Ec for the plane waves runs
are shown. The input parameters for the wavelet runs are chosen such as to obtain the same absolute precision
of the plane wave calculations. The plane wave runs are performed with the ABINIT code, which uses iterative
diagonalization and with CPMD code38 in direct minimization. These timings are taken from a serial run on a
2.4GHz AMD Opteron CPU.
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Figure 17. Efficiency of the parallel implementation of the code for several runs with different number of atoms.
The number close to each point indicates the number of orbitals treated by each processors, in the orbital distri-
bution scheme.

These operations are all performed by linear algebra subroutines provided by the LAPACK
libraries.39 Also, the percentage of the communication time is shown. While for relatively
small systems the most time-dominating part of the code is related to the Poisson solver,
for large systems the most expensive section is by far the calculation of the linear algebra
operations. The operations performed in this section scales cubically with respect to the
number of atoms. Apart from the Cholesky factorization, which has a scaling of O(n3

orb),
where norb is the number of orbitals, the cubic terms are of the form

O(n · n2
orb) , (117)

where n is the number of degrees of freedom, i.e. the number of scaling function and
wavelet expansion coefficients. Both the calculation of the overlap matrix in Eq. (112)
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and the orthogonality transformation of the orbitals in Eq. (116) lead to this scaling, The
number of the coefficients n is typically much larger than the number of orbitals.
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Figure 18. Relative importance of different code sections as a function of the number of atoms of a simple alkane
chain, starting from single carbon atom. The calculation is performed in parallel such that each processor holds
the same number of orbitals (two in this figure). Also the time in seconds for a single minimization iteration is
indicated, showing the asymptotic cubic scaling of present implementation.

13 Conclusions

In this contribution we have shown the principal features of an electronic structure pseu-
dopotential method based on Daubechies wavelets. Their properties make this basis set a
powerful and promising tool for electronic structure calculations. The matrix elements, the
kinetic energy and nonlocal pseudopotentials operators can be calculated analytically in
this basis. The other operations are mainly based on convolutions with short-range filters,
which can be highly optimized in order to obtain good computational performances. Our
code shows high systematic convergence properties, very good performances and an ex-
cellent efficiency for parallel calculations. This code is integrated in the ABINIT software
package and is freely available under GNU-GPL license. At present, several developments
are in progress concerning mainly a linear scaling version and the possibility to calculate
excited states.
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30. J. Hutter, H.P. Lüthi and M. Parrinello, Comp. Mat. Sci. 2 244 (1994).
31. P. Pulay, in Modern Theoretical Chemistry , H. F. Schaefer editor, (Plenum Press,

New York) (1977).
32. http://physics.nist.gov/PhysRefData/DFTdata/Tables/

ptable.html
33. M. M. Morrell, R. G. Parr and M. Levy, J. Chem Phys 62, 549, (1975).

99

http://www.abinit.org
http://bigdft.org
http://physics.nist.gov/PhysRefData/DFTdata/Tables/ptable.html
http://physics.nist.gov/PhysRefData/DFTdata/Tables/ptable.html


34. S. Goedecker, A. Hoisie, “Performance Optimization of Numerically Intensive
Codes”, SIAM publishing company, Philadelphia, USA 2001 (ISBN 0-89871-484-
2).

35. E. R. Davidson, J. Comp. Phys. 17, 87 (1975).
36. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
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We give an overview of open source finite element software Elmer which has initially been de-
veloped by having especially multiphysics simulations in mind. We emphasize the role of the
chosen modular design that enables the user to add new computational models and to couple
the resulting new applications with the existing models easily. The key features of the general
routines which enable performing such tasks as approximation with a wide collection of finite
elements, mapping solution data between independent discretization meshes, parallel compu-
tations and the flexible utilization of effective linear algebra algorithms are also highlighted.
The more general utility of the solver to even handle multiscale couplings is finally exemplified
by considering the interaction of a particle-based model and a continuum-scale finite element
discretization.

1 Introduction

The finite element method (FEM) has originally been applied to produce discrete solutions
to partial differential equation (PDE) models which, in cases of classic applications, de-
scribe physical phenomena under the hypothesis of a continuous medium. Traditionally
single-physics models have been applied, but nowadays approximate solutions based on
such models are often found to be inadequate in providing predictive power desired. There-
fore, the need to model the interaction of several physical phenomena simultaneously has
greatly impacted the later developments of the finite element method.

Handling multiphysics couplings still brings significant challenges for both software
developers and users of finite element software, but even a harder contemporary challenge
relates to the need of modelling the interaction of effects which are associated with com-
pletely different time or length scales. Treating such multiscale problems has necessitated
the development of new computational strategies which do not rely solely on the standard
finite element approximation of PDE models. In this context, if suitable methodologies
for transferring essential information from small scale to large scale are devised, the fi-
nite element method can usually be considered to be a viable method for handling the part
of the simulation needed on the large scale, where PDE models based on the continuum
description may often be applied.

The aim of this paper is to give an overview of open source finite element software
Elmer1 which has initially been developed by having especially multiphysics simulations
in mind. Consequently, Elmer now offers a large selection of physical models which can
be combined flexibly to produce computational models describing interactions of multiple
physical phenomena. The basic models include equations which are, for example, related
to fluid mechanics, structural mechanics, acoustics, electromagnetism, heat transport, and
species transport.2 In addition to utilizing these ready models, the user may also employ a
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wide collection of numerical tools and algorithms contained in Elmer to create completely
new models which can then be interfaced easily with the existing models. Although the
existing models contained in Elmer are typically based on the continuum description, this
flexibility also opens up possibilities of extending the capability of Elmer so that effects
which originate from considering smaller-scale phenomena may additionally be taken into
account.

It should be noted that the Elmer software package is divided into components in a
traditional manner, so that separate software components for preprocessing and postpro-
cessing are available. Here we shall however focus on the part which is customarily re-
ferred to as the solver in the finite element context. This part comprises a wide collection
of routines for creating computational versions of PDE models and controlling the actual
solution procedure, the heart of which is based on the application of efficient linear algebra
algorithms contained in Elmer,3 or provided by external libraries. It is also noted that the
solver of Elmer can be used independently. The work-flow relating to the usage of Elmer
can thus be adapted such that other software may be used for preprocessing and postpro-
cessing tasks, which typically relate to creating discretization meshes and the visualization
of results, respectively. Basically the solver program of Elmer can be controlled simply by
providing a special text file containing sets of commands.

The representation given in the remainder of the paper can be considered to be divided
roughly into two parts. We shall begin by describing the overall modular design of the
solver and the functionality of key routines that collectively give the user the power to
adapt the solver for handling new coupled problems in a flexible manner. While the devel-
opment of these routines has mainly been driven by applications relating to multiphysics
simulations on the continuum scale, in the latter part of the paper we however consider cer-
tain nonstandard applications to exemplify even the more general utility of the solver. To
this end, the multiscale interaction of a particle-based model and a continuum-scale finite
element discretization is considered as an example.

2 Solving a Coupled Problem with the Solver of Elmer

The concept of multiphysics generally refers to handling problems where the solution con-
sists of more than one component, with each component governed by its own physical law.
In addition, an interaction between the constituent components of the whole solution oc-
curs in some way. Typically this may happen as an effect of interaction terms which are
defined on the bulk of the body where the constituent model is considered or on a lower
dimensional interface, such as the boundary of the body.

Although Elmer is primarily regarded as multiphysics finite element software, this clas-
sification may actually be semantically too narrow to reflect the variety of problems to
which the solver of Elmer have already been applied. We note that couplings which are
characteristic of multiphysics problems occur similarly when treating a variety of other
problems. In some applications similar couplings arise when the same physical model is
treated via domain decomposition such that different discretization strategies are applied in
the separate domains constituting the whole domain. As an example we mention the cou-
pling of finite element and boundary element approximations. On the other hand, the need
of reducing the computational cost often motivates the use of alternate strategies where
mathematical models of different complicatedness level are used in the different parts of
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the whole domain. For example describing the solution in thin boundary layers may ne-
cessitate taking into account physical processes that can however be neglected outside the
boundary layer, so that a simpler mathematical model can be used there. This example
brings us to considering general multiscale couplings where, in addition to having dis-
parate scales, the associated distinctive feature is that more than one formulation is used to
describe the same solution component.

That Elmer has been applied successfully to various cases covering all problem cat-
egories given above is better attributed to its ability to cope with model couplings than
the strict concept of multiphysics ability. Although we therefore see opportunities for
further extending Elmer’s capabilities in multiscale simulation, we emphasize that the ex-
tent of general support for performing such simulations is currently much more limited.
Moreover, there are also distinctive aspects between multiscale couplings and classic mul-
tiphysics couplings supported readily by Elmer. Performing a multiscale simulation un-
avoidably necessitates transforming information from small scale to large scale. Standard
multiphysics couplings based on treating the bulk or surface coupling cannot thus be reused
without addressing how to perform a fine-to-coarse transformation (also referred to as re-
striction). Similarly, a coarse-to-fine transformation (reconstruction or lifting) must also be
handled. Furthermore, separate software may already exist for performing the simulation
on the small scale, and a specific routine that enables and controls the interaction between
separate software during the simulation has to be created.

After drawing our attention to the more general concept of a coupled problem, it is
finally natural to mention here that the actual difficulty of solving a coupled problem de-
pends heavily on the strength of the mutual interaction. Solving a loosely coupled problem
(or weakly coupled problem in alternative terms) does not usually pose a major difficulty
in terms of finding an effective iteration method for the problem. In this case standard seg-
regation strategies such as applying a version of the Gauss-Seidel procedure can usually
be utilized. On the other hand, considerable difficulties in the solver design may occur
when a tightly coupled problem (or strongly coupled problem) has to be treated. Standard
segregation strategies have then limited applicability and devising alternate solution meth-
ods that respect better the strong coupling of the constituent components arises as a typical
necessity.

In the following we shall continue by describing some additional basic concepts relat-
ing to Elmer simulations along with representing the standard solution procedure which
the solver of Elmer uses in order to handle the discrete version of a coupled problem.

2.1 Basic Concepts

The models handled by Elmer may generally be stationary or evolutionary, with nonlin-
earities possible in both the cases. Starting from a weak formulation of governing field
equations, finite element approximation and advancing in time with implicit time inte-
gration methods are typically applied in order to obtain the computational version of the
model. In the simplest case of single-physics models we are then lead to solving equations

F (u) = 0, (1)

where u represents either the vector of coefficients in the finite element expansion of the
stationary solution or the coefficient vector to describe the evolutionary finite element so-
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lution at a given time t = tk. Thus, in the case of evolution, the problems of the type (1)
are solved repeatedly when advancing in time.

For linear models the problem (1) reduces to solving a linear system via defining

F (u) = b−Ku

where the coefficient matrixK is often referred to as the stiffness matrix and b corresponds
to the right-hand side vector in the linear system. Otherwise F is a nonlinear mapping and
an iteration is needed to handle the solution of the problem (1). In Elmer available nonlin-
ear iteration methods generally depend on the model, as the definition of the linearization
strategy is a part of the computational description of each physical model.

We note that many single-physics models offer the possibility of using the Newton
iteration where the current nonlinear iterate u(m) to approximate u is updated at each
iteration step as

DF (u(m))[δ(m)] = −F (u(m)),

u(m+1) = u(m) + δ(m),
(2)

where DF (u(m)) is the derivative of F at u(m). Thus, performing the nonlinear solution
update again entails the solution of the linear system at each iteration step. As an alter-
nate to the Newton method, linearization strategies based on lagged-value approximations
are also often available. In addition, relaxation is conventionally offered as a way to en-
able convergence in cases where the basic nonlinear iteration fails to produce convergence.
Given the current nonlinear iterate u(m) and a computed correction δu(m) to the approxi-
mation, the new nonlinear iterate is then defined by

u(m+1) = u(m) + λ(m)δ(m),

where λ(m) is an adjustable parameter referred to as the relaxation parameter.

2.2 Handling Multimodel Interactions

Having considered the basic concepts in the context of single-physics models, we now
proceed to describe how the modularity employed in the design of Elmer allows us to
create models which represent interactions of multiple (physical) phenomena. To this end,
we assume that the complete model describes an interaction of N constituent models, the
computational versions of which are primarily associated with the coefficient vectors ui,
i = 1, 2, . . . , N . As before, the coefficients contained in ui are usually associated with the
finite element expansion of either the stationary solution or the evolutionary solution at a
time level t = tk.

The fully discrete version of the coupled model leads to handling a problem of the form

F1(u1, u2, . . . , uN ) = 0,

F2(u1, u2, . . . , uN ) = 0,

· · · (3)
FN (u1, u2, . . . , uN ) = 0.

If all the constituent models are linear, the problem (3) corresponds to solving a linear
system where the coefficient matrix is a N × N block matrix. Otherwise (3) describes a
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nonlinear problem. Although the solution of (3) could in principle be done in the same
way as explained in the context of single-physics models in Section 2.1, i.e. by performing
either a coupled linear solve or Newton iteration, the coupled problems are usually handled
differently in order to enable the reuse of solvers for single-physics models and the easy
extendibility of the code to handle new applications.

To this end, the nonlinear Gauss-Seidel iteration is usually applied, so that the cou-
pling of the models is resolved via generating new coupled system iterates u(j) =

(u
(j)
1 , u

(j)
2 , . . . , u

(j)
N ) as

F1(u
(j)
1 , u

(j−1)
2 , u

(j−1)
3 , . . . , u

(j−1)
N ) = 0,

F2(u
(j)
1 , u

(j)
2 , u

(j−1)
3 , . . . , u

(j−1)
N ) = 0,

· · · (4)

FN (u
(j)
1 , u

(j)
2 , . . . , u

(j)
N ) = 0.

It is noted that the kth discrete model description in (4) depends implicitly only on the
coupled system iterate to its primary variable uk, while the dependencies on the other
constituent model variables are treated explicitly. This brings us to solving a nonlinear
single-field problem

F (u
(j)
k ) = Fk(v1, . . . , vk−1, u

(j)
k , vk+1, . . . , vN ) = 0, with all vl given, (5)

which is handled by using the methods already described in Section 2.1. We also note that
if all the constituent models are linear the nonlinear Gauss-Seidel iteration (4) reduces to
the block Gauss-Seidel iteration for linear systems. Relaxation may again be applied as an
attempt to improve the convergence behaviour of the basic iteration (4).

It is good to pause here to stress that the main advantage of the adopted nonlinear
Gauss-Seidel scheme is its support for the modular software design. Also, it brings us to
handling coupled problems via solving linear systems which are smaller than those which
would result from treating all constraints in (3) simultaneously. Despite these merits, the
suitability of the loosely coupled iteration (4) generally is case-dependent as convergence
problems may occur in cases where a strong coupling is involved. Such problems are
often best handled by methods which treat all the constituent models in (3) simultaneously.
Certain physical models available in Elmer indeed employ this alternate tightly coupled
solution strategy. However, these models have initially been developed independently, as
common high-abstraction Elmer utilities for creating tightly coupled iteration methods in
a general manner are less developed.

Sometimes the applicability of the nonlinear Gauss-Seidel scheme may be enhanced
by appropriately modifying the set of equations to be used. This presents sometimes an
intermediate alternative between the two approaches described above. An example for this
case is the method of artificial compressibility that has been used to enable convergence in
strongly coupled cases of fluid-structure interaction while still maintaining the benefits of
the modular design.4

To summarize, the following pseudo-code presentation describes the basic loosely
coupled iteration scheme employed by the solver of Elmer. This rough description
may be helpful in summarizing what needs to be controlled overall to create a working
computational solution procedure for a coupled problem.
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! The time integration loop
for k = 1 : M

Generate an initial guess u(0) = (u
(0)
1 , u

(0)
2 , . . . , u

(0)
N ) at t = tk

! The nonlinear Gauss-Seidel iteration
for j = 1, 2, . . .

! Generate the next coupled system iterate u(j) by performing
! single-field updates
for i = 1 : N

Set vl = u
(j)
l for l = 1, 2, . . . , i− 1

Set vl = u
(j−1)
l for l = i+ 1 : N

Perform the nonlinear solve of Fi(v1, . . . , vi−1, u
(j)
i , vi+1, . . . , vN ) = 0

Apply a relaxation to set u(j)
i := u

(j−1)
i + αi(u

(j)
i − u

(j−1)
i )

end
end

end

Here the descriptions of the termination criteria for the iterations have been omitted. It is
also noted that, obviously, the time integration loop is not needed in the case of a stationary
problem. On the other hand, in the case of stationary simulation it is possible to replace the
time integration loop by a pseudo-version of time stepping to enable performing multiple
solutions for a range of model parameter values.

3 The Key Capabilities of the Solver

In the following, we shall focus on describing the key capabilities of the solver of Elmer
which enable the user to create new models and to suit the solver for different purposes.

3.1 Extendibility by Modular Design

A module of the Elmer software which enables the creation of the discrete model descrip-
tion of the type (5) and its solution with respect to the primary variable is generally called a
solver. The solvers of Elmer are truly modular in this manner and have a standard interface.
Thus, each solver usually contains an implementation of the nonlinear iteration, instruc-
tions to assemble the corresponding linear systems from elementwise contributions, and
standard subroutine invocations to set constraints and to actually solve the linear systems
assembled.

It follows that enabling an interaction with another field, designated by vl in (5), is
simply a matter of solver-level implementation. Therefore, interactions which have not
been implemented yet can be enabled by making modifications which are localized to
the solvers. In addition, a completely new physical model may be added by introducing
a new solver which comprises a separate software module and which can be developed
independently with respect to the main program. As a result, applying the loosely coupled
solution procedure to a coupled problem based on the new physical model again requires
making only solver-level modifications.
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3.2 Model-specific Finite Element Approximation and Mesh-to-mesh Mappings

In the most basic setting all constituent model variables ui, i = 1, . . . , N , of a coupled
problem are approximated by using the same piecewise polynomial basis functions defined
over a single mesh. In addition to this, the solver of Elmer offers a built-in functionality to
perform a coupled problem simulation by using solver-specific finite element meshes. The
solver description is then augmented by the specification of the independent mesh which
the solver uses. To make this functional in connection with the solution of coupled prob-
lems, Elmer has the capability of performing the solution data transfer, which is needed
between the solvers in the loosely coupled solution procedure, even when the meshes are
non-matching. The interpolation between the meshes is implemented using octree-based
data structures which scale as N logN with the size of the problem but may still introduce
communication bottle-necks in parallel cases. It must be understood, however, that the loss
of high-resolution details is unavoidable when the high-resolution field is represented by
using a coarser finite element mesh.

3.3 Approximation by Various Finite Element Formulations

Elmer has traditionally employed the Galerkin finite element approximation of weak for-
mulations. A standard abstraction5 of linearized problems which arise from handling (5)
can usually be given, so that a typical problem then is to find a finite element solution
Uh ∈ Xh such that

B(Uh, Vh) = L(Vh)

for any Vh ∈ Xh. In the most typical case the bilinear form B : X × X → R and the
linear functional L : X → R are well-defined when

X = H1(Ω),

where Ω denotes the body where the equation is posed and H1(Ω) then contains square-
integrable functions over Ω whose all first derivatives also are square-integrable. Tradi-
tionally the Lagrange interpolation basis functions defined for various element shapes have
been used to obtain the finite dimensional dimensional setXh ⊂ X . In this connection, the
piecewise polynomial approximation of degree 1 ≤ p ≤ 3 is possible for two-dimensional
bodies, while three-dimensional bodies may be discretized by using the elements of de-
gree 1 ≤ p ≤ 2. The isoparametric mapping to describe curved element shapes is also
supported with these traditional elements.

Discrete models based on more recent versions of the Galerkin finite element approxi-
mation are also possible. As an alternate to using the standard Lagrange interpolation ba-
sis functions, the Galerkin approximation based on using hierarchic high-degree piecewise
polynomials can be employed. In this connection, the degree of polynomial approximation
can also be defined elementwise, so that in effect the use of the hp-version of the finite ele-
ment method is enabled. We note that Elmer provides an in-built mechanism to guarantee
the continuity of such solutions. The H1-regularity of discrete solutions is thus ensured.
However, generic ways to describe curved body surfaces accurately in connection with the
high-degree finite elements have not been implemented yet which may limit the current
utility of these elements. Anyhow, discretizations to capture localized solution details on
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the interior of the body can generally be created without addressing the question of the
geometry representation.

The way to define a high-degree approximation is based on the idea that a background
mesh for representing the standard lowest-degree continuous finite element expansion is
first provided, so that a specific element type definition in relation to elements present in
the background mesh may then be given in order to enhance the approximation. The same
idea has been adapted to create other alternate finite element formulations. For example,
finite element formulations which enhance the approximation defined on the background
mesh by a subscale approximation spanned by elementwise bubble basis functions can be
obtained in this way. We note that this strategy is widely used in Elmer to stabilize other-
wise unstable formulations and has also an interpretation in connection with the variational
multiscale method. Another example of the use of the user-supplied element definition re-
lates to creating approximations based on the discontinuous Galerkin method.

As a final example we mention that enhancing the approximation on the background
mesh by introducing additional degrees of freedom associated with either faces or edges
of elements and then omitting the original nodal degrees of freedom is also possible. This
leads to a suitable set of unknowns for creating discretizations based on the face or edge
element interpolation. If L2(Ω) is used to denote the set of square-integrable scalar func-
tions and Ω ⊂ Rd, we are led to bases for approximating vector fields in finite dimensional
versions of the spaces

X = H(div,Ω) = {v ∈ L2(Ω)d | div v ∈ L2(Ω)}

or

X = H(curl,Ω) = {v ∈ L2(Ω)d | curl v ∈ L2(Ω)d}.

A physical motivation for using these spaces is that fields with only either normal or tan-
gential continuity on boundaries can then be approximated in a natural manner.

3.4 Monolithic Discretizations

In the case of a strongly coupled problem the standard segregated solution procedure of
Elmer may become ineffective due to the need of using small values of relaxation parame-
ters to avoid the divergence of the iteration. Using monolithic discretizations, i.e. handling
all constituent components of the solution simultaneously, may then have a relative merit,
at least in terms of obtaining robustness.

Monolithic discretizations may also be created by using Elmer as in principle it does
not pose any restriction on how much physics may be included into a solver module def-
inition. Some basic physical models, such as the system of compressible Navier–Stokes
equations in flow mechanics, may indeed be thought of as intrinsically multiphysical and
handling them in this way may actually appear as the most natural way. It should be noted,
however, that high-level abstractions relating to implementing this alternate solution strat-
egy does not necessarily exist and an additional burden is likely required in order to devise
an effective solver for the resulting linear systems. We shall return to this issue when
discussing linear algebra abilities below.
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3.5 Discretizating in Time

For handling evolutionary cases the solver of Elmer offers implementations of many stan-
dard time-stepping algorithms applicable to either first-order or second-order problems.
The usage of these time integration routines is done in a standardized manner so that only
a few modifications must be done into an existing stationary solver to enable evolutionary
simulations.

3.6 Linear Algebra Abilities

The ability to solve large linear systems efficiently is a central aspect of the simulation
process with Elmer. As already explained, in the basic setting a linear solve is needed
to obtain the solution update at each step of the nonlinear iteration. In practice linear
solves are usually done iteratively, revealing one unexposed iteration level in relation to
the pseudo-code presentation given in the end of Section 2.2.

The solver of Elmer offers a large selection of strategies to construct linear solvers. The
majority of them are directly implemented into Elmer software, but interfaces to exploit
external linear algebra libraries are also available. Typically the most critical decision in
the use of linear solvers relates to identifying an effective preconditioning strategy for the
linear system at hand. Traditionally Elmer has employed generic preconditioning strategies
based on the fully algebraic approach. Highly efficient alternates to these standard precon-
ditioners may also be obtained by using two-level iterations where the preconditioner is
derived from applying multigrid methods.

If the linear system stems from a monolithic discretization of a coupled problem, the
solution of the linear system by using the basic options may become a hindrance as the
standard preconditioners may not be effective. A coupled linear system of this kind usu-
ally has a natural block structure associated and employing standard segregation strategies
as preconditioners in the iterative solution then arises as a natural option. The utilities
provided by Elmer have been used to generate sophisticated block preconditioned linear
solvers for specific models,6 but recently attempts to encapsulate common abstraction of
certain versions of these solvers have also been taken. We conclude that although the
monolithic discretization may ultimately arise as the best way of handling some strongly
coupled problems, the question of the efficient solution of the resulting linear systems often
needs to be addressed simultaneously at the time of model implementation.

3.7 Parallel Computations

A strength of the solver of Elmer is that it supports the use of parallel computing by
employing the message-passing library approach based on the Message Passing Interface
(MPI) standard. This opportunity significantly widens the range of problem sizes which
can be considered.

After a parallel version of Elmer solver has been made available in the parallel com-
puter used, a principal task in enabling parallel computation is that domain decomposition
is applied to partition the body description into the same number of parts as there are ac-
tual central processing units (they may be cores in the case of modern multi-core computer
architectures) to be used in the simulation. In practice this is done prior to running the
Elmer solver by partitioning the mesh files accordingly, so that each computing unit may
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primarily work on its own data when the associated piece of computation does not neces-
sitate communication between the units. The Elmer package offers preprocessing tools for
performing the mesh partitioning, including the possibility of utilizing the external METIS
library. Similarly postprocessing tools for uniting parallel simulation results which are
output into separate files are provided.

3.8 Interfaces to Other Software and Libraries

The solver of Elmer employs basic linear algebra libraries, but it has also interfaces in order
to utilize linear solvers of the HYPRE and UMFPACK packages. In addition, an option to
use MUMPS linear solver exists, and an interface to utilize a set of Trilinos packages in
the field of linear algebra has been created recently.

It should be noted that, on a more general level, compatibility with the other software
components of the Elmer package which relate to the tasks of preprocessing and postpro-
cessing is naturally provided. We also note that adapting the work-flow such that other
software is used for these purposes is also possible. As an example we mention the usage
of ParaView application in the visualization of results.

3.9 Obtaining Elmer Software

Elmer is actively developed, mainly by CSC – IT Center for Science Ltd. in Finland, and
the newest version of the software maintained under Subversion version control system
may be obtained via the project repository site where also Windows binaries are provided.7

The user is supplied with accessory configuration management aids and automated tests
which help in compiling the software from the source codes and testing the executable
programs compiled. The available documentation of the software is best accessed via the
software’s main site.1 Additional references such as links to the discussion forum may also
be found there.

4 Applying Elmer to Multiscale Problems

In the field of multiscale problems Elmer has not reached the same level of generality as
for multiphysics problems. This is largely due to limited effort which has been put to
study multiscale problems so far, but also due to the fact that multiscale problems offer a
much wider spectrum of possible coupling scenarios as compared with couplings arising
in the multiphysics problems. Of course, it makes sense to use Elmer in the solution of
multiscale problems only if at least one of the scales is optimally addressed by the finite
element method.

If both of the levels may be described by finite element approximations, then the basic
features of Elmer may also help to study multiscale problems. For example, one can have
nested meshes where the coarser mesh is utilized to obtain boundary conditions for the
model employing the finer mesh. Then the results may be mapped automatically between
the meshes.

A significantly more interesting scenario for multiscale simulations is a one where two
different modelling approaches are combined. Then also the restriction and reconstruction
operations become less trivial. Elmer includes a module for tracking particles in a mesh
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and this provides a setting for performing related heterogeneous multiscale simulations
with Elmer software. The rest of this section describes the particle utilities and how to
combine them with the finite element utilities.

4.1 Following Particles in a Finite Element Mesh

The ability to combine the simulation of discrete particles with a finite element description
opens the field for many new applications. Unfortunately, this comes with a price tag
when we want to follow the particles in the finite element mesh. In the case of a finite
difference grid it would be a trivial task to determine in which cell the particle lies in, as
for each coordinate direction this requires one division by a grid size parameter followed
by a rounding operation to obtain the index. For unstructured finite element meshes it is
not as trivial. A generic search algorithm uses hierarchical octree-based data structure to
perform the search. This leads to an algorithm with a complexity N logN and is difficult
to parallel efficiently.

In the transient transport of particles the distance travelled by each particle within a
timestep is typically more or less comparable to the size of the finite elements. If the
timestep chosen is longer, then the approximation for the external field would be sub-
optimal. Therefore it is expected that when we need to locate the particles in the mesh,
they will be either in the same element as in the previous timestep or in some neighbouring
element. This suggests using a search algorithm that utilizes the previous location of the
particles.

In Elmer the particles may also be located in the finite element mesh using a marching
routine. Then a vector is spanned between the previous and current position of the particle.
If the particle lies in the same element as previously, the vector does not cross any element
faces. If it does, the potential owner element is taken to be the other parent of the face
element. This search is continued until the owner element is found for each particle.

The implementation of the algorithm is quite similar to that found in OpenFOAM. This
algorithm is linear in complexity and will therefore outperform any octree-based search
for sufficiently small timesteps. The downside of the algorithm is that it is fairly costly to
determine the crossing between a vector and a face. As compared with the simple case of
a regular finite difference grid the penalty in time is at least two orders of magnitude.

The information about in which element the particles are located may also be used
to construct the list of closest neighbours for the particles. The possible distance between
particles is then limited by the mesh size parameter and therefore this information is ideally
used only for close-range particle-particle interaction.

4.2 Forces Acting on the Particle

We assume that our particles are classical ones, i.e. they follow the Newtonian dynamics.
Consider a particle in position ~r, with velocity ~v and mass m. Newton’s second law yields

m
d~v

dt
=
∑
j

~f j(~r,~v, . . .) (6)

where a number of different forces ~f j may be considered. In Elmer we may consider
forces due to gravity, electrostatic potential, magnetic field, viscous drag, buoyancy etc.
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The particles may also be reflected from walls or scattered from the bulk. Also particle-
particle collisions or more complex particle-particle interactions may be considered. Also
periodic boundary conditions for the particles are provided.

The basic update sequence for the velocity and the position of the particle is

~v(i+1) = ~v(i) +
dt

m

∑
j

~f j , (7)

~r(i+1) = ~r(i) + dt~v(i+1). (8)

Also higher-order schemes may be applied but the principle is nevertheless the same.

4.3 Reconstruction and Restriction Operators for the Particles

We need to devise reconstruction and restriction operators for the particles. Here the recon-
struction operator takes finite element fields and generates the forces acting on the particles
in their positions. Thus the reconstruction operators generally depend on interpolation rou-
tines used in the finite element method. As an example, consider the force ~fe which results
from a macroscopic electrostatic field expressed in terms of a scalar potential φ, so that

~fe = −qi∇φ, (9)

where qi is the electric charge of the particle. Then the action of the reconstruction operator
basically corresponds to the evaluation of ∇φ at the position ~r of the particle via using a
finite element approximation

∇φ(~r) ≈
n∑
j=1

φj∇ψj(~r), (10)

where functions ψj are finite element shape functions.
Devising a restriction operator is more complicated. Let us consider a case where

the particles give the right-hand side for a continuum equation. Such would be the case
for an electrostatic equation having fixed charge density ρ as a source term, and also a
contribution from the moving particle charges, so that

−∇ · ε∇φ = ρ+
∑
i

qi δ(~r − ~ri), (11)

where ε is the permittivity and δ corresponds to the Dirac delta. The finite element version
of (11) yields precisely pointwise contributions in a manner similar to (11) only when the
particles are located exactly at the mesh nodes. Otherwise the values of the shape functions
are seen to act as weighting factors in the approximation. For example, the contribution
which the charge with the position vector ~ri makes to the j-entry of the right-hand side
of the discrete system would be qiψj(~ri), with ψj the test function corresponding to the
computation of the vector entry j.

The data resulting from a sample of particles always includes some statistical noise
whereas the field solved with the finite element method is always deterministic. The noise
may require some regularization that could be implemented in the finite element framework
by using artificial diffusion. In the above example, the diffuse nature of the electrostatic
equation takes care of the noise. However, if we would be modelling some material prop-
erty, the finite element model would require a sufficient smoothness. Regularization makes
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the multiscale coupled system more steady giving a hope for better convergence. Also for
post-processing purposes smoothness may be desirable. Assuming a property pi for each
particle, a continuous approximation p(~r) could be solved from

−∇ · (D∇p) +
∑
i

p(~r) δ(~r − ~ri) =
∑
i

pi δ(~r − ~ri) (12)

where D is a diffusion coefficient used for the regularization of the statistical ensemble.
As an example, the self-consistent Poisson equation would now be solved from equa-

tions 6, 9 and 11. Some damping may be needed to keep the solution bounded. Addition-
ally various scattering mechanisms may be added for the particles for a more comprehen-
sive physical model.

5 Concluding Remarks

In this paper, Elmer finite element software for the simulation of multiphysical and mul-
tiscale problems has been presented. In multiphysical problems all the fields are usually
optimally described by the finite element method. In Elmer multiphysics couplings may
be treated in a generic manner by using the loosely coupled solution approach. In the case
of multiscale problems multiple computational methods may also be needed. This makes
it more challenging to devise a generic framework for handling the multiscale simulations.

The current multiscale implementation is limited to the interaction between continu-
ous fields and discrete particles described by the classical equations of momentum. Even
as such it opens the path for many interesting applications, such as carrier transport, mi-
crofluidics, and sedimentation. We note that the relative merit of the finite-element based
machinery depends largely on the presence of non-trivial shapes. If the shape of the compu-
tational domain is a simple rectangular block, economical implementations of other com-
putational methods are often possible. However, we believe that there are many multiscale
problems where the current methodology could be quite useful.
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Many physical processes involve a significant redistribution of charge density, be it in a cen-
tral system of interest or in a polarisable embedding medium providing boundary conditions.
Examples range from protein folding in an aqueous solvent to the charge transfer between
two unlike solids in relative motion. As modelers, we wish to have at our disposal efficient
methods allowing us to describe the relevant changes, for example, to predict in what way
charge redistribution affects interatomic forces. At small scales, calculations can be based on
density-functional theory, while continuum electrostatics is appropriate for the description at
large scales. However, neither of the two methods is well-suited when space is discretised into
volume elements of atomic dimensions. At that scale, the most intuitive description is in terms
of partial charges plus potentially electrostatic dipoles or higher-order atomic multipoles. Their
proper assignment is crucial when dealing with chemically heterogeneous systems, however,
it turns out to be non-trivial. Particularly challenging is a description of the charge transfer
between atoms. In this chapter, we discuss attempts to describe such charge distribution in the
framework of force fields assigning partial charges with so-called charge equilibration methods.
This includes their motivation from the bottom-up, i.e., through density functional theory. In the
top-down design, we investigate how to construct the microscopic model so that it reproduces
the desired macroscopic response to external fields or to an excess charge. Lastly, we present
avenues to extend the atom-scale models to non-equilibrium situations allowing one to model
contact electrification or the discharge of a Galvanic cell.

1 Introduction

According to density functional theory (DFT),1 the ground state energy of a system can
be determined by minimizing an appropriate energy functional of the electron density for
a given external field, which is usually defined by atomic or nuclear center-of-mass po-
sitions. As is the case with other field theories, one would like to have a recipe for a
systematic coarse-graining so that large systems can be explored. However, coarse grain-
ing DFT becomes difficult when the linear size of the mesh (be it implicit or explicit) is no
longer small compared to the Bohr radius. Only when the volume elements contain several
hundred atoms does it become possible again to describe the charge distributions and the
polarisation within a field-theoretical approach, i.e., with electrostatics of continua. Un-
like DFT, the theory of electrostatics is based on material-specific parameters rather than
on atom-specific parameters or natural constants. Since neither DFT nor continuum elec-
trostatics work well with volume elements of atomic size, there is no seamless transition
between them. As a consequence, no concurrent multi-scale methods exist linking DFT
and continuum based descriptions of charge densities.

So-called charge equilibration (QE) methods,2 also known as chemical potential equal-
isation methods,3 have been used for more than two decades to bridge the gap between
electronic DFT and continuum electrostatics. The main idea of QE is to assign partial
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atomic charges, plus potentially dipoles or higher-order multipoles, on the fly. However,
QE approaches have traditionally suffered from various deficiencies. They include non-
integer charges for molecular fragments4 and an excessive overestimation of the polaris-
ability for non-metallic systems.5 These and related problems can be overcome by combin-
ing the ideas of QE with bond-polarisable models as is done in the so-called split-charge
equilibration (SQE) method.6 In SQE, non-integer charge transfer between two atoms is
penalised as a function of their distance and potentially their local environment. By in-
troducing the concept of oxidation number, the method can also describe non-equilibrium
processes by accounting for the history dependence of interatomic forces.7 For example,
charges of individual atoms of a dissociated NaCl molecule can depend on the polarity of
the solvent that was present during bond breaking. They are not merely a function of the
instantaneous nuclear configuration.

In this chapter, we introduce central aspects of QE methods. We start by introducing
the basic equations from phenomenological considerations in Sect. 2. A more rigorous,
DFT-based motivation of the model is presented in Sect. 3. The relation between QE mod-
els and continuum electrostatics are derived in Sect. 4. An important aspect of that section
is that we learn how to design QE models such that they reproduce macroscopic response
functions. In this description, QE methods can be seen as the electrostatic analogue to
bead-spring models mimicking the linear elasticity of molecules or solids. Thus, an indi-
vidual QE degree of freedom is no longer constrained to represent a volume element of
atomic size but can extend to much larger volumes. Sect. 5 contains some applications,
including the simulation of contact electrification, which constitutes a central part in the
modeling of complete Galvanic elements that are also discussed. Finally, we conclude in
Sect. 6.

2 General Aspects of Charge-Equilibration Approaches

2.1 Motivation of the SQE model

In this section, we introduce the functional form of QE approaches using phenomenologi-
cal arguments. A bottom-up and a top-down motivation of the expressions are given in the
following two sections. The current presentation closely follows that given by the author
in Ref. 8.

Often, polarisation in condensed matter systems is accounted for by placing inducible
(point) dipoles onto atoms or (super) atoms.9–11 However, in addition to electrostatic polar-
isation of atoms, there can be charge transfer between them. Although there is no unique
scheme breaking down the polarisation into intra- and inter-atomic contributions12 (mainly
because atomic charges cannot be defined unambiguously13), we present arguments in
Sect. 3 why it is still both meaningful and practical to do so. For the moment being,
let us simply assume the heuristic working hypothesis that charge transfer between atoms
and the polarisation of atoms can be assigned meaningfully:

V ({R, Q,µ}) = V ({R, Q0,µ0}) +
∑
i

{
∂V

∂Qi
∆Qi +

∂V

∂µiα
∆µiα

}
+
∑
i,j

{
1

2

∂2V

∂Qi∂Qj
∆Qi∆Qj+

∂2V

∂Qi∂µjα
∆Qi∆µjα +

1

2

∂2V

∂µiα∂µjβ
∆µiα∆µjβ

}
.(1)
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We truncate after second order and after the dipole terms. Here, {Q0} and {µ0} denote,
respectively, a set of reference values for atomic charges and dipoles. In the following, we
will assume that these can be set to zero unless mentioned otherwise. Moreover, Roman
indices refer to atom numbers while Greek indices enumerate Cartesian coordinates, e.g.,
µiα ≡ µiα0 + ∆µiα is the α component of the dipole on (super)atom i. For Cartesian
indices, we use the summation convention.

Some terms in the Taylor expansion Eq. (1) are readily interpreted. V ({R, Q0,µ0})
represents a fixed-charge, non-polarisable potential – minus the explicitly mentioned elec-
trostatic interactions. It can be a simple two-body or a more sophisticated many-body in-
teraction model, such as a Tersoff or an embedded-atom potential. To interpret the Taylor-
expansion related coefficients, it is best to consider isolated atoms: ∂V/∂Qi corresponds to
the electronegativity χi (plus potentially a coupling to an external electrostatic potential),
while ∂2V/∂Q2

i can be associated with the chemical hardness κi. They can be parame-
terised via finite-difference approximations of the ionisation energy Ii and electron affinity
Ai. The latter two quantities can be be obtained by removing or adding an elementary
charge e from atom i,

Ii =
κi
2
e2 + χie (2)

Ai = −κi
2
e2 + χie (3)

and thus κi = (Ii−Ai)/e2 and χi = (Ii+Ai)/2e. (These quantities are commonly stated
in units of eV, which means that the underlying unit system uses the elementary charge as
the unit of charge.) In principle, κi and χi should depend on the environment, but within a
reasonable approximation, they can be taken from values measured for isolated atoms. In
practical applications, i.e., when allowing κi and χi to be free fit parameters, they turn out
within O(10%) of their experimentally determined values.6, 14 Furthermore, it is tempting
to associate the mixed derivative ∂2V/∂Qi∂Qj (i 6= j) with the Coulomb potential, at
least if Ri and Rj are sufficiently distant. For nearby atoms, one may want to screen the
Coulomb interaction at short distance to account for orbital overlap.

All terms related to the atomic dipoles can be interpreted in a straightforward fashion.
The negative of ∂V/∂µiα is the α component of the electrostatic field at Ri due to ex-
ternal charges. The single-atom terms ∂2V/∂µiα∂µiβ , can be associated with the inverse
polarisability 1/γi of atom i. Unlike for the charges, practical applications find a large
dependence of the polarisability on the chemical environment (in particular for anions),15

including a direction dependence for directed bonds. The two-atom terms ∂2V/∂Qi∂µjα
and ∂2V/∂µiα∂µjβ correspond to the charge-dipole and dipole-dipole Coulomb interac-
tion, respectively, at least for large distances Rij between atoms i and j.

Unfortunately, it is incorrect to assume that the second-order derivatives ∂V 2/∂Qi∂Qj
quickly approach the Coulomb interaction as Rij increases beyond typical atomic spac-
ings, which one might conclude from the argument that chemistry is local. This can be
seen as follows: we know that isolated fragments (such as atoms or molecules) take in-
teger charges, in many cases zero charge. If we separate two atoms, such as sodium and
chlorine to large separation, we would find that the fragments carry a fractional charge

QNa,Cl = ± χCl − χNa

κNa + κCl − 1/(4πε0RNaCl)
, (4)
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assuming that ∂V 2/∂Qi∂Qj quickly approaches the Coulomb potential. Using element-
specific numerical values,16 one obtains partial charges of±0.4 e for a completely dissoci-
ated dimer. However, both atoms should be neutral, because INa > ACl. Thus, one needs
to modify the model such that non-local, fractional charge transfer cannot occur.

What needs to be done is to penalise the transfer of (fractional) charge over long dis-
tances, i.e., when the overlap of orbitals of isolated atoms or ions ceases to be of impor-
tance. This can be done as follows. We write the charge of an atom as6, 17

Qi = nie+
∑
j

qij , (5)

where ni is called the oxidation state of the atom and qij is the charge donated from atom
j to atom i, which is called the split charge. By definition, qij = −qji. (One may object
that such an assignment is meaningless as electrons are indistinguishable. However, this
is irrelevant, as one can see in Sect. 3) Next, we do not only penalise built-up of charge
on atoms but also the transfer of charge. Thus, the terms in Eq. (1) exclusively related to
atomic charges become

V ({R, Q, . . . }) =
∑
i

{κi
2
Q2
i + (χi + Φext

i )Qi

}
+
∑
i,j>i

{
κij
2
q2
ij +

Sij(Rij)

4πε0Rij
QiQj

}
+O(µ). (6)

Here, we have introduced the split-charge or bond hardness κij , which is generally
distance-dependent and also environment-dependent, i.e., it diverges asRij becomes large,
prohibiting the transfer of charge over long distances. Moreover, Sij(Rij) denotes a
screening at small distances with Sij(Rij)→ 1 for Rij →∞.

Eq. (6) represents the SQE model. The original QE arises in the limit of vanishing bond
hardness term κij , while pure bond-polarisable models, such as the atom-atom charge
transfer approach (AACT),18 neglect the atomic-hardness terms κi. Partial charges of
atoms are deduced by minimizing the energy with respect to the split charges qij . The total
charge of the system automatically adjusts toQtot =

∑
i nie owing to the qij = −qji sym-

metry. The minimisation of V with respect to the split charges can be done with the usual
strategies for finding minima of second-order polynomials, such as steepest descent (good
and easy for systems with large band gap, i.e., large values of κs, reasonable convergence in
two or three iterations), extended Lagrangians (not efficient for systems with zero or small
band gap), or conjugate gradient (probably best when dealing with small or zero band gap
systems). Direct matrix inversion of the Hessian matrix is strongly advised against due to
unfavorable scaling with particle number. Once the partial charges are determined, forces
arising due to electrostatic interactions can be computed from ∂V ({R, Q, . . . })/∂Riα.

The numerical overhead of SQE versus QE is minimal, if present at all. As a matter of
fact, since QE models all materials as metallic (as we shall see in Section 4), SQE requires
much fewer iterations to convergence than QE, at least for systems with a band gap. How-
ever, there is a memory overhead within the SQE formulation. For example, assuming 12
neighbors per atom on average, one obtains six split charges per atom, which need to be
stored in memory. Despite of this memory overhead in SQE, the number of floating-point
operations per SQE minimisation step is not much larger than for QE. The reason is that
the bulk of the calculations is related to the evaluation of the Coulomb potential VC and
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the derivatives ∂VC/∂Qi. Once the latter are known and stored, the derivatives ∂VC/∂qij
can be obtained with little CPU time via

∂VC

∂qij
=
∂VC

∂Qi
− ∂VC

∂Qj
, (7)

since dQk/dqij = δik − δjk.

2.2 QE and redox reactions: Practical aspects

An important aspect of SQE is the possibility to change the (formal) oxidation state ni of
an atom by integer numbers. Since the ni’s are discrete entities, their change implies a
discontinuous alteration of the system. Increasing ni corresponds to an oxidation, while
reducing it reflects a reduction. In general, one would not increase (decrease) the oxidation
number on a given atom unless one could decrease (increase) that of another, nearby atom
by the same amount. Such a process can be interpreted as a redox reaction, or alternatively,
as the transition from one Landau-Zener level to another one. In other words, the set {n}
indexes the Landau-Zener levels for a given atomic configuration {R}. As discussed at
the end of this Section and shown in Sect. 5 in more detail, having the option to make the
system evolve on different Landau-Zener levels is what allows one to simulate systems in
non-equilibrium. This enables one to incorporate history dependence, which is crucial, for
example, for the simulation of Galvanic elements.

To illustrate the generic properties of SQE with respect to redox reactions, let us con-
sider a simple model for the dissociation of a NaCl molecule, i.e., a model in which the
short-range potential is a simple Lennard Jones (LJ) interaction and where the “free” pa-
rameters (LJ coefficients, chemical hardness of the constituents, etc.) are identical for
atoms and ions. The SQE model would consider the molecules to be in the state Na+Cl−,
i.e., nNa = −nCl = 1, or in Na(0)Cl(0), in which case nNa = nCl = 0. For each choice
of {n}, there is well-defined dependence for the energy and the partial charges on the
interatomic distance, as depicted in Figure 1.
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Figure 1. (Left) Charge Q1 of a sodium atom in a simple model for a NaCl molecule and (right) total energy
as a function of the interatomic distance r12 between Na and Cl. Blue lines refer to oxidation states n1,2 = ±1
while red lines indicate n1,2 = 0. Black lines represent the conventional QE approach. The inset emphasises
the crossing of the two SQE energy curves together with the qualitative features of a full quantum-mechanical
treatment. The latter would have to obey a non-crossing rule. (From Ref. 7)
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The attempt to mimic charge transfer with SQE – be it a redox reaction between two
molecules, charge hopping in a semi-conductor, or electron transfer between two metals
– invokes three classes of problems, which are under current development: First, we need
to parameterise the full model, i.e., all terms arising in Eq. (1), including the first term on
the r.h.s., or Eq. (6) not only for atoms, but also for the relevant ions. Second, we need to
identify meaningful rules for how we change the oxidation states. For example, the rate at
which we attempt a “redox move” (oxidation of one atom and reduction of another nearby
atom) should be chosen meaningfully and reflect, for example, that transition rates are
small when the two involved atoms are distant but high upon close approach. Moreover,
meaningful rules have to be designed for the acceptance criteria of a redox move. For ex-
ample, a redox move could be subjected to a Metropolis algorithm or only be allowed when
energetically favourable. In the latter case, one might want to make the reaction energy-
conserving by increasing the relative velocity of the two involved atoms in an appropriate
way. Third, we need to identify appropriate compromises between accuracy and efficiency.
In principle, each redox move necessitates the re-optimisation of all split charges in the sys-
tem. However, if we had to solve for each split charge in a large system when attempting
locally one redox reaction, the computing time would increase non-linearly with system
size N , e.g., with N3, depending on the solver for the split charges. In practice, only those
split-charges will be affected significantly that lie in the immediate vicinity of the redox
center. Thus, if Coulomb interactions are added up in an efficient way, it should be possible
to devise approaches scaling linearly with system size N , or with N lnN .

Some intricacies related to the determination of potentials and the identification of rules
for the transition between different Landau-Zener levels can be explored in the context of
the dissociation of our NaCl molecule in Figure 1. A quantum-chemical calculation can
produce reference values for the ground state and the first excited state, even if it proofs
difficult in practice to ensure the correct asymptotic, integer-valued charges on the disso-
ciation products. Quantum chemists tend to claim that this is an easy exercise yet may fail
to deliver good dat even if they have several publications on precisely that topic. Nonethe-
less, having good reference data at hand, one can design the interaction parameters such
that they reproduce the curves except near the transition state, i.e., at the point where the
two SQE energy curves cross in violation of the non-crossing rule. In practice, the gap at
the transition state tends to be very small, that is, less than the thermal energy at room tem-
perature and thus systematic errors should remain small. However, to keep errors small, it
is important that dynamics are designed such that the molecule dissociates correctly, e.g.,
into two neutral atoms in the case of slow dynamics in a chemically inert, non-polarisable
environment. In contrast, when dynamics are fast and/or the dissociation takes place in a
sufficiently polar solvent, two charged atoms should result after dissociation. The precise
interatomic distance at which the redox reaction takes place is not very likely to affect the
products significantly. For example, an NaCl molecule should dissociate into two neutral
fragments when the embedding medium is an inert N2 gas, while it should dissociate into
two charged atoms in the presence of water. Once the Na and Cl atoms are sufficiently
far apart, they can no longer exchange charge on typical MD time scales, and the trans-
fer of integer charge between the two atoms should no longer be possible. Conventional
force fields or even conventional DFT calculations cannot account for such history effects,
because forces are unique functions of atomic coordinates and total charge.
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3 Bottom-Up Motivation of Charge-Equilibration Models

3.1 Justification of the SQE expansion

A possibility to formally justify polarisable force fields from DFT or other ab-initio meth-
ods can be described as follows:19–22 In a first-principle calculation, we can constrain the
electronic charge density ρ(r) to produce a given set of electric monopoles assigned to indi-
vidual atoms, {Q}, and higher-order multipoles {µ, . . . }. For any such constraint, one can
compute the minimum energy E0 (be it in the framework of DFT or some other method)
and thereby construct a constrained ground state energy function E0({Q,µ, . . . }). The
functional dependence of E0 on its variables depends itself on how we translate charge
density into mono- and multipoles, e.g., on the weight functions, wA(r), specifying how
atoms “own” the three-dimensional space. Once these functions are known, we can com-
pute, for example, the charge on atom A according to

QA = ZAe−
∫
d3r wA(r)ρ(r), (8)

where ZA is the number of protons in atom A. Defining the weights wA(r) is an im-
portant topic in theoretical chemistry, which we do not want to discuss in more detail
here. However, each assignment scheme contains the true ground state as the minimum of
E0({Q,µ, . . . }). For a given assignment scheme, one can then expand E0({Q,µ, . . . })
around a set {Q0, µ0, . . . }. The latter can reflect isolated atoms (Q = µ = 0) or those
associated with the ground state or a representative state of the system of interest.3

The fundamental philosophy of polarisable force fields is to expand E0({Q,µ, . . . })
into powers of the leading-order multipoles and to identify accurate approximations for the
respective expansion coefficients. This leads to Eq. (1). The underlying assumptions are:
(a) the expansion is unique, (b) convergence is fast so that third and higher-order powers
can be neglected. (c) only the leading-order multipoles, in most cases the monopoles, need
to be considered, and (d) the expansion coefficients can be approximated by simple elemen-
tary functions of the atomic coordinates. For example, the “coefficient” E0({Q0, µ0, ...}),
which corresponds to V ({Q0, µ0}) in Eq. (1), necessitates descriptions of short-range re-
pulsion, covalent effects, etc. Each of the assumptions (a)-(d) deserves particular attention.
(a) Since there is no unique way to assign electron density to partial charges, the function
E0({Q0, . . . }) is not unique. However, it should be unique once we have decided on how
to divide up electronic density to individual atoms. One could argue that good weight-
function schemes lead to fast convergence. (b) Truncation after second order is not always
appropriate. For example, solid hydrogen becomes infrared active under high pressure be-
fore the H2 molecules dissociate. Such a spontaneous symmetry breaking can only be cast
into a higher-order expansion. (c) Higher-order multipoles contain a lot of information on
the hybridisation of atoms and thus on their bonding. One might hope that many-body
potentials can reflect the pertinent effects if one does not solve explicitly for quadrupoles,
octupoles, etc. (d) Instead of fitting free parameters of elementary functions, one can also
envision machine-learning strategies in order to minimise human bias in the construction
of polarisable force fields.

The main difficulty arising in the parameterisation of Eq. (1) is that coefficients (in
addition to those related to long-range Coulomb interactions) do not disappear sufficiently
quickly, i.e., much more slowly than the overlap of two atoms. We abstain from providing a
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proof but simply point out the observation that isolated molecular fragments carry integer
charge. Much of the non-locality is due to the kinetic energy. Problems arising due to
the non-locality are alleviated in Lieb’s formulation of DFT23 in which the Hohenberg-
Kohn functional is replaced by the Legendre transform of the energy. Before elucidating
this point further, we first demonstrate that SQE is in fact non-local in the charges despite
being local in the split charges.

3.2 Locality of SQE forumulations and their relation to DFT

In this section, we rewrite the SQE model following a recent work by Verstraelen et al.22

The only term of interest here is the one containing the bond hardnesses, i.e., the term
VSQ =

∑
i,j>i κijq

2
ij/2 where we assume that κij is local or at most semi local, i.e., it

disappears if the orbitals of i and j do not overlap. Formally, one can write the charge
on atom Qi as Qi =

∑
j Tijqij , where Tij is the connectivity matrix. As atoms may

be bonded to more than one neighbor, the connectivity matrix is not a square matrix and
can therefore not be inverted. Let us assume, however, that a so-called Moore-Penrose
pseudoinverse, T−1

MPP exists even if we do not know how to construct it. This matrix can
be and generally will be non-local since only its inverse is local. We can then write

VSQ =
∑
i,j>i

Kij

2
QiQj (9)

with

Kij =
∑
i′j′

[
T−1

MPP

]
ii′
κi′j′

[
T−1

MPP

]
j′j
. (10)

ThenKij is not generally a sparse matrix, and Eq. (9) will be expensive to evaluate numer-
ically. However, by taking the Legendre transform and introducing Lagrange multipliers
µi for the charges, one can express VSQ as

VSQ = max
{µ}

∑
i,j

Qiµjδij −
1

2
µiSijµj (11)

where the coefficients of the softness matrix24 S is given by

Sij =
∑
i′j′

TMPPii′
1

κi′j′
TMPPj′j (12)

resulting in a sparse matrix given that TMPPij and κij are both sparse.
Interestingly, the same functional form for the ground state energy is obtained if Lieb’s

formulation of the kinetic energy in DFT is “condensed” to partial charges. In his case, the
Lagrange multipliers correspond to the external potential producing the same (constrained
ground-state) density ρ(r) for non-interacting electrons as in the full problem. We refer to
the original literature for more details22 and content ourselves by saying that (after making
some approximations) the approach allows one to deduce the softness matrix directly from
first-principle calculations. The advantage is that this allows one to deduce split charge
stiffnesses directly from DFT calculations.22 However, given that current and popular DFT
functionals do not describe the polarizability of large molecules correctly, it remains to be
seen how useful these formal insights are in practice.
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4 Top-Down Approach to Charge-Equilibration Models

In this section, we explore what dielectric response functions the SQE model produces.
The analysis includes the limiting cases of pure atom-polarisable approaches, i.e., the orig-
inal QE, or pure bond-polarisable models, such as the AACT model).18 From such cal-
culations we can learn how each term in the microscopic model affects the macroscopic
response. This, in turn, can guide the development and the parameterisation of the micro-
scopic model.

This section is divided into the analysis of the response to an external field and to an
excess charge that is added to the system. In the current treatment, we neglect any atomic
dipoles for reasons of simplicity. Including them changes the numerical values, for say,
the wave vector dependence of the dielectric permittivity or the work function of a solid,
but it does not affect the leading-order scaling. A comparison between modeling dielectric
media in terms of a simple SQE approach [no atomic dipoles, (super)-atoms placed onto
a simple cubic lattice] or in terms of a pure dipole model (as often assumed in text books
for the derivation of the Clausius-Mossotti relation) is presented elsewhere.8 It shall not be
repeated here. We also assume simple cubic lattices in the treatment of solids. Moreover,
we employ periodic boundary conditions to eliminate surface effects and to facilitate the
analysis in Fourier space.

4.1 Response to an external field

Eq. (6) is readily transformed into reciprocal space, because it is a second-order polynomial
in the (split) charges. Thus, one merely needs to replace sums over R with sums over wave
vectors k and follow the known rules for Fourier transforms. This leads to:

V = N
∑
k

[
κ+ J̃(k)

2
Q̃2(k) + {χ+ Φ̃ext(k)}Q̃(k) +

κ̃∆R(k)

2
q̃2
∆R(k)

]
, (13)

where

J̃(k) =
1

4πε0

∑
∆R6=0

S(∆R)

R
exp(−ik ·∆R) (14)

represents the potentially screened Coulomb coupling of atoms in Fourier space. For un-
screened interactions, the following approximation can be made for simple cubic lattices:5

J̃(k) ≈ 1

ε0a

1

(ka)2

[
1− α(ka)2 + β

{
(ka)4 +K4

}]
, (15)

where a is the lattice constant, K4 a fourth-order cumulant

K4 = −(ka)4 +
3

2

3∑
α=1

(kαa)4, (16)

and α = 0.22578(1) while β = 0.0037(1). The numerical values for the last two constants
differ for other lattices and are affected by short-range screening corrections. However, the
leading-order term of the Coulomb interaction is universal.

Eq. (13) formally allows for the possibility to have split-charges live not only between
nearest neighbors. In other words, split charges qij can exist in addition to those for which
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∆Rij = anα, where nα is one of the three unit vectors of the simple cubic lattice. Having
these additional split charges adds flexibility when using SQE to model dielectric media
with non-monotonic dielectric permittivity εr(k). However, until further notice we assume
that split-charges only live between nearest neighbors, which simplifies the analytical treat-
ment.

Using the integer triple (l,m, n) to index the simple-cubic lattice site

Rlmn = a (lnx +mny + nnz) , (17)

one can write the charge on that lattice site (assuming oxidation numbers are zero in a
mono-atomic lattice)

Qlmn = q
(1)
lmn − q

(1)
(l−1)mn + q

(2)
lmn − q

(2)
l(m−1)n + q

(3)
lmn − q

(3)
lm(n−1), (18)

where the (split) charge donated from lattice site (l+1)mn to lmn is denoted as q(1)
lmn, etc.

This notation allows us to find the following continuum approximation to Eq. (18)

Q(R) ≈ a∂αqα(R), (19)

or

Q̃(k) ≈ ia
∑
α

kαq̃α(k), (20)

for which we assume that the split charges are smooth functions in R. However, when k
is not close to the center of the Brillouin zone, one should use

Q̃(k) =
∑
α

2 sin

(
kαa

2

)
q̃α(k) (21)

instead of Eq. (19).
We can now insert Eq. (21) into Eq. (13) and minimise V with respect to the q̃α(k) to

yield

Ẽext
α (k) =

{
Jeff
αβ + κs

}
q̃β(k), (22)

κs being the nearest-neighbor split charge stiffness, and

J̃eff
αβ(k) = 4

{
κ+ J̃(k)

}
sin

(
kαa

2

)
sin

(
kβa

2

)
, (23)

where J̃(k) can be taken from Eq. (15).
We are now in a position to solve for the split charges, and thus for the polarisation P,

which in turn allows us to deduce the dielectric permittivity via

P̃(k) = {ε̃r(k)− 1} Ẽtot(k). (24)

Since Etot = Eloc +Eint, where Eint is the electrostatic field due to the split charges, and
P(R) =

∑
α qα(R)nα/a

2 (assuming the qα(R) are smooth functions), we can write in
leading order, i.e., up to O[(ka)2],

ε̃r(k)− 1 =
1

ε0a {κs + κ(ka)2}
. (25)

See also Refs. 5 and 8 for alternative derivations of this relation. This term for the dielectric
permittivity should be interpreted as the high-frequency permittivity, or more precisely, is

124



appropriate for frequencies that are large compared to those of lattice vibrations but small
compared to electronic excitation frequencies.

Eq. (25) immediately reveals two important implications for charge-equilibration mod-
els: First, any approach neglecting bond polarisabilities, such as the original QE, assigns
a divergent dielectric constant to a system in the thermodynamic limit, i.e., any materials
responds to external charges like an ideal metal. This explains, for example, the superlin-
ear polarisability of linear molecules with the degree of polymerisation P .25 Second, any
approach neglecting atomic hardnesses will find that ε(k) has little dispersion and thus,
small systems exhibit little size effects in that approximation. This again explains why
short oligomers do not increase their polarisability with P when modeled in terms of pure
bond polarisable models, while SQE shows the correct scaling.25

An additional consequence of Eq. (25) exists for bond-polarisable models. Since there
are no atomic hardnesses, the bond or split-charge hardness has to be sufficiently high to
ensure that the Hessian of the potential energy is positive definite. This limits the range of
applicability to small values of εr, in particular when no screening for Coulomb interactions
is used at small distances, i.e., to εr − 1 . 1. Thus, if one wants to model the proper high-
frequency dielectric response of a material with 1 < εr − 1 < ∞, both atomic and bond
hardnesses need to be considered.

4.1.1 Penetration depth

As an advanced application of the SQE model, let us estimate the length after which the
electrostatic field levels off to its value in the bulk. Obviously, this is an important number
to reproduce if one is interested in predicting correct forces on ions embedded in a medium
described by a polarisable force field.

The split-charge response to an external field can be deduced from Eq. (22). Within
O{(ka)2}, one obtains:

q̃α(k) ≈ Ẽα(k)

κs + 1−α(ka)2

ε0a
+ κ(ka)2

. (26)

The denominator on the r.h.s. can be factorised into a constant multiplied with (k+ik1)(k−
ik1). The inverse of k1, i.e., δ = 1/k1

δ = a

√
ε0aκ− α
1 + ε0aκs

(27)

then corresponds to a characteristic length scale. More detailed calculations as well as
simulations reveal that the charge density of a dielectric placed between two parallel, ideal
capacitor plates indeed falls according to exp(−∆z/δ), where ∆z is the distance from the
surface.5

When κ is small, or even zero, δ is small as well, which implies that the electrostatic
field drops to its bulk value close to the surface. This is in line with our conclusion that
omitting atomic hardnesses eliminates size-dependence of the polarisability of short chain
molecules. When κ is large, modification of the short-range Coulomb interaction can
affect the value of α and thereby δ. If such a dependence can be used in a beneficial way
or instead leads to undesired effects might depend on the system of interest.

125



4.1.2 Numerical examples

It is instructive to consider a simple model for the dielectric response in different QE mod-
els. For this purpose, we study a one-dimensional system, in which the electrostatic poten-
tial is altered on a single (super) atom, while that of all others is kept constant. Moreover,
all oxidation states are set to zero so that the system is neutral. Results are summarised in
Figure 2

Figure 2. Induced atomic charges in a one-dimensional system sketched on the left-hand-side of the figure. The
electrostatic potential is altered only on the central atom. The way in which charge is induced strongly depends
on the details of the parameterisation. (a) κ = 0 corresponding to pure bond-polarisability, (b) κs = 0 reflecting
the original QE model, (c) both κ and κs are finite as in SQE, and (d) similar to (c) but with next-nearest split
charges stiffnesses having a relatively small associated stiffness.

As just discussed in Sect. 4.1.1, the polarisation response is localised in the immediate
vicinity of the central atom, when atomic hardnesses are set to zero (as for example in the
AACT model). Specifically, the central atoms increases its charge dramatically mainly at
the expense of the two nearest neighbors in the chain, as can be seen in panel (a) of Figure 2.
Charges in the third-nearest neighbors are very small. When nearest-neighbor split-charge
stiffness is set to zero while atomic hardnesses are finite, as in the original QE, not only
the central atom is heavily charged but also its neighbors. As depicted in Figure 2(b), the
positive charge near the central atom is compensated by negative charges near the (hyper-)
surface. The SQE model in Figure 2(c) with finite atom and finite nearest-neighbor split-
charge hardness produces responses in between the two previous limits. When we also
allow second-nearest-neighbor split-charges, new features can arise. This is demonstrated
in Figure 2(d), where oscillations arise due to small stiffnesses for split charges connecting
next-nearest neighbors.

It is common to express susceptibilities of solids in Fourier space rather than in real
space. This is done in Figure 3, where the same parameterisations are considered as in
Figure 2 The 1/k2 behavior is clearly borne out for the regular QE model just like the weak
dispersion for the AACT model, where deviations from the continuum limit require one to
approach the border of the Brillouin zone. Interestingly, a non-monotonic dependence of
ε̃(k) is predicted when split charges between next-nearest neighbors are introduced that
have high polarisability or small hardnesses.
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Figure 3. Dielectric constants of various QE models as a function of wave vector. The models are identical to
those investigated in Figure 2.

If necessary, more complicated response functions can be modeled by adding split
charges between even more distant atoms. To what degree this is helpful in the design of
future force fields or the modeling of dielectric phenomena remains to be explored.

4.2 Response to an excess charge

Many processes in physics, chemistry, or biology involve the transfer of one or many elec-
trons from one part of the system to another one. Examples are numerous but one that
has had a particularly strong effect on the evolution of science is the charging of amber
(Greek for “electron”) when rubbing it against lodestone (used by Thales of Miletus) or
cat fur (used by your favorite physics high-school teacher). Thales’ experiment was a first
hint that electricity and electric discharge, e.g., lightning, have their origin in nature. To-
day, electron transfer, particularly in the context of redox reactions play a crucial role, for
example, in the development of batteries. Yet, conventional force fields cannot describe
redox reactions, because they already fail to describe half reactions, i.e., the addition or
subtraction of an electron to a (sub-) system. In order to advance the modeling of redox
reactions, it is thus useful to know how the energy of a system changes when we add or
subtract an extra integer charge. In this section, we briefly analyse the various QE models
in this regard with an emphasis on diatomic molecules. Much of the insights obtained for
molecules are also useful to rationalise the response of solids.

Following the presentation in Ref. 26, let us consider a heteronuclear, diatomic
molecule in which an external charge ∆Q = n1e is placed onto atom number one, while
the oxidation number of atom two is set to zero. The split charge q12 shall be denoted as q,
the distance between the two atoms is given by a. Moreover, κi are atomic hardnesses, χi
electronegativities, ∆χ = χ1 − χ2, and κs is the split-charge hardness. The split-charge
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energy then becomes:

V =
κ1

2
(∆Q+ q)2 +

κ2

2
(−q)2 +

κs

2
q2

+∆χi q + χ1 ·∆Q+
JC

2
(∆Q+ q)(−q), (28)

where JC reduces to

JC =
1

2πε0a
(29)

for unscreened Coulomb interactions. The split charge is chosen such that it minimises V ,
i.e., ∂V/∂q = 0, which can be solved to yield:

q = − (κ1 − JC/2) ·∆Q+ ∆χ

κ1 + κ2 + κs − JC
. (30)

For the system to be positive definite, the denominator has to be greater than zero.
At this point, one can reiterate an insight from the previous section: Omitting the atomic
hardnesses means that large values for κs must be used, which implies small polarisabilities
for molecules or small dielectric permittivities for solids. Eq. (30) can now be inserted into
Eq. (28) and the result be sorted into powers of ∆Q. As a result, we obtain

V (∆Q) =
κg
2
·∆Q2 + χ ·∆Q+ V (0), (31)

where

κg =
κ1 · (κ2 + κs)− (JC/2)2

κ1 + κ2 + κs − JC
(32)

is the global hardness,

χ =
(κ2 + κs − JC/2) · χ1 + (κ1 − JC/2) · χ2

κ1 + κ2 + κs − JC
(33)

is the global electronegativity, and

V (∆Q = 0) = −1

2
· ∆χ2

κ1 + κ2 + κs − JC
(34)

is the energy associated with the split charge for a neutral molecule in which both atoms
have oxidation state zero. A variety of limits shall now be discussed.

In the limit of vanishing bond hardness, i.e., in the original QE model, it does not matter
which atom receives the excess charge, because both χ and κg are unchanged if indices
are inverted when κs = 0. This means that the ionisation energy of a molecule does not
depend on which atom in a molecule is ionised. In other words, any molecule behaves like
an ideal metal within the QE formalism.

In the limit of vanishing atomic hardnesses, the molecular hardness becomes negative.
At the root of this unphysical behavior is that we can add charge of one sign to one atom
without having to pay a (self-interaction) energy penalty. One can then add charge of
opposite sign to the other atom, which results in Coulomb attraction between the atoms,
thereby lowering the energy. This also means that the system becomes unstable to internal
redox reaction, which obviously is undesired.
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When properly parameterised, that is, for sufficiently large atomic hardnesses, SQE
produces none of the just-mentioned artifacts. In this case, the global hardness is posi-
tive, and parameters (global hardnesses, ionisation energies, etc.) depend on which atom
is ionised provided that the bond hardness is positive. We refer to Ref. 26 for a more
detailed discussion, which also pertains to solids. Moreover, a semi-quantitative anal-
ysis of the NaCl molecule reveals that by choosing an appropriate value for the bond
hardness, one obtains quite reasonable estimates (to within 20% accuracy) for the ioni-
sation energy, E[Na+Cl(0)], the dipole moment µ[Na+Cl−] and the first excitation energy
E[Na(0)Cl(0)] − E[Na+Cl−]. (All other parameters entering the calculations are atom-
based properties and Coulomb interactions.) Only the electron affinity ANa+Cl− does not
turn out very accurate. This, however, can be rationalised quite easily: The calculation of
that number necessitates the hardness of Cl− ions, which cannot be readily determined and
so using the atomic hardness explains the underestimation of ANa+Cl− .

5 Applications

Most of the studies applying charge equilibration methods are concerned with finding pa-
rameters allowing one to reproduce results obtained with DFT or ab-initio methods as
closely as possible, e.g., to reproduce electrostatic potential surfaces, partial charges, or
interatomic forces. So far, each work found substantial improvements when using SQE,
some of which will be discussed further below. However, to get acquainted with the in-
trinsic properties of QE models, we chose to emphasise the analysis of generic properties
and the behavior of toy models, although comparison to DFT-based calculations are also
explored.

5.1 Contact electrification

When two initially neutral but otherwise distinct solids touch they tend to exchange charge,
which is also known as tribocharging. The tribocharging of dielectrics appears to be very
complicated. At least, no consensus has been reached as to the detailed mechanism for the
charge transfer.27, 28 In contrast, tribocharging between metals is reasonably well under-
stood. When two metals touch, electrons go from the metal with the higher work function
to that having the smaller work function. Once the two metals are separated, they each
carry a charge of same magnitude but opposite sign. As a consequence, they experience a
long-range attraction that was not present before contact. Conventional force fields cannot
account for the such history dependence. As in conventional DFT, forces on atoms are
unique functions of their coordinates and the total charge. Even time-dependent DFT ap-
proaches cannot yet tackle problems like the one just mentioned, in which Landau-Zener
level or Tully surface hopping is important.

Although descriptions are still at a rather generic level, redox-SQE allows one to mimic
processes occurring during contact electrification. Figure 4 depicts the contact dynamics of
two solid clusters whose partial atomic charges were calculated within the SQE framework.
The figure shows that two initially neutral clusters transfer charge between them upon close
approach. After the contact is broken again, the charge remains localised near the front
atoms in the dielectrics, for which a finite value of κs is assumed inside the clusters. In
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contrast to that, charge density delocalises in the metal and predominantly lives on the
surfaces.

Figure 4. Generic features occurring during contact formation and break up of two metals (left) and two dielec-
tric (right). Blue and red label positive and negative charge, respectively. In both systems, “dielectric” bonds
are assumed to form between two front pairs of atoms. The associated bond stiffnesses are modeled to be very
large at the point of bond formation and to decrease quite quickly as the distance between the atoms decreases.
Integer charges can be donated through them when the atoms are sufficiently close, but no longer once the bond is
considered to be broken. Finite bond hardnesses are used between atoms in the dielectric, preventing the charge
to spread out over the surface of the cluster. The latter happens within the metal, where nearest-neighbor split
charges are assigned a zero bond stiffness. From Ref. 7.

5.2 Battery discharge

Most atom-based simulations of processes relevant to Galvanic cells are reduced to half
cells, because – according to the authors reporting such simulations – it suffices to con-
sider half cells. However, upon close inspection, it turns out the used methods are intrinsi-
cally unable to simulate a full cell because they do not incorporate history dependence. A
thought experiment shall support this claim:29 Consider a fresh battery with a given volt-
age between the anode and cathode. We now bring a first demon into play, who keeps all
atoms in the battery in place but not the electrons. A second demon connects the anode
and the electrode through an external electric wire with a given Ohmic resistance. Charge
will flow between the two electrodes and the voltage be reduced. After the second demon
removes the wire, all atoms are still in their original place, but the voltage has changed.
Methods assigning charges or charge densities as unambiguous functions of nuclear po-
sitions cannot predict by how much the voltage has changed. RedoxSQE, however, can
overcome this limitation. In addition to their coordinates, atoms are assigned an oxidation
state, and so the state of the battery has changed when one or more integer charges have
passed through the external wire.

A first redox-SQE based simulation29 of the discharge is sketched in Figure 5. It repre-
sents a classical wet cell roughly similar to the original cell designed by Volta. It contains
a metallic anode and cathode, which have both been given identical properties, except that
the electronegativity of anode atoms is the negative of that of cathode atoms. The cell also
contains a molten salt making it energetically favorable for cations to go into solution. A
salt bridge allows the salt ions to pass from one half cell to the other but not the metal ions
– unless they pay a high price for the energy to pass the salt bridge. Interactions between
metal atoms are modeled such that their bonds are considered metallic when their distance
is below a threshold value, while a finite split-charge bond hardness is implemented for
larger distances. The split-charge hardness is designed such that it increases quickly with
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increasing bond length and ultimately diverges at a second cut-off. Redox moves are at-
tempted only for “metal atoms” that are connected through a “dielectric bond”, i.e., when
they share a split charge having finite bond hardness. Lastly, anode and cathode can ex-
change charge through an external wire having resistance R. This latter resistance is the
only truly dissipative element in the setup. More details on the setup and the algorithm are
given in the original article.29
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Figure 5. Left: Sketch of a redoxSQE battery. Right: Discharge characteristics for different external resistances
as a function of the transferred charge. A relative voltage of one reflects the work function difference between
cathode and anode assuming that both are neutral and placed in a non-polar medium, such as air. From Ref. 29.

Despite the simplicity of the model, the discharge characteristics reproduce many prop-
erties of real batteries. First, the initial voltage is slightly above the work function differ-
ence ∆V0 of cathode and anode evaluated for neutral electrodes in a chemically inert,
non-polarisable medium. Upon discharge, the voltage quickly drops below ∆V0. For
large external resistors, the voltage remains slightly below ∆V0 for longer times, i.e., it
decreases relatively slowly until the active material is used up, in which case the voltage
quickly goes down. Lastly, the larger the external resistance, the more efficiently the bat-
tery is used (unless the discharge is so slow that there is auto-discharge, i.e., migration of
metal ions through the salt bridge). We refer again to the original literature29 for more de-
tails on these simulations. At this point, it suffices to summarise that the redoxSQE model
allows one to mimic the generic properties of electrochemical cells even outside of equi-
librium situations, and as such, bears great promise to contribute to the modeling of energy
materials.

5.3 Chemistry-specific parameterisations

When reproducing qualitative properties correctly, force fields should also be in a position
to model interatomic interactions quantitatively, i.e., in a system-specific fashion. How-
ever, such descriptions can only be accurate if the used models are intrinsically able to rep-
resent the underlying physics correctly. A model that – such as standard QE – is automat-
ically metallic, cannot be parameterised to reflect the dielectric response of non-metallic
molecules, clusters, or solids. This implies that the original QE is intrinsically unable to
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correctly account for changes of interatomic forces that are due to dielectric polarisation.
In this chapter, we do not review works claiming the opposite. Since the SQE model is
not even one decade old, element-specific parameterisations are still scarce, and are mostly
concerned with the fitting of partial charges and dielectric response functions rather than
with the design of complete force fields. This is why we will first focus on applications of
charge equilibration approaches to electrostatic properties and partial charges.

In the original SQE paper,6 Nistor et al. considered a set of molecules containing
sp3 hybridised carbon and silicon, two-coordinated oxygen, and monovalent hydrogen.
They found that the original QE could be parameterised to reproduce partial charges on
atoms to within 34% error. A pure bond-based model was slightly better yielding a 28%
error, while the combination of the two methods reduced it to 13%. This number could
be further reduced to 8% by accounting for leading-order chemical induction, however,
at the expense of one additional fit parameter for each bond pair. Mathieu found that
the SQE method describes the partial charges during homolysis of a variety of molecules
from equilibrium to the final separated fragments quite accurately.30 The results were
astonishingly good given the simplicity of the laws describing the divergence of (split-
charge) stiffness with increasing bond length. From Warren et al.’s work,25 it became
clear that SQE can be parameterised to yield the correct polarisabilities of short and long
alkanes, at least when using the well-known short-range Coulomb screening ensuring that
the SQE Hessian remains positive definite.

The most systematic and exhaustive studies on QE models were conducted by Ver-
straelen and coworkers.14, 31, 32 A benchmark test on 500 organic molecules selected by an
ingenious and autonomous protocol from an initial set of almost 500 000 small organic
molecules found that SQE clearly outperformed QE in all 23 benchmark assessments.14

Moreover, Verstraelen et al.31 found transferable parameters for the simulation of silicates
from isolated structures to periodic systems (both dense crystals and zeolites), although in
some cases atomic hardness parameters necessitated environment-dependent corrections.
An interesting result of that work is that polarisabilities are reproduced better when param-
eters are calibrated such that they reproduce the electrostatic potential surface as well as
possible rather than the partial charges. Lastly, Verstraelen et al.31 found that the original
formulation of SQE does not describe zwitter-ionic system. However, by introducing con-
straints, similar in philosophy to the addition of oxidation numbers, SQE also pertains to
systems in which the sum of the formal oxidation numbers in a ligand differs from zero.

In the context of full force field development, two works deserve particular mention:
Streitz and Mintmire added standard QE to embedded-atom method (EAM) potentials for
metals and metal oxides, including their interfaces.33 This extension lead to an accurate
description of elastic properties, surface energies, and surface relaxation. The Streitz-
Mintmire potential might have been even more successful if defects in addition to surfaces
had been considered. Moreover, there is room for improvement by placing the idea of
embedded-atom potentials with charge equilibration on a common footing rather than sim-
ply adding it on. For example, the derivative of the embedding functional could be related
to the electronegativity of a given atom. Mikulski et al. pursued a similar approach as
Streitz and Mintmire, this time by adding SQE to bond-order potentials (BOP).34, 35 The
resulting BOP/SQE potentials dramatically improved the transferability of the potentials so
that accurate numbers for the heats of formation for isolated molecules, radial distribution
functions of liquids, and energies of oxygenated diamond surfaces could be achieved.
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6 Conclusions

In this chapter, we assessed different schemes allowing one to model charge distribution at
small scales, in particular at atomic scales. Particular emphasis was placed on approaches
in which the charge distribution is calculated self-consistently, i.e., through the minimi-
sation of a model for the energy with respect to atomic charges for a given set of atomic
coordinates. It turns out that difficulties in such schemes arise because the true energy func-
tional (for the quantum-mechanical ground state) is non-local in space. As a consequence,
a coarse-grained formulation, i.e., one in which electron density is approximated by atomic
charges and electrostatic multipoles must be non-local as well – in addition to the “triv-
ial” long-range Coulomb interaction. The non-locality can be incorporated through split
charges, which describe the polarisation from one atom to another one. While split charges
are usually local themselves, their presence – given proper parameterisation – ensures that
long-range, fractional charge transfer is suppressed. Currently used functional for DFT
calculations do not achieve this even if the kinetic energy is evaluated at the Kohn-Sham
level.

An interesting aspect of SQE models is that they allow one to relate their adjustable
parameters to collective response functions. For example, the dielectric permittivity of a
solid is inversely proportional to the split-charge hardness. The wave-number dependence
and the penetration depth – the relaxation length over which an external electrostatic field
approaches its bulk value inside a solid – are mostly controlled by the (effective) atomic
hardness. When including split charges beyond nearest neighbors, response functions can
even be tuned to be non-monotonic in wave number. This makes SQE a promising candi-
date for the modeling of dielectrics not only at the atomic scale but also at the mesoscale.
In contrast, the original QE and simple refinements thereof treat any system as an ideal
metal. The computational overhead of SQE with respect to QE is minimal, if present at all.
Due to the presence of a band gap for finite split-charge hardnesses, collective stiffnesses
do not become small in the thermodynamic limit and so extended Lagrangians are effec-
tive for the same reasons why the Car-Parrinello method works well for systems with finite
band gap. Thus, the SQE approach bears great potential for use in simulations in which po-
larisation is important. This includes, in particular, its use in multi-scale and multi-physics
descriptions of systems ranging from molecules to condensed matter.

Last but not least, the SQE model allows one to introduce the concept of oxidation
number in a way that has successfully guided the intuition of generations of chemists.
This, in turn, opens the possibility to mimic Landau-Zener level dynamics or Tully surface
hopping, and thus puts one into the position to address non-equilibrium situations as they
occur in many systems where charge transfer is important. Examples presented in this
chapter are the charge transfer during contact between two solids and the discharge of a
battery. It remains a challenge for the future to parameterise the models such that they do
not only show generic features but are chemistry or material specific.
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I will in this tutorial focus on systematic multiscale modeling of soft materials with applica-
tions to polymers and biomolecules. It will start out with an introduction into the fundamental
concepts of modeling on multiple connected scales. These include the concepts of mapping
models onto each other, fast and slow degrees of freedom etc. The concepts of systematic
versus generic mapping will be discussed. Then I will introduce a variety of different tech-
niques. These include both systematic coarse–graining techniques from a structural as well
as a thermodynamic standpoint. Specifically techniques to be discussed include the Iterative
Boltzmann Inversion, which will be the focus; Force Matching, as well as obtaining Lennard
Jones parameters from thermodynamic considerations will be discussed as well. The advan-
tages and limitations of all these techniques will be discussed in order to empower the students
to make well informed choices in their own work. After the foundation has been laid I will be
discussing several example applications; focusing on both heterogeneous polymer systems and
biomembranes.

1 Introduction

Polymers both of the synthetic and the natural biopolymer variety are fascinating materials
which are omnipresent in many modern materials applications, be it generating sustainable
energy for a growing demand, developing safer solutions for health care, developing DNA
and protein based materials as next generation drugs and many more. At the same time
computational studies for soft materials are increasingly needed in order to design rather
than find by chance new materials. But even with the most powerful computers it is unrea-
sonable to hope that molecular modeling on the atomic scale will be able to predict large
scale polymer properties like morphology from first principles.

So we have to devise techniques to develop intermediate and large scale models to
predict large scale properties. These models, however, need to be rooted in the local chem-
istry in order as the large scale behavior is strongly tied to molecular arrangements on local
scales. The relevant scales in polymers reach from the distance between bonded atoms on
the order of Angstroms to the scales of supermolecular assemblies on the order of microm-
eters such that no single model can span this range.

For some applications it is sufficient to treat the different scales with fully independent
models but in many cases that is not enough such that a true connection – a systematic
mapping – between different scales is required. The idea is that we want to speed up the
simulation while at the same time reproducing the polymer behavior except the atomistic
detail.

One particular class of systems which will be discussed in detail below are organic pho-
tovoltaic systems (OPV) which are a cheaper alternative to silicon solar cells.1 But these
systems are still not efficient enough for commercial applications. In polymer solar cells
polymers (typically of the thiophene family) are normally mixed with fullerene derivatives.
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Figure 1. Flowchart of the Iterative Boltzmann Inversion

For best efficiency the local morphology has to consist of interconnected domains where
ideally no point is more than 10–20 nm away from an interface in order to optimize charge
separation as light first generates an exciton – a charge bound electron–hole pair – and
only at an interface this exciton separates into an electron and an hole. A bi–continuous
network to fulfill this condition without long–range order is called a bulk heterojunction
(BHJ).2 Molecular modeling has the potential to elucidate and eventually guide BHJ mor-
phology development if accurate multiscale models exist. Coarse–graining is crucial for
such an endeavor.

For the rest of this chapter we first will explain the fundamental theory several coarse–
graining approaches. Then we show how they are used for a number of applications. The
first of which is a in depth tutorial using the iterative Boltzmann inversion to develop a
butanol model. Finally some general conclusions are drawn.
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2 Fundamentals and Theoretical Basis of Different Coarse–Graining
Techniques

2.1 Iterative Boltzmann Inversion

In order to develop a systematically multi–resolved model we need to use a technique to
map models on different length (or time) scales onto another. We focus here on structure,
i.e. length scales. An established procedure to coarsen an atomistic model to a mesoscale
one is the iterative Boltzmann inversion (IBI).

The iterative Boltzmann inversion starts with an atomistic simulation of the system
under study, i.e. one needs an atomistic model. We discuss the IBI here in terms of
polymers but any other system an be described as well. One typically has to limit oneself to
a small system of short chains. The corresponding distribution functions based on super–
atoms are recorded. Super–atoms are linear combinations of atomistic positions.

~Rj =
∑
i

wij~ri (1)

The capital letters mark the super–atom positions, the lower case the atomistic. Typical
choices are centers of mass of a monomer or one central atom to represent a monomer but
any other choice is possible. The weights should of course sum up to one, also normally
one atomistic atom should not contribute to more than one super–atom. Lastly it is a good
idea to choose super–atoms in a way that as many distribution functions (below) are single
peaked and sharp.3

The recorded distribution functions include bond lengths, bond angles, torsions and
radial distribution functions between super–atoms, i.e. super–atoms are treated as if they
were atoms. Before we can generate a potential out of these distributions they may need
be weighted by the corresponding Jacobians between internal and Cartesian coordinates.
Then they are Boltzmann–inverted to obtain first generation interaction potentials between
super–atoms. As the Boltzmann inversion leads to a free energy difference (and not a
potential energy) this will need to be iterated to obtain a useful set of potentials. It is often
a good idea if you have polymers to ignore the end monomers in this optimization.

V (η) = −kBT ln p(η) (2)

Here η can stand for bond lengths, bond angles, torsions or non-bonded distances after
Jacobian correction alike. This potential is completely numerical but in order to get useful
derivatives it can be smoothed by splining. In concentrated solutions or melts the structure
of the system is defined by an interplay of the interaction potentials and packing. Thus,
a direct calculation of the potential of mean force is not enough and we need an iterative
approach to correct the potential which gives the name to the iterative Boltzmann method.
Figure 1 illustrates the different stages of a iterative Boltzmann procedure. We iterate
this procedure until the desired distributions of the coarse–grained model and the atomistic
model coincide within a described tolerance. The final potentials have no physical meaning
except that they reproduce the same structure as the atomistic ones. Henderson’s theorem4

guarantees the uniqueness (but not actually the existence) of an optimized two–body po-
tential.
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The optimization process should initially focus on the short distance region. Only after
the meso–scale RDF of this region resembles the atomistic RDF well, the toning process of
the larger distances should starts effectively. Also we may want to apply different weight-
ing functions wi for the correction terms depending on the difference between the resulting
RDF from the atomistic RDF. E.g. the weighting function is set to 1 when the deviation is
about 30 – 40% from the atomistic value. When we are getting closer a series of parallel
runs with values of weighting function of 1/8, 1/4 and 1/2 are used to find an optimum
starting point for the next step. Again, this procedure is technically only a mathematical
optimization to reproduce the structure, we are just using a physically inspired method to
do it. So every optimization step (except the first) follows the following equation.

Vi+1(η) = Vi(η)− wikBT ln pi(η) (3)

The optimizations for the inter– and the intra–chain interactions can be either per-
formed at the same time or they can be done separately as the mutual effects between the
two are negligible. Typically, the intra–chain optimization is much faster than the inter–
chain optimization.

Up to now this description focussed on single component systems where each interac-
tion site is equal. If we want to model multi–component systems (including co–polymers),
we have to sort the interaction into self–interactions (A–A, B–B etc.) and A–B interactions.
Since the self–interaction in the mixture is not the same as in the pure polymer (especially
at larger distances homo–interactions are mediated by hetero–atom pairs), there are for bi-
nary systems three target RDFs to be optimized. We will have correspondingly more target
functions if we are looking at ternary or more complex systems. It may be tempting to
use analytical mixing rules for hetero–interactions but it has been shown that in that case
even the simplest phase behavior is not correctly reproduced.5 Similarly to intra– versus
inter–chain interactions we can optimize the hetero and homo interactions at the same time
or after each other. There is today no generic scheme but it is preferred to start with the
homo interactions as they are regularly similar to pure polymers. Also if a homo–model
exists it is preferably used as a starting case.

The IBI only aims at the structure of the polymeric system and it is therefore not guar-
anteed that the thermodynamic state is in fact correctly described. This has been pointed
out by Reith et al.6 In order to avoid such problems the co–adjustment of thermodynamic
properties can be performed or more correctly the post–adjustment. The most abundant
of such cases is pressure optimization. In order to do this a additional pressure correction
∆Vpc to the potential of the form

∆Vpc(r) = Apc

(
1− r

rcut

)
(4)

is added, where A is negative if the pressure is too high (which is the typical case) and
would be positive if it was too low. As a linear potential corresponds to a constant force
the structure does normally not deteriorate significantly.
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2.1.1 Treatment of Surfaces

An additional degree of complexity is encountered if we want to treat a system under con-
finement, e.g. by a hard wall but even a free standing surface changes the interactions close
to it. We clearly need an atomistic system under confinement to start. Now the problem is
that the system behaves differently as a function of distance from the wall as the local den-
sity, packing etc. becomes a function of that distance. One also needs to pay attention to
the effective volume while building a mesoscale model of a confined system according to a
structure based coarse-graining technique due to the state–point dependence.7, 8 Therefore,
one has to preserve the effective (true) concentration of the molecules from the reference
atomistic simulations in the mesoscale system. As the atomistic particles are smaller we
might need to increase the system size in the CG case. Determining the effective concentra-
tion in a confined system is relatively straightforward: one can inspect the density profiles
to deduce the exact vertical distance that the molecules occupy between the surfaces both
in the atomistic and mesoscale systems.

It is often a good idea to first perform an unconfined optimization and then re–optimize
starting from that already existing model as this speeds up convergence. The direct use of
the Boltzmann inverted target distributions of a confined reference system as the initial trial
potentials may cause a very slow, glass–like, behavior of the polymers.7 Normally one can
find a potential which reasonably reproduces the behavior for a range of confinements.

Obviously, in addition to slightly changing the interactions within the system an inter-
action between wall beads and non-wall beads needs to be set up as well. One may use
a set of Lennard–Jones parameters such that the density profile is reproduced. As target
observables both the rdfs between super–atoms and the density profiles as a function of
distance from the surface should be used. In a recent study of polystyrene–toluene solu-
tions under confinement the final interaction between the wall and toluene beads was in
the CG case almost three times the interaction between the PS monomers and wall beads
because of the competition between the toluene and PS super–atoms for adsorption.8 As a
monomer approaches the wall chain connectivity brings other monomers to the surfaces as
well increasing adsorption in comparison to solvent which is one single interaction center.

2.2 A Brief Introduction to Force Matching

A widely used alternative to the IBI technique is force matching (FM). The basic idea is
to not develop a potential which reproduces structure but to directly reproduce the forces
from the atomistic simulation.9, 10 FM does not use an iterative approach and its use is
straightforward in mixed systems. The starting point is again an atomistic simulation and
a linear combination of atomistic interaction sites into super–atoms. For FM we need
to record and store forces from the atomistic simulation. This is non–standard in most
atomistic simulation packages but can be done in some or the code can be adapted. One
may also reconstruct the forces from the trajectory a posteriori.

These atomistic forces now have to be mapped onto the CG sites, i.e. we have to cal-
culate the forces between super–atoms. For this every force between two atoms belonging
to different super–atoms has to be projected onto the super–atom connection vector (cf.
Figure 2) and all these pairs for the same distance have to be averaged.

We again obtain a numerical table, now for forces as a function of distance. This is
typically splined or fit to some analytical function in order to avoid too much noise in the
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Figure 2. Mapping interactions of atoms of different super–atoms (sketched in green) onto the intermolecular
vector (red). The right–hand side shows the projection process. United atom n-butane is used as an example.

data. Now these force are directly used in the CG simulations. Note, that no potential is
ever constructed or even its existence assumed. Clearly the final forces will be different
as the complete philosophy of the matching is different. In general IBI and FM work both
very well.

2.3 Developing Parameters for Analytic Interaction Potentials

Another way to determine interaction parameters for a CG simulation is to try to fit the
interactions on the large scale to a selected analytical form and reproduce a certain set
of parameters; this is essentially very similar how to develop atomistic models. The most
abundant form is the Lennard–Jones form but another one is a simple linear potential which
is often used in DPD simulations.45

The idea is to develop a set of parameters which can describe the behavior of super–
atoms in any environment, i.e. one forgoes accuracy for generality. Often atomistic–like
mixing rules are being used for simplicity.

In the biophysical Martini model e.g. Lennard–Jones parameters are fitted to reproduce
thermodynamic properties of the system.11, 12 In that case the relative solubility in water
and alkanes is chosen. Here no mixing rules are being used but similar to IBI and FM above
the hetero–interactions are being developed independently from the homo–interactions.

For DPD one normally selects the size of the bead based on its geometric size. We can
measure the size in an atomistic simulation but most of the time it is just selected ad hoc.
The interaction strength (potential height at r = 0) then can be selected to get the right
pressure/density, i.e. essentially the equation of state.
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Figure 3. 1:1: Mapping of butanol. The marked carbon (C2) is the super–atom center. The hydrogens, except for
the one in the OH group are not actually modeled in the provided atomistic trajectory.

3 Examples

3.1 Butanol Tutorial

A very simple example which we will discuss and also offer as downloadable tutorial is the
Iterative Boltzmann coarse–graining of butanol where we only determine the non–bonded
interactions. Butanol is a small chain alcohol with the chemical formula C4H9OH. We
map the whole molecule onto one site. The C2 (see Figure 3) will be used as mapping site.
We are using the gromacs13 simulation software here and assume that you are on a linux
system and have VMD14 installed as well. Here you find the detailed instructions of how
to develop a coarse–grained butanol model from an existing atomistic simulation.

1. Download atomistic data from http://bit.ly/TNJVfe or
http://www.chms.ucdavis.edu/research/web/faller/downloads
(IBI.tar or IBI.tar.gz)

2. Visualize trajectory data (BTL-atomist-traj.xtc) and/or
final configuration (BTL-atomist-confout.gro) data with VMD

3. Look at the atomistic grommpp file
(BTL-atomist-grompp.mdp)

4. Make index file

4a. make_ndx -f BTL-atomist-conf.gro -o BTL-atomist-C2.ndx
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4b. Enter "a C2" (selects the C2 atoms which we
use as super-atom locations)

4c. Enter "q" (quits program and saves)

5. Make and visualize RDF of the super-atom positions
calculated from the atomistic data

5a. g_rdf f BTL-atomist-traj.xtc -n BTL-atomist-C2.ndx
-o BTL-rdf-C2.xvg

5b. Select "3" twice (make rdf of group 3
(the C2) with itself)

5c. Visualize with xmgrace, gnuplot, or excel
(The rdf is just a text file)

6. Make input table for gromacs

6a. Compile rdf2pot.c (gcc rdf2pot.c -lm)

6b. Run and make the interaction table (./a.out > table.xvg).
This smooths the rdf, calculates the potential and
corresponding force and fills the zeros in the rdf
with a linear potential. It assumes that BTL-rdf-C2.xvg
is the atomistic rdf, and that there is no
CG rdf, file rdf.xvg must not exist.

6c. Look at the tables with xmgrace, gnuplot, or excel

6d. We need the table twice
(ln -fs table.xvg table_BTL_BTL.xvg)

7. Make a CG configuration of the
atomistic configuration

7a. editconf -f BTL-atomist-conf.gro
-n BTL-atomist-C2.ndx -o BTL-CG-conf.0.gro

7b. select group "3" (we only want C2 atoms)

8. Prepare the CG simulation
(grompp -f BTL-CG-grompp.mdp -c BTL-CG-conf.0.gro
-p topol_BTL.top -maxwarn 1)
(You can ignore the warning as it
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Figure 4. Butanol RDFs: Target from atomistic simulation (blue solid line) and First iteration (red dashed line)

is just a difference in names)

9. Run the CG system (mdrun)

10. Make CG index file

10a. make_ndx -f BTL-CG-conf.0.gro
-o BTL-CG-index.ndx

10b. Quit (q). This adds the standard groups.

11. Calculate and visualize coarse-grained RDF

11a. g_rdf -f traj.trr -n BTL-CG-index.ndx

11b. Enter "2" twice (This means calculate
the rdf between all butanols)

11c. Visualize it (It got the standard name rdf.xvg)

12. Now you can play around with your CG
and atomistic data and
explore the communalities and differences.

Figure 4 shows the RDFs you calculated in steps 5 and 11. We see that for such a
simple model even without iteration we obtain a good representation. This was now the
initial direct Boltzmann inversion of the atomistic run. As we see a difference an iteration
is now in order. We first have to determine the difference in rdfs and invert that and add
to the potential. Then we rerun the CG and reanalyze it. We can skip a few steps as e.g.
all the index files exist already. So in detail the steps 13-19 below are now one complete
iteration.
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13. Save the old interaction table for reference
(mv table.xvg table-iteration0.xvg)

14a. Run rdf2pot again and make the updated interaction table
(./a.out > table.xvg) This again smooths the
rdf, calculates the potential and corresponding
force and fills the zeros in the rdf with a linear potential.
It again assumes that BTL-rdf-C2.xvg is
the atomistic rdf, and now assumes that
there is a CG rdf which is called rdf.xvg.
You can use other filenames. Just run
a.out -h for its usage.

14b. We again need it twice but the
symbolic link should still be good.

15. Compare the table with the older one.

16. You can this time use the output configuration
of the first iteration as the next input.
cp confout.gro BTL-CG-conf.1.gro

17. Prepare the CG simulation
(grompp -f BTL-CG-grompp.mdp -c BTL-CG-conf.1.gro
-p topol_BTL.top)
(There should be no warning this time)

18. Run the CG system (mdrun). Gromacs uses for output
again its standard names but back up and
numbers all earlier files existing under these names.

19. Calculate and visualize coarse-grained RDF

19a. g_rdf -f traj.trr -n BTL-CG-index.ndx

19b. Enter "2" twice (This means calculate the
rdf between all butanols)

19c. Visualize it.

After each iteration we have to decide if the current state of the system as represented
by its rdf is good enough or if we have to add another step. Clearly this can be automated
e.g. by shell scripting. The trickiest part is to decide when the model is good enough.
Essentially we have to define a tolerance. One integrates the difference between the target
and the current rdf (potentially multiplied by a weighting function) and compares to the
tolerance value.
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After we have now actually done a simple IBI application let us now discuss a few re-
cent applications where the IBI and other coarse–graining techniques were used for actual
research.

3.2 Iterative Boltzmann Inversion of an Organic Photovoltaic System

An example where IBI was successfully applied is an organic photovoltaic system (see
Figure 5 for snapshots).15 Poly(3-hexylthiophene) – P3HT – is the probably best studied
OPV polymer although it is not the most efficient. As IBI has to start from an atomistic
simulation we briefly describe the atomistic parent model from which the CG model was
derived. It bases on the tetrathiophene model of Marcon and Raos16 and was used as
100% regioregular P3HT (rr-P3HT), in which all monomers are joined head–to–tail. The
model originally was optimized using density functional theory calculations.16, 17 Most
Lennard–Jones potentials stem from the OPLS–AA model.18, 19 The simulation parameters
for the alkyl side–chain were taken directly from the OPLS-AA model,18, 19 except for
some charges.

It is always a good idea to validate the atomistic simulations against experiments before
starting the CG procedure. Here, e.g. the density of a monomer liquid (0.931±0.003 g/mL)
from a short NPT simulation of 256 3HT monomers at 298 K and 1 atm agrees well with
experiments (0.936 g/mL20) at the same thermodynamic conditions. The simulated density
(1.05 g/cm3) from a constant NPT simulation of a crystal of 3HT 12-mers also agrees with
the measured density (1.10± 0.05 g/cm321) of P3HT thin films.

After the atomistic simulations have been performed we have to choose the mapping.
The mapping which was used to design a coarse–grained model of P3HT in a mixture with
the simplest fullerene C60 used three sites for the P3HT monomer: A the center-of-mass
of the thiophene ring B the COM of the carbon atoms of the first three and C last three
side–chain methyl groups. A single site, the molecule’s COM, was used for the CG model
of C60. Figure 6 illustrates the coarse-graining scheme used.

The CG simulations in which the interactions were optimized were carried out at con-
stant temperature and volume. After optimization a pressure correction was applied. These

Figure 5. Snapshots of atomistic and coarse–grained representations of P3HT, relevant for organic photovoltaics.
Reprinted with permission from David M. Huang, Roland Faller, Khanh Do, and Adam J. Moulé: “Coarse–
Grained Computer Simulations of Polymer/Fullerene Bulk Heterojunctions for Organic Photovoltaic Applica-
tions” J Chem Theor Comp 2010, 6 (2), pp 526–537 Copyright (2009) American Chemical Society.

145



Figure 6. Chemical structure of a P3HT monomer and with coarse–grained mapping sites marked

Figure 7. Clusters of fullerenes are growing in a bulk–heterojunction simulation. Reprinted with permission from
David M. Huang, Adam Moulé and Roland Faller: “Characterization of polymer-fullerene mixtures for organic
photovoltaics by systematically coarse-grained molecular simulations” Fluid Phase Equilibria 2011, 301 (1-2),
pp 21-25 Copyright (2011) Elsevier.

pressure corrections to the non-bonded potentials resulted in almost no change to the cal-
culated RDFs.

The P3HT–P3HT interactions were optimized against pure P3HT at 550 K. Then, the
P3HT–C60 and C60-C60 CG interactions were optimized in simulations of 1.85:1 w/w
P3HT:C60 with the P3HT–P3HT CG interactions fixed. As these are quite complex
polymers in addition to the non-bonded interaction potentials bonded potentials includ-
ing bonds, angles, torsions and improper dihedrals were used. All bonded potentials were
fit to analytical functions based on polynomials. End monomers were excluded from all
distribution functions to minimize end effects. It took about 10 iterations to develop the
models.

After the model has been developed we can perform simulations on much larger sys-
tems than possible atomisticallly. An example of that is shown in Figure 7 where the
formation of fullerene clusters in a mixture of P3HT and C60 is calculated.22
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3.3 Tethered Lipid Bilayers using the Martini Model

This final example shows the use of a variant of the Martini model for a biophysical appli-
cation. Biomembranes which consist of lipid molecules arranged in bilayers are crucial for
compartmentalization of cellular systems. Simplified biomimetic systems containing only
a few lipid types are used to understand fundamental membrane properties and at the same
time can be used in bionanotechnology and drug delivery. Tethered lipid bilayer mem-
branes are a useful membrane mimetic system where a lipid bilayer is chemically grafted
to a solid substrate.

The GROMACS simulation suite version 4.5.2 was used with the MARTINI force
field 1.411 where each interaction site has an 0.47 nm effective size and weighs 72 amu.
The non–bonded interactions are described by Lennard-Jones potentials and a screened
Coulomb potential with forces shifted smoothly from 0.9 nm (LJ) and 0 nm (Coulom-
bic) to a cutoff of 1.2 nm, respectively. Harmonic potentials are used for bond and angle
interactions.

The system contains three types of molecules DOPC lipids, tethered DOPC lipids, and
water. Additionally there are immobile surface particles. We had to develop a new particle
type for the surface particles in order to represent a hydrophilic surface. We had to be
careful to avoid to strong an interaction as otherwise the surface acts as a nucleation site
and leads to freezing of the complete water. The interaction between the surface type – P1
– and the water type – P – is 1/3 the value between P and P; the interactions between P1
and the other particle types are 12% of the standard value in the MARTINI model between
P and the respective particle types.

In order not to change the interaction density of the surface we restrict ourselves to
simulations under constant area but allow the box to fluctuate in z-direction. We have of
course to ensure that the surface is tight and no particles leak through it. Another thing one
has to be aware of in this case that periodic boundary conditions are normally still applied
but the interaction between different replicas has to be completely negligible. As some of
the molecules are now chemically attached to the surface (like in a polymer brush) we have
to specify how they are geometrically ordered. We use a square lattice; in reality one does
not have control over this but can only control the average grafting density. The actual
grafting is done by fixing one interaction site in space close to the surface. Simulations
were performed for 0.15, 0.31, 0.44 and 0.60 tether/nm2 and different lengths of tethers.
Dynamics is not the topic of this chapter but here we have to mention that for this model one
normally has a speedup of 4, which means that the 20 fs time step used in the simulations
is assumed to equal 80 fs in real time. This mapping comes from the diffusion coefficient
of water. For details on the exact simulation conditions the reader is referred to articles
using this model23–26

Figure 8 shows snapshots of such a system with a tether density of 11% of all lipids.
The bilayers remain planar for short tether length but we see instabilities for longer chains
(15–20 PEG beads) where tethers start to aggregate. We clearly see a mechanism of insta-
bility. Atomistic simulations of such a system would be impossible, on the other hand for
this particular case the exact interaction parameters are not to crucial as here largely the
mechanisms as a function of more general properties like grafting density and chain length
are investigated. In general the Martini model offers excellent insight into mechanisms
with semi–quantitative agreement of numbers against experiments.
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Figure 8. Visualizations of tethered bilayers from 5 – 20 monomer tether length (increasing from left). Reprinted
with permission from Chueh Liu and Roland Faller: “Conformational, Dynamical. and Tensional Study of Teth-
ered Bilayer Lipid Membranes in Coarse-Grained Molecular Simulations” Langmuir 2012, 28 (45), pp 15907–
15915 Copyright (2012) American Chemical Society.

4 Conclusions

Coarse–graining today is not any more a matter of “if” but rather a matter of “how”. It is so
clear that for many problems models on different scales have to be developed and adapted.
In this chapter the focus was on the Iterative Boltzmann Inversion with an outlook to a
few other techniques like force–matching and using semi generic models like the Martini
model. Different techniques lead to different models. It is obvious that these different
models will behave differently and therefore describe different aspects of the system. No
technique will work for everything.

We explain how to do use the IBI in a simple system of butanol, discuss the general
theory behind it and show a larger modern example of organic photovoltaics.

All the techniques discussed here and many more need to be in the portfolio of a molec-
ular simulation team in order to be able to address modern questions.
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The understanding of charge transport in disordered organic semiconductors is crucial for
the development of devices based on these semiconductors, like organic light-emitting diodes
(OLEDs). The disorder leads to localization of the quantum-mechanical wave functions of
charges at specific sites. Charge transport takes place by an incoherent hopping process in-
volving phonon-assisted tunneling between those sites. Three approaches to calculate charge-
transport properties in disordered organic semiconductors are described and used here. The first
is a course-grained drift-diffusion (DD) approach, making use of a mobility function. This is
the state of the art in the field. The second approach is a master-equation (ME) approach to
calculate the average (and possibly time-dependent) occupational probabilities of sites. This
turns out to be a very powerful approach, and can be applied to situations in which carriers of
only one sign are present, such as in single-carrier devices. On-site Coulomb interactions are
taken into account by demanding that not more than one carrier can occupy a site. Long-range
Coulomb interactions between charges can be taken into account in an average way, which is
important for describing space-charge effects in organic devices. The approach does not allow
for an explicit treatment of Coulomb interactions, but this turns out not to be important in de-
scribing charge transport in single-carrier devices. The third approach is kinetic Monte Carlo
(MC). This approach provides the most realistic description of charge transport, because it sim-
ulates the actual occupation of sites. Coulomb interactions can be taken into account explicitly
in this approach. In principle, the implementation of the approach is straightforward, but spe-
cial techniques are required to keep the CPU time under control, such as optimized look-up and
update schemes, and the use of a cutoff on the Coulomb interaction. The MC approach is the ap-
propriate one for describing charge transport in double-carrier devices, such as OLEDs, because
Coulomb interactions play a crucial role in exciton formation in these devices. The application
of the approaches to answer various theoretical questions around charge transport in disordered
organic semiconductors and the simulation of various organic devices is demonstrated.

1 Hopping Transport

The organic semiconductors used in organic devices such as organic light-emitting diodes
(OLEDs), which are now coming to the market, consist of π-conjugated semiconducting
polymers or small semiconducting molecules. In either case, these semiconductors are
almost always disordered. This may seem problematic, because it limits the mobility of
charges. However, in OLEDs this is not a problem, since these devices are large-area
light sources, so that the current density and therefore the mobility does not need to be
large. Also, such devices do not need to switch very quickly: a display does not need to
switch more quickly than the eye can follow. The relatively easy synthesis and deposition
of organic semiconductors, their relatively low price, and their almost endless chemical
variability make them competitive to crystalline inorganic semiconductors in several ap-
plications, among which most notably LEDs.

The consequence of the disorder is that the quantum-mechanical wave functions of
charges in these semiconductors are localized, for example on a segment of a polymer
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in a polymeric semiconductor or on a molecule in a small-molecule semiconductor. It
is convenient to approximate these localization regions as point sites i located at positions
Ri. Charge transport then takes place by sudden events, called hops, where a charge jumps
from site i to another site j. This is an incoherent process caused by phonon-assisted
tunneling. The transition rate for this hopping is ωij . The hopping back from j to i is also
possible and the rates ωij and ωji should follow the principle of detailed balance:

ωij
ωji

= exp (∆Eij/kBT ) , (1)

where T is temperature and kB is Boltzmann’s constant. ∆Eij = Ei−Ej is the difference
in energy between the situations with the charge located at i or at j. This energy contains
all electrostatic energies (due to Coulomb interactions with other charges and possibly
an electric field), but also a random contribution because of the energetic disorder that
will inevitably be present. In order to avoid confusion with signs our default carriers will
be holes. Also, most comparisons with experiment will be for hole transport, because
transport of holes is better documented than that for electrons. For electrons, appropriate
signs should be introduced.

We will consider here two types of hopping rates that are often used in literature. Both
of these rates of course satisfy the condition Eq. (1). The first one is the Miller-Abrahams
(MA) hopping rate:1

ωij = ν0 exp [−2αRij ] exp [(∆Eij − |∆Eij |)/2kBT ] , (2)

where Rij is the distance between sites i and j, ν0 is an intrinsic hopping rate, and α is
an inverse decay length of the localized wave functions. This hopping rate was derived
for the case of coupling to a bath of acoustic phonons. For simplicity, we assume that the
inverse decay length α and the intrinsic hopping rate ν0 are the same for all (pairs of) sites.
In principle, further than nearest-neighbor hopping can be considered with MA rates, but
in practice (and at not too low temperatures) the nearest-neighbor hops are by far the most
important, because the relevant values of α are large (several times the inverse nearest-
neighbor distance). If all the nearest-neighbor distances are the same and equal to a, we
can absorb the factor exp [−2αa] into the prefactor and write for ME hopping

ωij = ω0 exp [(∆Eij − |∆Eij |)/2kBT ] , (3)

with

ω0 ≡ exp [−2αa] ν0. (4)

The second hopping rate we will consider is the Marcus one:2

ωij = ω0 exp(−∆E2
ij/4ErkBT ) exp (∆Eij/2kBT ) , (5)

with

ω0 ≡
J2

0

~

√
π

ErkBT
exp(−Er/4kBT ), (6)

where J0 is a transfer integral. Er is the energy due to the deformation of the nuclear lattice
upon charging (or decharging, the lattice deformation energies for charging and decharging
are assumed to be equal) of a site. The Marcus hopping rate therefore considers coupling
to local vibrations, or optical phonons. For simplicity, we only consider nearest-neighbor
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hopping and equal values for J0 for all nearest-neighbor pairs, and we assume Er to be the
same for all sites.

Studies of charge transport often focus on the charge-carrier mobility µ, which is the
average speed of the charge carriers divided by the electric field (dimension: m2/Vs). The
electric field F appears in the hopping rate via a contribution eFRij,x to ∆Eij for a field
in the x-direction, where e is the unit charge andRij,x is the x-component of Ri−Rj . An
important question is what the dependence is of the mobility on temperature and electric
field. Many experimental and theoretical studies of charge transport in organic semicon-
ductors have focused and are still focusing on this question.

2 The Disorder Energy Landscape

As mentioned in the previous section the site energies Ei contain a random contribution
Ei,rand. If this random contribution can be considered as the summed result of many
uncorrelated random effects, it is natural to assume that, because of the Central Limit
theorem, the site energies have a normal distribution. Accordingly, a Gaussian density of
states (DOS) is assumed for the random contribution:

g(E) =
1√
2πσ

exp

(
E2

2σ2

)
. (7)

The standard deviation σ in this Gaussian is henceforth called the disorder strength. Con-
sideration of this DOS has led to the Gaussian disorder model (GDM) for charge transport
in disordered organic semiconductors, which was pioneered by Bässler.3 It was found in
Ref. 3 that the energetic disorder is more important than the positional disorder, which has
led to the consideration of hopping models on regular lattices with only energetic disorder.

In the original GDM no correlation was assumed between the random contribution to
the site energies. In the comparison of the predicted and measured field dependence of the
mobility in some organic semiconductors it was concluded, however, that the field depen-
dence predicted by the GDM is not strong enough.4 It was suggested that the reason for
this is that there is actually a correlation in the random contribution to the site energies. It
was proposed that this correlation should be attributed to the presence of randomly oriented
dipoles in the semiconductor.4, 5 Placing a dipole di with fixed magnitude d and random
orientation on every site i, the random contribution to the site energies is given by:

Ei,rand = −
∑
j 6=i

edj · (Rj −Ri)

ε0εr |Rj −Ri|3
, (8)

where ε0 is the vacuum permittivity, and εr the relative dielectric constant of the semicon-
ductor, which is usually around 3. Eq. (8) leads to spatial correlation in the random con-
tribution to the site energies, which decays asymptotically as 1/R. The resulting model
for charge transport is called the correlated disorder model (CDM). It should be noted that
the DOS that follows from Eq. (8) is not precisely a Gaussian, because the Central Limit
theorem does not strictly apply.6 The relation between d and the disorder strength σ of
the approximate Gaussian DOS is d =

(√
3/A

)
σε0εr/eN

2/3
t , where Nt is the density of

sites. For a simple cubic (SC) lattice of sites the numerical factor A ≈ 16.532, whereas for
the face-centered cubic (FCC) lattice A ≈ 15.962.7
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3 The Master Equation

Using various techniques it is now possible to determine the charge-carrier mobility µ
within the GDM or CDM and to determine its dependence on T and F . The most straight-
forward way to do this is to put a carrier in the lattice of sites and to simulate its motion by
Monte Carlo (MC), where hops are chosen with a probability proportional to their rate.3

However, it was found a decade ago from studying the current density-voltage, J-V , char-
acteristics of hole-only devices of π-conjugated polymers that, apart from the dependence
of µ on T and F , also the dependence on the charge-carrier concentration, c, should be
taken into account.8 It was suggested that in describing these J-V characteristics the de-
pendence of µ on c is even more important than the dependence on F . In MC simulations
this would mean that the lattice should be filled with many carriers that interact with each
other, making these simulations complicated and CPU- time hungry (see Section 8). In-
stead, we can consider the average occupation pi of a site i and its change with time. The
most important effect of the interactions between carriers is that, because of strong on-site
Coulomb repulsion, only one carrier can be present at the same site. This leads to the
following equation of motion for pi, the Pauli master equation (ME):

dpi
dt

=
∑
j 6=i

[ωjipj(1− pi)− ωijpi(1− pj)] . (9)

The first term in this equation corresponds to a gain in occupation due to carriers that hop
from sites j surrounding i to i and the second term to a loss in occupation due to carriers
that hop from i to surrounding sites. The factors (1 − pi) and (1 − pj) account for the
maximum occupation of 1.

In a situation of stationary transport the left-hand side of Eq. (9) vanishes and the ME
becomes ∑

j 6=i

[ωjipj(1− pi)− ωijpi(1− pj)] = 0. (10)

Once the pi are solved from the coupled equations (10) for all i, the current density J
follows straightforwardly from the bond currents:

J =
e

LxLyLz

∑
i,j

ωijpi(1− pj)Rij,x, (11)

where Lx, Ly and Lz are the dimensions of the lattice.
Instead of solving for pi we can also solve for the electrochemical potential energy µ̄i

(not to be confused with the charge-carrier mobility µ), which is defined at every site in
terms of pi:a

pi =
1

1 + exp([Ei − µ̄i]/kBT )
. (12)

Solving for µ̄i is mathematically equivalent to solving for pi, but is in some cases more
convenient.

aWe use here the solid-state-physics definition of electrochemical potential energy. This means that it is not
necessarily constant across a device in equilibrium. In electrochemistry, µ̄ would be referred to as the chemical
potential energy.
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The main advantage of the ME over the MC approach is that no time averaging is
needed. As a result, it is often faster than the MC approach. The ME approach is also
especially useful for time-dependent modeling, e.g., in describing transients and alternating
currents. Another advantage is that, since pi is known for every site, it is much easier
to analyze the behavior of the system at the scale of single sites. The most important
disadvantage of the ME approach is that it is not possible to take the Coulomb interactions
between individual carriers into account, or to model real OLEDs with both holes and
electrons. Another issue is that solving Eq. (10) reliably and in a stable way is often quite
difficult, while the MC approach is guaranteed to converge eventually.

One could think that, accepting the assumption of only on-site Coulomb repulsion, the
ME approach is exact. However, this is not the case. Technically speaking, a mean-field
approximation has been made in the ME Eqs. (9) and (10), which neglects correlations
between occupations of different sites. Even with only on-site Coulomb repulsion, such
correlations are present. It turns out, however, that corrections due to non-zero correlations
are very small9 and therefore of no concern to us here.

4 Master-Equation Calculations for a Complete Device

The ME approach also allows calculation of the current in complete organic sandwich de-
vices, including charge-injecting and -collecting electrodes. In such calculations, a distinc-
tion must be made between the organic sites and sites describing the electrodes. Electrode
sites, representing a metal or a metal-like layer, all have the same energy (the work function
of the electrode material) and are neither occupied nor unoccupied: a carrier can always
hop to or from one. This is implemented in the calculations by placing two layers of sites at
each electrode, one unoccupied (pi = 0) and one occupied (pi = 1). Each of these layers
is directly accessible from the adjacent layer of organic sites.

Coulomb interactions are taken into account through the long-range space-charge effect
only, which lead to an electric field in the x-direction perpendicular to the electrodes. (As
noted above, it is not possible to take into account explicit Coulomb interactions between
individual carriers in the ME approach.) This leads to a self-consistency problem, since the
hopping rates ωij in Eq. (10) depend on the occupations pi. To compute this dependence
explicitly, we determine the electric potential Vi at every site i, which is iteratively defined
by

Vi = Vi−1 − Fi−1(xi − xi−1), (13)

where Fi is the electric field between sites i and i+ 1, and xi is the x-coordinate of site i,
with the indices chosen so that the sites are ordered in the x-direction. We set V1 = 0 by
convention. The field Fi is determined by the space-charge approximation, i.e., we spread
out the charge on site i over the full lateral layer:

Fi = Fi−1 +
epi

ε0εrNtLyLz
, (14)

where F0 must be chosen such that the total voltage over the device matches the desired
voltage:

VN = V − Vbi, (15)
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where N is the total amount of sites and Vbi is the built-in voltage, i.e., the differ-
ence in work function between the electrodes. We efficiently compute Vi by first setting
F0 = 0 and iteratively calculating the resulting electric potential, which we call V (0)

i , from
Eqs. (13) and (14). From there we can straightforwardly calculate the correct value of F0,

F0 = (V − Vbi − V (0)
N )/L, (16)

where L = Lx is the thickness of the organic layer. It is not necessary at this point to redo
the calculation for the Vi’s; they are simply given by

Vi = V
(0)
i − F0xi. (17)

These resulting Vi’s obey Eqs. (13)-(15), and can be used to compute the energy difference
used in the hopping rates. We note that this approach can also be applied when the sites
are not ordered in layers.

The exact solution at zero voltage can also be determined using this approach. An extra
wrinkle is now that pi, required in Eq. (14), is initially unknown. However, we note that
by the time we need it, Vi has already been computed. Since thermal equilibrium applies,
we have µ̄i = eVi + eΦleft, with Φleft the work function of the left electrode. We can
then obtain pi from Eq. (12). When we have done this for all sites, we check whether VN
satisfies Eq. (15); if not, we adjust our initial guess for F0 and rerun the method until it
does.

5 Master-Equation Calculations with Periodic Boundary Conditions

In periodic boundary conditions calculations, our goal is to determine the charge-carrier
mobility µ. This requires uniform conditions, so instead of using electrodes as boundary
conditions in the x-direction we use periodic boundary conditions, just like we do for all
cases in the y- and z-directions. In addition, no space-charge effects are taken into account;
the electric field F , which we take in the x-direction, is uniform throughout the lattice. An
additional equation must be added to the system of equations given by Eq. (10) to fix the
carrier concentration c:

1

N

∑
j

pj = c. (18)

Without this additional equation the system is singular, i.e., it allows multiple solutions.
This can be verified by summing Eq. (10) over all i, which yields 0 = 0. After solving
the set of equations (10) and (18) for the pi’s, the current density and carrier mobility
µ = J/ecNtF follow from Eq. (11).

In equilibrium, i.e., F = 0, the solution is given by a constant electrochemical potential
µ̄i = EF, with EF the Fermi energy, which must be chosen such that Eq. (18) is obeyed.
Written in terms of the pi’s this solution is the Fermi-Dirac distribution:

pi =
1

1 + exp([Ei − EF]/kBT )
. (19)

It can be verified straightforwardly that this solution indeed obeys Eq. (10) and leads to
J = 0 in Eq. (11).
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A significant problem in determining µ is that at low carrier concentration the charge
transport is largely determined by the few sites with lowest energy. This is because these
sites trap most of the charge carriers. For large disorder, the number of such sites can vary
significantly between realizations of the disorder, even for very large lattice sizes up to
100 × 100 × 100 sites in the case of, e.g., an SC lattice. We can, of course, average the
mobility over multiple realizations, but this does not solve the issue because this average
is not necessarily equal to the actual Lx = Ly = Lz = L → ∞ value of the mobility in
the thermodynamic limit. For low values of L the mobility is significantly higher than the
actual value, even after averaging over multiple realizations of the disorder. Lukyanov and
Andrienko proposed simulating small systems at high temperature and then extrapolating
the low temperature behavior,10 but this requires a priori knowledge of the temperature
dependence.

An approach to solve this problem is to fix the Fermi energy instead of the carrier
concentration. We first determine the Fermi energy corresponding to the desired carrier
concentration using the Gauss-Fermi integral:

c =

∫ ∞
−∞

g(E)

1 + exp([E − EF]/kBT )
dE. (20)

After solving this equation for EF, we use as zero-current solution µ̄i = EF. This leads
to a carrier concentration in the system that is not necessarily equal to the desired carrier
concentration c. We simply accept this concentration as the one to use in Eq. (18), which
then becomes: ∑

j

pj =
∑
j

1

1 + exp([Ej − EF]/kBT )
. (21)

The method proceeds as usual from there, i.e., we solve the system given by Eqs. (10) and
(21) for the desired field F . The advantage of this approach is that the effect of outlier
sites trapping carriers is reduced. For example, suppose that a certain realization of the
disorder has more outliers than usual. This simply leads to a higher right-hand side in
Eq. (21). In other words, we are adding additional carriers to fill these trapping sites.
With this approach, the dependence on lattice size is significantly reduced. This method is
used for almost all results presented here. We do note that when considering large fields,
the effectiveness of this method is reduced, because the Fermi-energy concept no longer
applies. The dependence of the results on lattice size is then much stronger.

6 Solving the Master Equation Iteratively

Yu et al. introduced an explicit iterative method to solve the master equation Eq. (10),11

which has been the dominant solution method for several years. In this method, we start
with the equilibrium solution as described in Sections 4 and 5. The probabilities pi are
then updated one by one by solving Eq. (10) for pi, yielding:

pi = 1/

[
1 +

∑
j ωij(1− pj)∑

j ωjipj

]
. (22)
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Whenever a probability is updated according to this equation, that updated value is used
for all further calculation within the same iteration. These iterations are repeated until
satisfactory convergence is achieved.

Both calculations for complete devices and those with periodic boundary conditions
require some specific modifications. For device calculations, updating pi will also change
all hopping rates ωij , because the space charge and the resulting electric field change. In
practical calculations, we keep the rates fixed while applying the iterative method. Once
this method has converged, we recompute the rates. These two steps are repeated until
overall convergence is satisfactory.12

For calculations with periodic boundary conditions, we must make sure that the re-
quirement of fixed carrier concentration Eq. (18) is satisfied. The initial equilibrium dis-
tribution satisfies this requirement, but the iterations defined by Eq. (22) do not conserve
carrier concentration. This problem is solved by first allowing the iterative method to con-
verge and then determining the electrochemical potential energy µ̄i from Eq. (12). We
then shift µ̄i by a constant value for all sites, chosen such that Eq. (18) is satisfied. This
running of the method of Yu et al. followed by rescaling the potential is repeated until both
Eqs. (10) and (18) are satisfied to within specified tolerances.

Although the method of Yu et al. has been successfully applied in several cases,11–16 it
does not reliably converge for large disorder (σ/kBT & 6). For those cases a combination
of the method with Newton’s method does lead to reliable results. For this combined
method we refer to Ref. 17.

7 The Drift-Diffusion Equation

On a course-grained level the organic semiconductor can be viewed as a homogeneous
material with a charge-carrier mobility µ of which in organic-device simulations at a fixed
temperature only its dependence on the carrier concentration c and the electric field F is
important. Instead of the carrier concentration c (dimensionless) it is often convenient to
switch over to the carrier density n = cNt (dimension: m−3). With a mobility function
µ(n, F ) the current density J in a single-carrier sandwich device consists on a course-
grained level of the sum of a drift and a diffusion contribution:

J = eµ(n, F )n(x)F (x)− eD(n, F )
dn

dx
, (23)

where x is the distance from the anode (we consider the case of holes here, so that the
anode is the injecting contact). The diffusion coefficient D is related to the mobility by the
generalized Einstein expression:18

D(x) =
µ(n, F )n

e

dEF

dn
, (24)

where EF is the Fermi energy. Insertion into Eq. (23) yields

J = µ(n, F )n(x)

[
eF (x)− dEF

dn

dn

dx

]
. (25)

The field and carrier density are also related by Gauss’ law:

dF

dx
=
en(x)

ε0εr
. (26)
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Eqs. (25) and (26) together form a system of differential equations that can be solved for n
and F . We will call this the drift-diffusion (DD) approach.

We also need to specify boundary conditions at the electrodes. The boundary condi-
tions at the anode (x = 0) and cathode (x = L) are given by assuming thermal equilibrium
with the electrodes. Omitting image-charge effects (a carrier close to an electrode gener-
ates an image charge in the electrode with which it interacts), we obtain

EF(0) = Φleft, EF(L) = Φright, (27)

where Φleft and Φright are the work functions of the electrodes. The densities n(0) and
n(L) follow from these values of EF via the Gauss-Fermi integral Eq. (20).

In an experiment one typically applies a chosen voltage and measures the current.
When solving the above equations, it is easier to fix the current and determine the volt-
age, since otherwise J has to be treated as an unknown. At this point the problem is a
well-posed boundary value problem. Typically one would now determine the solution on
a grid in the x-direction using finite-element or finite-difference techniques. However, for
our specific case of single-carrier devices one can convert the problem to an initial-value
problem, which is easier to solve. To accomplish this, we guess F (L) instead of specifying
n(0).b Since we now know both F (L) and n(L), we can solve for F (x) and n(x) using a
standard differential equation solver (for example in Mathematica). We then simply check
if the value of n(0) is consistent with Eq. (27). If not, we try a new guess of F (L). Us-
ing this approach, it is possible to determine J-V characteristics and field/density profiles
quickly, reliably, and accurately.

8 Monte Carlo

The kinetic Monte Carlo (MC) approach simulates the hopping model as described in
Section 1 with no further approximations. We provide here a brief overview of the main
features of an implementation of this approach. A complete description can be found in
Ref. 19.

The method keeps track of the full state of the system, i.e., the locations of all charge
carriers. A simulation step consists of choosing and carrying out one of the possible hops
from an occupied site i to an empty one j (or to/from one of the electrodes), with the prob-
ability of each hop weighted by its rate ωij . This choice of hop and the necessary update of
the hopping rates after the hop are made efficiently by keeping track of all hopping possi-
bilities and their rates using a binary search tree, which reduces the look-up time for a hop
to be executed as well as the update time of the hopping rates after the hop to a scaling as
M lnM , with M the number of carriers in the system. After each hop, time is advanced
with a time step that is randomly drawn from an exponential distribution with a decay time
equal to the inverse of the sum of the rates of all possible hops. One can mathematically
prove that by following this procedure the evolution of the system is precisely simulated as
it should be according to the hopping rates. Typically, we start with an empty system and
run the simulation long enough to achieve a steady state. After that, we continue running
the simulation for some time while measuring the desired quantities, such as the current
density.

bAlternatively, one could guess F (0), but working from right to left turned out to be faster.
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The method can take Coulomb interactions between individual charge carriers (and
their image charges, if required) into account when computing the energy difference ∆Eij
associated with a hop. However, without a cutoff on the Coulomb interactions the hopping
rates of all charges would have to be updated after a hop, which would lead to an unde-
sirable scaling of the CPU time with M2. Instead, we split the Coulomb interaction into
a short-range direct interaction and a long-range space-charge interaction, where the latter
is only important in device simulations. Direct interactions are calculated explicitly only if
two charges are within a spherical region around each other with a Coulomb cutoff radius
RC (a constant is subtracted from the Coulomb interaction within this sphere such that the
interaction is zero at the sphere boundary). Outside this sphere, we consider a charge to
contribute to a uniform sheet charge, which is considered as the space charge, giving rise
to an internal x-dependent electric field that is treated in the usual way. To avoid double
counting of interactions, disc-shaped regions forming the overlap between the spherical
regions and the sheets have to be cut out from the sheet charge.19 The resulting scaling
of the CPU time can be limited to M lnM , which means that very large systems can be
simulated. For RC → ∞, the method is exact (of course at the expense of CPU time)
and this allows one to check what value of RC provides sufficiently accurate results. For
all results presented here for SC lattices with lattice constant a = N

−1/3
t , RC = 8a was

used and found to be sufficient, i.e., increasing RC further does not significantly affect the
results.

The main advantage of the MC approach is that it can fully simulate the hopping model
with no simplifications. Unlike the ME approach it can also handle actual OLEDs, where
both holes and electrons hop through the device and generate excitons. The main disad-
vantage is that the method can be slow, since one needs to first allow the system to relax
and then run long enough to collect sufficient statistics. This problem is especially severe
when the current density is low. It also makes it more difficult to obtain detailed statistics
at the site level, such as the occupation probabilities.

9 Example: a Hole-Only Device

All three approaches described above will now be applied to an example hole-only device
with an SC lattice, MA nearest-neighbor hopping, disorder strength σ = 0.122 eV, site
density Nt = 4.28 × 1026 m−3 (corresponding to a lattice constant a = N

−1/3
t = 1.33

nm), hopping attempt rate ω0 = 5.77× 109 s−1, and relative dielectric constant εr = 3.2.
For the device length we take L = 122 nm, corresponding to 91 organic layers. At the
anode we take no injection barrier, while at the cathode we take a work function 1.8 eV
below the highest occupied molecular orbital (HOMO), i.e. Vbi = 1.8 V. These parameters
correspond to a hole-transporting polyfluorene-triarylamine (PF-TAA) device studied by
van Mensfoort et al.20 The values used here are slightly different from those reported in
that work; they were recently determined for the same device after three years of aging.

Room-temperature current density-voltage (J-V ) characteristics for this device, ob-
tained using the three discussed approaches, are shown in Figure 1. The mobility function
µ(n, F ) in the DD approach was obtained by including the carrier-concentration depen-
dence in the GDM. We call the resulting model the extended Gaussian disorder model
(EGDM). The dependences of µ on T , n, and F were obtained by performing ME cal-
culations of the mobility on SC lattices with up to 100 × 100 × 100 sites using periodic
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Figure 1. Current density as function of voltage for the example device at room temperature, computed using
three different approaches.

boundary conditions. The resulting function µ(T, n, F ) was parameterized in Ref. 14 and
this parametrization was used in the DD approach.

We observe from Figure 1 that the three approaches essentially lead to the same result,
which is very reassuring. The very small difference between the ME and MC results shows
that the influence of short-range Coulomb interactions is insignificant. The very small
difference with the DD results shows that the course-graining implied by the DD approach
is in this case allowed, which means that it makes sense to speak about a local mobility
in the device that varies with position. The experimental J-V curve is not included in
Figure 1. It would essentially coincide with the theoretical data.20

10 Transients

The above approaches also allow the calculation of time-dependent properties. Time-
dependent experiments on organic devices provide information that cannot be obtained
from stationary experiments, such as the measurement of a J-V curve. An easy time-
dependent experiment is the measurement of the current transient after a voltage step. This
is called a “dark injection” (DI) transient, because the voltage step injects extra carriers
in an unilluminated device, which subsequently travel through the device and change the
current.

For the example device the DI transient after a voltage step from 1.5 to 8 V is given by
the thin black line in Figure 2. After the voltage step an initially large current flows because
the current is not yet impeded by the space charge. Because of the build-up of space charge
the current decreases. When the front of the space charge reaches the collecting electrode
(the cathode), the current shows a maximum (indicated by an arrow) and then continues
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Figure 2. Dark-injection transient for the example device at room temperature. The voltage over the device is
stepped from 1.5 to 8 V. Thin black curve: experiment. Thick black curve: master equation with disorder strength
σ = 0.122 eV. Dotted curve: master equation with disorder strength σ = 0.08 eV. Gray curve: drift-diffusion
with σ = 0.122 eV. The arrows indicate maxima in the current that signal the arrival of the front of the injected
space charge at the collecting electrode.

to decrease to the steady-state value at 8 V. In a simple theory with a constant mobility
µ0 in which only drift is taken into account the maximum in the current appears at a time
0.786L2/µ0V ,21 so that this time could be used to extract information about the mobility.
The transient obtained from the DD approach is given by the gray line. In this approach
the mobility at a position x is supposed to depend on the instantaneous charge density and
electric field at that position. The maximum in the DD transient occurs about a factor three
in time too late. The reason is that carrier-relaxation is not accounted for in this approach.
When instead the ME approach is used (thick black lines) the maximum transforms into
a shoulder that appears at about the right time. In the ME approach relaxation effects
are properly accounted for, but too strong dispersive effects in the transport wash out the
maximum. These dispersive effects can be reduced by reducing σ. In fact, when σ is
reduced from the value σ = 0.122 eV obtained from the fit to the J-V curves to σ = 0.08
eV, the maximum appears and the transient agrees rather well with experiment. In this
reduction of σ also the prefactor ω0 in the MA hopping rates Eq. (3) should be reduced
to obtain the right steady-state current density. This points at a possible overestimation
of σ by the fit to the J-V curves. In fact, a reasonable fit to these curves can also be
obtained with σ = 0.08 eV.22 This shows that transient currents can be fruitfully used in
extracting information about charge transport in disordered organic semiconductors and
provide additional information to that obtained from J-V characteristics.
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a b

Figure 3. Experimental J-V characteristics (symbols) at various temperatures for an NRS-PPV hole-only device
with a thickness L = 560 nm, and best fits (lines) with (a) the EGDM mobility and (b) the ECDM mobility
model.

11 Uncorrelated or Correlated Disorder?

Just like the extension of the GDM to the EGDM, the CDM can be extended to the ex-
tended correlated model (ECDM) when the dependence on charge-carrier concentration is
included.16 One can now ask the question with which model J-V curves can be fitted best:
the EGDM or the EDCM? In Figure 3 fits to both models are shown of J-V characteristics
of hole-only devices with L = 560 nm of poly[4-(3,7-dimethyloctyloxy)-1,1-biphenylene-
2,5-vinylene] (NRS-PPV). The fit parameters were the intersite distance a ≡ N

−1/3
t and

the disorder strength σ. The theoretical curves were calculated with the DD approach us-
ing the EGDM parametrization from Ref. 14 and the ECDM parametrization of Ref. 16. It
is clear that with both models excellent fits can be obtained. However, while the disorder
strength σ = 0.18 eV obtained from the fit with the ECDM is rather large but still accept-
able, the intersite distance a = 0.3 nm is much smaller than acceptable from the knowledge
of the structure of the polymer. On this ground, the ECDM is rejected in this case and the
EGDM is accepted as the most appropriate model. More studies of single-carrier (hole-
only and electron-only) devices of polymeric20, 23 and small-molecule24, 25 semiconductors
lead to the provisional conclusion that charge transport in polymeric semiconductors can be
better described with the EGDM, but in small-molecule semiconductors with the ECDM.

12 Random-Resistor Network

The master equation, Eq. (10), can be written in terms of the electrochemical potential
energy µ̄i defined by Eq. (12):

∑
j

eωij,symm sinh
[
µ̄i−µ̄j+eFRij,x

2kBT

]
2 cosh

[
Ei−µ̄i
2kBT

]
cosh

[
Ej−µ̄j
2kBT

] = 0, (28)
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where

ωij,symm = ωji,symm = ωij exp (−∆Eij/2kBT ) (29)

is the symmetrized rate, on the basis of Eq. (1). The electric field F is again applied in the
x-direction. At low F , we can linearize Eq. (28) in F , µ̄i − EF, and µ̄j − EF, to obtain∑

j

eωij,symm (µ̄i − µ̄j + eFRij,x)

4kBT cosh
[
Ei−EF

2kBT

]
cosh

[
Ej−EF

2kBT

] = 0, (30)

where the electric field is now no longer included in the definition of Ei and Ej , so these
energies are now solely the random energies chosen from the DOS. Eq. (30) can also
be read as Kirchhoff’s law of current conservation, with µ̄i − µ̄j + eFRij,x the voltage
difference and the bond conductance Gij given by

Gij =
e2ωij,symm

4kBT cosh
[
Ei−EF

2kBT

]
cosh

[
Ej−EF

2kBT

] . (31)

The problem of determining the charge-carrier mobility µ is now equivalent to determining
the network conductance Gnetwork of this random-resistor (RR) network. The relationship
with µ is straightforward:

µ =
Lx

LyLzecNt
Gnetwork. (32)

We note that the RR network approach to the ME is not an approximation. Up to this point,
the RR and ME formulations of the hopping problem are mathematically identical in the
limit of small F .

13 Percolation Theory and Scaling Ansatz

Σ�kBT=1 Σ�kBT=3 Σ�kBT=10

Figure 4. Normalized current (line opacity) in bonds of a 15× 15 square lattice. The red circles indicate bonds
with a power dissipation of at least 30% of the maximum power dissipation. The results shown are for un-
correlated Gaussian disorder, Marcus hopping with reorganization energy Er→∞, and carrier concentration
c = 10−5. A small electric field has been applied from left to right.
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To demonstrate the percolative nature of charge transport in disordered organic semi-
conductors, we consider the spatial distribution of current and power dissipation in the RR
network, as shown for a 2D system in Figure 4. In the case of low disorder (left panel),
the current and power distributions are very homogeneous. Although there are small local
variations, these do not extend to a scale of more than a few bonds. This regime can be
accurately described using effective-medium theory,26 in which the average effects of the
random resistors are described by an effective medium. This theory matches the simulation
results for σ/kBT . 2 in a 3D system (see the dashed curve in Figure 5). However, it is
not accurate in the experimentally relevant regime 3 . σ/kBT . 6.
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Figure 5. Dependence of the charge-carrier mobility µ on temperature T for Marcus hopping with reorganization
energy Er→∞, a simple-cubic (SC) lattice, and uncorrelated Gaussian disorder. Triangles: master equation
(ME) simulation results. Solid curve: scaling Ansatz, Eq. (35), with A = 1.8 and λ = 0.85. Dotted curve:
standard percolation theory, Eq. (33), with H = 0.3. Dashed curve: effective-medium theory (Eq. (5.4) in
Ref. 26).

We now consider the opposite limit of high disorder (right panel in Figure 4). In this
case, the current follows only the path of least resistance. Along this path, the bond with
lowest conductance determines the overall conductance (this is the circled bond in the fig-
ure). We will call this bond the critical bond, and its conductance the critical conductance,
Gcrit. According to this reasoning, we should expect Gcrit = Gnetwork, but this would
lead to a system-size dependence of the mobility; see Eq. (32). For this reason, percolation
theories for the charge-carrier mobility generally take the following form:27–30

µ =
H

N
2/3
t ec

Gcrit, (33)

for some constant H that does not depend on T or c. This standard percolation approach,
however, does not quantitatively match the simulation results (see the dotted curve in Fig-
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ure 5).
We now focus on the case of intermediate disorder (middle panel in Figure 4). We

clearly see the percolative nature of the transport here, with the current being funneled
through high conduction pathways. However, there are now multiple bonds with high
power dissipation. This indicates that the mobility is determined not only by the critical
conductance, but also by the amount of bonds with such conductance. Dyre et al. in-
troduced the term ‘fat percolation’ for this phenomenon.31 To quantify this ‘number of
bonds’, we use the partial density function of the bond conductances f . We only use the
value of this function at Gcrit, f(Gcrit). This is justified when the disorder is high enough;
bonds with conductance well above Gcrit can then be considered as perfectly conducting,
and those with conductance well below Gcrit as perfectly insulating. Concluding that the
mobility only depends on Gcrit and f(Gcrit), and using the fact that it must scale linearly
with Gcrit, we find

µ =
1

N
2/3
t ec

Gcrith[Gcritf(Gcrit)], (34)

for some dimensionless function h. Since percolation can be viewed as a critical phe-
nomenon, with a critical point at f(Gcrit) = 0, it is logical to propose as a scaling Ansatz
for this function h a power-law form:32, 33

µ =
A

N
2/3
t ec

Gcrit[Gcritf(Gcrit)]
λ, (35)

where the constants A and λ do not depend on T or c.
This scaling Ansatz is tested by comparison to simulation results in Figure 5, with the

values ofA and λ fitted to the data. The values ofGcrit and f(Gcrit) were determined using
the methods described below. We see that for σ/kBT & 1 the scaling Ansatz matches the
ME simulation accurately. For σ/kBT . 1, not only f(Gcrit), but the whole distribution
f(G) becomes important and the approach fails.

14 Determining the Critical Conductance

To derive a simple expression for the charge-carrier mobility from Eq. (35) we need to
computeGcrit and f(Gcrit). To findGcrit, let us consider the percolation problem in detail.
There is a percolation threshold pbond, such that the portion pbond of bonds with highest
conductivity just forms an infinitely large connected network, the percolating network.27

The critical conductance Gcrit is the lowest conductance occurring in this network. Gcrit

and pbond are related through

1− Φ(Gcrit) = pbond, (36)

with Φ(G) the cumulative distribution function of the distribution of bond conductances,
i.e., Φ(G) is the probability that a randomly chosen bond has a conductance lower than or
equal to G. Since Gij depends only on the energies of the bond sites Ei and Ej , we can
work in the (Ei, Ej)-space to obtain

1− Φ(Gcrit) = pbond =

∫∫
G(Ei,Ej)>Gcrit

g(Ei)g(Ej)dEidEj , (37)
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where g(E) is the density of states.c In words, Gcrit is determined by the requirement that
the contour defined by G(Ei, Ej) = Gcrit in the Ei-Ej plane encloses a portion pbond of
bonds. This concept is illustrated in Figure 6(a), where the black contour corresponds to
G = Gcrit.
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Figure 6. (a) Contours of constant bond conductance (using Eq. (31)) in the Ei-Ej plane for Miller-Abrahams
(MA) hopping, Fermi energy EF = −3σ, and σ/kBT = 4 (corresponding to c = 0.0033). The black curve
is the contour corresponding to the critical conductance Gcrit for uncorrelated Gaussian disorder and an SC
lattice. Ei andEj are the energies of the sites linked by the bond. The arrow indicates the direction of increasing
conductance. (b) Same Gcrit contour, using the exact bond conductances as given by Eq. (31) (black) and using
the approximation Eq. (38) (dark gray). The checkered area indicates the bonds erroneously considered to have
conductance above Gcrit by Eq. (38).

To proceed, we will approximate the exact bond conductances given by Eq. (31). If the
Fermi energy EF is well below the site energies Ei and Ej , the hyperbolic cosine terms
become exponentials, leading to

Gij =
e2ωij,symm

kBT
exp

(
EF

kBT
− Ei + Ej

2kBT

)
. (38)

In general, EF is not low enough for this approximation to be accurate for all bonds.
However, this only matters in determining Gcrit if bonds are incorrectly determined to be
above or belowGcrit. These bonds are indicated by the checkered area in Figure 6(b). This
area is located at low energies and so contains few bonds (about 0.1% of all bonds in this
example). This means that using Eq. (38) instead of Eq. (31) will not significantly affect
the value of Gcrit. We will therefore use Eq. (38) henceforth. We will see later that this is
accurate for c . 0.01.

The final step in deriving Gcrit is realizing that, for both MA and Marcus hopping, Gij
can now be written as

Gij =
e2ω0

kBT
exp

(
EF − E(Ei, Ej)

kBT

)
, (39)

cFor simplicity, we have assumed the energy disorder to be uncorrelated; in the case of correlated disorder, we
would have to consider the joint density of states g(Ei, Ej) in Eq. (37), but this does not affect our results.
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where E is an energy function of Ei and Ej that does not depend on T or c. We note
that the energy dependence of ωij,symm is also included in this function. This allows us to
rewrite Eq. (37) as

1− Φ(Gcrit) = pbond =

∫∫
E(Ei,Ej)<Ecrit

g(Ei)g(Ej)dEidEj , (40)

with the critical energy Ecrit related to the critical conductance Gcrit by

Gcrit =
e2ω0

kBT
exp

(
EF − Ecrit

kBT

)
. (41)

Eq. (40) defines the percolation problem independently of T and c. Thus, Ecrit is itself
independent of T and c, and so Eq. (41) gives the dependence ofGcrit on T and c. Eq. (40)
also shows that the percolating network itself is independent of T and c, a fact that was
until now assumed. We note that this does not imply that the structure in the current
flow is independent of T and c; indeed, it can be seen in Figure 4 that it does depend on
temperature.

To complete our expression for the mobility we also need to find f(Gcrit). By defini-
tion, the partial density function f is the derivative of the cumulative distribution function
Φ, so to find f(Gcrit) we can, slightly abusing the notation, take the derivative to Gcrit of
Φ(Gcrit) as found above:

f(Gcrit) =
dΦ

dGcrit
=

dEcrit

dGcrit

dΦ

dEcrit
(42)

=
kBT

Gcrit

d

dEcrit

[∫∫
E(Ei,Ej)<Ecrit

g(Ei)g(Ej)dEidEj

]
.

Here, dEcrit/dGcrit is found from Eq. (41) and dΦ/dEcrit from Eq. (40). The second
factor can be computed numerically. Since it is independent of T and c anyway, we include
it in a new constant B:

B ≡ AWλ

(
d

dEcrit

[∫∫
E(Ei,Ej)<Ecrit

g(Ei)g(Ej)dEidEj

])λ
, (43)

withW the width of the DOS, which we introduce to makeB dimensionless. For Gaussian
disorder we use W = σ. The choice of W is somewhat arbitrary, but does not affect the
final result.

Combining Eqs. (35), (41), (42) and (43) now yields a simple expression for the tem-
perature and carrier concentration dependence of the zero-field charge-carrier mobility:

µ(T, c) = B
eω0

N
2/3
t Wc

(
W

kBT

)1−λ

exp

[
EF(T, c)− Ecrit

kBT

]
. (44)

This is the central result of this section. The parametersB, λ and Ecrit do not depend on T
or c, although they typically do depend on the type of lattice, hopping, and energy disorder.

15 Application of the Scaling Expression to Different Hopping
Models

In this section we will show how to apply the scaling expression derived above to different
hopping models, i.e., different types of lattice, hopping rate and energy disorder. We first
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show how to find the parameters in the scaling theory (A, B, λ, pbond and Ecrit), and list
their values for several hopping models.

The simple scaling expression derived in the previous section, Eq. (44), applies to a
wide range of hopping models, but we need to find the values of the parameters involved
for each model. Specifically, we need to find the percolation threshold pbond, the prefactor
A and the scaling exponent λ (see Eq. (35)). From these we can also derive the critical
energy Ecrit (through Eq. (40)) and prefactor B (through Eq. (43)).
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Figure 7. (a) Dependence of µ on T for different lattices and hopping rates, with uncorrelated Gaussian disorder.
Symbols: ME. Curves: scaling expression, Eq. (44), with values of B, λ, and Ecrit as given in Table 1. For
clarity the mobilities for Marcus hopping have been multiplied by 10. (b) Same for dipole-correlated disorder,
with parameter values as given in Table 2.

We first consider the case of uncorrelated disorder. We start by determining pbond

from a percolation analysis. Specifically, we generate the 3D lattice and energy disorder,
and calculate the bond conductances using Eq. (38). We then find the critical path from left
to right, defined as the path for which the minimum bond conductance along this path is the
highest among all paths. To find the critical path we use a modified version of Dijkstra’s
shortest-path algorithm34 with binary heap sorting.35 The critical bond is the bond with
minimum conductance along the critical path. pbond is then simply the portion of bonds
with conductance at or above the conductance of the critical bond Gcrit. Note that this
approach also directly gives the values of Ecrit and f(Gcrit). Next, we use the ME method
to numerically determine the temperature dependence of the charge-carrier mobility. We
then fit Eq. (35) to these values, with A and λ as fitting parameters. The value of B finally
is calculated from Eq. (43). The parameter values thus obtained for uncorrelated Gaussian
disorder are listed for different types of hopping and lattice in Table 1, and the accuracy of
the resulting mobility is shown in Figure 7(a).

For Marcus hopping, the dependence of the parameter values on the reorganization
energy Er requires some extra attention. In principle we should consider each value of Er

as a separate hopping model, with its own values of the scaling parameters. However, we
found that A and λ depend only weakly on Er; the values of A and λ for Er→∞ given in
Table 1 can also safely be used at finite Er. The dependence of the percolation threshold
pbond on Er cannot be neglected, but pbond can be found from the percolation analysis
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Uncorrelated Gaussian disorder

Lattice Hopping Er[σ] pbond A λ B Ecrit[σ] C
SC MA N/A 0.097 2.0 0.97 0.47 −0.491 0.44
SC Marcus ∞ 0.139 1.8 0.85 0.66 −0.766
SC Marcus 10 0.131 1.8 0.85 0.63 −0.748 0.69
SC Marcus 3 0.118 1.8 0.85 0.59 −0.709 0.49
SC Marcus 1 0.104 1.8 0.85 0.51 −0.620 0.44
FCC MA N/A 0.040 8.0 1.09 0.7 −0.84 0.40
FCC Marcus ∞ 0.058 8.0 1.10 1.2 −1.11
FCC Marcus 10 0.054 8.0 1.10 1.1 −1.09 0.66
FCC Marcus 3 0.048 8.0 1.10 1.0 −1.06 0.45
FCC Marcus 1 0.042 8.0 1.10 0.8 −0.98 0.40

Table 1. Bond percolation threshold pbond, prefactorA, critical exponent λ in Eq. (35), prefactorB, and critical
energy Ecrit in Eq. (44), for uncorrelated Gaussian disorder. The last column gives the value C in an optimal fit
of the low carrier-concentration mobility µ0(T ), as given by Eq. (47), to exp(−Cσ̂2) in the range 2 ≤ σ̂ ≤ 6,
with σ̂ = σ/kBT . The number of digits given in each entry is compatible with the accuracy with which the
parameters could be obtained.

described above, not requiring ME calculations. This also leads to different values of B
and Ecrit, as listed in Table 1. For typical values of T and c, Figure 8(a) shows that the
dependence of µ on Er is well described by this approach. We note that the dependence of
ω0 on Er, not included in the figure, leads to a net decrease of µ with Er.
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Figure 8. (a) Dependence of µ on Er for different lattices, with uncorrelated Gaussian disorder. Curves: scaling
theory, Eq. (44), with values of B, λ, and Ecrit as given in Table 1. Interpolation was used for values of Er not
listed in this table. Note that the prefactor ω0 depends on Er, which leads to a net decrease of µ with Er. (b)
Same for dipole-correlated disorder, with parameter values as given in Table 2.

We now consider dipole-correlated energy disorder, with a disorder energy landscape
obtained from Eq. (8). Figure 9 shows that the topologies of the percolating networks for
uncorrelated and correlated disorder are very different; both the high-current bonds and
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Dipole-correlated disorder

Lattice Hopping Er[σ] λ B Ecrit[σ] C
SC MA N/A 2.0 0.36 −1.26 0.33
SC Marcus ∞ 1.7 0.43 −1.37
SC Marcus 10 1.7 0.42 −1.37 0.61
SC Marcus 3 1.7 0.38 −1.37 0.38
SC Marcus 1 1.7 0.29 −1.37 0.32
FCC MA N/A 2.2 0.78 −1.43 0.31
FCC Marcus ∞ 2.2 1.1 −1.56
FCC Marcus 10 2.2 1.1 −1.56 0.60
FCC Marcus 3 2.2 1.0 −1.56 0.38
FCC Marcus 1 2.2 0.7 −1.56 0.31

Table 2. λ,B,Ecrit for dipole-correlated disorder. The last column gives the valueC in an optimal fit of µ0(T ),
as given by Eq. (48), to exp(−Cσ̂2) in the range 2 ≤ σ̂ ≤ 6.

the critical bonds are much more clustered for correlated disorder. This clustering makes
it very difficult to use the percolation analysis described above for correlated disorder;
even lattices with 100 × 100 × 100 sites are not big enough. In order to circumvent this
problem, we fitted the parameters B, λ, and Ecrit directly to ME mobility results, using
Eq. (44). The results for the two different lattices and hopping types are listed in Table 2.
The values of pbond and A are not included in the table, since they are not used in this
approach. We note that the different topology of the percolating network for correlated and
uncorrelated disorder is reflected in the value of the critical exponent λ, which is around
two for correlated disorder and around unity for uncorrelated disorder. The accuracy of the
resulting mobility is shown in Figure 7(b).

The reorganization energy needs to be handled slightly differently for correlated dis-
order. For uncorrelated disorder, we assumed that A and λ are independent of Er. This
approach cannot be used for correlated disorder because we do not know the value of A.
Instead, we keep λ constant and fit B and Ecrit to ME calculations, using Eq. (44). The re-
sults are listed in Table 2. Interestingly, no dependence of Ecrit on Er is found, contrary to
the case of uncorrelated disorder (compare with Table 1). In other words, the dependence
of µ on Er occurs only via the prefactor B. This can be understood by considering the
effect of Er on the hopping rates, as given by Eq. (5): a large value reduces the hopping
rate when the energy difference between the sites involved is large. This energy difference
is diminished by the correlation of the energy levels, thus reducing the effect of the reor-
ganization energy. The validity of these results is demonstrated in Figure 8(b). Again, we
must keep in mind that there is an additional dependence on Er through the prefactor ω0.

16 Effect of Lattice Disorder

We consider here the effect of lattice disorder, which leads to varying distances between
sites. Because of the exponential wave-function decay it is natural to replace the hopping
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Figure 9. Normalized current (line opacity) in bonds of a 30 × 30 square lattice with uncorrelated Gaussian
energetic disorder (left) and dipole-correlated energetic disorder (right). The red circles indicate bonds with a
power dissipation of at least 30% of the maximum power dissipation. The results shown are for Marcus hopping
with reorganization energy Er→∞, c = 10−3, and σ/kBT = 3. A small electric field has been applied from
left to right.
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Figure 10. Dependence of µ on transfer-integral-disorder strength Σ. Symbols: ME. Curves: scaling Ansatz,
Eq. (35), with values of A and λ as given in Table 1.

prefactor ω0 in Eq. (3) and (5) by

ω0,ij = ω0 exp(2uij), (45)

where uij is a random number. We will choose uij = uji from a uniform distribution
between −Σ and Σ for each bond i-j.
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It is not a priori clear that Eq. (44) can now be applied, but we can still determine
Gcrit and f(Gcrit) from the percolation analysis described in Section 15 and apply the
basic scaling Ansatz Eq. (35), assuming no dependence of A and λ on the lattice disorder
strength Σ. The results of this approach are compared with ME results for typical values of
T and c in Figure 10; we see that the scaling theory still provides an excellent description
of the mobility, even for large disorder Σ = 6. We also note that for Σ . 3 the mobility
is almost independent of Σ, so that Eq. (44), valid for Σ = 0, can still be applied in this
case. We can conclude from this analysis that lattice disorder does not change our results
significantly and that energetic disorder is dominant.

17 Carrier-Concentration Dependence of the Mobility

An important conclusion drawn from Eq. (44) is that the dependence of the charge-carrier
mobility µ on the concentration c is in all cases given by

µ ∝ exp (EF(T, c)/kBT ) /c, (46)

containing no parameters depending on the type of hopping or lattice. For MA hopping
this dependence was already found in Ref. 30. We now conclude that it also holds for Mar-
cus hopping, at variance with another claim.36 We note that our conclusion agrees with
the numerically exact mobilities, as shown in Figure 11. When the carrier concentration is
too high, the assumption of low Fermi energy used in deriving Eq. (38) no longer holds,
and so the above dependence also fails. The requirement for uncorrelated Gaussian dis-
order is c . 0.03, and for dipole-correlated disorder c . 0.01. The higher threshold for
uncorrelated disorder is caused by the higher value of Ecrit.
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Figure 11. (a) Dependence of µ on carrier concentration c for different lattices and hopping rates, with uncor-
related Gaussian disorder. Symbols: ME. Curves: scaling expression, Eq. (44), with values of B, λ, and Ecrit

as given in Table 1. For clarity the mobilities for Marcus hopping have been multiplied by 10. (b) Same for
dipole-correlated disorder, with parameter values as given in Table 2. The dashed curve indicates the result of
Eq. (44) assuming a perfectly Gaussian DOS, while the solid curve uses the actual DOS, which is not precisely a
Gaussian.

When applying Eq. (46) to the case of dipole-correlated disorder, we must keep in
mind that the DOS is not perfectly Gaussian. With the correct DOS a slightly weaker con-
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centration dependence is found than for uncorrelated Gaussian disorder, see Figure 11(b),
consistent with the ECDM results found by Bouhassoune et al.16

18 Temperature Dependence of the Mobility

The temperature dependence of the charge-carrier mobility is typically analyzed in the
limit of low carrier concentration c → 0, i.e., for a single non-interacting carrier. For
uncorrelated Gaussian disorder the mobility in this limit, µ0(T ), is given by (starting from
Eq. (44)):

µ0(T ) = B
eω0

N
2/3
t σ

σ̂1−λ exp [−Ecrit/kBT ] lim
c→0

exp(EF(T, c)/kBT )

c

= B
eω0

N
2/3
t σ

σ̂1−λ exp
[
−σ̂2/2− Ecrit/kBT

]
. (47)

This expression does not apply to the dipole-correlated case because the DOS is not exactly
Gaussian for that case. In that case, the following approximation can be made:7

µ0(T ) ≈ B eω0

N
2/3
t σ

σ̂1−λ exp
[
−0.56σ̂1.9 − Ecrit/kBT

]
. (48)

We have to keep in mind that in the case of Marcus hopping ω0 depends on T via Eq. (6),
leading to an additional temperature dependence that is not explicitly shown in Eqs. (47)
and (48).

In Ref. 30 the expression µ0(T ) ∝ T γ exp(−bσ̂2 − aσ̂) (σ̂ ≡ σ/kBT ) was derived
with a = 0.566, γ = −1 and b = 1/2 for nearest-neighbor MA hopping with an SC
lattice and uncorrelated Gaussian disorder. Our expression for µ0(T ) is of the same form,
also with b = 1/2. However, the values of a and γ differ: for MA hopping we have
a = Ecrit/σ and γ = λ − 1, and for Marcus hopping, accounting for the T dependence
of ω0, a = (Ecrit + Er/4)/σ and γ = λ − 3/2. Note that the sign of a found by us for
MA hopping (see Ecrit in Table 1) is opposite to that in Ref. 30, leading to a significantly
different T dependence.

The temperature dependence of the mobility is often expressed as
µ0(T ) ∝ exp(−Cσ̂2). We find that this provides a quite accurate description of
Eqs. (47) and (48) when considering a limited temperature range 2 ≤ σ̂ ≤ 6. To facilitate
the comparison with earlier work, we have included the value of C in such a fit in Tables
1 and 2, taking into account the dependence of ω0 on T for the case of Marcus hopping.
For correlated disorder the much lower value of Ecrit leads to a significantly weaker
temperature dependence, i.e., a lower value of C. This is consistent with the ECDM
results.16 For the case of an SC lattice with uncorrelated Gaussian disorder and MA
hopping, the obtained value of C (0.44) is similar to the best-fit value C = 4/9 found
from an MC simulation of this system by Bässler.3 This result is often interpreted as if the
temperature dependence of the mobility is determined by the rate of hops from the average
carrier energy −σ2/kBT to a ‘transport level’ with an energy around −(5/9)σ2/kBT .
We note that the origin of the similar factor exp(−(1/2)σ̂2) in Eq. (47) is very different:
it originates from the limit taken in deriving this equation and results purely from the
physics of carriers obeying Boltzmann statistics in a Gaussian DOS and not from the
transport properties.
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19 Monte Carlo Modeling of Electronic Processes in a White
Multilayer OLED

We now make a big jump and discuss the application of the MC approach in modeling
of electronic processes of a white OLED with a design that is similar to present com-
mercial white OLEDs. These OLEDs consist of a multilayer stacks of different organic
small-molecule semiconductors, where each layer has a specific function. Light of dif-
ferent colors is emitted in different emissive layers, together composing white light. The
electronic processes taking place in such a multilayer stack involve the injection of elec-
trons and holes from suitable electrodes, the transport of electrons and holes to the inner
layers in the stack, the formation of excitons by mutual capture of electrons and holes,
the diffusion of excitons to the place where they should decay, and the final decay of the
excitons under the emission of a photon. Monte Carlo (MC) is in principle ideal to model
these processes, because

• All these processes involve incoherent sudden events, which can be ideally simulated
with MC.

• It is in principle possible to model every molecule in the OLED by a site in the MC
computer program.

• If proper rates of charge hopping and exciton hopping (and possibly other events,
such as interaction events between excitons or between charges and excitons) are im-
plemented one can just run the simulation and trust the outcome, because no approx-
imations are made. This could save OLED manufacturers development time, because
they do not need to worry about the effects of approximations that have to be made in
other approaches, like the DD approach.

The big problem could of course be that it is simply not feasible to simulate realistic
OLEDs with MC, because of excessive computational demands. We will see, however,
that we can be optimistic at this point.

In Ref. 22 the multilayer OLED stack of Figure 12 was studied. The OLED has been
fabricated by thermal evaporation in ultra-high vacuum of the organic materials displayed
in this figure. The structure is ideal for a fundamental study, because most of the used
materials have been well characterized in literature and all relevant processes can be ad-
dressed. The generation of the primary colors in this OLED is based on a hybrid principle,
used extensively nowadays in commercially available white OLEDs. Green and red light
are generated in layers of a host organic semiconductor doped by green and red phospho-
rescent dyes. A heavy metal atom in such dye molecules (in this case iridium) opens up, by
its strong spin-orbit coupling, a radiative decay pathway for triplet excitons, next to singlet
excitons. Hence, almost all excitons formed in such layers decay under the emission of a
photon. Hybrid OLEDs avoid the use of blue phosphorescent dyes (of which the stability
is still an issue) by using instead blue-emitting molecules without a heavy metal atom, at
which only the singlet excitons decay radiatively by fluorescence. This compromises the
internal quantum efficiency, because the triplet excitons (75% of all formed excitons) have
no efficient radiative decay pathway and are thus wasted. Still, the power efficiency of
today’s commercial hybrid white OLEDs is already a factor of three to four higher than
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Figure 12. Schematic of the studied multilayer white OLED stack. Given are the chemical structures of the used
organic molecular semiconductors and dyes (apart from proprietary materials from the company Novaled), and
the thickness and function of the layers. See Ref. 22 for more details.

that of incandescent light bulbs (∼40-60 lm/W vs.∼15 lm/W), combined with operational
lifetimes exceeding 10,000 hours.

Of crucial importance to the functioning of multilayer OLEDs is that excitons are gen-
erated at the right place by encounter of electrons and holes, and that their subsequent mo-
tion until the moment of radiative decay is precisely controlled. In the OLED of Figure 12
an exciton-blocking interlayer has been inserted in between the blue and green layer. This
interlayer prevents the motion of singlet excitons from the blue to the green layer as well as
that of triplet excitons from the green to the blue layer. These are unwanted energetically
downward processes that have to be blocked. On the other hand, motion of excitons from
the green to the red layer can take place because of the direct contact between these layers.
This is a desired process, because it leads to the right color balance in this OLED, as will
become clear.

Next to the control of the exciton motion, the control of the motion of electrons and
holes is crucial. This control is achieved by using organic semiconductors with appropriate
energy levels of electrons and holes; see Figure 13. First, electrons and holes have to be
injected from suitable electrodes (of which at least one has to be transparent, in this case
indium-tin-oxide, ITO) into the organic layers. Highly n- and p-doped organic layers ad-
jacent to the electron- and hole-injecting electrodes provide an almost barrier-free contact
with these electrodes. From these doped layers the electrons and holes smoothly enter the
electron- and hole-transporting layers, via which they move to the inner layers of the stack.
The electron and hole energies of the organic semiconductors used in the transport layers
are such that charge carriers of only one polarity can enter these layers. This guarantees
that electrons and holes meet in the inner emissive layers of the stack and form excitons
there. The OLED functions as an optical microcavity, in which exciton formation close to
metallic electrodes must be avoided because this would lead to non-radiative decay.

A special role is again played by the interlayer between the green and blue layer. This
very thin (3 nm) layer should block excitons, but allow passage of both electrons and holes,
in order to guarantee exciton formation in both the green and blue layer. In order to achieve
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Holes

Electrons

Electron traps

Figure 13. Energy-level scheme of the OLED at open circuit. Indicated are the hole and electron energies of
the highest occupied and lowest unoccupied molecular orbitals of the corresponding molecules, in eV. Due to
disorder, these energies are broadened by approximately 0.1 eV. Electron traps are indicated in the two layers
where they matter.

this, the interlayer consists of a mixture of an electron transporter and a hole transporter,
where the electron energy of the former matches well to that of the blue fluorescent mate-
rial, while the latter material is the same as the hole-transporting host in the green layer.

It is possible to reconstruct the emission profile of the different colors within the OLED
from the angle-, wavelength-, and polarization-dependent emitted light intensity, with a
nanometer-scale accuracy.37 The result is given in Figure 14(a). The balance between
emission of the primary colors, with a strong red component, leads for this OLED to the
emission of warm-white light. Resolution of the emission profile within the very thin (3
nm) green layer is just beyond the limits of the reconstruction approach. The profiles in
the red and blue layer are on the scale of a few nanometres confined to the interfaces with
the green layer and interlayer, respectively.

MC simulations of the charge and exciton motion have been performed by modeling
the OLED stack as an array of hopping sites representing all the different molecules in
the stack, including the dyes.22 Electron traps occur in many organic semiconductors.
These are taken into account in the layers where they matter: the electron-transporting
and blue fluorescent layers. We take an SC lattice with a lattice constant of a = 1 nm,
which is the typical distance between the molecules. All molecules are given an electron
and a hole energy according to the energy-level scheme of Figure 13. Random energies
should be added because of the disorder. Because we are dealing with small-molecule
semiconductors, we assume that the disorder is correlated. We therefore generate a disorder
landscape from the electrostatic potential of randomly ordered dipoles placed at the lattice
points (Eq. (8)). The size of the used SC lattice is 56×50×50 sites. The disorder strength
is taken to be σ = 0.1 eV, which is the value found for hole transport in α-NPD,24 an
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Figure 14. (a) Reconstructed light-emission profile of the OLED, at a bias voltage of 3.6 V. (b) Simulated exciton
generation profile. (c) Simulated light-emission profile. The difference between (b) and (c) is caused by motion
of excitons from the green to the red layer and by radiative emission probabilities smaller than unity. Excitons
generated in the interlayer (white) are lost.

important hole-conductor used in the stack (see Figure 12). The doped electron- and hole-
conducting layers are modeled as metallic-like contacts. The hopping rates in the various
layers are chosen to reproduce available experimental information about the mobility of
electrons, holes, and excitons in each material in the stack; see Ref. 22 for details. Coulomb
interactions between all charges are taken into account. Electrons and holes attracting
each other by the Coulomb force form excitons. Subsequent exciton motion is simulated
within the green and red layer, and, importantly, from the green to the red layer. Excitons
formed in the blue layer will stay there, because of the adjacent exciton-blocking interlayer.
Information about the radiative decay efficiencies of the blue fluorescent and the green and
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red phosphorescent emitters, determining the fraction of excitons that decay by emitting a
photon, is taken from experiments. This information is needed to predict the light-emission
profile from the simulations. Excitons formed in the interlayer are assumed to be lost.

A first check of the validity of the simulations is the comparison between the calcu-
lated and measured current density in the OLED. At the operating voltage of 3.6 V the
current densities agree to within 25%,22 which is a gratifying result in view of the rather
drastic approximations and assumptions made. In Figure 14(b) the simulated exciton gen-
eration profile is given. We find that indeed almost all injected electrons and holes form
excitons. As desired, most excitons form in the emissive layers, with the majority of ex-
citons (54%) formed in the blue layer. Also, a considerable fraction of excitons is formed
in the green layer (22%), while almost no excitons are formed in the red layer (3%). Fig-
ure 14(b) reveals an important loss mechanism caused by excitons formed in the interlayer
(21%). This leads to a suboptimal efficiency, as is indeed observed in a measurement of
the external quantum efficiency (EQE) of the OLED.22

After taking into account the excitonic motion and radiative decay efficiencies the sim-
ulated light-emission profile of Figure 14(c) is obtained. We observe the same large compo-
nent of emitted red light as found in the reconstruction of the experimental light-emission
profile of Figure 14(a), which is almost completely caused by transfer of excitons from
the green to the red layer. Also the green and blue component of the simulated emission
profile are in fair agreement with the reconstructed emission profile. Like the reconstructed
profiles, the simulated profiles are confined to nanometer-scale regions close to the inter-
faces. The overall agreement between the reconstructed and simulated emission profiles is
striking.

20 Concluding Remarks

In the present work it has been shown how computational approaches of various degree of
sophistication can be used to model charge transport in disordered organic semiconductors
and sandwich devices of these semiconductors. This modeling has also contributed to the
theoretical understanding of this charge transport, in particular the percolative nature of this
transport. The approaches discussed in this work, the drift-diffusion (DD), master-equation
(ME), and Monte Carlo (MC) approach all have their advantages and disadvantages. Re-
searchers in the field will keep using the fast DD approach for quick device calculations.
We have seen that this approach is perfectly suitable to obtain current-voltage (J-V ) char-
acteristics of single-carrier devices. However, the approach is not suitable for describing
transport in situations that are far out of equilibrium, such as in the case of dark-injection
(DI) transients. The master-equation approach is more involved, but very powerful in the
description of charge transport in single-carrier devices, also in situations that are far from
equilibrium. Moreover, the approach provides powerful insight into the percolative nature
of the transport and understanding of this transport in the context of scaling arguments.
However, Coulomb interactions cannot be explicitly included in the approach. This does
not appear to be a problem in the description of charge transport in single-carrier devices,
but the approach cannot (or at least not straightforwardly) be applied to double-carrier de-
vices, where Coulomb interactions between electrons and holes play a crucial role in the
formation of excitons. With MC one can simulate in principle precisely what is happening
in a real organic device and include all the effects of Coulomb interactions. Therefore,
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MC simulations provide the most powerful approach to describe electronic processes in
organic devices. Because of their CPU-time hungriness MC simulations have their limita-
tions, but efficient algorithms and the ever increasing computing power allow simulations
for impressively large systems.

The MC approach seems to have opened the road towards rational design of multilayer
OLED stacks based on molecular-scale modeling of electronic processes. Extensions of
the present approach in various directions are possible. Inclusion of exciton-exciton and
exciton-charge quenching processes will be important to assess efficiency loss and ma-
terial degradation by these processes. Another important extension is the incorporation
of information about the microscopic morphology of the stack materials, obtained with
molecular dynamics or Monte Carlo modeling, and about hopping rates obtained from
quantum-chemical calculations.38, 39 This will finally allow complete predictive multi-scale
modeling of electronic processes in OLEDs.
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Energy conversion and storage through electrochemical devices, such as fuel cells and batteries,
are called to play an important role for the development of future sustainable energy networks.
With the impressive progress reached by the computational facilities in the recent past years,
physical modeling and numerical simulation start nowadays to be recognized as crucial tools
for the understanding-based, and thus controllable-based, development of efficient, stable and
inexpensive energy conversion and storage materials and components, and the optimization of
the operation conditions at the device level.

This tutorial comprehensively covers both theoretical and practical aspects of multiscale mod-
eling of electrochemical power generators.

1 Introduction

1.1 Towards a sustainable energy conversion and storage: the promising high-tech
aura of the electrochemical power generators

With the modern times, the humanity entered into an existential crisis arising from multiple
factors, among them

• the heterogeneity of the distribution of natural resources between the countries;

• the increase of the global population with the consequent increasing demand for en-
ergy;

• the strong dependence of the countries on fossil fuels and the consequent international
economic and political tensions;

• the global warming, the consequent climate and geographical changes and the popu-
lation migration.

As the common factor besides these problems is the availability of energy, this encourages
scientists and industrialists to invest in innovative technology for new energies production
(or conversion from natural resources) and storage. Over the last decades, great efforts have
been deployed on the common quest for an alternative to the depleting natural sources of
fossil fuels. For the design of new technologies, the quantity of energy that can be pro-
duced, the cost, and the impact on the environment (especially the quantity of emission of
CO2) are of major concerns. One expects such a technology to be competitive over the
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whole range of applications: transportation, stationary power generation (for residence,
public buildings), and portable applications (like mobile phones, portable computers, aux-
iliary power unit in cars, etc.).

Within the spectrum of power generators suitable in a sustainable energetic network,
electrochemical devices for energy conversion and storage are called to play a very im-
portant role in the future. These technologies present a great potential to become cost-
competitive (because they can be applied to nomad systems), highly efficient (because
energy can be produced and stored at room temperature), and environmentally benign (be-
cause of the zero-emissions and of the no noise).

An excellent example of this follows from modern electronic equipment and electric
vehicle applications which have been rapidly developing, resulting in a growing demand
for high energy density power sources such as rechargeable lithium ion batteries (LIBs).

Among the large diversity of electrochemical power generators (EPGs) under study
within the scientific and industrial communities, we will focus here only on some of the
most attractive ones because of their application potentialities and because of the remaining
challenging but scientifically exciting technical issues to be overcome, for instance

• Hydrogen-feed Polymer Electrolyte Membrane Fuel Cells (PEMFCs) and Polymer
Electrolyte Membrane Water Electrolysers (PEMWEs) for energy conversion;

• Electrochemical capacitors – known also as supercapacitors – (ECs), LIBs and
Lithium Air Batteries (LABs) for energy storage.

The general operation principles of such devices are presented in Figure 1, except for
PEMWEs which actually operate in the reverse way than PEMFCs, and the typical spe-
cific power and energy densities which can be delivered by some of these technologies is
presented in Figure 2.

Porous electrodes are the pivotal components of modern PEMFCs, PEMWEs, ECs,
LIBs and LABs. Porous electrodes are inherently multiscale systems as they are made of
multiple coexisting materials, each of them ensuring a specific function in their operation.
Such electrodes structural complexity has been historically driven by the needs of reducing
the device cost and of enhancing its efficiency, stability and safety. The use of nano-
engineered materials and chemical additives (in the case of batteries) allowed a significant
progress toward these goals.

For instance, in the case of modern PEMFCs, the electrodes are constituted by metallic
nanoparticles of few nanometers size having the role of electrocatalyst, and are supported
on carbon particles of few microns size having the role of electronic conductor. The re-
sulting complex structure, arising from more than 30 years of research efforts to enhance
the efficiency and reducing the loading by precious metals in these devices 2, is in turn em-
bedded within perfluorosulfonic acid (PFSA) proton conducting polymers, the Nafion R©

ionomer from Dupont being the most used one, arising into a composite electrode of few
micrometers thick (Figure 3).

During the PEMFC operation, a strong non-linear multi-scale dynamical coupling be-
tween several physicochemical phenomena takes place within the Membrane-Electrodes
Assembly -MEA-: reactant transfers (hydrogen and oxygen through the Gas Diffusion
Layer -GDL- and Catalyst Layer -CL- pore phases), water transfers (bi-phasic water in CL
and GDL meso/macro-pores, dissolved water in the Polymer Electrolyte Membrane -PEM-
and CL ionomer), electrochemistry (hydrogen oxidation producing electrons and protons,
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Figure 1. Operation principles of PEMFCs, SCs, LIBs and LABs.

Figure 2. Typical specific power vs. specific energy for different electrochemical power generators and compar-
ison with combustion engines. Source: Ref. 1.

and oxygen reduction producing water), and charge transfer (proton within the CL ionomer
and PEM, electron within the CL and GDL).

In fact, processes at the smaller scales (e.g. Oxygen Reduction Reaction -ORR- on
the cathode platinum nanoparticles) dominate the processes at the larger scales (e.g. liquid
water transport through the cathode carbon support secondary pores) which in turn affect
the processes at the smaller ones (e.g. through the water flooding limiting O2 transport in
the cathode). PEMFC technologies have not yet reached all the required characteristics to
be competitive, in particular regarding their high cost and their low durability 4, 5.
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Figure 3. Multiscale structure of a PEMFC electrode. Source: 3.

In addition to the electrochemical reactions, reactants and biphasic water trans-
port, other mechanisms limiting optimal platinum utilization are charge transfer, thermo-
mechanical stresses and irreversible materials degradation. For instance, microstructural
degradation leading to the PEMFC components aging is attributed to several complex
physicochemical phenomena not yet completely understood:

• dissolution and redistribution of the catalyst: mainly due to the high potentials of
the cathode electrode 6. This phenomenon reduces the specific catalyst surface area
leading to the loss of the electrochemical activity 7,8,9,10;

• corrosion of the catalyst carbon-support: carbon is thermodynamically unstable at
typical cathode operating conditions. Furthermore, carbon degrades more rapidly dur-
ing transient startup and shut-down conditions and high humidification levels. Indeed,
oxygen permeation locally increases the cathode potentials accelerating the cathode
damage 11;

• loss or decrease of the hydrophobicity: caused by an alteration of the PTFE 12, which
is used to give hydrophobic properties to the CLs as well as to the GDLs and the
Micro Porous Layers (MPLs). This affects the water management in the cell and thus
the electrochemical performance;

• apart from mechanical degradations such as thinning and pinhole formations, chem-
ical and electrochemical degradations could also take place in PerFluoroSulfonated
Acid (PFSA) PEM. Hydrogen peroxide (H2O2) and radical species can be formed in
the CLs. H2O2, a highly oxidative reagent, may deteriorate ionomer in the MEA, but
the mechanism is not yet fully understood 13. Furthermore, PEM degradation facili-
tates reactants cross-over between the CLs, and hence the performance and durability
decay.
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These spatiotemporal nano/microstructural changes translate into irreversible long-term
cell power degradation. Moreover, the ways of how aging mechanisms occur are expected
to be strongly sensitive to the PEMFC operation mode. Understanding the relationship
between operation mode and degradation mode remains a challenging task. The PEMFC
response can be even more complex if the reactants are contaminated with external pollu-
tants (e.g. in the anode: CO from hydrocarbons reforming fabricating H2; cathode: NO2
or SO2 from air) 14,15. The competitions and synergies between all these “non-aging” and
“aging” mechanisms determine the effective instantaneous electrochemical performance
and durability of the cell. Present life time of PEMFC under automotive solicitations rarely
exceeds 1000 hours. A maximum rate of potential degradation from 2 to 10 µV/hour with
less than 10% power global decay for 5000 operational hours are required for automotive
applications 16.

As PEMFCs work with hydrogen, hydrogen needs to be fabricated. A promising device
for the production of pure hydrogen from renewable energy sources is the PEMWE 17.
Although PEM technology was introduced in the 1960s 18, PEMWE has started to receive
more attention from the scientific community, because of the problems cited above, only
from the mid of the 1990s and the beginning of the 2000s 19. Such a device, in comparison
with alkaline and high temperature solid oxide electrolyzers, offers several advantages
including ecological cleanness, higher efficiency from both current density and energy,
compactness and low temperature operation 20,21.

The overall decomposition reaction of water into oxygen and hydrogen taking
place in a PEMWE is H2O→ 1

2 O2 + H2. The hydrogen evolution reaction (HER),
4H+ + 4e–→ 2H2, takes place at the cathode side and the oxygen evolution reaction (OER),
2H2O→ O2 + 4H+ + 4e–, at the anode side. One of the main drawbacks of the PEMWE is
that the electrodes are based on expensive precious-metal-based catalysts. In the cathode
side, platinum nanoparticles supported on percolated carbon nanoparticles are used (as in
PEMFC electrodes) while in the anode side, rutile oxides like IrO2 and RuO2 are currently
used, having the role of both catalyst and electronic support. Proton conduction within
and between the electrodes is ensured by Nafion R©-like polymers. PEMWEs present also
substantial technical challenges related to their efficiency and lifetime. For example the
catalyst oxidation leads to an evolution of the catalyst layers microstructure properties 22.

To enhance the performance and durability of the PEMWE, a deep understanding of the
physicochemical processes related to the nano and microstructural properties of the elec-
trodes is crucial. With this aim, the complex mechanisms occurring at multiple scales in
PEMWE operation (Figure 4), have been extensively studied from different experimental
approaches: (i) synthesis and characterization of the different materials used as electrocat-
alysts 23 ; (ii) investigation of OER and HER mechanisms 24,25,26; (iii) influence of MEA
components on the global electrochemical measurements 27,28; (iv) the water flow effect
on the performance 29; (v) stack development; (vi) Nafion R© properties in the PEMWE
environment 30.

LIBs are also multiscale and multiphysics systems, as illustrated in Figure 5 for a pos-
itive electrode made of LiFePO4, one of the most popular electrode materials because of
its high power density and safety among a large variety of compounds developed since
the 1970s 32,33. In this case, non-porous LiFePO4 crystals represent the smallest scale ob-
served, whereas the porous agglomerates represent the second size scale. The third size
scale is the positive electrode itself, which consists of carbon black, binder and the porous
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Figure 4. Multiscale structure of the PEMWE electrodes. Source: adapted from 31.

agglomerates of the LiFePO4 particles 34. Carbon black is usually added to reduce the
formation of agglomerates during the synthesis process and to enhance the electronic con-
ductivity properties 35. The binder is usually made of Polyvinylidine difluoride (PVDF)
polymer, which provides to the electrode an aspect of “polymer composite”. The binder
spatial distribution depends on the electrode preparation method, coating and drying pro-
cess, and surface properties of each compound, such as the active material. In early work
without careful morphology control, considerable crystal agglomeration occurred 36, and
even in more recent materials, agglomerated particles are often still present 37,38,39.

LIB negative electrodes are typically made of carbonaceous materials and also present
a complex multiscale structure. The application of carbonaceous materials instead of Li-
metal has several advantages such as better cycle-life and reliability preventing severe
degradation problems such as Li dendrites formation during cycling. Carbon has in fact
the ability to reversibly absorb and release large quantities of lithium (Li:C=1:6) without
altering the mechanical and electrical properties of the material. On the first charge of the
battery an polymeric layer, the so-called solid electrolyte interphase (SEI), forms from the
electrolyte decomposition. This “passivation” or “protective” layer is of crucial importance
for the battery operation in terms of safety as it prevents the carbon from reacting with the
electrolyte and helps on avoiding graphite exfoliation 40.

Moreover, several materials have also been proposed as alternatives to replace graphite
in the negative electrode, also showing more or less a multiscale structure 41.

As the electrodes structure of rechargeable LIBs can be seen as a complex ensemble
of lithium sources and sinks embedded in an electrolyte medium, the rate-determining
processes during charge and discharge will depend on the Li+ concentration on the (e.g.
intercalation, conversion) electrode active material surface, Li+ concentration in the elec-
trolyte, the potential drop between the active material and the electrolyte and the lithium

188



Figure 5. Multiscale structure of an intercalation LIB electrode. Source: 42.

concentration inside the active material 43,44,45. The LIB operation may thus be limited by
Li+ transport in the electrolyte, lithium transport in the electrode material or by the ionic
or electronic conductivity of the electrolyte or electrodes.

Electrochemical reaction of lithium intercalation and/or conversion takes place on a
nanometer scale and strongly depends on the chemistry and on the nano- and microstruc-
tural properties of the intercalation/conversion material. Charge transport, heat transport
and mechanical stresses take place from the material level up to the cell level and also
depend on the materials and components structural properties. Time scales vary from
sub-nanoseconds (electrochemical reactions) over seconds (transport) up to days or even
months (structural and chemical degradation).

LABs are one type of metal air batteries (with metals such as Zn 46, Na 47, Mg 48 and
Al 49) which are receiving a growing interest as they theoretically achieve a specific energy
significantly higher than current lithium-ion batteries with two intercalation electrodes 50.

LABs are conceptually a mix between PEMFCs and LIBs (Figure 6). Abraham and
Jiang were the first on reporting a practical LAB with the use of a Li/C cell in which a
gel polymer electrolyte membrane served as both the separator and the ion-transporting
medium 51,52. Their cell theoretical specific energy was of up to ∼3400 Wh·kg-1. The rea-
son of such high specific energies is that the positive electrode active material, i.e. oxygen,
is not stored internally in the battery. Oxygen actually enters a porous carbon electrode
from air for the ORR, as a similar functional process to what one has in PEMFC cathodes.
Lithium and oxygen then react to form metal oxides during the discharge process. During
the charge process, the oxides decompose to release lithium ions and oxygen again.

189



Figure 6. Schematics of a LAB discharge process.

Abraham and Jiang’s LAB was actually the first non-aqueous LAB. In modern non-
aqueous LABs the electrolyte is typically made of lithium salts (e.g. LiPF6) mixed with
carbonate-based solvents such as propylene carbonate (PC), ethylene carbonate (EC) and
dimethyl carbonate (DMC), and the carbon electrode can support or not catalyst nanopar-
ticles (e.g. RuO2, Pt, Au, or MnO2) 53.

The performance of LABs has been reported to be affected by many factors such as
the air relative humidity, the oxygen partial pressure 54, the choice of catalysts, 55, the
electrolyte composition, 56, the micro- to nanostructure of carbonaceous materials, the
macrostructure of the positive electrode,57,58 and the overall cell designs 59.

In practice, LABs suffer from poor cyclability (up to few cycles) and reversibility be-
tween the discharge and charge (with discharge voltages around 2.5-3.0 V and charging
voltages around 4.0-4.5 V) 60,61,62,63. Typical LAB capacity fades twice as fast after 50
cycles (compared to 25% capacity fade after 300 cycles for ordinary LIBs). The high pos-
itive electrode polarization (sharp voltage drop-off with increasing current) is frequently
believed to be due to the oxygen diffusion limitations. Recent studies have also identified
that a possible cause of the high-voltage hysteresis is due to side reactions of the elec-
trolyte with the discharge product of the ORR, Li2O2, which can form lithium carbonate
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and lithium alkyl carbonates with the carbonate species in the electrolyte 64,65,66. These
side reactions are believed to deplete the electrolyte during cycling, limiting the reversibil-
ity of LABs.

Moreover, O2 reduction products are mostly insoluble in non-aqueous electrolytes.
They precipitate on the surface of the porous carbon electrode 67,68. This ultimately hin-
ders the discharge reaction and also leads to a lower specific capacity than the theoretical
value. 69

Analogies between discharge in LABs and water generation in PEMFC operation can
be done on several aspects. The impact of pore clogging on O2 transport in LAB pos-
itive electrodes, can be within some extent assimilated to the impact of liquid water on
O2 transport in PEMFC cathodes. 70

Furthermore, pore clogging by solid oxides in LABs is unfavorable to Li+ transport
whereas pore clogging by liquid water is favorable to H+ transport in PEMFCs.

ECs have a greater power density and a longer cycle life than batteries do, and a higher
energy density than that of conventional capacitors 71,72; therefore, they have attracted a
lot of research attention in recent years 73,74,75.

The storage mechanism in ECs consists mainly of two types of processes, a purely
capacitive and a pseudo-capacitive process. The former is based on the electric charge
separation at the electrode/electrolyte interface (double layer), the latter on electrochemical
reactions occurring on the electrodes (faradaic process). In the later, the electrode material
is electrochemically active, e.g. metal oxides, which can directly store charges during the
charging and discharging processes 76,77.

In ECs, the capacitance performance exhibited by the devices is strongly dependent
on the nature of the electrode/electrolyte interface (Figure 7). Generally, the larger the
specific surface area of carbon in the electrodes, the higher the capability of accumulation
of electric charges at the interface, and thus the higher the capacitance. However, high
surface area is not a sufficient condition to achieve high capacitance; the carbon must also
contain a large fraction of mesopores. The charge (discharge) mechanism in an EC must
involve an easy access of electrolyte into the carbon pores, possible only in the presence
of macro- and mesopores, which allow a high rate of charge and discharge, to obtain a
large amount of electric charge. A typical supercapacitor has two electrodes, made of high
surface area carbon, and an aqueous or non-aqueous electrolyte with a porous separator
between them. In most commercial supercapacitors, tetraethylammonium tetraflouroborate
in acetonitrile or propylene carbonate is used as the organic electrolyte 78,79, while in others
sulfuric acid or potassium hydroxide is used as the aqueous electrolyte 80.

One of the key challenges for ECs is their limited energy density, which has hindered
their wider application in the field of energy storage. To overcome this challenge, a major
focus of ECs research and development should be to discover new electrode materials with
high capacitance and a wide potential window. In the design of EC electrode materials,
properties to be favored by the research efforts include:

• high specific surface area (i.e. large amount of active sites);

• suitable PSD, pore network, and pore length for facilitating the diffusion of ions at a
high rate;

• low internal electrical resistance for efficient charge transport in the composite elec-
trode;
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• good electrochemical and mechanical stability for good cycling performance.

Nano-micropores are necessary to achieve higher specific surface area, and these mi-
cropores must be ensured to be electrochemically accessible for ions. Hence, pore network,
the availability and wettability of pores, with dimensions matching the size of solvated an-
ions and cations are crucial aspects to be considered in the design of EC electrode materials.

Figure 7. Schematics of a non-faradaic EC. Source: 81.

In spite of excellent technological prospects in all these electrochemical technologies,
commercialization of advanced electrochemical devices for power generation in trans-
portation, electronics, and stationary applications is far from being guaranteed. For the
commercialization of such technologies, the concomitant reduction in cost of the mate-
rials, efficiency and their stability would be the decisive breakthrough. Critical progress
hinges on new concepts in the design of advanced materials as well as fundamental under-
standing of basic electrochemical processes.

1.2 Lecture objectives

From the discussions above, it is obvious that EPGs are multiphase systems as they involve
at least liquids (electrolytes) and solids (electrochemically active surfaces), and sometimes
gas (case of PEMFCs). EPGs are also multiphysics systems as they involve multiple com-
peting mechanisms behind their operation principles, such as electrochemistry, ionic and
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liquid transport (e.g. water in the case of PEMFCs), mechanical stresses and heat manage-
ment. All these mechanisms are strongly and nonlinearly coupled over the various scales,
and thus processes at the nano- and microscale can therefore dominantly influence the
macroscopic behavior. For example, the materials spatiotemporal microstructural changes
leads into irreversible long-term cell power degradation, and the ways of how aging mech-
anisms occur are expected to be strongly sensitive to the cell operation mode. For instance,
understanding the relationship between operation mode and degradation mode remains a
challenging task.

In consequence, because of the structural complexity and multiphysics character of
modern electrochemical devices for energy conversion and storage, interpretation of ex-
perimental observations and ultimate cell optimization remain a challenge. An analysis
through a consistent multiscale physical modeling approach is required to elucidate the
efficiency limitations and their location, the degradation and failure mechanisms.

From a practical point of view, it is crucial to accurately predict their performance,
state-of-health and remaining lifetime. For that purpose, it is necessary to develop di-
agnostic schemes that can evaluate electrochemical cell performance and state-of-health
adequately. In order to achieve this, several steps are required:

• to develop via physical modeling a better understanding of several individual pro-
cesses in the cell components;

• to understand the interplay between individual scales over the spatiotemporal hierar-
chies with their possible competitive or synergetic behavior;

• to identify the contribution of each mechanism into the global cell response under
dynamic conditions;

• to design separated controllers for an online control of the EPGs behavior to enhance
its durability under specific operation conditions (e.g. by controlling the dynamics of
the alcohol fuel, the temperature, etc.).

A detailed understanding of the relevant processes on all these materials and compo-
nents scales is required for a physical-based optimization of the electrochemical cell design
regarding its efficiency, durability and safety.

Based on this, this lecture has two major objectives:

• first, providing conceptual and epistemological tools aiming to help the EPG model-
ers in their approaches choice and in their communication with experimentalists for
model validation;

• then, providing practical tools to develop multiscale models for electrochemical de-
vices for energy conversion and storage. Only some basic features are provided here
but the readers are strongly encouraged to explore other features with the help of the
large database of bibliographic references provided by the author.

At the end of the lecture, remaining main challenges in the multiscale modeling of
EPGs are also discussed
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2 Modeling Experiments and Experimenting Models

The word “modeling” is inherently connected with the concept of “theory”. But...what is
theory exactly? Theory can be defined as a “contemplative and rational type of abstract
or generalizing thinking”, or “the results of such thinking”. One can develop theories for
example within a large diversity of disciplines, such as philosophy or physics. Physical
theories aim to correlate diverse experimental observations (Figure 8, top).

A mathematical model is a transcription of a physical theory describing a system into
mathematical concepts and language (Figure 8, bottom). The process of developing a
mathematical model is termed mathematical modeling. Thus, a theory does not necessarily
translate as a mathematical model. As mathematics is the most logical and organized way
of thinking, it becomes natural using it when one wants to rationalize and to predict the
behavior of physical systems.

Figure 8. Theory vs. mathematical model.

However, mathematical models are always imperfect. According to the mathematician
Kurth Gödel 82 any formal system which contains arithmetics (i.e. the mathematics of
whole numbers) is incomplete. By incomplete is meant, that the system contains undecid-
able statements, i.e. statements which are neither provable nor disprovable (by means of
the system itself).

The consistency of such a system implies the existence of undecidable statements (first
incompleteness theorem) and that the consistency of the system itself is undecidable (sec-
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ond incompleteness theorem). By consistency is meant, that it is excluded to prove a
statement together with its negation.

From this it arises that all mathematical models are essentially incomplete, and thus
will never represent perfectly the physical system.

To enhance the representation by models of the physical system, comparison between
the modeling outcomes and experimental data is crucial, but still by keeping in mind the
following important premises:

• theory without experiments is just “speculation”: theory needs experiments for vali-
dation;

• experiments without theory becomes just a “trial/error” method: experiments need
theory as guideline;

• both theorists and experimenters are “simultaneously theorists and experimenters”.
For instance, an experimenter, as a theorist, search on isolating a part of the “real
system” to study some specific mechanism or set of mechanisms at the lab scale. Fur-
thermore, experimenters always use implicitly or explicitly theories or mathematical
models for the interpretation and for the report of their experimental data;

• Most theorists and experimenters do not speak the same language (or do not use the
same theories...): this is a barrier usually making difficult the research. However, a
theorist with a good understanding of experiment, or an experimenter with a good
understanding of theory, will progress more efficiently than others who do not have
this double profile.

2.1 The modeling method

The current scientific method used in the modeling discipline can be schematized as the
process in Figure 9. In this process, the first and second steps consist respectively of defin-
ing the physical problem (i.e. the system which will be modeled: the electrode alone?
the complete cell? an active particle?...etc.) and on identifying the observables one would
intend to simulate with the model (e.g. electrode potential? cell potential? active area evo-
lution?...etc.). Then, the third and fourth steps consist respectively of defining the structural
model which will used (i.e. the geometrical assumptions: e.g. 1D, 2D or fully 3D repre-
sentation of the electrode?) and the physics to be treated (e.g. detailed electrochemistry?
ions transport? both coupled?). These two steps are crucial as they strongly determine the
choice of the simulation approach in step five (e.g. Quantum Mechanics? Molecular Dy-
namics? Kinetic Monte Carlo? Coarse Grain Molecular Dynamics, Continuum Fluid Dy-
namics? or combination of several of such approaches?). Then this determines the choice
of the mathematical formulations for performant calculations, of the appropriate numeri-
cal algorithms, software and hardware (e.g. parallel computing or not?) to proceed with
the simulation of the observables. These observables are then compared with the available
experimental data, preferentially obtained with model experiments, i.e. experiments de-
signed to be representative of the model (e.g. geometrical) assumptions. This comparison
will allow the model validation or its improvement in terms of its structural/geometrical
assumptions or physics accounted for. After several iterations between theory and exper-
iment one could expect achieving on “producing” a model with predictive capabilities of
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the electrochemical device operation. The key step in this modeling process, is the choice
of the modeling simulation approach among three categories: multiphysics, multiscale and
multiparadigm modeling approaches, which are discussed below.

Figure 9. The modeling method.

2.2 Multiphysics, multiscale and multiparadigm models: definitions

The word “multiphysics” usually characterizes, in published literature, models that mathe-
matically describe the interplaying of mechanisms belonging to different physical domains.
Multiphysics models include models describing these multiple mechanisms within a single
and unique spatial scale (e.g. a model describing the impact of heating on the mechanical
stress of a material) 83. Multiphysics models can be by construction “multiscale” on time,
as they can be built on the basis of mathematical descriptions of multiple mechanisms with
different characteristic times (e.g. when the heat dissipation time constant is different to
the material deformation time constant). The majority of models developed to describe the
operation of EPGs fall within this category as they have to consider as least two differ-
ent physical domains: the electrochemistry and the charge transport. For example, several
groups have developed various rigorous LIB models based on the porous electrode theory,
coupled with concentration solution theory and modified Ohm’s law, which allow treat-
ing thermal, mechanical and capacity fade mechanism aspects, as discussed later in this
lecture.

“Multiscale models” typically refer to models accounting for mathematical descrip-
tions of mechanisms taking place at different spatial scales 84. Multiscale models aim,
by construction, to considerably reduce empirical assumptions than can be done in simple
multiphysics models. This is because they explicitly describe mechanisms in scales ne-
glected in the simple multiphysics model. Actually, multiscale models have a hierarchical
structure: that means that solution variables defined in a lower hierarchy domain have finer
spatial resolution than those solved in a higher hierarchy domain. Consequently, physical
and chemical quantities of smaller length-scale physics are evaluated with a finer spatial
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resolution to resolve the impact of the corresponding small-scale geometry. Larger-scale
quantities are in turn calculated with coarser spatial resolution, homogenising the (possibly
complex) smaller-scale geometric features.

A large diversity of multiscale models exists in numerous domains, such as climate sci-
ence, geology, nuclear energy and physical chemistry 85,86,87. In the case of EPGs, model
geometry decoupling and domain separation for the physicochemical process interplay are
valid where the characteristic time or length scale is “segregated”. Assuming statistical
homogeneity for repeated architectures typical of EPGs devices is often adequate and ef-
fective for modeling submodel geometries and physics in each domain. For example, the
so called multiple-scale technique 88,89,90 provides a systematic way for accounting for
the EPGs mechanisms which occur within a microscopic quasi-periodic microstructure in
terms of a macroscopic system of equations, as used in 91,92,93,94,95. Such method allows
deriving the macroscopic equations and determining the corresponding parameters from a
local problem for the microscopic behavior. Model coefficients are calibrated in terms of
the microstructure, and thereby provide a tool for improving EPGs particles design. This
approach can be contrasted with averaging methods as for example in 96 where spatial
averages are taken of the microscopic equations resulting in equations on a macroscopic
scale for the microscopically averaged variables: these macroscopic equations are closed
by making ad hoc assumptions about the mathematical closure conditions and fitting these
to empirical data.

Depending on the development context of these models (engineer or physicist based),
they would be built following top-down or bottom-up viewpoints. Top-down models con-
nect detailed macroscopic descriptions of mechanisms with global parameters representing
microscopic mechanisms. On the other hand, bottom-up cell models scale up detailed de-
scriptions of microscopic mechanisms onto global parameters to be used in macroscopic
models. It is important to develop approaches which synergistically combine these two
complementary views, as the former provides “a closer” comparison with macroscopic
experiments, and the latter predictability towards the materials chemical and structural
properties (Figure 10).

Finally, the mathematical descriptions in a multiscale model can be part of a single
simulation paradigm (e.g. only continuum) or of a combination of different simulation
paradigms (e.g. stochastic model describing a surface reaction coupled with a contin-
uum description of reactants transport phenomena). In the latter, one speaks about “mul-
tiparadigm” models. Multiparadigm models can be classified in two classes: “direct” or
“indirect”.

Direct multiparadigm models are multiparadigm models which include “on-the-fly”
mathematical couplings between descriptions of mechanisms realized with different
paradigms: for example, coupling continuum equations describing transport phenomena
of multiple reactants in a porous electrode with Kinetic Monte Carlo (KMC) simulations
describing electrochemical reactions among these reactants. Several numerical techniques
are well established to develop such a type of models applied in the simulation of physic-
ochemical processes e.g. catalytic and electro-deposition processes 97,98. In the field of
catalysis, KMC simulations have been used to calculate instantaneous kinetic reaction rates
on a catalyst calculated iteratively from concentrations which are in turn calculated from
Computational Fluid Dynamics (CFD)-like continuum transport models 99: the calculated
reaction rates are in fact sink/source terms for the transport models.

197



Figure 10. Bottom-up and top-down multiscale modeling.

Even if very precise, these methods can reveal themselves to be computationally expen-
sive. For this reason, indirect multiparadigm models consisting in injecting data extracted
from a single scale model into upper scale models via their parameters, can constitute an
elegant alternative. For example, in the field of catalysis, one can use Nudged Elastic Band
(NEB) calculations 100 to estimate the values of the activation energies Eact of single ele-
mentary reaction kinetic steps, and then inject them into Eyring’s expressions to estimate
the kinetic parameters k

k = κ
kBT

h
exp

(
−Eact
RT

)
(1)

where κ refers to the frequency pre-factor, kB and R the Boltzmann and ideal gas constants,
T the absolute temperature and h the Planck constant. These expressions are used for the
calculation of the individual reaction rates at the continuum level 101,
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∏
y
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∏
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′
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where a refers to the activity of the reactants and products and υ the stoichiometry coeffi-
cients. Equations (2) are in turn used for the calculation of the evolution of the surface or
volume concentrations of the reaction intermediates, reactants and products, following
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where Kn is the number of reaction sites per mol of reactants.
More precisely, NEB method aims in fact to find reaction pathways when both the

initial and final states are known. The pathway corresponding to the minimal energy for
any given chemical process may be calculated, but however, both the initial and final states
must be known. NEB method consists in linearly interpolating a set of images between
the known initial and final states, and then minimizing the energy of this string of images.
Each “image” corresponds to a specific geometry of the atoms on their way from the initial
to the final state, a snapshot along the reaction path. Thus, once the energy of this string of
images has been minimized, the pathway corresponding to the minimal energy is found.

Another example of multiparadigm model results from the use of Coarse Grain Molec-
ular Dynamics (CGMD) for the calculation of the materials structural properties (e.g. tor-
tuosity and porosity) as function of the materials chemistry, which are used in turn for
the estimation of the effective diffusion parameters used in continuum reactants transport
models 102:

Deff =
ε

τ
D0 (4)

where ε refers to the material porosity and τ to the material tortuosity.
One could then imagine building up in this way an EPGs model with macroscopic

equations based on materials parameters extracted from atomistic and molecular level cal-
culations (Figure 11). This approach gives a method for systematically investigating the
effect of different materials designs on the LIB efficiency and durability.

Figure 11. Schematics of an indirect multiparadigm approach for the simulation of EPGs.

Figure 12 summarizes the logical interdependencies of the three concepts revisited in
this section.

2.3 Modular models: programming aspects and concepts
Application of multiscale modeling to LIBs is quite recent but this is also true for the mod-
eling of other EPGs such as fuel cells 103,104. As it is computationally expensive to per-
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Figure 12. Schematics of the logical interdependencies between the multiphysics, multiscale and multiparadigm
terminologies: a multiphysics model is not necessary “multiscale” either “multiparadigm”; a “multiscale” model
is necessarily “multiphysics” but not necessarily “multiparadigm”.

form a predictive numerical simulation of a LIB operation response while capturing all the
possible couplings among the different physicochemical processes in varied characteristic
length and time scales in complex geometries using a single computational domain, the
majority of the ongoing research efforts concentrate on developing indirect multiparadigm
models.

Globally speaking, governing equations in indirect multiparadigm model include nu-
merous nonlinear, coupled and multidimensional partial differential equations (PDEs) that
are needed to be solved simultaneously in time along with some highly nonlinear algebraic
expressions for transport and kinetic parameters. Rigorous EPGs models need from several
seconds to a few minutes to simulate a discharge curve depending on the computer, solver,
etc.

From a programming point of view, different languages, in-house or commercial soft-
ware have been used to solve such model equations, e.g. Matlab, Simulink, C, Fluent,
Comsol 105, or even combinations of those software and languages. Each class of software
presents advantages and disadvantages depending on the desired application of the model
developed. For example, Simulink is more adapted for system level simulation and Com-
sol is more dedicated to multiphysics models with detailed spatial resolution at the single
cell level.

The numerical solver is also a critical aspect for robust simulations. As commercial
software such as Simulink and Comsol propose a limited number of numerical solvers, or
limited spatial meshing capabilities, numerous groups develop their own numerical solvers
of Ordinary Differential Equations (ODEs) and PDEs, such as PETSc 106, LIMEX 107

or FiPy 108. In-house codes are usually more flexible and can be integrated within High
Performance Computing (HPC) frameworks for sequential or parallel calculations 109.

The generation of parameters for such indirect multiparadigm models can be done with
any kind of software available for ab initio calculations (e.g. VASP 110, CRYSTAL 111,
ADF 112, Gaussian 113, BigDFT 114,115,116) or for molecular dynamics calculations (e.g.
GROMACS 117, LAMMPS 118, AMBER 119, CHARMM 120), the choice depending on
the particularities of the material being studied and the kind of information one wants to
extract with. A complete introduction to ab initio and MD methods including fundamental
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concepts and detailed algorithms is beyond the goal of this paper and can be easily found
in text books 121,122,123,124.

Multiscale simulation of device materials exhibits extreme complexity due to the varia-
tion of a huge number of possible compounds, device morphology and external parameters.
Such simulation requires new hierarchical concepts to connect simulation protocols with
the computing infrastructure, particularly with HPC architectures, on which the simula-
tions can be executed (e.g. in the case of ab initio codes). Automatization of the genera-
tion of database libraries and their integration in indirect multiparadigm models is also an
important aspect to be considered as highlighted by Bozic and Kondov 125. Some software
platforms allowing to create data flows (or pipelines), to selectively execute some computa-
tional steps and to automatically inspect the results, are already available, such as KNIME
and the platform UNICORE 126,127. Particularly for LIBs, an in-house flexible and scalable
computational framework for integrated indirect multiparadigm modeling is reported by
Elwasif et al. 128. The framework includes routines for the codes execution coordination,
computational resources management, data management, and inter-codes communication.
The framework is interfaced with sensitivity analysis and optimization software to enable
automatic LIB design.

Further than the choice of the programming language and the software characteristics,
there are also other key issues related to the mathematical formulation of the models, such
as their modularity and their parameters identifiability.

2.3.1 Modularity

In building up multiscale models, a process engineering viewpoint is mandatory in order
to provide models which are acausal (i.e. not requiring an action to be modeled on the
basis of input data from a previous action), modular (i.e. consisting on an interconnected
network of “modules”, each “module” describing an unique physicochemical mechanism)
and reusable (i.e. where physics can be exchanged without changing the mathematical
formulation and/or interconnection between the “modules”).

Numerous models in process engineering are based on a structured approach using
sets of balance equations, constitutive equations and constraints 129. Mangold et al. 130

proposed a block-diagram approach which also applies to distributed parameter systems.
This block-diagram is constituted of the components elements (representing the storage of
conserved quantities) and the coupling elements (defining the fluxes between components)
related by bidirectional signal flows (composed of potentials and fluxes). In this approach
causality is thus assigned once for all which harms the reusability of the submodels, the
submodels have to be re-defined for each new set of boundary conditions (i.e. for each
new configuration of the interconnection with the environment). Maschke et al. proposed
a port-based model using a novel extension of the bond graph language to multiscale and
non-uniform models (also known as infinite-dimensional bond graphs) 84. Their work
extends previous work on structured modeling for chemical engineering using bond graph
for finite dimensional systems 131,132,133,134,135,136,137. This approach leads to a simple
and easily re-usable graphical description of the system which is an interesting modeling
alternative to sets of PDEs and boundary conditions. The infinite dimensional bond graph
models represent the basic thermodynamic properties, conservation laws at each scale and
the multiscale coupling in terms of a network of multiport elements acausally related by
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edges (bonds) indicating the identity of pairs of power conjugated variables (intensive and
variations of extensive variables). This network includes energy dissipative elements (“R”
elements) and energy cumulative elements (“C” elements). Cumulative elements concern
the balance equations such as

∂C

∂t
= ∇ · J + S (5)

with a source/sink term interconnected with a smaller or higher scale through the boundary
conditions, e.g. via the flux,

S = γ × J∂V (6)

where γ is the specific surface area between the scales (e.g. in m2 · m-3).
Dissipative elements concern the constitutive equations such as,

J = −Γ(C)×∇µ̃ (7)

Because of the multidisciplinary property and the “universal” formulation inherent to the
bond graph approach, it provides a framework which facilitates the collaboration between
experts working on different physical domains.

The modularity of infinite dimensional bond graphs provides to the multiscale models
a hierarchical, flexible and expandable mathematical architecture.

An example of infinite dimensional bond graph representation is provided in Figure 13
for the case of the modeling of a chemical reactor 84. Because of the reusability of the ap-
proach, the same representation will be valid, for example, for the modeling of ion transport
across the EPG porous electrodes.

Specific software can be used to build up these types of models and to calculate the
propagation of the causality, e.g. 20-Sim 138 or using similar concepts, AMESim 139,
Dymola 140 and OpenModelica 141.

Figure 13. Example of an infinite dimensional bond graph model, representing the transport of a reactant across
a porous media with a sink/source term connected to a microscale model (not shown here). Source: 132.
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Only very few efforts have been reported on modeling batteries paying particular
attention on their a-causality, modularity and reusability by using the bond graph ap-
proach 142,143.

For PEM Fuel Cells, significant progress within this sense has been achieved: the
models developed by Franco are fully based on the use of infinite dimensional bond
graphs 144,145,146. The models represent explicitly the different physical phenomena as
nonlinear sub-models in interaction. Such developed models are multi-level ones in the
sense that it is made of a set of interconnected sub-models describing the phenomena oc-
curring at different levels in the PEMFC. However, this description remains macroscopic
(suitable for engineering applications) in the sense that it is based on irreversible thermody-
namic concepts as they are extensively used in chemical engineering: use of conservation
laws coupled to closure equations. Such an approach allows to easily modify the sub-
models and to test new assumptions keeping the mathematical structure of the model and
the couplings.

The infinite dimensional bond graph structure of a generic multiscale model for the
numerical simulation of electrochemical devices for energy conversion and storage is pre-
sented in 147 where several application examples are discussed, including fuel cells, elec-
trolyzers and batteries.

In the oral presentation associated to this lecture, it will be shown how to build up
bond graph-based models by using both 20-Sim and Simulink software. For instance,
Simulink (from “Simulation” and “Link”) is a graphical extension of MATLAB by Math-
works for modeling and simulation of dynamical systems. The construction of a model
under Simulink environment is done with click-and-drag mouse operations under a graphi-
cal user interface (GUI) environment. Systems are drawn on screen as block diagrams with
inputs and outputs which can be 1 to 1 associated to the ports of a Bond Graph element,
from a customizable set of block libraries (Figure 14). Many elements of block diagrams
are available, such as transfer functions, summing junctions, etc., as well as virtual input
and output devices such as function generators. Simulink provides an interactive graphi-
cal environment offering on one side a quick programming approach to develop models in
contrast to text based-programming language such as e.g., C, and in the other side it has
integrated fixed and variable time step solvers (in text based-programming language such
as e.g., C one needs to code the solver).

However, it is in practice very helpful to combine Simulink capabilities, with the com-
pactness of C and/or Python programming languages. For instance, some specific blocks
can be programmed in C and/or Python and then embedded in Simulink.

Finally it should be noticed that Simulink is a software originally devoted to the de-
velopment of system-level models, in particular for control-command purposes. Franco
was pioneering its adaptation and its use for the numerical simulation of electrochemical
processes 144. In the oral presentation associated to this lecture, several practical examples
and exercises on the use of Simulink for the modeling of EPGs will be provided.

2.3.2 Identifiability and parameters estimation

While EPG models that are trained to experimental data provide great benefit in their abil-
ity to be integrated into vehicle models, because of their simple construction and fast com-
putational speed, they have several shortcomings. In particular, these models are only as
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Figure 14. Example of model built up in Simulink.

good as the experimental data they are trained to, and thereby do not provide the ability
to extrapolate beyond the range of this data. Moreover, changes in the cell design do not
allow the use of the same models, and the task of building prototype cells, collecting data
and training the model has to be repeated. Additionally, as these models are empirical in
nature, they provide little, if any, insight into the operation principles of the cell.

By construction, bottom-up multiparadigm and multiscale models are not designed for
fitting, especially if they contain parameter values estimated by atomistic or molecular level
calculations. Predicting observable trends with these models with good order of magnitude
in a large diversity of conditions and materials properties can be sufficient enough to con-
sider them as “validated”. But estimation of all the parameters of such a type of models
from atomistic or molecular calculations is impossible and experimental fitting of some
empirical parameters, inherent to the non-ideality of the real system being simulated (cf.
Section 1), is always necessary.

For this, identifiability is a crucial aspect to be treated when developing multiscale
models. When these models are used for EPG optimization, the estimation of accurate
physical parameters is important in particular when the underlying dynamical model is
nonlinear. Identifiability concerns the question of whether the parameters in a model math-
ematical structure can be uniquely retrieved from input-output data. Literature on identifi-
ability and techniques to check identifiability is extensive 148,149,150,151. Being able to first
assess the identifiability of a model without going through the estimation work (e.g. by us-
ing iterative methods such as Gauss-Newton or Steepest-Descent, or the Bayesian method)
allows gaining time in the model development. Identifiability analysis can result in struc-
turally non-identifiable model parameters. Furthermore, practical non-identifiability can
arise from limited amount and quality of experimental data. In the challenge of grow-
ing model complexity on one side, and experimental limitations on the other side, both
types of non-identifiability arise frequently, often prohibiting reliable prediction of system
dynamics. Once non-identifiability is detected, it can be resolved either by experimental
design, measuring additional data under suitable conditions, or by model reduction, lin-
earization 152, tailoring the size of the model to the information content provided by the
experimental data, or by more model refinement based on lower scale calculations.

EPG multiscale models usually present a large number of equations that re-
sult from finite difference reformulation of the mathematical expressions. Until re-
cently 153,154,155,156,157,158,159,160,161,162, there were no significant efforts in developing ef-
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ficient techniques for estimating parameters in multiscale EPG models because of compu-
tational constraints. In particular, Boovaragavan et al. reports a numerical approach for a
real-time parameter estimation using a reformulated LIB model 163. It is to be noted in this
work that the estimation of parameters using LIB models are performed only for up to 2C
rate of discharge. Further reformulation of the authors’ multiscale LIB model is required
to enable estimation of parameters at high rate of discharge.

3 Multiscale Models of EPGs: Examples and Practice

In the following the practical use of the different concepts introduced in the previous sec-
tions is illustrated through some examples of indirect multiscale models of EPGs. This
section does not intend to be exhaustive and only exposes some few relevant application
cases: the oral presentation associated to this lecture will introduce other examples. For
further application examples, the reader is invited to visit the home page of Prof. Franco
and to read the publications within: www.modeling-electrochemistry.com

3.1 Modeling PEMFC electrochemical reactions
Different simulation approaches of the PEMFC performance have been developed during
the last 20 years from the pioneering papers of Springer et al. and Bernardi and Ver-
brugge 164,165,166,167,168. These models quite well describe water management and thermal
phenomena occurring in PEMFC for different operating conditions 169,170,171,172. A num-
bers of CL models have been then developed, including the interface models 164,165, 166,
the thin film models 173, the agglomerate models 174,175,176,177,178,179, and the thin film
agglomerate models 176,177. Optimum performance of PEMFC for a number of parame-
ters (type of agglomerate, CL thickness, CL porosity, distribution of Nafion R© content, Pt
loading, etc.) has been already impressively investigated 180,181,182,183,184,185.

The mean feature of these models is that the kinetic rates associated to the electro-
chemical reactions are described via Butler-Volmer equations with empirical parameters,
not connected with atomistic processes and thus describing reactions through effective
global steps 186. The numerical estimation of the values of parameters such as the zero
exchange current (i0) or the symmetry factors (α) is often a difficult task 187. These macro-
scopic parameters show strong dependence on the PEMFC operation parameters such as
the temperature or the reactants relative humidity, the CL mesostructural properties and
even the MEA or bipolar plates design 188. Modeling-based optimization of CL reactants
and water transport for enhanced performance and stability requires a good knowledge of
these electrochemical parameters related to the chemical and nanostructural properties of
the catalyst.

The possible impact of water and ionomer which are expected in the vicinity of the cata-
lyst in realistic PEMFC environments on the ORR kinetics appears to be unexplored 189,190.
In fact, in these models the electrochemical double layer capacity is usually assumed to be
constant (i.e. the electrochemical double layer structure been uncoupled from the elemen-
tary reactions) 191 (Figure 15). It is well known that this is an important assumption that
can lead to contradictory interpretations of experimental data as the electrochemical inter-
face is expected to evolve under transient conditions (such as in the case of aging nanopar-
ticles, oxidation and corrosion mechanisms), and the structure of the electrochemical dou-
ble layer influences in turn the electron transfer rate and thus the effective electroactivity
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properties of the catalyst surface 192,193,194. More generally, experimental evidence has
been reported by Adzic et al. that simple Butler-Volmer equations are inappropriate for
describing HOR and ORR reactions on Pt microelectrodes 195. There is also some experi-
mental evidence for nanosized electrodes, where pronounced nanoscale non-linear effects
of charge transfer in the surrounding electrolytic environment are important and cannot be
explained using conventional electrochemical theories 196.

Figure 15. Schematics of an equilibrium electrochemical double layer in liquid/solid interfaces.

More refined Butler-Volmer models, splitting global reaction steps into a set of elemen-
tary steps, have been developed and mainly used to explore external contaminants impact
on the PEMFC performance or MEA materials aging mechanisms 197,198,199. Kinetic pa-
rameters are usually estimated from experimental fitting, without checking the thermody-
namic consistency of the proposed pathways at the atomistic level. Very few efforts have
been reported to connect such elementary kinetic models with atomistic data obtained, for
example, from ab initio calculations 200,201. The kind of electrochemical model used in a
multiphysics model of a PEMFC can impact on estimated values of the other model param-
eters (if fitted from experimental data) such as the ones related to transport phenomena. It
is thus important to develop appropriate elementary kinetic models for robust optimization
of the other model parameters.

On the other side, the growing use of nanosciences are encouraging to understand and
thus to control the fundamental structure and behavior of the PEMFC materials at the
atomic and molecular level. First-principles or ab initio calculations (such as the DFT
method) can be used to predict important quantities such as adsorbate atomic structures
and bonding energies, and provide key information on the reaction mechanisms and path-
ways. This includes the determination of the controlling elementary reaction pathways
and intrinsic kinetics involved in the ORR over Pt and Pt based alloys and their potential
dependent behavior. This is also related to the understanding of the influence of the ex-
trinsic reaction environment including the surface coverage, alloy composition, solution
phase and electrochemical potential. New functionalities or lower Pt loadings (e.g. via the
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development of multi-metallic catalysts with lower Pt loading 202) are made available by
manipulation of matter at this scale or through specificities of the nanodimensions, where
the physical and chemical properties of materials differ from those of the bulk matter. In
this context DFT has been largely used to explore different PEMFC reactions in the absence
of interfacial electric field (e.g. ORR steps in 203,204,205,206,207,208,209,210,211,212,213,214,215).
Generally these studies were performed using a few atoms/small clusters or extended sur-
faces to simulate the catalyst.

However, a complete description of ORR kinetics from first principles calculations for
pure Pt and PtM surfaces is still missing and the influence of the nanoparticles morphology
and the surrounding electrochemical double layer structure (strongly influenced in turn by
the micro and mesoscopic transport phenomena of reactants, charges and water inside the
electrodes) onto the effective ORR kinetics is not solved yet (Figure 16).

Figure 16. Aspects besides the challenge of modeling and simulation of electrochemical reactions and interfaces
in PEMFC environments.

A receipt towards the building up a model describing electrochemical reactions in re-
alistic PEMFC environments is presented in Figure 17.

First, by the use of DFT calculations thermodynamically favorable reactions steps are
detected and the associated activation energies calculated: an example of a result for the
ORR is reported in Figure 18 216 where the related chemical and electrochemical processes
are modeled by series-parallel elementary kinetic steps (e.g. O2 dissociation followed
by the H2O formation), and where Pt nanoparticles are modeled by a Pt(111) surface.
For instance, this model neglects side effects (i.e. edge of sites on a nanoparticle, and
kink sites). Although not perfect, this approach is still sufficient enough for predicting
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Figure 17. Steps towards the development of an electrochemical model in PEMFC environments.

relevant CL potential evolution trends. Full elementary kinetic modeling of reactions on 3D
nanoparticles still remains a great challenge, at least for atomistic theoretical studies 217,218.

The calculated energy barriers are then used to estimate the kinetic rate constants for
each single reaction step involved in the ORR. A Mean Field (MF) approach can be used
to build the elementary kinetic model and describe the rate of the individual reactions in
the CL.

The activation energy of each elementary ORR step can be coverage dependent. Only
few published DFT results exploring coverage effect on the adsorption and activation en-
ergy are available 219. So based on the DFT calculation at low coverage and the available
literature on higher coverage for each ORR elementary step, we can estimate the maximum
change that we can expect for Eact at high coverage. Then using a simple linear relationship
between the energy barrier and the total coverage given by 210

Eact = Eact0 + I

N∑
i=0

θi (8)

it is possible to estimate Eact at each time step, where Eact0 is the activation energy calcu-
lated by DFT and θi is the coverage of species i. In the result part we show a comparison of
i-V curves with and without the dependence of Eact on the coverage. The reader is invited
to refer to Ref. 216 for the details. It is however important to notice that the coverage effect
can be quantitatively refined from Monte Carlo simulations as it will be illustrated in the
oral presentation associated to this lecture.

Transition State (TS) theory formulation can be then systematically applied for the
calculation of the kinetic rate parameters. The general formulation is given by:

ki =
1

NAS

kBT

h

QTS∏
QTS

exp

(
−Ei,act
kBT

)
(9)

where ki and Ei,act are the kinetic rate constant and activation energy of elementary step
i respectively. S is the total surface area of catalyst, QTS and

∏
QTS are the partition

functions identified to 1 here as a first approximation 220,221.
It is important to note that the activation energies Ei,act can be actually given by the

addition of the DFT-calculated activation energy and an empirical parameter related to all
the non-idealities not considered in the DFT calculations (e.g. presence of kinks, presence
of solvent, etc.), thus

Ei,act = EDFT
i,act + δi (10)

The empirical parameter can then be used for experimental fitting of the predicted ob-
servables (e.g. i-V curves) to guide further DFT calculations devoted to refine more the
theoretical description of the reaction pathway. For instance, Reuter et al. proposed a
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Figure 18. Elementary kinetic steps detected as the most favorable ones for the ORR on Pt(111) with the associ-
ated activation energies. Schematics built from Ref. 216.

systematic methodology for the development of error-controlled ab initio based kinetic
models (Figure 19) 222,223,224. The methodology consists on refining iteratively the kinetic
rates by starting from coarse kinetic models mixing DFT-based and empirical kinetic rate
parameters. The parameter sensitivity analysis guides the further efforts still necessary to
be done from ab initio calculations. 225

The kinetic reaction rate vi of a surface reaction involving two adsorbed species is
calculated in the following way:

Aads +Bads ⇔ ABads + s (11)

vi = kiθAθB − k−iθABθs (12)
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Figure 19. Methodology for the development of error-controlled ab initio based kinetic models (schematics built
from the concepts described in Ref. 224 and inspired from Ref. 225.

where the kinetic rate constants are given by equation (9).
In the case of the electrochemical steps the kinetic rate constant and the rate of the

elementary steps is written as follows:

Aads +H+ + e− ⇔ AHads (13)

vi = kiθACH+ − k−iθAH (14)

where CH+ is the proton concentration at the catalyst surface and where the kinetic rate
constants are given by

Ei,act = EDFT
i,act + f [|ψM − φx=L|] (15)

where f is a function of the electrostatic potential difference across the adlayer (or surface
potential) and corrects the DFT-calculated activation energy by the interfacial electric field
effects. For instance, imagine an electron moving from the metal with an surface electronic
charge density to the reaction plane situated at x = L (Figure 20): the electrostatic potential
difference between the metal and the reaction plane will contribute on increasing the acti-
vation energy of the reduction reaction (as for the electron is more difficult “to leave” the
surface). In this case, the function f is a positive function. Other situations (e.g. oxidation,
or reductions with negative charge densities) can be analyzed in an analogous way. It is
important to note that this potential difference across the adlayer is a function of
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• the metal charge density and the charge density associated to the specific electrolyte
ionic adsorption (ad-ions surface concentration);

• the polarization of the adlayer, which is in particular function of the coverage of sol-
vent molecules (e.g. water). The coverage by solvent molecules can be calculated
through the mass action law as discussed in 226 and it is a function of the metal sur-
face charge density.

Figure 20. Schematics of the adlayer and of the calculation of the electrostatic potential difference from the
surface displacement vector.

At first order f linearly depends on the surface potential, thus

f [|ψM − φx=L|] = αF |ψM − φx=L| (16)

where α is a constant parameter comprised between 0 and 1.
The electrostatic potential at the reaction plane can be calculated from the Gauss’ law

applied to the diffuse layer region (Figure 21), i.e.

∇ · ~D = ρfree ⇒ −∇2φ =
ρfree

ε
(17)

where ε is the average electric permittivity of the electrolyte, where it was assumed that
~D = ε ~E and that ~E = −∇φ (i.e. neglecting magnetic fields) and where the charge volume
density is given by

ρfree = F
∑
i

ziCi . (18)

In the case of a 1D model, the boundary conditions of equation (17) are given by the
value of the electrostatic potential at bulk and by the value of the electric field at the metal
surface, i.e. ∣∣∣ ~E∣∣∣ =

σM
ε

(19)

which is a function of the metal charge density through the Gauss’ theorem 226.
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For the ORR in PEMFC environments, the concentrations in equation (18) are the
proton concentration and the (Nafion R©) sulfonic acid group concentration. The former,
and in particular its value at the metal surface necessary for equation (14) can be calculated
from the conservation equation:

∇ · Ji = −∂Ci
∂t

(20)

where Ji is the proton flux through the diffuse layer. The physics governing the proton
transport is written as follows:

Ji = Ji (∇µ̃i) (21)

where∇µ̃i is the gradient of the proton electrochemical potential in the electrolyte. Under
the assumption of diluted solutions, we can write

Ji = −Di∇Ci −Di
F

RT
Ci∇φ (22)

which jointly with equations (17) and (20) arises onto the so called Poisson-Nernst-Planck
(PNP) system of equations.

Figure 21. Schematics of the electrochemical double layer model.

Regarding the sulfonate group concentration the treatment is more complex. The sim-
plest approach would be considering them as spatially fixed charges, as previously done by
Franco et al., e.g. in Refs. 15, 144, 201. However, as recently demonstrated by Franco et al.
on the basis of CGMD calculations 227,228, the hydrophilicity degree of the substrate can

212



strongly impact the interfacial morphology of Nafion R© thin films and thus the sulfonic
acid group concentration distribution over space (Figure 22). This is expected to impact
the electrochemical double layer structure which will impact in turn the effectiveness of
the ORR.

Figure 22. a) Snapshots of CGMD-calculated structures of hydrated Nafion ultra-thin films, at T = 350 K and
number of water molecules per sulfonic acid group = 22, for an interaction with the support of increasing hy-
drophilic character (εw = 0.25, 1.0, 2.0 kcal/mole, from top to bottom). We observe the formation of extended
water pools (blue) which are separated from the confining polymer matrix (grey) by the charged sulfonic groups
interface (green); hydronium complexes are also shown (red). For εw = 2.0 kcal/mole the ionomer is completely
desorbed from the substrate. Note the evaporated water molecules, on the top of the films. b) Mass probability
distributions as a function of the distance from the support, z, at the indicated values for εw. We have considered
a) water oxygens, b) polymer backbone units, and c) sulfur atoms. Source: Ref. 227.

For instance the following features are observed from the CGMD calculations:

• the ionomer density at the vicinity of the substrate decreases as the substrate hy-
drophilicity increases, and the opposite trend occurs at the top of the film;

• a compact water layer is formed in the hydrophilic cases;

• for the hydrophobic case, the side chains are pointing out from the surface. No pres-
ence of water is observed on the top as a hydrophobic film surface is formed which
could prevent gas and water absorption;

• still in the most hydrophobic cases, the formation of hydrophilic water channels (in-
verted micelles) are more evident, and the formation of polymer layers are detected
which would prevent the water and proton to diffuse through the film thickness;
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• the agglomeration of adsorbing anions (SO3
−) is observed when the hydrophilicity

increases;

• for the most hydrophobic cases the polymer is adsorbed mainly via backbone, and for
the most hydrophilic cases the presence of backbone is less evident at low hydration;

• the backbone can be adsorbed even in the hydrophilic surfaces.

The ionomer film structure will be impacted by the catalyst/carbon oxidation state
(which determines its hydrophilicity). As the distribution of charge at the vicinity of the
substrate is strongly affected by the ionomer structure, the surface hydrophilicity is ex-
pected to impact the proton concentration at the reaction plane, and non-uniform reaction
rates are expected inside the CL.

It is important to note that the hydrophilicity of the Pt is expected to evolve during
the PEMFC operation as its oxidation state changes (it becomes more oxidized when the
ORR occurs at its surface). Thus, the structure of Nafion at the interface is also expected
to evolve upon the PEMFC operation. All these structural features are expected to strongly
impact the ORR kinetics through the polymer poisoning of the catalyst and the effective
ionic transport and water uptake properties of the thin film.

Franco et al. ongoing efforts are aiming to develop electrochemical models accounting
for these important features 229: some examples will be provided in the oral presentation
associated to this lecture, and some exercises in relation to this will be proposed in the
hands-on part of the lecture.

Figure 23. Schematics of the interfacial Nafion R© thin film structure at the vicinity of Pt and C before PEMFC
operation. Source: Ref. 3.

For desorption steps the following relations are used:

AHads ⇒ AHg + s , (23)
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vi = kiθAH . (24)

Adsorption steps can be simulated using collision theory:

Ag + s⇒ Aads (25)

ki =
sc

nmax

P√
2πmkBT

(26)

vi = kiθs (27)

where P and m are the partial pressure at x = L and the atomic mass of reactant A
respectively. sc is the sticking coefficient estimated from published values 230. vi is the
rate of the elementary step, nmax is the surface density of sites and θs the coverage of free
sites.

Using the reaction rate of the set of elementary steps of each reaction mechanism in
Figure 18 we can write a balance equation for calculating the coverage of each single ORR
intermediate species by numerical integration, thus

nmax

NA

dθk
dt

=
∑
l

vl −
∑
l′

vl′ (28)

where the balance equations are function of the reaction rates of creation and consumma-
tion of specie k. The calculation of the coverage is subject to the conservation of the total
number of adsorption sites, which in the case of the cathode Pt catalyst surface can be
written as follows

θs +
∑
k

θk + θH2O→ + θH2O← + θionomer + θj+ = 1 (29)

where the coverage by water molecules pointing to/pointing out the surface and contribut-
ing onto the calculation of the surface potential appear. Equation (29) also depends on the
coverage by the ionomer, where the contributions related to the side chains and backbone
adsorption can be calculated with appropriate kinetic models to be exposed in the oral
presentation associated to this lecture. θj+ is the coverage by specifically adsorbed ions
(relevant for liquid electrolytes or mixtures of liquid electrolytes with Nafion R©) which will
impact the surface potential magnitude (Figure 20).

A similar approach is used for describing the kinetics of C corrosion process 231. In or-
der to take into account the effect of catalyst degradation (structure evolution) on the activ-
ity and stability properties, we extend classical elementary kinetic modeling by implement-
ing time-dependent kinetic parameters (associated with each step) given by degradation-
dependent activation energies calculated on catalyst surfaces with atomistic structures rep-
resentative of different snapshots of the degradation process 232.

The metal surface charge density σM (Figure 20) is calculated by numerical integration
of the conservation equation

J − JFar = J − F
∑
l

ṽl = −∂σM
∂t

(30)
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where J(r, t) is the current density and JFar(r, t) is the faradic current density. This term
is calculated inside the kinetic model by using the protonic reaction steps in the kinetic
model. Finally, the cathode electronic potential is calculated from the scheme reported in
Figure 20, φx=L given by the solution of equation (17).

Examples of calculated observables with this model are presented in Figures 24 and 25.

Figure 24. Calculated ORR activity for Pt(111) and Pt3Ni(111) bulk-truncated catalysts and comparison with
experimental data.
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Figure 25. Representation of one of the DFT-calculated elementary kinetic models of the ORR mechanism on
Pt(111) and examples of calculated i-V curves for Pt and Pt-Co catalysts by using DFT-based kinetic parameters.

In conclusion, the approach presented in this lecture allows relating the electrochemical
kinetics with the chemistry and structure of the active material, through an elementary
kinetic approach describing explicitly the electrochemical double layer structure, and thus
having predictive capabilities that the classical empirical Butler-Volmer approach does not
have (Figure 26).

Figure 26. Comparison between the classical Butler-Volmer modeling approach of electrochemistry and the ap-
proach presented in this lecture.

217



3.2 Modeling solid phases formation and evolution in Lithium Ion Batteries

Parallel to various experimental research programs, mathematical models that describe
the behavior of LIBs and their interaction with other devices (e.g. vehicle electric en-
gines) have received more and more attention for almost 30 years. These models range
from those that are fitted to experimental data under various conditions (e.g. equivalent
circuit 233 and neural network models 234) to the ones that describe the various physical
mechanisms in the cell 235. Only very few reviews on LIB modeling have been reported in
the last 10 years 236,237,238. The majority of the published reviews provide a state of the art
of LIBs modeling from a top-down engineering viewpoint, covering key issues such as the
reusability of the governing equations for different battery systems, the aspects related to
the coupling between mathematical descriptions of the electrochemical and thermal mech-
anisms in the cells, and the modeling at three different scales, namely electrode-level,
cell-level and stack-level.

This lecture presents key techniques to develop bottom-up multiscale models for LIBs,
i.e. spanning scales from atomistic mechanisms to the single cell level. Such types of
models are also important for the prediction of the impact of the chemical and structural
properties of the materials onto the overall LIB response. This paper does not intend to be
exhaustive, but instead, it brings together general concepts and approaches (both method-
ological and numerical) as well as examples of applications. First, general aspects on phys-
ical modeling are revisited and some approaches for multiscale modeling are presented.
Then, a critical review on ongoing efforts within the community is discussed. Finally,
general conclusions, indications of the remaining challenges and suggested directions of
further research are provided.

The so-called phase-field modeling approach is now receiving growing attention to
understand phase separation, until now mainly on LiFeO4 materials. Phase field models
allow moving beyond traditional Fick’s law in describing lithium diffusion in LIB elec-
trodes. Phase field models are potentially more accurate and allow simpler tracking of
phase boundaries than Fick’s equation.

The phase field modeling approach, initially developed for describing phase separation
and coarsening phenomena in a solid 239 and later for electrochemistry applications 240,241,
first consists in considering the total free energy of the intercalation (or conversion mate-
rial), as follows:

F =

∮
V

(fbulk + fgrad + fapp) dV +

∮
V

∮
V ′

[fnon local]dV dV
′ (31)

where f bulk is the local chemical free energy density (function of the composition, e.g. Fig-
ure 27), f grad is the gradient energy density (accounting for the heterogeneities penalties),
f app is the coupling potential energy between the applied fields and order parameters, and
the second integral accounts for the long range interactions.

The chemical potential of each phase is given by

µj =
∂F

∂cj (−→r , t)
(32)

and the conservation equation governing the phases formation and displacement is given
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by

∂ci
∂t

= −∇ · J = ∇ (Mij∇µj) (33)

where Mij refers to the mobility of each phase (could depend on the phases concentra-
tions). Equation (33) is known as the Cahn-Hilliard equation 242. This is a fourth order
equation, extremely sensitive to initial conditions and parameters values, which thus needs
appropriate numerical schemes to solve them. This motivated a stronger and stronger in-
terest for applied mathematics which brings onto the development of highly accurate but
fast numerical methods such as the Chebyshev-spectral method, the generalized Newton’s
method, Fast Fourier Transform methods and multigrid methods, each method having pros
and cons depending on the application problem 243,244,245. Furthermore, it should be no-
ticed that phase field modeling is an elegant approach in which parameters can in principle
be estimated from first principles calculations, e.g. as the interphase energies.

Han et al. reported one of the pioneering works on the application of a phase field
model to describe phase separation in LiFePO4 electrodes 246. Using the phase field model
the authors investigate to what extent non-Fickian behavior can affect results from experi-
mental techniques for measuring diffusion coefficients, such as Galvanostatic Intermittent
Titration Technique (GITT) and Potentiostatic Intermittent Titration Technique (PITT).

Figure 27. Example of free energy density functional used in the phase field modeling of LiFePO4 electrodes.
Source: 246.

Kao et al. compared phase field modeling results on LiFePO4 to X-ray diffraction
data and proposed the idea of overpotential-dependent phase transformation pathways 247.
From then, models developed account more and more for the strongly anisotropic trans-
port in crystalline LiFePO4

248,249,250 as well as surface reaction kinetics 251,252. Within this
sense, Bazant et al. introduced significant contributions on the application of anisotropic
phase field modeling coupled with faradaic reactions to describe the intercalation kinetics
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in LiFePO4 (Figure 28) 253,254,255. For small currents, spinodal decomposition or nucle-
ation leads to moving phase boundaries (Figure 29). Above a critical current density, the
spinodal decomposition is found to disappear, and the particles start to fill homogeneously.
This effect increases the active area for intercalation, and likely contributes to the high-rate
capabilities and favorable cycle life of LiFePO4

255,256. According to Bazant et al., this
may explain the superior rate capability and long cycle life of nano-LiFePO4 cathodes.

Figure 28. Schematic model of a LixFePO4 nanoparticle at low overpotential (a) lithium ions are inserted into the
particle from the active (010) facet with fast diffusion and no phase separation in the depth (y) direction, forming
a phase boundary of thickness lambda between full and empty channels (b) the resulting 1D concentration profile
(local filling fraction) transverse to the FePO4 planes for a particle of size L. Source: 254.

An alternative approach to the fourth-order Cahn-Hilliard equations is the so-called
“Allen-Cahn approach” (Figure 30) which arises into non-conservative second-order equa-
tions of type “reaction-diffusion”. These equations are appropriate to describe conversion
reactions in LIBs, such as CoO materials converting onto Co and Li2O during the LIB
discharge. As in the Cahn-Hilliard approach, the values of interface energies and diffusion
coefficients in the Allen-Cahn approach can be estimated from DFT calculations 257,258.
First ongoing efforts within this sense by Franco et al. will be detailed in the oral presen-
tation associated to this lecture (Figure 31).

3.3 Modeling the relationship between the electrode structure and the performance
and degradation of EPGs

Several models have been developed attempting to capture the influence of the electrodes
structural properties (at the micro and mesoscales) onto the EPG performance and durabil-
ity. For instance, in the case of LIBs for example, the anisotropic nature of ion diffusivity
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Figure 29. Top) calculated phase separation in a particle which has been allowed to relax from a homogeneous
state at zero current with stress-free boundaries. White regions are lithium-rich. Down) Calculated LIB voltage
at different applied currents. Source: Ref. 256.

in LiFePO4 has motivated synthesis approaches that facilitate control of size and shape of
LiFePO4 agglomerates to maximize Li+ transport. In general, it is important to develop
modeling tools that can evaluate the relative impact of each single scale onto the over-
all efficiency of the LIB. A major problem in most modeling approaches is the reliable
determination of model parameters. Especially for homogenized models, the microstruc-
tural parameters have a strong influence on the simulation results. A lack of knowledge of
several parameters leads to a reduction of the models prediction capability.

To provide a detailed description of the mechanisms, a 3D representation is required
for the morphology of composite materials used in EPGs.259 Nowadays, two ways of
accounting for the detailed structure of the electrodes have been developed: one consisting
in building up artificial structures capturing the main features of the real electrodes (e.g.
length scales, particles shapes...), and another one based on computer-aided reconstruction
of the real electrode structure. This is discussed in the following with particular focus on
LIBs, but analogous discussions can be established for other EPGs.
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Figure 30. Cahn-Hilliard approach vs. Allen-Cahn approach.

Figure 31. Simulated evolution of the microstructure of a conversion LIB electrode when cycling for two different
values of interphase energy.

3.3.1 “Artificial” mesostructures

Dargaville and Farrell proposed a mathematical model to simulate the discharge of a
LiFePO4 positive electrode accounting for three size scales representing the multiscale
nature of this material (Figure 32) 260. A shrinking core is used on the smallest scale to
represent the phase transition of LiFePO4 during discharge. The model is then validated
against existing experimental data and is then used to investigate parameters that influ-
ence active material utilization. Specifically, the size and composition of agglomerates of
LiFePO4 crystals are studied by quantifying the relative effects of the ionic and electronic
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conductivities onto the overall electrode capacity. The authors found that agglomerates of
crystals can be tolerated under low discharge rates and that the electrolyte transport does
limit performance at high discharge rates. For the former, the results from the particle scale
show why minimizing the formation of agglomerates and shrinking the size of individual
crystals is so successful at increasing the performance of a LiFePO4 cell. For the latter,
doubling the concentration of Li+ in the electrolyte can increase capacity by up to 15%,
though effort should be placed in seeking an electrolyte with better transport parameters,
e.g., aqueous Li2SO4. But aqueous electrolytes suffer from low electrochemical window.

Figure 32. Schematic of the three size scales in the model of Dargaville and Farrell: a) crystal, b) particle, c)
positive electrode.

A stochastic model consisting on energy-based structural optimization, has been devel-
oped by Smith et al.261,262 and allows the calculation of re-arranged equilibrium particle
positions and orientations are calculated at given density (Figure 33). Resultant grain mor-
phologies and assessment of the efficacy of each microstructure to enhance Li ion transport
is quantified by the authors, who also report optimized grain morphologies for Li transport.

Du et al. recently reported a similar study in which a fixed number of monodisperse
ellipsoidal particles are randomly packed based on a MD algorithm and then meshed using
Cartesian voxels. 263 The authors carried out 3-D finite element simulations on represen-
tative elementary volumes (REV) to estimate the parameters values in a cell model that
vary with electrode microstructure, including the effective diffusivity, effective conductiv-
ity, and volumetric reaction rate. Results show lower effective diffusivity and conductivity
in the electrode than predicted by the Bruggeman relation used in their cell model (cf.
equation (4)), and a significant sensitivity in cell performance to this difference at high
discharge rates.
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Figure 33. Example of stochastically simulated LiFePO4 agglomerate morphology.

Goldin et al. present a three-dimensional model that can resolve electrode structure at
the submicron scale.264 Although the three-dimensional model is capable of representing
arbitrary electrode microstructure, the authors consider regular arrays of spherical parti-
cles. The model is applied to evaluate approximations in one-dimensional models and to
assist in establishing empirical relationships that can be used in reduced-dimension models.
General relationships for effective particle radius in one-dimensional models are derived
from the three-dimensional simulations. The results also provide a basis for estimating the
empirical Bruggeman exponents that affect Li-ion transport within electrolyte solutions.
Three dimensional simulations of a dual-insertion Li-ion cell during galvanostatic dis-
charge are compared with an equivalent one-dimensional model. The three-dimensional
model fully resolves the electrode particles, which are assumed to be spherical but are
packed into alternative lattice arrangements. The three dimensional model also fully re-
solves the porous electrolyte volume between the electrode particles. Under all conditions
studied, intercalation diffusion appears to be the rate-limiting process that controls dis-
charge characteristics.

More recently Song and Bazant proposed a simple but interesting model for the sim-
ulation of EIS as function of the morphology of the active particles (Figure 34).265 The
model allows accounting for curved diffusion geometries as well as the diffusion length
distribution. Using this model, the authors have investigated the ways these configura-
tional aspects affect interpretation of diffusion impedance spectra. The model has been
also applied to experimental impedance data of a Si nanowire electrode. Comparing the
regression results of the different versions, we are able to show that including each of the
cylindrical diffusion geometry and the heterogeneous radius distribution of the nanowires
greatly improves the fit and leads to rather different, and presumably more accurate, values
of the electrochemical parameters.
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Figure 34. Song and Bazant’s model electrode configurations, particle geometries, and corresponding coordinate
systems, where the blue region and the gray region represent the active material and the current collector, respec-
tively: (a) thin film electrode, (b) electrode with planar particles, (c) electrode with cylindrical particles, and (d)
electrode with sphere particles.

3.3.2 “Real” mesostructures

Thiedmann et al. develop an impressive stochastic simulation model in 3D to reconstruct
real and generate virtual electrode microstructures.266 For this purpose, a statistical tech-
nique to fit the model to 3D image data gained by X-ray tomography is developed. The
detailed knowledge of the spatial distribution of the components of composite electrodes
(e.g. LiFePO4 electrodes with carbon additive) allows the authors to calculate macroscopic
model parameters such as the active surface areas and the tortuosity, not directly accessible
by other measurements, as well as physical parameters (e.g. diffusion constants, exchange
parameters, conductivities ...). These spatially-resolved numerical representations are used
by the authors to simulate the local and macroscopic electrochemical response of a LIB
graphite electrode as a function of galvanostatic cycling (Figure 35).267 Through this anal-
ysis, the C-rate dependence on the dendrite formation and salt precipitation, a comparison
against classical models based on artificial structures, and the well-known Newman mod-
els is determined. For high C-rates, the effect of tortuosity on salt precipitation, lithium
accumulation and depletion is quantified.

Similarly, Ender et al. report 3D FIB tomography results of a complete LIB, including
a positive LiFePO4-based electrode, a negative graphite-based electrode and a glass fiber
separator (Figure 36).268,269,270 Macroscopic model parameters are also determined and
their influence on the simulate overall LIB response is analyzed.

Bazant et al. report a very interesting microstructurally-resolved model of Li electro-
chemical intercalation and deintercalation processes (discharge and charge, respectively)
in experimentally obtained 3D microstructures.271 In their approach, an experimentally
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Figure 35. Calculated discharge sequence of a reconstructed graphite electrode.

Figure 36. 3D reconstructions obtained by FIB tomography of (a) a LiFePO4 composite positive electrode, (b) a
glass fiber separator and (c) a graphite negative electrode.

obtained voxelated 3D microstructure array is converted to an input geometry described by
a phase-field-like domain parameter. With such a parameter to distinguish the electrolyte,
electrode and additive particles, the authors are able to solve the transport equations of Li+

in the electrolyte coupled with the transport equations in the active material, without using
complex structural meshing technique. The authors investigate several conditions of inter-
calation kinetics such as the effect of different voltage or current loadings on the electrode
behavior as well as the role of the microstructure. In addition, different transport dynamics
in the electrode, such as solid solution behavior (as observed in a portion of concentration
range in LiCoO2, Figure 37) or phase-separation behavior (as observed in LiFePO4), were
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studied.

Figure 37. Li concentration (mol/cm3) evolution during the discharge of a LixCoO2 microstructure at a constant
voltage loading. Through electrochemical reaction, Li ions are injected into cathode particles: (a) - (d) corre-
sponding to time of 4.04, 20.1, 133.3 and 1226.5 sec (assuming the value of the diffusion coefficient of 10-10

cm2/s).

3.3.3 Calculation of the electrode structure from the materials chemistry and the
fabrication process

Alternatively, electrode micro-structures can be generated in silico by atomistic methods.
To improve the understanding of the CL structure for example in PEMFCs, the effects of
applicable solvent, particle sizes of primary carbon powders, wetting properties of carbon
materials, and composition of the CL ink should be explored 272. These factors determine
the complex interactions between Pt/C particles, ionomer molecules and solvent molecules
and, therefore, control the catalyst layer formation process. Mixing the ionomer with dis-
persed Pt/C catalysts in the ink suspension prior to deposition will increase the interfacial
area between ionomer and Pt/C nanoparticles. The choice of a dispersion medium deter-
mines whether ionomer is to be found in the solubilized, colloidal or precipitated forms.

Optimum performance of PEMFC in relation with H2/O2 transport limitations and
water management for a number of parameters (type of agglomerate, CL thickness, CL
porosity, distribution of Nafion R© content, Pt loading, etc.) has been already largely inves-
tigated. Coarse Grained Molecular Dynamics (CGMD) models have been developed by
Malek et al. to predict the self-organization of the CLs and to understand its impact on the
effective transport and electrochemical properties 273. CGMD is essentially a multiscale
technique (parameters are directly extracted from classical atomistic MD) and account for
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the conformational flexibility of ionomer molecules appropriately. CGMD simulations
have been employed for characterizing microstructure of CL in view of effect of solvent,
ionomer, and Pt particles.

In a recent work, Malek and Franco have proposed an approach to combine CGMD
capabilities with kinetic modeling for the simulation of the feedback between detailed
electrochemistry and transport with materials aging mechanisms: that means that at each
numerical simulation time step, the model describes how the calculated local conditions
impact local materials degradation kinetics, simultaneously to how the materials degrada-
tion affects, in the next time step, the local conditions (Figure 38).

Figure 38. Multiscale modeling approach for the prediction of EPGs durability proposed by Franco et al.

CGMD simulations of a PEMFC electrode has been used to build a structural database
for electrodes with different C contents in terms of interpolated mathematical functions
describing the impact of the C mass loss (induced by corrosion) on the evolution of the
ionomer coverage on Pt and C, the electronic conductivity of the CB, the C surface area
and the Pt surface area (which re-organizes during the C corrosion process).274 These
functions are then integrated into a cell model to simulate the impact of C corrosion on
the Membrane-Electrodes Assembly performance decay (Figure 39). CGMD methods,
which are actively researched in a large number of application areas, combine units of the
material into larger fragments (called “beads”), which can be modeled efficiently using
law-timescale methods, such as Brownian dynamics. Parameterization of the interactions
of these units requires feedback from atomistic simulations. The details on this methodol-
ogy for performing studies of self-organization in PEMFC electrodes mixtures have been
described by Malek et al.,275 where they represent all atomistic and molecular species,
i.e., Nafion R© ionomer chains, solvent molecules, water, hydronium ions, carbon and Pt
particles, by spherical metallic, polar, nonpolar, and charged beads with pre-defined sub-
nanoscopic length scale.

In these CGMD simulations, the corrosion process of carbon was simulated as follows:
the carbon beads on the surface of carbon particles were first identified by characterizing all
the water beads in contact with carbon beads. The equilibrated structure at I/C ratio of 0.9
and 1:1 Pt|C ratio was used as the starting point (Figure 40a). Thereafter, carbon beads
are randomly removed from surface of carbon particles at different carbon loss percent-
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Figure 39. CGMD model of cathode carbon corrosion in PEMFCs. Figure reconstructed from K. Malek and A.
A. Franco, J. Phys. Chem. B 115, 8088 (2011).274

ages. The random procedure used a random number generator based on a given reaction
probability distribution. Each of the structures was equilibrated after carbon removal. The
gray beads in Figure 40b depict the eliminated carbon beads from the surface (i.e., cor-
roded carbon which is proportional to carbon loss), whereas the black beads represent the
remaining carbon beads.

Water coverage is an indirect tool to investigate the effect of ionomer and Pt content on
microstructure of CL. Figures 41 and 42 illustrate water on carbon and Pt plotted vs. carbon
losses. The inserts in Figure 41 show the microstructure of CL blends at various carbon
losses. Water coverage, on the other hand, shows a steady increase (Figure 42) up to %40
carbon loss, maximizes at around %40, and decreases with further increasing of carbon
loss (i.e., increasing I/C ratio). The calculated water coverage on Pt linearly increases by
percentage of carbon loss. This suggests that a relatively high number of Pt particles are
exposed to the Nafion ionomers on the surface of carbon, which causes a transition of the
ionomer surface from predominantly hydrophobic to predominantly hydrophilic.

On the other hand, by increasing the percentage of carbon loss, the ionomer coverage
(not shown here) drops from 0.5 at %0 carbon loss to slightly less than 0.4 at %5 carbon
loss and stabilizes thereafter with a small variation between 0.4 to 0.35 %.
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At a low carbon loss percentage, Pt nanoparticles on the carbon surface attract most of
the water, while a relatively constant amount of water is adsorbed at the ionomer surface at
different carbon losses. By increasing carbon loss, more Pt particles are exposed to water
and the water coverage increases as a function of carbon loss, as depicted in Figure 42.

Figure 40. (a) The final structure of CL obtained from CGMD simulations. (b) Illustration of the algorithm used
for modeling of carbon corrosion where carbon beads are randomly removed from surface of carbon particles
at different carbon loss percentages. The gray beads depict the eliminated carbon beads from the surface (i.e.,
corroded carbon which is proportional to carbon loss), whereas the black beads represent the remaining carbon
beads. Green: solvent beads; black: carbon beads; Gray: corroded carbon beads; blue: ionomer backbone; red:
ionomer sidechain; gold: Pt. Source: Ref. 272.

Figure 41. Calculated water coverage (including hydronium ions) on carbon as a function of carbon losses. The
inserts show the microstructure of CL blends at various carbon losses. Source: Ref. 272.

Figure 43 shows the CL model which can be used for the performance decay calcu-
lations as the ones reported in Figure 39 by incorporating the CGMD data. Figure 44
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Figure 42. Calculated water coverage (including hydronium ions) on Pt as a function of carbon losses. Source:
Ref. 272.

presents two kinds of micro-scale agglomerate models that can be implemented, one being
representative of C support without primary pores, and the second one with primary pores
the choice depending on the electrode design specifications.

For the case of a CL with only secondary pores the conservation equations for the
individual gas species are written

∂

∂t

(
(1− s)℘SPCLCi

)
+∇y ·

(
civg + jdi

)
= S(y, z, t) +R(y, z, t)

= S(y, z, t) + γSPJi(r = 0, y, z, t) (34)

where z is the spatial coordinate along the electrode thickness, x and y the coordinates
on plane, S is a source term related to an elementary kinetic model as the one exposed in
Section 3.1, R describes the rate of mass transfer between the ionomer film coating around
the agglomerates and the secondary pores. γSP (m2.m−3) refers to the specific surface
area of C secondary pores (“contact surface area” between the ionomer and the secondary
pores per unit of CL volume). Because of the chemical-governed self-organization of
the materials within the CL, ℘SPCL, τSPCL and γSP are functions of the catalyst, ionomer
and C mass contents, and their values can be estimated from the CGMD-generated data.
When aging of one or several of these materials occurs, the CL structure is expected to
evolve. As a first approximation, we assume here that ℘SPCL, τSPCL and γSP only evolve
with C corrosion -C mass loss- (ionomer degradation in the CL is not described yet within
the model) following the CGMD databases. As C corrosion can be inhomogeneous within
the CL (e.g. PEM side vs. GDL side differences or air inlet vs. air outlet differences
induced by different local water contents), ℘SPCL, τSPCL and γSP are in fact functions of y
and z coordinates. Catalyst degradation, inducing changes on its morphology, size and
dispersion on the C support probably contributes on the CL meso-structure evolution.
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Figure 43. CL model at the macro and meso-scale where the boundaries defining the specific surface area of
secondary pores γSP are indicated (in the figure, case of C support with primary pores).

The gas velocity and the species diffusion fluxes in equation (34) can be expressed
based on Stefan-Maxwell-Knudsen approach with Knudsen coefficients Di,Kn and the ab-
solute permeability K being also functions of the C mass (through the secondary pores
mean radius), thus of time if the C degradation is included in the simulation 2.

For the liquid water in the secondary pores CH2O,l, the conservation equation is given
by

∂

∂t
(sCH2O,l) +∇y · (sCH2O,lvl) = −S(y, z, t) +W (y, z, t)
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(a)

(b)

Figure 44. Modeled C agglomerates, under the spherical hypothesis, without (a) and with (b) primary pores. In
particular, the ionomer phase is indicated.

= −S(y, z, t) + γSP k (CH2O,ionomer(y, z, t)− CH2O,l(y, z, t)) (35)

where W (y, z, t) is the rate of water transfer (desorption/absorption) from the ionomer
film to the secondary pores (a linear kinetics is assumed).

For the electron transport across the C in the CL, we have

∇y ·
(
−gCL,eff

e− ∇yψ
)

= ∇y ·

(
−(℘CCL)

log10(℘CCL/τ
C
CL)

log10(℘C
CL

) gCLe− ∇yψ

)

= Se−(y, z, t) = ±γcatalystJ(y, z, t) + γSPJCOR(y, z, t) (36)
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where ℘CCL is the C support volume fraction (function of time if C corrosion is included
in the model), γcatalyst depends on time if a catalyst degradation mechanism and/or the
C corrosion-driven catalyst coarsening are included in the simulation. Again, γcatalyst can
also depend on space because of the degradation inhomogeneities induced, for example,
by the local water content within the CL. JCOR(y, z, t) is the local current density related
to the C corrosion kinetics (Figure 45)

JCOR(y, z, t) =
∑
i

vCOR
i (37)

where vCOR
i are the elementary reactions depending on the local water content in the

ionomer phase CH2O,ionomer.

Figure 45. Nano-scale parasitic current related to C corrosion. Source: 276.

Finally, the following balance equation allows calculating the instantaneous C mass
content in the CL level based on the elementary C corrosion kinetics 274,276

mC(y, z, t) = mC(y, z, t = 0)−
t∫

0

∑
j

vCORj

MCγ
SP (y, z, t)VCL@(y,z)dt . (38)

The carbon corrosion model for the case of CL with both primary and secondary pores will
be discussed in the hands-on session associated to this tutorial.

This modeling approach has provided very interesting information on the competition
of aging phenomena. Some experimental data suggests that external anode and cathode
contaminants (e.g. CO in the anode, SO2 in the cathode) can enhance the damage of the
PEMFC materials. But according to some modeling work carried out by Franco et al. with
this approach, the injection of these contaminants can mitigate, under appropriate current-
cycled conditions, the intrinsic materials aging mechanisms as demonstrated based on an
approach combining experiments and this multiscale numerical model 15: this work clearly
illustrated the interest of treating the complex mechanisms interacting between them to-
wards engineering optimization of the PEMFC operation. More arguments on the impor-
tance of modeling and simulating of mechanisms in interaction in EPGs will be provided
in the oral presentation associated to this lecture.
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4 Conclusions and Challenges

Numerical simulation and computer-aided engineering emerges nowadays as important
tools to speed up the EPGs R&D and to reduce their time-to-market for numerous applica-
tions.

The development of such models must have several properties

• predictive capabilities of the relative contributions of the different scales and mecha-
nisms into the macroscopic EPGs efficiency and durability;

• high flexibility towards its application to any type of chemical and structural proper-
ties of the used materials and components;

• easily adaptable to any type of operation condition and system.

and will enable

• reduction of the amount of experiments (and thus the cost) currently needed to build
up classical empirical models with limited prediction capabilities;

• a better targeting of experimental characterizations in representative conditions of the
end-user application;

• new operation strategies reducing the performance degradation and also strategies to
improve the stability of the materials and components.

Numerous theoretical efforts to mathematically describe the EPGs operation have been
reported worldwide since around 30 years. Physical models became more and more ac-
curate and predictive, for example thanks to the widespread development of quantum me-
chanics and molecular dynamics models allowing capturing the impact of the materials
chemistry onto some effective properties essentially related to the electrochemical reac-
tions and lithium ion transport. Non-equilibrium thermodynamics phase field modeling
approach appears to be a powerful modeling technique to understand phase formation and
separation for example in LIB intercalation materials at the nano/microscale. Moreover,
impressive electrode 3D reconstruction techniques have been developed allowing to cap-
ture for the first time the impact of the “real” mesostructure (e.g. binder distribution) onto
the local lithium reactivity and transport properties and the global cell efficiency.

In particular, integrative multiphysics, multiscale and multiparadigm models spanning
multiple scales and aiming to simulate competitions and synergies between electrochem-
ical, transport, mechanical and thermal mechanisms become now available. One of the
major interests of such a class of models is its capability to analyze the impact of the ma-
terials and components structural properties on the global cell performance. Some of the
reported models have been already used to understand materials degradation phenomena
and their impact on the EPGs efficiency and capacity fade: metallic dissolution (e.g. in
PEMFCs, PEMWEs and LIBs), carbon corrosion (e.g. in PEMFCs), PEM degradation
(e.g. in PEMFCs and PEMWEs), SEI formation (e.g. in LIBs and LABs) and graphite
exfoliation (e.g. in LIBs) are some of the mechanisms currently studied.

Despite the tremendous progress achieved on developing multiscale models of EPGs
with predictive capabilities, there are still major challenges to be overcome.
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Demonstrating a durability of several thousands of hours for PEMFCs, up to 60000
hours for some applications, is thus now the prime requirement. The longer the durability,
the higher the price customers will be ready to pay for their investment. Demonstrating
such a long life-time in real operating conditions within an autonomous system is a real
challenge. System failures often impair satisfactory demonstrations of the stack reliability.
Statistical proof of a repeated success in achieving a long life time asks for a large number
of units operating at customers facilities, which is very costly. Before launching such
large scale demonstrations, necessary when approaching market maturity, fuel cell system
providers need a reliable prediction of their products lifetime.

The main bottleneck now, if one wants to shorten the “time to market” for new PEM-
FCs, is that one needs an efficient method to take into account durability targets in all R&D
actions on components and unit operating management strategies. A simple “try and error”
method is manageable to get system durability from a few hundreds to a few thousands of
hours. It is practically impossible when one wants to get from a few thousands of hours up
to several tens of thousands of hours.

This lecture aimed to demonstrate that modeling at multiple scales (from atomistic
level to the simulation of processes at the cell level) can constitute a reliable method to
predict the EPG system performance and lifetime and to benchmark components and im-
prove operating strategies with respect to a durability target. Predictive modeling is a
requisite to establish this methodology for EPG. Performance and durability of a EPG is
the result of a very complex set of interrelated events, with competitive effects but also syn-
ergies between performance degradation processes. By accelerating one phenomenon, one
usually creates conditions that are no more representative of the subtle balance between
reactions in the real operating conditions. One can thus either overestimate performance
losses degradation rates (leading to developing very highly resistant membranes, support
carbons or catalysts for conditions never encountered in a real system), or underestimate
degradation because some negative feedback loops (cancellation or synergetic effects) are
not taken into account. Only a physically based, multiscale and multitemporal model can
provide the tool to combine all possible degradation phenomena and analyze their global
impact on durability in a given set of operating conditions.

As an input for this model, one has to understand the fundamentals of performance
losses and degradation. Specific experimental data is needed, to correlate degradation and
deterioration phenomena to operating conditions for stationary applications, and identify
the paths leading to failure phenomena. This experimental part is an effort to obtain data on
degradation quantitatively and reproducibly, since the understanding of kinetics of various
degradation processes are the key of final performance and lifetime prediction.

Numerical simulation of competitive degradation phenomena on the basis of a bottom-
up framework should also be achieved, in order to determine the most important mecha-
nisms as function of the applied external operation conditions and to quantitatively predict
the EPG durability. Complete models aiming to simulate and understand aging, contami-
nation and performance mechanisms in competition will be of significant importance for
the prediction of the durability of PEMFCs in automotive conditions.

For the case of the electrocatalysis, more efforts should be devoted to perform ab initio
calculations with solvent and electric field, in relation to the catalyst dissolution and ox-
idation (how the activity is affected by the catalyst degradation, and conversely, how the
catalyst degradation kinetics is affected by the intrinsic catalytic activity?).
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Ab initio thermodynamics models have been largely developed to screen the activity,
selectivity and stability of catalyst candidates and have allowed the selection of the most
interesting ones. Those predicted catalysts can be then tested experimentally, and some-
times they really work and sometimes not. The catalysts that do not work in real conditions
probably do not work because of the lack of consideration of electrochemical environment
(electric field, solvent, etc.) in classical ab initio thermodynamics approach. Then comple-
mentary ab initio kinetic models can provide a “virtual simulator framework” to achieve
the optimization of the operation conditions for which the predicted catalyst should work
in the real environment (Figure 46). Thus, more efforts should be developed within this
sense.

Figure 46. Towards a physical modeling assisted materials development through ab initio based kinetics and the
virtual reactor approach. Reprinted from: A.A. Franco, RSC Advances, 3 (32) (2013) 13027-13058.

For the case of batteries the majority of the reported multiscale models focus on the
understanding of the operation and the impact of the structural properties of LiFePO4 or
graphite electrodes onto the global cell efficiency. And in the other hand, quantum me-
chanics and molecular dynamics models focus on the understanding of the impact of the
materials chemistry onto their storage or lithium transport properties at the nanoscale. It
is now crucial to develop multiscale models that are able to incorporate both structure and
chemical databases, in other words, that they are able to mimic the materials behavior in
realistic electrochemical environments. Within this sense, other intercalation and conver-
sion materials have to be also modeled. The development of such a model tackles the
issues related to how to couple discrete with continuum models and will need to set up
rigorous methods to integrate ab initio data into elementary kinetics models of the lithia-
tion/delithiation reactions.

Moreover, accurate modeling of the interfacial electrochemical reactions that com-
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bine chemistry with diffusion of radicals and formation of the heterogeneous crystalline
or glassy SEI layer of anode or a passivation layer on the cathode is an intrinsically mul-
tiscale problem, which is largely unaddressed but of great technological relevance. Phase
field models describing the lithium kinetics on the basis of parameters which can in princi-
ple be estimated from quantum mechanics calculations, would be the key to achieve these
goals.

Secondly, computational tools for the analysis of performance and degradation of
fuel cells and batteries are currently fragmented and developed independently at differ-
ent groups. Ideally, a multiscale model useful in engineering practice should have the
following characteristics:

• it should be flexible, i.e. it should allow the developers to “virtually test” different cell
designs to decide which cell satisfies their technical needs, as well as quickly studying
new cell designs;

• it should be portable, i.e. the model should be a computer (or computing platform)
independent code;

• it should be scalable, i.e. the model code should allow developers to run it on single
computers and multicore processors up to supercomputers;

• it should be easy to use, i.e. the model implementation details should be abstracted in
a way that the developer interacts with an user-friendly interface;

• it should allow cloud computing and network development, i.e. simultaneous devel-
opment by multiple researchers should be permitted as well as a performing exchange
of information to benchmarking different model versions;

• web platforms should be developed aiming to share physics and mathematical mod-
ules to facilitate different models calibration and benchmarking.

Approaches synergistically combining both top down and bottom up modeling view-
points should be further developed. Macroscopic equations in top-down models should be
written in terms of parameters with values calculated from lower scale simulations. Im-
plementation of such parameters into the macroscopic model should be done including
empirical errors. Methodological evaluation of these parameters should be done system-
atically: for instance, coarse models should be developed first, with parameters sensitivity
studies guiding further calculations at lower scales.

More from a materials engineering perspective, morphogenesis of the electrodes as
function of the ink properties and manufacture process (e.g. solvent used, deposition time,
etc.), should be further studied.

Furthermore, the generation and the integration of those chemical and structural
databases in the phase field and cell models should be carried out in a fully integrated
way by exploiting the recent progresses in data flows management.

More generally, combining multiscale modeling with the use of virtual reality could
provide significant progress on providing virtual experimentation of EPGs.277

Finally, to get progress on the development of multiscale models, it is crucial to develop
multidisciplinarity between application domains. For example, computational scientists
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working in cosmology, geology and climate science could bring interesting methodological
concepts for the widespread use of multiscale modeling in electrochemistry.

It should be finally noticed that the analysis and discussions here above also applies
for other electrochemical systems for energy storage and conversion, such as redox flow
batteries, lithium sulfur batteries, Direct Alcohol Fuel Cells, etc.103,278,279,280

Finally, since recently, Franco et al. at LRCS is developing a new multiscale
computational framework of electrochemical devices for energy storage and conversion
(www.modeling-electrochemistry.com ) which aims to propose solutions to
some of the challenges exposed in this Section. This new model, called MS LIBER-T
(Multiscale Simulator of Lithium Ion Batteries and Electrochemical Reactor Technolo-
gies), constitutes a breakthrough compared to the previously developed MEMEPhys simu-
lation package, also by Franco et al., penalized by its dependence on commercial software
toolboxes and solvers such as Simulink. MS LIBER-T is coded on an independent C
language basis, highly flexible and portable (it can be eventually coupled to commercial
software such as Matlab/Simulink), and supports direct multiparadigm calculations, for in-
stance, simulations coupling on the fly the numerical resolution of continuum models (e.g.
describing reactants transport in a bulk) with the numerical resolution of discrete mod-
els (e.g. Kinetic Monte Carlo codes resolving detailed electrocatalytic reactions). Some
demonstrations with this software will be carried out in the oral presentation associated to
this lecture.
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Novel materials or compounds are key for future technological innovations and hold great po-
tential for new applications for which the functionality of such materials has to be assessed in
experimental devices. Simulations can bring deep insight in fundamental properties but should
include both realistic sample sizes and all relevant interactions. However, including both at the
same time is a formidable task. In this paper, we address concepts and methods used to describe
charge transport phenomena in condensed matter by multiscale methods including interaction
of electrons with other electrons or phonons but also with disorder, as present in experiment.
We illustrate the interface between atomistic properties, which are determined from first prin-
ciples, and large-scale transport simulations. Recent results from efficient order-N electronic
transport simulations serve as examples to discuss the influence of disorder on transport coeffi-
cients including electron and polaron transport, which are observed experimentally in inorganic
and/or organic materials.

1 Introduction: State of the Art of Computational Approaches for
Nanodevice Simulation

Novel materials are a strong driving force for economic power as was steel and plastics in
the last centuries or as evidenced in the notion of Bronze age in archaeology. In human his-
tory, the knowledge about processing of such materials is an essential strategic advantage,
while nowadays we have means to study also their theoretical properties which is equally
important and complementary for designing or researching new ones.1

Novel technologies emerge often from new functional materials that become manage-
able in praxis such as in novel smart mobile devices which rely heavily on battery tech-
nology, high quality displays, and fast and energy saving chips. This was also emphasized
by the European Commission stating that technology developments are largely driven by
such advancements: “Alternative paths to components and systems development - includ-
ing nanoelectronics, more integration of functionalities on chips, the use of new materials
and progress in photonics - will drive a large part of technology developments.”

Many fundamental questions are open in the field of nanoelectronics and new materi-
als, which, due to the complexity of both, cannot be answered by conventional simplified
approaches. The research of novel functional materials is therefore highly interdisciplinary
covering the domains of chemistry, material science, physics, and engineering with their
methods and scope of length scales. Advanced knowledge of such fields has necessarily to
be combined. In addition, the complexity of quantum laws in nanoelectronics complicates
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upscaling attempts such that, at the cross-road of new materials and nanoelectronics (espe-
cially for beyond-CMOS applications), only multiscale modeling approaches can take into
account the mutual interaction between structure and materials and can advance knowledge
sufficiently fast in the near future. In particular the understanding of charge transport is a
central goal in semiconductor research, a field which has been the basis of the increasing
reasoning power of mankind during the last 50 years and continues to be thanks to the
continuous miniaturization of microelectronics accompanied by the increasing speed and
power of computing devices. Although semiconductor electronics is the technological ba-
sis for the “information era” it becomes clear that many kinds of electronic devices beyond
those for information processing and flow are demanded in all kinds of applications. These
span over a wide range from sensing, monitoring and controlling to lighting and energy
harvesting.

1.1 Challenges below 1 nm

Improving such devices means often improving the materials in terms of their specific
functionality which in itself breaks down to the chemistry of the materials. Such chemistry
is governed by the laws of quantum mechanics which include all kinds of complicated
physics that arises from the interaction of the electrons, their nature as indistinguishable
particles, correlations and quantum fluctuations which occur on a variety of length and
energy scales (from weak van der Waals bonding to strong exchange interactions). The
smallest characteristic length scale for this is on the order of 0.01-0.1 nm. However not
all of these interactions are relevant on larger length scales and sometimes it is not known
which one ’survives’ at a typical device scale of 0.1-1 µm.

Important approaches to bridge the smallest length scales up to 1 nm by using a proper
description of the quantum laws are the wide class of ab initio methods. In particular den-
sity functional theory (DFT) allows to describe small quantum systems of up to a few hun-
dreds of atoms by mapping the many-body problem to an effective single particle picture.
This is made possible by the functional description of interactions and such functionals
exist nowadays in many flavors (see Sect. 4 for more details).

Similarly a manifold of codes exist, such as AB-INIT,2 SIESTA,3 or VASP,4 to mention
a few, each of which is adapted to the specific needs of their users. Such simulation soft-
ware provides an atomistic viewpoint by simulating the atomic structure from monomers
to larger clusters of atoms and molecules with the tendency that larger systems are treated
with lower accuracy (which is commonly accepted practice). Ab initio methods were very
successful in recent years for the description of bulk materials, nanostructures but also
molecules and are therefore well established. Often, due to the ease of use, experimental
groups use them to support their measurements by complementing simulations. In recent
years the versatility of DFT implementations has been extended towards computational
spectroscopic tools to broaden their application spectrum in the field of transport or opto-
electronic properties of materials and structures.

Unfortunately, the computational cost of ab initio methods is still very expensive. Al-
though they run on parallel-computing architectures there is a practical limit of few hun-
dreds of atoms. This originates from the complexity of electrons represented by wavefunc-
tions and, hence, possessing an inner structure with widely variable properties compared to
simple particles used in classical molecular dynamics. The requirement of self-consistency
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is only one consequence of the quantum nature which slows down such methodology. Al-
though many concepts exist to weaken this impact, there is a practical limitation to sizes
of systems, at present of about 1 nm, which are treatable by ab initio methods.

1.2 Challenges above 1 nm
Despite the success of DFT methods below 1nm they cannot reach the length scale on
which one discusses functional materials (which is at least one-two orders of magnitude
above). Indeed, the characteristics and fundamental properties of interest of functional
materials are co-defined on a larger length scale beyond the ab initio scope. This is because
they are additionally influenced by other properties emerging on larger length scales, which
are governed by low concentration dopants, impurities or structural defects for instance, or
simply because the relevant structures may reach these dimensions themselves. The value
of 1 nm seems therefore a critical length and an upper bound for sophisticated modeling of
quantum laws.

Multiscale modeling is capable of overcoming this barrier. The concept is based on the
observation that not all interactions must necessarily be treated within the first-principles
framework. This observation allows one to introduce a hierarchy of interactions, which
might be based either on very general considerations or just adapted and valid for the
presently studied properties. Based on this, a hierarchy of levels of treatment may be in-
troduced. The lowest (microscopic) level deals with the smallest objects at the highest
accuracy. It can be identified with the full ab initio level. Multiscale modeling defines first
the models on each level and second the interfaces for transferring relevant information
to the respective upper level (or even lower level for feedback loop) where they are fur-
ther processed. The advantage is that not all information available on the (computationally
heavy) lower level enters the upper-level modeling. The exchange across the interface is
restricted to relevant information which is precisely where multiscale modeling is benefit-
ing from. In addition, the modeling of interactions on the upper macroscopic level replaces
respective couplings on the more refined lower level. This allows one to reduce the work
at the lower level by treating smaller parts (non-interacting subsystems) there.

For instance a finite-range impact on electrostatics and on electronic properties can be
expected from impurities or dopants depending on the local surrounding of a host crystal.
Additional long-range parts such as arising from the Coulomb interaction might be separa-
ble and can be treated on the upper level. The information on local electronic properties can
be obtained with ab initio methods using large supercells. On the other hand, the evolution
of a system as a whole composed of millions of atoms including a certain distribution of
such dopants is unpredictable by ab initio methods when the entire system is included at
the same theory level. Taking advantage of the above observation and of a simplified but
yet realistic modeling on the upper level describing a macroscopic part of the system, a
solution can be found by treating only a subsystem fully ab initio to extract relevant in-
formation. The information together with separated long-range interactions completes the
upper-level model to treat the full system.

In case of transport properties of novel materials, interconnections of such subsystems
are explored by traveling quantum particles. Consequently the interaction between these
derives from a complicated way of electron motion itself which is implied by the quantum
nature of the charge carriers sometimes evading ones intuition. Consequently working out
the numerics is necessary.
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To design a realistic scenario of the influence of disorder on transport properties of
materials and devices one has to consider different length scales and modeling strategies
simultaneously. First, a microscopic picture of the atomic structure is necessary to access
electronic properties. This can only be provided with state-of-the-art first principles simu-
lations. These calculations can be carried out using simple unit cells in the case of clean
systems. When considering crystal imperfections or dopants, larger supercells with few
impurity atoms or defect sites are necessary to simulate.

The interface to the macroscopic level is an essential ingredient of the modeling. It de-
fines which information is exchanged, i.e. which features of the ab initio-simulation part
are relevant enough to be important on the macroscopic length scale. From these simula-
tions one extracts electronic structure parameters which represent at best the interactions
at this level. For the efficiency of the multiscale approach it is very advantageous if the
extracted parameters are generic and transferable. This should be considered when setting
up the modeling strategy to reduce or, at best, avoid feedback effects.

Once the macroscopic model is well defined and its parameters are provided through
the interface, a variety of situations can be investigated keeping the interface parameter
fixed but changing the arrangement or interconnection of such subsystems and/or environ-
mental conditions. We see that flexibility is one of the central advantages of multiscale
approaches. This will help to gain much more knowledge for complex systems which at
present is otherwise not accessible.

Finally, the material properties with all their dependencies on external parameters can
be used to define another superior level of simulation such as the simulation of a whole
device. On such a level both specific device characteristics such as geometry etc. and
material properties (intrinsic or specifically tailored) enter the final results. In these lecture
notes we demonstrate some examples from recent research that show which questions can
be addressed by multiscale approaches. In Sect. 2 and 3 we start by displaying the general
transport frameworks used for the simulations on the macroscopic level, i.e. the Kubo and
Landauer formalisms. Some computational details are included for illustration. We then
introduce the DFT framework in Sect. 4. In Sects. 5,6, and 7 we present the results for
selected examples illustrating the power of multiscale approaches. Finally we conclude in
Sect. 8.

2 Kubo-Transport Methodology

2.1 General Description of Kubo’s Approach

Charge-carrier transport can be described within the Kubo transport framework,5 where the
Kubo formula relates the carrier conductivity to the current-current correlation function.
This formula is a result of an expansion of the response of a system to the perturbation
(applied electric field) up to linear terms in the field, for which the term Linear Response
Theory has been coined.6 The resulting current is given by the expectation value with the
current operator ĵα,

Jα = Tr[ρ̂(t)ĵα], (1)

where ρ̂(t) is the density matrix of the system including the electric field at time t and
Tr[. . . ] means the usual trace operation. As a result of the linear expansion one can finally
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write for the dc conductivity

σαβ =
1

V

∫ ∞
0

dt

∫ 1/kBT

0

dλTr[ρ̂(0)ĵβ ĵα(t+ i~λ)] (2)

for finite temperature T . The indices α, β in Eq. (2) denote the Cartesian components of
the tensor σαβ and kB is the Boltzmann constant. For the specific cases we are considering
here, we can further assume a simplified form for the diagonal conductivity (α = β)

σdc = σαα =
1

2kBTΩ

∫ ∞
−∞

dtTr[ρ̂(0)ĵαĵα(t)] (3)

where Ω is the system volume. By introducing position operators x̂α and x̂α(t) =
Û†(t)x̂αÛ(t) [with Û(t) the time evolution operator] we can write with ∆X̂(t) =
[x̂α(t)− x̂α(0)]

σdc =
e2

0

2kBTΩ
lim
t→∞

d

dt
Tr
[
ρ̂(0)∆X̂2(t)

]
(4)

which relates the conductivity to the time dependent spread of wave functions.
At T=0 this corresponds to the standard result of the Kubo-Greenwood approach

σdc(E) =
e2

0

2
lim
t→∞

d

dt
∆X2(E, t) (5)

where

∆X2(E, t) = Tr[δ(E − Ĥ)∆X̂2(t)] (6)

and δ(E − Ĥ) the Dirac delta distribution.

2.2 Computational approaches

To explore carrier transport in disordered systems we use an efficient implementation based
on a real-space computational approach to calculate the Kubo-Greenwood conductivity
(for details see Refs. 7–10). The efficiency is witnessed in the linear (orderN ) scaling with
system size N which allows to explore the relevant length scales even in 3D for standard
sample sizes that contain tens of millions of atoms reaching the micron scale. This method
solves the time-dependent Schrödinger equation and computes the diffusion coefficient

D(EF , t) =
1

ρ(EF )

d

dt
∆X2(EF , t) (7)

(with ρ(E) = Tr[δ(E − Ĥ)] the density of states) and the Kubo conductivity (Eq. (5)) .
Thereby one uses an expansion of Û(t) in a basis of Chebyshev polynomials and Lanczos’
recursion procedure.

The basic Chebyshev expansion of the time-evolution operator reads

Û(∆t) ≡ e
−iĤ∆t

~ =

∞∑
n=0

cn(∆t)Pn(Ĥ) (8)

which allows for an efficient time propagation even for large systems with 108 atoms. This
is because the expansion can be truncated rapidly at finite n for energy spectra of Ĥ with
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finite support [a-b,a+b] since the expansion coefficients cn(∆t) decay according to the
Bessel functions Jn(−b∆t~ ).11

Another important approach in the numerical evaluation of the conductivity at a given
energy EF is based on the Lanczos method. This method is used to calculate the trace in
Eq. (6) and in the density of states. It is based on the replacement Tr[. . . ]→ N〈Ψ| . . . |Ψ〉
with random-phase wave packets |Ψ〉. The method consists of a recursive way of calculat-
ing the traces according to the following recipe that starts by tridiagonalizing the system
Hamiltonian Ĥ . For the first recursion step we take a starting vector of the recursion |Ψ1〉
and calculate

a1 = 〈Ψ1|Ĥ|Ψ1〉 (9)

|Ψ′2〉 = Ĥ|Ψ1〉 − a1|Ψ1〉 (10)

b1 =
√
〈Ψ′2|Ψ′2〉 (11)

|Ψ2〉 =
1

b1
|Ψ′2〉 (12)

and for all following steps (n > 1) we use the relations

an = 〈Ψn|Ĥ|Ψn〉 (13)

|Ψ′n+1〉 = Ĥ|Ψn〉 − an|Ψn〉 − bn−1|Ψn−1〉 (14)

bn =
√
〈Ψ′n+1|Ψ′n+1〉 (15)

|Ψn+1〉 =
1

bn
|Ψ′n+1〉. (16)

The obtained recursion coefficients ai and bi are the matrix elements of the tridiagonal
Hamiltonian (Ĥ ′) in the Lanczos basis where the initial state |Ψ1〉 can be conveniently
chosen as a random-phase state.

This representation allows for a simple evaluation of the spectral quantity ρΨ1(E) =
〈Ψ1|δ(E − Ĥ)|Ψ1〉 (density of states) which occurs frequently in the calculation of trans-
port coefficients. It can be evaluated in a simple algebraic way by means of a continued
fraction expansion

〈Ψ1|δ(E − Ĥ)|Ψ1〉 = − lim
η→0

1

π
Im
[
〈Ψ′1|

1

E + iη − Ĥ ′
|Ψ′1〉

]
(17)

〈Ψ′1|
1

E + iη − Ĥ ′
|Ψ′1〉 =

1

E + iη − a1 −
b21

E + iη − a2 −
b22

E + iη − a3 −
b23
. . .

. (18)

The implementation and evaluation of Eq. (17) is straight forward once the matrix ele-
ments ai and bi have been determined. The artificial broadening parameter η is introduced
to ensure convergence and which should be taken as small as possible while standard ter-
minations for the expansion can be used.
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Figure 1. Diffusion coefficients (main frames) and mean square displacement (insets) for different disorder
strengths: no disorder (left), medium disorder (middle) and strong disorder (right). The figure is a courtesy
of Dinh Van Tuan.

2.3 Semiclassical Conductivity and Mean Free Path

To illustrate the generic behavior that can occur for the conductivity in Eq. (5) we plot in
Figure 1 different transport regimes. In the absence of disorder, wave packets expand un-
limited and ballistically and the diffusion coefficient D does not converge to a constant but
increases linearly. For sufficient disorder one observes a departure from a linear increase
of D. In case the disorder is strong enough D(t) exhibits a maximum value D max and the
corresponding regime can be identified with the semiclassical diffusion and constant dif-
fusion coefficient. Correspondingly one defines a semi-classical conductivity σsc = Dmax

ρ

and the mean free path `e = D max
2vF

.
For even stronger disorder the diffusion coefficient eventually starts to decay beyond its

maximum. This regime is the localization regime where one distinguishes different classes
such as weak localization or strong localization, the latter is also known as Anderson local-
ization. Figure 1 (c) shows that the spread ∆X seemingly assumes a constant value which
is related to the localization length. For strong disorder still one can define the maximum
of D(t) and semiclassical quantities such as `e but their interpretation becomes difficult if
the mean free path is close to a lattice constant.

In real systems the discussed transport regimes can switch from one energy to the other.
In this context, the case of a transition from diffusive to a localization regime is known as
mobility edge.
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Figure 2. Setup for Landauer transport simulations. A molecule is sandwiched between the contacts (leads).

3 Landauer Transport Approach

While the Kubo method which has been introduced in the above section is particularly
well suited to calculate the properties of large systems including disorder or any struc-
tural defect or structural features and finite temperature (as we demonstrate in Sect. 7.2),
the Landauer-type of approaches considered in this section find frequent applications in
quantum-transport studies on nanostructures such as one-dimensional transport geome-
tries, junctions etc. at zero temperature by assuming that electron transport is fully co-
herent, i.e. no phase-breaking phenomena occur on the transport time scale. Landauer’s
approach has the advantage to include the crucial role of the contacts in geometries such as
depicted in Figure 2 while the contacted sample has typically small length (but often also
small widths). Sometimes it is simply a single atom or molecule.12

This devision into subsystems is reflected in the blockwise definition of the Hamilto-
nian

Ĥ =

 ĤL V̂LS 0

V̂ †LS ĤS V̂SR
0 V̂ †SR ĤR

 (19)

where ĤL, ĤS , ĤR are the (partial) Hamiltonians of the left (L) electrode, the sample
(central part), and the right (R) electrode, respectively. The off-diagonal terms V̂ describe
the coupling between these subsystems and are related to overlapping wave functions in
the contact region.

The corresponding matrix Green function fulfills the equationÊ − ĤL −V̂LS 0

−V̂ †LS Ê − ĤS −V̂SR
0 −V̂ †SR Ê − ĤR

 ĜL ĜLS 0

ĜSL ĜS ĜSR
0 ĜRS ĜR

 = 1̂ (20)

which is just a system of linear equations and Ê = 1̂(E + iη) is a shorthand notation
with unity matrix 1̂. One is mainly interested in the sample Green function ĜS which
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propagates electronic states in the sample. By substitution we can arrive at(
Ê − ĤS − Σ̂

)
ĜS = 1̂ (21)

where we introduce the so-called self energy

Σ̂ ≡ Σ̂L + Σ̂R = V̂ †LS(Ê − ĤL)−1V̂LS + V̂ †RS(Ê − ĤR)−1V̂RS . (22)

As we see from Eq. (22) the self energy is composed of lead quantities and lead-sample
couplings only. It can be understood as a correction term to the ordinary energy term
contained in Ê caused by the coupling to the leads (given by the quantities V̂ ). We easily
see that if V̂ → 0 the self-energy vanishes and ĜS solves the free equation(

Ê − ĤS

)
ĜS = 1̂. (23)

It is an important observation that in the general case (of Σ̂ 6= 0) this propagation of
electronic states depends on the electrodes. This is different to the Kubo transport method-
ology.

While the methods presented briefly in this section easily fill books,12 we focus only on
central aspects related to carrier transport. In geometries such as depicted in Figure 2 one
usually investigates the conductance of a sample (in contrast to the average conductivity
σ). The conductance G can be written as a trace over corresponding operators13

G =
2e2

h
Tr
[
Γ̂LĜSΓ̂RĜ

†
S

]
(24)

where

Γ̂L,R = i(Σ̂L,R − Σ̂†L,R). (25)

To solve the transport problem in the Landauer framework one starts with the leads evalu-
ating Eq. (22) and proceeds towards Eq. (24). Given a tight-binding representation of the
system these equations become simple matrix equations.

4 Ab initio Methods for Material Parameters

4.1 Hohenberg-Kohn Theory

Here we briefly display the methods related to ab initio part of the simulations as discussed
in Sect. 1.1. In solid-state physics one uses density functional theory (DFT) as the estab-
lished method to describe electronic properties of solids and their surfaces. Thereby the
electron density n(x) plays a central role14 beyond being merely an expectation value of
the ground state |g〉. Formally it is used as the basic variable of the problem. As such it
should be connected one-to-one to the external potential V (x) which is indeed the case
for so-called V-representable densities (at least apart from an unimportant constant).15 It
follows that the total ground state energy Eg of the system is a functional of the density of
the system E[n(x)]. A second theorem states that the functional is extremal14 leading to a
minimal ground state energy.

However this functional E[n(x)] is very difficult to obtain and no general solution is
found apart form the special case of the homogeneous electron gas where n(x) is constant
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Figure 3. Valence charge density distribution in graphite after Ref. 16. The strong inhomogeneity between
graphene layers is evident by iso-lines that indicate doubled values for the charge density from one to the next
line.

throughout the system. As a matter of fact it turns out to be a challenge to describe inho-
mogeneous systems such as the one in Figure 3. Usually the density along a chemical bond
is orders of magnitude above the density in between particularly for van der Waals-bonded
systems such as graphite or organic solids.

4.2 Kohn-Sham Equations

Notwithstanding these complications, after clarification of its existence and minimum
properties one has to determine the electron density n(x) for a given external potential
V (x). This amounts to solving an equation like Ĥ|ψ〉 =

(
T̂ + Û + V̂

)
|ψ〉 for the

many-body wave function |ψ〉 while knowing the electron-electron interaction Û (T̂ is
the kinetic energy operator). Kohn and Sham proposed a simplification based on a sin-
gle particle-picture by introducing an effective potential Veff acting on the non-interaction
particles17, 18

Ĥ|ϕi〉 =

(
−∆

2
+ V̂eff

)
|ϕi〉 = εi|ϕi〉, (26)

which is known as Kohn-Sham equation and where the first term is the kinetic energy. The
effective potential consists of Veff = V (x) + VH(x) + VXC(x) with the classical Hartree
potential VH , the external potential V (x) and the exchange-correlation potential VXC(x)
which is supposed to include all remaining many-particle effects and is undoubtedly the
complicated part. Given the knowledge of this potential, Eq. (26) has to be solved under
the constraints that n(x) =

∑N
i |ϕi(x)|2 and N =

∫
d3xn(x) where N is the number of

particles in the system.
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Clearly there is a huge amount of literature how to describe the exchange-correlation
potential in a suitable yet efficient way. The representation of this research, however, goes
far beyond the present purpose. We only mention here that standard approximations exist
which are well assessed including the local density approximation (LDA) and the gener-
alized gradient approximation (GGA). In particular for the latter many different flavors
exist.

4.3 Electronic Structure

One central goal when performing DFT simulations is to obtain material parameters. This
can include the total energy E that we mentioned above or vibrational frequencies etc. But
also the electronic structure is very important. Fortunately the eigenenergies εi in Eq. (26)
can be interpreted as electronic energies characterizing the band structure. While this is
merely an empirical finding and counterexamples exhibit problems with this interpretation,
we will adopt this wide-spread interpretation to calculate the electronic structure in order
to extract transport-relevant quantities.

5 New Electronics Features of Chemically-Modified Graphene-Based
Materials: Mobility Gaps

5.1 Introduction

An illustration of the general multiscale approach is the exploration of new type of de-
vice principles, based on the concept of mobility gaps, and based on chemical doping of
graphene-based materials and devices. We provide here below a more detailed discussion
about that phenomenon, being an interesting example of emerging device functionalities
from quantum transport effects.

Undoped single layer graphene behaves as a zero-gap semiconductor, and thus it turns
out to be an unsuitable material for achieving efficient field-effect functionality in logic
circuits. Indeed, experimental measurements reported ratios between the current in the ON
state and the current in the OFF state not higher than one order of magnitude and therefore
too low to meet technical requirements. A possibility to increase the (zero) gap of two-
dimensional graphene single layers is to shrink their lateral dimensions. Using e-beam
lithographic techniques and oxygen plasma etching, graphene nanoribbons can be fabri-
cated with ribbon widths of a few tens of nanometers down to say 10nm. This confinement
effects trigger electronic bandgaps19, 20 with a decreasing gap magnitude with increasing
nanoribbon width. However, theoretical predictions and experimental results have reported
energy bandgaps far too small or very unstable in regards to edge reconstruction and de-
fects, thus preventing to envision outperforming ultimate CMOS-FETs (Complementary
Metal Oxide Semiconductor Field-Effect Transistors) with graphene-based devices.

To circumvent such an effect, one should instead recourse to larger width graphene
nanoribbons (above 10 nm in lateral sizes) and one should compensate the loss of gain
due to the bandgap shrinking by triggering the mobility gaps through chemical doping
(such as substitutional boron or nitrogen). These mobility gaps are unique consequences
of a wide distribution of quasi-bound states over the entire valence band (for acceptor-type
impurities) in the first conductance plateau when dopants are randomly distributed across
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Figure 4. Boron doped graphene. (a) Charge density of the band crossed by the Fermi energy at the Γ point. (b)
Structure indicating the Boron substitution and labeling of neighboring sites. (c) Comparison between DFT band
structure (left) and tight-binding model (right) shows good agreement. The renormalized on-site energy for the
boron site is extracted and shifted upwards by 4.3 eV compared to carbon sites.21 Figures are reproduced after
Ref. 21.

the ribbon width, due to the strong dependence of the scattering potential on the dopant
position with respect to the ribbon edges.

5.2 Material parameters

In Figure 4 we show a DFT calculation in supercell geometry which is used to extract effec-
tive microscopic parameters of boron doped graphene. These parameters have been used
to feed the transport simulations as explained below. Thereby the nearest neighbor elec-
tronic coupling term is set constantly to γ0 = −2.7 eV. The right panel of Figure 4 shows
the band structure described by the tight-binding model based on the extracted parameters.
The agreement around the Fermi energy is excellent. We next create large samples with
random distributions of dopants to simulate a realistic situation and describe the physics
arising on the macroscopic scale.

5.3 Results

Figure 5 shows the conductance (computed with the Landauer-Büttiker method of Sect.
3) of a 10 nm wide armchair nanoribbon with low-concentration boron doping.22, 23 For
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Figure 5. Main panel: average conductance as a function of energy for the semiconducting 81-armchair graphene
nano-ribbon (aGNR) and three selected doping rates (0.02%, 0.05% and 0.2%, from top to bottom). Inset:
schematic plot of a randomly doped 34-aGNR.

a doping density of about 0.2%, the system presents a mobility gap of the order of 1 eV.
When lowering the doping level to 0.05%, the mobility gap reduces to about 0.5 eV and
finally becomes less than 0.1 eV for lower density.

The final values for mobility gaps depend on the nanoribbon width and length, so that
adjustment can be performed by upscaling either lateral or longitudinal sizes to achieve
desired ON/OFF current characteristics, but the recipe is straightforward once the transport
length scales (mean free paths,localization length) have been computed.

One notes however that the existence of mobility gaps (with conductance several or-
ders magnitude lower than the quantum conductance) cannot yield a straightforward quan-
titative estimation of resulting ON/OFF current ratio, since this will require computing
the charge flow in a self-consistent manner (using a Schrödinger-Poisson solver). This
is essential since accumulated charges inside the ribbon channel are further screening the
impurity potential, altering the final strength of mobility gaps obtained in equilibrium con-
ditions. Some efforts have been made in that direction,24 but this needs definitely further
specific consideration and stand as an important challenge of multiscale modeling in the
ICT domain.

6 Limits of Ballistic Transport in Silicon Nanowires

6.1 Introduction

Semiconducting nanowires with diameter down to the nanometer scale can also be fabri-
cated by catalytic growth techniques. These Bottom-up nanostructures have become the
subject of intense study and are considered as potential building blocks for nanoscale elec-
tronics due to their promising electronic and optical properties. Compared to classical
planar technology, Silicon-based semiconducting nanowires (SiNWs) are able to better
accommodate “all-around” gates, which improves field effect efficiency and device perfor-
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Figure 6. Illustrations of surface roughness in large (a) and small diameter (c) silicon nanowire, together with
description of roughness profiles at the atomistic scale (b) and (d). Reproduced from Ref. 25.

mance. Also, in contrast to many other nanowire materials, structurally stable and electri-
cally active SiNWs can be manufactured with small diameters d < 5 nm.

However, as the lateral size of the nanowires becomes smaller the impact of structural
imperfections such as surface disorder and defects becomes increasingly important due to
the high surface to volume ratio. In the case of lithographic SiNW-FETs surface roughness
disorder (SRD) is known to be a limiting factor. Moreover, due to the indirect band gap
of silicon, SiNWs can be expected to exhibit fundamentally different electronic properties
depending on the nanowire crystal orientation. For engineering performant SiNW-based
transistors it is thus imperative to find out how sensitive the transport properties are to SRD
and which nanowire orientation is best suited for engineering highly performant transistors.

The understanding of charge transport in silicon nanowires demands for an extensive
use of atomistic models (ab initio or tight-binding models). Indeed, in situations of strong
geometrical and electrical confinement, electronic band structures and transport mecha-
nisms are severely modified. The limits for ballistic transport depend on several factors
owing to the fluctuations of microscopic scattering sources. For instance, scattering from
impurity charges continuously and varies with downsizing device features as a conse-
quence of size-dependent screening phenomena. One of the important limiting phenomena
of ballistic transport is the surface roughness (SR) which is unavoidable at the atomistic
scale. We have been investigating SR effects in SiNWs with diameter in the range of a few
nanometers.

The electronic structure of the SiNWs is described by an accurate third nearest neigh-
bor sp3 tight-binding (TB) Hamiltonian, previously validated by ab initio calculations and
comparison with experimental data.26, 27 Based on such reparametrized Hamiltonian, one
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Figure 7. Top: Illustration of a small diameter SiNWs with a given roughness profile. The length scale of
recurrent radius fluctuations is given by Lr (see text). Bottom: Computed charge conductivity for hole and
electron as a function of charge energy or charge carrier density. Reproduced after Ref. 30.

proceeds in a real space implementation of the Kubo conductivity which allows exploring
quantum transport in micron long and disordered nanowires (chemical dopants, surface
roughness).

6.2 Results

Figure 6 shows a typical SR profile of our simulated nanowires, together with typical pro-
files observed in experiments. The surface roughness profile is characterized by the rms of
the radius variations and by a correlation length Lr (the typical length scale of these fluc-
tuations). The analysis of the roughness effect on ballistic transport has been achieved by
using two complementary approaches: an order N Kubo-Greenwood method, which gives
a straightforward access to the intrinsic elastic mean free paths and charge mobilities8, 9, 28

and a Landauer-Büttiker approach29 which is particularly well suited to the quasi-ballistic
regime, where contact effects start to prevail over intrinsic phenomena. Both methods have
been implemented numerically and extensive use of supercomputing facilities has allowed
extracting quantitatively the elastic mean free path that fixes the limit for ballistic conduc-
tion.

Figure 7 shows the computed charge conductivity for holes and electrons as a function
of Fermi energy or charge carrier density, and a given roughness profile defined by Lr
(the typical length scale of fluctuations of the radius).30 The resulting room temperature
mobility is plotted as a function of the carrier concentration in Figure 8 for ultimate SiNWs.

The room-temperature mobility is plotted as a function of the carrier concentration
in Figure 8 for ultimate SiNWs with radius R = 1 nm and three different orientations
([001], [110] and [111]). The rms of the radius fluctuations is 〈R2〉 = 1Å and the typ-
ical length scale of these fluctuations is Lr = 2.17 nm. As evidenced in this figure, the
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Figure 8. Computed charge mobility for hole (left) and electron (right) as a function of charge carrier density.
Reproduced after.30

roughness-limited mobility is highly dependent on the nanowire orientation. Indeed, such
small nanowires are in the quantum regime where only one or a few subbands are occupied
and available for charge transport at room temperature. Due to the anisotropy of the band
structure of bulk silicon, the electronic properties (effective masses of the electron and
holes, subbands degeneracies and splittings) of the nanowires are strongly dependent on
their orientation. For example, the 6-fold degeneracy between the conduction band valleys
of bulk silicon is completely lifted in [110]-oriented nanowires, which suppresses inter-
valley scattering at low electron energies. Moreover, the lowest subbands of these [110]-
oriented nanowires exhibit a rather light ( 0.15 m0) effective mass compared to [001]- and
[111]-oriented nanowires. This explains why the [110] orientation is found to be the best
for electron transport. Likewise, the [111] direction is found to be the best for hole trans-
port, because the hole mass is light in these nanowires, and because the splitting between
the highest two valence subbands is the largest ( 150 meV), therefore inhibiting inter-band
scattering at low carrier concentration. The above trends are expected to hold as long as the
inter-valley splitting in the conduction band, or the splittings between the highest two va-
lence bands is somewhat greater than kBT , i.e. for radius R < 3 nm at room temperature.
Quantum effects should average out beyond this radius.

7 Organic Semiconductors

7.1 Introduction

The last example shows the case of organic semiconductors which find applications in a
variety of devices including organic light emitting diodes,31–34 organic field effect transis-
tors35–40 organic thin film transistors,41–43 organic solar cells44, 45 and organic spintronic
devices.46–48 Such electronic and opto-electronic devices depend critically on the charge-
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Figure 9. Structure (a), Brillouin zone (b) and band structure (c) of durene (tetramethylbenzene) crystals. (a) The
unit cell consists of two molecules in a herringbone arrangement. The b lattice constant is 5.5Å.50 (c) Different
background colors indicate directions in the BZ (b) and corresponding real-space directions in the crystal (a).
Insets show wave functions for the highest occupied molecular orbital (HOMO) and HOMO-1 (right) compared
to crystalline states derived from the HOMO and HOMO-1 (middle). Reproduced after Ref. 51.

carrier mobility in these materials. Unfortunately, the theoretical description of charge-
transport processes is significantly complicated with respect to the above-described ap-
proach because of the complex materials but also because of the finite temperatures at
which such devices operate. This will be explained here below.

Organic semiconductors even in crystalline phase are different from their inorganic
counterparts that dominate the field of traditional semiconductor physics such as silicon or
GaAs. In fact, the electronic bandwidth of organic crystals is relatively small and rarely
reaches 0.5 eV (one exception is shown in Figure 9), while for example the graphene π
band has a bandwidth of about 15 eV. Similar values are present for silicon. The reason for
the order-of-magnitude difference is related to the fact that molecular orbitals (instead of
atomic orbitals) are the basic electronic elements and couple weaker to each other. This is
related to the longer distances between molecules (typically larger than 3.5 Å) compared
to a C–C bond length of 1.4 Å in graphene (cf. Figure 3) which explains the weaker
overlap given an exponential decay of the wave functions. Consequently the electronic
coupling is well one order of magnitude below. Additionally the complex nodal structure
of molecular orbitals (cf. Figure 9 (c)) leads eventually to a further reduction of their
mutual interaction.49

Another characteristic of organic semiconductors which is of equal importance for
charge transport is that vibrational frequencies in organic materials are typically very low.
Weak intermolecular forces, which are of the van der Waals type or weak hydrogen bonds,
and large molecular masses lead to intermolecular modes with wavenumbers below 300
cm−1. This corresponds to an energy scale which is easily accessible at room temperature.
These low-frequency modes have a strong impact on the electronic structure as they trigger
dynamical changes in the transfer integrals due to changes in the mutual orientation and
distance of molecular orbitals. Said differently the softness of organic materials leads to a
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continuously fluctuating potential landscape for the traveling electrons, an effect that can
be captured conceptually by interaction terms between electrons and phonons. A common
model for such interaction goes back to Holstein52, 53 and introduces electron-phonon cou-
pling as follows. For a given Hamiltonian that describes a completely frozen lattice {R0

ks}
one writes (in second quantization notation)

Ĥ =
∑
MN

ε
(0)
MN â

†
M âN . (27)

Hereby ε(0)
MN are the transfer integrals between molecular orbitals M and N . When taking

possible geometric changes R0
ks → Rks = R0

ks + uks (k labels the unit cell and s the
atomic basis) into account the transfer integrals change. This change is captured by a
Taylor series expansion

Ĥ =
∑
MN

[
ε

(0)
MN +

∑
ks

uks · ∇RksεMN ({Rks})|Rks=R0
ks

]
â†M âN . (28)

An equivalent expression can be obtained by replacing the real-space deflection coordi-
nates uks for vibrational mode coordinates where we use the harmonic approximation.
This leads, after quantization of the vibrational degrees of freedom to the Holstein-Peierls
Hamiltonian (including the phonon energy as the last term)54

Ĥ =
∑
MN

ε(0)
MN +

∑
Q

~ωQgQMN

(
b̂†Q + b̂−Q

) â†M âN +
∑
Q

~ωQ
(
b̂†Qb̂Q +

1

2

)
(29)

where gQMN is the electron-phonon coupling constant associated to the mode Q and the
transfer integral εMN and ωQ is the phonon frequency. A simpler model of the electron-
phonon interaction restricts to local coupling gQMM only. Non-local terms gQMN are set zero
for M 6= N and only the onsite-energy εMN is effectively coupled to vibrations.

Ĥ =
∑
MN

ε
(0)
MN â

†
M âN +

∑
M

∑
Q

~ωQgQMM

(
b̂†Q + b̂−Q

)
â†M âM +

∑
Q

~ωQ
(
b̂†Qb̂Q +

1

2

)
(30)

This form of the Hamiltonian is known als Holstein-Hamiltonian.52

In order to determine this Hamiltonian for the particular system under study one has
to fix the parameters ε(0)

MN , ωQ, and gQMM . In the spirit of a multiscale approach they
can be determined from DFT simulations. Figure 9 shows an example where such DFT
simulations have been performed for durene crystals. Figure 9 (c) compares the crystal
band structure (black solid lines) to an effective tight-binding model based on a set of
ε

(0)
MN for the HOMO bands (red dotted lines). The largest transfer integral is found in b

direction with εb = 116 meV. Together with the second largest transfer integral of similar
size this finally is responsible for the huge band width of almost 1 eV. Note that in Figure 9
(c) the HOMO set of bands and the bands derived from the next lowest molecular orbital,
the HOMO-1 bands, overlap in a certain energy window. This however, does not imply a
larger accessible bandwidth for the charge carriers nor a higher mobility.

The electron-phonon coupling constants are obtained in a similar way from the band
structure. First one has to modify the atomic coordinates of the crystal according to a con-
sidered phonon eigenvector. For such a geometry a DFT calculation has to be performed
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which is known as frozen phonon method. The implied changes in the electronic structure
can be measured with respect to the fixed ground state in the spirit of the Taylor expansion
mentioned above. If one does this procedure for a few amplitudes (positive and nega-
tive) one can extract the electron-phonon coupling constants from the linear changes in the
transfer integrals upon geometry change. This has to be done for all the phonons which are
considered relevant.

Transport modeling consists of the simulation of charge transport in organic matter
using a Kubo approach similar to the one introduced above. This methodology evaluates
the macroscopic current response to an applied electric field such as probed in standard
measurements on carrier mobilities in organic semiconductors (see, e.g. Figure 10) and
will be detailed below.

7.2 Theory and Modeling of Transport Processes

Like in Sect. 2 we also start with Eq. (3) for the conductivity but now the Hamiltonian
to calculate the current-current correlation function is the Holstein Hamiltonian (30). The
additional phonon-related terms in (30) give rise to additional contributions to the con-
ductivity in comparison to what we have discussed for graphene. One qualitative and im-
portant difference is that phonon-assisted transport plays a role at ambient temperatures.51

Such contributions are visible in Figure 10 which shows theoretical carrier mobilities of
holes in naphthalene compared to experimental measurements on highly purified single
crystals. The effect of disorder is assumed to be minor in the theoretical study while
the strong temperature-dependence is governed by phonon scattering of charge carriers.
Phonon-assisted transport is denoted µ(inc) (left panel). As becomes clear from the left
panel, phonon-promoted carrier transport is an important and dominant contribution for
elevated temperatures simply because of the increasing number of phonons at high T . The
dual role of the phonons (i) acting as scatterers for the charge carriers thus hindering trans-
port and (ii) promoting transport through thermally assisted contributions is reflected in
a crossover from dominant coherent to incoherent transport at a certain temperature (cf.
Figure 10).

Conceptually this is described in a polaron picture where the charge carriers do not
simply propagate as bare particles but are accompanied by a lattice deformation. One can
imagine this as a cloud of phonons that dresses the carriers. It is clear that this compos-
ite particle (quasiparticle) is usually more heavy than the bare electron or hole which is
reflected in reduced transfer integrals in the polaron picture ε→ ε̃(g) < ε.

In this picture the carrier mobility can be approximated as57

µαβ = − 1

e0Nc 2kBT

(e0

~

)2 ∑
LMN

RLαε̃LRNβ ε̃N

× 1

NΩ

∑
k1k2

e−ik1(RM+RN )eik2(RM−RL)nk1
(1− nk2

)

×
∫ ∞
−∞

dt e
it
~ [ε̃(k1)−ε̃(k2)]e−[

∑
Q ΦQ(t)GQ

0L0Ne
−iQRM ]e(−tτ )2

(31)

where all the microscopic parameters from Hamiltonian (30), which are computed in
the ab initio framework58, 59 (such as transfer integrals εMN etc.), but also position vec-
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Figure 10. Charge carrier mobility (holes) in ultrapure naphthalene organic single crystals. Comparison between
experimental results (middle), new theoretical prediction (left) as well as previous theory (right) for mobility
anisotropy and temperature dependence. Adapted from Ref. 55. Experiment from Ref. 56. The molecular
structure of Naphthalene is shown as insets.

tors R, enter. In Eq. (31) the phonon occupation number is described by the Bose-

Einstein statistics NQ =

(
e

~ωQ
kBT − 1

)−1

and impacts through the auxiliary function

ΦQ(t) = NQe
iωQt+ (1 +NQ)e−iωQt on phonon-absorption and phonon-emission events

during transport. Finally the electron-phonon coupling enters in the polaron transfer in-
tegrals ε̃, the polaron band structure ε̃(k) as well as in the effective coupling constant
GQ

0L0N =
(
gQ00 − g

Q
LL

)(
g−Q00 − g

−Q
NN

)
. The above-discussed phonon-assisted contribu-

tions to transport µ(inc) can be obtained from subtracting the coherent ones from the total
mobility µ− µ(coh) while µ (coh) is directly obtained from setting GQ

0L0N = 0 for all modes
Q in Eq. (31).

Recent advances of multiscale modeling include the simulation of polaron transport
in disordered systems60 which is an extension with respect to previous conventional ap-
proaches for ultrapure systems55 such as displayed in Figure 10. A significant step for-
ward in our understanding of transport in organic matter can be achieved when the impact
of disorder is further clarified on a microscopic scale. In particular the interplay of im-
purity scatterers with phonons (dynamic scatterers) is poorly understood so far. One of
the fundamental open questions is still the transport regime as a function of temperature
(coherent, or phonon-assisted hopping) as well as the direction and dimensionality depen-
dence. Consequently, besides the study of intrinsic properties presented in Figure 10, the
impact of structural disorder and dopants on transport is equally important. The way in
which disorder effects are described in the novel approach is essentially in a multiscale
fashion by simulating a macroscopic sample of a size of few hundred nanometers in a
3D structure.60 It is based on assumed material parameters such as known from previous
studies and complemented with a given disorder potential HW =

∑
i wia

†
iai in real space

(wi ∈ [−W/2,W/2] and random).
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Figure 11. (a) 3D crystal structure with transfer integrals and lattice constants as indicated are used as input
parameters for the model crystal. (b) Disorder dependent coherent transport and (c) disorder dependent total
carrier mobility for this model. A carrier concentration of 10−3, phonon mode of ~ω = 10 meV and electron-
phonon coupling of g = 0.7 have been used.

It can be shown that in the disordered situation µ(coh)(T ) can be calculated as follows

µ(coh)(T ) =
Ωat

e0ckBT

∫
dEσ(E)n(E)[1− n(E)] (32)

while phonon-assisted contributions read

µ(inc)(T ) =
e0Ω2

at

2c~2kBT

∑
M

ε̃2
MR

2
M

∫
dE1

∫
dE2ρ(E1)ρ(E2)n(E1)[1− n(E2)]

×
∫ ∞
−∞

dteit(E1−E2)
{

exp[2Φλ(t)g2
λ]− 1

} (33)

where we pick out a certain transport direction. In Eq. (33) we use the disordered density
of states ρ(E). We find here an important connection of Eq. (32) to the approach displayed
in Sect. 2 namely that σ(E) has to be calculated in essentially the same way as in Eq. (5)
only with electrons replaced by polarons.

The model introduced in Figure 11 gives rise to a temperature dependence of the mo-
bility in Figure 11 (c). At low temperatures µ = µcoh. The low-T mobility decay is due
to defect scattering where phonons are not important. At high T µ decays with T or is rel-
atively T independent for a certain range of disorder strength (expressed in the Anderson
model by parameter W ).

8 Conclusion and Perspective

In these lectures, we presented state of the art of multiscale transport modeling at the
crossroad of material science and nanotechnology. We demonstrate the applicability of
the concepts and methods for a variety of materials and structures including metals and
semiconductors and ranging from 1D nanowires over 2D graphene to 3D organic crystals.

Many fields such as organic electronics, spintronics, beyond CMOS nanoelectronics,
nanoelectromechanical devices, nanosensors, nanophotonics and nanophononics devices
genuinely lack standardized and enabling tools, that are however mandatory to assess the
potential of new concepts, or to adapt processes and architectures to achieve the desire
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functionalities. The multiscale computational methodologies have to be versatile enough to
explore those novel physical phenomena that require advanced quantum mechanics, while
at the same time strong efforts are devoted to reach high level of predictability efficiency,
therefore providing guidance for experiments and technology.
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30. Aurélien Lherbier, Martin P. Persson, Yann-Michel Niquet, François Triozon, and
Stephan Roche, Quantum transport length scales in silicon-based semiconducting

273



nanowires: Surface roughness effects, Phys. Rev. B, 77, 085301, Feb 2008.
31. M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjert-

berg, and O.Wennerstrom, Light-emitting-diodes with variable colors from polymer
blends, Nature, 372, 444, 1994.

32. A. J. Heeger, Light emission from semiconducting polymers: Light-emitting diodes,
light-emitting electrochemical cells, lasers and white light for the future, Solid State
Commun., 107, 673, 1998.

33. S. R. Forrest, The road to high efficiency organic light emitting devices, Org. Elec-
tron., 4, 45, 2003.

34. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo,
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We review here some of our recent theoretical works addressing the nature of the electronic
processes occurring at interfaces between two different organic semiconductors. We illustrate
that charge-transfer or polarization effects dominate the interface dipole depending on the nature
of the compounds under study and that the choice of the DFT functional is critical to get a proper
picture. Our discussion is also extended to the energy landscape in the vicinity of organic-
organic interfaces, which has strong implications for charge separation processes in solar cells
or charge recombination processes in OLEDs.

1 Introduction

The field of organic electronics has experienced a rapid progress during the last decade.
The applications of organic semiconductors encompass light-emitting devices (LEDs), so-
lar cells, field-effect transistors and sensors. Many of these devices incorporate several
components; this is especially the case in solar cells in which π-donor (D) and π-acceptor
(A) compounds are used under the form of a bilayer or a homogeneous blend to dissociate
excitations into free charge carriers at their interface. This also applies to light-emitting
devices that are generally made of several layers with specific functions (hole/electron
transporting layers, exciton blocking layers, emitting layers). Since key mechanisms such
as exciton dissociation in solar cells or charge recombination in LEDs occur at the inter-
face between organic semiconductors, a deep understanding of the electronic processes at
organic/organic interfaces will prove very useful to develop new strategies towards devices
with enhanced efficiencies.

A central issue is to determine the way the frontier electronic levels of two adjacent or-
ganic layers align ones with respect to the others at the interface. The Schottky-Mott model
is the simplest one that can be applied to organic conjugated materials. In this model, two
adjacent organic layers share a common vacuum level. If this holds true, the energetic
characteristics of the interface can be designed by tailoring separately the electronic prop-
erties of the two materials. This is typically done with organic solar cells by inferring the
alignment of the HOMO and LUMO levels of the donor and acceptor units from cyclic
voltammetry measurements performed separately for the two compounds. However, re-
cent experimental studies have clearly shown that this picture is usually incorrect.1, 2 An
interface dipole is often induced at the donor/acceptor interface, which shifts the vacuum
level of one layer with respect to the other. When approximating the interface dipole by
two infinite charged plates, the magnitude of the vacuum level shift (VLS) originating from
the charge distribution is given by:

VLS =
eMz

ε0S
(1)
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where Mz is the component of the dipole moment of a pair of interacting donor/acceptor
molecules in the direction perpendicular to the interface and S is the surface area occu-
pied by the donor-acceptor complex at the interface. Vacuum level shifts at metal/organic
interfaces are well documented at both the experimental and theoretical levels.1, 3, 4 In con-
trast, although there is considerable experimental evidence for vacuum level shifts at or-
ganic/organic interfaces, theoretical papers addressing this issue at the quantum-chemical
level are still scarce.5, 6

In these lectures notes, we will review some recent works aiming at the quantum-
chemical description of interface dipoles in donor-acceptor complexes. We will first con-
sider in Section 3 model systems made of a strong donor (tetrathiafulvalene, TTF) and a
strong acceptor (tetracyanoquinodimethane, TCNQ, see chemical structures in Figure 2).7

This choice is primarily motivated by the fact that: (i) the largest interactions are expected
to occur between the molecules facing each other at the interface; and (ii) the VLS between
TTF and TNCQ layers has been recently characterized experimentally by Ultraviolet Pho-
toelectron Spectroscopy (UPS) and estimated to be on the order of 0.6 eV.8 In Section 4, we
will extend the study to large TTF/TCNQ stacks.9 We will then consider complexes made
of pentacene and C60 molecules10 in Section 5 before addressing in Section 6 the nature of
energy landscapes around organic/organic interfaces and the implications for organic solar
cells.11

2 Interface Dipole: Charge Transfer and Polarization Components

The formation of an interface dipole between two organic layers originates from two dom-
inant effects:

i) When the neutral state (DA) is more stable than any charge-transfer excited state
(D+A− or D−A+), the formation of the interface dipole might stem from the admix-
ture of a charge-transfer (CT) character in the ground-state wavefunction describing the
donor/acceptor interface. Such a partial charge transfer in donor/acceptor complexes is a
well-known phenomenon described previously at the theoretical level.12, 13 At the second
order of perturbation theory, the ground-state wavefunction of a donor-acceptor complex
acquires some charge-transfer character due to the admixture of terms corresponding to
excited CT states:

Ψ(D,A) = aΨ0(D,A) +
∑
i

biΨi(D
+A−) +

∑
i

ciΨi(D
−A+) (2)

where Ψ0(D, A) is an antisymmetrized product of the unperturbed wavefunctions of the
donor and acceptor molecules in the complex; Ψ(D+A−) is the wavefunction of a CT state
corresponding to a charge transfer from one occupied level of the donor to one unoccupied
level of the acceptor. The first-order correction coefficients (bi and ci) to the wavefunction
Ψ0 are equal to Vi/∆Ei, with Vi the electronic coupling between the ground-state (GS)
and the charge-transfer excited state CTi, and ∆Ei the corresponding energy separation.
Accordingly, the charge transfer admixture in the ground state is given by:

q ÷
∑
i

±
(

Vi
∆Ei

)2

(3)
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where the sign is determined by the direction of the charge transfer. It is usually assumed
that ci � bi, since the Ψi(D

−A+) states are lying at much higher energies, so that a
back charge transfer (from the acceptor to the donor) is generally less efficient. From
Equation (3), it is clear that the amount of charge transferred at the interface is controlled
not only by the difference in electronegativities (which is closely related to ∆E) but also
by the electronic coupling between the two molecules. The electronic coupling V is very
sensitive to the mutual orientation of the molecules and exponentially decreases with the
distance between the molecules (due to the exponential decay of the overlap between the
wavefunctions).14

ii) The interfacial dipole layer may be formed by a polarization of the electronic cloud
within the molecules. This contribution stems from the admixture of locally excited states
in the ground-state wavefunction:

Ψ(D,A) = aΨ0(D,A) +
∑
i

biΨ(D0A
∗
i ) +

∑
i

ciΨi(D
∗
iA0) (4)

where D0 [A0] and D∗ [A∗] stand for the unperturbed ground and excited states of the
isolated donor [acceptor]. This mixing results from the fact that the singly excited con-
figurations D∗A and DA∗ built from the molecular orbitals of the isolated units are not
orthogonal to the ground-state wavefunction calculated for the whole dimer.

3 TTF/TCNQ Model Systems

The choice of the computational method has been guided by its performance in predicting
the induced dipole moment in donor/acceptor complexes. For the sake of comparison, we
will discuss below the results obtained at the semi-empirical Hartree-Fock Austin Model 1
(AM1)15 ab initio Hartree-Fock (HF) and density functional theory (DFT) levels. The hy-
brid B3LYP16, 17 and BHandHLYP functionals introducing 20% and 50% of exact Hartree-
Fock exchange, respectively, were used in the DFT calculations, as implemented in Gaus-
sian03.18 We used a split-valence 6-31G(d) basis set for most HF and DFT calculations.
A basis set incorporating polarization functions is expected to be sufficient for the descrip-
tion of the polarization component. The Mulliken charge partitioning scheme exploited
here might prove a rather crude approximation, especially when the basis set is augmented
with diffuse functions. However, we are confident that the Mulliken charges summed over
the individual molecules are meaningful in our case since: (i) the intermolecular overlap
is relatively small for the intermolecular distances considered in this study (≥3.5 Å); and
(ii) we used in most cases the 6-31G(d) basis set which does not contain diffuse functions.
The dipole moments and Mulliken charges reported hereafter were corrected for basis set
superposition error, using the counterpoise correction of Boys and Bernardi,19 except for
the AM1 results.

Figure 1 shows the evolution of the Mz component of the dipole moment in a
TTF/TCNQ dimer as a function of the degree of translation of the TCNQ molecule along its
main molecular axis (Y axis), as calculated at different levels of theory (using a 6-31G(d)
basis set in the ab initio HF and DFT calculations). The initial geometry of the isolated
molecules was first optimized at the B3LYP/6-31G(d) level and the dimer was then built
in a cofacial geometry by fixing the separation between the molecular planes at 3.5 Å.
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The results show that the amount of charge transferred critically depends on the chosen
computational approach and on the relative position of the two interacting molecules.

Figure 1. Evolution of the total dipole moment in the direction normal to the molecular planes (MZ) as a function
of the degree of lateral translation of the TTF molecule along the Y axis, as obtained with different computational
methods. The distance between the molecular planes is fixed at 3.5 Å. Adapted with permission from Ref. 7.
Copyright 2009 John Wiley and Sons.

The magnitude of the charge transfer is governed by the calculated energy gap between
the frontier orbitals of the donor and acceptor as well as by their electronic coupling. The
Hartree-Fock (HF) method yields very large HOMO/LUMO gaps; this is partly due to the
overestimation of the energies of the unoccupied levels. Moreover, the energy of a charge-
transfer state calculated at the Hartree-Fock level for an isolated complex is larger than the
value expected in a condensed medium (i.e., at the interface) due to the neglect of the po-
larization of the surrounding medium.20 These two effects should lead to an overestimation
of the energy of the CT states and hence to a reduced charge transfer with Hartree-Fock. In
contrast, DFT is known to provide electronic HOMO/LUMO gaps for isolated molecules
much smaller than Hartree-Fock-based values and actually close to experimental optical
gaps;21 by strongly underestimating electronic gaps, DFT thus tends to incorporate artifi-
cially medium polarization effects, which prove very useful in the present context.

These considerations are supported by the results of the electronic structure calcula-
tions based systematically on the same B3LYP/6-31G(d) input geometry (see Figure 1).
AM1 yields the smallest induced dipole moment; the negligible charge transfer occurring
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between the donor and acceptor is rationalized by the overestimation of the energy of the
CT states and by a smaller polarization component due to the use of a minimal basis set.
B3LYP calculations predict the largest amount of charge transfer, with a maximum ob-
served for a shift of 3 Å (q ∼ 0.25|e|). However, it is worth stressing that with B3LYP the
LUMO of TCNQ is found to be lower in energy than the HOMO of TTF. This is certainly
due to an insufficient admixture of the Hartree-Fock exchange (20%), which leads to the
strong underestimation of HOMO-LUMO gaps in both TTF and TCNQ molecules and of
the corresponding gap relevant for charge transfer.

At the BHandHLYP level (incorporating 50% of Hartree-Fock exchange), the maxi-
mum charge transfer is ∼ 0.12|e| for a shift of 3 Å; the MZ component of the dipole mo-
ment reaches 2 D, which yields an estimate for VLS of 0.75 eV on the basis of Equation (1)
(with S=100 Å2 and by neglecting depolarization effects). This value has the same order
of magnitude as the VLS of 0.6 eV measured experimentally,8 thus motivating the choice
of the BHandHLYP functional in the following. This is also consistent with a number of
theoretical studies showing that the BHandHLYP functional provides good estimates for
the geometries and transition energies of charge-transfer complexes.22, 23 The performance
of different basis sets has been compared at the BHandHLYP level. The results show that
the inclusion of diffuse functions (6-31+G(d)) and of a larger number of polarization func-
tions (6-31G(2df,p)) slightly increases the dipole moment while keeping exactly the same
evolution of the charge transfer as a function of the translation .

The consideration of a cofacial TTF/TCNQ complex allows us to separate the charge-
transfer versus polarization contributions to the dipole moment in a straightforward way.
The charge-transfer admixture in the ground state can be evaluated by summing up the
Mulliken charges in each molecule of the dimer and by calculating the dipole moment
from these. The remaining part of the total dipole moment obtained from the quantum-
chemical calculations is then attributed to the polarization component. Figure 2 shows that
an increase in the intermolecular distance leads to a fast decrease in the amplitude of the
induced dipole moment. Interestingly, we observe that the value of the dipole moment
computed from the Mulliken charges decreases almost to zero already for an intermolec-
ular distance of 5 Å; in contrast, the total dipole moment obtained directly from the SCF
procedure decreases much slowly when the intermolecular distance is increased from 3.5
to 5 Å and does not reach zero even for an intermolecular distance of 8 Å. This clearly
demonstrates that the dipole is induced not only by the charge transfer but also, to a large
extent, by polarization effects.

When shifting one molecule with respect to the other along the long molecular axis
(Figure 1), the geometry for which the centers of mass of the two molecules are exactly
superimposed (i.e., a structure with a C2v symmetry and no shift along the Y axis) does
not yield the largest charge transfer, as could be intuitively expected, due to symmetry
effects (see below). The latter is actually obtained when TCNQ is shifted by 3 Å along
the Y axis. We have also found that there is a full parallelism between the amount of
charge transfer and the amplitude of the total dipole moment. In most cases, the charge-
transfer contribution dominates the induced dipole at such short intermolecular distances.
The non-monotonic dependence of the amount of charge transferred in the ground state is
related to variations in the electronic coupling between the highest occupied levels of the
donor and the lowest unoccupied levels of the acceptor. Intuitively, the largest contribution
to the charge transfer should stem from the HOMO (TTF) → LUMO (TCNQ) transition
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Figure 2. Evolution of the component of the dipole moment normal to the molecular planes obtained from the
SCF calculations (filled circles) and from the Mulliken charges (open circles) in a cofacial TTF/TCNQ dimer as
a function of the intermolecular distance. The curve with open triangles shows the polarization component of the
dipole. We display on top the chemical structures of the two molecules. Adapted with permission from Ref. 7
Copyright 2009 John Wiley and Sons.

due to the fact that the energy separation between them is the smallest. However, the
electronic overlap (and hence the electronic coupling) between the HOMO of TTF and
the LUMO of TCNQ is equal to zero in the cofacial dimer due to symmetry effects. In
this geometry, the largest CT contribution actually arises from HOMO-1 (TTF)→ LUMO
(TCNQ) transition (the electronic coupling between the HOMO of TTF and the LUMO+1
of TCNQ is calculated to be two orders of magnitude smaller). When going away from
the cofacial geometry, the amount of CT character in the ground state is generally mostly
governed by the HOMO (D)→ LUMO (A) transition.

The alignment of the frontier electronic levels of the donor and acceptor units is also
affected by the creation of the interface dipole when compared to the energy diagram es-
tablished from the isolated compounds. In the case of the TTF/TCNQ cofacial dimer, both
the occupied and unoccupied MOs of TTF experience a decrease in their energy with re-
spect to the MOs of the isolated TTF molecule; this shift is as high as 0.51 eV for the
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HOMO level and 0.41 eV for the LUMO. On the contrary, the energies of the frontier MOs
of the TCNQ molecule are increased in the TTF/TCNQ dimer (shift of 0.25 eV for the
HOMO and of 0.30 eV for the LUMO). The amplitude of the shift varies from orbital to
orbital but the direction of the shift is the same for all orbitals of a given compound, includ-
ing the σ-orbitals. A very nice correlation is actually observed between the amplitude of
the induced dipole moment in cofacial dimers with various degrees of translation and the
corresponding shift in the orbital energies (see Figure 3). In some cases, the energy shift
of a particular orbital is reinforced by a resonant interaction with a deeper orbital of the
other molecule; for example, the large shift of the HOMO level of TCNQ for Y = 1 Å is
partially promoted by a resonant interaction with the HOMO-1 level of TTF. These results
have strong implications for organic solar cells since they demonstrate that the actual offset
between the frontier electronic levels of the donor and acceptor components in the device
might be significantly different from the value inferred from measurements performed on
the isolated compounds.

Figure 3. Evolution of the shift of the frontier MOs of TTF (circles) and TCNQ (triangles) versus the amplitude
of the dipole moment normal to the molecular planes in a cofacial TTF/TCNQ dimer (diamonds), as a function
of the lateral translation along the long molecular axis. The distance between the molecular planes is fixed here
at 3.5 Å. Reproduced with permission from Ref. 7. Copyright 2009 John Wiley and Sons.
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4 Extended TTF-TCNQ Stacks

We now turn to a description of the evolution of the charge transfer between cofacial TTF
and TCNQ stacks of increasing size using different DFT functionals. We start here with
the displaced geometry of the complex characterized by a 3-Å translation (that yields the
largest charge transfer) and include additional TTF and TCNQ molecules in a perfect co-
facial orientation. This results in a slip-stacked structure between a cofacial stack of TTF
and a cofacial stack of TCNQ. The term layer used in the following corresponds to one
molecule of TTF and one molecule of TCNQ on each side

The evolution with stack size of the dipole moment along the stacking axis, as calcu-
lated with BHLYP and a SVP basis set, is presented in Figure 4 which clearly shows that
the dipole moment along the stacking axis reaches unrealistic values of about 90 Debyes in
the largest stacks; in addition, no convergence is reached with system size. This behavior
appears to be in contradiction with UPS measurements that point to a vacuum level shift
around 0.6 eV, associated with a much smaller interface dipole.8 In order to understand the
origin of these large dipole moments, we have performed a Mulliken charge analysis on a
stack comprising 6 layers, see Figure 4.

Figure 4. Left: Evolution of the dipole moment along the z-axis with an increasing number of layers at the
BHLYP/SVP level; right: Evolution of the charge per molecule within a stack of 6 layers, as calculated with
BHLYP/SVP. Adapted with permission from Ref. 9. Copyright 2012 American Institute of Physics.

Figure 4 highlights the large delocalization of the charges within the entire stack. The
molecules at the interface bear a significant charge that decreases along the stack though
without vanishing at the end of the stack. This unphysical evolution of the dipole mo-
ment linked to a rapid crossing of LUMOTCNQ and HOMOTTF when increasing the num-
ber of layers rules out the use of BHLYP to study extended donor-acceptor complexes.
The pronounced charge delocalization is most likely related to the poor description of the
long-range interactions in the BHLYP functional. Accordingly, we next turn to long-range
corrected (LRC) functionals and present in Figure 5 the evolution of the dipole for stacks
containing from 1 to 8 layers, using the LC-ωPBE24 and ωB97X25 functionals as well as
the Hartree-Fock and MP2 methods with the SVP basis set.

The dipole moment calculated with LC-ωPBE and ωB97x for an eight-layer stack
amounts to 4.61 D and 6.61 D, respectively, and appears to have nearly converged. Further-
more, ωB97x fits best the values obtained with MP2 considered as benchmark. Note that
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Figure 5. Left: Evolution of the dipole moment along the z-axis with the number of layers for two long-range
corrected DFT functionals (LC-ωPBE and ωB97x), MP2, and HF methods combined with the SVP basis set;
right: Evolution of the charge per molecule within a stack of 6 layers at the ωB97x/SVP level. Adapted with
permission from Ref. 9. Copyright 2012 American Institute of Physics.

the dipole moment calculated with the HF method converges with the number of layers, but
tends to an upper limit around 3.25 D for a stack of 8 layers due to the HOMO-LUMO gap
overestimation which reduces the amount of charge transfer. In order to understand the dif-
ference in behavior between BHLYP and ωB97x, the Mulliken charge distribution within
a stack of 6 TTF/TCNQ layers obtained at the ωB97x level (Figure 5) has been compared
with the corresponding distribution at the BHLYP level (Figure 4). Figure 5 illustrates that
the charges are delocalized along the entire stack with the BHLYP functional. On the other
hand, the charge distribution obtained with ωB97x is strongly localized on the interfacial
molecules. It gets vanishingly small already on the 3rd layer of the stack and decreases
even further away from the interfacial region. This evolution explains the saturation of
the dipole moment. The reason for which it is preferable to introduce HF exchange in the
long-range region only rather than everywhere in space can be related to a subtle balance
of errors between exchange and correlation components of optimized exchange-correlation
functionals in the electron-rich short-range region.

5 C60 / Pentacene Complexes

We now turn to the case of pentacene/C60 complexes since these compounds have been
widely used in organic solar cells.26 We have first considered a cofacial pentacene/C60
dimer in which a six-membered cycle of the fullerene lies above the pentacene at a dis-
tance of 3.7 Å within a Cs symmetry (Table 1). Although not representative of the real
morphology of the interface, this simple system provides useful qualitative information on
the magnitude and orientation of the induced molecular dipole moment, as well as on the
strength of the electrostatic and polarization interactions between the two monomers.

Table 1 reports the component of the total dipole moment parallel to the stacking di-
rection, as calculated using conventional semi-empirical, ab initio HF, post-HF and DFT
methods, as well as the total net charge carried by the fullerene molecule. By convention,
the dipole vector is oriented from the negative to the positive pole. Two computational
schemes providing atomic charge populations are used, namely the Mulliken and NPA
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(Natural Population Analysis) schemes. The former is based on the assumption that off-
diagonal elements of the density matrix can be distributed equally among the contributing
atomic centers independently of their relative electronegativities. This approximation can
lead to an overestimation of charge separations, especially when calculated using diffuse
basis sets. In the NPA analysis, the density matrix is divided into blocks of basis func-
tions belonging to one particular atom. Each block is then diagonalized to produce a set
of natural atomic orbitals (NAOs) for each atom. The NAOs are eventually orthogonalized
such that the diagonal elements of the density matrix in this basis correspond to the orbital
populations.

Table 1. The z-component of the total dipole moment of the model dimer (mz , in Debye), as well as total net
charge of the C60 molecule (QC60, in |e|) calculated using the Mulliken and NPA schemes.

Level of theory mz QC60 (Mulliken) QC60 (NPA)
AM1 -0.525 -0.0003 /
RHF/sto-3g -0.237 -0.0005 -0.0005
RHF/6-31G(d) -1.048 -0.0067 -0.0046
MP2/6-31G(d) -1.048 -0.0068 -0.0045
B3LYP/6-31G(d) -0.997 -0.0106 -0.0076
BH&HLYP/6-31G(d) -1.008 -0.0086 -0.0059

As shown in Table 1, all theoretical levels provide the same qualitative results: a signif-
icant dipole moment is found pointing from the C60 towards the pentacene, together with a
weak charge transfer between the two molecules (the net charge on C60 being slightly neg-
ative). This indicates that the major part of the interface dipole originates from polarization
effects rather than from a partial charge transfer between the two fragments, in contrast to
the situation in TTF/TCNQ complexes. Besides, the dipole magnitude strongly depends
of the size of the basis set, as shown by the significant difference between values obtained
at the RHF/sto-3g and RHF/6-31G(d) levels. On the contrary, including electron corre-
lation at the MP2 or DFT level (using either the B3LYP or BH&HLYP functional) does
not introduce significant changes in the dipole value. Moreover, although underestimated,
AM1 provides dipole moments in good qualitative agreement with ab initio and DFT re-
sults. The fact that AM1 gives smaller absolute values for the dipole is first related to the
residual charge transfer which, although small, still exists when using ab initio and DFT
schemes. Moreover, AM1 is known to underestimate the normal polarizability component
with respect to the in-plane components in π-conjugated compounds, due to the lack of
flexibility of the minimal valence basis set.

We consider now a single C60 molecule interacting with a surface containing 49 pen-
tacene units. Figure 6 illustrates the variation of the induced dipole moment on the C60
molecule as a function of its location on the pentacene plane, as calculated at the VB/HF-
AM1 level. The induced dipole moment changes sign when the fullerene is translated
parallel to the long axis of the pentacene molecules. We note also that the dipole am-
plitude is weaker than in the dimer, with absolute values smaller than 0.15 D, due to the
antagonistic quadrupolar electric fields originating from each pentacene molecule. The
orientation of the interfacial dipoles depends on whether the C60 center-of-mass is located
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on top of the pentacene molecular backbone, or at the edge of the pentacene molecule.
This effect can be traced back to the uncompensated quadrupolar field at the interface.
The pentacene quadrupole can be viewed as the result of a collection of 14 CH units that
are polarized with negative partial charges on the inner carbon atoms and positive partial
charges on the outer hydrogen atoms. When the C60 molecule mainly interacts with the
π-electronic density of the carbon atoms of pentacene, the reorganization of the electronic
cloud over the fullerene molecule promotes a sizeable intramolecular charge transfer away
from pentacene. Interactions with the hydrogens atoms of pentacene generate the opposite
polarization of C60.

Figure 6. C60 molecule above a plane of pentacenes and amplitude of the z-component of the induced dipole
on the C60 molecule as a function of its position on the (x, y) plane, as calculated using the VB/HF-AM1 model.
Reprinted with permission from J. Phys. Chem. C 114, 3215, 2010. Copyright 2010 American Chemical Society.

Interactions between two molecular surfaces have been further investigated by con-
sidering aggregates in which C60 units are progressively added above a pentacene plane
containing 55 molecular units (Figure 7). The evolution of the z-component of the total
interface dipolemz , as well as of the average induced dipole per fullerene unitmz/N with
the number of fullerenes (N ) are reported in Figure 7.

The chaotic evolution of the total induced dipole moment mz is related to the way the
C60 molecules are progressively added on the pentacene surface. As previously discussed,
when a C60 molecule is added above the carbon body of a pentacene unit, its molecular
induced dipole moment points towards the pentacene plane leading to the decrease of the
total interface dipole. On the contrary, mz increases as the additional C60 molecules are
located above interstices between pentacene units. These local induced dipoles compen-
sate each other, which has for consequence that the averaged induced dipole per fullerene
unit, mz/N , tends to saturate with N , with a weak asymptotic value. These calculations
evidence that the measure of the interfacial dipole averaged over the interface is not rep-
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Figure 7. Evolution of the z-component of the total induced dipole moment (black squares) and of the averaged
induced dipole (white squares) divided by the number N of C60 molecules in the interface (Debye) as a function
of N , as calculated at the AM1 level. Reprinted with permission from J. Phys. Chem. C 114, 3215, 2010.
Copyright 2010 American Chemical Society.

resentative of the local quadrupole-induced dipoles (QID) on the molecular units at the
interface.

6 Energy Landscape around Organic/Organic Interfaces

A comprehensive description of the exciton dissociation in photovoltaic cells entails a de-
tailed knowledge of the electronic structure at the heterojunction between the donor (D)
and acceptor (A) materials. In organic solar cells, the occurrence of photo-induced charge
transfer to produce charge transfer (CT) states requires a proper tuning of the frontier elec-
tronic levels of the donor and acceptor molecules.27 In most cases, the choice for the donor
and acceptor materials used as active components in organic solar cells is driven by their
bulk electronic and optical properties, thus neglecting the impact of interfacial electronic
interactions. Here, we demonstrate that such interactions affect: (i) the alignment of the
frontier electronic levels of the donor and acceptor molecules; (ii) the energy landscape
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explored by charge carriers during the photo-conversion process.
As a proof of principle, we have applied complementary quantum-chemical meth-

ods to unravel the electronic structure at oligothiophene/C60 and dicyanovinyl-substituted
oligothiophene/C60 interfaces. The ground-state geometry of isolated oligothiophenes
(nT), dicyanovinyl-substituted oligothiophenes (DCVnT, with n=2, 4 and 6), all imposed
planar, and C60 molecules has been optimized at the density functional theory (DFT) level
using the B3LYP hybrid functional and the 6-31g(d) basis set. The corresponding one-
electron energy diagram is shown in Figure 8.

Figure 8. DFT/B3LYP one-electron energy diagram for isolated nT (red lines) and DCVnT (blue lines) with n=2,
4 and 6, and C60. Adapted with permission from J. Phys. Chem. Lett. 3, 2374, 2012. Copyright 2012 American
Chemical Society.

As expected from their electron-withdrawing character, substitution of the oligothio-
phenes by dicyanovinyl end groups causes a down shift in the energy of the frontier molec-
ular orbitals, the effect being larger for the LUMO. As a result, while the large energy
offset between the LUMO of unsubstituted oligothiophenes and the LUMO of C60 is ex-
pected to promote efficient exciton dissociation into free charge carriers, the situation is
drastically different in DCVnT/C60 pairs where the driving force for free charge gener-
ation (related to first approximation to the LUMO energy offset between the donor and
acceptor molecules28) is close to zero or even negative. The changes in electronic struc-
ture and the reduced LUMO energy offset with respect to C60 in DCVnT compared to
nT are consistent with experimental findings:28 Despite the small driving force for charge
separation, DCVnT molecules have been successfully exploited in solar cells using C60 as
acceptor with power conversion efficiencies of 1-3%.28 As described below, this apparent
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inconsistency is lifted when accounting for the readjustment of the electronic levels due to
interfacial effects.

By comparison to their values in the isolated molecules, both DFT/B3LYP and MP2
calculations show that the HOMO and LUMO levels of unsubstituted oligothiophenes are
stabilized in the donor/acceptor dimer while those of the C60 molecule are destabilized.
The shift in the frontier molecular orbitals at the heterojunction results from the appear-
ance of an interfacial dipole. As the amount of ground-state charge transfer from (DCV)nT
to C60 is negligible in all cases, the interfacial dipole is mainly associated with the po-
larization of the electronic cloud of the C60 molecule, with the positive pole next to the
oligothiophene backbone in the case of nT/C60 dimers. Similarly to pentacene, this effect
is primarily attributed to the (uncompensated) quadrupolar electric field generated by the
oligothiophenes.

In marked contrast, the HOMO and LUMO levels of dicyanovinyl-substituted oligoth-
iophenes are slightly destabilized in presence of C60 while the corresponding C60 frontier
electronic levels are shifted down. Thus, the strong dicyanovinyl electron-withdrawing
moieties perturb the electronic cloud on the oligothiophene backbone and yield an oppo-
site quadrupolar field that in turn swaps the interfacial dipole orientation (now pointing its
negative pole towards the oligothiophene backbone within the C60 molecule). Very inter-
estingly, unlike the nT/C60 case, the electrostatic effects computed at the DCVnT/C60 inter-
face are found: (i) to increase (by 0.1-0.2 eV) the energy offset between the LUMO levels
of DCVnT and C60 (which should affect the driving force for charge separation, ∆LUMO);
and (ii) to reduce the energy difference between the HOMO level of the donor and the
LUMO level of the acceptor (which might affect the open-circuit voltage, Voc). Though
the simplicity of the dimer model used here does not allow pulling out a quantitative es-
timate for ∆LUMO and Voc, it nicely shows how the electronic structure at donor/acceptor
interfaces can be controlled by tuning the chemical structure of the interacting molecules
(here through grafting electroactive moieties on the donor molecules).

In a next step, model 1D stacks comprising 15 donor and 15 acceptor molecules in a
cofacial arrangement (with a 3.5 Å separation) have been built. Changes in the ioniza-
tion potential of dicyanovinyl-substituted and unsubstituted oligothiophenes as well as in
the electronic affinity of C60 have been computed as a function of distance to the inter-
face using the Valence Bond/Hartree-Fock (VB/HF) scheme29 at the AM1 level. In the
case of the oligothiophene/C60 interfaces, our results are consistent with previous findings
on cofacial pentacene/C60 heterojunctions, in the sense that the interfacial electrostatic ef-
fects provide an improved driving force for electron-hole pair separation. Indeed, both the
positive charged state of oligothiophenes and the negative charged state of C60 get destabi-
lized at the vicinity of the interface, Figure 9 top left. Interfacial electrostatic effects thus
push the charges into opposite directions, from the interface into the bulk, which might at
least partly compensate the loss in Coulomb binding energy. A band bending effect in the
opposite direction is predicted in the case of the dicyanovinyl-substituted oligothiophene,
as a result of the opposite quadrupole induced interfacial dipole, Figure 9 bottom left.
Therefore, in this case, we expect that the interfacial electronic interactions will add to the
Coulomb attraction to further stabilize the charge transfer state across the heterojunctions.
In the case of the hexathienyl/perylene-tetracarboxylic-dianhydride (PTCDA) interface, a
larger reshuffling in the electronic structure at the interface is predicted compared to the
6T/C60 heterojunction, Figure 9 top right. Unlike C60, the PTCDA acceptor molecule in-
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deed generates a quadrupolar electric field that adds constructively to the corresponding
field generated by the 6T donor molecule, hence the larger band bending. Comparing the
DCV6T/PTCDA and 6T/PTCDA interfaces (Figure 9 bottom right), much smaller changes
in the energetic positions of the positively and negatively charged states is predicted close
to the heterojunction with respect to the bulk in the former case, owing to a partial cancela-
tion of the quadrupolar fields sourced by the two partners. As a rule of thumb, imparting a
quadrupolar moment polarized in opposite directions for the donor (with local dipoles hav-
ing their positive poles lying outwards with respect to the center of the molecule, e.g. C-H
in pentacene) and the acceptor (with local dipoles having their positive poles lying inwards
with respect to the center of the molecule, e.g. C=O in PTCDA) appears as an attractive
strategy to bias the energy landscape in favor of full separation of the charge transfer pairs.
Yet, we would like to stress that a complete picture of the exciton dissociation process re-
quires addressing the influence of the relative positions of the molecules on the calculated
interfacial dipole and the role of solid-state polarization effects as the charges separate.30

Figure 9. Left: ionization potentials of dicyanovinyl-substituted oligothiophenes and cyano-pentacene (bottom),
oligothiophenes and pentacene (top), and electronic affinities of C60 molecules in model 1D stacks, as a function
of distance to the interface. Right: ionization potentials of dicyanovinyl-substituted hexathienyl (bottom) and
hexathienyl (top), and electronic affinities of perylene-tetracarboxylic-dianhydride (PTCDA) and C60 molecules
in model 1D stacks, as a function of distance to the interface. The dashed line indicates the interface. Adapted
with permission from J. Phys. Chem. Lett. 3, 2374, 2012. Copyright 2012 American Chemical Society.
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7 Conclusions

We have illustrated here through quantum-chemical calculations that interfacial electronic
effects cannot be ignored at organic/organic interfaces to provide a proper description of
their electronic structure. These interactions promote the formation of an interface dipole
that affects in turn the alignment of the electronic levels of the two components; they also
generate a gradient of the electronic levels going from the interface to the bulk due to
uncompensated electrostatic interactions at the interface. It is now of prime interest to
generate realistic morphologies of organic/organic interfaces using force-field calculations
to exploit them as input for electronic structure calculations, using in particular for such
large systems micro-electrostatic models properly parameterized on the basis of quantum-
chemical calculations.30
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Nowadays more and more scientists require a lot of high performance computing power to run
their complex parallel applications. Even if the available systems get increasingly powerful this
often is not enough. As a consequence many applications are designed to run not only on one
supercomputer but on several in parallel. This implies special software as an essential offer to
the scientists to hide the complexity and the heterogeneousness of the underlying systems and
architectures.

The UNICORE software provides these features. It comes with a seamless interface for prepar-
ing and submitting jobs to a wide variety of heterogeneous distributed computing resources and
data storages. It supports users to generate scientific and engineering applications, to submit
them and to monitor the results. UNICORE has an integrated extended workflow engine that
allows the scientist to create complex multi-step and multi-site jobs.

1 Introduction

This document describes how to install and use the Eclipse based Rich Client for the UNI-
CORE workflow system. UNICORE is a European project that facilitates the access to
modern heterogeneous computer networks, so called ‘Grids’. It offers a client-server
framework for accessing Grid resources. It has a service oriented architecture (SOA) which
means that the functions of the software are grouped into small coherent chunks (named
‘services’) which can be installed on different computer systems.

The client software enables users to create descriptions of work to be performed on the
Grid, so called ‘jobs’. A single job usually corresponds to the execution of a computer
program on one of the available computer systems in the Grid. Once a job has been cre-
ated, the UNICORE Rich Client can submit it to a selected computer system. The remote
execution of the job can be monitored and output files of the executed program can be
downloaded to the user’s computer. In order to accomplish more complex tasks on the
Grid, jobs can be embedded into workflows. In our terminology, a workflow is a set of
activities (the execution of a single job would be considered an activity), interconnected by
transitions that define the order in which the activities must be performed. Workflows can
be created and edited graphically. Similar to jobs, they can be submitted to a designated
service on the Grid which executes them. Workflow execution can be monitored in mul-
tiple ways and resulting output files can be downloaded to the local harddisk. Apart from
these basic features, the UNICORE Rich Client offers a bunch of additional functions like
browsing and monitoring services on the Grid, managing user certificates, and transferring
files to and from Grid storages.

This document is structured into the following parts: Section 2 provides information
about the UNICORE history. Section 3 describes the installation procedure and how to
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startup the client application. Section 4 gives a brief overview of the basic features and
most frequent use cases of this application.

2 A Brief History of UNICORE

The UNICORE (Uniform Interface to Computing Resources) system was originally con-
ceived in 1997 to enable German supercomputer centres to provide their users with a seam-
less, secure, and intuitive access to the heterogeneous computing resources at the centres.
As a result, the projects UNICORE and UNICORE Plus were funded by BMBF, the Ger-
man Ministry for Education and Research, with the following objectives:

UNICORE was designed to hide the seams resulting from different hardware archi-
tectures, vendor specific operating systems, incompatible resource management systems,
and different application environments. Retaining organisational and administrative au-
tonomy of the participating centres was a key objective of UNICORE. None of the service
providers should be forced to change historically grown computer centre practices, naming
conventions, and security policies to be able to use the full benefits of UNICORE. Secu-
rity was built into the design of UNICORE from the start relying on the X.509 standard.
Certificates are used to authenticate servers, software, and users as well as to encrypt the
communication over the open internet. Finally, UNICORE had to be usable by scientists
and engineers without having to study vendor or site-specific documentation.

Version 6 is a major milestone in the continuous development of the proven Grid soft-
ware. It retains the rich functionality of previous versions, like seamless access to het-
erogeneous resources, complex workflows, and secure computing in a Grid environment.
Application level brokering has been added to meet user requirements. The graphical user
interface has been improved for greater efficiency and ease of use. Some user actions that
turned out to be redundant were consequently removed. In addition, the performance of
UNICORE 6 has been improved substantially. Both the specific feedback from users and
the advent of Grid standards and new implementation tools have contributed greatly to
this version. The software has been cleanly implemented from scratch using web service
technology and modern programming environments, like Eclipse. This allows to remain
interoperable with other standards based Grid solutions, become easily extensible to meet
new demands, and - most importantly - stay a safe investment in the future. UNICORE de-
velopment continues as an open source project that is driven and supported by a dedicated
team at the Jülich Supercomputing Centre.

3 Installation and Startup

3.1 Prerequisites

• Operating Systems: currently Linux and Microsoft Windows are supported. 281

• Java Runtime Environment: Sun Java 6 or higher is required. 282

3.2 Procedure

• Download the installation archive that matches your operating system.
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• Unzip the archive to the desired location.

• Run the executable called ‘UNICORE Rich Client.exe’ (or ‘UNI-
CORE Rich Client’, on a Unix/Linux machine). A splash screen will indicate
the startup of the client.

• Specify location and passphrase of the keystore file that holds your certificates (see
Section 4.3 for details about why this is necessary).

4 Basic Usage Guide

4.1 Welcome screen

When the client is started for the first time, it will display a welcome screen that provides
valuable information and helps in making the first steps with the UNICORE Rich Client
(see Figure 1).

Figure 1. The Welcome screen

The welcome screen is composed of several web pages that are displayed in the internal
web browser of the client:

• The Overview page 1 contains links to parts of this document and the Eclipse frame-
work’s user manual.
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• The First Steps page 2 helps in configuring the client for accessing different Grids.

• The Tutorials page 3 offers links to Flash-based online tutorials that will be displayed
in a web browser.

• The What’s New page 4 summarizes the most important new features of the current
client version and lists general UNICORE related news.

A navigation bar on top of each page contains cites to the other pages. The toolbar of
the welcome screen can also be used to navigate back and forth between the pages 5. In
order to leave the welcome screen and start working with the client, click the Workbench
hyperlink 6. The welcome screen can later be re-opened via the Help → Welcome pull
down menu item.

4.2 The Eclipse workbench

The client’s main window is called the workbench (see Figure 2). It has different compo-
nents which can be opened, closed, resized, re-ordered and even detached from the main
window.

Figure 2. The Eclipse workbench

298



4.2.1 Menu bar and tool bar

At the top of the workbench, there is a menu bar from which different pull down menus
containing ‘global’ actions can be opened 1. For convenience, some actions are available
via shortcuts from the tool bar just below the menu bar. The items in the tool bar can
change depending on the selection of objects in the client, mirroring the fact that different
actions can be performed on different objects.

4.2.2 Views

Resizeable and draggable tab panels containing buttons and other controls are an integral
part of all Eclipse based clients. These panels are called views 2. Apart from being resized
and moved, they can also be closed and re-opened. Detaching a view from the workbench
will embed the view in its own window. Double-clicking its title will maximise it and
double-clicking the title once more will restore its original size. Some views are ‘single-
tons’, so only one instance of the view can be opened, whereas other views can be opened
multiple times, showing a different content in each instance.

4.2.3 The workspace

The workspace is a directory, usually located on the local hard drive 3. It is supposed to
hold all relevant user data needed for the daily work with an Eclipse-based client. Inside
the workspace, the user data is organised in subfolders, so-called projects. All files within a
project should be thematically related. In the UNICORE Rich Client, each job description
file (with the extension ‘.job’) and each workflow description file (`.flow’ file) is stored
in its own project, together with its input files. Having a separate project for each job or
workflow has the following advantages:

1. Jobs and workflows can get complex. They may need a large number of input files
that might be organised in their own directory structure. Mixing up multiple jobs or
workflows in a single project can therefore lead to mixing up input and/or output files.

2. Eclipse has its own notion of importing and exporting projects. This provides a nice
mechanism for exporting jobs and workflows (e.g. to a single zipped file that con-
tains all necessary input data) and sharing it with co-workers. In the UNICORE Rich
Client, job input files should be put into a directory called ‘input files’ inside the
project. Relative paths can then be interpreted relative to this directory, which makes
sharing of projects very easy.

Apart from the data that are relevant to the user, the workspace also contains metadata
that are used in order to manage user preferences and store the state of the Eclipse work-
bench. In the Eclipse framework, there are different views for displaying the content of
the workspace. The most widely used view is called the Navigator view. It represents the
workspace as a file tree and is very similar to most graphical file browsers. It can be used
for creating, renaming, copying, and deleting projects, files and directories. Projects can
also be ‘closed’ if unneeded. This will hide their content from the Navigator view.
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4.2.4 Editors

When a file is supposed to be opened (e.g. after double clicking it in the Navigator view,
Eclipse tries to identify a suitable editor by looking at the file’s extension. If an associated
editor can be found, it is invoked and will display the file content. For example, ‘.txt’ files
invoke a text editor, the ‘.flow’ extension invokes the workflow editor 4. File types can also
cause associated external applications to be started; for example, a web browser for ‘.html’
files. If the filetype is not supported, an error message is displayed. Associations between
file types and editors are defined in the preference page that can be reached via Window→
Preferences→ General→ Editors→ File Associations.

4.2.5 Context menus

Many functions in the client are available via context menus 5. In order to open a context
menu, right click an object or a view. The items available in the context menu are different,
depending on the object on which the context menu was opened.

4.2.6 Perspectives

The outer appearance of the workbench is very flexible and can change a lot over time. The
user benefits from being able to hide information he does not want to see at the moment
and arrange the remaining components in a way that fits his needs best. However, less
experienced users may have to search for information they accidentally hid in the first
place. In order to deal with this problem, the Eclipse framework has introduced the notion
of perspectives. A perspective is a well defined arrangement of views and editors in the
workbench. In addition to determining which components are visible in which spots, it
can also influence the actions that can be performed from the tool bar of the workbench.
A given arrangement can be saved as a perspective for later re-use and a user can always
restore the original appearance of a perspective by resetting the perspective.

4.3 Basic security configuration

4.3.1 How does encryption with X.509 certificates work?

Most security mechanisms on a UNICORE Grid are based on X.509 certificates. For each
X.509 certificate, there is a pair of cryptographic keys, that fit each other. These keys can
be used to encrypt and decrypt messages: whatever has been encrypted with one of the
keys can only be decrypted with the other key - but the keys are not equal. This is why
this type of encryption is called ‘asymmetric’. Such an asymmetric pair of keys can be
used in a public key infrastructure (PKI): The trick is that one of the two keys, called the
‘public’ key is published and therefore open to everyone, whereas the other key - called
the ‘private’ key - is kept secret by the owner of the key pair. In order to be able to keep
the private key secret, it must be very difficult to reconstruct or guess the private key by
looking at the public key.

Everyone can use the public key to encrypt messages that only the owner of the private
key can read. And, equally important, the owner of the private key can prove that he owns
the private key by encrypting a meaningful message with it: everyone can use the public
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key to decrypt the message and make sure that it is meaningful, but only the owner of the
private key can produce the encrypted message. Asymmetric encryption can also be used
for digitally signing documents. With a digital signature, a person can prove that he really
is the author of a document, or that he approves the content of a document. The most
common way of creating digital signatures comprises two steps: first, a checksum for the
document to be signed is computed. The checksum is a relatively short sequence of char-
acters (compared to the document). It is computed by applying a well-known checksum
function that always generates the same checksum as long as the content of the document
is unchanged. Second, the checksum is encrypted with a private key. The encrypted check-
sum is published together with the document and forms the digital signature. A reader of
the document can use it for checking whether the document was changed. To this end,
he applies the same checksum function to the document and compares the result to the
checksum that he obtains by decrypting the digital signature (using the public key).

In order to obtain an X.509 certificate from a key pair, the public key is stored in a
document, together with some information about the certificate’s owner-to-be (e.g. name,
email address, organisation). This document is then digitally signed with the private key
of a certificate authority (CA), which means that the CA approves the creation of the cer-
tificate. This process is called ‘issuing a certificate’. Everyone can use the CA’s public key
to check, whether the certificate has been signed by the CA.

4.3.2 How does UNICORE use X.509 certificates?

With X.509 certificates, UNICORE ensures two things: First, each client or server on the
Grid can attest that he is who he claims to be. He does so by presenting his certificate
- which contains the public key - and providing evidence that he knows the private key
belonging to this public key (by encrypting a previously defined message). Since private
keys are kept secret, he must be the owner of the certificate. Second, the public key is
used to encrypt messages that only the person knowing the private key (the owner of the
certificate) can read. This way an encrypted communication channel between different
actors on the Grid is established (by secretly sending a newly created key that can be used
for both encryption and decryption of additional messages). The protocol defining the
details of establishing the encrypted channel is called Transport Layer Security (TLS), a
successor of the Secure Sockets Layer (SSL).

4.3.3 What does this mean to the user?

Before accessing a UNICORE based Grid, each user needs to obtain a valid X.509 certifi-
cate which is issued by one of the certificate authorities (CAs) that the UNICORE servers
trust. The client presents this certificate to the server whenever he is asked for authentica-
tion. The server then checks whether it trusts the CA that issued the certificate. It does so
by searching for the CA’s certificate in a so-called ‘truststore’ i.e. a file that contains a list
of trusted CAs’ certificates. If the CA’s certificate is found, it knows it can trust the client.
Analogously, the client checks whether it trusts the server. If both checks are successful, a
communication channel is created.

All private keys for certificates that the user may want to use on the Grid are stored in
a special file called ‘keystore’. The keystore is encrypted and secured by a passphrase that
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Figure 3. The Truststore view

the user has to remember. During first startup, the Rich Client can create a new keystore
file. It is also possible to reuse an existing keystore file. For simplicity, there is only one
file that contains both truststore and keystore, so the list of trusted CAs is written to the
same encrypted file that holds the private keys.

4.3.4 The Truststore view

Use this view to add certificates of trusted certificate authorities (CAs) to the truststore (see
Figure 3). This is necessary in order to communicate with secure Grid services via an SSL
encrypted channel. Failing to add the required certificates for the Grid infrastructure that
you would like to use will result in errors when trying to contact any of the Grid services.

For each CA certificate contained in your keystore/truststore file, the truststore view
displays the alias identifying the certificate (must be unique), the name of the CA, and the
end of the certificate’s validity period.

In order to add trusted CA certificates, import a file containing these certificates (the
file extension should be one of ‘.jks’, ‘.p12’, or ‘.pem’) 1. Certificates can also be removed
from the truststore 2. Additional actions allow for opening a detailed certificate description,
changing a certificate’s alias (used aliases must be unique) exporting public keys to ‘.pem’
files and setting the keystore password 3.
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Figure 4. The Keystore view

4.3.5 The Keystore view

This view is used to manage private keys and the associated X.509 user certificates (Fig-
ure 4). Different actions may be performed via the view’s context menu 1. The first item
is used to import all private and public keys from an existing keystore file into the client’s
keystore. The second item can permanently delete private keys from the client’s keystore.
Additional items allow for displaying more details about a selected key, changing the alias
that identifies the selected private key, exporting the certificate that belongs to the selected
private key, exporting a number of private and public keys to an external keystore file and
modifying the client keystore’s passphrase. In order to obtain a valid certificate from an
existing CA, a certificate request can be created. For each request, a pair of private and
public keys is generated. The private key is saved in the keystore. The certificate request
must be sent to the administrator(s) of a CA. The response to such a request is usually a
‘.pem’ file, containing the certificate, now signed by the CA. By importing this file into
the keystore (using the last item in the context menu), the private key associated to the
certificate becomes functional. If the keystore contains multiple user certificates, a default
certificate for accessing Grid services should be set 2.
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Figure 5. The Grid Browser and Details views

4.4 Browsing and monitoring the Grid

4.4.1 The Grid Browser view

This view represents the Grid as a tree structure (see Figure 5, top left). The items that
form the tree are called ‘nodes’ and represent Grid services and files.

There are numerous actions that can be performed on this view or its nodes:

1. Adding registries: For getting started, open the context menu (by right-clicking inside
the Grid Browser) and select add Registry 1. In the appearing dialogue, enter the URL
of a registry that serves as an entry point to the Grid: A registry is used for looking up
all available services. For each added registry, a new node should appear just below
the root node called Grid 2.

2. Refreshing nodes: By double-clicking a node, the represented Grid service is con-
tacted and information about its state is gathered. This is called a refresh. After
refreshing the registry, a new sub tree should open, displaying the target system and
workflow services known by the registry 3. Target system services are used for job
execution, workflow services are used for workflow execution.

3. Opening the context menu on a selected node: By right-clicking a node, a context
menu that contains all available actions for the associated service will appear. For
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instance, users can create job descriptions for job submission to a target system by
selecting the create job action from the target system’s context menu 4.

4. Filtering of Grid services: In large Grids, keeping an overview of the available ser-
vices and finding relevant information might become difficult. In order to support the
user with these tasks, configurable filters can be applied to the Grid Browser. Nodes
that do not pass the set of active filters, will not be displayed to the user. The default
filter shows job or workflow execution services and storages only. Services that are
less frequently used can be revealed by using the show menu to the top of the Grid
Browser view 5 and selecting All services. Additional filters allow to search for ser-
vices of a specific type, display jobs and workflows that yield a particular state, or
have been submitted within a given period of time. A file search filter can be used to
retrieve all files that match a certain file name pattern.

Although the Grid Browser displays the Grid as a tree, the actual topology of the Grid
can only be modelled with a graph. The Grid Browser deals with this situation by depicting
a single Grid service with multiple nodes. For instance, a job that is part of a workflow will
be represented by two different nodes in the Grid Browser: one beneath the target system
service that executed the job and the other one beneath the workflow management service
that corresponds to the job’s parent workflow. These two nodes, however, share the same
data model: whenever you refresh one of the nodes, the other one is being refreshed at the
same time.

4.4.2 Grid Files

Remote files in UNICORE based Grids are accessible through UNICORE storages that
can be searched directly in the Grid Browser. Directories and files are displayed as child
nodes of the storage node. Double-clicking a directory will open it and list contained files
and folders, while double-clicking a file will download that file to the local hard disk and
open its content in an associated editor. Saving the file with the associated editor will also
update the remote file’s content (except when the file is opened with an external editor).
Data can be moved between different remote file systems. For instance, you can move a
directory from one UNICORE storage to another with a single mouse drag. Files can also
be uploaded to remote storages by dragging them from the workspace, a local file browser
or the desktop. Due to a limitation of the Eclipse framework, files can only be downloaded
to the workspace (via the Navigator view).

4.4.3 The Details view

When a node in the Grid Browser has been refreshed for the first time, information about
the associated service is shown in the Details view 6. For target system services, this in-
cludes available resources like number of CPUs, amount of main memory, and a list of
installed applications. For jobs and workflows, states and submission times are displayed,
for Grid files, sizes and modification dates. Note, that this view is connected to the Grid
Browser: Whenever a different node is selected, the Details view is being updated to dis-
play its details.
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4.5 Job submission and visualisation of job outcomes

4.5.1 The Job editor

The UNICORE Rich Client offers graphical editors for setting up job descriptions. Instead
of having to edit text-based job descriptions, the user is provided high level interfaces
which are taylored to the applications he wants to execute on remote systems. The client
is easily extensible with new application specific user interfaces as new applications are
introduced to the Grid environment. Setting up a job description only requires a few simple
steps and can be performed within a couple of seconds. The first step is the creation of a
job project.

4.5.2 Creating a job project

There are different ways to create a new job project:

1. Select File→ New→ Job Project from the menu bar (see 1 in Figure 6).

2. Open the context menu of the Navigator view and select New→ Job Project.

3. Use the create job item from the context menu of a target system node.

4. Choose the restore Job description item from a job’s context menu in the Grid
Browser.

Figure 6. Creating a job or workflow project
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Figure 7. Wizard for creating a job project

The first three of these options will pop up a series of wizard dialogs which will guide
the user through the creation of the job project (see Figure 7).

The first step of the wizard is used to choose an application to be run on the target
system. In our example, we would like to execute a simple shell script. Therefore, we
have selected the Script application 1. By pressing the Finish button the new job project
is created. Click Next which will take you to the next wizard step. Here, a different name
for the project 2 and the job file 3 can be set. The third wizard page allows for selecting
a different target system for job submission 4. The selected target system can also be
modified after the project has been created. When the job is created with the last option,
both the target system selection and application to be run are restored from the server.
Therefore, the job creation wizard shows the second wizard page, only (where you can set
names for the project and job file).

307



4.5.3 Editing mode

The most convenient way to create a job project is using the context menu of a target
system node (see 1 in Figure 8), as the corresponding target system will be pre-selected
and the job creation wizard can be completed on the first page.

Figure 8. Job editing and submission

Once the job project and job file have been created, a new job editor will be opened in
editing mode, displaying a graphical user interface (GUI) for the application 2. It allows
for defining the input parameters of the job to be run. The GUI for the Script application
provides an embedded text editor for typing in the shell script 3. New application GUIs can
be installed by selecting Help→ Software Updates→ Download Grid Applications from
the workbench’s menu bar. This option requires an application GUI server to be available
on the Grid (if no server has been found, the option is not available). The job editor holds
several tabs. First the application specific tabs are shown for setting parameters in a user
friendly way.

In addition, the editor holds three generic panels:

• The Files panel 4: This panel can be used to define file imports from remote locations
or preceding activities in a workflow. The application specific panels usually only
allow for defining imports from the local file system. File exports to remote locations
can also be set up here.

308



• The Variables panel 5: This panel can be used to set the application’s input parameters
directly (circumventing the application specific panels that usually operate on these
parameters, too. All parameters are passed to the application via environment vari-
ables. Furthermore, the panel allows for setting up additional environment variables
for your application run.

• The Resources panel 6: This panel can be used for specifying resource requirements
of the job, like the number of CPUs needed for a calculation or the amount of mem-
ory. The tree-like view on the Grid to the right serves for changing the selected target
system for job execution. Note that the list of suitable target systems is updated when
changing resource requirements. Also note that the boundaries for resource require-
ments change when a different target system is selected. The selection can be undone
by choosing a node that is not a computational resource (e.g. the Grid node or a
registry node).

When all parameters are set, click the green submit button (see 7 in Figure 8) to submit
the job to the selected target system.

An additional action in the tool bar of the job editor is used to set the job’s lifetime
8. When the job has reached the end of its lifetime, the job resource representing the
submitted job is destroyed and its working directory is cleaned up automatically. This
implies that the job’s outcomes cannot be accessed hereafter. The default lifetime for jobs
is set to 720 hours (30 days).

4.5.4 Monitoring Mode

As soon as a job is being submitted, the job file is copied into a newly created subfolder
of the ‘submitted’ folder in the job project. The subfolder’s name consists of the String
‘submitted at’, followed by a timestamp, e.g. ‘2010-03-29 16-00-34’ that indicates when
the job was submitted (1 in Figure 9). This way, a history of all submitted versions of the
job is kept and the user can later look up old job descriptions and compare the results of
the associated job executions. The copied version of the job file is then opened in a new
job editor.

In order to inform the user about the execution state of the job, the editor is put into
monitoring mode. This means that the job description cannot be edited anymore and the
title of the job editor indicates the current execution status 2. The status may be one of
the four values submitting, running, finished, and failed. If the job editor is closed in state
submitting the job submission cannot be performed successfully and the subfolder with
the copy of the job file is deleted automatically. If the editor is closed in state’running’,
execution of the job will continue normally on the server side. By double-clicking the job
file copy in the Navigator view, the job editor will be re-opened in monitoring mode and
continue to watch the job execution. Jobs can be aborted by selecting the ‘abort’ item in
their context menu. Aborting a job will interrupt the execution of the associated application
as soon as possible (this depends on the target system’s ability to abort application runs),
but leave the job node (and its working directory node) accessible in the Grid Browser.
In contrast, destroying a job will first abort the job and then clean up all used resources
including the job’s working directory.
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Figure 9. Job monitoring and fetching job outcomes

4.5.5 Fetching Job Outcomes

Once the job has finished successfully, the fetch output files action becomes available in the
tool bar of the job editor in monitoring mode 3. After clicking it, a dialog will appear that
shows all produced output files and allows you to deselect files you do not want to down-
load. After clicking OK the selected files are downloaded to the ‘output files’ directory in
the subfolder that contains the copy of the submitted job 4. Finally, a new application spe-
cific Job Outcome view will appear showing the contents of the job’s output files 5. In our
example a simple text editor shows the output of the script, but more advanced visualisa-
tion software is used for displaying the results of scientific applications (e.g. 3D molecule
visualisations for chemical applications). Alternatively, job outcomes can be fetched by
selecting fetch output files from the context menu of job nodes in the Grid Browser view 6.

4.6 The Workflow editor

This software component provides a graphical editing tool for workflows, offering features
like copy & paste, undoing changes, performing automatic graph layouts, zooming, and
printing of diagrams. Each workflow is created in its own project and can be submitted
and monitored like a single job.
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4.6.1 Creating a workflow project

In order to create a new workflow project, either select File→ New→ Workflow Project
from the workbench’s menu bar or select New→Workflow Project from the context menu
of the Navigator view (see Figure 6). After providing a valid name for both the parent
folder and the workflow file, the project is created.

4.6.2 Editing mode

When creating a new workflow project or opening an existing workflow file, a new work-
flow editor instance is opened for setting up the workflow description (see Figure 10).

Figure 10. The workflow editor: editing mode

Workflow descriptions are graphs consisting of nodes (commonly called activities in
workflow terminology) and edges (called transitions). When a workflow diagram is cre-
ated, it only displays a single activity: the starting activity of the workflow 1. Execution of
the workflow begins at this activity. In order to add new elements to the workflow, select
them from the palette on the left hand side and click in the diagram where you want to
place them. Currently, the palette offers the following elements that can be added to the
workflow:

1. Application activities These activities represent jobs that are submitted to target sys-
tems during workflow execution in order to run specific applications there. For each
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application GUI that is installed in the client platform, the palette shows a small icon
and the name of the application 2. By selecting an icon and left-clicking a free spot
within the workflow editor, a new activity for the associated application will be cre-
ated. This leads to the creation of a job file in the ‘jobs’ directory of the workflow
project as soon as the workflow is saved. When being double-clicked, application
activities will open the job editor for the associated job file. The editor can be used in
order to change the job description. When a job is embedded in a workflow, there are
a several additional possiblities for specifying the job’s inputs and outputs that are not
available for single jobs:

• Additions to the Files panel: A File can now be exported as a Workflow file
meaning that the file will be stored on some global storage and will be available
to subsequent workflow activities.

• Additions to the Variables panel: This panel can be used to set the application’s
input parameters to the values of workflow variables. Workflow variables can
be declared by special activities and modified while the workflow is executed.
Their current value during workflow execution is maintained by the workflow
engine and may be fed into a job’s description before the job is submitted. This
mechanism allows for running the same job multiple times, with different pa-
rameter values e.g. for performing parameter sweeps.

• Additions to the Resources panel: Workflow jobs do not require users to select a
single target system for job execution. This is due to the fact that the workflow
engine has a resource broker which is capable of distributing jobs to suitable
target systems. In this process, specified resource requirements of the job (e.g.
amount of memory) are compared to the target systems’ offerings for finding a
computing resource that fulfils the requirements. This is generally referred to
as ‘match-making’. In order to narrow down the choice of target systems used
for match-making, the user may select one or more target systems as ‘candidate
resources’ for the job. Again, the selection can be undone by choosing a node
that is not a computational resource (e.g. the Grid node or a registry node).

2. Transitions Transitions represent the flow of control that passes from one activity to
the next. Currently, there are two types of transitions: unconditional 3 and condi-
tional 5 ones. Only unconditional transitions can be added to the workflow manually.
Conditional transitions are used in If-statements and While-loops and are added au-
tomatically. The reason for this is that conditional transitions may require a different
joining behaviour: the default joining behaviour when an activity has multiple in-
coming transitions is called ‘synchronisation’. This means that the activity is only
processed when all incoming transitions have been processed. As you might imagine,
this behaviour is no longer appropriate when conditional transitions are used: the ac-
tivity that joins the if and else branches of an If-statement would never be processed if
it waited for both branches to finish. In order to hide this complexity from users that
are unfamiliar with workflow processing and programming languages, If-statements
and similar constructs will be modelled as sub-workflows that automatically define
the appropriate joining behaviour.

• In addition to the Control Flow view Data Flow view can also be selected to
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visualize the input and output of created workflow jobs. You can check option
Files 4 to have a graphical view of the input and output files of the activities.
Moreover the output of one job can be used by other jobs by simply connecting
(drag and drop) it to the respective input files of other jobs. You can check
various workflow variable types (Strings, Float and Integer) to visualize the
input parameters of the workflow jobs.

3. Workflow structures Workflow structures are subgraphs that bring their own semantics
on how to process their child nodes. Currently, four workflow structures are provided:
groups, If-statements, While-loops, and ForEach-Loops 6.

(a) Groups are the simplest of all subgraphs. They are just containers for other
activities. Their content may be hidden by clicking the small minus symbol at
their top.

(b) If-statements influence the flow of control and contain two additional subgraphs
(which are modelled as groups): the if-branch and the else-branch. The if-branch
is processed when a certain user-defined condition holds. If the condition evalu-
ates to false the else-branch is processed instead. Both branches can contain ar-
bitrary activities and transitions, thus permitting nesting of workflow structures.
Conditions can be altered by double clicking the conditional transition. This
will open up the Properties view which displays relevant properties of work-
flow elements 7. Most properties can be modified through this view. There are
currently four types of conditions: the first type compares the exit status of an
application to a value provided by the user, the second one tests whether an out-
put file with a given name has been created by an application activity, the third
one compares the value of a workflow variable to a given value, and the last one
checks whether the current time lies before or after a given point in time.

(c) The While-loop provides a single subgraph called the loop-body that can be pro-
cessed multiple times (as long as the loop’s condition holds true). The While-
loop declares a workflow variable that reflects the current number of loop it-
erations, the so-called loop ‘iterator’. It also declares a variable modifier that
increments the loop iterator. The variable declaration can be changed in the
Properties view of the red activity at the top of the loop and the variable mod-
ifier can be set up in the Properties view of the associated modifier activity (at
the bottom of the while-loop).

(d) The Repeat-Until-loop works just like the while loop, but its loop-body is al-
ways processed once before the condition is evaluated for the first time. Also,
compared to the while-loop, the condition is negated, i.e. the loop ends when
the condition becomes true.

(e) ForEach-loops can be used in order to create many similar jobs without having
to set up each job individually. They have two different modes of operation.
The first mode will iterate over a set of workflow variable values and run the
job(s) contained in the loop body once for each value in the set. The workflow
variable values can be used as input parameters for these jobs. Complex param-
eter sweeps are possible, as multiple workflow variables can be sweeped at the
same time. The second mode is used to iterate over a set of files. The file set
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may consist of any combination of local, remote or workflow files. This mode
provides a convenient way to process many different files simultaneously. The
operational mode and the parameters to the selected mode can be modified in
the Properties view of the orange activity at the top of the ForEach-loop. The
iterations of the ForEach-loop are usually executed in parallel. However, there is
an upper bound of parallel iterations which results from the workflow engine’s
capabilities. There is also a way to lower this boundary by providing an Integer
value for the Number of parallel tasks in the Properties view of the ForEach
activity. Setting this value to ‘1’ will lead to sequential execution of the loop
iterations.

4. Variable declarations and modifiers 8 Additional workflow variables can be declared
using the appropriate Declaration activity. The Properties view of this activity allows
for (re-)naming the variable and assigning it a type (e.g. String or Integer) and initial
value. A Modifier activity can be used to change the value of a workflow variable
later.

When the user is pleased with the workflow description, the workflow can be submitted
via the editor’s context menu 9 or the workbench’s tool bar. It can also be exported to an
XML based workflow language that the workflow engine understands 10. The exported
workflow can later be submitted to the workflow engine by the UNICORE commandline
client. This feature is useful e.g. in order to make predefined workflows available via
a web interface (the Chemomentum web portal solution uses the commandline client for
workflow submission).

4.6.3 Monitoring mode

The workflow editor is also used for monitoring the execution of workflows, so the basic
graphical representation of a workflow stays the same before and after submission to the
workflow engine (see Figure 11). This helps in identifying which part of the workflow is
being executed at a given point in time.

When a workflow has been submitted, a new folder is created in the ‘submitted’ sub-
folder of the workflow project. This folder contains a copy of the workflow file that is
automatically opened in a new workflow editor panel - in monitoring mode. In this mode,
the editor disallows any changes to the workflow. It displays the progress of workflow
execution by adding small icons to the nodes of the workflow graph that symbolise the
execution state of these parts 1.

Outcomes of jobs can be fetched as soon as the jobs have finished. This function is
available via the context menu of application activities and the fetch output files action in
the global tool bar (after selecting the activity for which to fetch outcomes). Job outcomes
are downloaded to the ‘output files’ folder again, so they can easily be found later and
associated with the workflow by which they were produced. Monitoring a workflow can be
interrupted by simply closing the editor panel 2. By double-clicking the file that represents
the submitted workflow (in the Navigator view), the editor panel will be re-opened and
continue to monitor the execution of the workflow.
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Figure 11. The workflow editor: monitoring mode and the Trace Graph view

4.6.4 The Trace Graph view

In addition to monitoring the execution states of activities in the workflow, the user may
trace the workflow for finding out where his jobs were submitted. This action is available
via the context menu of the workflow editor. A trace graph will open, showing all messages
that were sent by the workflow system during the execution of the workflow 3. By hovering
the mouse over a node or edge in the trace graph, additional information about the element
is displayed in a tooltip. The set of traced messages can be updated by clicking the Refresh
button in the tool bar of the Trace Graph view 4. Additional buttons allow to zoom in
and out (zooming can also be achieved by rotating the mouse wheel while pressing the
‘control’ key).

4.7 Interactive site access

The UNICORE Rich Client features a Terminal view which can be used to log on to remote
hosts via SSH and GSISSH. It complies to the VT100 standard for terminal emulation and
can hold multiple terminal sessions (in multiple tabs). Sessions can be created via the open
terminal action from the context menu of a target system node. Please note, that this action
is only available, if the administrator of the UNICORE site has enabled interactive access
and provided necessary information about the target system, i.e. the host name and port
that should be used for establishing the interactive connection and the available connection
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methods. Currently, the UNICORE Rich Client provides two different secure connection
methods, Plain SSH and GSISSH. Apart from that, additional protocols can be used in the
future — both UNICORE client and server are extensible in this regard.

4.7.1 Plain SSH

When connecting to an SSH server via plain (i.e. conventional) SSH, the user can choose
between three different authentication methods:

• Password

• Keyboard-Interactive

• Public-key: If the user’s private key path wasn’t specified before, the UNICORE Rich
Client tries to find the key in the appropriate default directory (e.g. ˜/.ssh/id dsa). If
this fails the user is prompted to specify the path.

4.7.2 GSISSH

The GSISSH connection method provides access to GSISSH servers via RFC-3820 com-
pliant proxy certificates. The proxy is created from the keystore of the UNICORE Client
when the user starts to connect to the server. It can be stored on the local machine if re-
quired. It is possible to choose between different aliases representing different keys in the
keystore, different delegation types, and different proxy types. Furthermore, the lifetime
of the proxy certificate can be set (the default is 12 hours). When connecting to GSISSH
servers the UNICORE Rich Client converts the PEM formatted CA certificates in the UNI-
CORE client’s truststore to GSISSH-conform certificates, and stores them on the local ma-
chine. By default these files are created in the ˜/.globus/certificates folder. However, this
can be changed in the client’s preferences at UNICORE→ Terminal→ GSISSH.

4.7.3 How to open a terminal

There are different ways to open a terminal shell for a target site. The most convenient
method is to right click a UNICORE target site in the Grid Browser view and select the
Open Terminal menu item (see 1 in Figure 12).

If the user connects to a site for the first time, he will be prompted to choose one of the
available connection methods, in case the administrator of the UNICORE site has provided
the necessary information in the IDB. If no connection information is provided, the user
can enter the hostname, port, and login name manually. When all required connection data
has been gathered, the secure connection process is triggered and the terminal view should
show up automatically (see 2 in Figure 12). Alternatively, the user can open terminal shells
by using the Terminal Config view.

4.7.4 How to maintain and configure connection information

A second view, the so-called Terminal Connection Config view (see 3 in Figure 12), can
be used for modifying the user’s settings for interactive access to different target systems.
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Figure 12. Opening and using terminal connections.

The Terminal Config View can be invoked by selecting the configure terminal connection
menu item (see 4 in Figure 12) from the context menu of a target site in the Grid Browser.

The view provides a table with all SSH target sites that have previously been invoked
by the user. The user can rename the target site, or set a default connection type in the
table. To edit the site’s terminal configuration the Config column or the Edit-button in
the top menu can be clicked. This action will open a dialog for editing the parameters of
different connection methods. The values are stored permanently in the UNICORE client
after clicking Ok.

Custom target sites can be created by clicking the New button in the top menu. Ter-
minals to such sites can only be opened from the Terminal Config view. They can be
recognised by the CustomTargetSite tag in the Site Type column.

5 Concluding Remarks and Further Information

5.1 Future prospects

Users might have special requirements to UNICORE concering a special application
that has to be run on the target system. Therefore the UNICORE team introduced
the GridBean concept http://www.unicore.eu/documentation/manuals/
unicore6/files/GridbeanDevelopersGuide.pdf. The GridBean developer
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guide shows how to implement individual GridBeans and so how to get maximum flexibil-
ity.

UNICORE is an open source software that will be enhanced with new features per-
manently. For instance the UNICORE team is developing the UNICORE portal. This
web-based portal will enhance the already existing clients and will be an additional UNI-
CORE client running in any webbrowser. Users will be able to create their jobs, submit
them to the target system, get the output, transfer files, etc via a web browser without hav-
ing to install any software on the local computer. A first stable version of the portal is
planned for the end of 2013.

5.2 Documentation

Enhanced UNICORE documentation (manuals, video tutorials, papers, talks, etc.) and all
UNICORE downloads are available at www.unicore.eu.

5.3 Contact

In case of any questions please refer to unicore-info@fz-juelich.de.

6 Glossary

CA Certification Authority: An entity which issues digital certificates for use by other
parties. CAs are characteristic of many public key infrastructure (PKI) schemes.

GUI Graphical User interface: A set of visual controls that steer a computer pro-
gram. In contrast to a command line interface, it usually requires less typing because most
actions can be performed via mouse clicks.

HTTP Hypertext Transfer Protocol: A communications protocol. Its use for retriev-
ing interlinked text documents (hypertext) led to the establishment of the World Wide Web.

JRE Java Runtime Environment: A set of computer programs and data structures
which use a virtual machine model for the execution of JAVA programs.

OGSA Open Grid Services Architecture: An architecture of interacting services. It
was described in the paper “The Physiology of the Grid: An Open Grid Services Archi-
tecture for Distributed Systems Integration” and combines ideas and technologies from
both Web- and Grid Services to provide a basis for service oriented Grid architectures (see
http://www.globus.org/alliance/publications/papers/ogsa.pdf).

SSL Secure Sockets Layer: A widespread cryptographic protocol for securing con-
nections on the internet. Uses Public key encryption for certificate-based authentication
and symmetric cipher-based trafic encryption.

XML Extensible Markup Language: A text format derived from the Standard Gen-
eralized Markup Language (ISO 8879, see http://www.iso.org). XML is used
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to exchange data on the Web and it is the basis for a variety of languages and protocols
(http://www.w3.org/XML/).

SOA Service Oriented Architecture: A software architecture that defines the use of
software services to support the requirements of business processes and users on a
computer network. The underlying paradigm emphasizes the definition of slim and
platformindependent communication interfaces in order to achieve loose coupling. The
SOA Reference Model provided by the OASIS Committee Specification, can be found at
http://www.oasis-open.org/.

319

http://www.w3.org/XML/
http://www.oasis-open.org/




Schriften des Forschungszentrums Jülich 
IAS Series 
 

1. Three-dimensional modelling of soil-plant interactions:  
Consistent coupling of soil and plant root systems 
by T. Schröder (2009), VIII, 72 pages 
ISBN: 978-3-89336-576-0 
URN: urn:nbn:de:0001-00505 

2. Large-Scale Simulations of Error-Prone Quantum Computation Devices 
by D. B. Trieu (2009), VI, 173 pages 
ISBN: 978-3-89336-601-9 
URN: urn:nbn:de:0001-00552 

3. NIC Symposium 2010 
Proceedings, 24 – 25 February 2010 | Jülich, Germany 
edited by G. Münster, D. Wolf, M. Kremer (2010), V, 395 pages 
ISBN: 978-3-89336-606-4 
URN: urn:nbn:de:0001-2010020108 

4. Timestamp Synchronization of Concurrent Events 
by D. Becker (2010), XVIII, 116 pages 
ISBN: 978-3-89336-625-5 
URN: urn:nbn:de:0001-2010051916 

5. UNICORE Summit 2010  
Proceedings, 18 – 19 May 2010 | Jülich, Germany 
edited by A. Streit, M. Romberg, D. Mallmann (2010), iv, 123 pages 
ISBN: 978-3-89336-661-3 
URN: urn:nbn:de:0001-2010082304 

6. Fast Methods for Long-Range Interactions in Complex Systems 
Lecture Notes, Summer School, 6 – 10 September 2010, Jülich, Germany 
edited by P. Gibbon, T. Lippert, G. Sutmann (2011), ii, 167 pages 
ISBN: 978-3-89336-714-6 
URN: urn:nbn:de:0001-2011051907 

7. Generalized Algebraic Kernels and Multipole Expansions  
for Massively Parallel Vortex Particle Methods 
by R. Speck (2011), iv, 125 pages 
ISBN: 978-3-89336-733-7 
URN: urn:nbn:de:0001-2011083003 

8. From Computational Biophysics to Systems Biology (CBSB11) 
Proceedings, 20 - 22 July 2011 | Jülich, Germany 
edited by P. Carloni, U. H. E. Hansmann, T. Lippert, J. H. Meinke, S. Mohanty,  
W. Nadler, O. Zimmermann  (2011), v, 255 pages 
ISBN: 978-3-89336-748-1 
URN: urn:nbn:de:0001-2011112819 



Schriften des Forschungszentrums Jülich 
IAS Series 
 

9. UNICORE Summit 2011 
Proceedings, 7 - 8 July 2011 | Toruń, Poland 
edited by M. Romberg, P. Bała, R. Müller-Pfefferkorn, D. Mallmann (2011), iv, 
150 pages 
ISBN: 978-3-89336-750-4 
URN: urn:nbn:de:0001-2011120103 

10. Hierarchical Methods for Dynamics in Complex Molecular Systems 
Lecture Notes, IAS Winter School, 5 – 9 March 2012,  Jülich, Germany 
edited by J. Grotendorst, G. Sutmann, G. Gompper, D. Marx (2012), vi,  
540 pages 
ISBN: 978-3-89336-768-9 
URN: urn:nbn:de:0001-2012020208 

11. Periodic Boundary Conditions and the Error-Controlled  
Fast Multipole Method 
by I. Kabadshow (2012), v, 126 pages 
ISBN: 978-3-89336-770-2 
URN: urn:nbn:de:0001-2012020810 

12. Capturing Parallel Performance Dynamics 
by Z. P. Szebenyi (2012), xxi, 192 pages 
ISBN: 978-3-89336-798-6 
URN: urn:nbn:de:0001-2012062204 

13. Validated force-based modeling of pedestrian dynamics  
by M. Chraibi (2012), xiv, 112 pages 
ISBN: 978-3-89336-799-3 
URN: urn:nbn:de:0001-2012062608 

14. Pedestrian fundamental diagrams:  
Comparative analysis of experiments in different geometries 
by J. Zhang (2012), xiii, 103 pages 
ISBN: 978-3-89336-825-9 
URN: urn:nbn:de:0001-2012102405 

15. UNICORE Summit 2012 
Proceedings, 30 - 31 May 2012 | Dresden, Germany 
edited by V. Huber, R. Müller-Pfefferkorn, M. Romberg (2012), iv, 143 pages 
ISBN: 978-3-89336-829-7 
URN: urn:nbn:de:0001-2012111202 

16. Design and Applications of an Interoperability Reference Model  
for Production e-Science Infrastructures  
by M. Riedel (2013), x, 270 pages 
ISBN: 978-3-89336-861-7 
URN: urn:nbn:de:0001-2013031903 
 



Schriften des Forschungszentrums Jülich 
IAS Series 
 

 

17. Route Choice Modelling and Runtime Optimisation  
for Simulation of Building Evacuation 
by A. U. Kemloh Wagoum (2013), xviii, 122 pages 
ISBN: 978-3-89336-865-5 
URN: urn:nbn:de:0001-2013032608 

18. Dynamik von Personenströmen in Sportstadien 
by S. Burghardt (2013), xi, 115 pages 
ISBN: 978-3-89336-879-2 
URN: urn:nbn:de:0001-2013060504 

19. Multiscale Modelling Methods for Applications in Materials Science 
Lecture Notes, CECAM Tutorial, 16 - 20 September, Jülich 
edited by Ivan Kondov, Godehard Sutmann (2013), iv, 319 pages 
ISBN: 978-3-89336-899-0 
URN: urn:nbn:de:0001-2013090204 

     

 

 

 



IAS Series 
Volume 19
ISBN 978-3-89336-899-0

Multiscale Modelling Methods for Applications  
in Materials Science
Lecture Notes

edited by Ivan Kondov, Godehard Sutmann

Macroscopic effects in complex materials arise from physical phenomena on multiple length 
and time scales and therefore properties of such materials can be predicted accurately 
based on properties of the underlying building blocks. The major benefits of multiscale 
 models are a simpler physical interpretation based on the analysis of sub-models as well 
as an improved computational scaling making the simulation of very large systems feasible.

This book includes the lecture notes of courses conducted at the CECAM tutorial “Multiscale 
Modelling Methods for Applications in Materials Science” held at the Jülich Supercomputing 
Centre from 16 to 20 September 2013. Written by recognized experts the lecture notes 
complement existing university courses with knowledge and experience gained recently 
in the field of multiscale materials modelling encompassing theoretical understanding and 
practical implementation of multiscale models to real-life applications. The book addresses 
graduate students and young researchers, working in the field of computational materials 
science, and covers general methodology, tools for implementation of the multiscale mod-
elling paradigm, as well as applications of multiscale modeling techniques. Topics include 
fields such as coarse graining of polymers and biomolecules, and modelling of organic 
light-emitting diodes, electrochemical energy storage devices (Li-ion batteries and fuel cells) 
and energy conversion devices (organic electronics and carbon nanodevices).

This publication was edited at the Jülich Supercomputing Centre (JSC) which is an integral  
part of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation  
sciences and the supercomputer facility in one organizational unit. It includes those parts  
of the scientific institutes at Forschungszentrum Jülich which use simulation on super-
computers as their main research methodology. 

IA
S 

Se
ri

es
 

19

Iv
an

 K
on

do
v 

G
od

eh
ar

d 
Su

tm
an

n
M

ul
ti

sc
al

e 
M

od
el

lin
g 

M
et

ho
ds

 fo
r 

A
pp

lic
at

io
ns

  
in

 M
at

er
ia

ls
 S

ci
en

ce

M
itg

lie
d 

de
r 

H
el

m
ho

ltz
-G

em
ei

ns
ch

af
t


	Contents
	Methods
	Introduction to Multiscale Modelling of Materials
	Introduction
	Molecular Modelling Methods
	Coarse-Grained Modelling Methods
	Conclusions and Outlook

	Introduction to Modelling, Scalability and Workflows with DL_POLY
	Introduction
	Software
	Molecular Structures
	Force Field
	Integration Algorithms
	Parallelisation
	Electrostatics
	Scalability and Performance
	I/O Files and Performance
	GridBeans and Workflows
	Concluding Remarks

	Atomistic Simulations Using the Approximate DFT Method DFTB+: Applications to Nanomaterials and Bio-Systems
	Introduction
	Theory of DFTB
	Example: Bulk Amorphous Oxides
	Summary

	Wavelets For Electronic Structure Calculations
	Introduction
	Atomistic Simulations
	Pseudopotentials
	Kohn-Sham DFT with Daubechies Wavelets
	Overview of the Method
	Treatment of Kinetic Energy
	Calculation of Hartree Potential
	Calculation of Forces
	Preconditioning
	Orthogonalization
	Parallelization
	Performance Results
	Conclusions

	Elmer Finite Element Solver for Multiphysics and Multiscale Problems
	Introduction
	Solving a Coupled Problem with the Solver of Elmer
	The Key Capabilities of the Solver
	Applying Elmer to Multiscale Problems
	Concluding Remarks

	Modeling Charge Distributions and Dielectric Response Functions of Atomistic and Continuous Media
	Introduction
	General Aspects of Charge-Equilibration Approaches
	Bottom-Up Motivation of Charge-Equilibration Models
	Top-Down Approach to Charge-Equilibration Models
	Applications
	Conclusions


	Applications and Tools
	Systematic Coarse Graining of Polymers and Biomolecules
	Introduction
	Fundamentals and Theoretical Basis of Different Coarse–Graining Techniques
	Examples
	Conclusions
	Acknowledgements

	Theory and Simulation of Charge Transport in Disordered Organic Semiconductors
	Hopping Transport
	The Disorder Energy Landscape
	The Master Equation
	Master-Equation Calculations for a Complete Device
	Master-Equation Calculations with Periodic Boundary Conditions
	Solving the Master Equation Iteratively
	The Drift-Diffusion Equation
	Monte Carlo
	Example: a Hole-Only Device
	Transients
	Uncorrelated or Correlated Disorder?
	Random-Resistor Network
	Percolation Theory and Scaling Ansatz
	Determining the Critical Conductance
	Application of the Scaling Expression to Different Hopping Models
	Effect of Lattice Disorder
	Carrier-Concentration Dependence of the Mobility
	Temperature Dependence of the Mobility
	Monte Carlo Modeling of Electronic Processes in a White Multilayer OLED
	Concluding Remarks

	Multiscale Modeling Methods for Electrochemical Energy Conversion and Storage
	Introduction
	Modeling Experiments and Experimenting Models
	Multiscale Models of EPGs: Examples and Practice
	Conclusions and Challenges

	Multiscale Transport Methods for Exploring Nanomaterials and Nanodevices
	Introduction: State of the Art of Computational Approaches for Nanodevice Simulation
	Kubo-Transport Methodology
	Landauer Transport Approach
	Ab initio Methods for Material Parameters
	New Electronics Features of Chemically-Modified Graphene-Based Materials: Mobility Gaps
	Limits of Ballistic Transport in Silicon Nanowires
	Organic Semiconductors
	Conclusion and Perspective
	Acknowledgements

	Electronic Structure of Organic/Organic Interfaces: A Quantum-Chemical Insight
	Introduction
	Interface Dipole: Charge Transfer and Polarization Components
	TTF/TCNQ Model Systems 
	Extended TTF-TCNQ Stacks
	C60 / Pentacene Complexes
	Energy Landscape around Organic/Organic Interfaces
	Conclusions

	UNICORE Rich Client User Manual
	Introduction
	A Brief History of UNICORE
	Installation and Startup
	Basic Usage Guide
	Concluding Remarks and Further Information
	Glossary



