Middleware Services in DEISA/PRACE Middleware Services in TeraGrid/XSEDE

Network Scientific _, Task/Core
Topologies Applications Mapping

Design and Applications of an Interoperability Reference Model
for Production e-Science Infrastructures

Morris Riedel

Mitglied der Helmholtz-Gemeinschaft

#))0LICH

FORSCHUNGSZENTRUM

Schriften des Forschungszentrums Jilich

IAS Series Volume 16

Forschungszentrum Jilich GmbH
Institute for Advanced Simulation (IAS)
Julich Supercomputing Centre (JSC)

Design and Applications of an Interoperability
Reference Model for Production e-Science
Infrastructures

Morris Riedel

Schriften des Forschungszentrums Jilich

IAS Series Volume 16

ISSN 1868-8489 ISBN 978-3-89336-861-7

Bibliographic information published by the Deutsche Nationalbibliothek.
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the
Internet at http://dnb.d-nb.de.

Publisher and Forschungszentrum Jilich GmbH
Distributor: Zentralbibliothek
52425 Jilich

Phone +49 (0) 24 61 61-53 68 - Fax +49 (0) 24 61 61-61 03
e-mail: zb-publikation@fz-juelich.de
Internet: http://www.fz-juelich.de /zb

Cover Design: Julich Supercomputing Centre, Forschungszentrum Jilich GmbH
Weltkugel auf dem Cover: © Anton Balazh - Fotolia.com

Printer: Grafische Medien, Forschungszentrum Jilich GmbH
Copyright: Forschungszentrum Jilich 2013

Schriften des Forschungszentrums Jiilich

IAS Series Volume 16

Diss. (Karlsruher Institut fir Technologie (KIT), 2012)

ISSN 1868-8489
ISBN 978-3-89336-861-7

Persistent Identifier: urn:nbn:de:0001-2013031903
Resolving URL: http://www.persistent-identifier.de/?link=610

Neither this book nor any part of it may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, microfilming, and recording, or by any
information storage and retrieval system, without permission in writing from the publisher.

Abstract

Computational simulations and thus scientific computing is the third pillar alongside theory
and experiment in todays science. The term e-Science evolved as a new research field that
focuses on collaboration in key areas of science using next generation data and computing
infrastructures (i.e. e-Science infrastructures) to extend the potential of scientific computing.
During the past decade, significant international and broader interdisciplinary research is in-
creasingly carried out by global collaborations that often share resources within a single pro-
duction e-Science infrastructure. More recently, increasing complexity of e-Science applications
that embrace multiple physical models (i.e. multi-physics) and consider a larger range of scales
(i.e. multi-scale) is creating a steadily growing demand for world-wide interoperable infras-
tructures that allow for new innovative types of e-Science by jointly using different kinds of
e-Science infrastructures. But interoperable e-Science infrastructures are still not seamlessly
provided today and this thesis argues that this is due to the absence of a production-oriented
e-Science infrastructure reference model. The goal of this thesis is thus to present an infrastruc-
ture interoperability reference model (IIRM) design tailored to production needs and that repre-
sents a trimmed down version of the Open Grid Service Architecture (OGSA) in terms of func-
tionality and complexity, while on the other hand being more specifically useful for production
and thus easier to implement. This reference model is underpinned with lessons learned and
numerous experiences gained from production e-Science application needs through accompa-
nying academic case studies of the bio-informatics, e-Health, and fusion domain that all seek
to achieve research advances by using interoperable e-Science infrastructures on a daily basis.
Complementary to this model, a seven segment-based process towards sustained infrastruc-
ture interoperability addresses important related issues like harmonized operations, coopera-
tion, standardization as well as common policies and joint development roadmaps.

Zusammenfassung

Computersimulationen sowie wissenschaftliches Rechnen sind heutzutage der dritte Pfeiler
neben Theorie und Experiment in der Wissenschaft. Das Thema “e-Science” hat sich als ein
neues Forschungsfeld etabliert und fokussiert sich auf die Kollaboration in Schliisselbereichen
der Wissenschaft mit Hilfe von Daten- und Computer-Infrastrukturen (sogenannte e-Science
Infrastrukturen) um das Potential des wissenschaftlichen Rechnens zu erweitern. Vielver-
sprechende internationale und eine steigende Anzahl von inter-disziplinarer Forschung wird
mehr und mehr von globalen Kollaborationen, welche oft Ressourcen innerhalb einer e-Science
Infrastruktur teilen, durchgefiihrt. In den letzten Jahren hat die ansteigende Komplexitit von
e-Science Anwendungen, die verschiedene physikalische Modelle nutzen und hoch skalierend
sind, den Bedarf an weltweit interoperablen Infrastrukturen noch gesteigert um neue innova-
tive e-Science Anwendungen zu erstellen die den gleichzeitigen Zugriff auf unterschiedliche
e-Science Infrastrukturen ausnutzen. Allerdings sind interoperable e-Science Infrastrukturen
heutzutage kaum vorhanden oder nicht einfach zuganglich und diese Doktorarbeit begriindet
diese Situation durch das Fehlen eines auf wissenschaftliche Produktion ausgerichtetes Ref-
erenzmodell fiir e-Science Infrastrukturen. Das Ziel dieser Doktorarbeit ist daher die Definition
eines sogenannten ”Infrastructure Interoperability Reference Models (IIRM)”, welches auf die
wissenschaftliche Produktion zugeschnitten ist und durch weniger Komplexitdt sowie gerin-
gerem Umfang als die "Open Grid Services Architecture (OGSA)” auch einfacher zu implemen-
tieren ist. Das vorgestellte Referenzmodell basiert auf vielzdhligen Erfahrungen, welche mit
e-Science Anwendungen aus den wissenschaftlichen Bereichen der Bio-Informatik, “e-Health”
und der Fusionsenergie gewonnen wurden wobei alle diese Forschungsbereiche einen Zugang
zu interoperablen e-Science Infrastrukturen ausnutzen kénnen um ihre Forschung schneller
voranzubringen. Ergianzend zu dem Referenzmodell wird ein sieben Segment-basierter Prozess
vorgestellt der wichtige langfristige Probleme angeht in den Bereichen der Nachhaltigkeit von
Interoperabilitdt, harmonisierten Infrastruktur-Operationen, Kooperation, Standardisierung,
sowie gemeinsamen Betriebskonzepten und Entwicklungsplénen.

Acknowledgements

Over the past few years, the doctoral studies leading to this PhD thesis have been primarily per-
formed at the Jiilich Supercomputing Centre (JSC) of Forschungszentrum Jiilich in Germany. I
would like to express my gratitude to the many people who have helped me directly or indi-
rectly with this thesis and my doctoral studies in Computer Science at the Karlsruhe Institute
of Technology and the JSC respectively.

First and foremost, I would like to thank Prof. Dr. Achim Streit and Prof. Dr. Dieter Kran-
zlmdiller. This thesis would not have been possible without their invaluable advice and contin-
uous support over many years. I also want to express my gratitude to Prof. Dr. Dr. Thomas
Lippert, head of the JSC, for giving me the opportunity to pursue my doctoral studies in an
extraordinary and internationally renowned institute that laid the foundations for this work. I
would like to acknowledge the efforts of my research group "Interoperability and Applications’
at JSC, namely Ahmed Shiraz Memon, Mohammad Shahbaz Memon, Sonja Holl, and Daniel
Mallmann. Many of their development efforts of prototypes, planned concepts, and (partly
even unstable) emerging open standards have led to many insights during my doctoral studies
underpinning theoretical academic analysis with practical implementations.

I am also deeply indebted to Prof. Dr. Felix Wolf, University of Aachen, for his guid-
ance and support of my doctoral studies. His suggestions, ideas and comments were more
than helpful to me. Thanks to Dr. Bernd Schuller, Dr. Roger Menday, Dr. David Snelling,
Dr. Thomas Eickermann, Bastian Demuth, Wolfgang Frings, and Mathilde Romberg for their
support, ideas, and many technical discussions over the years. Thanks also to the members
of the WISDOM initiative namely Vinod Kasam, Jean Salzemann, and Nicolas Jacq, and the
many colleagues I have worked with during this scientific case study. I extend hearty thanks
to our partners in the VPH case study, namely Prof. Dr. Peter Coveney, Steven Manos, and
Stefan Zasada. Many thanks also to my collaborators from the EUFORIA project, most notably,
Marcin Plociennik, Isabel Campos, and Dawid Seijnfeld. I would also like to express my ap-
preciation to all the partners of the UniGrids, OMII-Europe, DEISA2, EMI, and XSEDE projects.

Above all, I would like to express my deepest gratitude to the people I love to whom I
would like to dedicate this thesis: my parents Horst and Christa, who have aided me through-
out my doctoral studies, my lovely fiance Elin Sif Kjartansdottir, and my grandparents Giinter
and Margot. I don’t know much about heaven, but I do believe in angels and thus I believe that my
mother in some form or another is able to see the results of this PhD thesis. Finally, I would like to
offer my grateful thanks to all my international and JSC colleagues, and my dear friends, espe-
cially Renate Dornfeld and my Sauerland friends, who all believed that my studies would lead
to fruitful results. I truly hope that this PhD thesis fulfills their expectations.

Morris Riedel
September 2012, Cologne, Germany

Contents

Introduction

1.1 Terminologies
1.2 Thesis Objectives and Contributions
1.3 Related Topics Out of ThesisScope
1.4 Selected Publications and Demonstrations
1.5 ThesisStructure L

State-of-the-art e-Science Infrastructures

2.1 Grid and e-Science Infrastructure Concepts
2.1.1 e-Science Infrastructure Fundamentals
2.1.2 Resource Sharing in e-Science Infrastructures
2.1.3 Classification of e-Science Applications

2.2 Key Technologies and Standards for e-Science Infrastructures
2.2.1 Resource Management Systems and Grid Middleware
222 Service-Oriented Technologies
2.2.3 Common Open Standards in the e-Science Domain

2.3 e-Science Infrastructure Interoperability Challenges
2.3.1 Classification of e-Science Infrastructure Types
2.3.2 Tightly Coupled Middleware Clusters in e-Science Infrastructures
2.3.3 Benefits of a Network of Interoperable Services

24 Conclusion

Related Work

3.1 Identification of Relevant Approaches and Factors
3.1.1 Reference Model Foundations and Factors
3.1.2 Open Grid Services Architecture Analysis
3.1.3 Component-based Approach Review

3.2 Survey of Related Reference Models
3.2.1 Enterprise Grid Alliance Reference Model
3.22 OASIS Service Component Architecture
3.2.3 Reference Model for Open Distributed Processing
3.24 Common Component Architecture
3.2.5 Coloured Petri Nets Reference Model

3.3 Classification of Component-based Approaches
3.3.1 Additional Layer Concepts
332 Neutral BridgeConcept
333 Gateway Approach L
334 Mediator Approach
335 Adapter Approach 0.

CONTENTS

3.3.6 Middleware Co-existence 73
34 Conclusion 75
Requirements 77
4.1 Reference Model and Associated Elements Requirements 78
41.1 Reference Model Blueprint and Entity Requirements 78
412 Reference Model Entity Relationships 81
413 General Technical Reference Architecture Requirements 84
42 Functional Requirements 88
421 Reference Architecture Core Building Blocks 88
422 Improved e-Science Applications Executions 92
423 Improved Processing and Data-staging Capabilities 94
43 Non-functional Requirements 97
4.3.1 e-Science Production Infrastructure Integration Constraints 97
4.3.2 Requirements for Interoperable Infrastructure Usage Model 100
4.3.3 Process Requirements for Sustained Infrastructure Interoperability 102
44 Conclusion 105
Architectural Design 107
5.1 Reference Model Design and Associated Architecture Work 108
51.1 The Infrastructure Interoperability Reference Model Design 108
512 Associated Reference Architecture General Design. 112
5.1.3 Detailed Associated Reference Architecture Core Building Blocks 116
514 Associated Reference Architecture Infrastructure Integration Constraints 122
5.1.5 Opverall Run-time Pattern for Associated Architecture Work 128
5.1.6 Security Pattern for Associated Architecture Work 132
5.2 Design Layout and Essential Functionality 139
52.1 e-Science ApplicationConcepts 139
522 Application Execution Adjacencies Concepts 144
5.2.3 High Performance Computing Extensions 148
5.2.4 Sequence Support for Computational Jobs 154
52.5 Manual Data-staging Concepts 157
52.6 Enhanced Accounting and Data Management Concepts 162
5.3 Seven Segment-based Process for Infrastructure Interoperability 167
53.1 Segment 1: Open Standards-based Reference Model and Architecture . . 169
532 Segment 2: Collaboration with the Right Set of Technology Providers . . . 171
5.3.3 Segment 3: Reference Architecture Implementations. 173
5.3.4 Segment 4: Standardisation Feedback Ecosystem 174
53.5 Segment 5: Aligned Future Strategies and Roadmaps 176
5.3.6 Segment 6: Harmonised Operation Policies 178
5.3.7 Segment 7: Funding Sources and Cross-Project Coordination. 179
54 Conclusion e 182
Impact and e-Science Applications 183
6.1 Seven Segment-based Process Implementation and Impact 184
6.1.1 Segment 1: IIRM and Standards-based Reference Architecture 185
6.1.2 Segment 2: Collaboration of Infrastructures with Technology Providers . 188
6.1.3 Segment 3: IIRM Reference Architecture Implementations 189

6.1.4 Segment 4: The GIN and PGI Standardization Feedback Ecosystem 190

ii

CONTENTS

iii

6.2

6.3

6.4

6.5

6.6

6.7

6.1.5 Segment 5: Aligning Middleware Roadmaps with EMI and XSEDE
6.1.6 Segment 6: Harmonized Security Setups and Operation Policies
6.1.7 Segment 7: Funding and Cross-Project Collaborations
Concrete Architectures of Production e-Science Infrastructures
6.2.1 Reference Model and Architecture Adoptions
6.2.2 European e-Science Infrastructures Setup
6.2.3 US and other e-Science Infrastructures Setups
6.2.4 Related Models for e-Science Applications
Architecture Implementation for the WISDOM Applications
6.3.1 Basic Framework of the WISDOM Initiative
6.3.2 Scientific Applications of the Bio-informatics Domain

6.3.3 Academic Analysis and Production Infrastructure Setup Experience

6.3.4 Reference Model Impact and Applicability

Architecture Implementation for the VPH Applications
6.4.1 The STEP Roadmap and the Basic VPH Framework
6.4.2 Scientific Applications of the e-Health Domain

6.43 Academic Analysis and Production Infrastructure Setup Experience

6.4.4 Reference Model Impact and Applicability

Architecture Implementation for the EUFORIA Applications
6.5.1 The EUFORIA Framework
6.5.2 Scientific Applications of the Fusion Domain

6.5.3 Academic Analysis and Production Infrastructure Setup Experience

6.5.4 Reference Model Impact and Applicability

Architecture Implementations for ESFRI and other Applications
6.6.1 Basic Framework for ESFRI Projects
Conclusion

7 Conclusion

iii

193
195
196
198
199
201
207
211
214
215
217

. 218

220
225
226
228

. 229

230
236
237
239

. 240

242
246
247
249

251

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
32
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

41
42
43
44

51
52
53
5.4
5.5
5.6
5.7
5.8
59
5.10

The Three Fundamental Science Pillars and e-Science 14
Resource Sharing in VOs within e-Science Infrastructures 17
e-Science Applications L L L L 20
Grid ServicesConcepts 25
RelevantOpen Standards 26
Non-solid e-Science Infrastructure Basement 29
Tighly Coupled Clusters of Middleware Services 31
Network of Interoperable Services 33
Reference Model relations to other Architectural Design Elements 41
Transformation Logic Drawbacks 50
Open Standards-based Approach 51
EGA Reference Model Elemental Grid Components 54
SCA Reference Model 56
Reference Model for Open Distributed Processing Channel Concept 58
Common Component Architecture Elements Relationships 60
Three layer design of the CPN Reference Model 62
Additional Layer Concept 65
Neutral Bridge Approach 68
Gateway Approach 70
Mediator Approach 71
Adapter Approach 72
Middleware Co-existence i 73
Requirements influence the Reference Model and Architecture Work Design . . . 78
Required Reference Model Entity Relationships with Examples 82
Functional Requirements of the Reference Architecture Design 88
Non-functional requirements with production infrastructure influence. 97
Reference Model Guides the Architecture Work 108
Infrastructure Interoperability Reference Model Overall Design 109
Associated Reference Architecture 113
Infrastructure Interoperability Reference Architecture 114
Reference Architecture Core Building Blocks with Refinements. 116
Associated Reference Architecture Conceptual View 117
Communication Baseline Mechanism and Core Building Blocks in Context 118
General Reference Architecture Overview 119
Reference Architecture Invariants 122
IIRM Information Ecosystem 123

vi

LIST OF FIGURES

5.11 IIRM Resource Tracking Ecosystem
5.12 IIRM Authorisation Attributes Ecosystem
5.13 Reference Architecture Run-Time Pattern
5.14 Basic Reference Architecture Algorithm
5.15 Basic Reference Architecture State Model
5.16 Reference Architecture Security Pattern
5.17 Security Plumbing as Associated Reference Model Pattern
5.18 Security Plumbing Deployment Example
5.19 WS Architecture Basic Principle of Discovery
520 Plumbing Certificate Delegation Method
5.21 Reference Architecture Core Building Blocks Improvements
522 e-Science ApplicationConcepts oL
5.23 Grid Application Description Refinements
5.24 Pseudo-code using the e-Science application concepts.
5.25 Application Execution Adjacencies oL
5.26 Application Execution Adjacencies Design Layout
5.27 Pseudo-code using the application execution adjacencies concepts.
528 HPCExtensions
529 Example of the HPC Extensions to GLUE2
5.30 HPC Extensions Design Layout
5.31 Pseudo-code using the high performance computing extension concepts.
5.32 Support for Application Sequences oL
5.33 Design layout for the application sequences concept.
5.34 Pseudo-code using the sequence supportconcepts.
5.35 Manual data-staging Concepts
5.36 Design Layout for the manual data-staging concept
5.37 Pseudo-code using the manual data-staging concepts.
5.38 Enhanced accounting and data management concepts
5.39 Design layout for enhanced accounting and data management
5.40 Pseudo-code using the enhanced accounting and data management concepts. . .
5.41 Reference Model and Architecture Associated Process
5.42 The Seven Segments-based Process
5.43 Segment 1: Reference Model and Associated Architecture Work
5.44 Segment 3: Reference Architecture Implementations
5.45 Segment 4: Standardization Feedback System
5.46 Segment 5: Aligned Future Development Roadmaps

6.1 Reference Model Associated Process Implementation Overview
6.2 GIN and PGI Standardization Feedback System
6.3 EMI Aligned Future Development Roadmaps
6.4 Concrete Architectures of the Reference Model
6.5 Reference Model and Architecture Adoptions Overview
6.6 European e-Science Infrastructures Setup Overview
6.7 Infrastructure Integration Constraints of EGEE/EGI and DEISA/PRACE
6.8 Individually Formed Infrastructures across EGEE/EGI and DEISA/PRACE . . .
6.9 US and other e-Science Infrastructures Setup Overview
6.10 XSEDE Extended Architecture oL
6.11 Individual Infrastructures across the US and Europe
6.12 Related Models for e-Science Applications Overview

vi

LIST OF FIGURES vii

6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34

SOA Implementation for the WISDOM Applications 214
WISDOM Grid-enabled Drug Discovery 215
WISDOM Basic Framework 216
Accelerate Drug Discovery withtheIIRM 217
WISDOM Framework using the IIRM 220
WISDOM Case Study Detailed Examples 222
WISDOM Algorithm 224
SOA Implementation for the VPH Applications 225
STEP Consortium Roadmap and Virtual Physiological Human 226
VPH Basic Framework 227
Brain Bloodflow using HemeLB withtheIIRM 228
VPH Framework using the IIRM 231
VPH Case Study Detailed Examples 232
VPH Algorithm 234
SOA Implementation for the EUFORIA Applications 236
EUFORIA FusionResearch 237
EUFORIA Basic Framework 238
Fusion simulations using HELENA and ILSA withtheIRM 239
EUFORIA Framework using theIIRM 242
EUFORIA Algorithm 245
SOA Implementation for ESFRI and other Applications 246
Emerging SOA Implementation of CLARIN and DARIAH ESFRI Projects 247

vii

List of Tables

1.1
1.2

3.1
3.2
3.3
3.4
3.5
3.6

4.1
42
43
44
4.5
4.6
47
4.8
4.9

51
52
53
5.4
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
517
5.18
5.19

Relevant contributions to books, magazines, and journal publications. 8
Conference publications being directly or indirectly related to the thesis. 9

Reference model interoperability factors and indicators in the context of OGSA. . 44

Relevant reference models with comparisons of factors and indicators. 53
List of component-based approaches and their transformation logic locations. . . 64
Summary of major tweaks, hacks, and workarounds in the WISDOM use case. . 67
Summary of major tweaks, hacks, and workarounds in the VPH use case. 68
Summary of major tweaks, hacks, and workarounds in the EUFORIA use case. . 69
Reference Model Blueprint and Entity Requirements Summary. 81
Reference Model Entity Relationships Requirements Summary. 84
Reference Architecture General Requirements Summary. 87
Reference Architecture Core Building Blocks Requirements Summary. 90
Reference Architecture e-Science Applications Requirements Summary.. 94
Reference Architecture Processing and Data-staging Requirements Summary. . . 96
Reference Architecture Infrastructure Integration Requirements Summary. 99
Reference Architecture Interoperable Usage Requirements Summary. 102
Reference Architecture Associated Process Requirements Summary. 104

Entities Relevant for Production e-Science Infrastructures that are Out of Scope. . 110

Addressed requirements on the reference modellevel. 111
Common open standards as potential core building blocks of the IIRM. 114
Addressed general requirements on the reference architecture level. 115
Refinements list of the IIRM core building blocks. 117
Addressed detailed requirements on the reference architecture level. 121
Addressed detailed requirements of infrastructure integration constraints. 128

Addressed requirements of architecture patterns on reference architecture level. . 132
Addressed requirements of security patterns on the reference architecture level. . 138

Functionality improvements of the e-Science application concepts. 141
Addressed requirements for application improvements. 144
Functionality improvements of the application execution adjancencies concept. . 146
Addressed requirements for application adjacencies. 148
Functionality improvements of the high performance computing extensions. . . 150
Other potential large-scale HPC feature examples for similiar abstractions. 151
Addressed requirements for HPC extensions. 154
Functionality improvements for the sequence support concept. 156
Addressed requirements for the sequence support. 156

Functionality improvements for the manual data-staging concept. 158

LIST OF TABLES

5.20
5.21
522
523
524
525
5.26
527
528
5.29
5.30

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

Addressed requirements for the manual data-staging support.

Functionality improvements of enhanced accounting and data management.

Addressed requirements for the accounting and data management concepts. . . .
Addressed requirements as associated elements to the architecture work.
Addressed requirements as part of process segmentone.
Addressed requirements as part of process segmenttwo.
Addressed requirements as part of process segment three.
Addressed requirements as part of process segment four.
Addressed requirements as part of process segment five.
Addressed requirements as part of process segmentsix.
Addressed requirements as part of process segment seven.

Seven segments with areas of work as part of the process implementation. . . .
Factors and indicators of the IIRM in comparison with OGSA.
Key technology providers and projects with related infrastructures.
Summary of the e-Science infrastructure setups of the WISDOM case study. . . .
. 219

Overview of limitations after academic analysis of the WISDOM framework.

IIRM core building blocks that are used in the WISDOM case study.
Functionality improvements used in the WISDOM case study.
Summary of the e-Science infrastructure setups of the VPH case study.
Overview of limitations after academic analysis of the VPH framework.
IIRM core building blocks that are used in the VPH case study.
Functionality improvements used in the VPH case study.
Summary of the e-Science infrastructure setups of the EUFORIA case study. . . .
Overview of limitations after academic analysis of the EUFORIA framework. . .
IIRM core building blocks that are used in the EUFORIA case study.
Functionality improvements used in the EUFORIA case study.

. 163

166
169
171
172
174
176
178
179
181

185
186
189
218

221
223
229
230
231
233
241
241
243

. 244

List of Definitions

IO U WN -

W W W W WWWWWWNDNNNNDNDNDNNNRRR R RRRPR B }2 2 O
O O NN UTH WP, OWOVWONNUERE WP, OOVWONSU WP O

Interoperability 3
Interoperation L 3
e-Science 15
e-Science Infrastructureo L L o 16
Production e-Science Infrastructure oL Lo 16
Infrastructure Resource L L 16
Grid Infrastructure 17
Virtual Organisation 18
e-Science Application oL L 21
e-Scientist L e 21
Resource Management System 23
GridMiddleware 23
Grid Service 24
Common OpenStandard 25
Network of Interoperable Services 28
HPC-driven e-Science Infrastructure 30
HTC-driven e-Science Infrastructure 30
Hybrid e-Science Infrastructure 0 L. 30
Non-interoperable e-Science Infrastructures 32
Individual e-Science Infrastructures 33
Interoperable e-Science Infrastructures L 0L 34
Service Oriented Architectures, 40
SOA Reference Model 40
Reference Model Key Principles 42
Reference Model Design Indicators 43
Reference Model Design Factors 43
Transformation Logic 49
General Reference Model Design Principles 78
Service-based Reference Model 79
e-Science-Driven Reference Model 79
Grid Execution Management Entity 79
Grid Data ManagementEntity 0. 80
Grid Security Entity 80
Grid Information Entity o L 80
Information and Execution Management Entity Relationship 81
Information and Data Management Entity Relationship 81
Security and Execution Management Entity Relationship 82
Security and Data Management Entity Relationship 83

Information and Security Entity Relationship 83

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

Execution Management and Data Management Entity Relationship 84

Web Services-based Reference Architecture 85
Concrete Specifications for a Reference Architecture 85
Information and Security Constraints for a Reference Architecture 85
Slim Reference Architecture 86
Core Reference Architecture Elements 86
Normative Specifications for a Reference Architecture 87
Open Standards-based Reference Architecture 87
Reference Architecture Standard Refinements 87
Grid Execution Management Service 89
Grid Data Management Service L L 89
Grid Authentication Service Functionality 90
Grid Attribute Authority Service Lo oL 90
Grid Attribute-based Authorisation Functionality 90
Grid Security Attributes Transport L o L 91
Grid Information Model Schema and Service 91
Grid Usage Record FormatSchema 91
Application Type Support 92
Precise Application Executable Specification 92
Application Software Mechanism L. 92
ApplicationOutputJoins oo 93
Common Environment Variables 93
Common ExecutionModules 93
State-of-the-art HPC Support, 94
High Message Exposure 94
Computational Job Sequences L o 95
Manual Data-staging Mechanism 95
Grid Job Manipulation Functionality 95
e-Science Production Technology Adoption Constraint 98
e-Science Infrastructure Information Ecosystem 98
e-Science Infrastructure Resource Tracking Ecosystem 98
e-Science Infrastructure Attribute-based Authorisation Ecosystem 99
Transparent Infrastructure Usability 100
Flexibility to Choose Resources 100
Multiple Infrastructures Usage Performance 100
Infrastructure Resource Usage Efficiency 101
Supportability 101
Architecture Work Patterns L L 101
Process for Sustained Infrastructure Interoperability 102
Common Reference Model Creation 102
Key Technology Providers Collaboration 103
Reference Implementation Developments 103
Open Standard Evolution Process 103
Future Strategy Sharing and Common Roadmap Definition. 103
Operation Policy Harmonisation 104
Funding and Cross-Project Coordination 104
Global Information Invariant 122
Global Accounting Invariant. o o L 124
Global Authorisation Attributes Invariant 126

Chapter 1

Introduction

Computational simulations and thus scientific computing is well accepted alongside theory
and experiment in todays science. The term e-Science [19] evolved as a new research field that
focuses on collaboration in key areas of science using so-called next generation data and com-
puting infrastructures (i.e. e-Science infrastructures) to extend the potential of scientific comput-
ing. A wide variety of e-Science applications [301, 267, 206] take already advantage of various
e-Science infrastructures that evolved over the last couple of years to production research en-
vironments in the sense of being successfully used as a tool by scientists on a daily basis.

The initial reference model of such infrastructures was coined as the Open Grid Services
Architecture (OGSA) originally defined by Foster et al. in 2003 [171] and due to its slow adop-
tion rate OGSA did not yet achieved a common basis for them. More recently the increasing
demand of interoperability of numerous production e-Science infrastructures that have not
adopted a common reference model like OGSA have found to be much more problematic than
originally expected. End-users are often not able to understand the technical differences of such
infrastructures and requesting their seamless interoperable use that enable stable e-Science appli-
cations across multiple infrastructures. But this interoperability does not broadly exist today
although it bears the potential to tackle grand challenge problems of science and society today.
Treating Aids or Alzheimers diseases, the localization of cancer, accurate global weather pre-
diction, or determining the age of the earth, are those grand challenge problems where single e-
Science infrastructures or large-scale High Performance Computing (HPC) resources have not
made yet a significant breakthrough to either stop or fully understand them. Lacking interop-
erable e-Science infrastructures, their full potential of being jointly used can be not unleashed in
order to tackle the aforementioned grand challenges and to make progress in research leading
to significant scientific breakthroughs and innovation. Lacking these breakthroughs one needs
to question the approach of e-Science infrastructures of whether it generates enough revenue
to tax payers that indirectly financially support daily infrastructure operations.

Although OGSA represents a good architectural blueprint for e-Science infrastructures in
general, this thesis argues that the scope of OGSA is too broad to be well focussed on ex-
isting production needs of e-Science infrastructures today. Two reasons for this are identified
through investigations in technologies that aim to adopt OGSA. First, the process of developing
the necessary high amounts of open standards that are conform to the large OGSA ecosystem
takes rather long, including the precise specification of all its required service interfaces and
their adoption by the respective technology providers. Second, the launch of OGSA-conform
components within production e-Science infrastructures consumes substantial time after being
evaluated for production usage having also no real aligned process of how to sustain interop-
erability and to improve them when the OGSA-based standardization groups are inactive after
reaching their specification goals.

2 CHAPTER 1. INTRODUCTION

The absence of a production-oriented and community accepted reference model is diametral to the
fundamental design principles of software engineering and has thus lead to numerous differ-
ent non-interoperable architectures of production e-Science infrastructures in the last decade.
One example of such an infrastructure is the Enabling Grids for e-Science (EGEE) [179] infras-
tructure, which recently concluded its process of being transformed into the European Grid
Infrastructure (EGI) [25] but still using essentially the gLite middleware [212] in production.
Another example is the Distributed European Infrastructure for Supercomputing Applications
(DEISA) [184] which uses the UNICORE middleware [293] for the common access to compu-
tational resources in production since many years. Other infrastructures of this kind in the US
are the TeraGrid [145] infrastructure, which uses the Globus middleware [167], but is evolving
towards the Extreme Science and Engineering Discovery Environment (XSEDE) [29]. The Open
Science Grid (OSG) [248] is also US-based and uses the Virtual Data Toolkit (VDT) [100] in pro-
duction since many years. Yet another e-Science infrastructure was established in the nordic
countries under the umbrella of the Nordic DataGrid Federation (NDGF) [61] that essentially
uses the Advance Resource Connector (ARC) system [160]. Unfortunately, the aforementioned
deployed technologies and their infrastructures are essentially not interoperable, mainly be-
cause of a limited adoption of a common reference model in the last decade and being unable to agree on
a common process of how interoperability can be established and then sustained.

This lack of interoperability is a hindrance since there is a growing interest in the coordinated
use of more than one infrastructures from a single client that controls interoperable compo-
nents in different e-Science infrastructures. A classification of different approaches is provided
in [268] and describes how e-Science infrastructures are used by scientists. Among simple
scripts with limited control functionality (i.e. loops), scientific application plug-ins, complex
workflows, and interactive access, there is also "infrastructure interoperability’ mentioned as one
approach to perform e-Science. A growing number of end-users (i.e. e-Scientists) would like to
benefit from interoperable infrastructures by having seamless access with their preferred tools to a wide
variety of services and different underlying resource types. This thesis reveal that many of these e-
Scientists raise the demand to jointly access both High Throughput Computing (HTC)-driven
infrastructures (e.g. EGEE/EGI, OSG) and High Performance Computing (HPC)-driven in-
frastructures (e.g. DEISA/PRACE, TeraGrid/XSEDE) from a single client (e.g. portal, desktop
tool, etc.). The fundamental difference between HPC and HTC is that HPC resources (e.g. su-
percomputers, large clusters, etc.) provide a good interconnection of cpus/cores while HTC
resources (i.e. pc-pools) do not. The e-Scientists also require seamless interoperability between
access technologies that manage different types of computations and those that manage data
stored in various resources used for computational simulations.

One goal of the aforementioned OGSA is to facilitate the interoperability of e-Science in-
frastructures, but in order to achieve interoperable e-Science infrastructures a reference model
like OGSA needs to be specified much more precisely. This problem is addressed with the ma-
jor contribution of this thesis that provides a reference model with an associated architectural
blueprint that is much more detailed based on an academic analysis of lessons learned gained
from production interoperability applications performed with different production e-Science
infrastructures. A detailed blueprint with a relatively abstract reference model is provided including
an associated reference architecture with necessary building blocks to implement concrete instances of
it that is all collectively named as Infrastructure Interoperability Reference Model (IIRM). In contrast
to OGSA, the IIRM is much more focussed on enabling production e-Science infrastructure inter-
operability and the thesis describes necessary entities and relationships using derived architec-
tures in applied research. A complementary seven segment-based process of how interoperability can
be theoretically established and sustained in production is provided and accompanying case studies
demonstrate the impact of the proposed reference model.

1.1. TERMINOLOGIES 3

1.1 Terminologies

The initial introduction elements have already introduced key terms that we need to define
more clearly at beginning of this thesis. These terms have similar meanings in different com-
munities, but even can be differently understood within the same community.

The term “interoperability” needs to be precisely defined since otherwise this term can lead
to various interpretations in this thesis. But the difficulty to define interoperability is best re-
flected in the fact that even IEEE had four definitions of interoperability in 2000 [200] at the
time when the work around e-Science infrastructures largely began. According to IEEE [200],
interoperability stands for:

o the ability of two or more systems or elements to exchange information and to use the
information that has been exchanged.

o the capability for units of equipment to work together to do useful functions.

o the capability, promoted but not guaranteed by joint conformance with a given set of
standards, that enables heterogenous equipment, generally built by various vendors, to
work together in a network environment.

o the ability of two or more systems or components to exchange information in a heteroge-
nous network and use that information.

A broad agreement on an exact definition of this term is non-trivial, because of the different
contexts and expectations in a time where computer science is constantly changing. New func-
tions and capabilities of systems influences this definition that in turn is another reason for the
creation of a wide variety of community-specific definitions of this term. A community-specific
definition relevant in this thesis is provided in [256], but for the purpose of this thesis extended
with some aspects raised by IEEE as follows:

Definition 1 (Interoperability) Interoperability is the native ability of e-Science technologies and in-
frastructures to exchange, understand, and use information directly via common open standard-based
message exchanges within a network of interoperable services.

Another often used term in context is ‘interoperation’ that is often used as a synonym for
interoperability, but is in this thesis specifically defined as the community-specific definition
given in [256] highlighting its difference to "interoperability’. Also the term "interoperation’ can
have various meanings, but within this thesis the community-agreed definition is as follows:

Definition 2 (Interoperation) Interoperation is what needs to be done to get production e-Science
infrastructures to work together as a fast short-term achievement using as much existing tuned (i.e.
hacks, workarounds, tweaks, etc.) technologies as available today.

This definition is very different than "interoperability’, which can be seen as the "perfect so-
lution’, in order to promote the understanding of interoperability issues and challenges by not
neglecting important details during operations accross infrastructures. Interoperation is not a
perfect solution and relies on workarounds, tweaks or hacks of technologies to get different
technologies or infrastructures to interoperate as a short-term achievement. Throughout this
thesis, the case of true interoperability is often discussed as rather long-term achievement and
reasons why early interoperation success stories have to use ‘'unconvential’ methods to achieve
short-term achievements are provided in context.

4 CHAPTER 1. INTRODUCTION

Finally, some terms indicate a transition phase of infrastructures, e.g. EGEE/EGI means
that during the time of the thesis studies a transformation of the infrastructure from EGEE
to EGI took place. The same phrasing of terms is also used for other e-Science infrastructure
transformation in this thesis.

1.2 Thesis Objectives and Contributions

The problem of e-Science infrastructure interoperability is highly underestimated since it is related
to issues that are part of applied research rather than pure academic research. With its applied nature,
the thesis contribution enables improvements in quality since interoperability is not any more
build on small hacks, tweaks, or workarounds within technologies thus delivering significant
value to end-users with solutions in a more stable way than before. This thesis offers also
improvements in quantity, because specific instances of the proposed IIRM are more easier
used in use cases compared to typical pair-wise infrastructure interoperability setups.

The academic studies start by reducing the scope from being relevant to all existing e-Science
technologies to only those that are majorly important to perform e-research with state-of-the-
art production e-Science infrastructures. In contrast to OGSA this thesis thus does not attempt to
address all problems arising in e-Science infrastructures, but focuses on the significant basic
aspects that enable e-Science infrastructure interoperability towards production usage by end-
users. In other words, the reference model does not aim to replace OGSA but rather trims it
down in functionality by dropping several less important parts of it and refining other parts
that are mostly relevant to interoperability of production e-Science infrastructures today.

In a second step, the thesis evaluates, extends, and enhances existing use-case oriented standards-
based approaches with aspects originating from practical field experiences obtained via produc-
tion applications across infrastructures. Several contributions of this thesis are based on an
academic analysis of lessons learned gained from scientific applications requiring resources in
more than one e-Science infrastructure.

Apart from these initial studies [256], the three accompanying academic case studies con-
tributed to the lessons learned and play a significant role in the verification and validation of
the significance, impact, and applicability of the IIRM. These three case studies are in-silico
drug discovery in the bio-informatics domain (i.e. WISDOM [259]), the human body as a sin-
gle system (i.e. VPH [263]), and several codes of the fusion community (i.e. EUFORIA [225])
and all of them contributed to the experience of using emerging open standards in IIRM de-
rived production architectures of infrastructures. In order to take this experience obtained over
years into account, the thesis contribution is based on open standards that are in turn refined
to add certain investigated previously missing concepts. The thesis thus provides feedback to
the standardization process with its findings.

The third step that is remarkable in this thesis is the creation and implementation of a whole
process of how interoperability can be achieved with e-Science infrastructures in a sustainable way today.
This method is complementary to the design of the reference model and with this goes beyond
a typical interoperability framework or architecture like the OGSA.

In addition to this rather new method, we also address so-called ‘missing links” with a new
way of increasing the effectiveness of ‘standardization” by linking the specifications of differ-
ent technical areas where possible. Standardization groups consider challenges of their own
specific area and perform often standardization in isolation from each other. In contrast, the
contribution of this thesis tries to gain benefit from synergies that arise by using standards from
different areas such as information, data, compute, and most notably security together. With
this new way of ‘performing standardization’ as an inter-disciplinary research a reference model is

1.2. THESIS OBJECTIVES AND CONTRIBUTIONS 5

created that goes far beyond the functionality of a set of standards-compliant architectures that
would only enable partial interoperability in production e-Science infrastructures today.

In a fourth step, the typical orientation of reference models in e-Science is changed from intra-
Grid architectures (i.e. one technology) into a model that is specifically designed to enable
interoperability across infrastructures (i.e. multiple architectures and technologies). In contrast
to OGSA, which aims to design one technology architecture, the contribution in this thesis fo-
cus on functionality required to enable interoperability between different types of technology
architectures by changing the focus to their functionality overlaps and as such on “infrastructure-
oriented architectures’. This reference model foundation enable algorithms that take advantage
of both HTC and HPC computational paradigms in one scientific workflow leading to the def-
inition and application of a so-called "e-Science design pattern’. Similiar models in e-Science and
e-business only address component-level interoperability aspects such as concrete functional-
ity and semantics.

In contrast, the whole process view of reaching production e-Science infrastructure inter-
operability is changed in this thesis towards a concrete seven segment-based process of how
to achieve and sustain it. True production e-Science infrastructure interoperability can be only
achieved when operational constraints as well as policy restrictions are taken into account that
are both part of this proposed process. The thesis contributions contain real production e-
Science infrastructure impacts being achieved by an active implementation over years of the
proposed process as another key contribution of this thesis. The reference model enables tech-
nical infrastructure interoperability, but also offers guidance on these operational and policy
aspects that are necessary to sustain interoperability.

All these steps enable the formulation of the major research question of this thesis that is
"How a reference model for a network of interoperable services in production e-Science infrastructures can
be defined’. Focusing on this general research question, but not losing sight of general standards-
based methods and software engineering reference model basics, the research challenges, thesis
objectives, and contributions of this thesis can be summarized as follows:

o First, the thesis investigates an approach for a reference model that represents a trimmed
down version of OGSA in terms of functionality and complexity, while on the other hand
being more production-oriented and thus easier to implement. Being applicable in pro-
duction e-Science infrastructures that cope with change and policy constraints, the thesis
offers also a complementary process of establishing and maintaining their interoperabil-
ity.

e Second, the thesis integrates valuable field experience and lessons learned from produc-
tion e-Science infrastructure interoperability into the IIRM as well as the seven segment-
based process. The reference model consists of core building blocks that are based on
early versions of refined open standards thus indirectly also providing feedback to stan-
dardization activities. This is particularly the case with several specifications such as the
Job Submission and Description Language (JSDL) [115] that have been traditionally more
used in HTC-oriented infrastructures instead of HPC-oriented ones.

e Third, the thesis aims to fill ‘missing links’ between open standards by applying an inter-
disciplinary research approach addressing the areas of information, data, compute and
security together. The IIRM aligned infrastructure interoperability process provides a
new method in the e-Science architectural framework landscape thus realizing a reference
model design that is also able to respond to ‘dynamic changes’.

o Fourth, this thesis changes the foundation of reference models in e-Science by providing
concepts across infrastructures and a whole interoperability process instead of a purely

6 CHAPTER 1. INTRODUCTION

intra-Grid architecture like OGSA does. A new form of algorithm is defined as an e-
Science design pattern that refers to the joint use of HTC-based and HPC-driven e-Science
infrastructures. The IIRM and associated architecture work changes the approach of a
technology-oriented architecture to an infrastructure-oriented architecture.

e Fifth, the significance of the IIRM is shown with applied research with the three accom-
panying academic case studies WISDOM, VPH, and EUFORIA. The process implementa-
tion lead to a production relevant reference model design and its applications verify that
the IIRM achieves real impact on production e-Science infrastructures.

1.3 Related Topics Out of Thesis Scope

Production e-Science infrastructures encompass a large field of technologies, organizations,
and approaches that all in some form or another need to be inherently interoperable. This
interoperability needs to be achieved on different levels leading to technical, semantic, legal,
and ethical issues. This thesis tackles mostly technical and partly semantic issues, while related
legal issues (e.g. work with patient-specific data) or ethical issues are out of scope of this thesis.

But this thesis focusses on the computational functionalities and only related data stor-
age and transfer capabilities (e.g. data-staging [115]) for existing e-Science infrastructures
with a particular focus to support production e-Science applications. In terms of the reference
model and its associated architecture work the focus relies on core building blocks to support
computational-intensive e-Science applications with processing functionality and related data-
staging capabilities. The thesis is thus mostly covering topics in compute oriented e-Science
infrastructures and does not enter the complex field emerging under the umbrella term ’big
data’. Out of scope of this thesis are thus advanced data concepts that offer ‘logical and physi-
cal data mappings’ such as those from data catalogues sometimes used in conjunction with data
storage systems (e.g. dCache [178]). This topic and its interoperability and synchronization is
too complex to be tackled as part of this thesis. Also advanced functionality and requirements
of large data infrastructures such as within the European Data Infrastructure (EUDAT) [22] are
out of scope thus not addressing persistent identifiers [28], or policy-based data management
like with iRods [229] for example. Although some parts of the proposed thesis elements might
reach into these infrastructures it is considered out of scope. Another key related topic is the
underlying network infrastructure where this thesis is build on like GEANT [1] in Europe for
example. Although this thesis significantly relies on network capabilities, the thesis does not
enter this complex technical field and assumes network connectivity as given.

In more detail, several important topics related to production e-Science infrastructures are
out of scope of this thesis that are the following. The thesis does not tackle any education
and training of e-Infrastructures as tackled by the e-Infrastructure Reflection Group (e-IRG)
Education and Training Task Force (ETTF) [206]. Ticketing systems, help desks, and general
support structures are another essential part of production e-Science infrastructures. Also these
topics are kept out of this thesis although the interoperability of different ticketing systems is a
concern today.

The objectives of this thesis also do not tackle any issues about low-level accounting, billing
frameworks, pricing models, resource trading, and other related aspects that are commercially-
driven and not directly relevant for e-Science infrastructures. Although we address the tracking
of resource usage with a certain format, we do not provide details about its provisioning and
distribution apart from the fact that it should be used together with messaging-based systems
or via the use of information systems where applicable.

1.3. RELATED TOPICS OUT OF THESIS SCOPE 7

Another related field the thesis studies have been software licenses used in e-Science en-
deavors that are not directly usable in a shared fashion. Examples are those purchased by
research institutes like FlexX [30] or GAUSSIAN [35], MATLAB [298], being rather expensive
and that do not directly support a broad sharing of purchased licenses within e-Science in-
frastructures today. In some cases, special granted usage has been agreed with the software
providers like within the case of FlexX that offered several free licenses for the work within
WISDOM related to this thesis. Such (dynamic) licensing models are interesting and required
for a broad usage, but are kept out of this thesis to remain focus on the rather technical as-
pects. Some aspects of such discussions are part of policy work that in turn is considered at
least partly within the seven segment-based process of this thesis. For a more formal sound dy-
namic approach and valid methods, the SMARTLM EU project [90] provides more information
and particularly works on exactly the aforementioned license problems.

Other fields of interest in context that are out of scope of this thesis are Service Level Agree-
ments (SLAs) or issues of co-allocation and co-scheduling of compute resources that are related
to this topic. Also not directly covered are workflows that use, for instance, workflow lan-
guages like the WS-Business Process and Execution Language (WS-BPEL) [110] often used in
commercial setups. In this research field, the BISGrid EU project [2] provides useful pieces of
work that can be used together with the proposed reference architecture core building blocks.
We can also state that workflow engines in general might consider the IIRM-guided reference
architecture as an opportunity to perform basic executions on e-Science infrastructures through
open standards while the general handling of Directed Acyclic Graphs (DAGs) or other forms
of workflows have been kept out for clarity.

Although this thesis briefly tackles the compilation problem of typical jobs submitted to
computing resources, a full blown compile-debug interactive solution or related aspects of
computational steering are also out of scope of this thesis. Those approaches often require
some form of interactive channel to the applications that essentially require full frameworks
(e.g. like being part of computational steering approaches [258]) that establishes and maintains
interactive bi-directional channels in e-Science infrastructures. Such approaches have been out
of the scope of this thesis to remain focus and a broader adoption of the reference model, but
the work performed around the IBM Parallel Tools Platform (PTP) [74] is suitable in context of
this thesis.

In production e-Science infrastructures it is important that services are properly monitored
with various kinds of technologies (e.g. NAGIOS [126], etc.) but also this topic is out of scope
while we indirectly provide its foundation via information provisioning in a dedicated infor-
mation model (i.e. GLUE [113]). Monitoring is another topic for interoperability of production
e-Science infrastructures’, the focus however is set on partly enabling functionalities (i.e. infor-
mation models) and not on monitoring systems and their information sources (e.g. NAGIOS
probes [126]). Although the topic of an information model is covered in this thesis, it does not
tackle the plethora of different services and approaches available in the field of information
services and service registries. The wide variety of existing solutions in the field is too diverse
to be used in the thesis and a standardisation of these interfaces have been tried for years with-
out a common success. In the most cases, this thesis thus refers to mechanisms out of scope
of this thesis such as information systems based on the Lightweight Directory Access Protocol
(LDAP) [196] in context where required. More important is that the information retrieved by
this service follows a common schema with information that in turn is in scope of this thesis.

In many cases, the existing standard specifications used in this thesis have been defined
with a focus on supporting HTC-driven e-Science infrastructures and do not focus on HPC-
driven e-Science infrastructure demands. This thesis therefore focusses on many concepts that
extend the potential of existing specifications towards HPC environments while other HTC-

8 CHAPTER 1. INTRODUCTION

oriented topics such as brokering are left out for clarity. But it should be noted that a full
normative specification of these improvements is also out of scope of this thesis and needs to
be provided from relevant Standard Development Organizations (SDOs) like the Open Grid
Forum (OGF) [68] and existing specifications are references where possible. In this sense, this
thesis rather suggests certain concepts and approaches that have been given as a unique con-
tribution to the standardization process still ongoing within the Production Grid Infrastructure
(PGI) working group of OGF to influence the next iterations of emerging standards like JSDL
[115], GLUE2 [113], or OGSA-Basic Execution Service (OGSA-BES) [169].

1.4 Selected Publications and Demonstrations

All major parts of this thesis are published in peer-reviewed conference proceedings, scientific
journals, book chapters, and magazine articles. The major journal publications and contribu-
tions to book chapters and magazines are listed in Table 1.1 while peer-reviewed conference
contributions are listed as part of Table 1.2. Many of these publications have been co-authored
with a many co-workers on technical or use case topics over the years. Both tables provide
information in the context of their unique contribution to this thesis while evidence supporting
these contributions is provided in Chapter 5 and 6.

All in all, these publication proof that the contributions are accepted by the e-Science com-
munity via the peer-review procedure. These publications also proof that the contributions
have been found before any standardization community work has started and thus are able to
claim that all the work around the reference model is truly uniquely the contribution of this
thesis based on academic work over years. The publications over the years clearly illustrate
that early findings have been published continously along the way of the academic process
of creating the IIRM and its associated architecture work and validating it with production
e-Science applications on existing production e-Science infrastructures.

Complementary to the academic studies, many real prototypes as well as application case
studies in the context of real production e-Science infrastructures have been used to explore
findings that arise in production usage of technologies. In order to proof that the work is rel-

Ref. [Publication Title | Published in | Thesis Material

[256] Interoperation of World-wide Concurrency Interoperation
Production e-Science and Computation prototypes; documented
Infrastructures Practice and lessons learned;

Experience, No.21 infrastructure
Wiley, 2009 standards analysis;

[272] Advances by using Interoperable Journal of IIRM architectural
e-Science Infrastructures - The Cluster Computing design; Case studies
Infrastructure Interoperability Reference Vol.12 (4) WISDOM and VPH;
Model applied in e-Science Springer, 2009 Interoperability

Approach Classification;

[284] Recent Advances in the inSiDE UNICORE and

UNICORE 6 Middleware Magazine, Vol.8 standard adoptions;
GCS,2010

[270] OGF Production Grid Infrastructure: OGEF GFD 180 Our PGI evidence on
Use Case Collection - Version 1.0 2011 OGF standard refinements

[254] e-Science Infrastructure Interoperability Guide - Book Chapter in Seven segment-based
The Seven Steps towards Guide to e-Science, process for e-Science
Interoperability for e-Science Springer, 2011 interoperability;

[235] UNICORE in XSEDE: inSiDE Open Standards in
Towards a Large-Scale Scientific Magazine, Vol. 9 XSEDE; XSEDE
Environment based on Open Standards GCS 2011 architecture

Table 1.1: Relevant contributions to books, magazines, and journal publications.

1.4. SELECTED PUBLICATIONS AND DEMONSTRATIONS 9

evant for the e-Science community in general and for production e-Science infrastructures in
particular, many demonstrations at events have been performed. The work around the WIS-
DOM case study [259] was presented at the Supercomputing conference 2007 in Reno at the JSC
booth [94]. While continuing the work around WISDOM, another case study named as VPH

Ref. [Publication Title [Publishedin [Thesis Material

[262] A DRMAA-based Target ICPADS 2006 UNICORE DRMAA
System Interface Framework adoption lessons learned;
for UNICORE DRMAA HPC experience;

[177] LLView: User-Level GES 2007 UNICORE UR and RUS
Monitoring in Computational Grids adoption lessons learned;
and e-Science Infrastructures UR HPC refinements;

[302] Using SAML-based VOMS Europar 2007 OGSA-BES and
for Authorization within SAML prototypes;

Web Services-based UNICORE Grids SAML-based VOMS;

[220] Open Standards-based Interoperability e-Science 2007 |OGSA-BES lessons learned;
of Job Submission and Management Interfaces gLite and UNICORE
across the Grid Middleware interoperability;

Platforms gLite and UNICORE security plumbings;

[267] Experiences and Requirements for Korean AHM Trimmed down OGSA
Interoperability between HTC- and 2008 idea of a reference
HPC-driven e-Science Infrastructures model;

[191] Benchmarking of Integrated EuroPar 2008 OGSA-BES benchmarks and
OGSA-BES with the Grid Middleware lessons learned;

UNICORE proxies;

[259] Improving e-Science with IEEE WISDOM Use Case applications;
Interoperability of the e-Infrastructures MIPRO 2008 ITRM instance for
EGEE and DEISA bio-med applications;

[268] Classification of Different Approaches e-Science 2008 |HTC and HPC interoperability
for e-Science Applications in Next Generation identified as being
Computing Infrastructures crucial for end-users;

[265] Concepts and Design of an ACC 2009 Manual data-staging
Interoperability Reference Model for concept;

Scientific- and Grid Computing Infrastructures

[224] Enabling Grid Interoperability by ICIS 2009 OGSA-BES and
Extending HPC-driven Job Management GLUE?2 prototypes;
with an Open Standard Information Model

[193] Life Science Application CBMS 2009 WISDOM and
Support in an Interoperable sequence concept;
E-Science Environment AMBER environments;

[261] Improvements of Common Open Grid Standards HPGC 2010 JSDL refinements;
to Increase High Throughput and JSDL with GLUE2 elements;
High Performance Computing Effectiveness e-Science application concepts;
on Large-scale Grid and e-Science Infrastructures common execution

environments concept;

[263] Exploring the Potential of Using Multiple CCGrid 2010 VPH Use Case applications;
e-Science Infrastructures with Emerging Open ITRM instance for
Standards-based e-Health Research Tools e-Health applications;

[266] Towards Individually Formed Computing MIPRO 2010 plumbings concept;
Infrastructures with High Throughput and High benefits of network of
Performance Computing Resources of Large-scale interoperable services;

Grid and e-Science Infrastructures

[225] Lessons learned from ICIET 2010 EUFORIA applications;
jointly using HTC- and HPC-driven IIRM instance for
e-science infrastructures in Fusion Science fusion applications;

[184] DEISA: e-Science in a e-Challenges DEISA interoperability
Collaborative, Secure, Interoperable 2010 work on standards
and User-Friendly Environment and applications;

[264] Requirements of an MIPRO 2011 critical OGSA analysis;
e-Science Infrastructure Interoperability indicators and factors as
Reference Model reference model criteria;

[260] e-Science Infrastructure Integration Invariants HPGC Production Infrastructure
to Enable HTC and HPC 2011 Integration Invariants
Interoperability Applications and IIRM Constraints;

Table 1.2: Conference proceedings publications being directly or indirectly related to the thesis.

10 CHAPTER 1. INTRODUCTION

[263] emerged that was demonstrated together with VPH e-Scientists at the Supercomputing
Conference 2008 in Austin at the JSC booth [95]. The contributions around the third case study
named as EUFORIA [225] have been demonstrated together with EUFORIA project members
at the Supercomputing Conference 2009 in Portland at the JSC booth [96].

The author also gained considerable profile in terms of e-Science infrastructure interoper-
ability by not only chairing the renowned OGF Grid Interoperation Now (GIN) [256] group
over years, but also by conducting several workshops on the topic including being member
of various topic-related program committees. The International Grid Interoperability and In-
teroperation Workshop (IGIIW) 2007 at the e-Science conference 2007 in Bangalore [46] was
organized by the author. The IGIIW 2008 that was held in conjunction with the e-Science con-
ference 2008 in Indianapolis [47] was also organized by the author. A workshop in 2009 was
not planned in favour of editing a special issue ‘Grid Interoperability’ [269] in the Journal of
Grid Computing together with G. Terstyanszky. In 2010 another event in the specific field
named as the Distributed Computing Infrastructure Interoperability Minisymposium [12] at
the PARA2010 in Reykjavik was organized by the author.

1.5 Thesis Structure

Chapter 1 of this thesis introduces the problem domain and highlights the major thesis con-
tributions that overcome several limitations in production e-Science infrastructure interoper-
ability. As part of the introduction the terms “interoperability’ and “interoperation” are defined,
because they often lead to confusion when used in the same context. Chapter 1 also gives in-
sights which technically interesting related topics are kept out of this thesis in order to preserve
a clear and well-formed focus of the academic studies.

After the introduction in Chapter 1, the scene is set in Chapter 2 with a survey of state-of-
the-art e-Science infrastructures and their demands for sustainable interoperability motivated
by e-Science applications. This chapter introduces fundamentals from the scientific field such
as e-Science itself, middleware technologies, or open standards that are all relevant to the sci-
entific investigations of this thesis. It defines essential terms (e.g. computational Grids) and
wordings (e.g. resource sharing) that are used throughout the thesis and brings clarity to sev-
eral concepts that are sometimes aligned with different understandings.

Chapter 3 surveys existing work in the field of e-Science interoperability and provides cer-
tain factors and indicators how solutions that tackle interoperability can be verified. A deeper
survey is provided for component-based approaches that tackle interoperability in many cases
on a rather short-term pair-wise fashion that have all contributed significantly to the ‘lessons
learned” incorporated in the results of this thesis. Complementary to the aforementioned sur-
vey, we analyzed several existing reference models in order to understand if those might be a
good basis to start from heading towards more preferred long-term solutions guided by ref-
erence models and associated architecture work that are considered as such. Conclusions of
this particular chapter majorly influence the requirement setup as well as the design of the
proposed reference model and its associated elements.

Based on the aforementioned lessons learned and the survey of related work in the field,
Chapter 4 defines reference model requirements that satisfy the end-user requirements for in-
teroperable production e-Science infrastructures. These requirement setup forms the founda-
tion for the definition of the functionality that the core building blocks of the reference model
design needs to provide.

The major contributions of this thesis are presented in Chapter 5 addressing the require-
ments of Chapter 4 thus providing an abstract model that is augmented with a guiding process

1.5. THESIS STRUCTURE 11

of how such a model can lead to sustained interoperablity of e-Science infrastructures. The
chapter gives insights into the proposed seven segment-based process to establish and sustain
interoperability as a long-term achievement. Being essentially the first part of this process, the
proposed reference model named as the Infrastructure Interoperability Reference Model (IIRM)
is presented in detail.

Based on the abstract reference model and the seven segment-based process, concrete im-
plementations can be formed out of them in Chapter 6 that are related to existing open stan-
dards and have a focus on the adoption of the model in the context of existing production
infrastructures. The underlying research problem and its solution have practical consequences
with “applied research’ contributions providing an impact that is verified via the three accom-
panying case studies (WISDOM, VPH, and EUFORIA). The experience to refine standard-based
reference model entities to enable required concepts are outcomes of rather academic work
based on investigating lessons learned gained by production experience from real e-Science
applications over the last years. This is equally valid for the seven segment-based process to-
wards sustained interoperability that complements the findings of the reference model itself.
Both complementary approaches bear the potential to overcome many interoperability chal-
lenges stated in Chapter 2 and Chapter 3.

Finally, Chapter 7 provides conclusions of this thesis and offers interesting aspects for future
work that can be based directly or indirectly on the findings of the academic studies of this
thesis.

12

CHAPTER 1. INTRODUCTION

Chapter 2

State-of-the-art e-Science
Infrastructures

The last chapter contextualises the scientific field that is commonly known as 'Grid computing’,
or more recently ‘e-Science’, with a focus on infrastructures and their technologies. The prob-
lem statement of the overall thesis research is introduced and the significance of a potential
response to this problem is motivated. This thesis essentially tackles one particular research
question that is, "How a reference model for a network of interoperable services in production e-Science
infrastructures can be defined’. But before suitable solutions to this research question are in-
vestigated during the course of this thesis, many aspects of the current practice in the Grid
community are introduced, including a precise definition of various used terms.

This chapter defines and clarifies relevant terms as well as fundamentals of e-Science in or-
der to lay a foundation for later chapters. Known sources are referenced where possible to keep
the technical depth of each of the introductory topics to a reasonable level of understanding,
required to follow thesis approaches. Hence, overviews are provided without too many tech-
nical details that can be looked up in other publications, technical documents, or even precise
normative specifications.

The first section describes and defines key concepts of the state-of-the-art of production e-
Science infrastructures. The motivation behind e-Science infrastructures is given and where
they can be seen in the context of traditional scientific methods (e.g. theory, experimentation,
etc.). Relevant e-Science infrastructure examples are described and several concepts that en-
able their seamless sharing of resources are briefly reviewed. Also, a classification of e-Science
applications is given that demonstrates how e-Science infrastructures are used in daily science
today.

A wide variety of technologies and open standards are important cornerstones of this thesis
and therefore the second section reveals which particular set of them are important in this
thesis. Overviews of numerous relevant technology concepts are introduced such as resource
management systems, middleware, or service-oriented technologies. Real technological examples that
play a significant role in production e-Science infrastructures are provided in context. Related
to these technologies, important common open standards are described that are later used as a
basis for the thesis reference model design.

The final section motivates more clearly investigations into solutions to the given funda-
mental research question. Along with a classification of existing production e-Science infrastruc-
tures that point to existing interoperability challenges, elements of the research question are
precisely defined. All in all, a model of the problem space is created that goes beyond the prob-
lem statements presented in the introduction emphasizing on known limitations in achieving
interoperability between production e-Science infrastructures today.

14 CHAPTER 2. STATE-OF-THE-ART E-SCIENCE INFRASTRUCTURES

2.1 Grid and e-Science Infrastructure Concepts

This section introduces the basic concepts and ideas related to the term ‘e-Science infrastructures’
like "resource sharing” and provides insights into how their end-users take advantage of them via
so-called "e-Science applications’.

2.1.1 e-Science Infrastructure Fundamentals

In order to better understand the term e-Science, computational science is briefly reviewed and
put it in the context of current traditional science. Scientists regard computational techniques
and thus traditional scientific computing as a third pillar alongside experimentation and the-
ory as shown in Figure 2.1. This does not mean that a theoretical and experimental scientist
automatically becomes a computational scientist and thus not necessarily uses the illustrated
e-Science infrastructures. Instead, the role of the computational scientists takes advantage of
the findings of scientists from other pillars (i.e. certain theories) or proves experimental re-
sults (i.e. laboratory measurements) with computation thus combining these outcomes with
the powers of computing. The roles of the different types of scientists are illustrated in Figure
2.1 in the context of the different pillars and their key contents.

The first pillar stands for a certain theory or specific model in a given research field. One ex-
ample of this particular pillar is the outcome of scientists that use complex mathematical mod-

e-Science:
multi-disciplinary an
new kinds of collaboration
in key areas of science em?mw
Science
(e-Science)
e-Scientists
Science — scientific innovation — understanding of earth fundamentals
Scilence
in context
Pillar 1. Pillar 1. Pillar 11 of three
Theory Computational Techniques Experiment Fundamental
{models) (simulation) (laboratory) pillars
— all
’ experimenta P
theoretical i contributing
scientist fo
scientific
theories computational scientific Innovation
&laws scientist data foday
a . a Next Generation Infrastructures \._' ')&;ﬁ e-Science
advanced (Data + KnowHow + Resource Sharing ;,{é;mds:“.s_\, infrastructures
Yok £ detcas +well interconnected resources)

Figure 2.1: The three fundamental science pillars in context of e-Science.

2.1. GRID AND E-SCIENCE INFRASTRUCTURE CONCEPTS 15

els to predict the diffusion of harmful materials in soil. The second pillar points to experimental
data taken in laboratories that use ‘environments with certain conditions’ or take advantage of
technical support via ‘specific instruments’. Examples of such experimental outcomes are mea-
surements of aeroplane behaviour in air conducts or probes of material, for instance, of harmful
materials in soil analysed via relevant instruments in a laboratory and their data results. The
computational techniques in the third pillar allows for computer-simulations based on efficient
numerical methods and known phyisical laws that is known as traditional scientific computing
using elements of other pillars or proving them. One example are scientists that compute the
flow of water underground and simulate the way in which various harmful substances react
with potentially damaging consequences.

In addition to the aforementioned three pillars, the term enhanced science (e-Science), some-
times also called electronic science has evolved in the last couple of years. A wide variety of
different defintions and interpretations exist. The e-IRG describes "e-Science” in the 2009 white
paper as ‘the invention and application of ICT-enabled methods to achieve new, better, faster
or more efficient research, innovation, decision support or diagnosis in any discipline. It draws
on advances in computing science, computation, and digital communications’ [206]. Another
interpretation of e-Science is given in the 7th EU concertation meeting report 2009: “e-Science
can be defined as science that may necessitate the utilisation of non-trivial amounts of comput-
ing resources and massive data sets to perform scientific enquiry; Science that requires access to
remote scientific instruments and distributed software repositories; Science that generates data
that may demand analysis from experts belonging to multiple organisations and are specialists
in different knowledge domains - such Science is usually carried out in distributed environ-
ments...” [134]. The definition of e-Science used in this thesis is kept very simple and is based
on the following definition given by John Taylor in [19]:

Definition 3 (e-Science) e-Science is about global collaboration in key areas of science and the next
generation infrastructure that will enable it.

This definition has been often extended in several ways to include a particular focus or a
dedicated technology. For instance, dynamic deployment features achieved in using virtualisa-
tion techniques within so-called clouds [176] as another form of next generation infrastructures
have been added as another feature to this definition. An analysis by Foster et al. in [176]
provides more information about clouds in context of e-Science.

The e-Science definition above is taken as a basis in this thesis, because it is the initial and
mature definition of e-Science. When this definition is put in context to the traditional sciences,
the aforementioned next generation infrastructures can be considered as a "solid basement” for
the three pillars. The infrastructure basement together with the elements of the three pillars
enable e-Science that can in turn be seen as a roof, also shown for clarification in Figure 2.1.
Hence, e-Science is about the collaboration in key areas of science (i.e. pillars) to extend the
potential of traditional science with the help of next generation infrastructures. Collaboration
in key areas of science can either be within a scientific discipline or across different scientific
disciplines sharing hardware, data, resources, approaches and knowledge.

Over the years different names for such next generation infrastructures appeared. In the
US these infrastructures are known as cyber-infrastructures, while in Europe they are named
as e-Infrastructures [134] or Grids. More recently, the term Distributed Computing Infrastructures
(DCIs) evolved that is not used in this thesis because of its lack of indicating the relevance of
data in context. In the context of this thesis, next generation infrastructures are implemented
using Grid concepts and are named e-Science infrastructures to reflect their scientifically-driven
priorities. But all the different names share the same common methods that are based on
several new sharing techniques used with traditional principles and paradigms of distributed

16 CHAPTER 2. STATE-OF-THE-ART E-SCIENCE INFRASTRUCTURES

systems [296]. The next generation infrastructures in this thesis are represented by e-Science
infrastructures that are defined as follows:

Definition 4 (e-Science Infrastructure) An e-Science infrastructure is a problem solving infrastruc-
ture that enables innovation through data, knowledge, and (dynamic) resource sharing via high perfor-
mance interconnections and the provisioning of services that support this sharing.

Examples of European e-Science infrastructures are EGEE/EGI, DEISA /PRACE or the Nor-
duGrid infrastructure [157]. The EGEE/EGI infrastructure consists of numerous infrastructures
managed by the National Grid Initiatives (NGIs) [58] that in turn also represent smaller e-
Science infrastructures. ‘In 2010 this infrastructure supports world class science in over 50 countries,
consisting of about 300 sites, encompassing more than 150.000 processors, 25 petabytes of disk storage
and 40 petabytes of long-term tape storage-enough to store 400 million four-drawer filing cabinets full of
text’ [161]. In the US, known e-Science infrastructures that can be categorised according to this
e-Science definition are TeraGrid /XSEDE and OSG. All these infrastructures are named as ‘pro-
duction e-Science infrastructures’” in order to emphasise on the fact that they are used by scientists
to perform real science on a daily basis. They are different to non-production infrastructures
that exist reaching from small e-Science testbeds to testing or pre-production infrastructures.
These latter infrastructures are not used to perform e-Science but to test technology or deploy-
ment issues and are thus different from production e-Science infrastructures that are defined
as follows:

Definition 5 (Production e-Science Infrastructure) A production e-Science infrastructure is an in-
frastructure that is available on a 24/7 basis and used by scientists on a daily basis to perform e-Science.

2.1.2 Resource Sharing in e-Science Infrastructures

The previous section mentioned sharing techniques that stand for a couple of concepts enabling
data, knowhow and resource sharing being all relevant in e-Science. More details about resource
sharing as one of the key concepts in e-Science infrastructures are given in this section. This
concept enables solutions to scientific problems with having a more aggregated amount of
resources. An e-Science infrastructure connects multiple smaller, regional, and national infras-
tructures together. Each consists of a set of resources that are considered to be shared among the
scientific communities. Therefore, an infrastructure resource is defined as follows.

Definition 6 (Infrastructure Resource) An infrastructure resource is any kind of resource (computa-
tional resource, data resource, large scientific device or instrument, etc.) as long as it provides a suitable
interface for data and/or control exchange with e-Science infrastructures.

Examples for such infrastructure resources are supercomputers, clusters, network devices,
mass storage elements, large telescopes, high-end visualisation devices and magnetic reso-
nance tomographs (MRT). The basic idea of an e-Science infrastructure is that such infrastruc-
ture resources are combined or shared among scientific communities to solve a specific scien-
tific problem. Examples of such resources can be found in Figure 2.2. A more concrete example
is the fundamental concept behind the Worldwide Large Hadron Collider (LHC) Computing Grid
(WLCG) [104] that is one scientific application community that takes advantage of the e-Science
infrastructure EGEE/EGI. "The LHC is now fully online and the experiments will produce up to 15
petabytes of data per year (roughly 3 million DVDs or 20.000 years of music in MP3 format) [161].
WLCG scientists analyse physical data on distributed computing clusters (infrastructure re-
source A) that are collected by a LHC high-energy physics experiment detector (infrastructure

2.1. GRID AND E-SCIENCE INFRASTRUCTURE CONCEPTS 17

arid eerrnees s .

Grid Clien s Grid %

Web i Service 1'%, H Client
Client Q e, H
- :
Entertainment Client Grid =

J Resource "'--,_.'(‘i% H .{ Telescope

i : o
H o

g
/ o I Supercomputer!
g e

A e
Web S VO:A s
Server H :

Storage
Devices

Web Clients

Web Server

IS Server E-Mail server -_" 3

(i) The Web with interconnected clients and servers (ii} The Grid with interconnected Grid services and clients

Figure 2.2: Examples of Web and Grid difference: Dynamic sharing in VO:A and VO:B of a supercomputer.

resource B) and then store results for later analysis in mass storage elements (infrastructure re-
source C). Powerful network devices and network connections (infrastructure resource D) are
used for the transport of the data between the Grid Resources A, B and C. The overall benefit
of this approach is the seamless integration of the aforementioned resources into one highly
flexible, secure and reliable infrastructure representing a "tool” for these scientists.

This example reveals the tight connection between e-Science infrastructures and so-called
'Grid infrastructures (aka Grids)’. The introduced concept of e-Science infrastructures is very
abstract in its definition and nature and a more concrete implementation of these abstract ap-
proach are Grids. e-IRG describes in the 2009 white paper Grid as follows: 'Grid is a system that
federates, shares and coordinates distributed resources from different organisations which are not subject
to centralized control, using open, general-purpose and in some cases standard protocols and interfaces
to deliver non-trivial qualities of service. The Grid is used by Virtual Organisations, i.e. thematic groups
of users crossing administrative and geographical boundaries’ [206].

In [172], Foster et al. introduced the Grid concept with an analogy to the electric power grid,
in that it provides pervasive access to electricity and had a dramatic impact on human capa-
bilities and society. In extended geographical regions, such as whole nations (e.g. Germany
or greater regions such as north America), the power grid essentially forms a single entity that
provides power to countless electrical devices. This is mostly done in an efficient and reli-
able fashion, while the power grid consists of thousands of different generators linked with
billions of outlets via a very complex web of physical connections. Given this analogy and spe-
cific computing oriented e-Science infrastructure resources, the following definition of a Grid
infrastructure can be defined:

18 CHAPTER 2. STATE-OF-THE-ART E-SCIENCE INFRASTRUCTURES

Definition 7 (Grid Infrastructure) A Grid infrastructure (aka Grid) integrates heterogeneous hard-
ware and software components of geographically dispersed infrastructure resources that are owned by
different organisations into one efficient and reliable network of connections. As a concrete implementa-
tion of an e-Science infrastructure, a Grid provides dependable, consistent, secure and pervasive access
to a wide variety of infrastructure resources that can be seamlessly shared among its users.

In the aforementioned analogy, the web of physical power lines is mapped on to a web
of physical network connections between infrastructure resources as illustrated in Figure 2.2. It
also offers a comparison of the Web with the Grid approach. Also the ‘geographically dis-
persed power grid generators’ are mapped onto infrastructure resources used for computing
(e.g. supercomputer) or data storage (e.g. storage devices) provided by different world-wide
universities or research facilities. While this analogy between an electrical power grid and a
Grid infrastructure is very clear, many discussions question the truth of it. Electricity is very
different from computation and data in many respects, and the world-wide power grid still
has some interoperability limitations to overcome too despite the fact that commercial energy
providers put many millions into this. It is a known problem that power plugs in Germany
are quite different from power plugs in US and the different voltages and frequencies in these
countries can also cause problems with electrical devices.

In contrast to the electrical power grid that “only” transports electrical power, a Grid infras-
tructure provides a wide variety of services, including the use of standardised text-based proto-
cols through to different proprietary binary encoded results of scientists. Grid infrastructures,
and thus e-Science infrastructures, are much more complex than electrical power grids in terms of
standard-compliance, reliability, efficiency, and most notably interoperability. They provide a
wider spectrum of services and their access is therefore governed by more complicated issues
such as security concerns, and a broader set of protocols, standards, or operational policies. An-
other important difference to the ‘sharing of static power generators’ is dynamic infrastructure
resource sharing that is often performed via so-called Virtual Organizations (VOs) [172]. These
are defined as follows:

Definition 8 (Virtual Organisation) A virtual organisation (VO) is a set of individuals and/or in-
stitutions that share infrastructure resources within an e-Science infrastructure within a certain period
in time. It represents a temporary community overlay over classical organizational structures. VOs can
vary enormously in their purpose, scope, size, duration, structure, community, and sociology.

As shown in Figure 2.2, VOs enable dynamic sharing of infrastructure resources such as
supercomputers, but also clusters, mass storage systems or other devices within e-Science in-
frastructures. Dynamic sharing adds another factor of complexity to e-Science infrastructures,
but this concept is not being used by every e-Science infrastructure. For instance, EGEE/EGI
uses the VO concept while DEISA /PRACE does not. VOs often differ in many respects such
as the number and type of participants, the types of activities, the duration and scale of the
interaction, and also the different types of infrastructure resources being shared. Examples of
the VO concept are the different experiments and detectors (Alice [106], Atlas [105], CMS [148],
LHCb [111], etc.) of the LHC where for instance Atlas also forms a VO within the EGEE/EGI
infrastructure. The VO concept implies many technical challenges due to sharing relationships
and different ownerships in e-Science infrastructures. In particular, a VO can be small or large,
short or long-lived, single or multi-institutional, and homogenous or heterogeneous. Figure
2.2 illustrates VOs that can be structured hierarchically and may overlap in membership of
infrastructure resources (e.g. supercomputer).

2.1. GRID AND E-SCIENCE INFRASTRUCTURE CONCEPTS 19

2.1.3 Classification of e-Science Applications

The previous sections clarified the term ‘e-Science” and its major concepts including Grid in-
frastructures, VOs and resource sharing. This section models the given problem space more
precisely by giving insights about "applications” in the context of e-Science.

The introduction already mentioned a couple of so-called 'grand challenge applications” of
scientists that take advantage of e-Science infrastructures. Examples of such applications tackle
well-known problems of science and society such as treating Aids or Alzheimers diseases, the
localization of cancer, accurate global weather prediction, or determining the age of the earth.
Since production applications are an important element of this thesis a much more deeper
analysis of there characteristics is needed in order to provide the foundation for a production-
oriented focus of this thesis. Scientists use production applications using distinct approaches
that is published in [268] as a "classification of e-Science applications’.

Figure 2.3 provides an overview of the classification that consists of five distinct approaches.
Each of it is briefly reviewed in this section while more details can be found in [268]. The
underlying basic usage paradigm in all approaches is the use of ‘'middleware’ [296], which is
defined in more detail in the next section while this section remains the focus on applications.

The first approach are ‘simple scripts and control functionalities” that use simple control func-
tionalities (e.g. loops, if-then-else constructs, etc.) and submissions of simple UNIX-like scripts
to computational resources. One example is an application in the field of "hydrodynamics’,
which refers to studies of liquids in motion. A fluid dynamics code known as multi-particle
collision dynamics (MPC) [159] is applied to simulate active biological system models named
sperm. Experiments have revealed an interesting swarm behaviour of sperm when the sperm
concentration is high [228]. The mechanism behind this experimental phenomenon is not clear.
Therefore, this e-Science application studies the 'sperm cluster size” dependence for 2D and 3D
systems in terms of studying the hydrodynamics interaction between sperm and explain its
importance to the cooperation behaviour. These simulations in 3D are very time consuming
such that systematic study raises the demand for powerful computational resources available
in e-Science infrastructures.

As one example of this first approach, the aforementioned application intensively uses the
Do-N control functionality, where the output of the previous job run is given as an input to
the subsequent job. In some cases this approach is used with codes that are independent of
the underlying resource type and in other cases the code is specifially optimised for dedicated
hardware architectures. As part of the thesis studies, the aforementioned hydrodynamics ap-
plication used this approach with the JUMP [52] supercomputer with 41 Symmetric Multipro-
cessing (SMP) nodes, where each node has 32 processors. This 1312 Power4+ 1.7 GHz CPU
machine (8.9 Teraflop /s peak performance) was part of the DEISA /PRACE infrastructure dur-
ing the time of the thesis studies.

Another application [282] in the field of theoretical fluid mechanics uses the same approach
with a very similiar setup but with the JUGENE supercomputer [51], which, during the time
of the thesis studies, consisted of 65536 processors of type 32-bit PowerPC 450 core 850 MHz
(223 Teraflop/s peak performance). Also scripts with middleware are used including the Do-N
control functionality loop. The reason for scientists to use such loop functionality in particular
is twofold. First, once the program is defined, their executions are submitted to the middleware
for each iteration without manual interaction, which is also helpful during weekends. Second,
many resources have a limited program execution run-time (e.g. 12 hours), and the Do-N
control functionality provides a way to partition long jobs (e.g. over 60 hours) into smaller
chunks that do not exceed the allowed maximum run-time.

20 CHAPTER 2. STATE-OF-THE-ART E-SCIENCE INFRASTRUCTURES

The second approach is named ‘dedicated
application plug-ins’ and simplifies usage of
e-Science infrastructures via predefined ap-
plication GUIs (e.g. GAUSSIAN [35]) and a
wide variety of job configuration options (e.g.
number of required cores). The previous ap-
proach described above, uses simple UNIX
scripts for program executions. This implies
that scientists have to create the scripts that
run executables by themselves. Hence, in the
first approach, the scientific domain scientists
have to know the potentials and drawbacks
of UNIX scripts or scripting languages such
as Python and Perl, which are also used for
program executions with middleware. The
scientists that are experts in their research
field, and thus fully understand the theoret-
ical model of their research, also have to be-
come experts in many computational tech-
niques. In contrast, scientists that follow the
second approach prefer high-level Web por-
tals [240], also named scientific Gateways, in-
stead of low-level computational techniques.
This is helpful since the evolution of multi-
core and many-core systems in general, and
the various options of programming high-
end computers in particular lead to more and
more complex computational techniques that
have to be used in order to gain maximum
application performance.

Using convenient application plug-ins
that abstract from many of these complexities
motivates the approach. Many Grid clients
such as the UNICORE Rich Client [152], g-
Eclipse [185], and the GridSphere Web portal
[240] enable client extensions that are named
as scientific application plug-ins. One widely
used scientific application is supported in
such correspondent client technologies via a
scientific domain-specific GUI plug-in. One
example is the GAUSSIAN [35] plug-in for
the UNICORE client [152] that enables scien-
tists to easily submit GAUSSIAN-based pro-
grams to computing resources available in e-
Science infrastructures.

The third approach takes advantage of
workflow engines using “complex workflows’
often defined via DAGs to express an execu-
tion of a scientific workflow including several

Input: Constant Simulation ‘source
‘parameters

Input: nital ocations of sperm

(then output of previous job run)

= Cea source-code:
xxxxx 200 Mlt-Partice-Colsion
sizey 200

sssssss

numberofluidparts 12000000
numberofbores 1200000

positions
98.7601132.59427.1216

Gridjob submi ! ‘e:Scence Infrastructures !mﬂm"

(i) Application plug-ins

= 30and sccrptors [l mode
worming: [l conterons [l Siroon [l i
data. ‘space analysis and
S eeon
P
Al o o8 o8k o G
— Gridios
Y= S
: v
oo
A A 4
copatites
UNICORE REp L Inmidtoware
comple scionlfc workfiow dained

(e.0. UNICORE Rich Client)
(iii) Complex Workflows

scientific- |
Domain
specific
visualization A /|

bi-directional
connection

Gridjob submission
‘ Using Grid middleware client

(iv) Interactive Access

(v) Interoperability

Figure 2.3: Classification of e-Science applications.

2.1. GRID AND E-SCIENCE INFRASTRUCTURE CONCEPTS 21

related application tasks. Hence, this approach defines dependencies between application
tasks. A detailed example is given in [268] in the context of healthcare research using the
quantitative structure-activity relationships (QSAR) [144] computational method.

The fourth approach is named as ‘interactive access’ essentially meaning the use of a Secure
Shell (SSH) [275] connection with Grid credentials. In this approach, the scientists utilize less
support from the middleware, but often use this approach in order to check intermediate results
during application executions initially started with middleware on computational resources.

A concrete example is gLogin [277], or the UNICORE SSH plugin [258] that offers the access
to the application execution directory to review intermediate results. Important is that this ap-
proach satisfies the well known single sign-on requirement [131]. That means that connections are
established by using the same set of security credentials that are used within the middleware
to access the resources within an infrastructure.

The fifth approach, named ‘interoperability’, is unique in using different Grid infrastructures
to perform different kinds of application tasks to finally achieve one overall common scientific
goal. This approach eventually consists of elements of the other aforementioned approaches
which are used in multi-Grid setups instead of one single e-Science infrastructure. The fifth
approach is the underlying basis of this thesis and an introductory example can be found in
[268]. Chapter 6 provides much more detailed application examples of this approach. It lists
three distinct academic case studies that use the interoperability approach to perform e-Science
out of different scientific fields: bio-informatics, e-Health, and fusion science.

This whole classification reveals details about how production e-Science infrastructures are
used and the focus is set in the subsequent chapters of this thesis on this fifth type of applica-
tions. Based on the classification, e-Science applications are defined as follows:

Definition 9 (e-Science Application) An e-Science application is a scientific program or code that
is used with resources and services provided by e-Science infrastructures using one of the following
methods with Grid middleware: simple scripts and control mechanisms, application plug-ins, complex
workflows, interactive access and joint usage of multiple infrastructures in one scientific workflow.

Definition 9 focuses on the scientific applications rather than on the functionalities of the
infrastructures. Very closely related to this definition is the often used term 'Grid job” that is not
formally defined, because of its significant overlap with e-Science applications in this thesis.
This term can be equally used in the context of applications, but is more often used when
related Grid functionalities are necessary to run e-Science applications. It refers to a task or
activity that should be executed on the Grid or e-Science infrastructure being submitted by
scientific end-users that we define as follows:

Definition 10 (e-Scientist) An e-Scientist is any scientist that takes advantage as an end-user of any
kind of an e-Science infrastructure using Grid middleware for the execution and management of e-
Science applications.

As Definition 10 reveals, e-Scientists are end-users that take advantage of production e-
Science infrastructures on a daily basis. They take advantage of collaboration and resource
sharing as illustrated in Figure 2.1 within the “e-Science roof’. But also administrators or sup-
port staff members can act in the role of an e-Scientist to perform evaluations or benchmark
executions. From a certain perspective, e-Scientists can also be seen as a special kind of Grid
resource due to their expertise and knowledge that they share through means of collaboration
with international colleagues. But in this thesis, e-Scientists are end-users of e-Science infras-
tructures using various client technologies. It is important to understand that e-Scientists are
not only those that use purely computational-focussed production e-Science infrastructures

22 CHAPTER 2. STATE-OF-THE-ART E-SCIENCE INFRASTRUCTURES

with some form of a client technology. Instead, end-users of different e-Science infrastructures
such as those that use research infrastructures (RI) emerging from the European Strategy Forum on
Research Infrastructures (ESFRIs) [274] activities can be also named as e-Scientists.

2.2. KEY TECHNOLOGIES AND STANDARDS FOR E-SCIENCE INFRASTRUCTURES 23

2.2 Key Technologies and Standards for e-Science Infrastructures

Several basic key technologies that are revelant in the context of e-Science infrastructures are
introduced in this section. Relevant open standards that are used in general in the context
of these technologies are introduced, because they play a crucial role in subsequent chapters.
There are a plethora of technologies (e.g. workflow engines, middleware, resource manage-
ment systems) and standards existing in the community while the focus is set on those that are
directly relevant for the findings of this thesis.

2.2.1 Resource Management Systems and Grid Middleware

Computationally-driven shared infrastructure resources often require management technolo-
gies that enable the start, control, and monitoring of a program execution, or putting and get-
ting files that are needed for its execution. Such technologies are often named as Resource
Management Systems (RMS) that are defined as follows:

Definition 11 (Resource Management System) A Resource Management System is a technology
that provides distinct management mechanisms that enable the control and specific scheduling of e-
Science application jobs and their program execution(s) on a compute infrastructure resource.

In the majority of the cases, compute infrastructure resources have an RMS installed that en-
sures its integrity by fault tolerance models or by mutual exclusion of end-users that want to
use specific parts of the resource at the same time. Well-known examples of RMSs for com-
pute infrastructure resources such as supercomputers or large-scale clusters are LoadLeveler
(LL) [205], PBSPro [75], Torque Resource Manager [98], and Load Sharing Facility (LSF) [53].
These RMS technologies provide mechanisms to query the status of the application job queue
for different users (e.g. the command gstat in Torque).

Relevant for this thesis is that all these systems are responsible for the scheduling of submit-
ted jobs to an infrastructure resource, including the distribution of jobs on the different nodes
of parallel computers. More detailed pieces of information about the (partly unique) function-
alities of each of these technologies can be found in the corresponding manuals.

Another important technology are middleware systems that follow the idea of abstractions as
defined by Tanenbaum in [296]. The e-IRG blue paper 2010 describes middleware as follows.
"In a distributed computing system, for example, middleware is defined as the software layer lying be-
tween the operating system and the applications. In a broader sense, middleware is computer software
that connects components or applications. Middleware is used to refer to the glue that enables virtualisa-
tion technology and services” [210]. UNICORE [293], gLite [212], ARC [160], and Globus Toolkits
[167] are all examples of 'Grid middleware” that is defined as follows in the context of this thesis:

Definition 12 (Grid Middleware) Grid Middleware is a technology that presents the Grid as a single
system by hiding administrative and geographic boundaries and providing seamless, secure, and intu-
itive access by hiding their complexities in such a way that its corresponding e-Science infrastructures
appears transparently to its users.

Often, such middleware is based on a local RMS installed on an compute infrastructure re-
source, while storage infrastructure resources offer middleware access without being managed
by an underlying RMS but via some dedicated storage technology.

Middleware architectures can be accessed using dedicated protocols and consist of sev-
eral services that offer functionality like Grid job submission and management including the
transfer of data to and from the infrastructure resource. In some cases, middleware provides
software development kits (SDKs) and application programming interfaces (APIs) to simplify

24 CHAPTER 2. STATE-OF-THE-ART E-SCIENCE INFRASTRUCTURES

the development of Grid applications that take advantage of the various protocols and wide
variety of services provided.

2.2.2 Service-Oriented Technologies

The majority of technologies (e.g. Grid Middleware) in this thesis are based on Service Oriented
Architectures (SOAs) [276] and therefore important related topics are introduced as part of this
section. While the fundamental architecture of Grids is defined as a layered protocol stack in
[172], Foster et al. describes in [171] a more detailed Grid architecture using a service-oriented
approach to interact between users, middleware and infrastructure resources.

In this model, each e-Science infrastructure resource has a form of state that should be ex-
posed and accessible by the end-users or other services. Compute infrastructure resources (e.g.
clusters), for instance, expose the status of current running jobs or the queue status of the un-
derlying RMS to its end-users via middleware services that are stateful. Grid services are used
to access and manage the status of infrastructure resources among the members of a VO. A
first detailed definition of Grid services can be found in [299], which is nowadays already dep-
recated. There are actually many definitions like within [297] that also forms the basis of the
following definition:

Definition 13 (Grid Service) A Grid service is any kind of a service that operates in an e-Science
infrastructure, manages stateful behaviour of infrastructure resources, and meets the requirements of
the users or VO wherein the service is deployed.

Definition 13 implies that every infrastructure resource is accessed by a Grid service and
all components within an e-Science infrastructure are essentially virtual in service-oriented
frameworks. Figure 2.4 illustrates the basic idea of this definition with some infrastructure
resources in context. One key reason why such Grid services are needed is best explained in the
e-IRG blue paper 2010 that points out that ‘Science is increasingly global, and the rise in distributed
research teams working with distributed data sources will continue to drive the need for distributed
data processing and storage’ [210]. "To service this need, the research sector has developed and deployed
Grid services in Europe and around the world, supporting standards-based access to computers, storage,
software, data and other non-IT resources, regardless of geographical location, administrative affiliation,
and local management tools’ [210].

Another motivation is the ever increasing complexity of infrastructure resources as de-
scribed in the e-IRG white paper 2011 [194]. In particular HPC resource complexity increases
year by year reaching another peak in complexity when exascale systems will be in place to-
wards 2020. One of the e-IRG proposed approaches is as follows: 'In particular, users, and es-
pecially those that lack a computer science background, cannot expected to program exascale computers
effectively without appropriate software tools that hide complexity, facilitate parallelism, and let them
concentrate on utilising their domain knowledge’ [194]. These appropriate software tools can be
considered to be partly relying on Grid services although their name might differ but still sim-
iliar technologies might be used.

One set of specifications that describes a service-oriented Grid architecture that was de-
fined to reduce some of the aforementioned complexities is the Open Grid Services Architecture
(OGSA) [174]. This architecture is considered as "the reference architecture of Grids’ since the
beginning of the Grid computing paradigm. OGSA is discussed in detail later, but the concept
of Grid services is very fundamental and used to access the particular state of an infrastructure
resource. OGSA defines capabilites of a service-oriented e-Science infrastructure that is needed
for integrating and managing infrastructure resources within a VO. Its services are from many
technical areas like execution management, data handling, file transfer, resource management,

2.2. KEY TECHNOLOGIES AND STANDARDS FOR E-SCIENCE INFRASTRUCTURES 25

.t Grid Storage
(ﬁ _ T Resource o] Devices
; - -

Grid - -+

Client

I
," Web services
! message
g GridFTP data
exchanges \
transfers
~
Web services
message exchanges Supercomputer
g] Y Client
-,
- ...
‘.. '-“
'1 Grid '-.I Grid
Resource Service

Figure 2.4: e-Science infrastructure that implements the concepts of OGSA with Grid services and Grid resources.

security, information, and self-management. The definition of the initial OGSA version 1.0 [173]
has been updated to version 1.5 [174], and is driven by a set of functional and non-functional
requirements defined complementary OGSA use case documents [168, 252].

The approach of Grid services is also used in this thesis as major baseline state representation
and communication model. Grid services are implemented with Web services message exchange
technologies [101] using the Simple Object Access Protocol (SOAP) [190], while large-scale data
transfers are often performed with GridFTP [109]. Figure 2.4 illustrates the concept of Grid
services and stateful infrastructure resources following the basic concept of OGSA.

2.2.3 Common Open Standards in the e-Science Domain

Since the beginning of Grid computing there have been many issues surrounding the integra-
tion of OGSA concepts in e-Science infrastructure and standardisation of Grid services within
Grid middleware systems. This is also reflected in the e-IRG blue paper 2010 in a sense that
"A central theme of middleware development is the promotion of interoperability and standardisation of
networked resources through a common base of protocols and services’ [210].

But working interactions among networked OGSA Grid services are non-trivial when based
on Web services message exchanges using the Extensible Markup Language (XML) [296]. These
exchanges represent an XML-based Remote Procedure Call (RPC) [296] where each single differ-
ence in the used XML-based protocol or schema can break the interconnection between services
and clients. Standardisation of these XML-based protocols or schemas bears the potential to
enable more functioning and stable interconnections between the Grid services that form an
e-Science infrastructure. Standards are defined as follows in this thesis:

26 CHAPTER 2. STATE-OF-THE-ART E-SCIENCE INFRASTRUCTURES

GLUE2 UR Information
0GF OGF Area
15DL JSDLSPMD Ext. ISDLHPC Prof. App. Ext. 1SDL Param. Sweep Ext. OGSA - BES Compule
OGF OGF OGF OGF OGF Area
SRM GridFTP WS-DAI BytelO
OGF OGF OGF OGF

PKI SAML XACML
IETF OASIS 0DASIS

Figure 2.5: Open standards relevant in this thesis with their different technical areas.

Definition 14 (Common Open Standard) A common open standard is any standard developed by
a standardization development organisation following an open process and being commonly relevant to
the e-Science community. It is normatively defined and publicly available.

As stated within Definition 14, common open standards are normatively defined in specifica-
tions while some of them are emerging open standards meaning that these are not implemented
by many technology providers yet. A clear definition about emerging open standards is not
possible, but it is a known term in Grid computing.

Common open standards are mostly developed and released by so-called Standardisation
Development Organizations (SDOs). SDOs relevant in the context of this thesis are most notably
the Open Grid Forum (OGF) [68] and the Organization for the Advancement of Structured Informa-
tion Standards (OASIS) [73]. The particular relevance of OGF specifications in this thesis and in
Figure 2.5 is widely recognised as the 5th e-Infrastructure concertation meeting report reveals:
"What is also clear is that almost all Grid Middleware standardisation activities are being taken through
the OGF rather than any other standardisation body’ [132].

Key standards of other SDOs are also partly used like the X.509-based Public Key Infrastriic-
ture (PKI) [195] of the Internet Engineering Task Force (IETF). Key standards of the aforemen-
tioned SDOs are introduced in this section with a focus on those that are most important for
this thesis and normative specifications are given in context. Figure 2.5 provides an overview
of relevant standards and in which technical area they can be categorized.

One of the key standards in this thesis is the OGF specification GLUE2 [113]. It represents a
Grid information model that defines attributes (i.e. properties) for certain important entities like
computing or storage resources and Grid services. The GLUE2 schema is an evolution from
the proprietary GLUE1.3 [140] schema that was created during the course of the EGEE series of
projects. The OGF Usage Record Format (UR) [216] is a normative schema for tracking resource
usage. It stands for resource usage information, often categorized in the accounting area, but in
this thesis being part of the information area.

The Security Assertion Markup Language (SAML) [142] from OASIS is used in commercial
setups, but also recently more and more in the scientific domain. It is a very extensive standard
but mostly used in this thesis for the transfer of security attributes that describe the VO or
project membership as well as the role posessions of end-users. SAML has much potential
to be the next generation e-Science security standard and as such it is one cornerstone of the
proposed reference model design. The eXtensible Access Control Markup Language (XACML)
[234] is the counterpart to SAML providing a very strong language for the definition of security

2.2. KEY TECHNOLOGIES AND STANDARDS FOR E-SCIENCE INFRASTRUCTURES 27

policies [131] used during authorization decisions. XACML is developed by OASIS and is
also relevant to this thesis in order to define invariants of using common security attributes
in reference model setups. Both aforementioned standards are the most important ones in the
context of this thesis, but in [131] the plethora of Web services security (WS-Security) related
standards are listed for more details.

Another important open standard schema is the Job Submission and Description Language
(JSDL) [115]. This OGF standard describes how computationally-driven jobs can be submitted
to Grid middleware. It is already used in production setups within e-Science infrastructures
and several extensions have been defined in the past. These are the Single-Program-Multiple-
Data (SPMD) JSDL extension [281], the J[SDL Parameter Sweep Extension [155] and the HPC Profile
Application Extensions [197]. Some aspects of these JSDL specifications are quite vague since
they significantly overlap with GLUE2 entities leading to some disambiguities when GLUE2
and JSDL are used together in e-Science infrastructures. To resolve some of these disambigui-
ties is a major technical goal of this thesis and as such the JSDL standard is also an important
standard in this thesis.

Closely related to the JSDL standard is the OGF OGSA-Basic Execution Service (BES) specifi-
cation [169] that makes use of JSDL in order to submit jobs to computational resources. OGSA-
BES specifies exactly those operations that are required to submit and manage computational
activities within Grid middleware adoptions. Initial OGSA-BES adoptions have been used in
production setups that have contributed to many lessons learned of how this specification can
be improved. Therefore, one element of this thesis is to propose extension to this specification
to satisfy production e-Science infrastructures requirements.

The Storage Resource Manager (SRM) [286] is a storage management specification that is very
well adopted by over five different implementations (e.g. dCache [178], Disk Pool Manager
[11], etc.) that serve different end-user needs. Complementary to this storage standard is the
access to relational databases using the WS-Data Access and Integration Services (WS-DAIS) [118]
specification. The OGF GridFTP [109] defines mechanisms for the use of a tuned File Transfer
Protocol (FTP) [295] for very large data amounts making it the de-facto large-scale data trans-
fer standard available in distributed computing today. Another data transfer standard that is
relevant is the BytelO specification [230] that offers access to files with remote POSIX-based
methods.

Finally, a couple of standards are not directly related to this thesis but are mentioned some-
times. These are WS-Agreement [114], Distributed Resource Management Application API (DR-
MAA) [250] and the set of specifications around the OGSA - Resource Usage Service (RUS) [65]
that are still in the development phase.

28 CHAPTER 2. STATE-OF-THE-ART E-SCIENCE INFRASTRUCTURES

2.3 e-Science Infrastructure Interoperability Challenges

The previous sections of this chapter introduce the major basic terms and approaches in the
context of e-Science infrastructures. Based on these fundamentals, the aim of this particular
section is to model the given problem space and thus clarify the formulated research question
in Chapter 1 in more detail.

The model of the problem space provides a clear focus within the broader research field of
e-Science infrastructures so that important issues within the given boundaries of this thesis can
be understood. The thesis does not attempt to tackle ‘all services of e-Science infrastructures” and
also it does not provide a solution to “all known e-Science infrastructure interoperability problems’.
But the focused problem space of this thesis can be defined as follows:

Definition 15 (Network of Interoperable Services) A network of interoperable services is a set of
common open standards-based interacting Grid services within production e-Science infrastructures
that manage and control heterogenous compute and storage resources.

Definition 15 reveals the fundamental problem mentioning the lack of interoperability among
a certain set of Grid services that enable access to various types of resources in production
e-Science infrastructures. This definition clearly narrows the broader scientific field to one
specific environment (i.e. production e-Science infrastructures) for which this thesis aims to
provide some solutions.

Interoperability of production environments is a complicated matter, not only in computer
science, but also in many other environments, such as the interoperability of electrical power
environments. After decades of production usage and standardization activities, still different
electrical power adapters are required world-wide while electrical power Grids ‘only” provide
one type of service (i.e. electricity) compared to e-Science infrastructures that offer multiple services
to end-users. A resulting network of services of various interoperable e-Science infrastructures
is thus a very complex problem space with a highly heterogeneous set of interacting infrastruc-
ture resources (e.g. different types of resources specifically tuned for different computational
paradigms) and a wide variety of deployed technologies (e.g. middleware, storage technolo-
gies, etc.). Different functionalities out of various computer science fields (e.g. compute, data,
information, and security) exist that are part of the complex e-Science infrastructure environ-
ments. Such services form "production environments’ that in turn raise the demand to cope with
dynamic changes in services and technologies while at the same time preserving the ability of the
infrastructures to serve the needs of end-users to perform their science with them on a 24/7
basis.

The overall aim of this section is to highlight the given boundary conditions that affect
the interoperability of e-Science infrastructures (i.e. different resource types, or dynamic be-
haviours, etc.). Relevant interoperability challenges are explored in this section leading to more
detailed models of the problem space. This forms a consistent basis for a meaningful survey
of related work in the next chapter. While exploring the challenges of interoperable e-Science
infrastructures, also a wide variety of benefits are revealed when comparing advantages and
disadvantages of such setups during the course of this section. The understanding of the chal-
lenges that needs to be solved in turn motivates tackling the given research question of this
thesis.

2.3.1 Classification of e-Science Infrastructure Types

A more thorough analysis of OGSA in general, and its comparison of e-Science infrastructures
with electrical power Grids in particular, reveals that there is a difference in types. As within

2.3. E-SCIENCE INFRASTRUCTURE INTEROPERABILITY CHALLENGES 29

TeraGrid fXSEDE

(Globus,
(UNICORE) UNICORE)

rid/NG1.de/EGI

[:(::{ﬁj [UNICORE, glite,

EGEE/EGI
(gLite)

Figure 2.6: Incompatible e-Science infrastructures form a non-solid infrastructure basement.

electrical power Grids, the power is provided by coal-based power plants, atomic-energy-based
power plants, and, more recently, also from ‘green power sources’ like solar collectors and giant
wind wheels. The resource landscape of the electrical power Grid is in this sense also very
heterogeneous like in the given problem space of this thesis.

The concept of e-Science is already introduced and its scientific innovation process is driven
by three pillars (theory models, computational techniques, and experiments). In an ideal situ-
ation, these three fundamental pillars should be based on a solid e-Science infrastructure base-
ment. But over the years, various types of e-Science infrastructures evolved leading to a classi-
fication in [272] according to their fundamental computing paradigms (i.e. HPC and HTC) they
support. Storage and data would be equally important in the context of both computational
paradigms but these are less considered to remain the focus on the computational aspects of
the given problem space. Based on the classification, the solid basement is 'not solid” as illus-
trated in Figure 2.6. It consists of many different basement elements that stand for numerous
e-Science infrastructures that can be stuck’ together to form a single "virtual next generation
infrastructure’.

As shown in Figure 2.6, the classification reveals three major types of e-Science infrastruc-
tures that are named as HPC, HTC, and hybrid. In theory it is hard to define the clear bound-
aries for this classification between those infrastructures. In practice, however, the boundaries
and scope of these categories are fundamentally different, especially when the resource type
is considered as well as the overall usage and access policies (e.g. peer-reviewed grant-based
access only).

There are even boundaries between infrastructure examples of the same classification type
as well. This is the case since each of the examples, even those in the same category, are often
represented by different projects using a different set of technologies and often also policies.
Hence, even infrastructures of the same category are non-connected basement elements. "HPC-
driven e-Science infrastructure types’ consist of large-scale clusters or supercomputers that are
defined as follows:

30 CHAPTER 2. STATE-OF-THE-ART E-SCIENCE INFRASTRUCTURES

Definition 16 (HPC-driven e-Science Infrastructure) A HPC-driven e-Science Infrastructure is
based on computing resources that enable the efficient use of parallel computing techniques through
specific support with dedicated hardware such as high performance cpu/core interconnections.

As Definition 16 indicates, HPC in this thesis refers to e-Science infrastructures that pro-
vide computing resources that offer excellent interconnection between the cpus/cores in order
to support massively parallel applications. This is required for e-Science applications that take
advantage of parallel programming techniques. Examples are the Message Passing Interface (MPI)
[241] or OpenMP [147] that are both used in order to gain greatest efficiency during produc-
tion runs on large-scale HPC resources. As shown in Figure 2.6, the two best known examples
in this category are TeraGrid/XSEDE in the US and DEISA/PRACE in Europe. Both infras-
tructures deploy different middleware technologies namely UNICORE in DEISA /PRACE and
Globus Toolkit within TeraGrid /XSEDE although there are plans to include more standardized
middleware in the latter infrastructure [235].

In contrast, the second category is represented by HTC-driven infrastructures that focus on
the broad support of ‘farming Grid jobs’, also sometimes known as being ‘'embarrassingly par-
allel” or 'nicely parallel’ computing jobs. All these terms share the fact that they do not require
a good interconnection between the cpus/cores, essentially being well suited for ‘data paral-
lel’ tasks possibly in a distributed fashion. As shown in Figure 2.6, the most known e-Science
infrastructures of this type are EGEE/EGI and NorduGrid in Europe and OSG in US. Both
examples deploy different technologies, namely gLite in EGEE/EGI, VDT in OSG and ARC
in NorduGrid. In some cases, and more recently, EGEE/EGI overlaps with NorduGrid. Nor-
duGrid can be considered as a regional Grid and is not a National Grid Initiative (NGI) [58],
but many of its resources are also part of the EGEE/EGI infrastructure. HTC-driven e-Science
Infrastructures are defined as follows:

Definition 17 (HTC-driven e-Science Infrastructure) A HTC-driven e-Science infrastructure is
based on commonly available computing resources such as commodity PCs and small clusters that en-
able the execution of farming jobs without providing a high performance interconnection between the
cpu/cores.

"Hybrid e-Science infrastructures provide access to a limited set of rather medium-scale HPC-
based resources while still providing access to PC pools and smaller clusters commonly used
for HTC. Known infrastructures of this category are, among others, the National Grid Service
(NGS) [59] of the UK, and the German national Grid D-Grid/NGI-DE [238]. Infrastructures
of this category are often regional Grids or NGlIs that form the basis for the EGI infrastructure
such as the Polish NGI [120]. They often deploy numerous technologies at the same time, like
the Open Middleware Infrastructure Institute (OMII)-UK stack in the NGS and Globus, gLite,
and UNICORE in D-Grid /NGI-DE. These types are defined as follows:

Definition 18 (Hybrid e-Science Infrastructure) A hybrid e-Science infrastructure is based on com-
puting resources that enable the execution of HPC as well as HIC computing jobs using techniques
suitable for both computational paradigms where appropriate.

2.3.2 Tightly Coupled Middleware Clusters in e-Science Infrastructures

The previous section indicated that e-Science infrastructures can be classified according to
known computational paradigms that are very mature and are considered to not change in
the near future. Based on this mature classification, this section provides a deeper analysis of
the challenges reaching one single e-Science infrastructure basement. Particular “infrastric-
ture interoperability problems’ are introduced with details about relevant deployed and non-
interoperable middleware setups and their interactions. Figure 2.7 offers an overview of the

2.3. E-SCIENCE INFRASTRUCTURE INTEROPERABILITY CHALLENGES 31

Middleware Sarvices in EGEE/EGI \ /M\ddleware Services in NAREGI,-’RENKEI\
' . 0]
g i [Traditionally
g N | - HTC-driven
e-Science
Infrastructures
g
|
\ -“. /
O““
(i)
Traditionally
HPC-driven
e-Science
Infrastructures
Middleware Services in DEISA/PRACE) Middleware Services in TeraGr\d,-’XSEDu
Legend: i Data Resource [} Compute Resource B services in middleware = == Different couplings

Figure 2.7: Tightly coupled clusters of middleware services in different production e-Science infrastructures.

interoperability problems between production e-Science infrastructures that are mostly related
to their coupling.

As shown in Figure 2.7, the hybrid type of infrastructures have been neglected to retain
a simplistic model of the problem space essentially highlighting compute and data resources
around middleware. Nevertheless, as hybrid infrastructures (e.g. NGIs like D-Grid/NGI-DE
or NGS) offer the same resource types (e.g. HPC and HTC), the findings of this thesis can be
applied equally to them. Thus focusing on HPC- and HTC-driven infrastrucure types, Figure
2.7 illustrates the fragmented situation of the non solid e-Science infrastructure basement. The
basement is represented by a set of world-wide non-interoperable 'Grid islands’ being intercon-
nected in different ways depending on the couplings of the middleware technologies.

Present day Grid islands are the EGEE/EGI and DEISA /PRACE infrastructure funded by
the European Commission, while OSG and TeraGrid/XSEDE are supported by US funding
sources. The reason of having such Grid islands are manifold and closely related to known
interoperability challenges of them. Models of this section focus on the most important as-
pects neglecting low-level details of communication between the services that are simplified as
different types of couplings. The couplings are represented by Web service message exchanges.

The project-based funding by different funding bodies often leads to a focus of certain goals
for these infrastructures following a precise description of work, thus enabling dedicated com-
puting and data services. Intra-infrastructure issues are often more important leading to the
deployment of tightly coupled middleware clusters within one infrastructure based on one
chosen middleware. Interoperability between different infrastructure types is in many cases

32 CHAPTER 2. STATE-OF-THE-ART E-SCIENCE INFRASTRUCTURES

a secondary goal and thus in very minor cases a coupling between such tightly-coupled mid-
dleware services exist in a setups using more than one infrastructure. Even within one infras-
tructure category, different middleware technologies are deployed establishing tightly-coupled
middleware clusters for every single infrastructure as illustrated in Figure 2.7. This deploy-
ment contributes to strong e-Science infrastructure borders that are non-trivial to technically
overcome since many different interfaces and protocols are in use that are non-interoperable.
The e-IRG white paper 2009 describes the need of change in this regard as "The current multitude
of interfaces from different vendors may otherwise endanger the e-IRG vision of an open e-Infrastructure
that allows optimal use of all electrically available resources’ [206].

The aforementioned infrastructure boundaries are even hardened when their different us-
age and access policies are considered. Different resource usage policies are used when HTC-
is compared to HPC-driven e-Science infrastructures. In HPC-driven infrastructures, costly
computational time is only provided to particular research groups that pass a multi-step sci-
entific peer review process of their research proposals. One implementation of this approach
is the evaluation process of the DEISA Extreme Computing Initiative (DECI) [301]. It evaluates
requests for computational time on DEISA based on proposals and their scientific excellence.

In contrast, HTC-driven infrastructures usually provide access to their resources based on
individuals that are members of well-known VOs. Members of a VO do not need to have
specific research proposals to gain computational time, although the whole VO as such must
undergo some form of evaluation when it is initially set-up.

A more formal definition based on the aforementioned aspect around e-Science infrastruc-
ture boundaries is given as follows:

Definition 19 (Non-interoperable e-Science Infrastructures) Non-interoperable e-Science Infras-
tructures are two or more infrastructures that have different usage policies and deploy non-interoperable
technologies based on different (proprietary) interfaces, protocols, or schemas for communication.

Definition 19 helps to understand that the e-Science infrastructures in Figure 2.7 are all
non-interoperable. The reason is that, at the time of writing, all the different middleware tech-
nologies deployed on the illustrated infrastructures use incompatible interfaces and protocols
and lack an adoption of the same common open standards. Atlthough different levels of es-
tablished interactions exist (i.e. different lines in Figure 2.7), they are based on workarounds,
adapters, tweaks or whatever needs to be done to interact with each other as described in [256].
In the majority of the cases end-users need to use different client technologies in order to use
the resources of both infrastructures.

Incompatible interfaces, protocols, or schemas are in many cases due to proprietary devel-
opments rather than using common open standards. This is also mentioned in [272], follow-
ing another important statement meaning that non-interoperable e-Science infrastructures are
existing, because of to the absence of a production-oriented standard-based infrastructure reference
model.

The state-of-the-art production e-Science infrastructures thus still struggle to provide e-
Scientists with a stable (interoperable) infrastructure basement to fully leverage a wide variety
of resources with compatible technologies.

2.3.3 Benefits of a Network of Interoperable Services

The previous section modelled the problem space more precisely, introducing details about
the existing boundaries between production e-Science infrastructures today. In contrast, the
ideal situation illustrated in Figure 2.8 would significantly support e-Science applications in
multi-Grid setups better as possible today. The described infrastructure boundaries need to

2.3. E-SCIENCE INFRASTRUCTURE INTEROPERABILITY CHALLENGES 33

Middleware Services in EGEE/EGI Middleware Services in NAREGI/RENKEI

(i)
i [} Traditionally
| HTC-driven
u e-Sclence
Infrastructures

(i)
Traditionally
HPC-driven

e-Science
Infrastructures

Middleware Services in DEISA/PRACE / Middleware Services in TeraGrid/XSEDE

Legend: i Data Resource [Compute Resource B services in middleware Individual Infrastructures

Figure 2.8: A network of interoperable services that realize the vision of individual infrastructures.

be significantly lowered or even completely removed. This in turn enables a wide variety of
benefits that motivates the work within this thesis. In [266], we present such an ideal situation
enabling optimal access to individually needed services as illustrated in Figure 2.8.

Compared to the initial model in Figure 2.7, the boundaries of infrastructures are fully trans-
parent to end-users leading to ‘borderless services” enhancing end-users choice in using the estab-
lished services. Previous tightly-coupled clusters of Grid middleware systems are exchanged
with a loosely-coupled network of interoperable services dynamically formed by end-users.
This optimal situation describes how end-users intend to work with multiple infrastructures
that leads to the following definition:

Definition 20 (Individual e-Science Infrastructures) Individual e-Science infrastructures are dy-
namically formed infrastructures according to the needs of end-users and are based on the services of
different e-Science infrastructures that seamlessly interoperate.

Definition 20 emphasizes on the desire that end-users would like to pick the services that
provide best ‘individual functions’ that they need to perform e-Science tasks, neglecting any
form of existing infrastructure boundaries. End-users are mostly not computer scientists and
thus are not interested in picking services because of technical reasons such as using dedicated
security credentials or a limited set of client technologies.

Figure 2.8 models this flexibility and freedom to choose any kind of required service as an
overlay without a specific form expressing its dynamic nature. With this setup, end-users are not
bound to the services and thus the implied functions and resources of one particular e-Science

34 CHAPTER 2. STATE-OF-THE-ART E-SCIENCE INFRASTRUCTURES

infrastructure. This flexibility is experienced by end-users as one of the most fundamental ben-
efits of a network of interoperable services enhancing their options for a real choice.

An analysis of the advantages and disadvantages that come along with such aforemen-
tioned individual infrastructures are pointing to a wide variety benefits for end-users. First, re-
source sharing across infrastructure boundaries enables access to a broader spectrum of resources,
e.g. convenient usage of different types of computational resources (e.g. HPC and HTC). It
saves computational time on rare and costly HPC resources when performing smaller evaluation
jobs on HTC before going to “full-blown” production runs on HPC infrastructures. Lowering
the boundaries of infrastructures provides better load-balancing between different e-Science
infrastructures and their resources (if this is possible on the policy-level). This enables an over-
all lower time-to-solution for e-Science applications by simply being able to use more systems in
parallel, hence, a more aggregated usage of them, than possible before.

Interoperability as a smart way of extending the functionality of one infrastructure is another
benefit. For instance, the use of brokering functionality in HTC-driven infrastructures while
not being bound to the explicit choice of resources as in HPC-driven infrastructures.

There is also the possibility of taking advantage of the unique capabilities existing in com-
patible e-Science infrastructures. It enables the use of unique key resources or services that
may lead to more realistic simulations (e.g. the high amount of computer core capability of
one resource). It enables access to unique data repositories (i.e. obtained from specific scien-
tific instruments such as the LHC) that are, in many cases, only available in a single e-Science
infrastructure.

Hence, when the landscape of production e-Science infrastructures conforms to Definition
20, the wide variety of benefits motivates the investigation of solutions towards this vision in this
thesis. But numerous challenges are hidden in the crucial service couplings, that have been
neglected for simplicity in Figure 2.8 but that are full of open questions for which this thesis
aims to provide some solutions. It is non-trivial to realise a network of interoperable services
as an overlay on top of existing non-interoperable production e-Science infrastructures. A gap
between the ideal situation and reality exists, but solutions can be explored that reduce this gap
that in turn motivates this thesis. The key to achieve this is to increase the chance of having
interoperable e-Science infrastructures that are defined as follows:

Definition 21 (Interoperable e-Science Infrastructures) Interoperable e-Science Infrastructures
are two or more infrastructures that share relevant usage policies and that deploy a necessary amount of
interoperable technologies based on common interfaces, protocols, or schemas for communication.

2.4. CONCLUSION 35

2.4 Conclusion

This chapter provides insights into e-Science in general and introduces the major e-Science
infrastructure concepts. Conclusions of these fundamentals are that important concepts like
resource sharing within e-Science infrastructures provide many advantages to e-Scientists to-
day. The majority of existing production e-Science infrastructures are implemented using Grid
methods while, more recently, there is interest in using also cloud computing methods. Grids
and Clouds share several key approaches and are both essentially distributed compute and
data infrastructures and as such many e-Science concepts are relevant to both. But the majority
of the findings of this thesis have been gathered within existing production e-Science infras-
tructures, and given that the key objectives of clouds are mostly business oriented rather than
purely science-driven, the focus remains on Grid methods in this thesis.

Another conclusion is that e-Scientists are specifically interested in the interoperability be-
tween HTC- and HPC-driven e-Science infrastructures for their research. But the major pro-
duction e-Science infrastructures are non-interoperable and as such end-users are not able to
freely choose the services and resources they require to perform e-Science. Performing effec-
tively e-Science is only possible when not being limited by infrastructure boundaries. Instead,
end-users need e-Science infrastructures that deploy technologies that implement common in-
terfaces, protocols, or schemas for communication that are compatible with those of others.
This raises non-trivial challenges since production e-Science infrastructures are complex in de-
ploying a wide variety of services and offering access to different kinds of resources while
conforming to distinct usage policies. This complexity should be hidden from end-users, of-
fering an easy, but functionally attractive way, of using interoperable e-Science infrastructures
with compatible interfaces and policies through middleware. This enables end-users to be able
to seamlessly use multiple e-Science infrastructures with only one client technology instead of
a plethora of incompatible access methods.

Another conclusion is that interoperable infrastructures provide benefits for e-Scientists,
but also for infrastructure and technology providers. Having no infrastructure boundaries also
paves the way for better economic service provisioning that avoids, for instance, duplicate
technology developments and deployments. The re-use of specific services that are already
available in an another interoperable infrastructure can in some cases avoid the deployment
or new development of similiar services. Administrators and user support structures have
the chance to benefit from interoperable infrastructures due to common configurations and
potentially the same service monitoring features.

Relevant technologies have been surveyed including numerous interesting approaches like
OGSA contributing to the understanding of why interoperable e-Science infrastructures are
not available in production today. Although the idea of interacting abstract Grid services (like
within OGSA) is relevant, real implementations of this approach shows many problems. The
implementation of the abstract Grid service concepts with concrete Web service communication
is an appropriate method while at the same time being very complex and non-trivial during
interactions in distributed systems. Many standards are in place that support such interactions,
but not many of them are adopted or provide enough functionality to be often used in day to
day practice in e-Science infrastructures today. Hence, the solely standard-based approach to
interoperability largely fails to deliver solutions until now. Many reference models in related
fields are based on open standards and promoting interoperability but are not fully appropriate
like the fundamental Grid reference model OGSA. Another conclusion is that identified solu-
tions that lower infrastructure boundaries need to have a complete aligned process to sustain
interoperability gaining the trust of end-users over time.

36

CHAPTER 2. STATE-OF-THE-ART E-SCIENCE INFRASTRUCTURES

Chapter 3

Related Work

In the last chapter, the state-of-the-art in the field of Grid computing with a particular focus on
topics related to production e-Science infrastructures is reviewed. A wide variety of terms (e.g.
e-Science, Grid middleware, etc.) is introduced and several important concepts (e.g. resource
sharing, Grid services, etc.) that are relevant to this thesis are defined. The last chapter aims to
provide thus a reasonable level of understanding of current practice in the e-Science commu-
nity. But it also points to the existing interoperability challenges in state-of-the-art production
e-Science infrastructures that in turn motivate this thesis and this survey of related work.

While the last chapter models the interoperability problem space in detail, this chapter aims
to compare the identified problems with similiar problems and existing solutions. One of the
major reasons for the interoperability problem is the complexity of e-Science infrastructures
that currently deploy a wide variety of services and offer access to many different types of re-
sources. But while it seems obvious that open standard-based common interfaces, protocols,
and schemas for communication are important to enable interoperability, this chapter explores
in greater detail why standards alone are not sufficient to ensure interoperability. The research
question of this thesis is therefore "How a reference model for a network of interoperable services in
production e-Science infrastructures can be defined” and it does not directly mention open stan-
dards, even though they indirectly play a crucial role as outlined during the course of this
chapter. The identification of relevant approaches and their factors and indicators enable a
comparison to be made as to whether an approach has the potential to promote interoperabil-
ity in production e-Science infrastructures.

As a first approach, the relevance of reference models in the context of interoperability is
discussed and important reference model key principles are identified. A foundational reference
model ecosystem’ is introduced to understand how an abstract reference model can be imple-
mented on different levels to be used with real e-Science applications. A critical review of the
basic reference model in Grid computing known as OGSA is additionally provided to iden-
tify further relevant detailed indicators per factor pointing to a lack of adoption in production
e-Science infrastructures today. Complementary to this OGSA review, several disadvantages
are identified that enables an understanding of drawbacks of non standards-based approaches
existing in various related ‘component-based approaches’.

Based on the identification of relevant approaches in the first section, the second section
surveys reference models in the broader field of distributed systems from a theoretical point of
view. The defined factors and indicators for comparing existing solutions are used throughout
the survey of related reference models.

The third section provides a complementary, more practically-oriented, classification of
component-based approaches towards interoperability. This survey enables an analysis of
lessons learned in practical field studies that aim to take advantage of interoperability.

38 CHAPTER 3. RELATED WORK

3.1 Identification of Relevant Approaches and Factors

This section identifies relevant approaches that have the potential to enable interoperability
between production e-Science infrastructures. It provides insights into why abstract "reference
models” and their more concrete related elements (e.g. reference architecture, patterns, etc.)
promote interoperability from a general distributed systems perspective. Complementary to
this general perspective, important 'factors and indicators” of interoperability approaches from a
particular Grid and e-Science perspective are identified.

3.1.1 Reference Model Foundations and Factors

The introduction already pointed to one of the major claims in this thesis, in that the absence of a
production-oriented and community accepted reference model is the reason why current production
e-Science infrastructures are largely non interoperable today. In this section, the actual meaning
behind the broadly defined term "reference model” is contextualized with the problem domain of
this thesis. Existing models in the field of distributed systems are surveyed. In addition, related
architectural elements are reviewed in the light of "how a reference model achieves the potential
to promote interoperability’. All of these elements are summarized under the wider umbrella
term ‘reference model’.

Lessons Learned from the ISO/OSI and TCP/IP Reference Model Examples

One of the most well-known reference model examples in distributed systems and computer
networks is known as the Open Systems Interconnection (OSI) [295] reference model developed
by the International Standards Organization (ISO) [48]. This reference model deals with connect-
ing so-called “open systems’ standing for a wide variety of 'systems” that are open for communi-
cation with other systems. It is organised in seven layers but what it represents is not a "network
architecture’ because it does not specify the exact services and protocols to be used in each layer
and instead just describes what each layer does [295].

However, while the ISO/OSI reference model is widely known, the reference model Trans-
mission Control Protocol (TCP) / Internet Protocol (IP) [295] is currently used for the world-
wide Internet. A fundamental contrast to the ISO/OSI model is its ‘more compact’ design, es-
sentially described with a four layer model that still fits the more general ISO/OSI seven layer
model. A detailed comparison of both models is out of the scope of this chapter but given
in Piscitello et al. [246]. The lessons learned from the success of TCP/IP are reviewed in the
following paragraphs based on insights revealed by Tanenbaum in [295].

The ISO/OSI and the TCP/IP model have much in common since both are based on the con-
cept of a stack of independent protocols and the functionality of some layers is also very similar.
But a more thorough analysis reveals many interesting differences about whether a reference
model should be broad (i.e. ISO/OSI) or rather compact (i.e. TCP/IP). The TCP/IP model did
not clearly distinguish between service, interface, and protocol, although some people tried
to make it more like the ISO/OSI model [295]. That means that the protocols in the ISO/OSI
model are better hidden than in the TCP/IP model and, more notably, the ISO/OSI reference
model was developed before the corresponding protocols were invented. The ISO/OSI model
was not biased towards one particular set of protocols and thus it is very general and com-
pletely in-line with software engineering principles. However the downside of ISO/OSI is that
the ‘designers did not have much experience with the subject and did not have a good idea of which
functionality to put in which layer’ [295].

The reference model was not usable as planned and, what is interesting in the context of
this thesis, no thought was given to internetworking [295]. This in turn points to its drawbacks re-

3.1. IDENTIFICATION OF RELEVANT APPROACHES AND FACTORS 39

garding interoperability with other systems that are compliant with the ISO/OSI model. Tanen-
baum nicely concludes this topic with "things did not turn out that way’ [295] essentially meaning
the difference between theory and practice.

The more successful history of the TCP /IP model was quite opposite to the ISO/OSI model.
The protocols came first, and "the model was essentially just a description of the existing protocols’
[295]. The actual protocol implementations fit the model perfectly while the model basically
does not fit any other protocol stack. It is rarely useful to describe other, non TCP/IP networks,
since even if TCP can be exchanged with the User Datagram Protocol (UDP) [295] it still relies
on the specific IP protocol. Hence, neither the ISO/OSI nor the TCP/IP models are perfect, and
thus “criticism is directed at both of them’ [295].

The production (i.e. practice) focus points to a few important critiques that lead to design
decisions in later chapters and that are summarised as follows. First, according to Tanenbaum
[295], "... it appears that the standard OSI protocols got crushed” since the competing TCP/IP proto-
cols were already in widespread use. Second, "'When OSI came around, they did not want to support
a second protocol stack until they forced to, so there were no initial offerings ... OSI never happened’
[295]. Third, 'the choice of seven layers was more political than technical ...” and more notably, "The
OSI model, along with the associated service definitions and protocols, is extraordinary complex’ [295].
Also, 'they are also difficult to implement and inefficient in operation’ [295]. "The enormous complexity
of the model and the protocols, it will come as no surprise that the initial implementations were huge,
unwieldly, and slow’ [295]. There is some analogy between the OGSA and the ISO/OSI reference
model in the context of the aforementioned issues. These are lessons learned that influence
requirements and reference model design decisions later.

In contrast, 'first implementations of TCP/IP was part of Berkeley UNIX and was quite good (not
to mention, free). People began using it quickly, which led to a large user community, which led to
improvements, which led to an even larger community.” [295]. This does sound positive, while
there are also some critiques noted as follows. First, good software engineering practice requires
differentiating between the specification and its implementation, something that OSI does very carefully,
and TCP/IP does not’ [295]. Another drawback is that the "TCP/IP model is not at all general and
is poorly suited to describing any protocol stack other than TCP/IP’ [295]. Despite the critics, the
thesis outlines an intentional analogy between the proposed reference model and the TCP/IP
reference model. The conclusion of the comparison of the ISO/OSI and TCP/IP example, when
considering the use of production today and although being not perfectly designed tends to be
the TCP/IP design approach in terms of production. One of the reasons is the success of the
worldwide Internet that offers many ‘interoperable services” and is based on TCP/IP and thus it
is a perfect example of how a reference model for a network of interoperable services” should look
like given its present practical relevance in science and business.

Credits of the initial Internet success also go to the interoperability studies in this field
between different military areas and units within the US (e.g. Department of Defense), or,
more recently, even between countries within the North Atlantic Treaty Organization (NATO).
Military sources [233] related to interoperability and reference models have been analysed and
share the same problems of establishing a network of interoperable services across various
different systems contributing to the term 'systems of systems’” often used within this particular
field. The notion of 'network of interoperable systems’ [233] is taken for this thesis while many
military-specific protocol issues are surely not relevant in this thesis.

SOA Reference Model Foundations and Associated Architectural Design Elements

After the interoperability example based on a widely known reference model in the last para-
graph, this paragraphs clarifies reference models foundations. Also associated elements are

40 CHAPTER 3. RELATED WORK

introduced to make reference model useful in production environments. The review of the
state-of-the-art in production infrastructures in the last chapter revealed that service-oriented
technologies are commonly used to provide access to services for infrastructure end-users. Grid
middleware, or more generally, Grid technologies, are nowadays designed as SOAs [217] (cf.
Section 2.2.2). SOAs characterise the foundation for the architectural design of e-Science infras-
tructures and their technologies. The well-known OGSA offers a basic Grid reference model
and architecture that is based on the concepts of SOAs. But before analysing OGSA in more
detail the basic SOA foundations are reviewed with a particular focus on existing reference
model principles and associated reference model elements. In this thesis, SOA is based on the
definition in [217].

Definition 22 (Service Oriented Architectures) A Service Oriented Architecture (SOA) is a well-
known paradigm for organising and utilising distributed capabilities that may be under the control
of different ownership domains. It provides a uniform means to offer, discover, interact with and use
capabilities to produce desired effects consistent with measurable preconditions and expectations.

The previously mentioned focus on SOAs, as defined in Definition 22, narrows the field
for identifying relevant reference models. As a consequence, the most relevant related work
can be actually found in a SOA-related publication [217] released by the OASIS SOA techni-
cal committee. Since OASIS is a major SDO in the e-Science community, this publication is
extraordinarily useful in the given problem space. It defines a "Reference Model for Service Ori-
ented Architectures’, and its introduction offers clear answers to the question, "What exactly is a
reference model” in the context of basic SOA environments. Therefore, the information in this
document is taken as a basis in order to identify general reference model principles and related
architectural elements. The broad term reference model” for which we use the definition from
the mentioned OASIS SOA reference model [217] as a basis is defined as follows:

Definition 23 (SOA Reference Model) A reference model for SOAs is an abstract framework for un-
derstanding significant entities and relationships between them within a service-oriented environment,
and for the development of consistent standards or specifications supporting that environment. A refer-
ence model is not directly tied to standards, technologies or other concrete implementation details, but
guides more concrete derived architecture work elements such as the reference architecture that can be
based on open-standards, specifications, or profiles.

Definition 23 lists the key aspects of a reference model (e.g. entities, relationships, etc.) and
also points to the significance of standards supporting its derived reference architecture. Ref-
erence models are not to be directly tied to any concrete standards or technologies that in turn
seems to be in contradiction to the aforementioned success of TCP/IP leading to its practical
significance. One of the major critics of TCP/IP was basically at the same time a key factor of
its success, namely the focus of a production-oriented reference model based on existing con-
crete standard protocol specifications such as TCP and more notably IP. Hence, Definition 23
and the contradiction raise several other questions for the investigation of related studies. The
first question is 'If an abstract reference model alone does not specify any concrete standard specifica-
tion, how can one achieve a reference model with practical significance useful for production e-Science
infrastructures and its concrete applications?’.

Another follow-on question is "Which pieces of software architectural design elements actually
make an abstract e-Science infrastructure reference model that much more concrete in order to be used
with real e-Science applications?’. Answers to these important question can be found in the OA-
SIS reference model document [217]. It represents a ‘frame of reference’ by defining the whole
ecosystem around an abstract reference model that guides numerous associated architectural
elements as shown in Figure 3.1. The frame of reference illustrated will guide the architectural

3.1. IDENTIFICATION OF RELEVANT APPROACHES AND FACTORS

1 ——— cms;r;lmu

Service Oriented Architecture Implementations

Abstract
Reference
Model
guided by
B iF ™ 2\
Requirements He[eraner:s Patterns
— —
Motivation accounts for
S— « derived *
—
l Concrete ' ' | .
e — Architectures Related Models
Input L Archilecture Work) | Related work
use

v

Concrete

Figure 3.1: Overview of how a reference model relates to other architecture design elements [217].

design elements in the whole thesis and is therefore very important. The figure illustrates why
many contents of this thesis are collectively defined under the “umbrella term’ reference model
by providing solutions for far more than the model alone on different levels. Many of the
associated elements are necessary for real architectures and their applications.

Figure 3.1 provides an overview of the associated architectural design elements of a refer-
ence model in SOAs that can be mapped to thesis contributions. Several ‘input” elements have
been already defined. The ‘goals” provide clear answers to the question "How a reference model for
a network of interoperable services in production e-Science infrastructures can be defined’. The ‘motivi-
ation’ is introduced in Chapter 2, essentially enabling the freedom that e-Scientists can simply
pick the services they need ignoring the boundaries of one or more production e-Science infras-
tructures. Concrete "requirements’ will be provided in Chapter 4, after surveying related work
in the field. The remaining architectural design elements are collectively named ’architecture
work’, "related work’, and finally 'SOA implementations” within Figure 3.1. These are mapped in
subsequent thesis chapters. The findings of this thesis offer a reference model along with ref-
erence architecture and concrete implementations that enable the use of applications with it.
An abstract reference model is only one particular aspect of the whole thesis, while many other
aspects in Figure 3.1 play a role in its definition to become gradually more concrete and thus
useful for e-Science applications.

SOA Reference Model Key Principles

The comparison of existing reference models in the field starts with identifying some general
key principles of reference models. The identification of such principles is not straightforward
since many reference model definitions are available for a plethora of different specific fields
in computer science. Also, known books on distributed systems, most notably Tanenbaum et

42 CHAPTER 3. RELATED WORK

al. [296], do not offer a reasonable general reference model definition and unfortunately focus
more on the concrete ISO/OSI and TCP/IP reference model case. General principles are those
that are 'not too specific’ for Grids and that are "not too broad” in order to still be applicable in
Grid environments. Based on the introduction of the state-of-the-art, and the last paragraph, it
is clear that SOAs matter in Grids since they are the blueprint for service-oriented technologies
that offer Grid services (cf. Definition 13). In the context of these Grid services, open standards
(cf. Definition 2.5) are highly relevant in the problem environment of interoperability for e-
Science infrastructures. The OASIS SOA Reference model document [217] is a very suitable
source that offers key principles that underpin Definition 23 and they are summarized in the
following definition.

Definition 24 (Reference Model Key Principles) The reference model key principles are abstract-
ness, forming entities and relationships, in the context of a particular problem domain, and being tech-
nology agnostic.

As defined in Definition 24, the principle of being ‘abstract’ enables 'the development of specific
or concrete architectures using consistent standards or specifications’ [217]. The first reference model
principle is thus referred to as ‘abstract’ meaning that the elements and concepts defined by
the reference model are an abstract representation of its elements. An abstract reference model
description as such describes the general ‘service architecture’ (i.e. in e-Science infrastructures)
and is not deployment specific for instances that can be found in realistic setups (i.e. not specific
for EGEE/EGI or DEISA /PRACE).

The second principle is 'for understanding significant relationships among the entities of some
environment’ [217]. Hence, another important principle is that a reference model should define
‘entities and their relationships” with each other. When only entities are listed, the relationships
(e.g. layered like within the TCP/IP reference model or how standards work with each other)
are neglected and as such the reference model and its derived architectures are less useful.

For the next principle, the focus is set on the latter part of the aforementioned sentence ’for
understanding significant relationships among the entities of some environment’ [217]. A reference
model consists of a couple of concepts but all of which are “within a particular problem domain’
[217]. The principle of having a reference model for a specific environment with a “clear focused
problem space’ is also important. ISO/OSI provides an example that aims to solve problems
for a specific field in communication. Another key principle of the reference model design
that it is “independent of specific standards, technologies, implementations, or other concrete details’
[217]. Hence, a reference model should be “technology agnostic” and thus make no assumptions
about specific technology or standard implementation. This is in contrast to associated ref-
erence architectures where standards, profiles, specifications are used as shown in Figure 3.1.
A reference model is a mechanism for understanding the problems faced, not the particular
implementations involved.

The four aforementioned common reference model principles represent one valid founda-
tional "‘comparison metric’ for relevant reference models in the field. This comparison metric is
used in order to discover whether the existing models have common drawbacks. It is used to
reveal why existing solutions failed to deliver a sustainable interoperability reference model of
e-Science infrastructures or why those models are not used at all in the given problem domain.
The reference model priniciples offer a theoretical point of view providing a foundation for
comparing existing reference model elements.

3.1.2 Open Grid Services Architecture Analysis

As a complement to the previous, rather theoretical view on reference models key principles,
this section focusses on the more practical community-specific lessons learned using OGSA as

3.1. IDENTIFICATION OF RELEVANT APPROACHES AND FACTORS 43

a basis. One decade ago, the technical field of Grid computing emerged with OGSA as the
“initial and fundamental Grid reference model and architecture’ proposed by Foster et al. [174] in
2003. Numerous related distributed systems publications and derived concrete architectures
appeared that aimed at implementing the OGSA vision.

OGSA is therefore the basic reference model (and reference architecture) in this survey of
related work. It serves as a valid basis for the identification of indicators that bear the poten-
tial to enable production e-Science infrastructure interoperability today. Such ‘indicators” are
defined as follows:

Definition 25 (Reference Model Design Indicators) Reference model design indicators are facts
about interoperability characteristica of a given reference model, its associated reference architecture,
and their more concrete derived architectures.

For a long time, OGSA was known to promote interoperability through a broad framework
based on a wide variety of open standards. But despite being well-known and the basic model
in Grids, only a slow adoption rate was observed over the years so that OGSA has not yet
achieved a common basis for production e-Science infrastructures. OGSA is analyzed in more
detail in order to explore the reasons for its slow adoption and to understand the major critics of
OGSA that have hindered its broad adoption in the light of roughly one decade after its initial
definition. OGSA is critically reviewed in [264], and this section identifies relevant factors
based on indicators (cf. Definition 25) for a production e-Science oriented reference model and
its associated architecture elements.

Definition 26 (Reference Model Design Factors) Reference model design factors group several in-
dicators as defined in Definition 25 in terms of SOA key requirements, scope and relevance to e-Science,
applicability in production environments, open standards conformance, and uptake in existing produc-
tion ecosystems.

Since the beginning of the creation of OGSA during 2002 and 2003, critiques of OGSA have
been continously discussed during the years within the community. But only a minority of
these community critiques have actually been published, like the early work by Gannon et
al. [181, 180]. These two contributions critically analysed OGSA with a particular perspective
of its initial conceptual design and implementation around the nowadays outdated Open Grid
Services Infrastructure (OGSI) [299]. One of the results of these and related critiques, as well as
subsequent activities, was the deprecation of OGSI in favour of the more recent Web Services
Resource Framework (WS-RF) [123]. In contrast to OGSI, WS-RF is still in use by some mid-
dleware systems today, like the Globus Toolkit 4 [167], Genesis [231] and UNICORE 6 [293].
Complementary to the aforementioned publications, OGSA is reviewed in this thesis from a
production e-Science infrastructure perspective.

The analysis is based on the most recent definition of OGSA published by the OGF in 2006
under version 1.5 [174] that is in turn based on the evolution of the initial publication [171].
The analysis results are shown in Table 3.1, listing reference model and associated architec-
ture interoperability factors. These factors are underpinned by identified indicators that are
partly derived from OGSA critiques or production Grid experience in context (e.g. from con-
crete derived OGSA-based architectures). The identified factors and indicators are in turn used
throughout the survey of related work for a comparison with other related approaches.

Identifying Service-based Reference Model Indicators

The most fundamental factor from OGSA 1.5 is essentially referred to as "(a) Service based” since
the key architectural design in distributed systems like OGSA-conform Grids are SOAs (i.e.

44 CHAPTER 3. RELATED WORK

Relevant Factors ‘ Indicators OGSA
(a) Service based (1) Service Oriented Architecture (SOA)-
(Reference Model) based design for a distributed system Yes
(2) Entities offer service interfaces Yes
(3) Clear unique service semantics Yes
(b) e-Science Context (4) Focussed on scientific use cases No
(Reference Model) (5) Grid execution management elements Yes
(6) Grid data management elements Yes
(7) Grid security elements Yes
(8) Grid information elements Yes
(c) Specified relationships (9) Information and Compute No
between different (10) Information and Data No
relevant functional areas (11) Security and Compute No
(Reference Model) (12) Security and Data No
(13) Information and Security No
(14) Compute and Data No
(d) Details for implementation (15) Based on concrete Web services (WS)-
(Reference Architecture) based Architecture as SOA implementation ~ Yes
(16) Concrete specifications with referenced
portTypes (e.g. Operations) or schemas No
(17) Invariants and constraints for the use of
information and security data exists No
(e) Production-oriented (18) Number of core service entities is
(Reference Architecture) lower than 5 (model not too broad) No
(19) Definition of core entities that must
be in place to form an infrastructure No
(20) Used normative specifications are
already defined and publicly available No
(21) Project that implements core entities
and relationships (funding exists) No
(f) Standards based (22) Based on normative standard
(Reference Architecture) specifications No
(23) Specifications from real SDOs No
(24) No break of existing established
standard specifications No
(g) Adoption in e-Science (25) EGEE / EGI technologies No
production technologies (26) DEISA / PRACE technologies No
(Derived Concrete Architectures) | (27) Production middleware systems
(e.g. ARC, gLite, Globus, UNICORE) No

Table 3.1: Reference model interoperability factors and indicators in the context of OGSA.

Indicator (1)). This key design principle remains and thus this indicator is relevant for current
production Grids. Within OGSA 1.5, these services are described with clear service interfaces
at a rather high-level but while being sufficient detailed to understand their unique service
semantics. This leads to the requirement for reference model entities that offer a good descrip-
tion of the service interface (i.e. Indicator (2)) while each of the services must have clear unique
semantics (i.e. Indicator (3)) in the infrastructure (e.g. relevance of an information system).

3.1. IDENTIFICATION OF RELEVANT APPROACHES AND FACTORS 45

e-Science Infrastructure Reference Model Indicators

The next important factor '(b) e-Science context’ stands for a couple of indicators that are "fo-
cussed on scientific use cases’ (i.e. Indicator (4)). When e-Science was becoming more and
more known, other models including e-Business, or e-Government also became interesting
and therefore many use cases have influenced the architectures of the last decade in Grid com-
puting. Hence, OGSA was also not only driven by e-Science but also by e-Business use cases,
as the abstract of the OGSA 1.5 document [174] already indicates. More evidence is given
in the OGSA use case documents [168, 252] that also includes business use cases in addition
to scientific ones. This partly influenced its broad design, where several core service entities
(e.g. self-management) and functionality (e.g. Service Level Agreements) are, while being rele-
vant, not a major priority for current e-Science infrastructures. In contrast, the more and more
emerging cloud computing paradigm [176] is taking up Grid computing concepts that seems
to satisfy exactly e-Business and e-Goverment use cases as the Standards and Interoperability
for e-Infrastructure Implementation Initiative (SIENA) roadmap indicates [87].

The lack of focus of the OGSA model on pure scientific priorities represents a hindrance
for adoption in scientifically-driven production infrastructures. But in comparison with pro-
duction Grids, the majority of services listed in OGSA 1.5 are required. These observations are
transferred into indicators with service elements for Grid execution management (i.e. Indica-
tor (5)), Grid data management (i.e. Indicator (6)), Grid security (i.e. Indicator (7)), and Grid
information (i.e. Indicator (8)). The only one missing from OGSA 1.5 are resource management
service elements, meaning aspects of resource models (i.e. WS-RF and stateful Web service
models) being only rarely adopted in production Grids. This does not necessarily influence
interoperability, because often the resource model is an internal implementation detail rather
than an external service model and thus not transferred into an indicator.

Relationships between Different Technology Areas

The requirement for (c) Specified relationships between different relevant functional areas’ is also
relevant. ‘Relevant functional areas” from OSGA are provided above but their difference in terms
of handling within production environments is important. Not all are on the same layer or
can be treated by technologies in the same manner. While they are all at the same level of
importance, production e-Science infrastructure experience over years reveals that information
and security are actually considered to be orthogonal to compute and data services. This im-
portant lesson is published in [267] that introduced the concept named ‘plumbings” that later
also plays a role within this context for the reference model. For example, information must
be available to the whole infrastructure about available compute and data services, while at
the same time these services must be secured by an infrastructure wide solution at each level.
This is encoded in the definition of the relevant indicators (i.e. (9)-(14)) shown in Table 3.1. In
contrast, OGSA 1.5 basically defines all its services on the 'same service level’ and only roughly
mentions relationships across different functional areas that are by far not sufficient in the light
of production infrastructure requirements. This is also the case for having a clear relationship
regarding how information about security handling of available services can be obtained. Also,
a clear definition from OGSA of how compute and data services actually interact beyond the
usual data-stagings (e.g. storage interfaces, etc.) is also not available.

OGSA addresses these critiques about interactions and the others previously mentioned is
the so-called "profiling approach’ as described by the "OGSA Profile Definition Version 1.0” [218]
document. It outlines how normative OGSA profiles should be written for describing collec-
tions of specifications and their interactions. The OGSA profile document [218] reveals that the
still missing normative definition of OGSA should be provided by a number of OGSA profile

46 CHAPTER 3. RELATED WORK

documents modelled along the lines of Web Services Interoperability (WS-I) Profiles [63] (e.g.
WS-I Basic Profile [122] or WS-I Basic Security Profile [125]). The WS-I set of specifications
itself are too general, because they do not address several specific issues of e-Science infras-
tructures and Grid security setups (e.g. remote job submission or identity delegation). But the
idea was to define a similiar set of profiles that addressed Grid-specific functionality [218]. The
approach is clear and provides benefits since it enables quite a flexible set of standards to be
relevant for production infrastructures. But over the last years, only very minor profiles have
been published as part of the OGF process, leaving OGSA basically undefined.

In more detail, the 'OGSA WS-RF Basic Profile 1.0" [175] is very much focussed on the im-
plementation of OGSA concepts at the resource level with WS-RF. As mentioned above, this
adoption of WS-RF, and in turn this profile, was not as broad as initially intended and thus
essentially did not manage to become a community agreed basic profile. Much more relevant
until today is the HPC Basic Profile [154] that profiles the use of OGSA-BES [169], JSDL [115]
and some of its extensions for HPC applications [197]. This profile is used in some middleware
systems (e.g. UNICORE, GENESIS, etc.), but could be signficantly improved to satisfy HPC
production environments thus not fulfilling the promise given by its name. OGF also released
a few other profiles in the field of security [226, 227, 288], while all of them essentially specify
very particular setups and do not address the important production requirement of attribute-
based authorisation required for virtual organisations (cf. Definition 8). All profiles have not
even defined the basic architectural aspects of OGSA and thus this “profiling approach’ is not
taken as a major design principle in this thesis.

Details for Implementation Indicators

After the definition of OGSA, the Grid community raised an increasing demand on it for '(d)
details for implementation’ leading to the aforementioned OGSI. But as critics of OGSI reveal
[31], it was too atomic and it was making changes to standards like the co-called "gwsdl concept’
[299] that breaks the backwards compatibility with the well-known and broadly used Web
Services Description Language (WSDL) [150] concept. After several years in existence, OGSI
was marked as ‘deprecated” in favour of the WS-RF set of specifications [123]. But while the
resource management aspects of WS-RF are much better, a lack of detailed service definitions
apart from the stateful behaviour of services. The introduction of OGSA 1.5 acknowledges this
gap, referring to this document as being ‘one component of a set of documents that, over time, will
fully define OGSA, both informatively and normatively’. But after five years, during which initial
Grids have evolved into fully-grown production infrastructures, there is no clear set of service
definitions or specifications to fulfil the whole OGSA vision.

Based on these experiences over the years, there are a few relevant fundamental indicators
added to Table 3.1. The core assumption that OGSA-conform Grids implement the abstract
SOA concepts with the help of concrete Web service (WS) technologies (i.e. Indicator (15)),
like those mentioned in the OGSA 1.5 introduction [174]. This kind of communication baseline
essentially stands for XML-based message exchanges using the Simple Object Access Protocol
(SOAP) [190] over HTTP(S). But the work in the field of WS-1[63], provided evidence that the
agreement on using WS is by far not enough to reach the interoperability between two or more
production infrastructures. This can be at least partly explained by the growing collection of
technical WS-* specifications where it is very seldom the case that the same set of specifica-
tions (or profiles) is adopted by the same technology providers or Grid infrastructures. In this
context, a community agreed reference model and architecture has the potential to guide such
technology providers when clearly referencing those relevant WS-* specifications (i.e. Indicator
(16)) that enable interoperability in those infrastructures relevant for those communities.

3.1. IDENTIFICATION OF RELEVANT APPROACHES AND FACTORS 47

More recently, services in some Grids also consider RESTful services [291] that re-use a lot
of HTTP concepts while being very general in its usage. But more specifications are needed
to reach an equally powerful ‘semantic richness” of WS-* specifications such as using REST for
job submissions simliar to the level provided by OGSA-BES and JSDL. When interoperability
needs to be achieved, many more specifications (e.g. security) together with REST need to be
defined together to be of equal use like WS.

Much more relevant than RESTful approaches is greater awareness in the use of data ex-
changes in WS message exchanges. Hence, in addition to the basic message exchanges, many
‘data content” exchanges such as those encoded in information model schemas (e.g. GLUE2
[113]) are important for interoperability. Such models, like the shipped security attributes (e.g.
with SAML [142]), require a concrete definition of their use and are thus important for inter-
operability beyond the fundamental WS portType (e.g. operations) level. As a consequence,
their use in interoperability setups between production Grids requires clear invariants and con-
straints (i.e. Indicator (17)) as published in [260]. Although OGSA indicates the relevance of
these data, it does not provide clear constraints for their use in the architecture.

Production-oriented Indicators

All the aforementioned factors contributed to the slow adoption of OSGA in production Grids
over the years. While it remains open wheather there will be full OGSA implementation in the
future, it seems thats its scope is actually too broad to be specifically (e) production-oriented” in
the context of present production environments. The broad OGSA provides many services and
approaches that not all are specifically useful for production. Therefore, the number of core
service entities are set to be below five (cf. Table 3.1, Indicator (18)) actually referring to the
clear scope of four services covering execution management, data, security, and information.
While it is difficult to explicitly set this border to four core entities, it is still a reasonably good
indicator of whether a Grid reference model focuses on the core technical areas instead of a
wide variety of not production relevant entities.

Also added is the definition of which core entities (i.e. Indicator (19)) should be available
to create a working infrastructure ecosystem to Table 3.1. A reference model needs to specify
exactly which services are required to form a core infrastructure and not leave it completely
open like OGSA did. OGSA 1.5 does not force the requirement that all its services are present
in an OGSA system, but it also does not specify those core services that must be available to
promote basic interoperability. It only states that there ‘might be a core set of not null interfaces,
standards, and common knowledge/bootstrap that services must implement to be part of an OGSA Grid'.
Production e-Science infrastructures, for example, require concrete execution and data manage-
ment services that are well protected via concrete security services, that in turn all work based
on up-to-date information obtained from information services. The very high-level and rather
theoretical, broad view of an OGSA-conform infrastructure raises, for example, the demand
for information services as only a minor point beside many others. Information services and
common information models are the foundation in this thesis, and nearly equally important as
the communication baseline (i.e. Web services) itself.

All in all, the broad definition aspect of OGSA actually leads to another drawback and
critique that is transferred into an indicator (i.e. Indicator (20)). OGSA 1.5 defines a plethora
of services where specifications are still not currently available and are also not expected to
be available in the near future (e.g. resource selection services, fault detection and recovery
services, standardised advance reservation services, etc.).

Finally, all the aforementioned points culminated in the indicator (i.e. Indicator (21) for
whether there are projects that implement the whole reference model with its associated archi-

48 CHAPTER 3. RELATED WORK

tecture. This would significantly increase the probability of being realistically implementable.
Despite providing a basis for service and component re-use in e-Science, this indicator also cov-
ers a certain grade of evidence as to whether the reference model is practically implementable
(e.g. TCP/IP [296]) or rather a purely theoretical reference model model (e.g. ISO/OSI [296]).
The example of TCP/IP and ISO/OSI provides evidence that the interoperability is a good ex-
ample of where the theorists and practitioners are completely polarised. Until today, no project
has implemented, or is implementing, the whole OGSA ecosystem, except some middleware
(e.g. GENESIS [231], UNICORE [293]) that implement parts of it.

Standards-based Indicators

As mentioned in OGSA 1.5, the key to the fulfilment of the OGSA vision is standardisation and
being thus '(f) standards based” (cf. Definition 14). This is surely critical to creating interopera-
ble and reusable Grid components and distributed systems forming e-Science infrastructures
that are sustainable and where scientists can select their standards-based technology of choice.
OGSA 1.5 addresses this need for standardisation by defining a set of core capabilities and be-
haviours that address key concerns in Grids. This high-level requirement of standardisation is
a valid basis, but by using relevant indicators more evidence is provided of whether a reference
model through its reference architecture considers open standards or not.

First, a reference architecture like OGSA should be clearly based on open standards, mean-
ing that its core entities should be well-specified with normative standard specifications (i.e.
Indicator (22)) developed in an open process. While this is relevant for scientific environments,
there is also the requirement for specifications that are released from SDOs (i.e. Indicator (23))
like OGF, OASIS, IETE, or the World-Wide Web Consortium (W3C) [103]. This prevents vendor-
locks via ‘pseudo-de-facto” standards enabling the freedom to choose technologies as required.
Also, it is important that standards do not break backwards compatibility (i.e. Indicator (24))
with established standards, such as in the case with the Grid proprietary definition of ‘gwsdl’
in OGSI [299] or the "httpg” protocol of the Grid Security Infrastructure (GSI) [170].

Indicators for Production Infrastructure Adoption

The final factor is related to more concrete derived architectures from the reference model and
its adoption in ’(g) e-Science production technologies’. As production environments are daily used
by scientists, it is very unlikely that a completely new reference model will influence our given
infrastructures. Hence, it seems reasonable to analyse more deeply which existing e-Science
infrastructures and technologies have actually been influenced by OGSA 1.5 and its principles.
Closer investigation on the services and setups available in the EGEE / EGI infrastructures (i.e.
Indicator (25)) reveals in [256] that only minor aspects of OGSA have been adopted and a wide
variety of concepts still are not available (e.g. stateful resource management like that within
WS-RF, advance reservation services, etc.). As a consequence, EGEE / EGI is not yet a fully
OGSA-conform Grid, because only basic OGSA services are available (e.g. OGSA-BES) while
other OGSA features such as data management or common security are missing.

The same is actually true for DEISA / PRACE (i.e. Indicator (26)) that also shows lim-
ited adoption of OGSA services and principles. Despite some basic OGSA services that are
deployed (e.g. OGSA-BES), not many services according to the full OGSA are actually imple-
mented and deployed from the four major middleware systems (i.e. Indicator (27)) relevant
for production e-Science infrastructures. Hence, these systems are all not yet fully OGSA com-
pliant technologies. All in all, the aforementioned findings provide evidence that the OGSA
adoption in e-Science infrastructures is low.

3.1. IDENTIFICATION OF RELEVANT APPROACHES AND FACTORS 49

3.1.3 Component-based Approach Review

The alternative approach to standard-based reference models and OGSA is a wide variety of
"component-based approaches’ often used in a pair-wise setup between different production e-
Science infrastructures. Such approaches using non-standard solutions such as adapters, hacks,
workarounds that share in common that they are rather short-term oriented and not guided by
an overall reference model or more concrete reference architecture that ensures interoperability
more on the longer term. There are many ‘interoperation approaches’ in these approaches with
serious limitations often leading to solutions that are not sustainable. In contrast, standard-
based approaches are more feasible in providing sustainable solutions, but often take longer to
realize. This section provides details about the key differences between both aforementioned
approaches highlighting the drawbacks faced when working only on short-term solutions.

Transformation Logic to Describe the Problems Faced

The majority of the existing component-based approaches that are known to realize the in-
teroperation of production e-Science infrastructures often share one overall limitation that is
moddeled as "transformation logic’ in this thesis to describe the problems faced throughout the
different approaches. As shown in Figure 3.2 it inherently represents a valid comparison cri-
teria using drawbacks for the component-based approaches, that all have failed to deliver a
sustainable interoperability for the e-Science infrastructures relevant in this thesis.

Definition 27 (Transformation Logic) Transformation logic is a dedicated functionality within a
component responsible for transforming one protocol or schema of type A into another protocol or schema
of type B. It stands for a number of drawbacks, which are processing time overhead, error-proneness,
maintenance overhead, complex handling of different deployment versions, and semantic loss.

Definition 27 defines the criteria for the comparison of different approaches, as transforma-
tion logic stands collectively for a number of drawbacks influencing a given setup more or less
depending on its extensive use. Transformation logic is one key limitation and raises serious
concerns, among several others, especially in terms of sustainable interoperability solutions.
The logic often gets more and more complex by an increasing amount of supported protocols
and schemas and thus their implied technologies. The only advantage seems that often such
approaches are rather easy to implement especially in pair-wise ad-hoc e-Science infrastructure
interoperability setups. This is the reason for the wide variety of existing approaches that have
become available over the last decade.

The drawback ‘maintenance’ is relevant, because transformation logic is subject to many
changes when proprietary incompatible protocols or interfaces, as well as schemas, change
over time within the affected components. It is even more of a challenge when the same compo-
nent is deployed on production infrastructures in various versions, thus adding another layer
of complexity due to the requirement of supporting older interfaces and schemas in order to be
backwards compatible. In the context of performance, the logic needs much processing time
where parts of one protocol or schema have to be mapped to another protocol or schema. Cor-
rectness is an issue too since the transformation logic implementations are very error-prone
and often the transformation only covers a subset of the original protocol or schema essentially
leading to true semantic loss. The summary of the implied drawbacks of the transformation
logic criteria are shown in Figure 3.2, that models one major limitation in existing component-
based interoperability approaches.

50 CHAPTER 3. RELATED WORK

protocol A or schema A

protocol B* or schema B

Figure 3.2: Transformation logic implies many drawbacks during its execution.

Open Standards avoiding Transformation Logic

Transformation logic as described above and published in [272] should be avoided to enable
a long-term sustainable production-oriented interoperable solution. Such a logic can only be
avoided when open standards are used within the different components, at least within the
parts that are relevant to interoperability and interoperation with other components. But Stan-
dards are difficult to define and agree upon requiring often several years to become adopted.
But without requiring transformation logic as illustrated in Figure 3.3 standards are the only
path to reach sustainable interoperable solutions.

Differences between the both aforementioned approaches become more clearer when the
different component-based approaches are surveyed in this section. The survey often identi-
fies concepts that are particularly bound to certain components that can be found in a dedicated
Grid technology deployed on a specific e-Science infrastructure. The concepts often thus only
satisfy interoperation in a pair-wise fashion between specific technologies and thus is not a
generic solution for more then the direct e-Science infrastructures involved. The survey of this
related work represents a good source to learn about issues around the problem of e-Science
infrastructure interoperability existing since many years. Many of these approaches only repre-
sent short-term solutions that have been created via workarounds, hacks, or non-maintainable
component modifications (i.e. software tweaks on top of an official software release). But they
all highlight certain point of interests (e.g. difference in job description formats) that are inputs
to later parts of this thesis meaning essentially requirements and the reference model design.

The Benefits of Open Standards

Before the survey, the benefits of open standards as defined in Definition 14 are important to
understand. The review of the benefits in context of the given problem space points to key

3.1. IDENTIFICATION OF RELEVANT APPROACHES AND FACTORS 51

Client Layer
Today's
Standard Protocols
Grid Grid
Middleware A Middleware B

Grid type Grid type
A B

Figure 3.3: The open standards-based approach does not require transformation logic.

contributions to the vision of ‘individual e-Science infrastructures’ (cf. Definition 20). Since the
benefits are truly important they also influence later reference model design decisions. This
section thus reviews the major benefits with a particular perspective of e-Science.

There is a wide variety of general benefits when technology providers (e.g. middleware
providers), implement the same set of standards (e.g. the OGSA-BES job submission and man-
agement interface). One benefit is that the adoption of open standards prevents "vendor-locks’,
since end-users of technologies can select the technology they want to use as long as this tech-
nology adheres to the same standard. The standard itself can be an agreed common interface,
protocol, API, or even simple schema.

The key benefit relies in the possibility for end-users being able to access different services
that adopt the same standard with the same client and security credentials. Administrators are
better able to guarantee stability when standard-based service technologies can be switched
while end-users can stick to the same client using the same standard adopted. Here the benefit
relies on the change of underlying technologies without the necessity of exposing this change
to end-users. This is an ideal situation where end-users do not even know whether there is a
specific standard used and, more notably, whether the technology has been switched to another.
All in all, the standard-based solutions are also easier to maintain then transformation logic
approaches.

Another benefit is that it offers better protection against ‘proprietary data silos” created by a
certain technology. Technologies can disappear over time (e.g. from lack of funding), but if
they provide access to key data the access needs to be further guaranteed. If the data format
is proprietary, time-consuming transformations (if possible at all) must be done from the old
proprietary format into the format of the new technology to be used. This in turn can lead to
significant migration costs that also includes the time of transformation and the transfer from
data from source to the new sink. Standard-based middleware thus enables that valuable data
(e.g. compute usage records) with formats that are standard-compliant can be correctly used
by another middleware technology.

End-user application porting (e.g. using an MPI program with middleware) is also much eas-
ier from one middleware to another when standard protocols and interfaces are used. Apart
from the functional interface, the standard itself follows with it certain guidelines and charac-
teristics of approaches. In other words, standards can provide the benefit of stabilizing a way
of using” technology directly through particular standards (e.g. better understanding of certain
parameters). Switching technologies is easier since the skills learned from one middleware can

52 CHAPTER 3. RELATED WORK

be utilised with less training than learning another proprietary interface and ‘way of using’ (e.g.
necessary MPI options such as required set of cores/threads).

Open standards are a key contributor to interoperability that complement the aforemen-
tioned approaches around reference architectures guided by a broader reference model. The
use of this complementary nature is thus of major importance in this thesis and plays a role
throughout the next chapters.

3.2. SURVEY OF RELATED REFERENCE MODELS 53

3.2 Survey of Related Reference Models

Apart from the already reviewed OGSA, there are not many reference models and reference
architectures in the field of distributed systems and Grid computing that are fully applicable to
the given problem space. This also partly contributed to the major motivations of this thesis in
terms of investigating applicable models.

Models that have been published in the context of e-Science or those that are well-known in
distributed systems are surveyed. The identified reference model interoperability factors and
their indicators (cf. Table 3.1) are used to understand whether a model bears the potential to
be applicable to the given problem space. The academic analysis of the models also identi-
fies advantages and disadvantages of each model that in turn leads to the fullfillment (yes) or
limitation (no) for each indicator. Table 3.2 provides an overview of the findings and the sub-
sequent sections give more details. It shows that none of the existing models is able to satisfy
all relevant factors and indicators.

This thesis considers the term “reference model” as an umbrella for a wide variety of different
associated elements around a reference model following the basic ideas of the OASIS SOA

Relevant Factors Indicators OGSA EGA CSA RM-ODP CCA CPN
(a) Service based 1) yes yes yes no yes no
(Reference Model) (2) yes yes yes no yes no
3) yes yes yes no yes no
(b) e-Science Context (4) no no no no yes yes
(Reference Model) (5) yes no no no no yes
(6) yes no no no no yes
(7) yes no no no no no
8) yes no no no no no
(c) Specitied 9) no no no no no no
relationships between (10) no no no no no no
different relevant (11) no no no no no no
functional areas (12) no no no no no no
(Reference Model) (13) no no no no no no
(14) no no no no no no
(d) Details for (15) yes no yes no no no
implementation (16) no no yes no no no
(Reference Architecture) (17) no no yes no no no
(e) Production - (18) no yes no no yes no
oriented (19) no no no no yes no
(Reference Architecture) (20) no no yes yes yes no
(21) no no no no yes no
(f) Standards based (22) no no yes yes no no
(Reference Architecture) (23) no no yes yes no no
(24) no no yes yes yes yes
(g) Adoption in e-Science (25) no no no no no no
production technologies (26) no no no no no no
(Derived Concrete (27) no no no no no no
Architectures)

Table 3.2: Relevant reference models with comparisons of factors and indicators.

54 CHAPTER 3. RELATED WORK

reference model [217]. As part of the survey also associated design elements are thus taken
into account such as reference architectures, standards, goals, patterns, etc. (cf. Figure 3.1).
This allows a more effective analysis on the overall usefulness of the reference model and its
derived reference architectures or concrete architectures for each of the different models. All
factors in Table 3.2 are based on the outcomes of evaluating indicators, clearly pointing either
to yes or no. The OASIS SOA reference model is not part of this related work survey since it is
introduced earlier and it is the baseline being thus very fundamental for this thesis.

3.2.1 Enterprise Grid Alliance Reference Model

The standardisation landscape of the Grid community was different back in 2006 than today.
The Global Grid Forum (GGF), was largely driven by academic needs, and the Enterprise Grid
Alliance (EGA) was driven by commercial and enterprise needs, also partly influencing OGSA
as some business use case elements reveal [168, 252]. Since June 2006, both SDOs merged and
formed the Open Grid Forum (OGF) that is the major SDO of the e-Science community today.
The reference model working group of the EGA published a reference model that is defined in
two documents [127, 128] and that is analysed in this section in detail.

The aforedefined general reference model principles as defined in Definition 24 are used to
analyse the EGA model. It follows the "principle of being abstract’ in the sense that it provides a
common context in terms of defining the set of components to be managed within one enter-
prise Grid, their life cycle and how they are managed. Although being very specific in terms
of functionality it makes no assumptions on dedicated deployments in one particular existing
enterprise. It thus enables the development of more concrete architectures, but those have been
not emerged yet.

As shown in Figure 3.4, the EGA model defines an enterprise Grid using mappings be-
tween abstract business application definitions and elemental Grid components representing
thus entities and their relationships. It defines such ‘entities and relationships’, with very basic

Business Service

Figure 3.4: EGA reference model and some of its elemental Grid components [127].

3.2. SURVEY OF RELATED REFERENCE MODELS 55

IT components (i.e. server, firewall, etc.) that all contribute to a business application and are
not e-Science specific. The model also enables to understand relationships between entities
even if they are defined at a very high-level. The clearly 'focussed problem space’ of the reference
model is defined as an enterprise Grid and thus only has very minor (specific) overlaps with
entities and relationships of relevant e-Science technologies. The reference model is defined in
a 'technology agnostic way” using only general Grid components rather than specific technolo-
gies of specific vendors. The EGA model satisfies all the general principles and thus can be
considered as a real reference model from a theoretical point of view.

From a more practical perspective, it would be important that the EGA model is in-line
with the defined reference model interoperability factors and their identified indicators. The
summary is provided alongside other models in Table 3.2. The reference model is modelled
alongside the SOA design (i.e. Indicator 1) and several entities are introduced that offer service
interfaces (i.e. Indicator 2) with clear semantics (i.e. Indicator 3). The EGA model is thus
service-based and relevant to the given problem space.

But the EGA reference model is oriented towards e-Business and not focussed on scientific
use cases (i.e. Indicator 4). It is concerned about component and service lifecycle thus lacking
important reference model elements that are relevant in this thesis (e.g. Grid security). The
idea of “units of work’” [128] is introduced, but lacks sufficient detail on execution management
(i.e. Indicator 5), Grid security elements (i.e. Indicator 7), and Grid information elements (i.e.
Indicator 8). Despite the fact that the focus of the EGA reference model is services around data
centres, it also lacks the significant Grid data management elements (i.e. Indicator 6) required
in the given problem space.

Important other factors regarding the specified relationships between different relevant
functional are not described in sufficient detail. The EGA model does not specify relation-
ships required between relevant areas (i.e. Indicator 9-14) and only rather general relationships
between elements are given.

With both of the aforementioned important factors being rather unsuitable for e-Science
infrastructures, the EGA model as a whole lacks sufficient detail for its implementation too.
There is no concrete reference architecture available for the EGA model as part of its two doc-
uments nor as a separate specification. Alhough SOAs are the basic concept in the document,
it does not reference any concrete WS-based architecture used for the implementation of these
SOA concepts (i.e. Indicator 15). Concrete specifications with portTypes are missing (i.e. Indi-
cator 16) for its operations, as well as invariants for the use of information and security data
(i-e. Indicator 17).

From the aforementioned academic results analysis it is clear that the EGA reference model
is not oriented towards production e-Science infrastructures. Although the model is not too
broad (i.e. Indicator 18), the documents give details on commissioning and decommissioning
services, provisioning and event flow, lifecycle management or other aspects that satisfy sev-
eral e-Business use cases, but that are not directly relevant for e-Science. It lacks the definition
of core entities to form an e-Science infrastructure (i.e. Indicator 19) and does not make use
of normative specifications (i.e. Indicator 20). There is no known project that currently imple-
ments the reference model (i.e. Indicator 21) with a more concrete reference architecture so that
it could be used in production environments.

Nevertheless, the EGA model mentions standards, e.g. "The EGA aims to drive interoperability
through the use of standards’ [127]. But a more thorough analysis reveals that in an absence of a
reference architecture, it fulfills none of our factors of being standard-based (i.e. Indicator 22-
24). Some activity within the OGF Reference Model working group [66] was started to redefine
some of the concepts to a more specific use of OGF standards, but this work was stopped years
ago.

56 CHAPTER 3. RELATED WORK

The whole e-Business-driven EGA model has an ambiguous scope and definition. It is thus
not relevant in any form to the given production environments in this thesis since after several
years it still lacks many relevant details. Current production infrastructures do not consider
elements of this model (i.e. Indicator 25-26), nor are production middleware technologies ca-
pable of providing implementations that are guided by this reference model (i.e. Indicator 27).

3.2.2 OASIS Service Component Architecture

A general reference model from OASIS is called the SOA reference model [217] that provides
a lot of fundamental pieces of information in this thesis based on SOAs. In addition to this
model, OASIS also defines the Open Service Component Architecture (CSA) [71] as a set of
specifications which describe another reference model with a more concrete reference architec-
ture in context. In contrast to the rather general SOA reference model, CSA describes a more
specific model for building applications and systems using SOA approaches that largely build
on the Web services technology but also allow others.

The CSA is a model that encompasses a wide range of technologies in terms of the service
components and access methods that are used to connect them. The overall idea is described in
its assembly specification [129] that is one of many other specifications that collectively define
the CSA. The general reference model principles as defined in Definition 24 are used to analyse
the model in the next paragraphs.

It follows the ‘principle of being abstract’ meaning that it makes no specific assumptions on
deployment while this specification enables the development of concrete architectures. More
concrete reference architecture elements are provided as an aligned set of specifications that
even offer bindings for different languages (e.g. C++, Java, etc.). An overview of the different
specifications in context to the rather abstract assembly specification is shown in Figure 3.5.

As shown in Figure 3.5, the CSA provides a huge set of "entities and their relationships’ that are
defined in a number of specifications, collectively published in March 2007 as CSA 1.0 specifi-
cations that are standardised within OASIS. The CSA itself is focussed on building SOA-based
applications as composed networks of service components leading to composite service appli-
cations. The specification gives many hints on how the different entities relate to each other
leading to a complex set of related specifications. The reference model has a very clear "focussed
problem space’ that is mainly business scenarios. It has a close relationship with the Service
Data Objects (SDOB) set of specifications [72] that provide a unified model for the handling
of service data in a service environment. The reference model is "technology agnostic’ and thus
makes no assumptions on concrete CSA implementations. It is vendor-neutral and supported
across the industry being also language-neutral since components can be written using differ-

=

‘ Security ‘ ‘ Java H JEE ‘ ‘Webservices‘

‘ RM ‘ ‘ Spring H BPEL ‘ ‘ JMS ‘
Transactions C++ JCA

Figure 3.5: Specifications that collectively represent the OASIS Service Component Architecture (SCA) [71].

3.2. SURVEY OF RELATED REFERENCE MODELS 57

ent programming language bindings that are all provided in different specifications. From a
theoretical perspective, the CSA reference model and its associated reference architecture ele-
ments can be thus classified as a reference model.

The more practical-oriented academic analysis in this section takes advantage of the factors
and indicators defined earlier while the summary of results are shown in Table 3.2. The overall
CSA reference model is based on the SOA design for a distributed system (i.e. Indicator 1). En-
tities are components or so-called composites that offer service interfaces (i.e. Indicator 2) while
the specifications describe how these can be implemented in the corresponding languages. The
general description of service interfaces also provide clear unique semantics (i.e. Indicator 3)
in the context of the greater reference model although the services themselves are not defined
in detail. OASIS CSA is service-based, even if its general applicability is described so general
that it is not suitable for a reference model and associated reference architecture in e-Science
infrastructures.

The reference model set of specifications is e-Business oriented and not optimised for an
e-Science context (i.e. Indicator 4). Many ways in how services according to the CSA need to
be defined are described, but it lacks certain concrete reference model elements that make its
use feasible in the given problem space (i.e. Indicator 5-8). Some specifiations are related to
relevant aspects, e.g. the security policy elements in [130], but it is far from being in-line with
production e-Science use cases.

The CSA specifications lack the dedicated elements required in e-Science and therefore the
important relationships between them are unspecified too (i.e. Indicator 9-14). A concrete
derived architecture from the reference model can be created to satisfy e-Science needs, but it
is not clear how the CSA then improves interoperability.

The reference model is very clear when it comes to details on implementations, since it is
largely building on the Web services technology (i.e. Indicator 15). Concrete specifications
with portTypes are provided (i.e. Indicator 16) and certain policy invariants on security and
information are given (i.e. Indicator 17).

Although the details, by even providing language bindings, are very specific, it is not ori-
ented towards production e-Science infrastructures. The required e-Science service elements
are missing although the whole reference model is broad rather than compact (i.e. Indicator
18). This is especially true when also the related set of SDOB family of specifications is taken
into account for real implementations. There is no definition for core service entities that must
be in place to form an e-Science infrastructure (i.e. Indicator 19). Nevertheless, all specifications
are publicly available from OASIS (i.e. Indicator 20), but there is no e-Science project that take
the OASIS CSA as a basis for implementation in the given production e-Science infrastructure
environments (i.e. Indicator 21).

The reference model including its associated reference architecture is standards-based be-
cause they consider several normative specifications (i.e. Indicator 22). Since the model is
supported and standardised by OASIS, it is a reference model with specifications from a real
SDO (i.e. Indicator 23) without breaking any existing standards (i.e. Indicator 24).

Because of the major aforementioend critiques there is no relevant adoption within the
given problem space. This is the case not only for the production infrastructures (i.e. Indi-
cator 25-26), but more notably for the middleware used by them (i.e. Indicator 27).

The CSA as such is a e-Business-driven model and very specific (e.g. WSDLs, etc.), but at
the same time too broad (i.e. advice on how general services can be implemented) to be used
in the production environments in the given problem space. CSA is a good basis for concrete
architectures, but it is not precise enough how the associated reference architectures supports
interoperability of e-Science infrastructures with Grid functionalities.

58 CHAPTER 3. RELATED WORK

3.2.3 Reference Model for Open Distributed Processing

Another standard-based related work is the so-called Reference Model for Open Distributed
Processing (RM-ODP) [82]. It is a joint effort by ISO and ITU-T [49], and provides a co-
ordinating framework for the standardisation of open distributed processing (ODP). The refer-
ence model supports any form of ODP via the support of distribution, interworking, platform
and technology independence as well as portability. ‘Grid activities” in general and a wide va-
riety of ‘production e-Science infrastructure activities” in particular are closely related to “open
distributed processing’.

The general reference model principles as defined in Definition 24 are used to analyse the
RM-ODP model from the theoretical perspective. The four RM-ODP specifications (i.e. ITU-T
recommendations and ISO international standards) make no assumptions on specific deploy-
ments and thus follow the ‘principle of being abstract’. Instead, the RM-ODP defines international
standards that define essential concepts that specify open distributed processing systems with
five abstract 'viewpoints’ [141]. The reference model is too abstract in this context and very
basic with respect to distributed systems design. To provide one example, Figure 3.6 defines
a very general channel-based communication for distributed systems of the reference model
including the usual building blocks for traditional remote procedure calls (i.e. stubs, binder,
etc.).

The reference model is huge with many ’entities including their relationships’. The RM-ODP
defines a ’clear problem space’ by defining the environment as every service used in distributed
processing using communication principles of distributed systems essentially referring to re-
mote procedure calls. The reference model and its various supporting elements are "technology-
agnostic’, pointing to no specific vendors or dedicated technologies. From a theoretical per-
spective, it is a very interesting model since the four core specifications and related elements
are standardised in extraordinary detail by ISO. On the other hand, it is very basic in nature
(e.g. clarifying terms, communication channels, etc.) and thus it is only of minor relevance to
the very concrete problem space in e-Science.

Although the theoretical perspective of the RM-ODP point to several issues (i.e. too basic),
a more practical perspective review is below based on the aforedefined factors and indicators.

Client Server
Object Object

\\ control /
Interfaces.

4—7?4
— —

I Interceptor II I

Client Protocol
Object

Server Protocol
‘Object

Figure 3.6: The RM-ODP is very basic but represents a strong ISO/ITU-T standard [141].

3.2. SURVEY OF RELATED REFERENCE MODELS 59

The summary is provided together with other models in Table 3.2. According to [203], the ref-
erence model “is based on precise concepts derived from current distributed processing developments’,
but as it is very general it lacks a precise focus on SOA-based systems (i.e. Indicator 1). As the
specifications speak about general systems, they lack a precise service interface definition for
entities having clear service semantics (i.e. Indicators 2 and 3).

The set of specifications mentions pieces of information about enterprises, customers, and
warehouses, and this indicates that the major concepts are more e-Business-based than e-
Science-based (i.e. Indicator 4). Also, no particular e-Science relevance can be found around
execution and data management (i.e. Indicators 5 and 6) as well as security or information (i.e.
Indicators 7 and 8). Although information elements are partly addressed, it provides insuffi-
cient details for a particular production e-Science infrastructure context.

Whilst there are plenty of relationships between several parts of the specification, RM-ODP
lacks specific relationships between required relevant functional areas in e-Science technologies
(i.e. Indicators 9-14).

In terms of details for implementation, a lot of information is provided. But these pieces
of information are all related to very foundational concepts rather than specifically important
aspects such as a specific Web services architecture implementation (i.e. Indicator 15). Con-
crete specifications with portTypes are missing that would be required to implement RM-ODP
in given e-Science environments (i.e. Indicator 16). Although general elements like ‘security
functions’ [203] or ‘information viewpoints” are provided there are no concrete constraints or in-
variants that can be used to perform a valid implementation (i.e. Indicator 17).

Based on previous findings, the reference model is not production-oriented in terms of con-
crete e-Science environments. Not only is the RM-ODP a very broad model (i.e. Indicator 18),
it is also not clear about which exact services must be in place to run a core e-Science infras-
tructure (i.e. Indicator 19). Despite of these disadvantages, the majority of specifications are
normative specifications that are publicly available (i.e. Indicator 20). But there is no project
in the e-Science community that implements these concepts and would contribute to the likeli-
hood of its production impact in practical implementations (i.e. Indicator 21).

So far, many relevant reference model factors in the context of this thesis pointed to the fact
that RM-ODP is not suitable. But the RM-ODP is based on normative standards (i.e. Indicator
22) and has specifications from high impact SDOs (i.e. Indicator 23). As such it is one of the most
detailed standardised reference model examples without any break of fundamental existing
standards (i.e. Indicator 24).

All the aforementioned aspects already point to the non-existing adoption in e-Science pro-
duction technologies. The reference model or its associated architecture specifications is not
adopted in EGEE / EGI technologies (i.e. Indicator 25) nor is it relevant to DEISA / PRACE
technologies (i.e. Indicator 26). Also, with respect to adoption in production middleware, ARC,
gLite, Globus or UNICORE do not take RM-ODP into account (i.e. Indicator 27).

RM-ODP is very general and the reference model is in part even old with specifications that
date back to 1994. Based on this academic analysis it is clear that this reference model has only
minor relevance to the given e-Science environments in this thesis.

3.2.4 Common Component Architecture

The Common Component Architecture (CCA) forum [4] defines a minimal set of standard
interfaces within e-Science environments, with a particular focus on traditional scientific com-
puting (cf. Chapter 2). The overall idea of this reference architecture is to bring the benefits of
component-based software engineering to HPC application developers. The design is oriented
to preserve the performance of components running in these specialized environments. Its ma-

60 CHAPTER 3. RELATED WORK

jor feature is to incorporate existing HPC codes into environments driven by the CCA reference
model. The whole model and its reference architecture is thus low-level (i.e. source code level)
towards the specific use on HPC resources.

The general reference model principles as defined in Definition 24 are used to analyse the
CCA model in the following paragraphs. Although the CCA is such low-level, it is “abstract’
in the sense that it enables the development of specific architectures that are not bound to any
concrete deployment. It is applicable only in HPC-based environments defined by several CCA
elements, as shown in Figure 3.7. The use within distributed systems in the sense of Grids is
very limited since it neglects HTC-based systems and distributed data-driven elements.

Figure 3.7 illustrates the relationships between the CCA elements that are required to es-
tablish component-level interoperability. Each of the CCA components defines data inputs and
outputs via a scientific IDL, while these are used in conjunction with a repository using a CCA
repository APL Definitions within this IDL are used as input to a proxy generator that gen-
erates component stubs, which in turn are the component-specific parts of ‘GPorts” [119] (i.e.
CCA ports in Figure 3.7). GPorts encompass all the functionality necessary to organise com-
ponent interactions within a CCA-compliant framework and thus define a uniform model of
component interactions. The overall architecture clearly defines the ‘entities and relationships’ in
order to understand the significant relationships among its entities. The “problem space’ is clearly
defined since the CCA is a model with reference architecture for environments that make spe-
cific use of HPC with scientific applications. It is very low-level but still ‘technology-agnostic’
by not being designed towards the use of one dedicated tool, compiler, etc. The whole CCA
model is thus only partly applicable within the given problem space and lacks other necessary
important concepts (i.e. distributed system w.r.t. HTC and data).

From the theoretical perspective, the applicability of the model in the given environment
of this thesis does not promote interoperability across infrastructure resources or services.
Analysing the CCA model from the more practical perspective highlights other facts using
the aforedefined reference model factors and indicators as a basis. The summary of the CCA
analysis is provided together with other surveyed models in Table 3.2. CCA is closer to the
SOA-based basic paradigm (i.e. Indicator 1) than ascertained by the initial analysis above. The
CCA components can directly use framework services through a so-called 'CCA Framework

Scientific IDL

proxy
generator

Component 1 Component 2

Repository

Any CCA Compliant Framework

222,

Builder

D CCA Ports mﬂ]ﬂﬂﬂl Part of CCA Ports specific to the framework
- Repository API % Abstract Configuration API

Figure 3.7: Elements of the CCA including their relationships to enable component-level interoperability [119].

3.2. SURVEY OF RELATED REFERENCE MODELS 61

Services interface’ [119]. Specifying such interfaces enables a clear definition of the service en-
tities (i.e. Indicator 2) that a CCA framework implementation needs. This in turn enables a
common platform for any kind of component. Examples of such services are communication,
security, thread creation and management, memory management, and error handling. Hence,
the service semantics are very clear and understandable (i.e. Indicator 3).

In traditional HPC, many scientific applications are assembled from large blocks of hand-
crafted codes within monolithic applications, and software re-use is only obtained by linking
software libraries. The major disadvantage with this approach is that the software bound-
aries (e.g. global function interfaces) are not well defined, which in turn leads to internal
code dependencies which make such monolithic applications difficult to modify and main-
tain. To overcome these limitations, several e-Science use cases (i.e. Indicator 4) pointed to a
component-based programming model. This enables the development of applications built
from modularised pieces, that in turn raise the requirement for a larger CCA framework. Al-
though partly relevant in an e-Science context, elements on a higher level such as Grid exe-
cution management, Grid data management, security or information elements (i.e. Indicators
5-8) are missing.

The CCA framework provides the glue that binds the different components together, and
that can be used to combine components from any component pool into a non-monolithic ap-
plication. The CCA framework includes certain entities and relationships but none of them are
relevant to the technical areas in the given problem space (i.e. Indicators 9-14).

The CCA provides necessary details for implementation such as the "builder concept’ [119],
also shown in Figure 3.7. The ‘CCA Configuration API’ [119] provides functionality necessary
for components to interact with the builder. Examples of such functionality are notifying com-
ponents that they are added to a program, redirecting interactions between components, or
notifying the builder of a component failure. But no concrete WS implementation details are
available (i.e. Indicator 15) and no specification with relevant portTypes and operations (i.e. In-
dicator 16) exists. CCA does also not provide any details on security or information constraints
(i.e. Indicator 17) for distributed systems.

The model itself is production-oriented since it is well specified, but only on a very low
level (i.e. source-code level). Figure 3.7 illustrates that the number of core service entities are
lower than 5 (i.e. Indicator 18) and with them being defined it is, in principle, possible to form a
CCA-based HPC infrastructure (i.e. Indicator 19) that is part of e-Science. The CCA forum also
provides normative specifications that are publicly available and well defined (i.e. Indicator 20)
and several projects implemented it (i.e. Indicator 21). Examples are in the Climate community
[211], that implemented the CCA considered for production use.

Although CCA is considered as ‘standard’ [119], there are no normative standard specifica-
tions (i.e. Indicator 22) mainly because the specifications are not released from a real SDO (i.e.
Indicator 23). But it does not break existing established standards (i.e. Indicator 24).

The adoption within EGEE / EGI (i.e. Indicator 25) is unlikely due to the HPC focus of
the CCA model. The model could be relevant for DEISA / PRACE environments but also in
this context there are no broad adoptions known in the e-Science community (i.e. Indicator 26).
Adoptions in middleware technologies are also not existing (i.e. Indicator 27).

3.2.5 Coloured Petri Nets Reference Model

Another rather academically-driven, Grid reference model is described by C. Bratosin in [138].
The motivation behind this model is a good theoretical conceptual model for the Grid that
allows for precise evaluations. It provides a formal description of a Grid reference model in
terms of the coloured Petri Nets (CPNs). Petri Nets [253] are a graphical formalism, able to

62 CHAPTER 3. RELATED WORK

model concurrency, parallelism, communication, and synchronisation. CPNs extend Petri Nets
with data, time, and hierarchy, and combine their strength with the known strength of pro-
gramming languages. CPN is thus a suitable ‘formal approach’ for modelling Grid reference
architectures with their reference model.

The general reference model principles as defined in Definition 24 are used with the CPN as
follows. Although the CPN reference model is formal and resolves ambiguities and provides
semantics it also follows the principle of being ‘abstract’. An overview of the basic reference
model design and reference architecture is illustrated in Figure 3.8 that consists of three dis-
tinct layers namely the application, middleware and resource layer. For each of these layers
submodules exist to describe the correponding context.

The reference model is specifically tuned for process-mining applications [138] and that is
used in one dedicated simulation environment. It does not make concrete assumptions on spe-
cific deployments, but assumes many other details (e.g. executables always pre-installed, data
catalogue exists, global resource information database, etc.). Although formally the reference
model is well described using a known layered-approach, it lacks a precise definition of ‘entities
and their relationships’ between each other. It has a "clear focussed problem space’ that is supporting
scientific applications with computationally-driven resources as well as some data capabilities.
The scope of the reference model is thus very close to the given problem space in e-Science. It
is also "technology-agnostic’, being driven by theoretical simulation measurement environments
but unfortunately only with a "future aim’ to create production middleware [138]. Despite good
aspects of the model, the theoretical analysis of the CPN model clearly reveals a lack of entities
and relationships to form any production infrastructure or architecture.

The following paragraphs describe a more practical perspective using the defined reference
model factors and their indicators. The summary of the CPN analysis is provided alongside
other models in Table 3.2. According to the [138], the reference model seems to be service-
based, but very little information about the SOA design aspects can be found in context (i.e.
Indicator 1). Hence, the CPN model is not service-based in the sense of providing reference
model entities with service interfaces (i.e. Indicator 2) and clear semantics (i.e. Indicator 3).

i
I‘ ApplicationLevel [ApplicationLeve

o Finishedlob
RegistarDataAck
Job Job Y

. % AckDataReg
RegisterData RemoveData
DataCatalogue DataNamelist

Middleware

I‘ Middleware

ClaimResponse RegisterDataForRes
Finished Job
L Y
ClaimResponga ConcreteRes
@ Joballocated DataRemoval
bballocatedAndTrasferList ResDatalist
A

ConcreteResInformation

ConcreteResListT

ClaimRequast

Resources

Figure 3.8: CPN reference model design with the application, middleware, and resource layer [138].

3.2. SURVEY OF RELATED REFERENCE MODELS 63

It takes into account use cases from e-Science environments (i.e. Indicator 4) and scientific
applications. The e-Science context is also shown in Figure 3.8 pointing out that middleware is
the centric concept in e-Science today. The CPN model includes roughly defined elements for
Grid execution management (i.e. Indicator 5) and Grid data management (i.e. Indicator 6), but
lacks details about important security elements (i.e. Indicator 7) and information elements (i.e.
Indicator 8).

It defines relationships within one functional area (e.g. compute), but none between dif-
ferent functional areas (i.e. Indicators 9-14). But the relationships are rather use case driven
and functionality driven such as with scheduling in the compute context. They do not reflect
relationships between the reference model elements in general.

It is detailed enough at a formal level, but implementations within Grid middleware is
not possibly because of not accurate interfaces. The CPN model is very vague in this regard.
Concrete WS-based architecture elements to implement SOA concepts (i.e. Indicator 15) are
missing. Concrete specifications with operations (i.e. Indicator 16) are also not provided al-
though, as part of the three distinct layers, some hints on interface operations are given (e.g.
removeDataFromRes()) [138]. There are also no concrete, necessary constraints for information
flow or security details (i.e. Indicator 17). The only statement that can be given is that "the place
GlobalResInformation models an information database containing the current state of resources’ [138].
But such a high-level statement needs to be underpinned with much more information before
it becomes realistically implementable.

The reference model is not production-oriented towards e-Science infrastructures. But [138]
reveals that their model is not only suitable for validation purposes but also for conducting
preliminarly simulation experiments based on process mining applications. Without concrete
core service entities (i.e. Indicator 18), the model lacks details on which services are required
to form a CPN-based e-Science production infrastructure (i.e. Indicator 19). No normative
specifications (i.e. Indicator 20) are provided, and project implementations of core entities and
their relationships (i.e. Indicator 21) are not existing in the given problem space.

Another significant drawback for a generally acceptable reference model with an associated
reference architecture is the absence of standard specifications in the CPN model (i.e. Indicator
22). No specifications from real SDOs are referenced (i.e. Indicator 23) that would point to the
exact specification of core building blocks of the reference architecture. Backwards compatibil-
ity with existing specifications should be still possible though (i.e. Indicator 24).

Adoption of this reference model in production e-Science infrastructures such as EGEE /
EGI or DEISA / PRACE is not feasible (i.e. Indicators 25-26), because of the lack of many
aforementioned significant details. Middleware adoption (i.e. Indicator 27), is unlikely, because
these significant details have to be improved within CPN. This includes but is not limited to
reflecting much more production e-Science infrastructure behaviour and its relevance instead
of being a purely theoretical model only tested in simulation environments.

The CPN model clarifies basic Grid concepts at a conceptual level using three tiers, but it
has no practical relevance at all for the interoperability between existing production e-Science
infrastructures. It is thus not relevant in this thesis.

64 CHAPTER 3. RELATED WORK

3.3 Classification of Component-based Approaches

Complementary to the previous section and its academic analysis of existing reference models,
this section surveys the more practical-oriented approaches. The survey is published in [272]
and based on practical field studies that aim to take advantage of interoperability between var-
ious components deployed in different e-Science infrastructures. Many of these approaches are
done in a pair-wise fashion between those components and infrastructures. Many projects and
approaches are listed as part of this section, but also Chapter 6 provides insights of transforma-
tion logic for the three accompanying case studies of this thesis. For the three case studies WIS-
DOM, VPH, and EUFORIA, Chapter 6 reveals much more details with respect to limitations
and provides information in context how these limitations can be solved using the proposed
reference model and associated architecture work presented in Chapter 5. Nevertheless, this
section gives first insights into the issues and different approaches when interoperability is not
guided by a broader reference model approach.

A similiar survey of related work is in Field et al. [165] that also lists production-oriented
approaches in the context of e-Science. This work is based on earlier work also published by
Field et al. in [164]. In contrast to these contributions, this section and the survey presented
in [272] is broader and focuses more on transformation logic as defined in Definition 27. The
model of these limitations helps to identify specific problems that are a valuable input to the
proposed reference model design later in this thesis.

Table 3.3 provides a classification of the approaches, while the subsequent sections provide
details where the transformation logic exists in the used components and what the drawbacks
of this approach are. It presents a classification of known component-based approaches to-
wards interoperation that all use the aforementioned transformation logic (cf. Definition 27) in
some form or another. All these approaches do not rely on any open standards implemented
as native interfaces within middleware and thus this classification also surveys the problems
that occur when standards are not used. All of these approaches share the same problems by
using transformation logic including its drawbacks as defined in Definition 27. It is even worse
in the given context where production infrastructures deploy different versions of the same
components at the same time. Only one approach in Table 3.3, is different from the others that
is part of this survey for the sake of completeness. This approach is named as ‘middleware co-
existence’ and does not requires transformation logic. At the same time it is not a solution to
the interoperability problem, but an approach that provides a workaround for many interoper-

Approach Transformation Logic Location
Additional Layer Located in an additional layer
on top of middleware
Neutral Bridge Located in neutral bridge to contact all middleware
and is contacted by one dedicated neutral protocol
Gateway Located in the central gateway contacted with
every protocol and can contact any middleware system
Mediator Located in a mediator component being able to contact many
middleware and is contacted with one dedicated protocol
Adapter Located in one middleware

in order to contact another specific middleware
Middleware co-existence n/a

Table 3.3: List of component-based approaches and their transformation logic locations.

3.3. CLASSIFICATION OF COMPONENT-BASED APPROACHES 65

ability problems. Nevertheless, the challenges are just shifted into other related fields such as
middleware maintenance and support and is thus not a real solution to the problem.

The focus of the survey is mainly related to the functionality surrounding the core elements
defined as part of the reference model factors (cf. Table 3.1). Relevant for e-Science infras-
tructures is thus the focus on Grid execution management as well as Grid data management
elements and their interoperability challenges (e.g. different job description languages). Com-
plementary to these aspects, the focus is also on security and information elements and their
interoperability challenges within components (e.g. different information models).

3.3.1 Additional Layer Concepts

The first concept of enabling interoperation between two different technologies is the addi-
tional layer concept. Academic analysis of existing work in the field reveals that this concept is
often used together with a common portal or client that represents the additional layer. The use
of two (or more) technologies within this additional layer is enabled through transformation
logic that is inside this layer to transform different protocols and schemas. The additional layer
is virtually on top of different Grid technologies and thus technically provides access to differ-
ent types of e-Science infrastructures using transformation logic. The concept is illustrated in
Figure 3.9 in which the additional layer is able to interact with Grid technologies (A, B,... n).
that use different schemas and/or protocols.

The additional layer concept is often used by Grid clients, portal technologies and higher
level APIs. For example, it is implemented in the GridSphere [240] Grid portal technology and
used to access different Grid middleware technologies (Globus, UNICORE, glLite, etc.), thus
allowing access to different types of e-Science infrastructures.

The transformation logic within GridSphere consists of transformations between different
kinds of job description languages such as Globus Resource Specification Language (RSL) [167],
UNICORE Abstract Job Object (AJO) [294], or gLite Job Definition Language (JDL) [212]). Three
different job control and data control interfaces for these three middleware systems are also
supported as part of this transformation logic. More recently, GridSphere is based on the Vine
toolkit API[278] also using "transformation logic’, but gradually implementing more standards.

Similiar transformation logic is often included in higher level APIs like JavaGAT [239] and
the Grid Programming Environment (GPE) [251] being also part of the additional layer con-
cept. The transformation logic is part of these API technologies that have different proprietary
adapters to access several different Grid technologies and thus e-Science infrastructures.

Additional Layer

Protocol A

Protocol B

([4 /[4
Grid ’ Grid ’
Middleware A Middleware B
Grid type Grid type
A B

Figure 3.9: The additional layer concept uses a layer on top of different technologies with transformation logic.

66 CHAPTER 3. RELATED WORK

Another example of this approach by Field et al. can be found in [163] in the context of Grid
information systems. In this contribution, the approach is used to enable information exchange
of the production Grids EGEE and NorduGrid that both adopted different Grid technologies
(gLite and ARC) including different Grid information models. EGEE used the GLUE 1.1 in-
formation model while NorduGrid used a proprietary information model that was known as
the ‘NorduGrid model” [163] in the past. The Lightweight Directory Access Protocol (LDAP)-
based [196] information system is used in both cases and the information schema was different
and transformation logic was in the form of translating information providers within a kind of
additional layer. These transformed the GLUE 1.1 and NorduGrid schema to a native common
format that in turn provided the information for the LDAP-based information system.

Use Case WISDOM and its major hacks, tweaks, and workarounds

WISDOM [102] is one of the three major case studies of this thesis that aims to take advantage
the different e-Science infrastructures EGEE/EGI and DEISA /PRACE with one broader scien-
tific workflow. Detailed information about workarounds, tweaks and limitations can be found
in [259] and [270] as well as in Section 6.3 that focusses on this case study and also describes
how limitations are addressed by thesis work. The aim of this section is thus just to present a
brief overview of the major hacks, tweaks and experiences of the WISDOM use case.

The WISDOM use case is another example of using the ‘additional layer” approach using
the proprietary UNICORE atomic services [293] together with gLite proprietary interfaces of
the Computing Resource Execution and Management (CREAM) [212]. This additional layer
of bridging both systems is implemented in the WISDOM scientific portal using GridSphere
[240] and the VINE toolkit [278]. Transformation logic was necessary to transform the end-
user job submission requirements into different job description languages that have different
ways of specifying executables. Low-level information about the installed executables such as
FleXX [30], or Assisted Model Building with Energy Refinement (AMBER) [242]) was needed
to configure and tweak the job subscriptions so that they actually are able to be executed on
EGEE/EGI and DEISA /PRACE. For the submission of these jobs, transformation logic’ was
used in VINE and GridSphere to use different security credentials for both middleware, includ-
ing different job management interfaces and protocols.

Other applied workarounds via scripts have been performed to enable ‘manual data-staging’
that enables WISDOM e-Scientists to evaluate outcome of EGI/EGEE jobs and to enable the
transfer of a subset of this data to DEISA /PRACE for computation. But also in many cases, the
e-Scientists themselves have to perform many manual steps on the low-level of machines that
could have been better supported with Grid middleware. One example in context is the loca-
tion of the job sandbox directory in both EGEE/EGI and DEISA/PRACE in order to evaluate
results. Phone and e-mail communication was partly necessary to communicate the location of
the job session directories.

Many complex UNIX-scripts have been used to work with AMBER in DEISA /PRACE par-
ticularly for the reasons of having job sequences. That means different AMBER executables run
after another within the same job sandbox enabled with complicated UNIX-scripts within the
submission process that are error-prone. More details about this issues can be found in [193]
including also a more thorough description why sequences are different from Grid workflows.
On top of those issues, the versions of AMBER on different resources was needed, but not
easy to retrieve and environments on the low-level machine need to be pre-configured by the
e-Scientists again and again.

The summary of the major hacks, tweaks, and workarounds of the WISDOM use case are
listed in Table 3.4.

3.3. CLASSIFICATION OF COMPONENT-BASED APPROACHES 67

No. | Short description of use case challenges

(@) Transformation logic was necessary in the additional layer

to convert between different job description languages,

job submission and management interfaces and security credentials

(b) E-mail communication was used to communicate Grid sandbox directory
location to enable the evaluation of results of the EGEE/EGI job
outcomes and to manually transfer only a

subset of the data after evaluation to DEISA/PRACE

(o) Error-prone large UNIX-scripts have been used to enable

AMBER job sequences and their creation process need to know

many low-level AMBER configuration aspects (e.g. executable locations)

Table 3.4: Summary of major tweaks, hacks, and workarounds in the WISDOM use case.

Use Case VPH and its major hacks, tweaks, and workarounds

VPH [92] is another of the three major case studies of this thesis that aims to take advantage of
different e-Science infrastructures such as the NGS of EGEE/EGI and DEISA /PRACE. Detailed
information about workarounds, tweaks and limitations can be found in [263] and [270] as
well as in Section 6.4 that focusses on this case study and also describes how limitations are
addressed by thesis work. The aim of this section is thus just to present a brief overview of the
major hacks, tweaks and experiences when working with the VPH use case.

Also the VPH use case is one example of using the ‘additional layer” approach using the
proprietary UNICORE atomic services [293] together with the GridSAM [213] proprietary in-
terface. This additional layer of bridging both middleware systems is implemented in the VPH
scientific client tool called Appliation Hosting Environment (AHE) [219] and thus its client
situation is slightly different than the one of the aforementioned WISDOM use case. But trans-
formation logic is also necessary to transform the end-user job submission requirements into
different job description languages that have different ways of specifying executables. Infor-
mation about the large-scale HPC resources involved was cumbersome to collect (e.g. E-mail
communication) and to use this information in turn with an MPI code together with Grid meth-
ods was a long tedious process. Many manual interactions with the corresponding HPC re-
sources have been necessary to exploit possible hardware configuration options and available
features that have been required for the run of an MPI code named HemeLB [219] in differ-
ent varieties on different NGS or DEISA /PRACE resources. The information was present in
different formats following no common information model and thus even for the same HPC
architectures sometimes the scripts have been again tweaked in a complicated manner since
the understanding of the different formats was not easy. Tweaked scripts have been created
with this information and the submission of these jobs used "transformation logic” within AHE
to use different security credentials for both middleware, including the use of different job
management interfaces and protocols.

On top of those issues, there was a clear lack of having compilations directly supported in
middleware in a standard way since also the method for compiling required manual resource
access, knowledge of different local compilers, and different security information (i.e. no single
sign-on). In this context, some error-prone scripts have been created that failed to deliver the
maturity needed for production and as such SSH was still used throughout the whole process
in combination with the AHE tool and middleware underneath.

The summary of the major hacks, tweaks, and workarounds of the VPH use case are listed
in Table 3.5.

68 CHAPTER 3. RELATED WORK

No. | Short description of use case challenges

(a) Transformation logic was necessary in the additional layer

to convert between different job description languages,

job submission and management interfaces and security credentials

(b) Knowledge about HPC resource architecture details (e.g. network, shapes) on
systems available in NGS and DEISA /PRACE was manually collected from
Websites or retrieved by long E-mail communications with administrators
and the use of this information with Grid methods is based on tweaked scripts
(0) Information received from large-scale HPC resources as part

of e-Science infrastructures was in different formats and syntax

even for those with the same architecture leading to error-prone scripts

(d) Compilation on different sites encoded as part of the

job submission process via scripts was very error-prone and cumbersome

for e-Scientists and as such SSH was used in combination with AHE

Table 3.5: Summary of major tweaks, hacks, and workarounds in the VPH use case.

3.3.2 Neutral Bridge Concept

The neutral bridge approach introduces a neutral protocol that can be used by clients in order
to become independent of any schema and protocol changes in the underlying technologies.
Many approaches in the field of technology interoperability are using such a neutral protocol
to contact a ‘neutral implementation” entity that is often named as a ‘bridge’. A bridge uses
transformation logic to transform the neutral protocol in the different proprietary protocols for
each of the technologies as shown in Figure 3.10. This enabled in turn the interaction with Grid
technologies (A, B,... n). These transformations and thus changes are well encapsulated from
the neutral client that uses the neutral protocol and only affect the bridge.

In [202], Jha et al. describes Grid interoperability on the application-level using the Simple
Grid Application API (SAGA) [186] OGF standard. This approach uses the SAGA standard as
a neutral protocol that in the SAGA implementation use different middleware adapters. SAGA
only provides a POSIX-style API/protocol to the most common Grid functions, thus represent-
ing a rather Grid middleware-agnostic neutral protocol for use by 'neutral Grid clients’. The

Neutral Client

‘J L Neutral Protocol

Neutral Bridge Implementation

Protocol A Protocol B

L

¥ 4 YA
Grid ’ Grid
Middleware A Middleware B

Grid type Grid type
A B

Figure 3.10: The neutral bridge approach uses a Neutral Bridge implementation with transformation logic.

3.3. CLASSIFICATION OF COMPONENT-BASED APPROACHES 69

neutral bridge itself and its SAGA implementation provides the functionality in order to submit
and handle different Grid job descriptions and control interfaces. This functionality is provided
with SAGA middleware adapters representing the transformation logic. They interact with dif-
ferent Grid technologies using the native protocol of the corresponding technology. Although
SAGA as open standard is used, it does not solve the interoperability problem, because this
standard is not currently natively supported within the middleware systems.

Another example is described by Stone et al. in [292], describing the interoperability be-
tween the not broadly used ‘Integrade middleware’ [292] and Globus. In this approach, the
so-called switch’ [292] component uses a neutral protocol for communication thus acting as a
neutral bridge on top of Integrade, Globus, and potentially many other middleware systems.

Use Case EUFORIA and its major hacks, tweaks, and workarounds

EUFORIA [247] is another of the three major case studies of this thesis that aims to take ad-
vantage of the different e-Science infrastructures EGEE/EGI and DEISA /PRACE with several
cross-infrastructure scientific workflows. Detailed information about workarounds, tweaks
and limitations can be found in [225] and [270] as well as in Section 6.5 that focusses on this
case study and also describes how limitations are addressed by thesis work. The aim of this
section is thus just to present a brief overview of the major hacks, tweaks and experiences when
working with the EUFORIA use case.

The EUFORIA use case is another example of the neutral bridge’ approach using the pro-
prietary UNICORE atomic services [293] together with gLite proprietary interfaces, most no-
tably CREAM via the gLite UI [212]. The neutral bridge is implemented in the Resource Allo-
cation Server (RAS) [225] being used with the KEPLER workflow tool [215] through a neutral
submission library that in turn uses gLite tools and the VINE toolkit [278]. Transformation logic
was necessary to transform the end-user job submission requirements into different job descrip-
tion languages that have different ways of specifying executables. Low-level information about
the installed executables had similiar difficulties as described in the VPH and WISDOM case
studies. For gLite submissions the RAS service directly used the gLite UI while for UNICORE
submissions the VINE toolkit was used.

Other applied workarounds via scripts have been performed to enable the use of different
libraries on different resources and to specify Grid job applications in a meaningful way al-

No. | Short description of use case challenges

(@) Transformation logic was necessary in the neutral bridge

to convert between different job description languages,

job submission and management interfaces and security credentials
using different tools to maintain such as VINE and the gLite UI
(b) E-mail communication was used to get information about

the location of executables and software and specifying

Grid applications was a cumbersome task using tweaked scripts
(c) Error-prone UNIX-scripts have been used to enable

jobs to different Grid sites that partly rely also on

low-level environment variables for the seamless execution

(d) Tracking usage across differrent HPC sites in DEISA /PRACE
with additional dedicated HPC machines (e.g. HPC-FF)

and including the use of EGEE/EGI was difficult

Table 3.6: Summary of major tweaks, hacks, and workarounds in the EUFORIA use case.

70 CHAPTER 3. RELATED WORK

though many of them have been pre-configured on the corresponding sites. But hacks in the
job descriptions have been necessary to enable the use of Grid applications in conjunction with
low-level environments available at the given Grid sites. The e-Scientists themselves have to
perform many manual steps on the low-level of machines that could have been better sup-
ported with Grid middleware. One example is the use of different systems within EGEE/EGI
and DEISA /PRACE with the same executables (e.g. ILSA [199] or HELENA [198]), but having
different execution environments with differet locations of pre-installed software (e.g. libraries,
compilers, etc.). Phone and e-mail communication was partly necessary to communicate the
location of installed software. Many complex UNIX-scripts have been used to work with the
wide variety of fusion applications in conjunction with EGEE/EGI and DEISA /PRACE requir-
ing a more common way of e-Science application support. On top of those issues, it was not
clear how resource usage tracking is performed in a cross-infrastructure setup, including also
dedicated fusion community HPC machines (e.g. the HPC-FF system in Juelich [42]).

The summary of the major hacks, tweaks, and workarounds of the EUFORIA use case are
listed in Table 3.6.

3.3.3 Gateway Approach

The “gateway” approach seems to be theoretically an ideal concept, but is practically non-trivial
in terms of maintainability and support issues. The ‘gateway’ stands for one central entity that
is able to translate any technology protocol/schema into any other protocol/schema using its
transformation logic. This approach is shown in Figure 3.11 in which the central gateway is
able to contact, and be contacted by, any different Grid technology (A, B,... n). It is hard to
maintain since any change in protocols affect the central gateway.

This approach was used to realise the interoperability between the European infrastructure
EGEE with gLite and VEGA [307], which is the Grid Operating System (GOS) for the CNGrid
infrastructure in China [3]. Kryza et al. describes in [209] that interoperability is achieved via a
central implementation instance named the Grid Abstraction Layer (GAL) which can be seen as
one instance of a central gateway. The GAL enables interoperability between EGEE and VEGA
and enables the integration of any other Grid environments. The extensible design is driven by
the requirement to add further technology support in the gateway.

Client of Middleware A Client of Middleware B Client of Middleware n

/_{/LProtocoI A ‘J LProtocoI B ‘J LProtocoI n

Gateway Implementation

Protocol A Protocol B Protocol n
Grid Grid Grid
Middleware A Middleware B Middleware n

Grid type Grid type Grid type
A B n

Figure 3.11: The gateway approach use transformation logic within one central gateway implementation.

3.3. CLASSIFICATION OF COMPONENT-BASED APPROACHES 71

Regarding the authentication and authorization problem, two different security modules
have been defined in the Gateway. This leads to known problems w.r.t. maintenance of these
modules, especially when one middleware changes its security layout. Grid job control and
management challenges are implied as well as the specific adoption of Berkeley Database In-
formation Index (BDII)-specific clients [212] to get up-to-date information about resources in
EGEE in parallel to those from VEGA using other methods.

The approach leads to the adoption of a wide variety of different service interfaces and
clients that are available within Grids. At the same time this approach leads to maintenance
problems within the central entity, since a protocol and schema change is likely to occur if the
central gateway really supports several proprietary middleware interfaces in the future.

3.3.4 Mediator Approach

The mediator approach is similar to the neutral bridge approach, but instead of using a neutral
protocol, the respective client technology sticks to one specific protocol named for simplicity
as "protocol A’. This protocol can be used to access all Grid middleware systems that natively
supports this protocol A, but it can also be used to access known mediators that also offer this
protocol type. These central mediators are always used via one specific protocol, but are in
turn able to translate it into any other protocol with their implemented transformation logic.
The mediator approach is illustrated in Figure 3.12. Technologies based on protocol A can be
normally accessed, but a central mediator can also be used that transforms protocol A into
any other protocol/schema with its transformation logic to contact different Grid technologies
(A, B, ... n). It is thus a specialization of the aforementioned gateway approach and easier to
maintain, but also having limited functionality.

This approach is adopted in the technologies that make EGEE interoperable with Berkely
Open Infrastructure for Network Computing (BOINC)-based infrastructures [112], as described
by Kaczuk et al. in [204]. The approach is implemented as part of the Enabling Desktop Grids
for e-Science (EDGeS) project [18] that establishes interoperability between the EGEE e-Science
infrastructure and a wide variety of so-called desktop Grids (i.e. BOINC-based Grids). The
BOINC client is modified in such a way that the EGEE Grid appears to be a powerful PC as
part of the BOINC-based Grids and thus can be transparently used like home PCs.

The initial implementation overloaded the central gLite component within EGEE named as

‘ Client of Middleware A ‘ \
/A/L Protocol A

Mediator Implementation

Protocol A Protocol B Protocol n
~ Grid Grid Grid
Middleware A Middleware B Middleware n

[FFT [(FFT
A B n

Figure 3.12: The mediator approach uses one protocol as a basis to contact the mediator (if needed).

72 CHAPTER 3. RELATED WORK

the Workload Management System (WMS) [212], basically by submitting one job after another.
Therefore the mediator implementation was improved to use a special feature from the WMS
in terms of receiving a full collection of jobs at once. This in turn is better suited for the BOINC-
based design, and thus prevented the design and implementation from regularly occurring
Grid overloads.

One of the lessons learned of this approach is the problem that the ‘way of using’ an archi-
tecture is often different too. Would the aforementioned work be guided by a reference model
and reference architecture, the way of using the elements would be more clear. This particular
component-based approach example is succesful in establishing interoperation with non Grid
community-based infrastructures basically gaining access to voluntarily provided resources by
end-users.

3.3.5 Adapter Approach

Another, often applied, approach is the adapter concept, because from all of the surveyed ap-
proaches it is the easiest one. This means a typical Grid technology client submits with "pro-
tocol A’ its job to the respective ‘Grid middleware A’, which in turn, after processing the job
description, forwards it to a dedicated adapter for another middleware. This adapter provides
the transformation logic that transforms the job into the protocol or schema format of the corre-
sponding ‘Grid middleware B’. Hence, the difference to other approaches such as the mediator
is that the Grid job is actually processed in one middleware stack before being forwarded to
another ‘Grid middleware B’ for execution. The well-known adapter approach is illustrated in
Figure 3.13.

One example of using the adapter approach to enable interoperability is described by Gron-
ager et al. in [189] and used in the CMS experiment [148] at CERN utilising the EGEE and
NDGEF infrastructures. Two schemes are presented to enable job submission from gLite to ARC
by using the WMS gateway scheme and the Computing Element (CE)-gateway scheme that
both implement the adapter approach. In the WMS gateway scheme the gLite WMS can di-
rectly submit jobs to ARC-CE, because an adapter based on the Condor-G technology was
used to submit to ARC-CEs. In contrast, the CE-gateway scheme is an adapter included as
part of the gLite CE that translates gLite jobs directly into XRSL scripts [160] that represents the
proprietary job description language of ARC.

Another example is described in [256] that enables the interoperation between EGEE and

|

Grid Middleware A Client

J L Protocol A

Grid Middleware A

Protocol A Protocol B

Grid
Middleware B

Grid type Grid type
A B

Figure 3.13: The adapter approach uses transformation logic after fully processing the job in one middleware.

3.3. CLASSIFICATION OF COMPONENT-BASED APPROACHES 73

DEISA. This approach was implemented by a dedicated gLite Target System Interface (TSI)
[294] environment within UNICORE 5. After jobs are processed in the core UNICORE 5 com-
ponents, such as the Network Job Supervisor (NJS) [294], they are forwarded to gLite CEs for
job processing as part of EGEE. Here, the gLite adapter consists of transformation logic to trans-
form job submission commands into the JDL language [212] used by the gLite middleware.

Another example by Wang et al. [304] describes the interoperability between the middle-
ware Grid Resources for Industrial Applications (GRIA) [89] and GOS using an adapter ap-
proach. In this example, GRIA acts as a “front interface” for GOS and forwards received jobs to
CNGrid in China for processing.

3.3.6 Middleware Co-existence

Finally, although not exactly a direct solution for the interoperability problem, the middleware
co-existence approach is worth being considered alongside the others. It circumvents the in-
teroperability problem by the provisioning of each desired different Grid middleware system
with a respective Grid client for each resource. Each of these Grid resources provides access
to a particular RMS that is then used in parallel with multiple Grid technologies. This implies
a major amount of efforts for deployment as well as maintenance overhead, and as a conse-
quence this approach is rarely used in production. Paralle]l middleware deployment in this
case avoids having any form of transformation logic. This approach was listed for the sake of
completeness in terms of approaches in the context of the given interoperability problems. It
is illustrated in Figure 3.14 in which no transformation logic is used. But this approach raises
serious concerns in terms of deployment and maintenance overheads for infrastructures.

In order to circumvent the interoperability problem between UNICORE, gLite and Globus,
that all have been required by different VOs, the German national D-Grid [238] uses the mid-
dleware co-existence approach. D-Grid provides deployments of each of the three middleware
systems for each of its Grid resources in parallel. The e-Scientists within the different D-Grid
VOs have the freedom to choose the middleware they want to use. This is a benefit in this
particular approach so that e-Scientists have the freedom to select the technology of choice.
But in this particular approach, in contrast to interoperability approaches, this freedom comes
with a high price of maintenance and deployment efforts. It is not native interoperability where
only one middleware could be used that is standard-based and thus interchangeable with other
standard-based middleware systems thus only requiring one deployment in D-Grid. Although

Grid Middleware A Client Grid Middleware B Client Grid Middleware C Client

Protocol A J Protocol B J Protocol C J

Grid Middleware A U Grid Middleware B Grid Middleware C

N~ SA SA

Resource Management System (RMS)

One resource (i.e. Cluster) in the Grid

Figure 3.14: The middleware co-existence uses parallel middleware deployments.

74 CHAPTER 3. RELATED WORK

the benefit looks the same for end-users, it is essentially a high overhead for administrators
and infrastructure providers. More recently, there is a new organization called NGI.DE [60]
that represents the German national Grid activities nowadays. Future deployments for the
German national Grid will possibly evaluate a change avoiding the middleware co-existence.

Another example is the Grid INFN Laboratory for Dissemination Activities (GILDA) infras-
tructure [124]. Different technologies co-exist in this infrastructure that share the same compu-
tational resources and RMS systems. As described in [124], the infrastructure deploys gLite,
Globus and OMII-UK [70] in parallel, while the Torque RMS [98] is used underneath.

3.4. CONCLUSION 75

3.4 Conclusion

The major research question of this thesis is "How a reference model for a network of interoperable
services in production e-Science infrastructures can be defined’. The identification of known ap-
proaches in the context of interoperability leads in this context to two major views. These two
major views consider that open standards are important but alone are not sufficient to improve
interoperability. Firstly, the survey of known reference models represents a top-down view
on the problem space. In contrast, the survey of existing component-based concepts provides
a bottom-up view facing low-level interoperability issues. With this views, the conclusion is
that the converging point are open standard adoptions, but guided by a reference model and
implemented in components avoiding proprietary interfaces and schemas wherever possible.

Related work approaches firstly lead to reference models and what problems exist when
non-standard component-based solutions are used in production Grids. General key refer-
ence model principles (e.g. being abstract, having entities and relationships, independent of
concrete deployments, etc.) have been identified based on the OASIS SOA reference model.
This foundational model provides insights how the broad term ‘reference model” can guide a
complete set of associated elements, such as reference architectures or standards. These ele-
ments represent a guiding line throughout this thesis essentially forming a ‘frame of reference’
for thesis contributions in all subsequent chapters. A more precise classification of the ref-
erence model ecosystem has been done to understand interoperability issues across different
production e-Science infrastructures. Component-based solutions that do not use standards
have many drawbacks (e.g. error-prone, semantic-loss, etc.). Open standards, as a major part
of associated reference architecture elements, need to be a necessary cornerstone in the model
design presented in this thesis.

Academic analysis of existing work of long existing reference models around TCP/IP and
the ISO/OSI model leads to conclusions that a compact reference model has a better chance
of being useful in production e-Science infrastructures. One of the major approaches derived
from this conclusion is that in this thesis, a compact approach needs to be followed. This
is required even if it is at the boundary of being in-line with traditional software engineering
w.r.t. reference models (like with the TCP/IP case). Critically analysing the non compact OGSA
reference model and architecture provided further evidence that the impact of non compact
models for production infrastructures is minimal despite being known for about ten years.

Given its initial definition, OGSA is still considered as the foundational reference model and
architecture. Some elements of it are derived taking into account experience from production
Grids in context. 27 relevant indicators have been defined that form the basis for seven distinct
reference model factors that are the key metrics whether a reference model is able to provide
solutions to the research question of this thesis. Taking these indicators and factors as a basis,
known reference models are surveyed in the field and the conclusion is that none of them
actually fulfil all the important factors and indicators. There is no reference model able to
provide an answer to the given research problem today. Further related work is taken into
account by surveying component-based approaches leading to valuable lessons learned from
existing interoperation approaches. The main conclusion of this chapter is the evidence that
the lack of interoperability in e-Science infrastructures can be at least partly explained by the
lack of a standards-based reference model and associated architecture work within production
Grids today.

76

CHAPTER 3. RELATED WORK

Chapter 4

Requirements

A model of the given problem space is presented in Chapter 2 and similiar problems and
known related approaches have been reviewed in Chapter 3. One major conclusion of this
analysis is that the challenges in e-Science infrastructure interoperability can at least be partly
explained by the lack of a production-oriented and standard-based reference model. The aca-
demic analysis of existing experience and related work culminate in a set of requirements for
a standard-based reference model which is presented in this chapter. The requirements lay the
foundation for having solutions that have the potential to overcome many limitations of the
current approaches described in Chapters 2 and 3.

The requirements precisely define key elements of a solution that is aimed at providing
an answer to the major research question. This Chapter thus partly answers the question of
"How a reference model for a network of interoperable services in production e-Science infrastructures
can be defined’. The precise set of requirements enables in subsequent chapters the creation of
a well-specified standard-based reference model, including its related elements. These refer-
ence model requirements are defined on different levels from the abstract to the more concrete.
Requirements are defined on the abstract reference model level, concrete reference architecture
level and finishing with those for derived concrete architectures. Many of these requirements
are published in [267] and [264].

Defining a reference model is the first, most important step towards interoperability of e-
Science infrastructures in this thesis. But in order to sustain the established interoperability of
such a model, it is important to define a process alongside the work of the reference model
architecture. Otherwise, the reference model and its associated architecture will only be us-
able for limited time, because e-Science infrastructure setups are known to change over time,
although in a very slow manner. This is one of the key challenges achieving the right "Balance:
Maintaining equilibrium between stability of services and innovation in the e-Infrastructure itself, es-
pecially as technology and user requirements evolve’ [210]. A set of complementary requirements
are defined for such an associated process. They are mainly based on results of the analysis of
existing solutions in general, and the ecosystem of the e-Science infrastructures in particular.
In addition to the architecture work requirements, the survey of related approaches revealed
detailed functional elements that need to be supported in production e-Science infrastructures.

The first section of this chapter defines the requirements for a standard-based reference
model using different levels of abstractions in order to address the findings of the previous
chapter. The second section focuses on the more concrete functional requirements, leading
to detailed requirements where the current surveyed solutions can be considerably improved.
The final section provides a complementary set of requirements that address different segments
that are necessary to enable and sustain e-Science infrastructure interoperability.

78 CHAPTER 4. REQUIREMENTS

4.1 Reference Model and Associated Elements Requirements

Abstract

Reference Model (Chapter 5)

Reference
Architectures
[Fey {Chapter5)

Protocols
{Chapter 5)

-
Motivation faccounts forl *»
(Chapter 2)

Profiles

considers (Chapter5)

Specifications
(Chapter5)

Goals derived
(Chapter 2)

i)

IR

Concrete
Architectures Re:lg;g(:nl;(r)g?s Standards
(Chapter 6) {Chapter 5)
\.
\ Architecture Work Related Work
accounts for constrained
Service Oriented Architecture Implementations
({Chapter &)
Concrete

Figure 4.1: Requirements influence the reference model and general technical reference architecture design.

This section defines concrete requirements of the broader reference model and its associated
elements using different levels of abstractions. They are defined on different levels according to
the blueprint of the OASIS SOA reference model [217] and as illustrated in Figure 4.1. It shows
how the requirements defined in this section influence the blueprint design and its foundations
as well as entities and their relationships on the reference model level. The figure also provides
a hint that the foundations guide the more technical design of the ‘general technical requirements’
on the reference architecture level.

4.1.1 Reference Model Blueprint and Entity Requirements

This section defines the requirements for the reference model blueprint that guides the design
of its associated architecture. The requirements are thus for the level of the reference model
itself as illustrated in Figure 4.1. The requirements defined on the reference model level in this
section are summarized as part of Table 4.1.

The foundational requirement is that the reference model in this thesis follows key design
principles as mentioned in the OASIS SOA RM [217] . This requirement is defined as follows:

Definition 28 (General Reference Model Design Principles) The General reference model design
needs to follow the reference model key principles as defined in Definition 24.

4.1. REFERENCE MODEL AND ASSOCIATED ELEMENTS REQUIREMENTS 79

Definition 28, requires to define a reference model in an abstract manner without mention-
ing concrete deployments in e-Science infrastructures such as DEISA/PRACE or EGEE/EGI.
It mandates the concrete definition of entities including their relationships in order to under-
stand the important "links” between them. It further points to defining one particular problem
domain, thus adding focus to proposed solutions avoiding having to tackle all Grid problems
that exist today. Definition 28 also mandates to make no assumptions on particular middle-
ware technologies such as UNICORE, gLite, ARC, Globus, or GENESIS being thus technology
agnostic.

Several relevant factors with indicators for reference models (see Table 3.1) are published in
[264] and have been described in Chapter 3. These are requirements that need to be concretely
defined in this section. General service-based reference model requirements are defined as
follows:

Definition 29 (Service-based Reference Model) A service-based reference model is based on a SOA-
conform design in the sense of Definition 23 and enables a distributed system consisting of entities that
offer service interfaces while their services have clear, unique semantics.

Definition 29 requires that a reference model and its associated elements need to follow the
design principles of SOAs. This is in-line as reported by the e-IRG in the Blue Paper 2010: 'In
all e-Infrastructure domains there is a move towards service-orientation and away from the traditional
technology- or product-orientation’ [210]. Entities must offer service interfaces in order to invoke
remote operations or to request pieces of information through this interface. Each service se-
mantic is unique being able to distinguish the functionality of a given service and thus avoid
overlaps of similar functionality as part of different services or simply unnecessary service du-
plication.

Another definition is related to its major use cases that drives its design process. E-Science
is the focus of this thesis and thus the scope of the particular reference model is as follows:

Definition 30 (e-Science-Driven Reference Model) An e-Science-driven reference model is focused
on e-Science applications in the sense of Definition 9 and not on e-business or commercial use cases.

Definition 30 limits the scope on the reference model design to environments that are driven
by scientific use cases. It can be used by commercial vendors or be beneficial for use in business,
but its requirements are focused on the needs of e-Scientists as defined in Definition 10.

The aforementioned requirements influence the overall design of a reference model while
in the next paragraphs entities and relationships are defined that are required for a particular
solution in the given problem domain. One major entity of the reference model in our given
environment is published in [267] and defined as follows:

Definition 31 (Grid Execution Management Entity) A Grid execution management entity offers
specific functionality for the execution and management of e-Science applications according to Definition
9 on computational infrastructure resources as defined in Definition 6 using a Grid job description
language and a well-defined Grid job execution environment.

Definition 31 raises the demand for an entity that is able to submit and manage computa-
tional activities on resources provided by an e-Science infrastructure. Examples are the UNI-
CORE Atomic Services (UAS) [293] or the job submission and control interfaces in ARC known
as A-REX [160], or CREAM [212] of gLite. All these take some form of a job description lan-
guage as input in order to accurately define the computational activities that are intended to
run on computational resources. In many cases, the underlying computational resources are
managed by RMS systems (cf. Definition 11) and thus the entity defined in Definition 31 also

80 CHAPTER 4. REQUIREMENTS

raises the demand for a powerful execution backend that is able to work together with RMS
systems.

The second key entity requirement for the reference model covers the area of data man-
agement, which is different from the computational area in many respects as described in
[267]. The fact that once stored data must be migrated to other storage systems in a very
time-intensive manner is a huge difference to computational entities where jobs can be just
re-submitted again to another resource if necessary. Data management entities and their inter-
faces thus must be carefully chosen in e-Science infrastructures. The entity requirement is as
follows:

Definition 32 (Grid Data Management Entity) A Grid data management entity offers specific func-
tionality for storing, retrieving and managing data with storage-related infrastructure resources as de-
fined in Definition 6 including functionality for large-scale data transfers and POSIX-based access.

The entities that are required by Definition 32 are used for various purposes within produc-
tion e-Science infrastructures (cf. Definition 5). They are used to store measurement data from
large experiments (e.g. like LHC experiments [104]) used subsequently for computational ac-
tivities using entities such as those defined by Definition 31. The data management entity could
even act as a shared central VO storage according to Definition 8 where multiple users can ob-
tain this measurement data in order to analyze it with computational methods. The analysis
results of such computational activities are also stored in data management entities defined by
Definition 32. The data management entity offers data transfer functionality in order to be used
with geographically dispersed compute or storage resources. Examples of such an entity are
dCache [178], Disk Pool Manager (DPM) [11], StoRM [143], or iRods [229].

Another entity requirement in the field of security is identified in [267] being “orthogonal’
to the previous defined entities. Authentication and authorization of end-users are important
during any of the activities described with the aforementioned entities. The security entity
requirement is as follows:

Definition 33 (Grid Security Entity) The Grid security entity is a trusted service that releases secu-
rity attributes of the end-users bound to the identity of an end-user. These attributes are then used for
attribute-based authorisation and authentication within other reference model service entities in order to
realise access control as required by setups according to Definition 8.

Security attributes of end-users within a Grid infrastructure (cf. Definition 7) vary and can
be a role possession (e.g. VO admin) or a dedicated group/VO membership (e.g. member
of VO Atlas). Entities defined in Definition 33 provide interfaces (and mechanisms) to obtain
attribute statements that are signed with the service identity of the entity. This entity could
be realized as a service one can trust by using an X.509 certificate [195] that in turn can be
used during the signing process of the attributes for end-users. Examples are VO Management
Service (VOMS) [108], UNICORE VO Service (UVOS) [293], or Shibboleth [232].

The fourth entity raises the demand for functionality that provides the current status within
Grids, including the capabilities of each available service as described in [267]. Status informa-
tion about which services (e.g. type) and resources (e.g. resource load) are available is crucial.
An information-related entity requirement is defined as follows:

Definition 34 (Grid Information Entity) A Grid information entity publishes the status of Grid ser-
vices as in Definition 13 and its underlying infrastructure resources as in Definition 6 with an infor-
mation model that is able to express their capabilities. It thus provides static information (e.g. resource
location) and dynamic information (e.g. resource load), including the tracking of resource usage.

4.1. REFERENCE MODEL AND ASSOCIATED ELEMENTS REQUIREMENTS 81

No. [Requirement Definition Title

28 General Reference Model Design Principles
29 Service-based Reference Model

30 e-Science-Driven Reference Model

31 Grid Execution Management Entity

32 Grid Data Management Entity

33 Grid Security Entity

34 Grid Information Entity

Table 4.1: Reference model blueprint and entity requirements (reference model level).

Definition 34 mandates an entity that knows about all other entities as previously defined
by Definitions 31, 32, and 33. An information entity must provide an interface that can be
queried in order to determine what the (current) computational or data resource status is at
a given site. It must offer information about services including their security setups. Such
queries can be performed by end-users or by brokers (e.g. WMS [212]) that take advantage of
such pieces of information. Examples are BDII [212], ARC Information Service (ARIS) [160], or
the Common Information Service (CIS) [223].

Finally, Table 4.1 summarizes the aforementioned requirements that are part of the reference
model level.

4.1.2 Reference Model Entity Relationships

Fundamental entities that are required for a SOA-based reference model in e-Science infrastruc-
tures have been defined in the last section. This section defines relationships of these entities
since there are important interactions between these entities that are partly ‘orthogonal” to each
other [267]. The relationships are also defined on the reference model level as shown in Fig-
ure 4.1. The relationship requirements defined on the reference model level in this section are
summarized as part of Table 4.2.

The Information entity (cf. Definition 34) and the Execution management entity (cf. Defini-
tion 31) relate to each other as follows:

Definition 35 (Information and Execution Management Entity Relationship) The information
and execution management entity relationship is the exposure of the static and dynamic information
about the corresponding available execution management entity, including its underlying computational
resources and capabilities.

Definition 35 describes one of the most fundamentally important relationships about the
reference model entities. It can be n:m, meaning that several information entities can describe
several execution management entities. The information model used by the information entity
must provide a rich semantic way of describing execution management entities. To provide
an example of technical realisation, Definition 35 raises the demand for an information service
that is able to expose the location of a computational service, including its major underlying
resource characteristics (e.g. amount of cores, memory, etc.).

The relationship between the Information entity (cf. Definition 34) and the Data manage-
ment entity (cf. Definition 32) is defined as follows:

Definition 36 (Information and Data Management Entity Relationship) The information and
data management entity relationship is the exposure of static and dynamic information about the corre-
sponding available data management entity, including its underlying resources and capabilities.

82 CHAPTER 4. REQUIREMENTS

In contrast to Definition 35, Definition 36 requires an information entity that exposes in-
formation about the storage managed by data management entities. It can be n:m meaning
that several information entities can describe several data management entities. A semantic
rich information model for the information entity is required that is capable of describing data
management entities. To provide an example of technical realisation, Definition 36 raises the
demand for an information service that is able to expose the location of a data management ser-
vice, including its major underlying storage resource characteristics (e.g. amount of free data
storage space, etc.).

Another relationship is between the Security entity (cf. Definition 33) and the Computa-
tional entity (cf. Definition 31). It can be seen as being ‘orthogonal’ [267] to the previous ones
enabling a secure setup of production e-Science infrastructures that offer execution manage-
ment entities. The relationship is defined as follows:

Definition 37 (Security and Execution Management Entity Relationship) The security and ex-
ecution managment entity relationship is the support of authentication and attribute-based authorisation
in the computational entity, which works with security attributes and credentials released by a security
entity.

Definition 37 requires that the attributes that are released from the security entity are cor-
rectly interpreted by the execution management entity that receives the credentials and at-
tributes with end-user information. It is n:m meaning that there can be a wide variety of se-
curity entities that are supported by several execution management entities. The encoding of
the attributes must follow a common syntax and semantics in order to ensure interoperability
between different incarnations of the reference model entities. The common format refers to
the encoding type of attributes as well as the transportation format. One practical example of
Definition 37 is that an end-user receives a credential from a security entity defining the at-
tribute in a manner that the end-user is part of the Atlas VO. The execution management entity
needs to analyse the presented credential (with attributes) from this end-user and grant access

Grid Executicn {" JobDescription § § Execution
Example: | ManagementEntities Lsneuage.....f%._Emdronment
amount of work with
available
Cores
and i)
security Example:
setup Data stored in data management
entity is used
In data-staging activities
describes of an execution
management entity
GridData - : Data Transfer i]
Entities Management Entities i :
describes Example:
Security credentials and
attributes about VO
or group membership are
comectly interpreted
and the security entity
Example: with sourceis Trusted
location or
ol CE)
of service Security Entities

Figure 4.2: Relationship requirements between the different entities of the reference model.

4.1. REFERENCE MODEL AND ASSOCIATED ELEMENTS REQUIREMENTS 83

or not depending on the security policy setup indicating whether or not Atlas VO members are
allowed to use this entity.

The relationship between the security entity (cf. Definition 33) and the data management
entity (cf. Definition 32) are defined as follows:

Definition 38 (Security and Data Management Entity Relationship) The security and data man-
agement entity relationship is the support of authentication and attribute-based authorisation in the data
management entity, which works with security attributes and credentials released by a security entity.

Definition 38 requires that attributes that are released from the security entity are correctly
interpreted by the data management entity. It is n:m meaning that there can be a wide variety
of security entities that are supported by several data management entities. The encoding of
the attributes must follow one particular style to ensure the interoperability between differ-
ent data management entities used by end-users. The encoding style of attributes as well as the
transportation format largely depend on the security entity used in production e-Science infras-
tructures today. One practical example of Definition 38 is that an end-user receives a credential
from a security entity defining the attribute in a manner that the end-user is part of the CMS
VO. The data management entity needs to analyse the presented credential (with attributes)
from this end-user and grant access or not depending on the security policy setup indicating
whether or not CMS VO members are allowed to access the storage. In the same way, each end-
user request for file transfers managed by the data management entity is required to support
the relationship as defined in Definition 38.

While the two latter requirements require that the security entity works together with the
computational and data management entities, the important relationship between the informa-
tion entity (cf. Definition 34) and the security entity (cf. Definition 33) must be also defined as
follows:

Definition 39 (Information and Security Entity Relationship) The information and security re-
lationship entity relationship is the exposure of information about the corresponding available security
service and its capabilities. This relationship also includes that security information is available for
computational and data management entities as well.

The scope of Definition 39 is twofold, but as they are tightly related they are defined in
one requirement. First, it raises the requirement that the information entity is capable of ex-
posing information about a security entity. This relationship is n:m referring to the fact that
several information entities can describe several security entities. In the second case, Defini-
tion 39 mandates that the security setup information is exposed, not only in each of the security
entities, but also in the related execution management and data management entities.

The latter indicates which security model one needs to support in an entity of the reference
model in order to contact an entity. Interoperability setups between e-Science infrastructures
require information beyond resource-orientated information meaning information about the
security setups of the execution management and data management entities.

To provide an example, the first element of Definition 39 can be the exposure of the location
or uptime of a particular security entity. One example for the second part of Definition 39
can be one particular data management entity that is only accessible via full X.509 certificates
without any X.509 proxy support. This information enables clients to pick the right security
setup where possible or to avoid any contact with the service when the particular security
setup of the described execution management and data management entity is not supported.

The last requirement is the relationship between the execution management entity (cf. Def-
inition 31) and the data management entity (cf. Definition 32). It is defined as follows:

84 CHAPTER 4. REQUIREMENTS

No. [Requirement Definition Title

35 Information and Execution Management Entity Relationship

36 Information and Data Management Entity Relationship

37 Security and Execution Management Entity Relationship

38 Security and Data Management Entity Relationship

39 Information and Security Entity Relationship

40 Execution Management and Data Management Entity Relationship

Table 4.2: Reference model entity relationships requirements (reference model level).

Definition 40 (Execution Management and Data Management Entity Relationship) The execu-
tion management and data management entity relationship is the functionality to perform file transfers
(i.e. data-staging activities) as part of the computational services using different data management enti-
ties.

Definition 40 points to the computational activities performed by the execution manage-
ment entity as defined in Definition 31. The data-staging mechanism [115], must be provided
by the execution management entity in order to perform data transfers with the help of data
management entities. More specifically, this mechanism transfers data to and from the working
directory of the corresponding compute resource. The execution management entity needs to
work with the data management entity in such a manner that data from the latter entities can
be easily used by the execution management entities. It is n:m since several execution man-
agement entities can take advantage of multiple data management entities in order to receive
input data for computation or to store results after computational runs. Examples are end-users
that want to analyse data of measurements from one experiment at the LHC where this data
is stored in one particular data management entity. Definition 40 raises the requirement that
the execution management entity used for the computational analysis is able to retrieve the
measurement data from the corresponding data management entity before the analysis steps
actually begin.

Figure 4.2 provides a short overview of the entities and their complex relationships that
are an important factor to ensure that the important interactions in derived concrete architec-
tures are actually working with one and another. The interactions between these entities are
non-trivial. Especially when security and information aspects are included it becomes complex
while at the same time this is important in order to ensure production e-Science infrastructure
requirements. ‘Orthogonal’ [267] addresses the lessons learned that many approaches in Chap-
ter 3 left out such as important security and information details for simplicity. The reaons have
been mostly that security (and semantic identical information in-line with other entities) is out
of scope and can be added later. But security and information must be considered in the initial
reference model and architectural design as any other entity. Finally, Table 4.2 summarizes the
aforementioned requirements that are part of the reference model level.

4.1.3 General Technical Reference Architecture Requirements

The previous sections defined requirements for a general reference model blueprint that guides
its associated architecture elements. Requirements for abstract entities and their relationships
have been defined. While they provide a good frame of reference, a definition of more concrete
architecture elements is needed. This section will provide the requirements for an associated
reference architecture that is one level more concrete as illustrated in Figure 4.1. The general
requirements defined on the reference architecture level in this section are summarized as part
of Table 4.3.

4.1. REFERENCE MODEL AND ASSOCIATED ELEMENTS REQUIREMENTS 85

The survey of related work in Chapter 3 identified that the minority of reference models
provide an associated reference architecture that gives a reasonable level of detail for its imple-
mentation. The following requirement is thus defined that significantly influences the major
design of a reference architecture for the given problem space:

Definition 41 (Web Services-based Reference Architecture) A Web service-based reference archi-
tecture implements the general SOA design principles of a reference model as defined in Definition 29
with the use of Web service message exchanges that leverage the HTTP(S) and SOAP protocols.

Definition 41 raises the demand that the general reference model implements SOA prin-
ciples with the Web services technology [296] given its e-Science community relevance. The
associated reference architecture should be implemented with HTTP(S) [43] and SOAP-based
request and response messages [190] leveraging the potential of a wide variety of WS-based
specifications available today (e.g. WS-Security [131]). One practical example of Definition 41
is the access of a service-based data management entity as defined in Definition 32 realised with
WS message exchanges. The requirement raises the demand that services of the data manage-
ment entities in the reference architectures, offer WS interfaces that are described with WSDL
[150] and accessed using the SOAP protocol [190] via HTTP(S).

The next requirement defines which elements of the Web service-based interfaces are needed:

Definition 42 (Concrete Specifications for a Reference Architecture) Corncrete specifications for
a reference architecture are present in two types. Firstly those that offer well-formed XML-based schemas
for keeping information consistently. Secondly, XML-based schemas that include definitions of opera-
tions that can be remotely invoked via WS message exchanges as in Definition 41.

Definition 42 defines which Web service interface elements (i.e. portTypes [150] with op-
erations) must be in place in the reference architecture. This is needed for all the four major
reference model entities as defined in Definition 31, 32, 33, and 34. The operations are basically
functions (grouped in portTypes) that can be invoked remotely by implementing the idea of an
XML-based RPC [296]. One practical example is the operation GetResourceProperties of
the Web Service Resource Properties specification [188] being part of the larger WS-RF frame-
work [123]. Remote clients can invoke this operation via Web services that adopt this spec-
ification without knowing the server implementation, since the aforementioned specification
is accurately defined and thus realistically implementable. Definition 42 also includes well-
formed schemas that basically specify XML-based data structures. As published in [264], the
survey of related work reveals in Chapter 3 that not many architectures refer to real existing
WS-based specifications.

The two latter requirements define invocations of remote operations in distributed systems
such as production e-Science infrastructures as defined in Definition 5. The next requirement
demands the restriction of certain amounts of transferred information during these invoca-
tions. The academic analysis in this thesis revealed that information and security information
are special and as such all data related to it need precise constraints and invariants in order
to understand where in the reference architecture the information or security information is
transferred (i.e. because of the ‘orthogonal” approach in [267]). These contraint requirements are
defined as follows:

Definition 43 (Information and Security Constraints for a Reference Architecture)
Information and security constraints for a reference architecture are invariants that clearly define which
information and security data exist at well-defined locations within the architecture.

Definition 43 is required for the reference architecture since it not only uses XML-based
operations, but also relatively large XML-based schemas that define data structures. This is

86 CHAPTER 4. REQUIREMENTS

the case in the context of the defined information entity (cf. Definition 34) and its information
model that can be realised with XML-based schema (e.g. GLUE2 [113]). These schemas are
also relevant in context of the defined security entities (cf. Definition 33), for instance when
realizing parts of it with SAML assertions that consist of XML-based security attribute state-
ments [142]. Also the execution management entity (cf. Definition 31) can take advantage of
XML-based schemas, for instance, when realizing job description languages (e.g. JSDL [115]).
Information and security data is thus relevant on many levels within the architecture and re-
quires precise invariants and constraints during the ‘data flow’. An XML-based job description
data, for example, is just an input to the corresponding job management interface and thus its
flow through the architecture is already well defined. But to provide a practical example for
Definition 33 in the context of security, it is essential to define an invariant in the architecture
that at the level of authorisation decisions, the encoding for attributes in different reference
architecture implementations must be the same. With this definition two e-Science infrastruc-
tures are interoperable in the sense of Definition 21.

The aforementioned requirements already define several important cornerstones of the ref-
erence architecture that lay a foundation for its implementation. More lessons learned from
Chapter 3 are taken into account in the subsequent requirements of the reference architectural
design to make it more realistically implementable. As published in [264], the success principle
of the TCP/IP model compared to the more theoretical ISO/OSI model is a major design aspect
in this thesis. The reference model and its architecture must follow a more compact design that
is defined as follows:

Definition 44 (Slim Reference Architecture) A slim reference architecture is provided by a compact
architectural design that only implements the four core reference model entities (i.e. Definitions 31,32,
33, and 34) with the given reference architecture technologies.

Definition 44 is based the assumption that the compact reference models and slim architec-
tures, such as TCP/IP, are more successful in practice in comparison with the rather theoretical
ISO/0OSI model and architecture. The precise number of lower than five is a requirement that is
derived from the findings of the OGSA analysis in Chapter 3. It sets a valid boundary to the key
four previously defined entities of the abstract reference model blueprint in Definitions 31, 32,
33, and 34. Definition 44 aims to support the realistic use of a reference architecture implemen-
tation within production e-Science infrastructures (cf. Definition 5) covering their most crucial
functionality. Other entities and functionalities (e.g. monitoring) are still very important, but
are not as crucial for technical interoperability as the aforementioned core four.

In this context, another interesting result of the academic analysis of related work is the
absence of definitions which core entities are necessary to form an infrastructure. A list of core
entities must be in place in order to create a useful e-Science infrastructure based on reference
architecture implementations. This requirement is defined as follows:

Definition 45 (Core Reference Architecture Elements) The core reference architecture elements are
those that are required to form a working e-Science infrastructure and that are derived from the four gen-
eral reference model blueprint entities covering the mandatory functionality.

Definition 45 raises the requirement that the architecture elements must be a non-empty
list of core elements that must be in place to form an e-Science infrastructure. A reference
architecture implementation that is guided by the general reference model blueprint but that
do not adopt the core reference architecture elements is not able to satisfy the basic needs of
e-Scientists (cf. Definition 10).

Another requirement of the reference architecture that increases its chance of being imple-
mented is referencing well-specified normative specifications:

4.1. REFERENCE MODEL AND ASSOCIATED ELEMENTS REQUIREMENTS 87

Definition 46 (Normative Specifications for a Reference Architecture) Normative specifications
for a reference architecture are those well-defined and available specifications that fully specify each op-
eration and related data structures thus paving the way for its implementation.

Definition 46 requires that the reference architecture needs to explicitly list existing norma-
tive specifications that are formal enough to be implemented by stakeholders and available to
the wider community. In the context of Definition 46 and in order to be realistically imple-
mentable, it is not important whether the specification is an open standard or not. Much more
important is that a detailed specification is publicly available so that the reference architecture
elements guided by the overall reference model design can be implemented.

Lessons learned from Chapter 3 also revealed that open standards as defined in Definition
14 also play a crucial role in the reference architecture requirements. A reference model and its
associated elements such as a reference architecture is only interoperable with another if the use
of transformation logic (cf. Definition 27) is avoided thus leading to the following requirement:

Definition 47 (Open Standards-based Reference Architecture) A reference architecture is based
on common open standards in the sense of Definition 14 when it lists normative standard specifications
as implementation of the reference model blueprint entities. Such well-defined specifications are released
from real SDOs, are publicly available, and avoid breaking existing standard specifications.

Definition 47 is one key requirement, since the survey of releated work in Chapter 3 re-
vealed that a reference architecture should be standard-based, including referencing concrete
open standard specifications. The solution in this thesis must be thus standard-based in the
complete sense of Definition 47. Entities defined in Definition 31, 32, 33, and 34, require an open
standard-based implementation on the reference architecture level in order to overcome limi-
tations of non-interoperable infrastructures (cf. Definition 19). The next definition addresses
several necessary improvements for standards over time that are defined as follows:

Definition 48 (Reference Architecture Standard Refinements) Reference architecture standard
refinements are improvements of open standards in the sense of Definition 47 most significantly preserv-
ing backwards compatability with existing open standards. Such refinements must be fed back to the
process within the SDO originally releasing the standard leading to evolutions of it.

Definition 48 raises the demand for open standards that are improved with functionality
that do not break backwards compatibility with the existing standard. The core approach and
functionality of the open standard need to remain valid, while certain additions to it that do
not break the standard can be useful in increasing performance and efficiency as well as the
effectiveness of some operations.

Finally, Table 4.3 summarizes the aforementioned general requirements that are part of the
reference architecture level.

No. ‘ Requirement Definition Title

41 Web Services-based Reference Architecture

42 Concrete Specifications for a Reference Architecture

43 Information and Security Constraints for a Reference Architecture
44 Slim Reference Architecture

45 Core Reference Architecture Elements

46 Normative Specifications for a Reference Architecture

47 Open Standards-based Reference Architecture

48 Reference Architecture Standard Refinements

Table 4.3: Reference architecture general requirements (reference architecture level).

88 CHAPTER 4. REQUIREMENTS

4.2 Functional Requirements

Abstract
Reference Model ({Chapter 5)

Reference Model Entities] [Reference Model Entities Relationships

[\ Blueprint and Design Foundations

\

/

guided by

Reference Architectures (Chapter 5)

Q—

.."“ *
o . Protocols
{Chapter5)

Profiles

if

Motivation pecounts for [General Technical Requirements] considers (Chapter 5)
{Chapter 2)
Specifications

Goals derived {Chapter 5)

(Chapter 2) = "

oncrete
Architectures R‘:g;?:]:g?g?ls Standards
(Chapter 6) {Chapter5)
K Architecture Work / Related Work
accounts for constrained
Service Oriented Architecture Implementations
(Chapter 6}
Concrete

Figure 4.3: Functional requirements of the reference architecture design guided by the reference model.

This section defines detailed functional requirements for the reference architecture in guid-
ance of the overall core reference model as shown in Figure 4.3. The figure illustrates that
the requirements are defined on the architectural level. The goal of these requirements is to
“capture the basic functionality” with core building blocks and also the various lessons learned
obtained from field studies and the academic analysis results of Chapter 3. The main aspects
is thus to define the very basic functionality requirements related to the thesis scope meaning
secure computational job management with support of data-staging and improved processing
for e-Science applications (cf. Section 1.2). Figure 4.3 illustrates that core building block re-
quirements of the reference architecture are refined with respect to their detailed functionality
in the areas of 'e-Science application support’ as well as ‘processing and data-staging support’. It
also provides a hint that the building blocks need to be in-line with the more abstractly de-
fined reference model entities as well as the general high-level reference architecture design
requirements (e.g. slim design, entities with relationships, etc.).

4.2.1 Reference Architecture Core Building Blocks

The refinement of the abstract reference model entities are necessary to set more specific re-
quirements for a reference architecture and to explore where technologies need to adopt its
necessary building blocks. This section thus consists of more specific "core building blocks” and

4.2. FUNCTIONAL REQUIREMENTS 89

their inter-dependencies as part of the reference architecture as illustrated in Figure 4.3. The
core building blocks requirements defined on the reference architecture level in this section are
summarized as part of Table 4.4.

All requirements that are listed address the overall reference model requirement of Defi-
nition 45, which means that all of them must be satisfied in order to achieve the ‘mandatory
functionality’.

A fine-grained definition of the abstract reference model entity Grid Execution Management
as defined in Definition 31 is needed. This entity requirement refers to functionality that needs
to be provided by middleware technologies in the sense of Definition 12. This requirement can
be thus further refined as follows:

Definition 49 (Grid Execution Management Service) A Grid execution management service of the
reference architecture provides the functionality to submit and manage Grid jobs via Grid middleware
as defined in Definition 12, which in turn execute and control e-Science applications as defined in Defi-
nition 9 on computational infrastructure resources as defined in Definition 6 by using a well-defined job
description language and execution environment.

Definition 49 requires a specification that defines numerous portType operations [150] that
can be used to define a WS-based interface within hosting environments of Grid middleware
systems. Examples are OGSA-BES [169], or proprietary WS-based job management interfaces
in ARC [160], UNICORE [293], or gLite [212].

Definition 49 also points to a job description language. This can be realized via an XML-
based schema that is used to define the properties of a Grid job that is controlled by a service
that provides access to computational resources. Examples are JSDL [115] or the proprietary
job description languages of ARC [160] or gLite [212].

Apart from enabling the running of Grid jobs on HTC resources, Definition 49 also raises
the requirement for an execution environment. In more detail such an environment should be
able to submit and manage parallel Grid jobs on HPC resources working nicely together with
site-specific installed software. Such a framework is beneficial to use particular HPC resource
types in the most efficient manner, including specific machine properties and environments.
Examples are the GIN Execution Environment [38] and the open source module concept [20].

The Grid Data Management Entity as defined in Definition 32 is another requirement to be
refined. It consists of two major parts that can be more precisely defined as follows:

Definition 50 (Grid Data Management Service) A Grid data management service of the reference
architecture provides the functionality to manage data including the access to remote storage resources in
the sense of Definition 6 that are capable of efficiently storing and retrieving data using inherently data
transfer protocols some of which can be used for data-staging activities initiated by the Grid Execution
Management Service as defined in Definition 49.

Definition 50 raises the requirement to define specific WS-based interfaces that offer port-
Type operations with the functionality to manage, store or retrieve remotely stored data. This
data can be stored in different types meaning plain data storage under specific named entries or
data storage represented by a relational database enabling Structured Query Language (SQL)-
based queries. Examples are SRM [286], WS-DALIS [118] or proprietary storage management
protocols like the Storage Management Service (SMS) of UNICORE [293]. But these specifica-
tions are known to have some disambiguities and design issues hindering scalability that will
be revealed and tackled in Chapter 5.

The second part of Definition 50 refers to different types of data transfers. It clarifies that
data-staging and storage technologies, which offer a WS-based management interface, need to
work together with data transfer protocols. In order to be efficient, the reference architecture

90 CHAPTER 4. REQUIREMENTS

No. [Requirement Definition Title

49 Grid Execution Management Service
50 Grid Data Management Service
51 Grid Authentication Service Functionality

52 Grid Attribute Authority Service

53 Grid Attribute-based Authorisation Functionality
54 Grid Security Attributes Transport

55 Grid Information Model Schema and Service

56 Grid Usage Record Format Schema

Table 4.4: Reference architecture core building blocks requirements (reference architecture level).

needs to support protocols for different types of data transfer. Large-scale data transfers require
high throughput, but a standard-based access using POSIX mechanisms makes also sense for
smaller data transfers. Examples of large-scale data transfers are GridFTP [109] or HTTPS [43]
while POSIX-based access can be realised using the BytelO specification [230].

The complex Grid security entity as defined in Definition 33 needs also a refinement. The
first part of this requirements is related to the use of authentication that we define as follows:

Definition 51 (Grid Authentication Service Functionality) Grid authentication service function-
ality are mechanisms that enable each reference architecture service to check whether an end-user access
is used in conjunction with a security credential that is valid, not revoked and trusted.

Definition 51 requires security credentials for authentication. Examples for standards in this
area include the use of X.509-based Secure Socket Layer (SSL) connections [195] with a mutual
handshake for each of the available services. Technology examples in e-Science environments
for authentication of end-users are Shibboleth [232] or the UNICORE Gateway [293] or simply
authentication modules in modern Web hosting frameworks wherein Web services are hosted
(e.g. Apache Tomcat [149]).

Examples that need to offer authentication functionality are those services defined in Defi-
nition 49 and Definition 50. The X.509 certificate used must be released from a trusted CA and
not be revoked.

The second part is a service that releases security attributes about end-users defined as
follows:

Definition 52 (Grid Attribute Authority Service) A Grid attribute authority service releases, in a
standard format, signed security attributes about users that are used for attribute-based authorisation
decisions in reference architecture services such as defined in Definition 49 and Definition 50.

Definition 52 implies that services provide portType operations that enable the request and
release of signed security attributes. The attributes then can be used in conjunction with other
service requests (e.g. Grid job submits using the service defined in Definition 49). Definition 52
refers to a standard-based usage of security attributes from a trusted central attribute authority.
An example of a standard-based encoding of security attributes is SAML assertions [142], and
examples of attribute authorities are VOMS [108] and Shibboleth [232].

The third part is the counterpart to Definition 52, meaning that there is one specific func-
tionality that works with the aforementioned security attributes as follows:

Definition 53 (Grid Attribute-based Authorisation Functionality) A Grid attribute-based autho-
risation functionality is able to interpret and use security attributes released from an attribute authority
defined in Definition 52. The information extracted from those attributes must be used by the Grid
attribute-based authorisation functionality in order to enforce authorisation decisions within services
defined in Definitions 49 and 50.

4.2. FUNCTIONAL REQUIREMENTS 91

Definition 53 requires that attribute-based authorisation decisions must be based on func-
tionality that is able to work with security attributes released from an attribute authority (cf.
Definition 52). This functionality must be internally supplied to provide local access control,
while the use of remote authorisation services with standard protocols is also additionally pos-
sible. Examples of such a protocol is XACML [234], and Argus [303] is an example of a central
authorisation service.

A final part of Definition 33 is refined as follows:

Definition 54 (Grid Security Attributes Transport) A Grid security attributes transport is a well
specified standardised way of exchanging security attributes between the different services of the reference
architecture such as attribute authority (cf. Definition 52), Grid execution management service (cf.
Definition 49), and Grid data management service (cf. Definition 50).

Definition 54 requires that the exchange of security attributes must be performed in a stan-
dardized way between the services of the reference architecture. Examples of mechanisms that
enable the standardized transport of security credentials in general is the WS-Security set of
functionality [131].

The Grid Information Entity as defined in Definition 34 needs to be refined with two defi-
nitions, the first of which is:

Definition 55 (Grid Information Model Schema and Service) A Grid information model is an
XML-based schema that provides details about the capabilities of the reference architecture services such
as the attribute authority (cf. Definition 52), Grid execution management service (cf. Definition 49), and
Grid data management service (cf. Definition 50), and other Grid services (cf. Definition 13). The Grid
information model is exposed by the services its describes via a particular interface or via a dedicated
information service.

Definition 55 requires a standard information schema that is able to describe the properties
of the reference architecture services and their underlying resources. Examples are GLUE2
[113] and the Common Information Schema (CIM) [5]. The definition also includes the use of
information services to expose information based on an information model. There is a wide
variety of used information services within production e-Science infrastructures. Examples
are systems based on the LDAP [196] standard such as BDII [212] or based on XML [223].
Definition 34 refers to publishing of information with the use of an common information model
that is much more important. As a consequence, there is no definition on a precise ‘information
service’ with dedicated query interfaces as core building block being out of the scope and thus
this thesis only refers to information services (e.g. based on LDAP [196]) mechanisms where
needed.

Definition 34 also consists of a part that is related to the tracking of resource usage that can
be refined as follows:

Definition 56 (Grid Usage Record Format Schema) The Grid usage record format is an XML-based
schema that provides standardized details about the resource usage reference architecture services as de-
fined in a Grid execution management service (cf. Definition 49) and Grid data management service (cf.
Definition 50) augmented with end-user identities (i.e. accounts).

Definition 56 is essential to track resource usage within the reference architecture adoptions
and an example of such a format is UR [216]. In production infrastructures it is important to
track the resource usage of compute resources, but also for storage resources. For the later part,
there are currently no direct standards available while there is much potential to extend the UR
format to this need.

Finally, Table 4.4 summarizes the aforementioned core building blocks requirements that
are part of the reference architecture level.

92 CHAPTER 4. REQUIREMENTS

4.2.2 Improved e-Science Applications Executions

The requirements in the last section defined the key functionality of the reference architec-
ture core building blocks. This section defines specific architectural design requirements that
are based on an academic analysis of lessons learned from many Grid interoperability studies
surveyed in Chapter 3. Significant limitations in functionality when e-Science applications as
defined in Definition 9 have been used in practice on production e-Science infrastructures have
been revealed. A reference architecture that overcomes these limitations needs to satisfy re-
quirements listed in this section. Requirements are defined for the reference architecture level
as illustrated in Figure 4.3 and related to the aforedefined core building blocks. The concept
requirements defined on the reference architecture level in this section are summarized as part
of Table 4.5.
Grid technology providers need to provide concrete “application types” as follows:

Definition 57 (Application Type Support) The application type of an e-Science application accord-
ing to Definition 9 indicates its manner of processing within the Grid middleware (cf. Definition 12)
and thus needs to be part of the job description in order to enable more efficient processing.

Definition 57 requires that each job description document that is submitted to a Grid mid-
dleware must have an element that describes which type of e-Science application is submitted.
The type refers to the many possibilities of e-Science application submissions in production e-
Science infrastructures starting from serial and parallel to pre-installed executions, or even job
submissions as part of a larger workflow. One example is the use of a ‘benchmark type’ in order
to enable better processing within the technologies, since benchmarks are in several cases fun-
damentally different to production executions (e.g. include measurements) and are performed
in specialized execution environments (e.g. to enable fair comparisons).

The exact specification of the e-Science application executable is another requirement that
is defined as follows:

Definition 58 (Precise Application Executable Specification) The precise application executable
specification is the need to specify an e-Science application according to Definition 9 with three distinct
executable parts in the job description that are the name, path, and arguments of the executable.

Definition 58 means that job descriptions that are submitted to technologies need to pro-
vide the name, path, and arguments of the executable of the corresponding application. This
addresses the shortcomings of many proprietary job descriptions obversed in the related work,
including the well-known JSDL standard [115]. In many interoperability case studies it is a
challenge for middleware to distinguish whether the given information is a relative executable
path or a fixed path thus leading to confusion in application executions across Grids. To pro-
vide an example, the information about the executable 'bin\pepc n400’ needs to be en-
coded in the job description in such a way that three elements are part of it. Within this exam-
ple, the path element is bin, the name is pepc and one of the arguments is n400.

In order to address challenges with respect to the specification of pre-installed application
software the following requirement is needed:

Definition 59 (Application Software Mechanism) The application software mechanism is a func-
tionality that exposes pre-installed software applications (including software libraries, executables, etc.)
at a resource in a common manner to be re-used for job description with Grid middleware as defined in
Definition 12 using the same consistent syntax and semantics.

Definition 59 requires a mechanism to seamlessly execute a pre-installed software applica-
tion at a given resource. The available software is exposed in such a way that it can be re-used

4.2. FUNCTIONAL REQUIREMENTS 93

within job descriptions in order to ensure consistency with the submission. For example, a
Grid resource offers a pre-installed sientific application. It exposes the application via an in-
formation service and the information is used by a GUI client functionality that creates the job
description on behalf of the end-user and with GUI actions the need particular parameters can
be specified.

Another requirement is related to the “application output joins”:

Definition 60 (Application Output Joins) The application output joins specify the need to have a
common format and location of all relevant output (std output, std error, etc.) of an e-Science application
according to Definition 9 used with Grid middleware as defined in Definition 12.

Definition 60 raises the demand to join the outputs of executed applications, since in many
interoperability setups the join of all output of a particular application makes sense. It enables a
more straightforward job execution analysis even by end-users from time to time. For example,
several scientific packages (e.g. AMBER [242]) make intensive use of the stderr output of
an application that in turn is required by scientists to understand whether a particular job
run (e.g. molecular dynamics simulation) was successful from a scientific perspective. In this
example, the scientists benefit from one joined application output file in order to have a much
simpler way of understanding the job execution process. This requirement is also helpful for
Grid resource administrators when they seek to understand why a given application was not
successfully executed (e.g. when a technical problem exists).

The use of "common environment variables” is another requirements that is defined as follows:

Definition 61 (Common Environment Variables) Common environment variables are a common
set of variables that are available at each computational resource in the sense of Definition 6 enabling
their use within e-Science applications according to Definition 9.

Definition 61 addresses a problem around application portability that seems to be trivial,
while experience from working with Grid applications across infrastructures reveals the op-
posite [38]. Real production applications make use of environment variables (e.g. number of
cores, memory, etc.) that are all differently encoded at Grid resource levels today. For example,
one particular e-Science application that use environment variables is able to use these vari-
ables during execution, because these have the same syntax and also semantics at any available
resource being part of an individual infrastructure as defined in Definition 20.

Another requirement is related to pre-installed software, but those software applications
that require an enormous amount of configuration leading to the following requirement:

Definition 62 (Common Execution Modules) Common execution modules are pre-configured exe-
cution environments that include path settings, environment variable definition, and other configura-
tions for a specific software application available at a resource (cf. Definition 6). A common execution
module must be exposed by a Grid resource in order to enable their use in job descriptions.

Definition 62 raise the demand for a pre-configured execution environment since several
scientific packages (e.g. AMBER [242]) require the setup of different paths, environmental vari-
ables and other configurations for their executables. The sourceforge module concept [20] is
one option for its realization. For example, a specific library such as the Visualisation Interface
Toolkit (VISIT) [139] steering library is needed that is available at a resource and exposed in a
manner that it can be re-used in the job description for an e-Science application that uses it.

Finally, Table 4.5 summarizes the aforementioned concept requirements that are part of the
reference architecture level.

94 CHAPTER 4. REQUIREMENTS

No. [Requirement Definition Title

57 Application Type Support

58 Precise Application Executable Specification
59 Application Software Mechanism

60 Application Output Joins

61 Common Environment Variables

62 Common Execution Modules

Table 4.5: Reference architecture e-Science applications requirements (reference architecture level).

4.2.3 Improved Processing and Data-staging Capabilities

This section defines further architectural design requirements that are based on lessons learned
from Grid interoperability field studies and their associated academic analysis. But the require-
ments in this section are more related to Grid middleware processing and data-staging capa-
bilities. The e-Science applications also take advantage of these requirements, but the require-
ments have a much greater impact on the reference architecture adoptions in Grid middleware.
Therefore, the requirements in this section are defined for the reference architecture level as
illustrated in Figure 4.3, but are also related to the aforedefined core building blocks. The con-
cepts requirements defined on the reference architecture level in this section are summarized
as part of Table 4.6.

In many specifications (e.g. JSDL [115]) the relevance of HPC is often lower than the tra-
ditional Grid methods, often being referred to as rather HTC-driven. Several gaps have been
identified with Grid applications executed across infrastructures where more recent features of
large-scale HPC resources had been not supported. The requirement is thus as follows:

Definition 63 (State-of-the-art HPC Support) State-of-the-art HPC support stands for a wide vari-
ety of features that modern large-scale HPC resources provide (e.g. different network topologies, shape
setups, or task/core mappings). These features need to be exposed by resources (cf. Definition 6) so that
they can be easily re-used within job descriptions of e-Science applications according to Definition 9.

Definition 63 addresses the growing complexity of HPC machines in the last couple of years
since they support more and more features that have been not addressed in existing job descrip-
tion languages such as JSDL. The basic HPC usage can be described, but additions are needed
to increaese the performance of e-Science applications which is particularly important for the
use in HPC-driven e-Science infrastructures as defined in Definition 16. For example, a large-
scale HPC resource needs to expose its characteristics such as supported network topologies
[290] or available shapes [290] and task/core mappings [290]. In turn, e-Scientists use this in-
formation to identify a suitable system for their e-Science application and a system that creates
the job description on behalf of the end-user is able to re-use this information too.

Another important lesson learned from Grid interoperability work is that the access of key
information about a Grid resource is exposed in a standardised manner. This leads to the
following requirement:

Definition 64 (High Message Exposure) High message exposure refers to a standardised way of pro-
viding key information about a resource (cf. Definition 6) with important messages (i.e. high messages)
to end-users, Grid application developers, or even administrators.

Definition 64 raises the demand for a standardised way of exposing key information by
Grid resources. In HPC-driven interoperability studies, in particular, many Grid resources
have their own ways of informing end-users about scheduled resource maintenance and other
important pieces of information (e.g. dashboards). In some cases different Web sites have

4.2. FUNCTIONAL REQUIREMENTS 95

this information about a Grid resource and its news about status changes. For example, an
e-Scientist plans to migrate from one HPC machine to another since one machine is going to
be offline. In order to submit jobs and to retrieve the key information about the status with
'high messages” on this system, the end-user just needs to use a usual Grid client instead of
looking on several Web sites. In the reference architecture, there must be a standardised way of
exposing this information that points to the use of an information system using a standardised
information model.

The next requirement is based on an academic analysis of application usage that point to the
limitations in approaches with a lack of supporting 'sequences’. The difference from sequence
to workflows is that each sequence step needs to be executed at the same Grid resource while
workflow steps can be potentially executed in different locations. The requirement is as follows:

Definition 65 (Computational Job Sequences) Computational job sequences is a mechanism that
enables the execution of pre- and post-processing applications before or after the main e-Science applica-
tion as defined in Definition 9 using Grid middleware (cf. Definition 12).

Definition 65 addresses several requirements when working with scientific applications in
production e-Science infrastructures. In many cases, the existing job description languages
is unable to support pre-job sequences enabling pre-processing activities or compilations be-
fore the main executable execution. Post-processing is also not available in many description
languages such as JSDL [115]. This is a limitation, for example, for e-Scientists that like to anal-
yse several application outputs directly after its running period with a small program. One
practical example of Definition 65 is the transformation of input data before the main Grid job
execution that can be done using the defined pre-processing functionality.

A closer academic analysis of current approaches by e-Scientists identified another limita-
tion of middleware providing no manual data-staging. The requirement is as follows:

Definition 66 (Manual Data-staging Mechanism) A manual data-staging mechanism is function-
ality within a Grid middleware (cf. Definition 12) that enables end-users to manually stage data into the
Grid job sandbox in order to be used with the main e-Science application according to Definition 9.

Definition 66 addresses an important identified limitation for e-Scientists, especially in
those areas of work where manual data checking is needed. One example of this requirement
is that e-Scientists often analyse data sets before they are part of inputs to e-Science application
runs. The expertise of e-Scientists is needed in order to choose the input data or select impor-
tant fractions of it to be computed. Automated data-staging, as defined in JSDL [115], does
not have access to this specific expertise and as such only provides the possibility to transfer
all or nothing. In several interoperability case studies (e.g. Chapter 6.3), these steps are often
combined, meaning that at first automated data-staging is used to transfer all the data before
several parts of it are dropped before the main application is run in order to reduce it to a
meaningful input.

More flexibility in the Grid job execution control is another identified requirement that is
defined as follows:

Definition 67 (Grid Job Manipulation Functionality) A Grid job manipulation functionality within
a Grid middleware (see Definition 12) enables end-users to manipulate the e-Science application (cf. Defi-
nition 9) executions after their submission to a Grid resource. This includes pausing and resuming them,
canceling and completely removing them as well as their resubmission if necessary.

Definition 67 raises the requirement to influence the job run after its submission. This is
often not covered by existing specifications such as the OGSA-BES standard [169], which only

96 CHAPTER 4. REQUIREMENTS

No. [Requirement Definition Title

63 State-of-the-art HPC Support

64 High Message Exposure

65 Computational Job Sequences

66 Manual Data-staging Mechanism

67 Grid Job Manipulation Functionality

Table 4.6: Reference architecture processing and data-staging requirements (reference architecture level).

provides the TerminateActivities operation. Although Definition 67 sounds trivial, its
implementation often depend on the functionality of different resource management systems
(e.g. pause) such as defined in Definition 11. Definition 67 implies impacts on the state model
[169] of Grid middleware defining the transitions of states (e.g. pause to resume). One example
is that the e-Scientists would like to check whether data that was staged to the computational
resource is correct before a long full-blown production run begins on a large-scale HPC re-
source. Time on these resources is rare and as such many e-Scientists would like to double
check whether their execution really takes the right input data. In this context the job will
pause after the staging until the e-Scientist explicitly resumes the job.

Finally, Table 4.6 summarizes the aforementioned concept requirements that are part of the
reference architecture level.

4.3. NON-FUNCTIONAL REQUIREMENTS 97

4.3 Non-functional Requirements

Abstract

Reference Model (Chapter 5)
[Reference Model Entities] [Reference Model Entities Relationships]
[Blueprint and Design Foundations]

‘guided by
ﬁ/_ Reference \

Architectures
{Chapter 5) .

[..F.UpE‘.ifiwmmg....] S

apne

1
Motivation Jaccounts for| considers

{Chapter 2)

Goals derived *Iniluen:ed by
{Chapter 2)

g

[Legacy Technology]

Related Work

[constraints) [policies]
Concrete Production Infrastructure

\ Architectures (Chapter 6)
\ Architecture Work /
constrained by

Service Oriented Architecture Implementations (Chapter 6)
[Concrete SOA Implementations]
Concrete

accounts for

Figure 4.4: Non-Functional requirements of the architecture work with production infrastructures influence.

This section raises several non-functional requirements that need to be supported by ref-
erence architecture adoptions in existing production e-Science infrastructure environments as
shown in Figure 4.4. It shows that requirements are defined on the reference architecture level
with “infrastructure integration constraints” and "infrastructure usage models’. But the figure also il-
lustrates how specific operational influences affect the requirements in this section arising from
production e-Science infrastructure deployments to achieve production-oriented architectures.
In addition, requirements are defined for a whole process to sustain interoperability between
reference model adoptions that are not directly mapped to any particular level as shown in
Figure 4.4. Many requirements in this section are thus influenced by production technology
implementations (cf. Figure 4.4) in order to ensure that the requirements have a practical im-
pact on existing production e-Science infrastructures.

Training as a whole is one element of production e-Science infrastructure and represents
another non-functional requirement. But this topic is kept out of this thesis and tackled by the
e-IRG ETTF [206].

4.3.1 e-Science Production Infrastructure Integration Constraints

This section sets several constraints to make concrete implementations and deployments of
the reference model and its associated architecture work relevant in the context of production

98 CHAPTER 4. REQUIREMENTS

e-Science infrastructures as defined in Definition 5. They address certain operational require-
ments that are necessary to achieve smooth infrastructure integration and to be considered at
all for deployments in production. Figure 4.3 reveals that the requirements in this section are
on the concrete architecture level but with significant input from the real implementations in
production e-Science infrastructures. The requirements defined on the reference architecture
level in this section are summarized as part of Table 4.7.

The first requirement concerns the requirement of having adoptions with real e-Science
production technologies that is as follows:

Definition 68 (e-Science Production Technology Adoption Constraint) e-Science production
technology adoption sets the constraint for reference architecture adoptions in that they need to be inte-
grated by preserving production stability to address slow migration and update cycles. Adoptions need
to be relevant in the context of existing production e-Science infrastructures according to Definition 5
and their deployed production Grid middleware as defined in Definition 12.

Defnition 68 sets a strict requirement for implementation, but on the other hand ensures
that reference architecture adoptions have a real production impact. This is only assured when
adoptions are done in technologies that are likely to be deployed in practice. Examples in the
field of e-Science infrastructures would be EGEE/EGI, DEISA /PRACE, TeraGrid/XSEDE or
its production middleware systems ARC, gLite, Globus, GridSAM, GENESIS, or UNICORE.

Definition 43 implies the requirement for information and security constraints for the refer-
ence architecture. Parts of it are also non-functional requirements that are described here. The
requirement towards the realisation of an ‘overall information ecosystem’ between the entities of
the reference model is required as follows:

Definition 69 (e-Science Infrastructure Information Ecosystem) An e-Science infrastructure in-
formation ecosystem is based on Grid information elements as defined in Definition 34 and sets the
constraint that each reference model entity in e-Science infrastructure deployments must be described
via a common information model according to a common information exchange policy at any time.

Definition 69 ensures the adoption of a common information model and information ex-
change policy across the entities of the reference model and as such across the core building
blocks of the associated reference architecture. At any given time it must be possible to ob-
tain information in a common format about any given core building block within the concrete
reference architecture adoptions. This also includes the way in which information is obtained
(i.e. information exchange policy). This clarifies the way of how information is obtained (e.g.
through a well-defined information service) and prevents semantic loss when transforming
key information from one model to another (i.e. transformation logic). One example is that
end-users can mostly assume that relevant information is present about a particular execution
management service (i.e. core building block) as defined in Definition 31. Further, the end-user
assumes that this service is described using a common information model exposing consistent
properties (e.g. amount of CPUs/cores, memory, etc.).

The second constraint raises the requirement of the realisation of an "overall resource tracking
ecosystem’ between the entities of the reference model that is defined as follows:

Definition 70 (e-Science Infrastructure Resource Tracking Ecosystem) An e-Science infrastric-
ture resource tracking ecosystem is based on Grid information elements as defined in Definition 34 and
sets the constraint that each resource usage through a reference model entity in e-Science infrastruc-
ture deployments must be tracked via a common resource usage model according to a common resource
tracking exchange policy.

4.3. NON-FUNCTIONAL REQUIREMENTS 99

No. [Requirement Definition Title

68 e-Science Production Technology Adoption Constraint

69 e-Science Infrastructure Information Ecosystem

70 e-Science Infrastructure Resource Tracking Ecosystem

71 e-Science Infrastructure Attribute-based Authorisation Ecosystem

Table 4.7: Reference architecture infrastructure integration requirements (reference architecture level).

Definition 70 ensures the adoption of a common resource tracking model and exchange
policy across the entities of the reference model, and as such across the core building blocks
of the associated reference architecture. At any time that a specific data or computational re-
source is used, it must be appropriately tracked in a common format for each corresponding
core building block within concrete reference architecture adoptions. The way in which this
resource usage information is obtained must be known (i.e. resource tracking policy). This
clarifies the way in which resource usage information is obtained (e.g. through a well-defined
specific information service) and prevents semantic loss when transforming key information
from one resource tracking model to another (i.e. transformation logic). One example is that
administrators assume that resource usage information is present about an execution manage-
ment element as defined in Definition 31 or about a data management element as defined in
Definition 32. These service elements have to use a common resource tracking model that logs
end-user resource usage data (e.g. amount of used CPUs/cores or storage capacity, etc.).

The third constraint raises an operational requirement towards the realisation of an “overall
attribute-based authorisation ecosystem’ across the entities of the reference model as follows:

Definition 71 (e-Science Infrastructure Attribute-based Authorisation Ecosystem) An
e-Science infrastructure attribute-based authorization ecosystem is based on Grid security elements as
defined in Definition 33, and sets the constraint that each reference model entity in the e-Science infras-
tructure deployment must be protected by a common attribute-based security model and be according to
a common authorisation policy.

Definition 71 ensures the adoption of a common attribute-based security model and fine-
grained authorisation policy across the entities of the reference model and across the core build-
ing blocks of the associated reference architecture. Dedicated mechanisms that work with a
common format to encode security attributes are needed for each corresponding core build-
ing block within the concrete reference architecture adoptions that offer resource access. The
way in which such security attributes are obtained must be known (i.e. common authorization
policy). This clarifies the way of how such security credentials are obtained (e.g. through a
well-defined attribute authority service) and prevents the loss of identity information when
transforming key information from one security attribute model to another (i.e. transformation
logic). One example is that end-users assume that their security attributes are working with
execution management elements, such as those defined in Definition 31, or data management
elements, such as those defined in Definition 32 whilst in different e-Science infrastructures.
These service elements have to use a common security attributes model with a source of trust
that releases such security attributes about end-users and several services that are able to cor-
rectly interpret the attributes to enforce authorisation decisions based on fine-granular security
policies.

Finally, Table 4.7 summarizes the aforementioned requirements that are part of the reference
architecture.

100 CHAPTER 4. REQUIREMENTS

4.3.2 Requirements for Interoperable Infrastructure Usage Model

This section defines non-functional characteristics that a concrete architecture needs to provide
to offer added-value as defined in Definition 3. It should not be underestimated that those ar-
chitecture implementations that do not take these non-functional requirements into account of-
ten have less chances to be deployed in production e-Science infrastructures. Figure 4.3 reveals
that the requirements in this section are also on the concrete architecture level but with having
also significant input from the real implementations in production e-Science infrastructures.
These requirements are crucial for the infrastructure provider to ensure a consistent provision-
ing of production e-Science infrastructures that is only possible with those technologies that
take the following requirements into account. These are crucial to establish individual infras-
tructures (cf. Definition 20). A general concept that represents a fundamental non-functional
requirement, especially in Grid interoperability setups, the usability of solutions. In the con-
text of using multiple production e-Science infrastructures, the usability is often fundamentally
reduced in Grid interoperability application use cases. Different client technologies are often
used independently of each other and these require different security credential setups whilst
using the same end-user certificate. For example, a command-line client (e.g. the gLite-UI
[212]) is used, and in addition the graphical UNICORE Rich Client [152], is used in parallel.
The important approach of Grids referring to single sign-on [131] is thus broken. The following
non-functional requirement ensures a transparent infrastructure usability by concrete reference
architecture implementations:

Definition 72 (Transparent Infrastructure Usability) Transparent infrastructure usability is a con-
cept that enables end-users to use different e-Science infrastructures with the same technology setup,
ensuring the use of the same credentials in general and preserving single sign-on in particular.

Another non-functional requirement is the flexibility for end-users to choose the Grid re-
sources they require without being bound to one specific production e-Science infrastructure.
Quite the opposite is often observed in infrastructures today. End-users have to use the tech-
nology of choice of one specific infrastructure, such as UNICORE in DEISA /PRACE or gLite
in EGEE/EGI. End-users only choose Grid resources within the boundaries of one specific in-
frastructure that is not interoperable with another (cf. Definition 19), because of the technology.
This leads to the following requirement:

Definition 73 (Flexibility to Choose Resources) Flexibility to choose resources stands for a concept
that enables end-users to choose the technologies they desire through mechanisms to prevent vendor-
locks. This concept also implies that end-users are able to choose infrastructure resources (cf. Definition
6) without being bound to one production e-Science infrastructure.

Definition 73 is similar to the next non-functional requirement "Multiple Infrastructures Us-
age Performance’. The 'multiple infrastructures’ here stand for interactions across two or more
e-Science infrastructures. Chapter 3 reveals that in many cases the transformation logic (cf.
Definition 27) is the reason why performance decreases when using multiple infrastructures
with one specific client technology. The transformation process from one protocol/schema to
another often takes more time than the use of one protocol or schema. This leads to the follow-
ing requirement about avoiding the use of transformation logic to ensure good performance:

Definition 74 (Multiple Infrastructures Usage Performance) Multiple infrastructures usage per-
formance is a concept that stands for the requirement that job execution and response times are not in-
creased with transformation logic (cf. Definition 27) when multiple e-Science infrastructures are used.

4.3. NON-FUNCTIONAL REQUIREMENTS 101

Another requirement for reference architecture implementations is ‘Infrastructure Resource
Usage Efficiency’. One fundamental drawback of most of the approaches in Chapter 3 is that
in many cases the technologies have been implemented towards the use of multiple infras-
tructures, whilst partly losing important low-level functional capabilities of infrastructure re-
sources. Resource-specific capabilities that would preserve the efficient use of infrastructure
resources have been neglected to enable at least minimum interoperability.

One example is the use of HPC-based infrastructures as defined in Definition 16. The HPC-
BP [154] specification supports HPC, but deeper investigation reveals that an efficient use of
parallel resources is not possible without several additions (e.g. network topologies [290]). This
leads to the following requirement for reference architecture implementations:

Definition 75 (Infrastructure Resource Usage Efficiency) Infrastructure resource usage efficiency
is a concept that enables the low-level use of resource capabilities and access to necessary functionalities
in order to make possible the most efficient use of an infrastructure resource (cf. Definition 6).

Architectures that satisfy Definition 75 will enable better resource consumption, job through-
put, and thus an overall lower-time-to-solution. HPC resources in particular are often over-
subscribed and thus their efficient use is a must of any architecture that takes advantage of
this highly precious infrastructure resources. Definition 75 is another example of how non-
functional requirements can essentially make a difference in whether architecture implementa-
tions have a realistic choice of being deployed and used in production.

A huge set of non-functional requirements are also summarised under the broad term sup-
portability. In this thesis, this term stands for maintainability, extensibility, installability, and
testability of any reference architecture implementation. All these aforementioned aspects play
a significant role and many approaches in Chapter 3 revealed that these non-functional re-
quirements are often neglected. Several implementations are thus not deployed in production
e-Science infrastructures being essentially only available in testbeds.

One example is the provisioning of a TSI adapter within UNICORE to bridge to gLite in-
stallations [256]. This non standard-based adapter was never part of the main UNICORE re-
lease and thus its maintainability was decreased, and only the developer was able to install
this workaround. This not directly maintained adapter significantly decreased the installabil-
ity of the solution by infrastructure providers. It is very specific, providing no room for further
extensibility. Reference architecture implementations therefore need to satisfy the following
requirements:

Definition 76 (Supportability) Supportability is a concept that ensures that reference architecture
implementations are released as part of the official technology releases in order to provide a sophisticated
level of supportability (i.e. maintainability, extensibility, installability, testability).

Finally, architecture adoptions have to implement certain "patterns’ (cf. Figure 4.1) that en-
ables trust and security as well as an overall run-time concept. These patterns describe how the
reference architecture is used to overcome limitations mentioned in Chapter 2 (e.g. joint HPC
and HTC usage). These architecture work patterns are defined as follows:

Definition 77 (Architecture Work Patterns) Architecture work patterns are architectural and run-
time models that take advantages of key functionality of the reference model and its associated architec-
ture elements in order to give insights how interoperability is promoted with it in a secure manner giving
end-users feedback about the state of the computational jobs.

Definition 77 raises the demand that there must be dynamic run-time information beyond
static descriptions of the reference model guided architecture work. This also includes ‘a way

102 CHAPTER 4. REQUIREMENTS

No. [Requirement Definition Title

72 Transparent Infrastructure Usability

73 Flexibility to Choose Resources

74 Multiple Infrastructures Usage Performance
75 Infrastructure Resource Usage Efficiency

76 Supportability

77 Architecture Work Patterns

Table 4.8: Reference architecture interoperable usage requirements (reference architecture level).

of using the infrastructures’ that can be defined as an algorithm to better understand how users
take advantage of reference architecture adoptions. Another example is a state-model [115] that
provides run-time information about the architecture in terms of which status a particularly
executed e-Science application has giving end-users a certain amount of feedback. Both the
aforementioned aspects are on the border-line to be also functional requirements, but here the
‘end-user feedback’ and "way of using” is much more important than its technical realization with
patterns underneath.

Finally, Table 4.8 summarizes the aforementioned requirements that are part of the reference
architecture.

4.3.3 Process Requirements for Sustained Infrastructure Interoperability

This section provides definitions for an associated process to the reference model and its archi-
tecture as shown in Figure 4.4. The requirements defined on the reference architecture level in
this section are summarized as part of Table 4.9.

One conclusion of Chapter 3 was that a reference model and its standard-based associated
architecture work bears the potential of significantly increasing the interoperability of e-Science
infrastructures (cf. Definition 21). But it was also concluded that a whole process is required
that preserves the interoperability between infrastructures once their boundaries are lowered.
This process is defined as follows:

Definition 78 (Process for Sustained Infrastructure Interoperability) The process for sustained
infrastructure interoperability is a multi-segmented process that is defined around a reference model and
its associated architecture. It defines rather non-functional segments addressing sustainability and the
evolution of standards, and the synergy of collaboration between involved stakeholders.

As Definition 78 reveals, there is a need for a process that tackles non-functional aspects and
that is complementary to the technically-driven reference model aspects. This includes issues
around collaboration and fundings while more detailed requirements are given in the subse-
quent paragraphs. As a consequence, Figure 4.3 illustrates that the particular requirements in
this section are complementary to the architecture work but not directly defined on one partic-
ular level but is related to production e-Science infrastructures and their different technologies
that are deployed on them.

One key segment of the process is the creation of a reference model that is defined as fol-
lows:

Definition 79 (Common Reference Model Creation) The common reference model creation stands
for a process where technology providers that contribute to interoperable e-Science infrastructures (cf.
Definition 21) work together on an agreed reference model including associated architecture elements.
The entities of such a reference model formed as concrete building blocks within the reference architecture
must be based on open standards (cf. Definition 14).

4.3. NON-FUNCTIONAL REQUIREMENTS 103

The requirement in the sense of Definition 79 is an important process aspect that bears the
potential to increase the interoperability between production e-Science infrastructures.

In order to have a significant impact of the aforementioned definitions in the process, the
following requirement is also very important:

Definition 80 (Key Technology Providers Collaboration) The key technology providers collabo-
ration is a process where those technology providers that have a significant impact with their technologies
on production e-Science infrastructures, in the sense of Definition 5, commonly work together.

Definition 80 prevents that interoperability and interoperation of e-Science infrastructures
is hindered by having not all the key players involved in the collaboration that "can actually make
a difference’. This means the change of a setup of technologies deployed on production e-Science
infrastructures, because this is crucial to enable individual infrastructures (cf. Definition 20).

Over the last few years, work in SDOs around GIN has shown that theoretical specifica-
tion work should be augmented with a complementary reference implementation defined as
follows:

Definition 81 (Reference Implementation Developments) The Reference implementation devel-
opments is work that takes early versions of emerging open standard specifications and reference archi-
tecture core building blocks as input and provides practical development and implementation feedback
on its realisation during the definition phase of design, architecture, or specification.

Definition 81 raises the demand to have prototypes for emerging specifications, standards,
and for the architecture elements of the reference model. It enables practical feedback to theo-
retical work and is in many cases also a contribution to interoperable solutions since the early
adoption of standards provides significant insight into its practical realisation. The latter is
often neglected and as such several standards are less adopted by technology providers since
they are practically non-relevant or considered to be too academically-driven to be useful.

The next requirement raises the demand for a process segment that covers the adoption of
open standards addressing their evolution:

Definition 82 (Open Standard Evolution Process) The open standard evolution process refers to
the improvements of open standards based on their use in production e-Science infrastructures in the
sense of Definition 5, that provides feedback, which must be fed back into the standardisation process.

Defnition 82 acknowledges that no standard specification is perfect, and that they evolve
over time as their usage increases within infrastructures. But a systematic approach is required
to take the amount of experience in using standards back into the corresponding SDOs. Often
specific SDO working group are not longer in existence or the combined use of standards makes
it extremely complicated to decide which group needs to tackle which lessons learned.

One of the problems is also the wide variety of technology providers that are relevant for
production infrastructures that have different roadmaps and are not aligned to future strate-
gies. Interoperability of e-Science infrastructures can be significantly increased with the follow-
ing process requirement:

Definition 83 (Future Strategy Sharing and Common Roadmap Definition) Future strategy
sharing and common roadmap definition are process elements that are required to be performed by tech-
nology providers in collaboration with e-Science infrastructure stakeholders in order to increase the
interoperability of deployed technologies in the long-term perspective.

Definition 83 is not easy to achieve, while at the same time significant interoperability
progress can be achieved when technology providers align their roadmaps and work together
under a common project umbrella (e.g. OMII-Europe [69]).

104 CHAPTER 4. REQUIREMENTS

No. [Requirement Definition Title | Reference Model Context

78 Process for Sustained Infrastructure Interoperability Overall Associated Process

79 Common Reference Model Creation Associated Process Element
80 Key Technology Providers Collaboration Associated Process Element
81 Reference Implementation Developments Associated Process Element
82 Open Standard Evolution Process Associated Process Element
83 Future Strategy Sharing and Common Roadmap Definition | Associated Process Element
84 Operation Policy Harmonisation Associated Process Element
85 Funding and Cross-Project Coordination Associated Process Element

Table 4.9: Reference architecture associated process requirements summary.

Interoperability studies in Chapter 3 with applications have worked on increasing the inter-
operability between technologies, for instance, by adopting common open standards. But this
is only the technology foundation since it is not guaranteed that the policies of the correspond-
ing infrastructures actually allow for the use of such technologies. The following requirement
is thus needed:

Definition 84 (Operation Policy Harmonisation) The operation policy harmonisation is a process
where different usage models of different production e-Science infrastructures in the sense of Definition
5 that are governed by various policies are harmonised in order to enable true interoperations.

Definition 84 addresses a major showstopper for current Grid interoperability applications
that rely on different policy definitions. Examples are areas of resource allocation (e.g. VO vs.
peer-reviewed grant-based access) or security (e.g. proxy-based setups or full certificates).

Another requirement has the potential to increase interoperability today and in the future:

Definition 85 (Funding and Cross-Project Coordination) Funding and cross-project coordination
is a process where different funding bodies interact in order to ensure coordinated project grants across
national boundaries or to fund neutral projects that push for common community needs.

Definition 85 refers to the requirement of having common initiatives at the highest possible
level to promote interoperability in every possible way to achieve a network of interoperable
services (cf. Definition 15) vision.

Finally, Table 4.9 summarizes the aforementioned requirements that are part of the associ-
ated process to increase interoperability over time.

4.4. CONCLUSION 105

44 Conclusion

The conclusion of Chapter 3 highlights the relevance of open standard adoptions that should be
guided by a reference model and associated reference architecture in order to promote e-Science
infrastructure interoperability. Based on academic analysis of Chapter 3 results, Chapter 4
defines concrete requirements for such a reference model with entities and relationships. More
concrete associated reference architecture core building blocks are also defined. Adoptions
of a reference model and its associated elements that are able to satisfy these requirements
are able to overcome the limitations of not interoperable infrastructures identified in Chapter
2 and 3 respectively. Chapter 4 specifies many important elements towards answers for the
major research question of this thesis. These requirements for a reference model guide the
architectural design of a ‘network of interoperable services for production e-Science infrastructures’
to be carried out in the next chapter.

These requirements are defined on different abstraction levels, from the very abstract level
to the more concrete. High-level requirements about the reference model blueprint and its
entity requirements, including their interactions have been defined. This chapter underpinned
these abstract requirements with relevant concrete reference architecture requirements. These
architecture requirements cover general communication behaviour among the reference model
entities (e.g. Web services, SOAPD, etc.), but also the role of common open standards that have
been identified as being crucial in Chapter 3.

The requirements need to be functional and non-functional, in order to address the broad
set of challenges that are described in Chapter 2. Lessons learned from the academic analysis in
Chapter 3 is taken into account in the requirements so that experience from different scientific
application case studies is used. One of the conclusions of this chapter is also that existing work
in the field needs more functionality for recent HPC systems and better application support
mechanisms. E-Scientists need more control when interacting with middleware reaching from
the change of the job run after its submission to performing manual data-stagings.

The non-functional requirements focus on production e-Science infrastructure integration
constraints and process requirements complementing theoretical work with practical insights.
One conclusion so far is that only technologies that already play a major role in production
e-Science infrastructures (e.g. UNICORE, gLite, etc.) have a realistic chance of being deployed
with reference model and architecture adoptions. New technologies that adopt the reference
model are an option, but still need to convince infrastructure providers about their reliability
in terms of functionality and sustainability. This is a process that take many years and this
will not change over night. Instead, changes to already deployed technologies are easier to
get into daily e-Science infrastructure production. A reference architecture with open stan-
dards is a fundamental step in the right direction, but it must be complemented with a whole
process that takes the dynamics of change and policy aspects of infrastructures into account.
Production e-Science infrastructures are governed by various policies within given boundary
conditions that not only consist of the continuation of production quality, but also of complex
governance structures and technology setups that have been established for many years. Re-
quirements for several process segments that are able to engage in the challenges of change
as a long-term activity have been defined. Another conclusion is surely the requirements of
a concrete process that is necessary to preserve the success of a technical reference model and
its associated reference architecture. This is needed to sustain and improve interoperability
between infrastructures to establish individually formed infrastructures for end-users.

106

CHAPTER 4. REQUIREMENTS

Chapter 5

Architectural Design

The reference model in this chapter embodies the basic goal of an “interoperable network of Grid
services’ to achieve production e-Science infrastructure interoperability. The goal is that this
model and its associated architectural design elements can be referred to for various purposes
and consist of a number of concepts that all rolled up into the infrastructure interoperability ref-
erence model (IIRM). As a reference model, it is more abstract than a framework, since it also
deals with non-middleware-specific aspects and infrastructure deployment issues. Guidance
on how interoperability can be sustained is provided as an associated process based on seven
segments. The scope is thus broader than a framework in order to address the great complex-
ity of interoperability problems described in Chapter 2 taking into account that they cannot be
solved by component-based approaches as revealed in Chapter 3.

The problem space and a model of the problem was created in Chapter 2, followed by
comparisons of the problems with similiar issues and an analysis of a wide variety of existing
solutions in Chapter 3. Based on this, concrete requirement definitions have been the focus of
Chapter 4. The aim of this chapter is to provide insights into the second major part of the anal-
ysis efforts in this thesis that takes the lesson learned of practical field experiences conducted
over years into account. These have been addressed in two major ways that are detailed design
and concepts (for production implementations) and an aligned process (for sustained solutions).
Chapter 5 defines what collectively is referred to under the umbrella of the 'IIRM’ including
associated elements necessary for use by real applications described in the next chapter.

The first section provides an architectural blueprint for a reference model with associated
elements (i.e. reference architecture, patterns, etc.) that is specifically designed to enable the
interoperability between production e-Science infrastructures. It identifies the reference model
entities and their relationships taking the requirements of Chapter 4 (e.g. TCP/IP approach)
into account as well as key aspects of practical field studies (e.g. need for standards) reviewed
in Chapter 3. It provides solutions to overcome infrastructure integration issues when deploy-
ing IIRM solutions on production e-Science infrastructures, including the definition of neces-
sary invariants. Complementary to the fundamental architectural design, the second section
reveals results of academic analysis of practical field tests as a set of standard-based concepts
aiming to improve e-Science infrastructure interoperability and the efficiency of e-Science ap-
plications. In the third section, further analysis and proposed solutions culminate in the def-
inition of a medium to long-term orientated process providing concrete segments that cover
policy, coordination, and cooperation issues. The reference model is thus aligned with a pro-
cess that has the potential to enable and sustain infrastructure interoperability.

108 CHAPTER 5. ARCHITECTURAL DESIGN

5.1 Reference Model Design and Associated Architecture Work

Based on the lessons learned from the survey of related work in Chapter 3 and the definition
of relevant requirements in Chapter 4, this section reveals an architectural blueprint of the
proposed reference model and its associated architecture elements. The subsequent sections
provide several pieces of architecture work (e.g. reference architecture, patterns, standards,
etc.) that are all specifically designed to enable interoperability between production e-Science
infrastructures as motivated in Chapter 2.

5.1.1 The Infrastructure Interoperability Reference Model Design

Abstract
Reference Model (Chapter 5)

guided by

Requirements [(Reference \\

Protocols
(Chapter4) Architectures {Chapter 5)
(Chapter 5)
L N Profiles
(’(ﬂ:ﬂg‘;‘:'roz"] jaccounts for] [General Technical Requirements] S (Chapter 5)
. v >
Specifications
Goals derived (Chapter 5)
(Chapter 2) Concrete)
Architectures R‘:g;‘;‘:’gﬁ?ls Standards
{Chapter &) {Chapter 5}
\

Related Work

\ Architecture Work /

accounts for constrained

Service Oriented Architecture Implementations
{Chapter6)
Concrete

Figure 5.1: The reference model guides many other associated architectural design elements.

The reference model is used as an ‘umbrella term’ for the contributions of this thesis, includ-
ing its associated architecture elements. The definition of the abstract reference model itself is
the focus of this section as shown in Figure 5.1 (marked in red). Associated architecture work
elements are defined in subsequent sections. The overall concept of the abstract design takes
the service-based reference model requirements according to Definition 29 into account.

Figure 5.2 illustrates the abstract reference model that is designed to be in-line with Defi-
nition 28 in the context of the given e-Science environment. It is ‘abstract’, because its entities
and concepts are an abstract representation of the entities that often exist in production in-
frastructures. The entities follow a service-based approach and actual Grid services deployed
on e-Science infrastructures may have certain performance characteristics, but the concept of

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK 109

a Grid service itself is here relevant and not the particular deployment. Figure 5.2 illustrates
not a particular reference installation, or any concrete deployment of implemented reference
architecture core building block services, and instead focus on the concept of an abstract Grid
service itself.

Another applied principle is that the reference model defines "entities” for various function-
ality and ‘relationships’ between them. Figure 5.2 illustrates that all the reference model entities
are interconnected with each other in some form or another. But the reference model does not
follow a common layered design approach like, for instance, the TCP/IP or ISO/OSI models
described in [295].

The third important principle that governs the reference model architectural design is that
it does not attempt to describe the whole Grid nor solve all Grid problems that exist. This
reference model defines a ‘clear problem space’ that is used to clarify ‘a network of interoperable
Grid services within production e-Science infrastructure environments with relevant storage, HPC, and
HTC resources’. Figure 5.2 illustrates the specific ecosystem (clients, infrastructures, resources,
etc.) wherein the reference model as a whole is embedded and thus represents an abstract
representation of the given problem space. The reference model and associated architecture
elements thus “only” provide a collection of solutions to tackle certain 'known interoperability
problems” within those particular environments with several specific approaches.

The reference model is also ‘Grid technology agnostic’. It would be not useful if it would
make assumptions about specific Grid technologies such as Grid middleware systems (e.g.

different
client types
for transparent
infrastructure
access

Scientific-area specific access methods
) [][Scientific Clients] [Client GUIs h
g r y A nicane)

. o ~
Grid Data i DataTransfer i
Management Entity Protocols

entities of the
infrastructure

. interaperability
e - 1 — ~, | reference model
GridExecution | JobDescription §i Execution | cover different
Management Entityi ~ Language Environment } technical

\ Tiasssssmssmssssmssmsnnnnnns’ Y erssssssssssssssssmanat 'J fuﬁcﬁona,‘ areas

W

HTC-Driven Scientific
Applications Data

L

Security Entity
Information Entity

different
computing
paradigms
using joint
data storages

H

HPC-Driven
Applications

different
production

HTC Infrastructures

loint Data Storages

HPC Infrastructures

e-Science
infrastructures

Figure 5.2: The abstract reference model defines basic entities and relationships in a clear problem space.

110 CHAPTER 5. ARCHITECTURAL DESIGN

gLite, UNICORE, etc.) as defined in Definition 12. These technologies are often deployed in
‘production e-Science infrastructure environments’ (i.e. EGEE/EGI, DEISA /PRACE, etc.) but are
not part of the reference model as shown in Figure 5.2. The IIRM is a mechanism for under-
standing the interoperability problems faced in the specific environment of e-Science, not the
particular production infrastructures or Grid middleware solutions involved. It describes the
reference model and its associated elements independent of real-world Grid technologies or
infrastructure deployments in order to provide value for adoptions from other e-Science do-
mains (e.g. ESFRIs). Figure 5.2 provides an overview of the reference model, but it lacks many
other related entities such as those arising from the operational infrastructure areas of monitor-
ing or support helpdesks (e.g. ticketing) just to provide two examples. Although these areas
are highly relevant for production e-Science infrastructures and their seamless operation, these
entities are considered out of scope of this thesis as described in Section 1.3 and therefore not
illustrated in 5.2.

But for the sake of completeness, further related entities are included, but not limited to, Ta-
ble 5.1 alongside some known “interoperability challenges’ that are topics out of the thesis scope.
Also, many of these listed entities are not used by the majority of the production e-Science
infrastructure end-users (e.g. advance reservation entity). In contrast, this thesis focus is de-
scribed in Section 1.2 and as such the thesis focusses on those entities that directly support
computational activities and related data-staging functionality for e-Science applications that
also represent the most used entities by end-users in the given thesis problem space today. As
a consequence, the thesis scope also influences the definition of some of the following entities.
For example, the EUDAT [22] infrastructure is a similiar data-oriented e-Science infrastructure
but would define a ‘data management entity’ slightly different highlighting functionalities such
as 'policy-based data management’ [229] or the use of PIDs [28].

The reference model is designed to be applicable to other e-Science infrastructures (cf. Def-
inition 4) that take advantage of similiar infrastructure resources (cf. Definition 6) such as stor-
age and computational resources illustrated in Figure 5.2. One example are the wide vari-

Out of Scope Entity | Interoperability Challenges
Monitoring Monitoring the status of Grid services is performed with
Entity different tools (e.g. NAGIOS [126]) and interoperability
is needed to retrieve a status across infrastructures
Ticketing Ticketing and help desks for support are using different
Entity systems (e.g. [37, 10]) and interoperability is
needed to exchange tickets between different infrastructures
Advance Advance reservation [285] enables the use of multiple (HPC)
Reservation infrastructures at the same time and an exchange on
Entity reservation slots for interoperable infrastructures
is needed to use them in parallel
Credential e-Science infrastructures use a wide variety of
Transformation different security credentials (e.g. [237, 195])
Entity and a transformation service (e.g. [17]) from one to another format
support interoperability (using transformation logic)
License e-Science applications partly rely on software licenses
Entity that require license services (e.g. [90]) for distributed systems
and their interoperability is crucial when using multiple infrastructures
Domain- e-Science infrastructures also deploy some scientific
specific domain-specific services (e.g. [192]) and their seamless
Entity interoperability with security setups is needed

Table 5.1: Entities relevant for production e-Science infrastructures that are out of scope.

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK 111

eties of research infrastructures (RIs) currently established as part of the ESFRI roadmap [274],
as introduced in Section 2.1.3. Although such infrastructures are considered to use the exist-
ing production e-Science infrastructures (cf. Definition 5) in Europe, many of them will have
their own centres with computational and storage resources creating community-orientated
research infrastructures (RIs). In order to establish interoperability between them and interop-
erability with the existing e-Science infrastructures (e.g. EGEE/EGI, DEISA /PRACE) similiar
challenges will be faced.

In this context, the e-IRG presents in its blue paper 2010 that "Europe’s existing e-Infrastructure
is also a research infrastructure. What perhaps sets it apart from other Rl is its ability to deliver services
across a broad spectrum of RI user communities. Close cooperation across RI and e-Infrastructure will
drive evolution to their mutual benefit’ [210]. In-line with the blue paper statement, many concepts
of the reference model are expected to be of use in the next decade when the 44 projects of ESFRI
will start production runs establishing a wide variety of research infrastructures while they in
turn will require similiar service entities.

The reference model is not just a model that can be applied to infrastructure interoperability
setups, it also represents a platform for further innovative concepts. Basic Grid functionality
(i.e. compute, data, information, security) as shown in Figure 5.2, is provided that can be the
basis for more advanced Grid functionality (e.g. Grid workflows, SLA methods, collaborative
Grid visualisation frameworks, etc.). The reference model describes basic services in-line with
Definition 29 that can be re-used by a wide variety of so-called ‘higher-level” Grid services.

Figure 5.2 illustrates the idea of having a service-based reference model that offers infras-
tructure (and implied resource) services to end-users. The illustrated reference model entities
are services following the SOA-based design as defined in Definition 29, having thus concrete
service interfaces with clear semantics.

Scientific use cases are taken into account as a priority instead of industry-related case stud-
ies. Based on this and the given problem space illustrated in Figure 5.2, the reference model is
designed to be suitable for e-Science environments as defined in Definition 30.

Requirement Definition Addressed in which manner

Definition 28 IIRM is abstract;

(General Reference Model Design Principles) | has entities with relationships;
particular problem domain e-Science;
technology-agnostic;

Definition 29 Service-based entities

(Service-based Reference Model) with interfaces and semantics;

Definition 30 IIRM designed for e-Science

(e-Science-Driven Reference Model) environments and applications;

Definition 31 Grid Execution Management Entity

(Grid Execution Management Entity) of the IIRM

Definition 32 Grid Data Management Entity

(Grid Data Management Entity) of the IIRM

Definition 33 Grid Security Entity

(Grid Security Entity) of the IIRM

Definition 34 Grid Information Entity

(Grid Information Entity) of the IIRM

Definition 35, Definition 36, Interconnected

Definition 37, Definition 38, but not layered

Definition 39, Definition 40 relationships

(Relationships between Entities) between entities;

Table 5.2: Addressed requirements on the reference model level.

112 CHAPTER 5. ARCHITECTURAL DESIGN

Figure 5.2 illustrates the IIRM key entities as published in [265] and summarized as part of
Table 5.2. A Grid Execution Management Entity as defined in Definition 31, including execution
environments is provided. Also, a Grid Data Management Entity according to Definition 32, in-
cluding data transfer functionality is provided. Furthermore, a Grid Security Entity as defined
in Definition 33 is illustrated essentially meaning authentication and attribute-based authorisa-
tion methods. Finally, the IIRM also provides a Grid Information Entity as defined in Definition
34, including resource usage tracking.

Figure 5.2 illustrates relationships between the aforementioned entities with ‘black intercon-
nections’. But the relationships are not following a layered approach being still inter-connected
as illustrated in Figure 4.2 in Section 4.1.2. Definitions 35 and 36 mandate that the reference
model exposes information about computational and data entities.

The model also satisfies Definition 37 in the sense that the computational entities are en-
abled with authentication and attribute-based authorisation mechanisms, while the same is
being true for data entities as defined in Definition 38. Definition 39 raises the demand for also
having information available about security services and setups. The reference model exposes
information from security entities (e.g. attribute authority [303]) and describes security infor-
mation as part of the computational and data service entities. Clients are thus also to find out
which security setup a particular computational, data or even security entity is using. Defini-
tion 40 mandates that the computational and data entities are interconnected in the sense that
computational entities mostly require data-staging [115] methods.

Finally, Table 5.2 summarizes the aforementioned reference model elements and provides
an overview how the requirements of Chapter 4 are addressed on the reference model level.

5.1.2 Associated Reference Architecture General Design

The previous section provides us with the abstract IIRM reference model design, but the design
is too abstract and thus not detailed enough for implementation. It only allows for compari-
son between reference models while its associated elements provide much more detail for the
implementation of this model. But its design decisions guides the more detailed architectural
work leading to a more concrete Web service-based IIRM reference architecture as defined in
Definition 41. Important associated architecture work considering specific protocols, profiles,
specifications, and standards in-line with Definition 42 are part of this section and shown in
Figure 5.3 (marked in red). The requirements addressed on the architecture level are summa-
rized as part of Table 5.4.

Guided by the abstract IIRM design its entities are mapped to specific core building blocks
of the reference architecture. Inspired by lessons learned around the ISO/OSI and the more
successful TCP/IP model reviewed in Section 3.1.1, the design decisions lead to a compact
architecture compared to OGSA. One of the reasons why ISO/OSI was not successful was that
the reference model was not usable as planned and, what is interesting in the context of this
thesis, 'no thought was given to internetworking’ [295]. Tanenbaum concludes this topic with
‘things did not turn out that way’ [295] essentially meaning the difference between theory and
practice. Section 3.1.1 already revealed that TCP/IP is much more successful and that can at
be at least partly explained by the fact that the protocols came first [295]. The model was really
‘just a description of the existing protocols’ [295] and its implementations perfectly fit to the model,
while it basically does not fit any other protocol stack.

The aforementioned insights lead to two major approaches that is a survey of existing stan-
dard protocols in practice as well as internetworking (i.e. relationships) in real production e-
Science infrastructures. While the former is handled in this particular section, the relationships
between the different standards are handled in the next section of this chapter in more de-

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK 113

Abstract
Reference Model (Chapter 5)

Reference Model Entities] [Reference Model Entities Relationships

Blueprint and Design Foundations

*quided by
/ Reference Architectures (Chapter 5}\

Protocols

Requirements
{Chapter 5)

(Chapter4)

Profiles

i)
10T

ivati for| considers (Chapter 5)
(Chapter 2) -) | E—
Specifications
Goals derived (Chapter5)
(Chapter2) Concrete h
Architectures R‘:'g;z‘:]:g?g‘;“ Standards
(Chapter 6) (Chapter5)

Related Work

Architecture Work /

accounts for tconstrained
by

[Service Oriented Architecture Implementations]
Concrete

{Chapter 6}

Figure 5.3: Reference architecture with protocols, profiles, specifications and standards as building blocks.

tails by exploring various different concepts where standards are closely interlinked with each
other. The success of TCP/IP outweighs the drawbacks of the aforementioned approaches de-
scribed in [295], and as a consequence the reference architecture is truly compact as required in
Definition 44.

Inspired by the success of TCP/IP that is based on "emerging standards” that have been al-
ready used in practice before the reference model definition, we followed the same approach
within the OGE, thus driving the activities of the GIN community group. A GIN research study
culminated in a publication [256] that clearly identifies those standards that are used in practice
in a wide variety of production e-Science infrastructures according to Definition 5. Based on
this study, the core building blocks of the reference architecture are based on open standards
as foundational approach as defined in Definition 47. The standards are either well established
in production Grids or are planned to be adopted in the near future, while all provide norma-
tive specifications as required by Definition 46. Table 5.3 lists these standards and their SDOs,
including mappings to the corresponding abstract entity of the IIRM design defined in the
previous section (cf. Table 5.2).

Some listed standards in Table 5.3 use inherently other standards, especially when using se-
curity standards such as (g) SAML and (h) X.509. These standards and a few others are not part
of the initial results (i.e. those below the triple line) since at the time of the academic analysis
they were either considered as fundamental or too new. For example, SAML takes advantage
of (m) WS-Security [131] that stands for several specifications used to transport XML-based
SAML assertions during SOAP-based WS message exchanges.

In addition, since (0) HTTP(S) is used to transfer SOAP-based message exchanges it was
overlooked that some middleware systems actually also use it for 'normal data transfers’ (e.g.

114

CHAPTER 5. ARCHITECTURAL DESIGN

different
Scientific-area specific access methods clients
(Portals) Scientific Clients Client GUIs for transparent
- B [‘H = |] [1= i infrastructure
\ J i weass J access
......................... "'
GridFTR, WS-and
g . Bytel0, HTTP | srandard—_bs_nsed
2 '-6. . T - core building
g‘; 2 ; -) blocks of the
2 1SDL i G.IN Ere. | reference
H ii Environment : architecture
v
different
) &GS | 13T | o
paradigms
HTC-Driven Scientific HPC-Driven using joint
Applications Data Applications data storages
— different
. %a production
-] - e-Science
HTC Infrastructures loint Data Storages HPC Infrastructures infrastructures

Figure 5.4: The reference architecture of the IIRM model with standards as core building blocks.

UNICORE) with quite good performance. POSIX-based access was used in several production
Grids that later become the (n) BytelO standard specification [230] being already adopted (e.g.

in UNICORE and GENESIS).

Experimental work on the aforementioned standards have been performed in the GIN ac-
tivities in OGF via interoperability tests between Grid middleware (cf. Definition 12) leading
to application demonstrations in many events (e.g. Supercomputing conference series 2007 -

Open Standard | IIRM Entity Mapping | SDO with Specification status
(a) OGSA-BES Grid Execution Management Entity | OGF Proposed Recommendation
(b) JSDL Grid Execution Management Entity | OGF Recommendation
(c) DRMAA Grid Execution Management Entity | OGF Recommendation
(d) UR Grid Information Entity OGF Recommendation
(e) GLUE2 Grid Information Entity OGF Proposed Recommendation
(f) XACML Grid Security Entity OASIS Specification
(g) SAML Grid Security Entity OASIS Specification
(h) X.509 Grid Security Entity IETF Standard
(j) GridFTP Grid Data Management Entity OGF Recommendation
(k) SRM Grid Data Management Entity OGF Recommendation
(I) WS-DAIS Grid Data Management Entity OGF Proposed Recommendation
(m) WS-Security | Grid Security Entity OASIS Specification
(m) BytelO Grid Data Management Entity OGF Proposed Recommendation
(o) HTTP(S) Grid Data Management Entity W3C Standard

Table 5.3: Common open standards as potential core building blocks of the IIRM.

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK 115

2010 [94, 95, 96, 97]). Therefore, the initially not listed standards of the model are added, but
below the triple line in Table 5.3.

A collaboration of GIN with the European Telecommunications Standards Institute (ETSI)
[273] standardisation organisation lead to further insights about the list of these specifications.
The GIN interoperability studies influenced ETSI as described in a table about Grid middleware
standard adoptions in Rings et al. [273]. Apart from Table 5.3, an overview of the core building
blocks of the IIRM reference architecture is provided by Figure 5.4.

The GIN Execution environment (e.g. environment variables, etc.) [38] is in the process
of being standardised as part of the PGI profiles and is largely driven by GLUE2 elements
as subsequent sections will reveal. A more thorough comparison between Table 5.3 and the
IIRM reference architecture overview as provided in Figure 5.4 reveals its missing standard,
DRMAA. The DRMAA interface in the middleware UNICORE implementation [262] was eval-
uated with existing RMS systems (cf. Definition 11) in HPC environments. But although the
approach is promising, only a limited number of vendors have adopted it (e.g. Sun Grid En-
gine [183]). Other major RMS systems do not provide any adoptions of DRMAA, especially
those relevant for HPC systems (e.g. Load Leveler [205]). The adoption rate of DRMAA is thus
not broad enough to be part of the reference architecture.

Another missing emerging standard is OGSA-RUS [65] that can be explained by two rea-
sons. First, although early draft implementations exist, for instance as shown in [177], OGF did
not yet delivered a full specification as required as part of Definition 46. Second, the analysis of
the implementation [177] revealed fundamental scaling problems in exposing a high number
of URs via the usual Web service-based OGSA-RUS interface. Instead, it makes sense to adopt
the URs as Grid information elements like the GLUE2 schema (cf. Table 5.3) despite its dif-
ferent focus (and more security constraints). Although being a traditional part of accounting,
it basically exposes usage information and as such can be exposed via an information service
that is traditionally scalable (e.g. LDAP-based BDII systems [212]). The OGF WS-Agreement
standard [114] is related to production Grids for dynamically establishing and automatically
negotiating SLAs today. But production Grids as defined in Definition 7 have not yet widely
deployed adoptions of this particular concept and thus it it not relevant in this thesis that is
in-line with Definition 44.

Finally, Table 5.4 summarizes the aforementioned general reference architecture elements
and provides an overview how the requirements of Chapter 4 are addressed on the reference
architecture level.

Requirement Definition Addressed in which manner

Definition 41 Services implemented
(WS-based Reference Architecture) with Web services;
Definition 42 Referenced standard
(Concrete Specifications for a Reference Architecture) specifications;
Definition 44 Compact design
(Slim Reference Architecture) using TCP/IP approach
(existing protocols);
Definition 46 Architecture is based on
(Normative Specifications for a Reference Architecture) | normative specifications;
Definition 47 Architecture core building
(Open Standards-based Reference Architecture) blocks are standards;

Table 5.4: Addressed general requirements on the reference architecture level.

116 CHAPTER 5. ARCHITECTURAL DESIGN

5.1.3 Detailed Associated Reference Architecture Core Building Blocks

Abstract
Reference Model (Chapter 5)

[Reference Model Entities] [Reference Model Entities Relationships
[Blueprint and Design Foundations
guided by

/ﬁefe rence Architectures (Chapter 5]\

Protocols
{Chapter5)

Requirements
(Chapter 4)

00

. Profiles
Motivation jaccounts forl General Technical Requirements ders
{Chapter 2) | \ q]/ (Chapters)
Specifications

Goals derived {Chapter 5)

(Chapter 2) C " 3\

oncrete

Architectures R"i'g:]‘;‘:n'g‘r’g‘}"s Standards
{Chapter6) {Chapter 5}

\ y
\ Architecture Work / Related Work

accounts for constrained
Service Oriented Architecture Implementations
{Chapter &)
Concrete

Figure 5.5: Reference architecture core building blocks with several concept refinements.

The last sections provide insights into how reference model entities guide the reference ar-
chitecture design and its core building blocks. The abstract core IIRM entities guide the specific
IIRM architectural design on another abstraction level as illustrated in Figure 5.5.

This section gives more details of associated architecture elements (marked in red in Figure
5.5) providing more information about the core building blocks and how exactly they address
the requirements raised in Chapter 4. This includes the levels of which the core building blocks
are relevant in a typical Grid architecture and how they should be implemented within Grid
middleware systems as defined in Definition 12. The requirements addressed on the architec-
ture level are summarized as part of Table 5.6.

This section also reveals where the academic analysis as well as the lessons learned from
practical field studies surveyed in Chapter 3 influence the reference architecture with several
identified refinement concepts. These concept refinements are specifically focused on the im-
provement of e-Science application support as well as job processing and data-staging func-
tionality. A conceptual view of the reference architecture is presented in Figure 5.6 illustrating
where the core building blocks and their refinements are adopted.

Figure 5.6 reveals an important outcome of the lessons learned using many of the core
building blocks already in practice, that in turn revealed a certain amount of concept refine-
ments in the sense of Definition 48. Although the core building blocks follow Definition 46,
several refinements bear the potential to increase the effectiveness and efficiency in production

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK

117

Core building block | Description

JSDL + AU Refinement concept for job description

OGSA-BES + AV Refinement concept for job management

GLUE2 + AW Refinement concept for the information model
WS-DAIS + AX Refinement concept for the database access

SRM + AY Refinement concept for the storage management
UR+AZ Refinement concept for the resource usage tracking

Table 5.5: Refinements list of the IIRM core building blocks.

setups with corresponding standards that are used as core building blocks or improve specifi-
cally interoperability. These refinements are an evolution of open standards, such as the move
from the IPv4 to the IPv6 in the TCP/IP model that has gained considerable profile over the last
couple of years. As shown in Figure 5.6, the refinements are marked with A in the context of
the core building blocks referring to additions to the corresponding normative specifications.

A summary list of these refinements is shown in Table 5.5.

The comparison of Table 5.5 with the overall reference architecture core building blocks
listed in Table 5.3 shows that not all core building blocks of the reference architecture need

refinements.

Figure 5.6 illustrates the core building blocks of the reference architecture in the given con-
text of production e-Science infrastructures (cf. Definition 5), including their infrastructure
resources (cf. Definition 6). The conceptual view reveals the non-empty list of core services

ISDL + AU
Creation Entity

G

[’Ig Scientific —area specific access methods (e.g. portal, client)

A A

~p
retrieve attributes | |

WS-based message exchanges (WS-Security & SAML)

ru HPC-driven Infrastructure

¥
‘ [% RMS [‘:@)?.-Application

Grid resource (e.g. HPC) Job sandbox

9 Exe Environment] Data stagings
a ul¥ p““.“

Data resource L

T
T
1 |
_____ T--—-—I'"""""_l
Y k 4
sAML/ (GLUE2+ AW)
"3X.509 w Entity
A Dat
SAMBATHA [0 AA " Info System W s ta N
1 [1¥] 1] y: | ystem
I
| Data transfers !
1 ——m e m m —m = = — - — — — -
1 I ~
A | & HTTP / BytelO /GridFTP W oo
1 ol Interface
System
| s
1

Numerous
clients for
infrastructure
access

Different
e-Science
infrastructures

Standards in
Grid
servers
and
middleware

Data
transfer
technologies

Physical
compute
And
data Grid

Legend: %compurejabs G component

f*.v standard D 1sDL

S

i Data D Schema

resources

Figure 5.6: Conceptual view of the reference architecture with refined open standards.

118 CHAPTER 5. ARCHITECTURAL DESIGN

that must be in place to form an infrastructure as defined in Definition 45. The services that
are part of the core four key entities of the reference model are described in the following para-
graphs, by explaining how they address the functional requirements raised in Section 4.2. All
those standards that are considered to be core building blocks have been part of the studies in
the context of GIN since many years [256].

The Grid Execution Management Service as required by Definition 49 is represented by the
OGSA-BES version 1.0 specification [169]. It is able to satisfy the demands for scientific use
cases, and several refinements of the specifications are proposed in later sections in this chap-
ter. The OGSA-BES specification relies on the JSDL specification [115] that satisfy another re-
quirement part in Definition 49. This includes its various extensions such as the SPMD [281],
the HPC application extension [197], or the parameter sweep job extension [155] that are in-line
with the basic JSDL framework. These core building blocks are related to another core build-
ing block that is defined as part of Definition 49 and that is currently in the process of being
standardized in PGI based on a draft GIN specification [38].

In terms of access and management of storage resources as defined in Definition 50, the
reference architecture is making use of the SRM [286] and WS-DAIS [118] standards. The latter
is considered to access relational databases and the former makes use of data transfer mecha-
nisms defined as part of Definition 50. The GridFTP [109] specification, HTTPS [43], and the
BytelO specification [230] are also considered as core building blocks as shown in Figure 5.6.
These data transfer specifications not only play a role in storage management activities, but
also for data-staging activities as part of the execution of Grid jobs.

Figure 5.6 also illustrates the existence of an information system that uses the GLUE2 speci-
fication [113] and its different renderings (e.g. LDAP, XML, etc.) as another core building block
of the architecture. It addresses the requirement defined in Definition 55 contributing to the
common information ecosystem throughout the architecture. Key IIRM design elements rely
significantly on this information ecosystem, as subsequent sections in this chapter will reveal.
Apart from the information about capabilities of services and the properties of their resources,
resource usage tracking is also an important aspect. The UR specification [216] is used address-
ing the requirement defined in Definition 56. As Figure 5.6 reveals, both GLUE2 and UR can
be refined that is described in subsequent sections in this chapter.

Figure 5.6 also reveals security aspects, and as a crucial and important topic for interoper-
ability, subsequent sections will go into much more detail. In this section, the focus is only on
aspects describing how the architecture satisfies requirements raised in Section 4.2. X.509 based
SSL connections [153] for authentication as defined in Definition 51 are used as authentication
mechanism for each Grid service (cf. Definition 13) in the architecture. While the majority of
systems provide authentication directly at the functionality-specific Grid services, some mid-

15DL GLUE2 SAML
0OGSA-BES CreateActivity() ISDL+AU

Ws- Message

Securit
OGSA-BES CreateActivity|) Dperation Reguest Y overthe
Network

QAP Body SOAP Hegder I
HTTP Body Il HTTP Header Il TCP Il IP Il Link I

Figure 5.7: Communication baseline mechanism that stands for a couple of interlinked standard protocols.

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK 119

dleware systems also offer ‘forwarding systems’ for authentication like UNICORE with the UNI-
CORE Gateway [293]. The latter ones are for simplicity not illustrated, but are automatically
part of the corresponding core building block service (e.g. OGSA-BES, SRM, etc.). Another key
security feature is the support for attribute-based authorisation that is evident on many levels
within Figure 5.6. The existence of an Attribute Authority (AA) service that can be used with
the SAML protocol [142] in order to retrieve security attributes as required by Definition 52.
Also, WS-Security [131] is used in order to transport SAML tokens [142] as defined in Defini-
tion 54. Each of the reference architecture services provides an attribute-based authorisation
functionality, as defined in Definition 53, that works with SAML using well-defined XACML
policies [234].

Another element of the reference architecture is the "baseline communication mechanism’ that
addresses the requirement raised in Definition 41. The communication between the core build-
ing blocks uses WS message exchanges [296] based on the known SOAP protocol [190] and is
thus standard-based (cf. Definition 47). Grid technologies mostly adopt WS-based specifica-
tions and WS-* standards stands for the wide variety of WS-based standard specifications used
today. Because there are so many specifications, a reference model approach is needed to reach
common adoption enabling interoperable e-Science infrastructures (cf. Definition 21).

These baseline communication is omitted from Figure 5.6 to preserve the focus on the core
building blocks. These underlying protocols are not considered to be core building blocks of
the reference architecture and are collectively described here in this section as the baseline com-
munication mechanism instead. Apart from SOAP and HTTPS, the use of WS-Addressing [137]

Scientific Gateway / Portal

n (WS-Security with SAML & X.509)

- Authentication (TLS & X.509)

111]|
1SDL+ AU WS-DAI + AX & SRM + AY
Processing Processing

XACML ity XACML
policy Entity policy Entity

Information = Common Schema {GLUEZ + AW
Securi

GLUEZ + AW GLUE2 + AW
Information Provider Information Provider

I
-
o]
<
=
5
=
o
a
i
@
o
d
=
5
o
b=
]
k=4
-
£
=
E]
o
@
0

UR+ 47 UR+ A7
Tracking Tracking

Figure 5.8: Non-layered reference architecture in context of a compute and storage resource.

120 CHAPTER 5. ARCHITECTURAL DESIGN

is another part of the baseline mechanism enabling the standard-based addressing of specific
Web services. X.509 is used to underline its importance for end-user certificates that are used
to enable SSL connections [153] with the HTTP(S) protocol used for SOAP-based WS message
exchanges as illustrated in Figure 5.7. It illustrates the baseline communication mechanisms
relates to the different types of reference architecture core building blocks (e.g. OGSA-BES
and JSDL) and their refinements (e.g. AU = improvements of J[SDL elements or additional
elements). It also illustrates how SAML is used via WS-Security in the SOAP header.

Figure 5.7 illustrates one example of using this baseline communication mechanism with
core building blocks (and their refinements) that can be used with WS-based specifications.
Like OGSA-BES, several core building blocks are specifications that offer service interfaces via
portTypes [296] and WS operations [296] described via a WSDL [150] per Grid service (cf. Def-
inition 13). In the reference architecture, those are OGSA-BES for computational functionality,
and SRM as well as WS-DAIS, that both offer storage and data related functionality. In contrast,
other types of core building blocks are XML-based schemas such as JSDL, UR, or GLUE2. As
shown in Figure 5.7, JSDL is used as part of the OGSA-BES specification and as such it is part
of the WS-based message exchanges between OGSA-BES clients and servers. This includes its
extensions that are defined in various profiles (e.g. SPMD [281]) that can be optionally used
without breaking the core building block.

As indicated in Figure 5.7, JSDL and GLUE2 is used together as the job description as part of
the OGSA-BES specification to increase the efficiency of e-Science applications (cf. Definition 9)
executions as later parts of this chapter reveal. Information systems such as the CIS [223] expose
GLUE2 as part of information queries. Although SAML also offers protocols [142] that are
adopted by AA services, SAML assertions [142] are just XML-based schemas that are shipped
in SOAP headers [190] using WS-Security methods as described in more detail in [302] and
illustrated in Figure 5.7.

The following core building block is used in the lower areas of Grid middleware and stor-
age technologies that is traditionally in the area of accounting but here rather considered as
information. For tracking resource usage, the UR schema [216] is often adopted, but it is not
transported via WS message exchanges such as JSDL as part of OGSA-BES. In terms of trans-
port, we refer to accounting and billing systems such as the Distributed Grid Accounting Sys-
tem (DGAS) [245] or the Swedish Grid Accounting System (SGAS) [279] that are not in the
scope of this reference model.

XACML is adopted in Grid technologies for policy-based authorisation decisions and is as
such not directly affected by WS-based messages as well. But the use of XACML is optionally
possible as protocol for XACML-compliant centralized authorisation systems (e.g. Argus [303])
in order to request remote authorization decisions in addition to local security policies. Figure
5.8 presents an overview of the overall reference architecture initially published in [272] illus-
trating core building blocks (with refinements A) and their interrelationships. It also illustrates
the so-called ‘plumbing” concepts part of the associated security pattern that is revealed later in
this thesis.

The reference architecture presented in Figure 5.8 addresses several non-functional require-
ments (cf. Section 4.3). Although this will be described in more detail in Chapter 6 based on
specific concrete architecture adoptions, several insights are presented in this section. Assum-
ing that multiple middleware adoptions will exist, the design is in-line with Definition 74 since
we avoid decreased performance when using multiple infrastructures by avoiding the need of
transformation logic (cf. Definition 27). The refinements of core building blocks that follow
in subsequent sections are aimed to lay the foundation for Definition 75. It can be supported
in the sense of Definition 76 since major middleware provider adopt the reference architecture
concepts as part of their architecture already as Chapter 6 reveals.

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK 121

Finally, Table 5.6 summarizes the aforementioned detailed reference architecture elements
and provides an overview how the requirements of Chapter 4 are addressed on the reference
architecture level. It also shows that the requirements are mapped to either one (e.g. execution
management) or several standards (e.g. data transfer protocols) and as such can be considered
as different areas where existing standards are applicable. This is part of the idea of following
the TCP/IP concept mentioned in Chapter 3 and 4 with a bottom-up approach of focussing
on those existing standards that proved to be useful in production. Tanenbaum describes this
approach as the protocols came first (like in the IIRM case), and "the model was essentially just a
description of the existing protocols” [295]. Table 5.6 shows nicely that the IIRM does not invent
new protocols, but instead puts existing protocols (and schemas) together to a model following
the TCP/IP compact design.

Requirement Definition | Addressed in which manner

Definition 41 Baseline communication with

(Web Services-based Reference Architecture) HTTP(S), SOAP, WS-Addressing

Definition 45 Core building blocks

(Core Reference Architecture Elements) represent core reference architecture

Definition 46 Core Building blocks

(Normative Specifications for a Reference Architecture) | are normative specifications

Definition 47 Core building blocks

(Open Standards-based Reference Architecture) are open standards

Definition 48 Architecture core building

(Reference Architecture Standard Refinements) blocks with A;

Definition 49 Core building blocks

(Grid Execution Management Service) OGSA-BES + AV with implied
JSDL + AU, GIN exe. env.

Definition 50 Core building blocks

(Grid Data Management Service) WS-DAIS + AX, SRM + AY with implied
GridFTP, HTTPS, and BytelO

Definition 51 Core building block

(Grid Authentication Service Functionality) PKI-based SSL

Definition 52 Core building block

(Grid Attribute Authority Service) SAML assertions and protocol

Definition 53 Core building block

(Grid Attribute-based Authorisation Functionality) XACML

Definition 54 Core building block

(Grid Security Attributes Transport) WS-Security and SAML assertions

Definition 55 Core building block

(Grid Information Model Schema) GLUE2 + AW

Definition 56 Core building block

(Grid Usage Record Format Schema) UR+AZ

Definition 74 Reference architecture design

(Multiple Infrastructure Usage Performance) does not use transformation logic

Definition 75 Core building blocks refinements

(Infrastructure Resource Usage Efficiency) for optimized resource usage

Definition 76 Core building blocks partly

(Supportability) adopted in official technology releases

Table 5.6: Addressed detailed requirements on the reference architecture level.

122 CHAPTER 5. ARCHITECTURAL DESIGN

5.1.4 Associated Reference Architecture Infrastructure Integration Constraints

Abstract
Reference
Model
(Chapter 5)

Requirements /(AReJerence) Patterns \
rchitectures
(Chapter 4) (Chapter 5) (Chapter 5)
Motivation laccounts for] considers
(Chapter 2) = ——

guided by

Goals xderived

(Chapter 2) r ~\ [

1)

Concrete
Architectures
(Chapter 6)
\

k Architecture Work

accounts for constrained
by

[Service Oriented Architecture Implementations]

Related Models
(Chapter 6)

(Chapter 6)

\M

Concrete

Figure 5.9: SOA-based implementations are contrained by invariants of the architecture work.

A set of invariants that have been published earlier [260] and that complement the reference
model and its associated reference architecture with respect to infrastructure integration issues
is presented in this section. These issues concern several operational constraints in the area of
information exchange, accounting, and attribute-based authorisation as required in Definition
43. Adoptions that satisfy these invariants significantly increase interoperability between pro-
duction e-Science infrastructures (cf. Definition 5). The invariants in the context of the broader
reference model guideline are illustrated in Figure 5.9. The requirements addressed on the ar-
chitecture level are summarized as part of Table 5.7. In [260], the first infrastructure integration
element of the reference architecture is described as the ‘Global Information Invariant (GII). Tt
defines an overall information ecosystem across infrastructures. The aim of this invariant is
to address the requirement regarding constraints defined in Definition 69, contributing to an
overall information ecosystem within concrete infrastructure deployments. The fundamental
information exchange occurs when working with multiple infrastructures in terms of a spe-
cific invariant in the context of the reference architecture core building blocks. The intent is
not to provide an in-depth view of the component information mechanism, but instead to give
guidance for concrete architecture implementations that adopt the reference architecture. The
information exchanges itself are the focus and not descriptions of low-level protocol aspects.
The GII defines on the highest-level the abstract service and resource information property” to be
preserved by all the Grid services (cf. Definition 2.4) in the architecture. It is defined as follows:

Definition 86 (Global Information Invariant) The global information invariant mandates the ex-
posure of information with the common information schema GLUE?2 for all reference model entities and
their associated reference architecture core building blocks. At any given time, the information within
this schema must be accessible via an information service that in turn is the crucial element of the infor-
mation exchange policy.

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK 123

Definition 86 ensures that all parts of an interoperable network of IIRM services are con-
strained by the common information exchange policy that mandates the use of the common
information schema GLUE2 [113], which is one of the core building blocks of the reference ar-
chitecture. The aim of this invariant is to enable adopters to make certain assumptions in that
information about deployed production e-Science infrastructure services at any given time. It
ensures that the same information model is used in order to prevent transformation logic (cf.
Definition 27) that need to transform one information model to the other which in turn often
leads to semantic loss. Figure 5.10 illustrates the information exchange policy that mandates
the use of GLUE2 exposed via an information service for each of the IIRM services. The red line
in Figure 5.10 indicates that GLUE2 information must be seen by end-users via some dedicated
user interface. Any relevant production e-Science infrastructure deployment needs to satisfy
this invariant in order to be compliant with the reference architecture design to achieve "basic
semantic interoperability’ with other infrastructures.

Although such an invariant in general and the use of a common information schema like
GLUE2 sounds trivial, this approach was not followed in the European production e-Science
infrastructures EGEE/EGI, NorduGrid, and DEISA /PRACE. In [163], Field et al. describes the
use of a NorduGrid schema for the NorduGrid infrastructure while the EGEE /EGI infrastruc-
ture is largely based on the GLUEL.3 proprietary information schema. DEISA/PRACE used
UNICORE services [223] that describe resources via the so-called Common Information Model
(CIM) [5] of the Distributed Management Task Force (DMTF). The findings of these studies

=
'i Scientific Gateway \j_ ISDL+AU Creation and Scientific
T (client for OGSA-BES+4V and SRM+AY) = Sasal) GLUE2 +AW Parsing Entity clients
A4
llllllllllllIII.I‘Illlq.lllllllllllllllllll.lllllllll
1 | _ _ GLUEZ +AW based
SDL+ AU) bosed job submits | 1 exposes | Initiate data transfers between str:fmgesustng invariant constraint
re-using GLUEZ+AW | I cwezeaw | GLUE2+AW storage information for information exchange
| == === P, -]
— Interoperable
u HPC-driven Infrastructure 4 il "u;;] HTC-driven Infrastructure e-Science
infrastructures
l
N\
OGSA-BES +4V nformatlon ‘rio;’;j;?:r: nformation SRM +AY Network of
B, Interface Prowder l - Provider zlnterface interoperable
~A2? (e.g. LDAP) .
= services
Middleware o Information System Data System| L\,\
| ; | 1
managesjobsl | Glues +aw GLUE2 + AW 1 manages data |
r= entity entity -
o | |
GLUE2 + AW Entity GLUEZ + AW Entity| = e-Science
0 0 - Infrastructure
NV
TotalPhysicalCPUs FreeSize HESLIEES
= 294912 =1.400 GB =l [« for
[.] [..] computation
Resource Information Resource Information and storage
Legend: . CPUs / cores %mmpute;obs @ component :‘:.., standard D 15DL . GLUEZ2 i Data

Figure 5.10: The Global Information Invariant ensures information exchange without semantic loss.

124 CHAPTER 5. ARCHITECTURAL DESIGN

reveal the need for a commonly accepted information schema that is applicable by the wider
community. The GII is defined in order to enhance interoperability between production e-
Science infrastructures.

As shown in Figure 5.10, the constraint is set so that reference architecture services that en-
able access to infrastructure resources (cf. Definition 6) such as computational resources (e.g.
OGSA-BES) expose GLUE2-compliant information. In [224], methods for using OGSA-BES
with GLUE2 are presented in order to expose standard-compliant information about compu-
tational resources (i.e. number of cores, etc.) instead of exposing a limited OGSA-BES infor-
mation schema [169]. The exposed GLUE2 elements of these services are re-used for the job
submission as part of the JSDL job description schema. Resource requirements of the JSDL
document [115] can be matched with the actual resource information published by the corre-
sponding services, that in turn avoids semantic mismatches. Details about this approach are
published in [261], while this section provides insights about its higher-level operational im-
pacts. Figure 5.10 illustrates that the invariant also enforces this constraint of exposing GLUE2
on services that manage data storage resources (i.e. SRM). Definition 86, refers to an informa-
tion system (e.g. LDAP [196]) that exposes GLUE2-based information about resources collected
from information providers.

The second infrastructure integration element of the reference architecture in [260] ad-
dresses the requirements in the area of accounting. The previous paragraphs focussed on an
invariant about the common information exchange. In constrast, the next paragraphs focus
on resource accounting as a particularly important ‘type of information’ that is relevant to pro-
duction e-Science infrastructures. Resource accounting tracks the use of several services and,
most notably, their underlying resources to which the services provide access to. But the han-
dling of accounting information is different to the handling of the general service and resource
information introduced in the last paragraphs.

The information encoded in GLUE2 being exposed via information services is available to
all infrastructure users such as e-Scientists (cf. Definition 10). In contrast, accounting data
often raises privacy issues that limit their open exposure via generally accessible information
services. The information encoded in GLUE2 is mostly static with only “a few” changes in their
dynamic parts (e.g. TotalJobs in ComputingService Entity [113]) compared to resource account-
ing information that is highly dynamic for infrastructures resources. Especially for modern
large-scale HPC systems the services serve a high amount of users at the same time and the
amount of accounting information about used resources by end-users can be much higher than
in infrastructures traditionally driven by HTC. This issue becomes even more relevant in inter-
operable e-Science infrastructure setups with a plethora of available services.

The fundamental accounting information exchange adds another constraint to the IIRM and
its architectural design. The invariant for these infrastructure operations is the Global Account-
ing Invariant (GAI) that addresses the requirements raised as part of Definition 70. It defines at
the highest-level the abstract ‘resource accounting property’ that must be preserved by IIRM ser-
vices in particular and in the whole interoperable e-Science infrastructure ecosystem in general.
It is defined as follows:

Definition 87 (Global Accounting Invariant) The global accounting invariant mandates resource
tracking with the common resource usage schema UR for all reference model entities and their associated
reference architecture core building blocks. At any given time, any resource usage for computing and
data management entities must be trackable via the common resource usage schema that in turn is a
crucial element of the common accounting exchange policy.

As shown in Figure 5.11, the accounting exchange policy enforces the use of URs [216] as
the common resource usage tracking schema, which is also one of the core building blocks of

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK 125

the reference architecture. This UR-based constraint ensures that all services of the IIRM and its
associated reference architecture can exchange accounting information without any semantic
loss or the need for transformation logic.

Any relevant production e-Science infrastructure that adopt IIRM services need to satisfy
this invariant in order to be compliant with the reference architecture design. This enables the
"basic accounting interoperability” with other infrastructures that also adopt the IIRM. The reason
is to overcome limitations faced when tracking resource usage across infrastructure boundaries
as often observed during interoperability studies in the GIN studies [256]. The policy as defined
in Definition 87 set the constraint for the computing services (i.e. OGSA-BES), but also for the
storage services (i.e. SRM). In contrast to computing services, storage services so far did not
track resource usage in a common format in production Grids while at the same time being
equally important as compute. This can be partly explained by the fact that the UR specification
[216] only supports compute resource tracking and not storage and thus this must be changed
in order to satisfy the defined invariant. This is indicated in Figure 5.11 with the UR + AZ
element where AZ indicates storage resource refinements according to Definition 48 some of
which will be revealed later in this chapter.

This is essential to enable a consistent ‘basic accounting interoperability’ between production
e-Science infrastructures. Accounting systems out of thesis scope (e.g. SGAS [279]) work with
UR-based information collected from accounting providers that are, from the design perspec-
tive, implemented close to the different IIRM services. The transfer mechanism can be realised

h A Scientific
iﬁ Scientific Gateway (client for OGSA-BES+4V and SRM=#AY) &Administrative Accounting Client and admin
7.y ;Y clients
(ISDL+AU) based[b (UR+AZ) based aggregatet
job submits resource usage tracking
x T
A Interoperable
u HPC-driven Infrastructure W ‘;l HTC-driven Infrastructure e-Science
T infrastructures
_____ [= = = = = = = = = L]
v | oasa-Bes +av Accounting || QO;L;‘:;T:': Accounting SRM wav || Network of
| ‘Q Interface Sensor A Sensor N Inte rface intemperable
~27 (e.g. SGAS) .
,'. services
Middleware | Accounting System Data System ILJ
| | - I
r - --— P — - - = -
IIIIIIIIIIIIIIIIIII.‘IIIIIIIII IIIIIIIIILII EEEEEEEEEERN
manages | Compute- 1 Storage- 1 | .. UR +A7 -based
compute | based | based | manages 1 invariant constraint
Jjobs I UR +AZ entity I UR +AZ entity | data 1 fortracking resource usage
- - o e '
UR+aZ entity) UR +AZ entity = . e-Science
< nfrastructure
[..] [.] [~ FESDHFCES
Processors=4096 UsedDiskSpace
Host = bluegene1d =12,37GB
[.] [.] computatmn
i ; and storage
HPC-based Grid resource Resource Information Resource Information
Legend: . CPUs / cores %cmmputejnbs a component f‘\?, standard D JsDL . UR i Data

Figure 5.11: The Global Accounting Invariant ensures accounting information exchange without semantic loss.

126 CHAPTER 5. ARCHITECTURAL DESIGN

using messaging implementations (e.g. ActiveMQ [289]), because earlier investigations [177]
revealed that a WS-based OGSA-RUS [65] is not scalable enough when HPC-driven resources
are used. There is also a demand to extend the UR schema with aggregated resource usage
tracking concepts as shown in Figure 5.11. In that case, an administrative accounting client
takes advantage of the convenient use of aggregated URs. This and other refinements are indi-
cated with AZ.

The third infrastructure integration element of the reference architecture is the ‘Global Au-
thorisation Attributes Invariant (GAAI)” that defines elements of the overall security ecosystem
across infrastructures. The next paragraphs describe the need for a common set of security
attributes to enable attribute-based authorization during secure production operations across
infrastructures as defined in Definition 71. These security attributes convey pieces of infor-
mation about project, group, or VO [172] memberships as well as role possession. The GAAI
defines at the highest-level the abstract ‘service authorization property” that must be preserved by
the IIRM services. It is defined as follows:

Definition 88 (Global Authorisation Attributes Invariant) The global authorisation attributes in-
variant (GAAI) mandates the use of common security attributes for each end-user in the security enforce-
ment activities for all reference model entities and their associated reference architecture core building
blocks. At any given time, the identity of an end-user must have an aligned set of common security at-
tributes that are released from a trusted attribute authority representing a crucial element of the common
security attribute exchange policy.

As shown in Figure 5.12, the common security exchange policy enforces the use of common
security attributes that are exchanged using different approaches. While one approach uses the
attributes encoded in SAML tokens [142], another approach ships the security attributes as part
of X.509 proxy extensions (aka attribute certificates [303]). While both need to be supported in
production e-Science infrastructures, SAML is established as an alternative method of choice
in parallel to attribute certificates. Acknowledging the slow infrastructure migration times
mentioned in Definition 68 both have to be supported. But using different approaches for
transporting is not directly a problem when the attributes are still compliant to the invariant by
using the common set of attributes for authorisation decisions.

Definition 88 is crucial to enable compliance with the reference architecture design to achieve
the "basic authorisation interoperability” with other infrastructures. This is possible since the same
attributes, even if differently encoded, state the same security information while their trans-
fer method is another aspect that is not as important as the common security attributes for
end-users, thus following the same semantics.

This is best explained by describing the other essential parts of attribute-based authorisation
that is about the corresponding AA and security policies as illustrated in Figure 5.12. The
security policy mandates that there is one central AA like the VOMS [303] system responsible
for releasing signed attributes about end-users in two ways. This system achieved this with
SAML assertions and also with attribute certificates as part of X.509 proxy extensions. The AA
is one central source of trust and thus it is important that it satisfies the defined GAAIL While
the manner in which ways the attribute get from clients to services is less important, it is more
important that the sink also conforms to our invariant as the source. As the security attributes
are being signed they cannot easily compromised or used by other end-users, but it is essential
that the sink that enforces the authorisation trusts the source (i.e. the AA).

Figure 5.12 illustrates the aforementioned sink where authorisation policies are encoded
using Gridmap files [167] or XACML [234] policies. In order to achieve 'basic authorisation inter-
operability’, the constraint is set in which the sink, like the source, needs to satisfy the invariant.
This raises the demand for such authorisation policies to include authorisation definitions for

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK 127

common security attributes. During job submissions or data transfer between storage, Defini-
tion 88 includes the constraint that the IIRM services (i.e. OGSA-BES and SRM) have to use
such a sink in order to enforce attribute-based authorisation.

Security is often complex, but it is essential to achieve a secure operational level of interop-
erability between production e-Science infrastructures, including the finely-granular attribute-
based authorisation capabilities. Some infrastructures, like EGEE/EGI for example, have used
their own attribute profile based on so-called Fully Qualified Attribute Names (FQANSs) [108].
Other infrastructures such as DEISA/PRACE did not perform any kind of attribute-based au-
thorisation (e.g. through UNICORE), because the security was enforced on a level of existing
unix accounts at resources. There was not even basic authorisation interoperability between
European e-Science infrastructures that led to the fact that e-Scientists that would like to use
both were required to obtain access to them in a different way.

More recently, attribute-based authorisation is supported by UNICORE [302] and used in
DEISA /PRACE with some applications across infrastructures (e.g. EUFORIA [225]). But to
achieve seamless operational interoperability without dedicated interoperability setups, those
setups need to satisfy the global authorisation attributes invariant defined above. This enables
the "basic authorisation interoperability’ between middleware and storage technologies that adopt
the IIRM and its associated reference architecture.

All the aforementioned constraints address the overall reference architecture requirement
defined in Definition 43. Which information and security data needs to be supported is known

ScientificGateway (clientfor OGSA-BES +4V and SRM + AY interface;
clientfor VOMS to retrieve signed security attributes encoded in SAML or X.509 proxies as reguired)
"

Scientific
clients

@

I

(15DL+AU) based job submit with
SAML encoded security attributes

Ll
1

q

releases signed
security attributes

SRM + AY transfer command Wlfhs.
X.509 encoded security attribute:

Y\ | Interoperable
u HPC-driven Infrastructure] I HTC-drivenInfrastructure e-Science
infrastructures
_______ T —— - -1
I L r
¥ K A—
-j] OGSA-BES +4V] \(i ::::E:t; st f "}s:::; isnm +AY Network of
> . .
& &:‘slnterface .. voms) o Sz Interface mteropferab.fe
services
Middleware | g Central System . Data System ! [

r
EEEESEEEEEEEEEEEEER

1
authorization decisions

[—]

b
EEEEEEERER

T

common attributes|
invariant constraind|
for attributes-based Authz

r -—— =
llllllllﬁlll‘llllllllll

manages | I authorization demsr‘onj
compute I based on common based on commo: man age!
Jjobs attributes retrieved from attributes retrieved froi datd
| signed SAML assertions 1 X.509 pmxr'ed 1
ale Sle

Common Attribute

% RMS

Common Attributs

VO = Atlas
Group = Analysis
Role = User

[w]

VO = Atlas
Group =Analysis
Role = User

[..]

Resource Access AuthZ

Resource Access AuthZ

FIFI

e-Science
infrastructure
resoumes

computatmn
and storage

Legend: ' CPUs /cores %computepbs a component <‘ » standard D JsDL . Common Attributes i Data

Figure 5.12: The Global Authorisation Attributes Invariant ensures the use of common security attributes.

128 CHAPTER 5. ARCHITECTURAL DESIGN

in the reference architecture (e.g. the need for common security attributes about end-users).
Locations within the reference architecture are known where one can assume that specific in-
formation exists (e.g. common usage records at the middleware level).

Figure 5.9 illustrates that concrete architectures with SOA-based implementations of our
reference architecture are constrained by the whole architecture work (i.e. core building blocks,
etc.) in general and the defined constraints in particular. Finally, Table 5.7 summarizes the
aforementioned invariants and provides an overview how the requirements of Chapter 4 are
addressed on the reference architecture level.

Requirement Definition ‘ Addressed in which manner
Definition 43 Three constraints
(Information and Security Constraints for a Reference Architecture) | for security and information;
Definition 68 SAML in parallel to
(e-Science Production Technology Adoption Constraint) legacy attribute transers;
Definition 69 GII invariant

(e-Science Infrastructure Information Ecosystem) for information ecosystem;
Definition 70 GAl invariant

(e-Science Infrastructure Resource Tracking Ecosystem) for resource tracking;
Definition 71 GAAl invariant

(e-Science Infrastructure Attribute-based Authorisation Ecosystem) | for authorization;

Table 5.7: Addressed detailed requirements of the infrastructure integration constraints.

5.1.5 Overall Run-time Pattern for Associated Architecture Work

Abstract

A

Reference
Model
(Chapter 5)

(Chapter 5) (Chapter 5)
% Profiles
- °°"s'°'.°'s (Chapter5)
Securi
(Chapter §) Spe
\ / (Chapter 5)
' N
Concrete
Architectures Re'lca;e:p:!::]e's Standards
(Chapter 6) L) (Chapter 5)
\ Architecture Work /

Requirements
(Chapter 4) Architectures
(Chapter §)

Motivation laccounts for]

(Chapter 2) S

derived

Goals
(Chapter 2)

il

Related Work

accounts for constrained
by
-\
Service Oriented Architecture Implementations
(Chapter 6)
\ ;

Concrete

Figure 5.13: The run-time pattern provides insights into run-time perspectives of the reference architecture.

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK 129

This section describes the IIRM run-time pattern that is associated to the overall reference
model architectural design in order to understand approaches during run-time. The previous
sections provide a rather static perspective on the IIRM architecture work and the implied sup-
port for different computational paradigms, while this section provides a more dynamic and
more user-oriented perspective. As illustrated in Figure 5.13, the concrete infrastructure archi-
tectures are formed from the combination of reference architecture core building blocks as well
as the run-time pattern. This partly addresses the requirement about architecture work patterns
raised in Definition 77. The requirements addressed on the architecture level are summarized
as part of Table 5.8.

The following paragraphs provide information for reference model adopters to better un-
derstand how scientific endeavors that require interoperability of production e-Science infras-
tructures (cf. Definition 5) are supported through the reference architecture design. The run-
time perspective offers an algorithmic description how e-Science applications take advantage
of different computational paradigms available through the combined use of HTC-driven in-
frastructures (cf. Definition 17) and HPC-orientated infrastructures (cf. Definition 16). It can be
also used with hybrid infrastructures (cf. Definition 18). In [254], scientific workflows that can
be essentially modeled as one greater algorithm are described using e-Science applications (cf.
definition 9) with (a) HTC resources and (b) HPC resources with one client.

The academic analysis of the case studies identified a pattern how e-Scientists (cf. Defi-
nition 10) work with such emerging interoperable infrastructures (cf. Definition 21) using an
emerging network of interoperable services (cf. Definition 15) rather than one single infras-
tructure. The analysis revealed a certain pattern published in [254] as one ‘design pattern in
e-Science” alongside several others already existing (e.g. in [182]). This e-Science design pattern
can be considered as a "toolset” for architecture adopters and e-Scientists when different types of
computing paradigms for one larger scientific purpose are required. This requirement is often
raised in scientific field-specific e-Science environments (e.g. ESFRI Rls [274]). This toolset is
independent from any particular existing production e-Science infrastructure and applicable to
a wide variety of e-Science endeavors but is based on the overall reference model architectural
design. The associated pattern to the reference model and its reference architecture are thus
useful to be looked up for various purposes such as understanding the run-time behaviour of
the reference architecture at large.

It is also useful for comparisons with other reference models and associated architectures
in distributed systems. The design pattern is just one way of providing an abstract notion that
is not too specific but gives a reasonable frame of reference in the context of e-Science infras-
tructure that offer specific infrastructure resources (cf. Definition 6). It enables a better under-
standing of the approach taken in many scientific workflows and enables easier comparison as
to whether or not emerging infrastructures (e.g. ESFRI Rls) require interoperability setups.

Chapter 2 introduced the state-of-the-art of production e-Science infrastructures and pro-
vided some pieces of information about their resources that are mainly computational re-
sources, including storage resources to store results and data. End-users are satisfied in using
one dedicated e-Science infrastructure to perform science, but also have an increasing demand
for using multiple infrastructures jointly together for one larger scientific workflow.

Current non-interoperable infrastructures (cf. Definition 19) represent a hindrance for sci-
entific work and overall support for e-Science (cf. Definition 3). The survey of current work
practice in Chapter 2 and 3 reveals that e-Scientists often use one particular client technology
that is commonly used in the corresponding field of e-Science (e.g. Kepler [215]), but which has
been recently augmented with client libraries [225] to obtain the benefits of Grid infrastructures
(cf. Definition 7). This multi-infrastructure workflow is precisely defined with the help of the
following ‘basic reference architecture algorithm’ illustrated in Figure 5.14.

130 CHAPTER 5. ARCHITECTURAL DESIGN

The pseudo-code exactly defines the design pattern, which describes how the adoption of
the overall IIRM and its associated reference architecture can be used by e-Scientists in sci-
entific workflows that cross the boundaries of e-Science infrastructures. Section 2.3, revealed
that interoperability is just starting to emerge on existing infrastructures and thus many of
these workflows of the thesis studies are based on hacks, workarounds, and made possible
via tweaks of additional standard development to support different concepts (e.g. integration
of several client libraries in parallel). Many of these hacks and workarounds are published in
[256] describing the thesis activities undertaken as part of the GIN community group that is
a reasonable basis for further thesis contributions, including detailed case studies that are de-
scribed in much more detail in Chapter 6. But these solutions are neither sustainable nor use
the underlying infrastructure resources in the most efficient manner (e.g. HPC resources), but
the workflow can be implemented with e-Science technologies guiding thus also the architec-
tural design. Based on this lesson, the reference architecture and its associated algorithm aims
to provide sustainable solutions. The usage of resources in a more efficient manner is possible
through refined open standards that are interlinked in many ways as described in later parts of
this chapter.

Figure 5.14 offers a run-time perspective to the overall reference model and its architectural
design with a perspective from end-users and their usage of the core building blocks that enable
the creation of individual infrastructures (cf. Definition 20).

As illustrated in Figure 5.14, the algorithm provides a high-level description of the usage
of the core building blocks while this chapter will go into more technical details when the
design layouts are described later. The algorithm starts in part (1) with the exposure of resource
specific information for each IIRM service instance via the GLUE2 core building block of the

Begin
Beqgin GridInformationProvisioning
Grid Information Providers (GIPs) publish pieces of
infermation about infrastructures (HPC and HTC resources)
via out-of-band information service
End

The informaticn provider sends
information using the GLUE2
elements about available
resource information (e.g.
Available core/CPUs, amount of
memory, etc.). The Information
service exposes it with a GLUE2
Instance to clients.

scienceworkflowfinished = false

WHILE (not scienceworkflowfinished)
Begin Brokering
End-user uses client technolegy (CT) and performs application setup
and defines HPC or HTC requirements for next scientific workflow step
Compute resource (CR) of corresponding HPC and HTC infrastructure is
found based on the information exposed by GIPs

End-users provide requirements for
resource description that are

End

End

Begin JobSubmitToResource
If CR.type is HTC then
End-user of CT submits HTC
using middleware MA of the
End IF
If CR.type is HPC then
End-user of CT submits HPC
using middleware MB of the
End I
End

Begin AnalysisScienceComplete

Transfer and store (intermediate) results in storage technologies

job to a HTC resource
corresponding infrastructure IA

job to a HPC resource
corresponding infrastructure IB

If end-user need no further computing then

scienceworkflowfinished = t
End IF
End

End While

rue

i

required for HTC and HPC jobs
across interoperable e-Science
infrastructures available. GLUEZ is
used to obtain list of rescurces.

Inre-using GLUE2 elements in JSDL
we preserve the same semantics of
the elements that are initially
provided and exposed by the Grid
resources itself leading to effective
executions via OGSA-BES.

Execution are often part of larger
scientific workflows with several
executions, but after each loop in the
algorithm scientists need to transfer
and store (intermediate) results with
BytelO, HTTPS, GridFTP and SRM.

(i) Listing: Pseudo-code of basic reference model algorithm with reference architecture core building blocks in context

Figure 5.14: Pseudo-code of the basic reference architecture algorithm using different computational paradigms.

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK 131

Running:
Executing

Running:
Stage-out

Running:
Stage-in

Figure 5.15: Basic reference architecture state model for a Grid job run on computational resources [305].

reference architecture. This can be done with information services that obtain computational
resource (CR) (or storage resource) details from information providers, implemented as part
of the other core building blocks that represent the IIRM set of services such as OGSA-BES (or
SRM in terms of storage).

In part (2) of the algorithm, the e-Scientists set up their resource requirements and identify
necessary services that match their specific requirements for the corresponding resource types
(i.e. HPC and HTC). The GLUE2 core building block here offers a standardised way of describ-
ing resources across infrastructures, thus contributing to the fact that the process of matching
requirements is more effective. Once the application setup (e.g. executable definition, etc.) is
done, the job is sent to computing resources that match their specified requirements in GLUE2.
This includes the supported security setup as the subsequent section about an associated secu-
rity pattern will reveal in Section 5.1.6.

Part (3) of the basic reference architecture algorithm is about another aspect of the IIRM
and its associated architecture, referring to the use of GLUE2 within JSDL. This makes sense
to specify resource requirements in the exact way as it was specified by the administrators
that are initially responsible for exposing the resource details in GLUE2 thus contributing to
semantic interoperability as described in Section 5.1.4. This is one solution for the missing
links introduced earlier that are also addressed in subsequent sections in this chapter in more
detail after the general design ideas of the reference architecture are introduced.

For example, in using an e-Science application (cf. Definition 9) with the exact resource
requirements in JSDL, the job is sent via OGSA-BES using the baseline communication mech-
anism illustrated in Figure 5.7 of Section 5.1.3. Being semantic identical as the information
exposed, the accurate job description leads the Grid job to the corresponding resource types for
effective execution using the GIN execution environment core building block underneath.

In part (4) of the algorithm, the results of the computational executions are stored using the
core building blocks such as GridFTP or HTTPS as transfers to storages (i.e. SRM core building
block). This might be the final results or intermediate results, depending on the applications
and the larger scientific workflow that is only known by the e-Scientist. They might decide
whether the scientific workflow is finalised, otherwise the algorithm starts with part (1) again.
The algorithm can be executed using only HPC or only HTC resources as needed.

The major parts of the algorithm enables execution on either HTC or HPC resources and
a more refined dynamic run-time perspective is as follows. The detailed run-time approach is
based on the OGSA-BES specification in general and the HPC File Staging Profile (HPC FSP)

132 CHAPTER 5. ARCHITECTURAL DESIGN

Requirement Definition | Addressed in which manner

Definition 77 Run-time pattern
(Architecture Work Patterns) | with algorithm and state model;

Table 5.8: Addressed requirements of architecture patterns on reference architecture level.

[305] in particular. HPC FSP defines a ‘state model’ [169] that represents the ‘basic reference ar-
chitecture state model” defining states during the execution of one Grid application on compu-
tational resources. This is useful to have an semantically interoperable progress definition of
application execution in Grid middleware, but it also informs end-users about the status of the
application. It is a technical architecture work element, but also, from the end-user perspec-
tive, provides a way of receiving feedback from the Grid service about the Grid job execution
progress. The HPC FSP state model is based on OGSA-BES and illustrated in Figure 5.15.

Any progress information of the application execution must be encoded using the states
of the HPC FSP (or implied OGSA-BES). Also information services that take the core build-
ing block GLUE2 as an information model must expose the states according to the HPC FSP
states. This is thus a restriction for the usage of the ComputatingActivityState type of the
GLUE2 specification [113] that indicates that a general accepted state model not yet exists. In
contrast, this thesis uses the OGSA-BES states, including the HPC FSP extensions but also other
extensions that are introduced in subsequent sections. The HPC FSP state model allows for ex-
tensions and refinements of states according to different setups. Later sections in this chapter
will reveal that this extensibility of this state model is uses to extend it towards the IIRM basic
state model. This does not prevent any further extensions to this state model apart from those
extensions provided in this chapter. The extensibility can be useful for many purposes of other
architectures that use parts of the IIRM (e.g. ESFRI RIs).

Finally, Table 5.8 summarizes the aforementioned invariants and provides an overview how
the requirements of Chapter 4 are addressed on the reference architecture level.

5.1.6 Security Pattern for Associated Architecture Work

This section describes the IIRM ‘security pattern’ that is associated to the overall reference model
architectural design in order to understand security approaches. The academic studies of re-
lated work such as standard specifications often revealed that ‘security is out of scope’ that is
a major limitation when working with production e-Science infrastructures (cf. Definition 5).
Strong security methods are often required by end-users or resource providers. Security is spe-
cial and affects every layer in the architectural design and thesis studies revealed in many cases
that security is one of the ‘major showstoppers’ for interoperability. As illustrated in Figure 5.16,
the concrete infrastructure architectures are formed from the combination of reference architec-
ture core building blocks as well as the security pattern. The requirements addressed on the
architecture level are summarized as part of Table 5.9.

This section partly addresses Definition 77 in order to provide insights to security that go
beyond the IIRM security core building blocks. The security pattern describes the basic security
access paradigm of Grid services (cf. Definition 13) that enhance interoperability of production
e-Science infrastructures. The thesis approach refers to horizontally (i.e. compute and data
entities) and vertically (i.e. information and security entities) reference model elements that
have the relationships as described earlier in Section 4.1.2 using the term "orthogonal” as in [267].

The scope is thus beyond standardization specifications that do not specify such an ap-
proach in detail. In addition to the run-time pattern, this approach is another architecture
design pattern that govern the reference architecture in order to outline a clear path on how to

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK 133

Abstract
Reference

A Model
(Chapter 5)

Requirements / Reference

(Chapter 4) Architectures
(Chapter §)

\\ Protocols

Patterns (Chapter5)

(Chapter 5)

Cscimns
(Chapter 5) considers (Chapter 5)

Motivation -accounts for|

i)
)

(Chapter 2) feil=—= | S
derived
Specifications
Goals \ — (Chapter 5)
(Chapter 2} -~ ~
Concrete
Architectures Re(lca:;eadplt\:t)glels Standards
(Chapter 6) L (Chapter 5)
Architecture Work / Related Work
accounts for constrained
by
Service Oriented Architecture Implementations
(Chapter 6)

\

Concrete

Figure 5.16: The security pattern provides insights into security perspectives of the reference architecture.

achieve a secure interoperability between the core building blocks that work on different levels
in the architecture. Grid security in itself is a very complex topic and in order to not only focus
on this topic this thesis only outlines the basic security approaches referring to related work
where possible (e.g. [131]).

The different basic design pattern elements beyond entities and their relationships that have
been already described in the general architecture work are collectively called "plumbing’ [272].
This term represents an analogy to a house with hot and cold water plumbing, which all do
not interfere with each other, but take effect at different levels within a house or cause different
functionality at different levels within the overall house architecture. In the reference model
architectural design, the different house levels stands for the different layers within a certain
Grid service instance while processing a SOAP request and response [190]. Since an incoming
SOAP request splits the different required functionality elements (authentication, attribute-
based authorisation, job submission, etc.) at the Grid middleware level, a variety of different
plumbing types is defined in order to increase interoperability at different levels as shown in
detail in Figure 5.17.

The key invariant for plumbings is that the different plumbing types do not interfere with
each other and one plumbing type cannot influence another plumbing type. They are partly
addressing the orthogonal dependencies of the core building blocks introduced in Section 4.1.2
on the reference model level. They grey indicators in Figure 5.17 mark those plumbing elements
not used in context.

As described in [272] and [266], the benefits of the ‘plumbing design principle” is that plumb-
ing can be removed over time without breaking the functionality of another plumbing, and
they neither interfere with each other nor influence each other in any way. The plumbing can
exist in parallel and through adoption within the Grid middleware, one particular plumbing

134 CHAPTER 5. ARCHITECTURAL DESIGN

can significantly increase the chance for interoperability between Grid services deployed on
current production e-Science infrastructures.

They address the requirement stated in Definition 68 supporting older concepts since new
concepts and technologies emerge slowly in production setups. An old plumbing system (e.g.
GSI X.509 proxies [300]) can be removed slowly over time since old technologies often remain
for a long time while the e-Science infrastructure already partly adopts new technologies (e.g.
SAML) as part of its evolution process and emerging plumbings. These ‘legacy technology prob-
lems’ refer to old technology elements where other technology elements depend on and thus
can not be removed without having collateral effects on the infrastructure architecture.

Figure 5.17, illustrates four basic types of plumbing that are indicated with numbers and
that all need to be used within the reference model architecture as part of the security pattern.
Production e-Science infrastructures choose their setups according to the overall governing
security policies (e.g. proxies or no proxies). Actual deployments of these plumbings remains
a policy decision that this thesis is not able to solve while some recommendations are given it
in the seven segment-based process in Section 5.3. A short overview of the basic design idea
of plumbings is given and more technical details about concepts that rely on it are described
in later chapters (e.g. application case studies). While Figure 5.17 illustrates technical details,
Figure 5.18 shows one example of the concrete deployment of the plumbings (indicated with
different numbers) in context of IIRM core building blocks that are not directly security related
(e.g. OGSA-BES, SRM, etc.) but affected, because of their ‘orthogonal dependency’ [267].

The first plumbing type is the (1) Transport Layer Security (TLS) protocol [153]. Thus GSI
connections [167], which slightly change the TLS protocol, are not allowed to be adopted in

GSIProtocol TLS Protocol TLS Protocol SAML-based ACVOMS-based
Client Client Client Client Client
T T T T T
1 httpg | https | htips | hittps full X 509 | hitps X508 proxy
Sx 509) X.509) full \ and SAML assertion) WithAC in
W Proxy W Proxy W X.509 W in SOAP header W extension
@ TLS Protocol TLS Protocol TLS Protocol TLS Protocol TLS Protocol
Middleware A Middleware A Middleware A Middleware A Middleware A
@ " ProwyChain } { Proxy Chain § £ Prowy Chain | " “Proxy[Chain "‘: " Proxy Chain §
1 Checks A1 Checks 1 Checks A 1 Chdcks 1 ! Checks :
(i) Instead of using Grid proprietary GSI I

connections we use TLS with either full X.509
or proxy certificates (using proxy chain checks)

@ In— Handler In— Hgndler
SAML Assertion SAML Afsertion
@ In— Hpndler
ACVPMS

[OGSA—BES 1.0] [OGSA—BES 1.1] T Handlor
Cllrint Cllrint ACVOMS]
Y Y
TLS Protocol] [TLS Protocol]
N ; OGSA-BES OGSA-BES
[Middleware A Middleware A [Version 1.0] [Version 1.0]
OGSABES 0GSABES (ii) The different in-handler (chains) can be
@[Version 1.0] [Version 1.1] implemented and used that way that they don‘t

(i) One technology can deploy different versions
of the same service at the same time without
problems when namespaces are accordingly set

harm each other in terms of functionality

Legend: @ Plumbing element

Figure 5.17: Conceptual view of the plumbing concept with reference architecture core building blocks.

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK 135

Grid technologies that adopt the IIRM security pattern. A significant element of this pattern
is that all architecture core building blocks support connections that are directly compliant
with TLS/SSL. The second plumbing is a design principle to enable (2) proxy chain checks as
specified as the Proxy Certificate Path Validation Algorithm in the IETF3820 standard [300]. This
is required when proxies are used to access a certain Grid middleware and thus improves
Grid interoperability significantly on the technical level, including delegation. This concept is
possible since proxies are also X.509 certificates and thus usual TLS is possible, but requires a
hierarchical algorithm [300] to check the proxy chain in case a proxy is used to contact an IIRM
Grid service. The pattern uses proxies but those not created via proprietary GSI connections
(i.e. HTTPG) [170].

The third plumbing type named as (3) handler-chain, refers to the known concept of using
different in- and out-handlers while sending/processing SOAP requests and responses within
service containers such as Apache Tomcat [149]. This type enables more than one transporta-
tion channel for the attribute-based security setup. In [302] an example of how the typical
UNICORE non-attribute-based authorization is augmented with such a plumbing is described
in order to enable attribute-based authorisation based on SAML assertions without breaking
the usual security setup of UNICORE. This includes the usage of the WS-Security [131] core
building block (cf. Figure 5.7). Hence, in the context of the larger reference model setup, this
handler-chain concept is one plumbing type where vertical (e.g. security standards) and hori-
zontal elements (compute and data standards) work together. In defining exactly which han-
dlers are available in the architecture work, a couple of well-defined plumbing systems of this
type is defined that in turn increase interoperability in many production e-Science infrastruc-

EE\ Scientific Gateway @) & JSDL+ AX Creation Entity] Scientific
A (9% P
Web clients

N HPC-driven Infrastructure E"E- j' HTC-driven Infrastructure el
-y Infrastructures

I
| TLS-compliant Connection (but no GSI connection) |
I

Vi Server
CJLSk 1 Pﬂg\f C:(\ain WS Container TLS Proxy Chai WS Container with Web
ecks ecks rm’plegi.ents Checks Checks implements services-based
plumbings plumbings middleware or
In-Handler | In-Handler Il / | data
n-Handler 1| In-Handler IV
(e.g. SAML) (e.g.AC VOMS) (€9.S AML) (e.9.AC VOMS) te'chnology
using a WS-*
OGSA BES OGSA BES SRM SRM container that
Inten‘ace A Interface B nt offace C Interface D supports :
A Verswon 1.0 AL Versmn 11 6 E!’SIOH 32 ersion 3.0 handler_cha,ns
LJ Middleware | Datatechnology LH i
L)) * |
-------- 2 manages access
| I manages execution manages data trarnsierl - j=:d

|@| | P ——— Computational
RMS), Computationa p—

¥ Job execution I"’ | i % i E I Ul and data
HPC-based resource e sonrce o

Legend: (] cPUs/cores [(compute jobs @ component 98 standard D Jsor ([pata @ Plumbing element

Figure 5.18: Example of the plumbing deployment concept as part of the security pattern.

136 CHAPTER 5. ARCHITECTURAL DESIGN

tures today. As the plumbing systems are a pattern, IIRM services do not need to implement
them all. The pattern rather defines the approach and provides thus a frame of reference for
IIRM security setup adoptions as part of concrete infrastructure architectures that are governed
by different security policies today.

Another plumbing type is the concept of (4) parallel portType deployment. Definition 68
mentions backwards compatibility within a Grid technology and the deployment of emerging
technologies while production technologies and interfaces remain. As shown in Figure 5.18,
the design concept of parallel portType [150] deployment provides an approach to enable the
use of different versions of standard specification interfaces like with the OGSA-BES portType
specification elements in version 1.0 and emerging 1.1 assuming they are defined in different
namespaces.

There are two interesting further aspects of the plumbings approach that are important to
understand in the larger context of the architecture work. The IIRM defines a very close de-
pendency between information and security and that is one of the reasons why [272] describes
the information as another plumbing (e.g. electricity vs. hot/cold water in the house analogy).
It is important to know ‘which Grid service supports which implemented security plumbing’ that is
addressed with the information service constraints in Definition 69. This means that each Grid
service offers different plumbings that are well-described and exposed in order to be accessed
by other services or clients, or as a more general term ‘agent’ as in Figure 5.19. The pattern thus
re-uses a mechanism that is in-line with the traditional Web Service description approach as
part of a fundamental Web service architecture [136] illustrated in Figure 5.19. In the context
of this thesis, it illustrates that services (i.e. resources) are described (i.e. resource description)
while referring to security policies (i.e. plumbings SAML, X.509 proxies, etc.). In addition, Grid
clients (aka agents) discover compatible Grid services and access them in a secure manner.

The second aspect is that ‘precisely defined plumbing’ do not solve the interoperability prob-
lem completely, but they significantly increase the probability of successful interoperability
far better than implementations without defined plumbing concepts. This is mainly achieved
through a decrease of the amount of possible interaction possibilities with the corresponding
services. One example of the use of the plumbings approach is illustrated in Figure 5.18 while
clients have used an information service beforehand (cf. Web service architecture [136]) in order

isa
requests

contains has

may have

has
owns

applies to Person or
organization

eslablishes

resource description

may refer to

Figure 5.19: The W3C WS architecture [136] and the important principle of discovery.

5.1. REFERENCE MODEL DESIGN AND ASSOCIATED ARCHITECTURE WORK 137

to know which services offer which security plumbings. The information plumbings have been
first used in order to obtain information about available security plumbings. The demand of
contacting an information service beforehand is an overhead compared to direct service access,
but with this pattern it clearly increases interoperability through plumbings. Furthermore, it
increases the efficiency of resource usage using the concepts revealed later in this thesis.

One crucial design element of the plumbing-based security pattern in general is related to
the concept of "delegation of end-user rights” as illustrated in Figure 5.20. This concept stands for
a process that enables one end-user (or agent) to act on behalf of another end-user. Delegation
is often used to enable third-party file transfers before execution (e.g. data-staging) or in bro-
kering setups (submission delegation to another entity). Within the security domain delegation
is known to be a very complex topic, but a brief discussion is needed also in this thesis in order
to provide all the necessary design elements of a security pattern without leaving out essential
functionality. In order to not loose the reference model focus, the work around delegation is
mostly referencing related work rather than provide deep technical descriptions.

Delegation is one key benefit in using the traditional GSI connections [170] that is not used
in the pattern. Delegation is based on using the PKI [195] and thus X.509 certificates including
proxies as defined in [300]. One of the most significant constraint in the delegation concept
using X.509 certificates is that the ‘private key” is never transferred over the network and that
each private key is unique.

Being compliant to this concept, the delegation concept of this pattern is illustrated in Fig-
ure 5.20 acting as an alternative to GSl-initiated proxy generation. It reveals that a method
is followed from the ‘GridSite Certificate Delegation” protocol [41] that also includes the func-
tionality of proxy renewal (because proxies have a limited lifetime) as well as explicit proxy
removal. This mechanism is different than the broadly known method of establishing HTTPG

@ |
[}

Public Key B
Generates:
Delegation 1D @
and

Proxy Certificate Request

Associated Private Key A

Get New Proxy Request

Private Key B
(associated with
Client certificate)

Proxy Certificate Request %

and Delegation 1D Associated Pubiic Key A

Z
Signs @
Proxy Certificate

Request

with
Private Key B Upload signed proxy

|

|

|

|

|

1

]

]

1

1

1

1

[}

[}

]

- -
1 (associated with Certificate with Put Proxy l,i
\ Chentcertiicate) using Delegation ID ﬁ'ﬂ
|

|

|

|

|

1

]

]

[}
¥

To perform delegation,
the server has the client
certificate chain, the new
proxy and corresponding
Private key A

lﬁ‘“ﬁl©
&

€ === = = 4
L=

Figure 5.20: A crucial element of the plumbing concept is the certificate delegation method.

138 CHAPTER 5. ARCHITECTURAL DESIGN

Requirement Definition | Addressed in which manner
Definition 68 Security pattern

(e-Science Production Technology Adoption Constraint) | works with legacy setups;
Definition 77 Security pattern

(Architecture Work Patterns) including delegation of rights;

Table 5.9: Addressed requirements of security patterns on the reference architecture level.

connections in GSI [170]. A basic step-wise description is given in Figure 5.20 while more de-
tails can be found in [41]. The key idea with GridSite is to use HTTPS and portType operations
on message level instead of traditional GSI methods (i.e. HTTPG) on the transport level.

In step (1), each end-user (i.e. client) has access to a X.509 certificate, including its Private
Key B and Public Key B. In step (2), the client initiates a new proxy request. The server then cre-
ates in step (3) a delegation ID as well as a proxy certificate request and its associated Private
Key A. In step (4), the client then receives this proxy certificate request and signs it with the
associated Private Key B from the certificate. This signed proxy certificate is then send back in
step (5) to the server using the particular Delegation ID. Step (6) concludes the process provid-
ing the server with a client certificate chain and the new proxy and the corresponding private
Key A. The GridSite specification [41] provides more details.

This approach prevents the use of proprietary HTTPG connections (cf. Figure 5.17) and
instead HTTP(S) connections and plain SSL are used together with several dedicated portType
operations. The SSL connection does not require any special setup and is interoperable with
other SSL-compliant technologies and the only check that is required is the proxy chain checks
for the proxies themselves. The key idea is thus that the additional byte that breaks interoper-
ability in HTTPG-based transport-level connections is removed and the problem of delegation
is “moved one level up’ to the service-level with dedicated portType operations specified by Grid-
Site that a Grid service needs to implement. The delegation element is thus encapsulated from
the transport element and is part of the service-level still keeping the same functionality (and
the support for proxy certificates). The major gain is that each service that implements this
pattern can be contacted with HTTPS connections using additionally proxies for delegation if
necessary.

Starting with OGF31 [68], this delegation concept is standardised given its widespread use
and its success of avoiding proprietary GSI connections. It should be noted that the delegation
approach of this part of the pattern has been not invented in this thesis and as such has been
only re-used to streamline the security setup and to avoid the use of GSI proprietary protocols.
More details about the specific approach can be found at [41].

Finally, Table 5.9 summarizes the aforementioned invariants and provides an overview how
the requirements of Chapter 4 are addressed on the reference architecture level.

5.2. DESIGN LAYOUT AND ESSENTIAL FUNCTIONALITY 139

5.2 Design Layout and Essential Functionality

Abstract
Reference Model (Chapter 5)

[Reference Model Entities] [Reference Model Entities Relationships
[Blueprint and Design Foundations
guided by

/ﬂeference Architectures (ChamarS}\

Requirements Protocols
(Chapter 4) (Chapter 5)
l Core Building Blocks]
- N Profiles
| ;Iéﬂg\;;?;] jaccounts for) \[\ General Technical Requirements]) I S {Chapter 5)
Specifications
Goals derived (Chapter 5)
(Chapter 2) Concrete)
Architectures RPE'S#;‘:J:;?%T“ Standards
{Chapter 6) {Chapter 5)
\ J
\ Architecture Work / Related Work
accounts for constrained
by
Service Oriented Architecture Implementations
{Chapter 6}
Concrete

Figure 5.21: Reference Architecture Core Building Blocks Improvements.

The last section introduced the general reference model design and its associated architec-
ture work in terms of a reference architecture that considers protocols, profiles, specifications,
and open standards. The reference model and its related elements are a mechanism for under-
standing the problems faced within particular environments and outline potential solutions. In
addition, this section describes the essential solutions with functionalities of the reference ar-
chitecture addressing many functional requirements of Section 4.2. The essential functionalities
are described via several concepts that are based on the core building blocks of the reference
architecture and in the several refinements proposed for them. All these refinements are specif-
ically focussed on the improvements for production e-Science application support as well as
better processing and data staging concepts as illustrated in Figure 5.21.

5.2.1 e-Science Application Concepts

The general design layout supporting production e-Science applications (cf. Definition 9) is
given by the reference architecture building block OGSA-BES that implies the use of JSDL.
These building blocks are capable of providing the functionality required by the Grid execution
management service (cf. Definition 49) and its implied Grid job description language schema.
But interoperability studies revealed that these core building blocks can be improved in the
context of supporting e-Science applications [270]. Grid application job descriptions need to

140 CHAPTER 5. ARCHITECTURAL DESIGN

be improved to more meaningful descriptions in order to enable Grid middleware (cf. Defini-
tion 12) in turn to more effectively execute Grid jobs with e-Science applications. The general
ideas behind these concepts are illustrated in Figure 5.22 and the re-use of several parts of the
GLUE2 information model schema is proposed as defined in Definition 55. The requirements
addressed on the architecture level are summarized as part of Table 5.11.

Lessons learned in using Grid middleware with applications using multiple infrastructures
point to more detailed descriptions about the Grid job itself [270]. It is often defined with the
standard JSDL [115] as well as its extensions and profiles (i.e. JSDL SPMD Extension [281], HPC
FSP [305], and HPC Profile Application Extensions [197]). A number of analysed refinements
to JSDL are proposed that are published in [261] and that are illustrated in Figure 5.22, in
order to understand where these improvements take effect. An overview of these functionality
extensions and improvements are shown in Table 5.10.

In addition to JSDL, the concept of (a) application types classification addresses Definition
57 and provides useful information about the Grid job that affects its handling within Grid
middleware systems (e.g. parsing effectiveness, etc.). The classification consists of the fol-
lowing enumeration: serial, collection, metaparallel, parallel, pre-installed, benchmark, compilation
and workflownode. The key benefit within the reference architecture core building block JSDL
is to provide Grid middleware with information that can be used to parse and process JSDL-
based applications much more effectively. The indication of the application type leads to much
faster executions since the implementation logic of application types often differs from each
other. One Grid application can be described by more than one element of this classification.
To provide an example, the processing logic of ‘pre-installed” and "compilations’ types, are often

@ﬁa:;, JSDL+ AU Creation Entity] Grid
clients
} A
|

| (ISDL+ AU) based submits I re-using (GLUEZ + AW)
Vincluding (GLUE2 + AW) elements | = = = == = e ==
———

“ HPC-driven Infrastructure Al HTCdriven 3 s
= Infrastructure infrastructures
1
A T
[1" (OGSA-BES + AV) (ISDL+AU) Application W (GLUE2+ AW) L‘ Grid
| i‘ Interface E)G Parsing Type D:} Instance " Grid
. e’ Entity Analysis ™ « e Entity | Information TENE
Grid middleware %) T System
1 I |
manages JObSI | (ISDL+ AU) optimized executions describes
[S ——— using (GLUE + AW) elements --—- - - -y
e N
L T
: Job execution of a compiled executable S Software 1
{\®)¢ or execution of a pre-installed executable (e.g.libraries) | |1 Computational
J— - Grid
Jobsandbox } Stdin §[stdErr StdOut | ¢ i Pre-installed CEETITEES
Scientific

HPC-based Grid resource Application

Legend: ' CPUSs / cores @ compute jobs a companent s\?., standard D J5DL

Figure 5.22: The e-Science application concepts with reference architecture core building blocks.

5.2. DESIGN LAYOUT AND ESSENTIAL FUNCTIONALITY 141

Functionality Extensions and Improvements | Area | Extended Standard
(a) Application types classification (e.g. parallel, etc.) | Compute | JSDL

(b) Application type refinements (e.g. pre-installed) Info GLUE2

(c) Revised application executable definition Compute | JSDL

(d) Application software statement Compute | JSDL

(e) Application family extension (e.g. library) Info GLUE2

(f) Application software requirements Compute | JSDL

(g) Application output joins Compute | JSDL

Table 5.10: Functionality improvements of the e-Science application concepts.

fundamentally different and thus execution runs can be prepared by the middleware much
more effectively when the type is known.

The element ‘serial” stands for an individual stand-alone job while the ‘collection” element
refers to a job that is submitted as part of a collection of individual jobs that do not communicate
between each other. This is often used in HTC use cases or parameter sweep studies. The clas-
sification ‘metaparallel’ refers to a job that is submitted as part of a collection of individual jobs,
but these are jobs that communicate with each other via the mechanisms of meta-computing
(i.e. Meta-MPI [207]). This is rarely used, but some use cases (e.g. the VPH community [219])
require this mechanism for crossing numerous production Grids. The ‘parallel” job classifica-
tion refers to a job submitted as part of a larger collection, but the communication is basically
performed in the job itself using parallel computing mechanisms (i.e. MPI or OpenMP). These
jobs are often used in the context of HPC-driven e-Science infrastructures (cf. Definition 16).

Another interesting type is ‘workflownode’, which is submitted as part of a larger cross-site
workflow and handled by a workflow engine technology. The application type ‘pre-installed’
provides information to the Grid middleware system that the application is already installed
on the relevant system. The "compilation” application type indicates that the application must be
first compiled on the corresponding system before being executed. Another useful type is the
"benchmark’ type since, in many production Grids, benchmarks are often handled differently by
the Grid middleware systems in general and by the underlying Grid resource in particular (e.g.
different job queues on HPC resources, measurements, etc.).

The GLUE2 specification [113] already provides an enumeration list named as ‘Computin-
gActivityType_t’ for several of the aforementioned application types that are "collectionelement’,
"parallelelement’, "single’, and ‘workflownode’. This is a missing link between the JSDL and the
GLUE2 specification. The ’collectionelement’ is simply re-used as “collection” within the JSDL,
and the aforementioned types are refined as follows. As part of (b) Application types refinements,
the GLUE2 “parallelelement’ refers to ‘metaparallel” in the reference architecture and another "par-
allel’ element is added since both indicate fundamental different types of parallel computing
concepts. There is a need to differentiate between those two especially when e-Science applica-
tions are used that in turn means different ways in which communication works. In addition
to these refinements around parallel execution, the ‘pre-installed’, "benchmark’, and "compilation’
application types are added to the GLUE2 enumeration.

An example of solving the missing link is given in Figure 5.23 that indicates 'GLUE2 +
AW’ where AW here stands for the additions to the GLUE2 specification. Figure 5.23 provides
an XML-based document with GLUE2 extensions elements (i.e. GLUE2dw namespace) to the
original JSDL and their refined elements (i.e. JSDLdu namespace). The jsdldu:ApplicationType
consists of one glue2dw:ComputingActivityType element that indicates that the listed job descrip-
tion defines an e-Science application that is part of a greater workflow (i.e. workflownode).

142 CHAPTER 5. ARCHITECTURAL DESIGN

The definition of the main Grid application executable within the Grid job description rep-
resents a challenge due to the wide variety of inhomogeneous systems and resources leading to
the following requirement Definition 58. All existing concepts in JSDL like its POSIX normative
extension (i.e. POSIXApplication executable definition [115]), which is also used in the JSDL
SPMD extension [281], or its HPC Profile Application extension [197] have only used an "Exe-
cutable’ element and an "Argument’ element. But the path information of an executable needs
be clearly separated from the executable enabling less error-prone parsing JSDL documents in
setups across infrastructures.

A (c) revised application executable definition is proposed with the three elements 'Executable-
Name’, "ExecutablePath’, and 'ExecutableArgument” while the latter element can appear n times
in the job description. Prototypes explored that this concept enables the most flexible support
in terms of supporting different varieties of job submission approaches that are (i) compiled
and executed applications in the job sandbox, (ii) pre-installed applications with a fixed and
known path, and (iii) pre-installed applications that take advantage of complex constructs us-
ing environment variables (e.g. $PATH variable) and such like. One example is illustrated in
Figure 5.23 describing the "pepc_power6” e-Science application [244] that is executed from the
'bin’ directory with two arguments.

Another refinement to JSDL is "ApplicationName’ and ’ApplicationVersion” information. By
introducing the (d) application software statement concept these are addressed and the "Applica-
tionFamily’ (e.g. LINUX, WIN, Library, etc.) is added. This concept is re-used to define a much
clearer formulation of the (f) application software requirements concept. Only one instance of the
application software statement concept describes the main Grid application itself in the "Appli-
cation” element of the JSDL instance. Other n instances of it are used to describe application

<j=sdl>
<jsdl: JobSpecification> Application Software
<jsdl:Jobldentification> ... Statement (can be used without
i e an executable definition for pre-
<jsdl:Application>
]qm:mm installed software) that re-uses
<glue? :Applame> FEEC </glue2:Applame> parts of the GLUE2 specification

<glue? :AppVersion> 2.4 </glue2 :AppVersicn>
<glue2dw:ApplicationFamily> LINGX </gluc2dw:ApplicationFamily>

Revised Application Executable

<jsdldu:ExecutableNane> pepe powers </jsdldu:Executableame> Definition
<jsdldu:ExecutablePath> /bin </jsdldu:ExecutablePath>
<jsdldu leArg partieles </jsdlda BleArg (must be used with above
<jsdldu 1 g 4000 </jsdldu:ExecutableArgument> software statement)
</ jadldu :Exeentable>
ém:mu«uwm»
gl 3 inghctivityType> W Application Type classification
workElownode re-using refined elements of the
</glue2dw:ComputinghetivityType> GLUE2 specification
<fjsdldu: ApplicatienType>
</;:sid1' ";Am’“h]. ncai. 'us. :L“mr) R }\ Boolean value that indicates
<j=dl:Resources> standard out & error joins
<jsdldu: SoFtware>
<gloe? :Applane> VISIT </gluel:ApplicationName
<gluel :hppversion> 1.3 </glue2 :AppVersion> Application Software
«glue2dw:ApplicaticnFamily> LIBRARY </glue2dw:ApplicaticnFamily> Requirements

sdldu : SoEtware>
q"j (re-use of the same construct

<j;d.1 :Resources> used above for describing the
</j=dl :JobSpecification> main application)
</3sa1>

(i) Listing: Example of 1SDL + AU instance with more meaningful Grid job descriptions, also based on GLUE2 + AW.

Figure 5.23: Design layout for the e-Science application concepts in JSDL and GLUE2 with refinements.

5.2. DESIGN LAYOUT AND ESSENTIAL FUNCTIONALITY 143

Begin
Previously unsupported:
Eegﬂm’ G;nldllr 1rot1n_-at1;npn_n;51mrnag G Y T i The information provider sends
T orma on TOVL r O sends = H & " "
listelement[0] = {Pre-installed scientific applciations} information with the GLUE2 + AW
listelement[1] = {Libraries, Compilers, etc.} elerr]ent_s about Pre—ll:lsta\led
Grid Information Service updates (GLUEZDW Instance Entity applications, or libraries.
using (GLUEDW list A) obtained from Grid Information Provider The Information service exposes
Grid Information Service exposes (GLUE2DW Instance Entity) this information via a
Enc GLUE2 + AW Instance

// not shown in Figure: choose of Grid resource might be manually performed
Begin Brokering iirs . n . reati . Previously unsupported:
End-user uses =cien 1c gateway a performs app]_lca on =etup - " -
defines GLUE2DW-based application requirements [AR) The standardized application

Meta-scheduler or broker guery Information Service requirements description
tries to match available Grid resources that satisfy (AR) enables a much better chance of
Meta-scheduler or broker provide best suitable candidate resource (RES) finding Grid resources that satisfy
i them and is less error-prone
Begin JSDLCreationAndSubmit N
End-user of Scientific Gateway defines application via GUL Previously unsupported:
using a JSDL creation entity that creates (JSDL doc B) Re-using the GLUE2 + AW elements
JSDL creation entity re-uses GLUEZDW elements of information service in JSDL preserves and assures the
specifying (AR) and also application type (AT) as part of (JSDL doc B) same semantics of the elements

Scientific Gateway submits (JSDL doc B) with GLUEZ2DW elements to (RES)

using Web service commmication and the DGSA-BES standard thatare initially provided by the

End Grid resource itself
—
Begin Previously unsupported:

OGSA-BES instance of (RES) gets (JSDL doc B) and parses it Inusing the standardized
aptln_lzlng execution according to specifj.t_ad (J\?’] and setups (AR) application type information and
EIII:GEA—BES instance forwards and manages the job via the BEMS of (RES) applicatl'on requirements the OGSA-

BESinstance can better prepare and
End optimize the job execution.
(i) Listing: Pseudo-code of basic reference model algorithm that illustrates previously ipported pt el ts

Figure 5.24: Pseudo-code using the e-Science application concepts.

software requirements in the "Resource” element of the JSDL instance. Both address require-
ments defined in Definition 59.

Figure 5.23 illustrates both aspects of the concept using the example of a defined Pretty Ef-
ficient Parallel Coulomb Solver (PEPC) application [244] that requires a dedicated visualisation
library called VISIT [139] during run-time for its execution on computational infrastructure
resources (cf. Definition 6).

GLUE2 already provides a suitable approach that is re-used in JSDL and thus provides a
solution for yet another element of the missing specification link between them. The “Applicatio-
nEnvironment class’ of the GLUE2 specification [113] and its elements are well suited to describe
the "ApplicationName” with the GLUE2 "AppName’ element and the "ApplicationVersion” with the
"AppVersion” element. Only the GLUE2 "ApplicationEnvironment’ needs to be refined by adding
these elements that are collectively refered to as (e) Application family extension. Figure 5.22 illus-
trates an information system that exposes all the aforementioned pieces of information about a
system and its available GLUE2-based "ApplicationEnvironment’. It is exposed since the Appli-
cationEnvironment is part of a GLUE2 ‘ComputingManager” element while this in turn is part of
a GLUE2 "ComputingService” information. The subsequently GLUE2-based described 'Comput-
ingService” instance can be an OGSA-BES service instance as shown in Figure 5.22 that is used
in turn to submit JSDL + AU job description where AU are partly GLUE2 + AW elements.

Another lesson learned that influences the design decisions of the reference architecture is
related to e-Science application outputs as defined in Definition 60. This raises the need to
have a concept named (g) application output joins, which refers to a boolean value that indicates
whether or not the ‘standard-out” and 'standard-error” outputs of an e-Science application should
be joined in one file. Some applications use the ‘standard-error’ for significant output (e.g. AM-

144 CHAPTER 5. ARCHITECTURAL DESIGN

BER MD suite [242]) and thus e-Scientists are often interested in only having one output file for
the application run analysis. Figure 5.23 uses the jsdldx:JoinStdOutErr element with the boolean
value ‘true’ to indicate the merger of both outputs.

In order to take the overall reference model design and its associated reference architecture
into account, major parts of the aforementioned functionality are part of the missing link be-
tween the core building blocks JSDL and GLUE2. The concrete XML renderings of GLUE2 can
be defined and re-used within JSDL as the example in Figure 5.23 reveals.

In order to understand the concepts of this section, the pseudo-code in Figure 5.24 illustrates
which algorithm aspects have previously not been supported. It describes which refinement
leads to a more effective execution within the aforementioned basic reference architecture al-
gorithm as part of the run-time pattern (cf. Section 5.1.5).

Finally, Table 5.11 summarizes the aforementioned improvements of reference architecture
elements and provides an overview how the requirements of Chapter 4 are addressed on the
reference architecture level.

Requirement Definition ‘ Addressed in which manner
Definition 57 Application types for
(Application Type Support) more efficient job processing;
Definition 58 More precise

(Precise Application Executable Specification) | application description;
Definition 59 Better support for
(Application Software Mechanism) pre-installed software;
Definition 60 Concept for joining
(Application Output Joins) application outputs;

Table 5.11: Addressed requirements for application improvements.

5.2.2 Application Execution Adjacencies Concepts

The concepts described in this section are based on the core building blocks OGSA-BES and
its implied JSDL of the reference architecture. These represent the Grid execution management
service (cf. Definition 49) and its implied Grid job description language schema. This section
reveals the concept of application execution adjacencies in order to better support scientific
application executions with important standard-based information at the lowest possible ref-
erence architecture level meaning infrastructure resources (cf. Definition 6). The link between
the JSDL and GLUE2 specification that represents our Grid information model schema (cf. Def-
inition 55) bears a lot of potentials to enable more effective job executions, especially in setups
across infrastructures. The requirements addressed on the architecture level are summarized
as part of Table 5.13.

The term “adjacencies’” emphasises the fact that this concept is very closely related to the e-
Science application execution process itself and on the targeted computational infrastructure
resource. Such resources (i.e. small cluster, supercomputer, etc.) are managed by some form
of RMS as defined in Definition 11 (e.g. Torque, LoadLeveler, etc.) that handle the application
execution described by JSDL, after processing in the Grid middleware (cf. Definition 12).

At the lowest resource level, where the application is executed, the proposed new appli-
cation execution adjacencies concept is applicable as shown in Figure 5.25. With the name
‘adjacencies’, this concept is thus better distinguishable from the term ’environment’, which is
used throughout this thesis to describe the whole problem-space of the reference model or that
is often misunderstood with ‘environment variables’.

5.2. DESIGN LAYOUT AND ESSENTIAL FUNCTIONALITY 145

The fundamental idea of the execution adjacencies concept is published in [261] describing
a Grid middleware-independent “common execution environment (CEE)” that can be used by e-
Science applications during run-time. The realisation of this particular concept includes two
major parts that are ‘common environment variables’ (cf. Figure 5.25 example within the job envi-
ronment) and “common execution modules’ (cf. Figure 5.25 example with AMBER [242] module).
Although both sound rather trivial, lessons learned from production Grid point to e-Science
applications (cf. Definition 9) that fail by assuming the same execution environments on dif-
ferent resources, which is often not the case today. This not only refers to scientific application-
specific environment variables, but also to different setups of a suite of scientific application
executables (e.g. within AMBER) and their configurations.

With the concepts described in this section, an execution environment is defined that a Grid
job application is able to ‘assume’ and to ‘access’. The execution environment needs to be avail-
able on each infrastructure resource that offers access through the Grid execution management
service in order to promote interoperability on application levels far beyond the IIRM inter-
face level. These concepts are illustrated in Figure 5.25, while an overview of its functionality
extensions and improvements is summarized in Table 5.12.

The first aspects of the execution adjacencies are relatively simply realisable by using (a)
common environment variables across different middleware distributions, that addresses the re-
quirement in Definition 61. In several e-Science applications (e.g. PEPC [244]), the executed
source-code makes use of environment variables such as number of cores, or available mem-
ory. Every Grid middleware (e.g. gLite, ARC, UNICORE, etc.) provided such pieces of infor-
mation via environment variables in proprietary execution environments. These proprietary

llg Scientific Gateway] Grid
clients
) LA
t
1 ()SDL+ AU) based submits 1 re-using (GLUE2 + AW)
| Including (GLUEZ + AW) modules == -|
I I
Sy HTCdr i
“ HPC-driven Infrastructures el rven . Grid
Infrastructures infrastructures
1 1
k4 1
= = =
t' mogs,q_g[g +AV) (ISDL+AU) Modu\es@ W (GLUE2+ AW) E Grid
1‘ b,] Interface B Parsing Preparation Instance l’Grid servers
v Entity Entity F Entity | information
Grid middleware 1 .\ System
| 0 I
. . L
manages jobs | (ISDL+ AUJ executions | prepares | describes
e e e = o= = e USIRG (GLUE + AW 1 -y
e ¥ n 1
- 1
7 Module Module
T®),y 10b execution ia AMBER 1 .
2 AMBER Computational
= ; Gnd
[{GLUE2 + AW) Common Environment Variables] ¢ 45 10clule MolPro resources
lob Environment

Legend: - CPUs / cores % compute jobs a component :‘:.‘, standard D 15DL

Figure 5.25: The application execution adjacencies concepts with reference architecture core building blocks.

146 CHAPTER 5. ARCHITECTURAL DESIGN

Functionality Extensions and Improvements | Area | Extended Standard
(a) Common Environment Variables Info GLUE2

(b) Common Execution Modules Compute | JSDL

(c) Execution Module Characteristics Info GLUE2

Table 5.12: Functionality improvements of the application execution adjancencies concept.

environments have no common syntax nor share the same common semantics. Interoperable
infrastructure setups need to support multiple proprietary environments, or the applications
simply fail when the executed source-code does not find an expected (and required) specific
environment variable. A standardised list of environment variables is proposed defining their
precise syntax and also the corresponding semantics. Additions from variables by purely lo-
cally installed applications can be added without breaking the concept. Initial work is carried
out within GIN by Field et al. [38], which is linked with GLUE2 in this thesis and follows the
same approach of harmonising some crucial environment information.

A few of the environment variables can be found in Figure 5.26, the content of which illus-
trates the major concept. The GLUE2 specification [113] defines the semantic details of the re-
sulting detailed environment variables. Many of these variables provide information that must
be consistent with information provided by a Grid information system for each Grid resource
(i.e. by using GLUE2 schema elements). All pieces of information provided as environment
variables need to follow exactly the same syntax and semantics as within the GLUE2 specifica-
tion. GLUE2 provides attributes in the 'ExecutionEnvironment’ that provide information that is
useful for running applications on Grid resources. It make thus sense to ‘render’ those attributes
as environment variables within the Grid middleware that is one part of the Grid job execution
environment core building block defined as part of Definition 49.

A few attributes to the execution environment are added that are useful for applications
during run-time. To provide an example, although GLUE2 defines the amount of physical
CPUs, it make sense to provide the number of physical cores to address the different core
setups (single-core, dual-core, quad- core, upcoming n-core, etc.) on computing resources.
Such extensions to GLUE2 throughout this chapter and all the proposed additions to GLUE2
(indicated with + AW) as part of the design layout should also be rendered as environment
variables. This will ensure a consistent execution environment across different infrastructures
including syntax as well as semantics.

The second improvement is the (b) common execution module concept addressing the require-
ment defined in Definition 62. The concept idea is derived from DEISA/PRACE experience
where support for different modules is done via "‘common production environment’ [184] and us-
ing it for example in the context of the WISDOM case study [259]. In terms of realisation, a Grid
middleware can use the module tool implementation from sourceforge.net [20] that was orig-
inally designed by CRAY. This concept is useful when working with applications that require
a pre-defined setup of configurations like path settings in addition to environment variables.
It is not about pieces of information about a pre-installed application setup as introduced pre-
viously (cf. Section 5.2.1) and instead it works on a far deeper level, meaning the level of the
application execution itself.

To provide an example, the so-called "AMBER module” as shown in Figure 5.25 includes the
configuration setup to run the AMBER scientific package [242], including 50-80 executables
and programs. Hence, e-Scientists need to set up often the required details (e.g. set PATH and
executable locations, AMBER environment variables, executables versions, etc.), but with this
concept they just specify the required module in JSDL as part of the resource section (cf. Figure
5.25). The Grid middleware prepares the execution according to the module definition that has

5.2. DESIGN LAYOUT AND ESSENTIAL FUNCTIONALITY 147

<jsdl>
<j=dl: JobSpecification>
<jsdl:Application> ... </jsdl:Application>

Definition of a required module
for the execution of the Grid job,
<jsdl:Resonrces> here a specific module is required
- for jobs named as AMBER
<jadldu :Medule>
<glueddw:MedulcHame> AMBER </glue2dw:Modulelame>
<glueldw:MeduleVersien> 9 </glue2dw:ModuleVersion> E—
</ jsdlda:Medule>

Incomparison to the previously
defined application software
extensions, this extension is not
allowed to be in the application
statementand can only be used
inthe required JSDL resource
specification re-using GLUE2

<jsdl:Resources>

<fj=dl :JobSpecification>

</Jsdl>

The GLUE2 specification defines a

Environment Variable Syntax Environment Variable set of Execution Environment
Semantics attributes that we map as

standard environment variables

GLUEZ: MainMemorySize

GLUEZ: PhysicalCPUs

GLUEZ2dw: PhysicalCores

The total amount of physical RAM
The number of physical CPUs
Others from the GLUE2 Execution
The number of physical cores

to increase the interoperability of
Grid resource environments

Additienally required
environment variables that we
directly add to the existing
Execution Environment set of

GLUE2 attributes

(i) Listing: Example of 1SDL + AU instance with module (top); {ii) Table of environment variables and GLUEZ + AW (bottom)

Figure 5.26: Design layout for the application execution adjacencies concepts in JSDL and GLUE2.

been previously configured for dedicated applications or libraries. GLUE2 is extended in order
to support (c) execution module characteristics that are re-used in the JSDL resource context in
order to more clearly describe the module characteristics.

In addition to the configuration of certain required scientific libraries, other use cases also
influenced the design layout with modules. For instance, the handling of different versions of
compilers in dedicated modules as in the case where different versions than the default compil-
ers are also available. Another use case deals with license aspects of some scientific applications
(e.g. MolPro quantum chemistry package [55]) where a license file needs to be in the end-users
home directory every time an execution is performed with the MolPro executable. The invoca-
tion of the MolPro module prior to Grid job execution can solve the license issue for e-Science
applications that rely on this package. While all these use cases and the overall approach of
using modules for it is not new, its combination with open standards within the thesis making
it a viable reference architecture element.

Grid information systems have to expose which modules are available at a corresponding
Grid execution service and this can be done within the GLUE2 service description by re-using
the (c) execution modules characteristics. Figure 5.26 illustrates an example how the AMBER
module can be defined in the "resources” element of JSDL.

A concrete XML rendering of the introduced concepts can be thus defined addressing one
aspect of Definition 49 in terms of the execution environment. The pseudo-code in Figure 5.27
illustrates which algorithm aspects have previously not been supported. It describes which
refinement makes it easier for end-users that follow the aforementioned basic reference archi-
tecture algorithm as part of the run-time pattern (cf. Section 5.1.5) thus taking advantage of the
proposed application adjacencies improvements.

148 CHAPTER 5. ARCHITECTURAL DESIGN

Begin
Previously unsupported:
Gi idG;nr rot_ln-utlglp .demmrlr(g_gs] sends (GLUEZDW 1ist A) The information provider sends
T ormation TOVL: r O 3 H . . .
listelement[0] = {Suppored Module AMBER]} information with the GLUE2 + AW

Grid Information Service updates (GLUEZDW Instance Entity) elements about configured and

using (GLUE2DW list A) obtained from Grid Information Provider available modules at a Grid site

Grid Information Service exposes (GLUE2DW Instance Entity) The Information service exposes
End

this information via a

/f not shown in Figure: choose of Grid resource might be manually performed GLUE2 + AW Instance

Begin Brokering
End-user uses scientific gateway and performs application setup
defines GLUEZDW-based application reguirements (AR)

Previously unsupported:

Meta-scheduler or broker guery Information Service Thes_tandardized mfjdl_"le

tries to match available Grid resources that satisfy (AR) requirements description
Meta-scheduler or broker provide best suitable candidate resource (RES) enables a much better chance of
End finding Grid resources that satisfy

- - - them and is less error-prone
Begin JSDLCreationAndSubmit
End-user of Scientific Gateway defines application wvia GUL

using a JSDL creation entity that creates (JSDL doc B) Previously unsupported:
JSDL creation entity re-uses GLUE2DW elements of information service Re-using the GLUE2 + AW elements

specifying (AR) and also reguired module (M) as part of (JSDL doc B) in JSDL preserves and assures the
Scientific Gateway submits (JSDL doc B) with GLUEZ2DW elements to (RES) -

using Web service commmication and the OGSA-BES standard same semantics Ofthe mOdU|e.

End elements that are initially provided
by the Grid resource itself

OGSA-BES instance of (HES) gets (JSDL doc B} and parses it Previously unsupported:

prepares modules according to specified (M) and setups (AR) Inusing the standardized module
OGSA-BES instance forwards and manages the job via the EMS of (RES) information and the GLUE2 + AW

OGSA-BES execution takes advantage of

" 2 common environment variables the
GLUE2DW common enviromnment variables

OGSA-BES instance can prepare the
End job execution in a standardized way

(i) Listing: Pseudo-code of basic reference model algorithm that illustrates previously unsupported concept elements

Figure 5.27: Pseudo-code using the application execution adjacencies concepts.

Finally, Table 5.13 summarizes the aforementioned improvements of reference architecture
elements and provides an overview how the requirements of Chapter 4 are addressed on the
reference architecture level.

Requirement Definition | Addressed in which manner
Definition 61 Common environment

(Common Environment Variables) | variables defined with GLUE2;
Definition 62 Common execution

(Common Execution Modules) modules for software applications;

Table 5.13: Addressed requirements for application adjacencies.

5.2.3 High Performance Computing Extensions

The basic design of the proposed reference model generally enables the use of HPC applications
with the help of the Grid management execution entities as defined in Definition 31. Guided by
these entities, the reference architecture and their concrete core building blocks OGSA-BES (cf.
Definition 49) and its implied JSDL are used in HTC- and HPC-driven e-Science infrastructures
(cf. Definitions 16 and 17). This section defines some refinements in terms of HPC application
support of JSDL in combination with GLUE2 as the Grid information model schema (cf. Def-
inition 55). The requirements addressed on the architecture level are summarized as part of
Table 5.16.

Low-level information about resource features (e.g. available network topologies) must be
exposed by information systems in greater detail in order to achieve more scalability and/or

5.2. DESIGN LAYOUT AND ESSENTIAL FUNCTIONALITY 149

Hane .
[ri_B Scientific Gateway](—)[}ff' g\?’ 1SDL+ AU Creation Entity] Grid
bl clients
N

A
1
! (ISDL+ AU) based submits 1 re-using (GLUE2 + AW)
1 including {G‘iUEZ +AW) I o o e e e oo \
HTC-driven i Grid
[L“'\AL! Infrastructure][“ HeC-driven Infrastructure] infrastructures
1
v
= . =
(ISDL+AU) GLUE2 + AW) E Grid
El’ (D= BIE': -:{.-1\.")D Parsing Instance WP Grig e
Grid R neriace Entity ® Entity | Information
middleware — System
describes
manages Jobs| - —mm mm = = - [—
r-==- 1
Als
¥
‘ Network m Computational
............................... Topologies SCIentlﬁC Task/Core Grid
‘,;\‘ High Messages § shapes goplic=lioy Mapping resource
i 3
HPC-based resource (e.g. IBM BlueGene/P system)

Legend!: . CPUs / cores % compute jobs a component 4™, standard D sspr (@) MPI Tasks

[

Figure 5.28: The HPC extensions concepts with reference architecture core building blocks.

the better performance of e-Science applications that take advantage of the low-level HPC func-
tionality. The work presented in this section is a result of many different interoperability setups
between production e-Science infrastructures and HPC-orientated improvements that are pub-
lished in [261]. The core building block of the reference architecture is based on JSDL and its
extensions, but those have been originally defined for more HTC-based environments. This
is actually not only the case for JSDL itself, but also for its numerous extensions and profiles
that have been mostly defined for Grid and HTC environments neglecting many of the HPC
functionality although many can be found as this section reveals.

Also, they have been defined several years ago and thus they lack the support of concepts of
recently used Grid resources in general and large-scale HPC systems in particular. JSDL [116],
for instance, was originally defined in 2006 and revised in 2008 [115], but still lacks the required
functionalities to enable an efficient HPC-oriented Grid job execution. JSDL extensions during
2007, such as the SPMD specification [281] or the HPC Profile Application extensions [197],
were aimed at delivering some of these required functionalities, but do not cover the essential
functionality that is illustrated in Figure 5.28.

An analysis of the experience from production Grid interoperability use cases reveals that
support for HPC-based job application descriptions can be refined when using resources avail-
able within HPC-driven infrastructures (cf. Definition 16). The next paragraphs thus address
the requirements raised in Definition 63. It should be noted that the basic functionality (spec-
ifying CPU, core, or memory requirements) for submitting HPC and parallel jobs is provided
by using OGSA-BES [169] together with JSDL [115] profiles such as the SPMD profile [281]. But
an overview of the proposed refinements in addition to these basic specifications is provided

150 CHAPTER 5. ARCHITECTURAL DESIGN

Functionality Extensions and Improvements | Area | Extended Standard
(a) Network topology (torus, global tree, Ethernet, etc.) | Compute | JSDL

(b) Shape reservation (X x Y x Z) Compute | JSDL

(c) Network information enhancements Info GLUE2

(d) Available shape characteristics Info GLUE2

(e) High message support Info GLUE2

(f) Task/Core mapping definition Compute | JSDL

(g) Available task/core mappings Info GLUE2

Table 5.14: Functionality improvements of the high performance computing extensions.

in Table 5.14 with a particular focus on those extensions that have been necessary to conduct
the three case studies WISDOM, VPH, and EUFORIA.

Table 5.14 and this section reveals that many concepts are influenced by large-scale systems
specifically provided by one vendor that is IBM that can be at least partly explained by the fact
that the majority of TOP500 listed large-scale HPC systems are IBM machines. Some concepts
such as the '3-d torus networks” are also provided by other vendors such as CRAY in machines
like the CRAY XEG6 [6].

Also, the three accompanying case studies in this thesis namely WISDOM, VPH, and EU-
FORIA have been all mostly used with IBM machines that also explains why HPC extensions
for production e-Science application improvements are mostly related to features IBM ma-
chines offer. Nevertheless, given the widespread use of the IBM systems (e.g. BlueGene/P
systems [290]) and installations in supercomputer centers around the world (e.g. IBM systems
in DEISA /PRACE and beyond), the concepts revealed here, although dominated by a particu-
lar vendor IBM, have still a major impact beyond one particular Grid site.

Also it is expected that towards Exascale more and more low- to medium-scale HPC sys-
tems will appear that can take advantage of the concrete examples provided in this section. It
is not the focus of this thesis to create and present any possible abstraction of lower level HPC
machine concepts from all vendors around the world (e.g. CRAY, Fujitsu, etc.). Instead, 5.15
provides some abstract examples where similiar approaches can be taken based on architec-
tures of other large-scale HPC systems. In addition, the plethora of compilers and approaches
of the more and more emerging Graphical Processing Unit (GPU) [208] technologies bear also
potentials for further abstractions so that the specifications used in e-Science infrastructures
can be used with those cutting edge technologies as well.

All in all, the aforementioned abstractions and those listed in Table 5.15 for example are
not hard to define and should be tested with e-Science applications in parallel of standardiza-
tion efforts. But the plethora of systems available using these cutting edge concepts require
standardized access methods also on higher levels such as Grid specifications to promote their
use also on e-Science infrastructures (without requiring shell tools). With implementing the
concept in this section, the uptake of the broader concept of e-Science infrastructures can be
fundamentally supported offering and exposing HPC extensions on the infrastructure level via
Grid middleware (cf. Definition 12).

Hence, this thesis thus provides only very concrete examples of the used concepts in the
thesis case studies outlining an approach for other activities that have to ensure a broader
coverage of other existing systems in the field. Firstly, the concepts presented here is given as
an input to the standardization activities in PGI [270] and the standardization process in the
corresponding group (e.g. JSDL) need to ensure a greater coverage of existing systems in the
field. Secondly, the reference model adoptions in concrete architecture deployments can create

5.2. DESIGN LAYOUT AND ESSENTIAL FUNCTIONALITY 151

Machine Example

Vendor-specific Concept Short description

CRAY XE6 [6] Machine specifically supports two vendor-specific

(CRAY) modes [7] that could be abstracted as the IBM concepts:

(1) Extreme Scalability Mode (ESM) for application-specific
performance tuning and scaling;

(2) Cluster Compatibility Mode (CCM) for ISV

out-of-the-box applications;

K Supercomputer [32] | Machine specifically supports vendor-specific

(Fujitsu) TOFU interconnect [33] that could be abstracted as the IBM concepts:
6-dimensional Mesh/Torus Topology Network Technology;

Table 5.15: Other potential large-scale HPC feature examples for similiar abstractions.

similiar HPC extensions using the here described overall approach and bring them back to the
standardization groups for a further update on state-of-the art systems.

One necessary concrete extension to JSDL as part of the case studies is the support for dif-
ferent types of (a) network topologies. The choice of network connections can have a big influence
on the performance of applications that make use of parallel programming models (e.g. MPI).
To provide an example, the state-of-the-art BlueGene/P HPC system as shown in Figure 5.28
offers three different types of network connections. These are 'three dimensional torus’ [290], as
illustrated in Figure 5.29, but also global tree (collective network)’” [290], and "10 Gigabit Ether-
net (functional network)’ [290]. Which one is actually used is often dependent on the type of
application, and as such depends on the description of the application by the e-Scientists (cf.
Definition 10) themselves.

Another extension to JSDL that is necessary to efficiently run parallel programming appli-
cations on current HPC-based Grid resources is the (b) shape reservation functionality as sup-
ported by current BlueGene/P systems [290]. The optimal shape for an application depends
on the communication pattern of the MPI-based code, and thus it is application-specific and in
turn should be part of the job description. A shape is indicated with "X x Y x Z" where X, Y, and
Z are positive integers that indicate the number of partitions in the X-direction, Y-direction, and
Z-direction of the requested job shape.

The above described required extensions to JSDL are also added as extensions to the GLUE2
specification and then re-used in JSDL. The GLUE2 'NetworkInfo_t’ data type [113] already de-
scribes network information, but is limited to a few certain values and do not cover technolo-
gies that offer torus networks, or collective networks (e.g. global trees). The GLUE2 standard
is thus augmented with corresponding (c) network information enhancements.

One specific example for a three dimensional torus network extension to GLUE2 is illus-
trated in Figure 5.29. An abstraction of functionality from the large-scale HPC resource is cre-
ated that forms later standardized information as part of GLUE2. The overall idea is thus not
restricted to those listed as part of this section since there are several features that can be ex-
posed to end-users using this approach. Many of them represent the benefit of enabling a more
efficient computation of e-Science applications.

Such information about Grid resources is exposed more accurately and thus also (d) avail-
able shape characteristics are added as extensions to the GLUE2 standard. An example of these
extensions are illustrated in Figure 5.28 where AW indicates the GLUE2 extensions and AU
marks the JSDL extensions.

In the context of the GLUE2-based description of Grid resources, important messages of the
day (i.e. high messages) are added as extension to the GLUE2 standard addressing the require-
ment of Definition 64. GLUE2 provides attributes about DownTime information (i.e. service
availability) or a more general possibility to link to certain information on the Web via the

152 CHAPTER 5. ARCHITECTURAL DESIGN

A 4

&
<

standardized information abstraction reality

<glue2>
<glue2:ComputingManager>

<glue2:NetworkInfo>
torus
</glue2:NetworkInfo>

</glue2:ComputingManager>

</<.;1;1eé> three dimensional torus network

Figure 5.29: HPC extensions example with a three dimensional torus network of HPC resources.

StatusInfo attribute (as part of the Service Entity GLUE2 element), or another completely gen-
eral OtherInfo attribute. Examples of these messages include temporary important information
about file system usage (e.g. directory movements within a shared filesystem) or about certain
changes in complex compiler configurations. High messages also inform the user about local
storage situation changes (i.e. local storage cluster access) or other administrative pieces of
information such as the transition period from one HPC-driven Grid resource to another (e.g.
general account information). Because of its general applicability and major importance, the

<jsdl>

linked

<glue2>

<glue?2 :ComputingEndpoint>

<glue2dw:HighMes sage>
/homel and /home2 have moved to a new

GPFS home file system that affects
every user: /homec®

<glue2dw:HighMes sage>
</glue?:ComputingEndpoint>
<glue? :ComputingManagers>

<glue2:NetworkIn fo>
torus
</glue2:NetworkInfo>
<glue2dw: Shape>
<glue2dw:Dimi> 1 </glue2dw:Dimi>
<glueldw:Dim¥> 1 </glueldw:Dim¥>
<glueldw:DimE> 2 </glueldw:Dimi>
</glue2dw: Shape>

<glue2dw:MPITaskCoreMapping>

<glue2dw : OwnMa p>TXYE</glue 2dw: OwnMap>
<glue2dw : TaskMap>TXY E</glue2dw: TaskMap>

<glue2dw: TaskMap>XYET</glue2dw: TaskMap>
</glue2dw: MPITaskCoreMapping>

</glue?:ComputingManager:>

</glue>
(i) Listing: Example of GLUE2 + AW instance supporting
large-scale HPC resources

<j=dl:JobSpecification>
<jsdl:JobIdentification> ...
<jsdl:Rescurces>
<glue2:Network Info>
torus
</glue2: RetworkInfo>
<glue2dw : Shape>
<glue2dw:DimX¥> 1 </glue2dw:DimX>
<glue2dw:DimY> 1 </glue2dw:DimY>
<glue2dw:DimZ> 2 </glue2dw:Dimi>
</gluedw:Shape>
<glue2dw :MPITaskCoreMapping>
<glue 2dw:MPIRank>0000</glue2dw: MPTRank>
<glue 2dw:MPTRank>1000</glue2dw: MPTRank>
</glue2dw:MPITazkCoreMapping>
</jsdl:Resources>
<jsdl:DataStaging> ...
</jsdl : JobSpecification>
</jsdl>
(ii} Listing: Example of 1SDL + AU instance re-using several
GLUE2 + AW elements for job description

Figure 5.30: Design layout for the HPC extensions concepts in JSDL and GLUE2 with refinements.

5.2. DESIGN LAYOUT AND ESSENTIAL FUNCTIONALITY 153

Begin GridInformationProvisioning Previously unsupported:

Grid Information Provider of (RES) sends (GLUE2DW list A): The information prcwider sends
listelement[0] = {available network topologies} N N N
Tistel Gli] = [mecmiine diers Sl information with th(? GLUE2 + AW
listelement[2] = [messages of the day)} elements about ._avallable
listelement[3] = {awvailable task/core mappings} network topologies, shape setups

Grid Information Service updates (GLUE2DW Instance Entity) or taskfcore mappings. The
using (GLUEZDW list A) obtained from Grid Information Provider Information service exposes it

Grid Information Service exposes (GLUEZDW Instance Entity) with a GLUE2 + AW Instance

// not shown in Figure; choose of Grid resource might be manually performed Previously unsupported:

Begin Brokering

End-user uses scientific gateway and performs application setup Thes_tandardized network -
defines GLUE2DW-based network requirements (NR) requirements resource description
Meta-scheduler or broker query Information Service] enables a much better chance of
tries to match available Grid resources that satisfy (NR) finding Grid resources that satisfy
Meta-scheduler or broker provide best snitable candidate resource (RES) them and is less error-prone
End
Begin JSDLCreationAndSubmit Previously unsupported:
End-user of Scientific Gateway defines application via GUI Re-using the GLUE2 + AW elements
using a JSDL creation entity that creates (JSDL doc B) in JSDL preserves and assures the
JSDL creation entity re-uses GLUE2DW elements of information service N
same semantics of the elements
specifying (NR) and also sunitable shape setup (55) in the (JSDL doc B) ha initiall ided and
Scientific Gateway submits (JSDL doc B) with GLUEZ2DW elements to (RES) thatare initially provided and
using Web service commmication and the OGSA-BES standard exposed by the Grid resource itself
End
Previously unsupporta:
Begin JSDLParsingAndForwarding Inusing the standardized shape
OGSA-BES instance of (RES) gets (JSDL doc B) and parses it setup information and network
managing executlion according to specified (NR) and shape setups (SS) requl'rements the OGSA-BES

DGSA-BES instance forwards and manages the job via the RMS of (RES) Instance can better prepare thejob

End execution handled via the RMS.

(i} Listing: Pseudo-code of basic reference model algorithm that illustrates previously pported pt el s

Figure 5.31: Pseudo-code using the high performance computing extension concepts.

(e) high message support is added as a dedicated element to GLUE2. One example is provided in
Figure 5.30 using the glue2dw:HighMessage element.

When working with HPC applications, it was also identified that GLUE2 and JSDL lacks
support with respect to the supported MPI task and core mapping [290], thus addressing the
requirement in Definition 63. The reason for this is that in practice such defined mapping can
have a significant impact on performance and scaling of many e-Science applications running
on HPC resources.

The analysis of the working practice of e-Scientist specifically working with HPC resources
reveals that they often optimize their code using the low-level features of computational re-
sources. While some even use assembler optimizations that is not addressed in the thesis, there
is merit to understand the following concept that can be abstracted in a meaningful way sim-
iliar as our three dimensional torus example shown in Figure 5.29. One example is a domain
composition of an 2D image analysis application where the image is divided into 8x8 tiles and
in each process these tiles need to communicate with their 8 neighbours (1 process left & right;
3 processes top & bottom). The challenge in this example of parallelizing image processing
tasks is the proper domain decomposition that specifies how the task is distributed among
the various processors/cores available. This becomes even more complex when performing
appropriate 3D image analysis domain decompositions.

Using concrete (f) task/core mapping definition reduce communication overheads and balanc-
ing the load (i.e. MPI tasks) across the different processors (i.e. cores). Applications mostly
use the MPI cartesian grid communicator [241] definitions that are ideal for nearest-neighbour
communications, but are also architecture independent, and work best with hardware-level
support. Figure 5.30 describes one example with the glue2dw:MPIRank element.

154 CHAPTER 5. ARCHITECTURAL DESIGN

The description of the task core mapping is very complicated and thus more functionality
and details are provided. Figure 5.30 shows two possibilities that the improvement offers. The
first one is to use pre-defined mappings of the corresponding computing system that are often
encoded via XYZ and T while X, Y, Z are the coordinates of the processors of the Grid resource
and T stands for a core coordinate within a processor (e.g. T =0,1,2,3 in a quad-core processor).
These pre-defined (g) available task/core mappings are exposed via GLUE2 as shown in Figure
5.28, and there can be pre-configured multiple mappings like XYZT or TXYZ.

In addition to using the pre-defined mappings there is also the second option of using
own defined mappings (i.e. glue2dw:OwnMap) that we also support by simply using a list
of glue2dw:MPIRank elements in the corresponding resource description within JSDL as illus-
trated in Figure 5.30. In this context the order of the elements matter and thus indicate that the
first MPI rank (i.e. process 0) is mapped to a particular Cartesian coordinate (e.g. 1,0,0), also
including the mapping of one particular core of the processor addressed by this communicator.

The exact definition is very application-specific, but the general characteristic of the manual
task/core map is also exposed using the glue2dw:OwnMap element with one particular encod-
ing that re-uses the XYZ and T values (e.g. TXYZ). Possible mappings are permutations of the
XYZT mappings as supported by the Grid resource or XML elements that contain user specific
MPT topology information. Both significantly increase the performance and scalability of sci-
entific applications and are thus required to be defined as part of the concepts. But although
they are often machine-specific, the same or similiar machines with the same functionality are
often available multiple times within interoperable e-Science infrastructures.

The pseudo-code in Figure 5.31 illustrates which algorithm aspects have previously not
been supported. It describes which HPC aspects and refinements lead to a more efficient ex-
ecution within the basic reference architecture algorithm as part of the run-time pattern (cf.
Section 5.1.5).

In order to take into account the overall reference model design, the aforementioned func-
tionality around HPC concepts represent a missing link between the JSDL and GLUE2 specifi-
cations. In terms of the design model layout, XML renderings can be defined for GLUE2 and
re-use them within JSDL as illustrated in an example in Figure 5.30.

Finally, Table 5.16 summarizes the aforementioned improvements of reference architecture
elements and provides an overview how the requirements of Chapter 4 are addressed on the
reference architecture level.

Requirement Definition | Addressed in which manner
Definition 63 HPC extensions accessible
(State-of-the-art HPC Support) | via core building blocks;
Definition 64 High message exposure
(High Message Exposure) via core building blocks;

Table 5.16: Addressed requirements for HPC extensions.

5.2.4 Sequence Support for Computational Jobs

The design provides functionality to submit and manage "simple’ computational jobs using the
Grid execution management service (cf. Definition 49). The difference between Grid work-
flows and resource-orientated application sequences are introduced in this section pointing to
another missing concept in this context.

The aim is to jointly support different types of application execution modes (i.e. serial, par-
allel) for one e-Science application. This is useful so that e-Scientists can conveniently use ref-

5.2. DESIGN LAYOUT AND ESSENTIAL FUNCTIONALITY 155

[ia Scientific Gateway](—)[Workflow client functiona\it',r]o[@@ 1SDL+ AU Creation Entl'ty] Grid
A bt 2 clients

A

| [ISDL + AU) based submits !
control and monitoring of workflows using HPC & HTC
| as single workflow nodes | g of ki 9
o TR e e e e e e e ——————— 1
Lpd pe HTC-driven Grid
HPC-driven Infrastructure i) .
[“] [Infrastructure infrastructures

1
h 4
(ISDL + AU) SEqQUENCES __ E . workflow Grid
Interface E-)D Parsi_ng analysis &ﬂf:} i l‘ Engine Servers
= Entity preparation

A2
Workflow Technology

Grid middleware

manages ;’a_bsl (ISDL+ AU) prepared executions

- - - - - = == == = =1

¥ ¥ = ¥
N X Pre-Processing -_. Main Application N x Post-Processing
% RO '<_L Executables - Executable -t_‘ Executables
=+ (serial execution) Qﬂ (parallel execution) =+ (serial execution) -
i Computational
ol Grid
SEsEsEEsEEEsEEEEEEsEEEEsssEEEssEEssssssssssEEssssssssssssssssssssj

Job sandbax execution timeline resources

HPC-based Grid resource

Legend: ' CPUs / cores @ compute jobs a component :"3, standard D JSDL i Data

Figure 5.32: The application sequence execution concepts with reference architecture core building blocks.

erence model implementations that fit their needs in terms of remote compilation and pre- and
post-processing functionalities required in Definition 65. This affects the core building block
JSDL defined as part of Definition 49, including the following refinements. The requirements
addressed on the architecture level are summarized as part of Table 5.18.

A thoroughly undertaken analysis of lessons learned (e.g. obtained from the WISDOM use
case [259]) leads to specific missing features encountered during production Grid interoperabil-
ity with respect to the support of automatically started pre- and post-processing functionalities
within JSDL using different application execution modes.

Figure 5.32 illustrates one example of the molecular dynamics package AMBER [242] that
consists of a set of applications, some of which are used to transform input data in a suitable
format for production runs and/or transform outputs in several other formats necessary for
further analysis. These transformations and short running pre-processing steps are often exe-
cuted in a serial mode, while the actual corresponding AMBER molecular dynamic simulation
(e.g. psander [242]) is executed in a parallel mode. In order to save time on rare HPC re-
sources, the pre-processing steps that are serial can be executed before the actual parallel slots
are reserved by the underlying RMS, but should share the same working directory of the ap-
plication. The key idea is to support application sequence executions within one Grid sandbox
supporting multiple types of application execution modes (i.e. serial, parallel).

Another analysis of lessons learned from production Grid interoperability efforts (e.g. VPH
[263]) is the demand for remote compilation of source-code, thus avoiding the need to login
manually with SSH and to locally compile the source-code. Many applications have to be
installed beforehand on execution sites using SSH, since a suitable support for remote compi-

156 CHAPTER 5. ARCHITECTURAL DESIGN

Functionality Extensions and Improvements | Area | Extended Standard

(a) Pre-job sequences (pre-processing, compilation) | Compute | JSDL
(b) Post-job sequences Compute | JSDL

Table 5.17: Functionality improvements for the sequence support concept.

lation is missing in JSDL and in the production Grid middleware adoptions.

This approach is basically feasible when the source-code of the application is reasonable
stable, but the lack of remote compilation becomes a real challenge when the source-code of
e-Science applications are subject to change as often in HPC-driven e-Science infrastructures
(cf. Definition 16). An overview of the refinements in this section is provided in Table 5.17. The
ideas are published in [261], while a descriptive example is illustrated in Figure 5.33.

In the context of the above described obstacles, the differences between Grid workflows
and sequences are important to consider. It makes sense that compilation and execution are
performed in one Grid working directory (aka job sandbox). Otherwise the application is com-
piled in one workflow step and then the compiled executable needs to be transferred to another
working dirctory to be executed as another workflow step. There is no exact boundary and one
can realise the described approach with both workflows and sequences. But when using the
proposed sequences unnecessary data-transfers are avoided between different job sandboxes
and the necessary configuration activities specifying the locations of the source-code do not
need to be repeated. In many cases, the source-codes are specific to some types of architecture,
which in terms of many-core is even more and more evolving. More and more end-users re-
quire compilation prior to production runs, especially with HPC-based e-Science applications
linking several libraries.

As a consequence of the afore-discussed points, JSDL is extended with the capabilities to
execute (a) pre-job sequences. This concept enables the definition of n pre-processing applications
that are serially executed before the main Grid job application. This also satisfies the demand
for remote compilation since one or many of these pre-processing applications defined in the
pre-job sequence can be used as compiling activity. In turn, this compilation sequence step is
serially executed before the main freshly compiled Grid job application is started.

In an analogy to the pre-job sequences, the proposed improvements also cover (b) post-job
sequences in order to support n post-processing applications. This sequence is started when
the main (often in parallel executed) Grid job application is finished. Examples of both func-
tionality extensions are shown in Figure 5.33, illustrating the jsdldu:PreJobSequence as well as
the jsdldu:PostJobSequence elements. As shown in this illustration, it is possible to create XML-
based renderings of the aforementioned concepts to augment the JSDL standard with these
functionalities.

An overview of the concepts described in this section is provided with the pseudo-code in
Figure 5.34 that illustrates the basic reference architecture algorithm (cf. Section 5.1.5) in the
context of features that were previously not supported.

Finally, Table 5.18 summarizes the aforementioned improvements of reference architecture
elements and provides an overview how the requirements of Chapter 4 are addressed on the
reference architecture level.

Requirement Definition | Addressed in which manner

Definition 65 Sequence support
(Computational Job Sequences) | via core building blocks;

Table 5.18: Addressed requirements for the sequence support.

5.2. DESIGN LAYOUT AND ESSENTIAL FUNCTIONALITY 157

5.2.5 Manual Data-staging Concepts

The concepts described in this section are based on the core building blocks OGSA-BES and its
implied JSDL of the reference architecture. The traditional ‘automatic data-staging’ concept of
JSDL [115] is often used in production e-Science infrastructures and a well-established link be-
tween the Grid execution management service (cf. Definition 49) and its implied Grid data
transfer protocols is an important element of the reference architecture. The ‘manual data-
staging’ needs to be supported by the core building blocks of the reference architecture as well,
because end-users require the flexibility to manually perform data-staging via their scientific
clients.

This section thus address the requirement raised in Definition 66, and also Definition 67
since the concept inherently also covers how end-users get more required Grid job manipula-
tion capabilities.

Especially larger scientific workflows and manual scientific investigation processes make
it necessary to support the manual data-staging in addition to the already existing automatic
data-staging. The requirements addressed on the architecture level are summarized as part of
Table 5.20.

The analysis of lessons learned from production applications revealed that in many cases
the end-users require more job control and more flexible data-staging functionality. They need
to better coordinate distributed data and computation with their manual intervention in the
process. This is true, irrespective of whether the data is transported to where the computational
resource resides, or if computation is decomposed and job submissions are performed at the
physical location of the data. In a wide variety of use cases (e.g. WISDOM [259]), the manual

<jsdl>
<j=dl: JobSpecification>
<j=sdl:Jobldentification> ...

Main application executable

Executed in parallel on the
specified number of CPUs
(e.g. 2024 cores)

<.::|;dl:1\pplication>
<jsdldu: Exeentable>
<jsdldu:ExecutableName> pepe power </jsdldu:Executablelame>
<jsdldu:ExecutablePath> /bin </jsdldu:ExecutablePath>
<jsdldu:ExecutableArgument> particles </jsdldu:ExecutableArgument:>

<jadldu:ExecutableArgument> 4000 </jsdldu: ExecutableArgument:>
</ jsdldu :Executable>

Pre-job Sequence Definition

<jadldu: PredobSequence>

<jadldu:Executable>
<jsdldu:ExecutableName> transforminput.sh </jsdldu:Executablelame>
<jsdldu:ExecutablePath> /bin/prep </jsdldu:ExecutablePath>
</jsdldu:Executable>
</ jsdldu: PrejobSequance>
<jsdldu: PestJobSequence>
<jadldu:Executable>
<jsdldu:ExecutableHame> tput.sh </jsdldu:ExecutableName>
<jadldn:ExecutablePath> /bin/past </jadldu:ExecutablePaths>
</jsdldu:Executable>
<jsdldu:Executable>
<jedldu: leMame> & tput.sh </jsdldu: ExecutableName>
<jsdldu:ExecutablePath> /bin/pest </jsdldu:ExecutablePath>
</jsdldu:Executable>
</jsdldu;: PostJebSequence>

<fj=sdl:Application>

<j=dl:Resources>. ..
</jsdl : JobSpeci Fication>

</fjsdl>

Executed in serial with only
one CPU before the main
application. As in example this
functionality can be used to
transform input files if
necessary

Post-job Sequence Definition

Executed in serial with only
one CPU after the main
application. As in example this
functionality can be used to
run short compare result files
runs or to transform output
files into specific formats used
in scientific application-
specific storage approaches

(i) Listing: Example of JSDL + AU instance with application as well as pre- and post-job sequence definitions

Figure 5.33: Design layout for the application sequences concepts in JSDL and its refinements.

158

CHAPTER 5. ARCHITECTURAL DESIGN

Begin
/f not shown in Figure; choose of Grid resource might be manually performed

Begin JSDLCreationAndSubmit
End-user of Scientific Gateway defines the main Grid application (App)
to be executed using JSDL elements and creates (JSDL doc A)
End-user of Scientific Gateway defines additional a pre-processing
application (PrefApp) and post-processing application (PostApp)
using the functionality extensions of JSDL in (JSDL doc A)
{JSDL doc A) is defined as job seguence (PreApp), (App), (PostApp)
Scientific Gateway submits (JSDL doc A) with main application,
pre-processing and post-processing application definitions to (RES)
using Web service commmication and the OGSA-BES standard
End

Begin JobReceiwve
OGSA-BES instance of (RES) receives (JSDL doc A) and parses it
prepares job sandbox and pre-processing execution (PreApp).,
main Grid application (App) and post-processing execution (PostApp)
DGSA-BES instance of (RES) handels different types of execution modes
for (PreApp) and (PostApp) in serial and (App) in parallel
Sequence in (JSDL doc A) is transformed to a middleware-specific
format to execute the segquence (PreApp), (App)., (PostApp)
End

Begin JobSequenceProcessing
DGSA-BES instance of (RES) continues job processing
forwarding job to resource management system
DOGSA-BES instance monitors execution process in one job sandbox
First (PrefApp) runs in a serial execution mode using one core/cpu
Second (App) runs in a parallel mode using n cores/cpus
Third (PostApp) runs in a serial execution mode using one core/cpu

Previously unsupported:
End-users can specify numerous
pre-and post-processing
applications (i.e. compilers, data
transformers, etc.} that either run
before (i.e. pre) or after (i.e. post)
the main Grid application
execution; The result is thus a
sequence of applications

Previously unsupported:

The OGSA-BES instance is able to
configure and perform all
necessary preparations to
execute the pre- and post-
processing in serial and the main
Grid application in parallel.

Previously unsupported:

The OGSA-BES instance uses the
methods of the corresponding
middleware systems and underlying
execution backends or resource
management systems to execute
the job sequence as defined using

different types (serial, parallel).

(i) Listing: Pseudo-code of basic reference model algorithm that illustrates the new job sequence concept

Figure 5.34: Pseudo-code using the sequence support concepts.

interaction of e-Scientists is necessary to carefully select data that is considered to be staged in
or out at a given point in time in the overall process making use of human scientific expertise.
An overview of the manual data-staging concept is given in Figure 5.35.

As published in [265], a fundamental drawback of OGSA-BES [169], JSDL [115], and the
HPC FSP [305] is that they only support the so-called "data-pull” approach. That means end-
users can specify data locations to be staged as part of the J[SDL, and once submitted invoke
execution logic within Grid middleware systems (cf. Definition 12) to automatically pull the
data from the specified locations into the job working directory on behalf of the end-user. This
approach has proved to be a successful method, thus it is also one important feature of the
reference architecture.

But in addition to this approach, a rather client-initiated ‘data-push” approach enables end-
users to manually perform data-staging by using manually tools like secure copy (SCP) [275] or
features of SRM implementations. This latter approach is often motivated by manual scientific
investigation processes performed by end-users within more complex scientific workflows (e.g.
WISDOM [259]). In several cases, the expertise of e-Scientists (cf. Definition 10) is needed

Functionality Extensions and Improvements | Area | Extended Standard
(a) Pre-defined hold points Compute | JSDL

(b) New hold states in addition to HPC FSP states | Compute | OGSA-BES

(c) Manual manipulation of job states Compute | OGSA-BES

(d) Job sandbox location exposure Compute | OGSA-BES

Table 5.19: Functionality improvements for the manual data-staging concept.

5.2. DESIGN LAYOUT AND ESSENTIAL FUNCTIONALITY 159

within the process that in turn requires manipulation of the job management progress (e.g.
pause/continue) or more data-staging flexibility (e.g. intermediate result analysis).

While the “data-pull” approach is rather straightforward, the support of the ‘data-push’ ap-
proach is not trivial. Multiple core building blocks of the reference architecture are involved
and several improvements that affect the functional interfaces of OGSA-BES and also its inter-
nal state-model [169] of the execution process are needed. Hence, this requires an enhancement
of our basic run-time pattern described in Section 5.1.5. An overview of these proposed exten-
sions and refinements are presented in Table 5.19.

Manual data-staging-in/-out elements could be specified within the JSDL, but specifying
the exact location by end-users would make the approach very unflexible. The use of JSDL ele-
ments would thus make no sense. In contrast, the proposed improvement named (a) pre-defined
holdpoints within JSDL affects the whole execution process in the Grid middleware. Holdpoints
influence the state model [169] of the middleware that implements OGSA-BES and JSDL. They
can be specified similarly to ‘supported states” as defined in HPC FSP [305] (e.g. Running:stage-
in, Running:stage-out, etc.). Such additional states influence the OGSA-BES core building block
and the HPC FSP (i.e. JSDL profile) that is a viable basis. The state model is adopted, but
augmented with (b) new hold-states as shown in Figure 5.36 thus extending the basic run-time
pattern of the broader reference architecture as introduced in Section 5.1.5.

The benefit of using holdpoints is that they are more generally applicable and not only lim-
ited to data-staging activities while offering maximum flexibility to end-users. Figure 5.36 illus-
trates the Running:Executing state could also be used with a holdpoint, which in turn enables,
for instance, the manual pre-processing of previously staged-in data. For example, before the

~
Scientific Gateway (client for OGSA-BES and SRM interface) (@-"& JspL+ éu Gnd
) Creation Entity :

clients
N
1 A
(1SDL+ AU) based job | 1 manual data-staging by end-user (‘data-push’)
submits with data-stoging | - —————— 1

- | HTC-driven Grid
| HPC-driven Infrastruct I o s
“ riven Inirastrueture m Infrastructure infrastructures

|
\J : :
WGSA BES + AV) {ISDL+AU) — m’ Grid
Interface E)D Parsing & i
e Interface Data servers

Grid middleware) A System

SRM + AY)
Interface

N
Ll
|

| handle manual

manages jobs | qutomatic Jata-Staging w == handle automatic
data transfers

by Grid middieware (‘data-pull’) 1 data transfers

e (@ i‘l" Data resnurceﬂ‘

Job san!!ﬂx .
HPC-based Grid resource Data resource m‘

Legend: - CPUs / cores % compute jobs a component g standard D 15DL i Data

Figure 5.35: Manual Data-staging concepts with reference architecture core building blocks.

160 CHAPTER 5. ARCHITECTURAL DESIGN

actual execution starts, the e-Scientists is able to check whether the right data has been staged
or makes small manual modifications to data.

As illustrated in Figure 5.36, multiple hold states for each of the corresponding staging or
executing states are proposed, because this enables much better feedback to end-user clients
than just using one general hold state. Holdpoints are not considered to be "breakpoints’ known
from debugging tools. In contrast to breakpoints that interrupt the application execution it-
self, the holdpoints only interrupt the state transition process (cf. Figure 5.36) within the state
model.

The counterpart of the JSDL holdpoint improvement is the (c) manual manipulation of job
states which provides the functionality as part of a proposed OGSA-BES operation changeAc-
tivity(desired state). This operation is required in order to resume job-processing after a defined
holdpoint is reached. Instead of a dedicated continue() operation without a desired state pa-
rameter, a more general operation is proposed that enables the request of ’job suspends” during
the 'Running:Executing’ state in order to address the requirements defined in Definition 67.
Some RMS systems support the suspend feature and as such the WS-based interface within
Grid middleware should offer the functionality in a well-specified manner rather than just be-
ing added to job management interfaces in a proprietary way. End-users are also able to use
this additional OGSA-BES operation to request a transition into a corresponding hold state
without specifying holdpoints in the JSDL. The transition is not always possible as requested,
and as such concrete reference architecture implementations must ensure that only correct state
transitions are possible. The general operation approach is also useful for further state model
extensions that are applicable on-top of the reference architecture. Based upon the basic state
model, only state transitions are allowed according to the state model in Figure 5.36 and any

<jsdl>
<j=dl: JobSpecification>
<jsdl:JobIdentification> ...

Holdpoint Statements:
specified holdpoints that define

<jsdl:Application>
<jsdldu: Heldpoints>
</3sdldu :Holdpoints>
</jsdl:Application>
</jsdl :JobSpecification>

</jsdl>

<jsdldu:Heldpoint>Running: stage-in</ jsdldu :Heldpoint>
<jsdldu:Heldpeint>Running: stage-cut</jsdldu:Heldpoint>

when exactly the Grid
middleware system should stop
any activity when entering the
defined state

(here at the Running:stage-in
stateaswell as after the job
when entering the
Running:Stage-out state)

-Termmaled] [« Finished]

i

Running:
Stage-in

[Pending

/r
hEER

Running
Executing

Running:
Stage-out

¥

1
. Fa\ledl

Running:
Stage-in-hold

¥
Running:
Executing-
Hold

¥
Running:
Stage-out-
Hold

Standard Basic State Model
according to the HPC File Staging
Profile Specification

(State with dots indicate final
states wfo further transitions)

Additionally required states for
the manual data-staging concept
and other use cases

(red dotted lines are new
transitions to grew new states)

(i) Listing: Example of JSDL + AU instance with holdpoints (top); (ii) State model with required hold states (bottom)

Figure 5.36: Design layout for the manual data-staging concept with basic state model extensions.

5.2. DESIGN LAYOUT AND ESSENTIAL FUNCTIONALITY

161

Begin
/{ not shown in Figure; choose of Grid resource might be manually performed

Begin JSDLCreationAndSubmit
End-user of Scientific Gateway defines automatic data-staging via GUI
using a JSDL data-staging element and creates ([JSDL doc A)
End-user of Scientific Gateway defines a holdpoint (HP) in
{JSDL doc A) using the new elements for the Running:Stage-in state
Scientific Gateway submits (JSDL doc A) with holdpoints
and automatic data-staging elements to (RES)
using Web service commmnication and the OGSA-BES standard
End

Begin JobReceive
OGSA-BES instance of (RES) receives (JS5DL doc A) and parses it
prepares execution environment and sandbox
analyzing the holdpoint (HP) and stops any further job processing
exposing the sandbox location (SL) via the OGSA-BES interface

Begin Client-initiated data-staging
End-users re-use the (5L) information to perform manual data-staging
using their own preferred tools like SCP, GridFRP, or SEM operations
End-users use DGSA-BES changeActivity() operation of (RES) to proceed
End

Begin ResumeJobProcessing
OGSA-BES instance of (RES) continues job processing
performing the automatic data-staging as specified

Previously unsupported:
End-users can specify holdpoints
with known states like the
Running:Stage-in statein order to
perform manual data-stagings
when the Grid job enters this
state; in parallel we still support
the usual automatic data-staging

Previously unsupported:

Once a holdpoint is reached in
the process, the job processing is
transitioning in the corresponding
hold state, here Running:Stage-in-
hold; sandbox location is exposed

Previously unsupported:

End-users can re-use the sandbox
location and use their own
preferred ways of staging data into
the sandbox of the corresponding
job; after staging end-users request
to proceed with job processing via
the OGSA-BES interface

DGSA-BES instance monitors further holdpoints and stops
when a defined holdpoint matches a new state the
service instance is transitioning to Previously unsupported:

End Joh is further processed until the
next holdpoint is reached

End

(i) Listing: Pseudo-code of basic reference model algorithm that illustrates the new manual data-staging concept

Figure 5.37: Pseudo-code using the manual data-staging concepts.

other requested state transition must fail within Grid middleware that adopts the reference
architecture.

Closer investigation reveals that for the support of manual data-staging as defined in Defi-
nition 66 another improvement is needed named as (d) job sandbox location exposure. End-users
require the exact location where the job is running (i.e. the job sandbox location) in order to
stage data manually into the particular job sandbox location as shown in Figure 5.35. There are
two ways in which the exposure is supported.

First, the sandbox location should be directly provided in the response of a corresponding
createActivity(JSDL) of OGSA-BES. This requires a fast parsing of the submitted JSDL docu-
ment and a fast processing of all consecutive actions such as creating the job sandbox, that is
particularly unlikely for brokers that implement the reference architecture and simply forward
submitted JSDLs to underlying computing services. Therefore, as a second method, the sand-
box location must be exposed as soon as available together with other information about the
Grid job (e.g. current status). This is not part of the OGSA-BES interface functionality but part
of the information model GLUE2 by exposing information about this particular service.

Security aspects also matter when performing manual data stagings. When using Grid
middleware features like the OGSA-BES-based job submission, end-users use their Grid cre-
dentials, that are X.509 certificates. This identity is then further used in automatic data-staging
functionality leading to the use of delegation mechanisms like using X.509 proxies [300] ex-
plained as part of the reference architecture security pattern in Section 5.1.6.

In terms of manual data-staging, it is also expected that Grid credentials are re-used like
using an X.509 identity to SSH [275] into the exact sandbox location in order to manually per-
form data-stagings. The SSH on the corresponding system should be properly configured to

162 CHAPTER 5. ARCHITECTURAL DESIGN

enable this since the interactive access to Grid resources in detail is out of scope of the reference
architecture design layout. Different security mechanisms are used like typical xlogins with
username and password, or SSH into the sandbox location, or the use of File Transfer Protocol
(FTP) [275] for data-transfer. The reference architecture does not mandate any solution, but
the Grid single sign-on feature [170] must be maintained whatever security setup is used by
reference architecture adoptions.

The proposed concepts can be formulated as XML renderings of the improvements and
functionality extensions. The pseudo-code in Figure 5.37 highlights the basic reference archi-
tecture algorithm (cf. Section 5.1.5) with aspects which have been previously not been sup-
ported.

Finally, Table 5.20 summarizes the aforementioned improvements of reference architecture
elements and provides an overview how the requirements of Chapter 4 are addressed on the
reference architecture level.

Requirement Definition | Addressed in which manner
Definition 66 Manual data-staging
(Manual Data-staging Mechanism) via core building blocks;
Definition 67 Improved Grid job control
(Grid Job Manipulation Functionality) | via core building blocks;

Table 5.20: Addressed requirements for the manual data-staging support.

5.2.6 Enhanced Accounting and Data Management Concepts

The concepts described in this section are based on the core building blocks UR, SRM, and
WS-DAIS of the reference architecture that are all open standards. But these standards also re-
quire several refinements that are presented as part of this section. The particular requirements
addressed on the architecture level are summarized as part of Table 5.22.

The UR [216] is a standard to track computational resource usage. In [177], the specification
is used to integrate the LLView resource monitoring tool with UNICORE. These results have
been presented at the German e-Science conference in Baden-Baden in 2007, also mentioning
the fact that more detailed computational information is needed in order to correctly track the
resource usage of large-scale HPC resources and to correctly use the UR format with LLView.
This input has been given at this time into OGF, but since then never found its way into a new
UR specification despite several ongoing UR activities during OMII-Europe [69].

In OMII-Europe, work on WS-DAIS-based technologies like OGSA-DAI [117] and gLite
components that offered SRM interfaces such as Castor [249] also pointed to necessary im-
provements. Most notably, the UR format should be extended towards the usage of storage
information that is not covered by the computational-driven UR standard. The work in this
section thus aims to address necessary extensions of requirement defined in Definition 56.

There is a also need to have more granularity in resource usage tracking. In a wide variety
of use cases (e.g. EUFORIA [225]) and for work on invariants introduced in Section 5.1.4, more
details about how infrastructure resources (cf. Definition 6) are used are needed. An overview
of the proposed refinements are presented in Figure 5.38 with a particular focus on the UR
specification. Resource tracking needs a common schema for computing and storage resources.
A scalable way of exposing UR + AZ is an information service.

The previously introduced refinement concepts are all very much related to computation
itself, in contrast, this section reveals some refinements from the data management and in-
formation area. The UR standard is traditionally in the field of accounting, but in this thesis

5.2. DESIGN LAYOUT AND ESSENTIAL FUNCTIONALITY 163
'ﬁ Scientific Gateway ‘.i Monitoring GUI Scje”ﬁﬁ?
) (DGSA-BES + AV, SRM + AY, WS-DAIS + AX clients) (GLUE2+A\M UR +AZ) and Admin
Clients
_____________ |
e ————— = = = = = = = -
- Interoperable
u HPC-driven Infrastructure L‘L“"J:' HTC-driven Infrastructure e-Science
T T Infrastructures
o 1
v
v W ki
OGSA BES + AV) i:‘;;{a::; S-DAIS + AX) i (SRM + AY) _Network of
3 \, Interface o (e.q. LDAP) ., Interface S Interface mfempgrable
AT = , services
Middleware 1 | Information System Database Server
1
L Sensor L Sensor 1 Accounting
SACUR +AZ SPUR +AZ 1 Sensors
| Forall services
—_—— l ——— —
lll
UR +AZ Enti UR +AZ Entity . e-Science
= = Infrastructure
Prouessc:‘rs“: 4096 Used D'.l;lcSpaue Resources
Host - bluegene14 -12,376G8 = BB For
[[-] computation
HPC-based Grid resource Resource Information Resource Information and storage

Legend:

CPUs / cores i i -
- / %mmpufe Jjobs a component S\‘., standard D 15DL . UR i Data

Figure 5.38: Enhanced accounting and data management of reference architecture core building blocks.

the UR is in the information area, because of its close relationships with information systems in
general and GLUE2 in particular. The focus is truly on computation rather on the data manage-
ment that is best reflected in the previous concepts as well. Nevertheless, Table 5.21 provides
an overview of the functionality extensions addressing non compute core building blocks such
as UR, SRM, WS-DAIS partly also re-using GLUE2.

The adoption of the UR specification as part of the OMII-Europe project included several
HPC resources that was published in [177]. In addition to the precise description available
in the UR specification [216], the academic analysis of UR usage on HPC resources such as
supercomputers revealed that the UR needs a (a) tracking of more computational resource details.
Although information is available via Processors or NodeCount, a more finely-granular resource

Functionality Extensions and Improvements | Area | Extended Standard
(a) Tracking of more computational resource details | Information | UR

(b) Tracking of VO information Information | UR

(c) Re-use elements of GLUE2 Information | UR

(d) Tracking of storage resource details Information | UR

(e) Clarified space tokens usage Data SRM

(f) More scalable query results Data WS-DAIS

Table 5.21: Functionality improvements of enhanced accounting and data management.

164 CHAPTER 5. ARCHITECTURAL DESIGN

linked S
L. e
- <urf:JobUsageRecord>
<urf :JobIdentity>

<urf:LocaldobId>j41f.84777</urf: LocaldobId>

<glue?> <furf:JobIdentity>
<glue? :ComputingEndpeint:> <ure :UserIdentity>
= =2 03 . . <urf:LocalUserId>pooldS</urf: LocalUserId>
</gluel: ComputingEndpoint> <urfds VOiame>WISDOM</urfdz :VOiame>

<urf :UserIdentity>

<urf :Processors>

<glue? :ComputingManager> <glue? :PhysicalCPUs>1024
S5 o </glue?: PhysicalCPUs>
<glue2 :NetworkInFo> <glue2dw:PhysicalCores>d
torus </glue2dw:PhysicalCores>
</glue2:NetworkInfo> <furf:Processors>
<glue2dw: Shape> <urr :NodeCount>4
<glue2dw:Dimd{> 1 </glue2dw :Dimi> </urf:NodeCount>
<glue2dw:Dim¥> 1 </glue2dw:Dim¥> .
<glue2dw:DimE> 2 </glue2dw:DimE> <urfdz:TasksPerfode>1l
</glue2dw: Shape> <fur fdz: TasksPerNode>
<glue?:Phy=ical CFUs> <urf ;Network>45</urf:Network>
1024
</glue?:Physical CPUs> <urfdz NetwerkInfo>
o) <glue? :NetworkInfo> torus
<glue2dw: PhysicalCores> </glue2: RetworkInfo>
4

X </arfdz:Ne tworkInfo>
</glue2dw: PhysicalCores>

</urf : JobUsageRecord>
</glue?:ComputingManager> L.
<furf>

</glueZ>
(i) Listing: Example of GLUE2 + AW instance supporting (i) Listing: Example of UR + AZ instance re-using several
large-scale HPC resources GLUE2 + AW elements for usage tracking

Figure 5.39: Design layout for the enhanced accounting and data management concepts.

usage tracking is required such as the amount of used physical cores or tasks per node as shown
in Figure 5.38.

In performing the thesis case studies between UNICORE in DEISA/PRACE and gLite in
EGEE/ECGI (e.g. WISDOM [259]), another limitation was identified named as (b) tracking of
VO information. This is important since during the case studies many HTC resources, pool
accounts are used that do not identify a specific user or VO and thus the UR entity needs
more details than the existing LocalUserld element that is often used for the concrete account
(at least on HPC resources). This information is obtained from the security credentials that
are part of the security pattern (cf. Section 5.1.6). Both the SAML assertions and X.509 AC
proxies give this detail as part of their security attributes about end-users. Grid middleware (cf.
Definition 12) needs to take care of providing this information to a corresponding accounting
sensor illustrated in Figure 5.38.

Another aspect of these particular studies is again another missing link between the speci-
fications GLUE2 and UR where a lot of information in UR should be kept in sync with GLUE2
in order to maintain semantic interoperability. This improvement is named as (c) re-use elements
of GLUE2 within the UR (similiar to that already shown in JSDL). This not only avoids having
error-prone translators and adapters between UR and GLUE2, but also supports the process
of understanding whether requested resource requirements in a GLUE2 enhanced JSDL docu-
ment have really been satisfied by checking the UR resource usage entity. One example of the
concept behind the refinements is shown in Figure 5.39.

5.2. DESIGN LAYOUT AND ESSENTIAL FUNCTIONALITY 165

Begin
Begin GridInformationProvisioning Previously unsupported:
Grid Information Provider of (BES) sends (GLUE2DW list A): The information pravider sends
listelement[0] = {awvailable network topologies} N N .
listel t[1] = {available CPUs/cores} information with ther- GLUE2 + AW
Grid Information Service updates (GLUEZDW Instance Entity) elements about available
using (GLUEDW list A) obtained from Grid Information Provider network topologies or available
Grid Information Service exposes (GLUEZDW Instance Entity) CPUs/cores. The Information
= service exposes it via a

Begin JSDLCreationAndSubmit GLUEZ2 + AW Instance.
End-user obtains (RES) information from information service
End-user of Scientific Gateway defines application wia GUI Pre'w'ausly umupparted:

using a JSDL creation entity that creates (JSDL doc B) Re-using the GLUE2+ AW elements

JSDL creation entity re-uses GLUEZDW elements of information service

specifying network requirements (NR) in (JSDL doc B) — in J5DL preserves and assures the
Scientific Gateway submits (JSDL doc B) with GLUE2DW elements to (RES) same semantics of the elements
using WS communication and OGSA-BES standard with security setup (SEC) thatare initially provided and
End exposed by the Grid resource itself
Begin JSDLParsingAndURWritingProcess
DGSA-BES instance of (RES) gets (JSDL doc B) and parses it Previously unsupported:
managing execution according to specified (NR) Accounting sensors write
DGSA-BES instance forward=s and manages the job via the BMS of (RES) semanl‘l'call\r correct data as
Accounting sensor (AS) creates a URDZ entity using (SEC) context and UR+ AZ entities that are in-line with

puts information about VO into the record as well as information

about (RES) and the job run itself re-using GLUE? elements JsDLrequests by re-using GLUE2

End with JSDL and UR
Begin UseResourceUsageMonitoringToolLLView Previously unsupported:
AS at DGSA-BES instance of (RES) expose the URDZ entity via an Inusing the standardized UR
information provider to an information service and thus LLView by re-using GLUE2, the UR entity
URI_)xcint._lty pm"‘“‘e: 1°:’1e"3 details a:‘m? ;; :"mm \]'rgh' e matches with logged ISDL entities
End o Y network topology, ° Sl g Gk and provides more details about the
End resource usage, including VO names

(i} Listing: Pseudo-code of basic reference model algorithm that illustrates previously pported pt ele 5

Figure 5.40: Pseudo-code using the enhanced accounting and data management concepts.

The same is true for the proposed UR extensions to support (d) tracking of storage resource
details in addition to computational resource usage only. Also in this case a complete listing is
out of scope, but Figure 5.39 aims to illustrate the key idea for compute transferred to the data
domain re-using GLUE2 elements for storages [113] in a similiar way.

When working with SRM installations during OMII-Europe, academic analysis revealed
that there is a need to (e) clarify space tokens usage since the SRM specification [286] leads to
ambiguities. Hence, this indirectly addresses the requirement in Definition 50 since the dis-
ambiguities of the SRM specification was affecting the interoperable storing and retrieving of
data across different SRM implementations. Adoptions (e.g. Castor [249], dCache [178]) imple-
mented this concept in slightly different and non-interoperable manners. In the long-term this
just needs to be clarified in the specification, but as part of the reference architecture work we
adopt the "WLCG profile’ [104] usage of it that has been given as an input to the SRM working
group and is in discussions.

In the case of the WS-DAIS specification [9] and its implementation in OGSA-DAI [117],
during OMII-Europe the demand for (f) more scalable query results have been identified. Hence,
also this indirectly addresses the requirement in Definition 50 since the WS-DAIS specification
points to limitations in their adoptions that are not implementation details, but are issues with
the specification design. End-users couldn’t really work with the WS-DAIS adoptions that have
been fully standard compliant. The specification itself uses a concept that provides the results
as part of one SOAP message that in turn is a scalability problem. The concept of the W3C
WS-Enumeration specification [107] need to be added to the WS-DAIS specification in order to
make query results more scalable (i.e. limit the number of returned datasets and iterate over
them). Hence, we do not break the existing specification, but suggest to add a more scalable
mechanism on top of the existing mechanism for results.

166 CHAPTER 5. ARCHITECTURAL DESIGN

Also these lessons learned have been given as an input to the OGF WS-DAIS group several
years ago. In the meanwhile it is therefore tackled in PGI while it is a second priority after
working on PGI inputs to computational specifications (e.g. OGSA-BES 1.1).

In contrast to the work on UR, both latter refinements have been gathered together with
experts from the data domain, but no publications are available for thise findings. Hence, this
thesis does not take credit for these proposed extensions, but they are part of the reference ar-
chitecture and refinements as they significantly support production usage. Nevertheless, the
studies revealed that those refinements are still important to be included as part of the overall
reference architecture in order to keep interoperability indicated with WS-DAIS + AX and SRM
+ AY in Figure 5.38. In order to take the overall reference model design and its associated ref-
erence architecture into account, several parts of the aforementioned functionality extensions
are part of the missing link between the core building blocks GLUE2 and UR. Concrete XML
renderings of GLUE2 can be defined that are re-used within UR as illustrated in the example
in Figure 5.39.

The following pseudo-code in Figure 5.40 illustrates the algorithm aspects that had pre-
viously not been supported. It describes which refinement leads to a more accurate resource
tracking within the aforementioned basic reference architecture algorithm as part of the run-
time pattern (cf. Section 5.1.5) with a particular focus on computation. The resource usage
tracking using UR entities for storage can be considered to be very similiar to using SRM ser-
vices and WS-DALIS services that write UR + AZ by re-using GLUE2 elements from the storage
such as 'StorageShare” in the GLUE2 specification [113].

Finally, Table 5.22 summarizes the aforementioned improvements of reference architecture
elements and provides an overview how the requirements of Chapter 4 are addressed on the
reference architecture level.

Requirement Definition | Addressed in which manner
Definition 50 Clarifications of

(Grid Data Management Service) SRM core building block;
Definition 50 Improvements of

(Grid Data Management Service) WS-DALIS core building block;
Definition 56 Storage and compute extension
(Grid Usage Record Format Schema) | to UR core building block;

Table 5.22: Addressed requirements for the accounting and data management concepts.

5.3. SEVEN SEGMENT-BASED PROCESS FOR INFRASTRUCTURE INTEROPERABILITY 167

5.3 Seven Segment-based Process for Infrastructure Interoperability

Abstract ~
Reference Model (Chapter 5)
[Reference Model Entities] [Reference Model Entities Relationships]
[Blueprint and Design Foundations]

‘guidedh\r
e

Architectures
(Chapter 5)

[Functional Requirements]

Requirements
(Chapter4)

[Intraslructure Integration r:onsnaims]

Motivation jaccounts forl [Infrastructure Usage Model] considers
(Chapter2) K

Goals derived * Influenced by
(Chapter 2)

00

[Legacy Technology]

Standards
{Chapter 5)

Related Work

[Constraints] [Policies]
Concrete Production Infrastructure

_ Architectures {Chapter &)
\ Architecture Work /
constrained by
[Service Oriented Architecture Implementations (Chapter &)]
Concrete]

accounts for

Concrete SOA Implementations

Figure 5.41: The reference model and architecture associated process.

The initial chapters described the state-of-the-art in e-Science infrastructures (cf. Definition
4) and also explained the open issues and challenges in having a reference model and associated
architectural elements. This section describes more long-term activities as a process alongside
the rather technical reference model and associated architecture work as shown in Figure 5.41.
The requirements addressed in the architecture work are summarized as part of Table 5.23.

It seems to be obvious that those elements are based on open standards according to Def-
inition 47. The benefit is to prevent transformation logic (cf. Definition 27) as concluded in
Chapter 3. These findings are clearly relevant within the greater e-Science community today;,
and as a consequence more and more technologies that are relevant for production e-Science
infrastructures (cf. Definition 5) adopt open standards (cf. Definition 14).

But at the same time the rate of interoperability is not increasing significantly, while in some
cases once established interoperability between Grids is not sustainable. As a consequence, the
majority of infrastructures are not interoperable (cf. Definition 19). One of the reason for this
relies in the complexity of production e-Science infrastructure interoperability that consists of
far more challenges than those which can be easily overcome by only technical work.

Adopting common open standards in technologies guided by a reference model is surely
an approach as concluded from Chapter 3. But a reference architecture with open standards
is only one step in the right direction, since it must be complemented with a whole process as
required in Definition 78 and as shown in Figure 5.41.

168 CHAPTER 5. ARCHITECTURAL DESIGN

Such a process needs to take the dynamics of change of the infrastructure environments
(i.e. technologies) and governance (i.e. policies) into account, and more specifically several
non-functional requirements raised in Section 4.2. This contributes to tackle one of the key
challenges in e-Infrastructures referred to as ‘Balance’ in [210].

The particular contribution of this sub-chapter is therefore the provision of some key seg-
ments of such a process that bears the potential to achieve and to sustain interoperability be-
tween production e-Science infrastructures on a long-term perspective. Such a process is pub-
lished in [254], referring to seven distinct segments (often earlier named as steps) in order to
provide a complementary guide to the reference model and its associated architecture work.

The process also addresses those aspects that go beyond pure technical issures and chal-
lenges. The process provides thus guidance to technology developers as well as infrastructure
providers on how certain interoperability problems at different levels (technology, policy, etc.)
needs to be tackled to be sustained. All the seven segments describe abstract mechanisms to-
wards interoperability and thus are not intended to provide particular solutions optimised for
specific components, architectures, or infrastructures. Figure 5.42 illustrates an overview of the
seven segments that bear the potential to gradually increase the chance of interoperability.

The overview of the seven segments shown in Figure 5.42 clearly points to a lot of com-
plementary activities in the field of e-Science Infrastructures and Research infrastructures as a
whole. Many of these aspects mentioned in the segments are in-line with those proposed in
various reports such as e-IRG papers, e-Infrastructure concertation meeting reports, or reports

Figure 5.42: Overview of the seven segments towards production e-Science infrastructure interoperability.

5.3. SEVEN SEGMENT-BASED PROCESS FOR INFRASTRUCTURE INTEROPERABILITY 169

Requirement Definition | Addressed in which manner

Definition 78 Process defined with
(Process for Sustained Infrastructure Interoperability) | seven specific segments;

Table 5.23: Addressed requirements as associated elements to the architecture work.

of the European e-Infrastructure Forum (EEF) [23]. However, the scope of these reports often
goes far beyond the problem space of this particular thesis. As a consequence, the process
segments are not invented in this thesis and completely new. Instead, the segments represent
a specific collection of ‘many recommendations” gathered from several of those inputs with the
particular focus on ‘e-Science infrastructure’ interoperability. The goal is thus to provide a clear
focussed guideline for those that would like to implement a path towards infrastructure inter-
operability in e-Science. Finally, Table 5.23 summarizes the aforementioned improvements of
associated elements of the architecture work and provides an overview how the requirements
of Chapter 4 are addressed.

5.3.1 Segment 1: Open Standards-based Reference Model and Architecture

The first segment towards the interoperability of production e-Science infrastructures is to cre-
ate a standards-based reference model. The requirements addressed alongside the architecture
work as part of the process are summarized as part of Table 5.24. As previous sections of
this chapter indicate this also includes the definition of associated architecture elements (e.g.
reference architecture, patters, etc.) as defined in Definition 79. A reference model refers to a
broad term that stands for an “umbrella’ and for a lot of associated architecture work, including
standards, profiles, specifications, and others. In the context of production e-Science infrastruc-
tures, it is important that this reference model embodies the fundamental goal of an interoper-
able network of services (cf. Definition 15). The goal is that such a model can be looked up for
various purposes and consists of a number of well-formed entities, relationships, and concepts
that guides and provides the focus for a more concrete reference architecture and subsequent
derived concrete architectures for many different infrastructures. The findings of Chapter 3
pointed to the fact that it is recommended in this step that the reference architectures are slim
and production-oriented to have a chance to be used in practice (cf. TCP/IP vs. ISO/OSI). An-
other important key recommendation for the creation of the reference model is obtained from
the European Informations, Communications, and Consumer Electronics Industry Technology
Association (EICTA) white paper 2006 by maintaining the focus on interoperability requirements’
[158] rather on requirements that not necessarily are important for the interoperability of e-
Science infrastructures (e.g. very unique capabilities).

The first key element of the reference architecture design approach is to use open standards
(cf. Definition 14) in order to prevent transformation logic (cf. Definition 27). The use of
standards should be inherent in the design for both services guided by reference model entities
and their relationships with one another. The reference model should be established with an
approach driven by “interoperability by design’. Nevertheless, from a strict technical perspective
standards only can be referred on the architecture level guided by the overall reference model
as illustrated in Figure 5.41. As such the term ’standard-based reference model’ refers to the
term 'reference model” again as an umbrella term that should be the outcome of this segment
in context of the larger seven segment-based process.

With this approach, the aspect of the work of developers in creating objects, which behave
precisely according to the reference model and reference architecture standards is made easier.
The core building blocks of this reference architecture implementations, which are guided by

170 CHAPTER 5. ARCHITECTURAL DESIGN

the entities of the greater reference model, should use open standards where possible. The use
of standards enables developers to re-use reference architecture implementation parts again,
and also end-users can switch technologies more easily.

Even more important is the standards-based approach for achieving the goal of an inter-
operable network of Grid services realised by adopting the reference model architecture. By
using open standards rather than proprietary interfaces, there is a greater probability that the
majority of Grid technology providers adopt the standards of the reference architecture in order
to obtain interoperability between services from different technology providers. This enables
a 'strive for innovation and competition based on agreed standards’ [158] as recommended in the
EICTA white paper 2006. Having these standards-based service implementations from differ-
ent providers deployed on the wide variety of production e-Science infrastructures brings the
vision of an interoperable network of Grid services closer to end-users. The overall reference
model design and the reference architecture layout should be significantly driven by such a
vision, as illustrated in Figure 5.43. This includes the creation of individual infrastructures (cf.
Definition 20) defined on-demand by end-users according to their needs.

From the technical perspective this segment with the reference model and its associated
reference architecture elements is by far the most important one compared to other segments.
It even influences all other segments providing focus on those entities and relationships of an
infrastructure architecture that need to be handled by subsequent segments. In-line with sw-
engineering practices, the reference model approach and the use of standards need to work
according to the principle of defining an architecture independent from its implementation.

- -,
/ S~
= >
Sarvice N £ g (i)
! | OpenstandardB N e-Science
| (e.g. technology B) N < Infrastructure
| - ~ Type A
I
' Service Service
i Open Standard A \ iDpen Standard A
| e.g. techonology E \ .. technology F
-
|
> !
Service \ 1
e s Y
o . i(DpenStandardA
e.g. technology G
N Service ‘ = 2Ll
N\ iDpenStandardA \ .
~ (e.g. technology H) \ (if}
e-Science
Infrastructure
Service ~ . Type B
. OpenStandard B Service
{e.g. technology A) | Openstandard B]
-~ e.g. technology D
- - s e - -
Legena- [f) Data Resource [j Compute Resource = == = ingividual Infrastructures

Figure 5.43: A network of interoperable Grid services enabled by a common reference model.

5.3. SEVEN SEGMENT-BASED PROCESS FOR INFRASTRUCTURE INTEROPERABILITY 171

Evidence in the past in e-Science infrastructures shows that this is not always the case that also
partly contributes to non-interoperable infrastructures existing today. For example, the EGEE
project was at the same time also an infrastructure and technology provider (i.e. gLite) what
makes it hard to define an architecture independent from its implementation.

Finally, it should be noted that several activities in e-IRG and at e-Infrastructure concerta-
tions meetings pointed to similiar activities, but the creation of a reference model as described
in this segment one was not recommended until today. Instead, tables of project outcomes have
been defined or larger frameworks that cover many EU projects, but still lack which tool (i.e.
reference model) should be used to increase interoperability as a long-term process.

Finally, Table 5.24 summarizes the aforementioned improvements of associated elements
of the architecture work and provides an overview how the requirements of Chapter 4 are
addressed.

Requirement Definition | Addressed in which manner

Definition 79 Segment one recommending a
(Common Reference Model Creation) | standard-based reference model;

Table 5.24: Addressed requirements as part of process segment one.

5.3.2 Segment 2: Collaboration with the Right Set of Technology Providers

The second segment of the process towards interoperability of technologies is about influenc-
ing a significant fraction of the landscape of e-Science infrastructures with the right set of tech-
nology providers. The requirements addressed alongside the architecture work as part of the
process are summarized as part of Table 5.25.

This segment recommends that the real impact towards interoperability especially in using
the aforementioned segment about reference models and associated architecture recommen-
dation can only be achieved with the closest possible collaboration among the key technology
providers in the field, as defined in Definition 80. This idea is not new, and there are several
activities in the field that aim to encourage collaborations by bringing together key players of
the community.

One example is a meeting with "150 key players of the e-Infrastructures community in order
to take stock of the current developments and to discuss future actions’ [134]. These meetings are
named as ‘e-Infrastructure Concertation meetings’ organized by the European Commission (e.g.
[132, 133, 134, 156] and present an excellent opportunity to enable collaboration. But the scope
of this activity is rather high-level, e.g. "to communicate the Commission’s policy on e-Infrastructures
and e-Science’ [134] or 'to discuss the future of directions of e-Infrastructures in Europe’ [134]. While
both topics are very relevant, the lack of focus on particularly important aspects to interop-
erability distinguishes this segement from those meetings although some of them have been
performed with a particular focus on standardisation (e.g. [132]). Hence, the recommendation
of this particular event is to collaborate much more closer than only driven by event-based
approaches.

Technology providers have different roadmaps, but also in many cases having overlapping
interests in-line with the greater community. Although this segment seems like good scientific
practice, and as such sounds pretty obvious, it is often neglected and its true power in getting
to agreements is underestimated.

One of the key aspects in this segment is that such collaboration needs to be established
as early as possible. When a group of technology providers in a specific field aims to create
and adopt a specific reference architecture that promotes interoperability, it is wise to get as

172 CHAPTER 5. ARCHITECTURAL DESIGN

much of the technology providers in the field ‘on board” as soon as possible at the beginning.
When a sub-fraction of known technology providers first creates a reference model and other
technology providers join later, it is very unlikely that the majority of concepts of such a model
is accepted without an enormous amount of discussion and clarification (if accepted at all).

But involving all the technology providers of relevant e-Science infrastructures in the pro-
cess is not enough. Even more important and challenging is the mutual understanding of the
providers during the process. Often, the different backgrounds and unique motivations of
the technology providers in general and their corresponding roadmaps in particular lead to
huge divergence of requirement collections. But in many cases, many of these requirements
are duplicates since the mutual understanding about different terms and their semantics is a
true challenge, while many different terms actually refer to the same 'fact’. The aforementioned
collaboration issue is another important aspect where communication elements among individ-
uals come into play in this segment. In many cases the missing common semantics about terms
(e.g. sandbox, workspace, job-space, etc.) and concepts (e.g. data-push and client-initiated
data-staging, etc.) lead to situations where long discussions in the end reach the conclusion
that all are talking about different things but referring to the same "thing’.

A very important part of this step towards interoperability is to understand the other tech-
nology providers and their background before being understood by them, which, in turn, is
a key principle known from Covey [151]. Another aspect is collaborating with all technology
providers early on in the agreement process about design issues. This segment towards inter-
operability cannot provide concrete detailed solutions in order to reach agreements.

Therefore, valuable methods known in literature provide good approaches such as the co-
called "principle negotiation concept’ from R. Fisher and W.L. Ury published in their book 'Getting
to Yes” [166]. The general guideline as part of this particular collaboration segment is surely to
seek WIN/WIN situations [151]. It is better to adopt two concepts as part of the same stan-
dard in parallel (if possible) rather than leaving important concepts out of the specification
and resulting in a standard that misses valuable concepts and because of this is not used at
all. Another mechanism is voting with majority decisions that is a better solution than leaving
important functionality out of the standard when only the minority is against it and leaves the
standardization effort, but at least is then used by the majority of technology providers. There
are also technology providers that are invited to a collaborative process (e.g. in SDO working
groups), but hesitate to join the efforts from the beginning. But it is not to be underestimated
that an agreement among the majority of technology providers in one specific field influences
others. Such important agreements, especially on standards that are later used in practice, often
also influence those hesitating technology providers.

Finally, Table 5.25 summarizes the aforementioned improvements of associated elements
of the architecture work and provides an overview how the requirements of Chapter 4 are
addressed.

Requirement Definition | Addressed in which manner

Definition 80 Segment two recommending
(Key Technology Providers Collaboration) | collaboration with key technology provider;

Table 5.25: Addressed requirements as part of process segment two.

5.3. SEVEN SEGMENT-BASED PROCESS FOR INFRASTRUCTURE INTEROPERABILITY 173

5.3.3 Segment 3: Reference Architecture Implementations

The third segment towards interoperability augments the theoretical consideration of a ref-
erence model with practical expertise of its associated reference architecture adoption within
concrete technologies. The requirements addressed alongside the architecture work as part of
the process are summarized as part of Table 5.26.

This segment is a complementary effort to the rather theoretical reference model design in
general and the recommendation of using open standards (cf. Definition 14) in particular. The
reference architecture implementations and early prototypes of the overall reference model
entities, relationships, and concepts reveal many important practical insights that theoretical
architectural blueprints often cannot provide. Hence, it makes sense to develop reference ar-
chitecture implementations and prototypes of the major concepts during the design process as
defined in Definition 81.

One practical example during this process is the implementation of emerging open stan-
dards that did not fully reach their specification status or that are refined towards a second
version of them. Although sometimes being cumbersome and 're-factorings” can often be ap-
plied to them, the reference architecture implementation with prototypes provide clarity to
theoretical thoughts. It thus also brings attention to the design process, avoiding drifts into
overly theoretical approaches that are not useful in practice (cf. TCP/IP vs. ISO/OSI).

In the majority of cases, a full reference architecture implementation in parallel is basi-
cally not possible due to the lack of effort that needs to quickly adapt to numerous changes.
Nevertheless, the concept prototypes created in parallel to the reference model design process
and standardisation process is a necessary requirement to achieve real working production so-
lutions. The 2006 white paper of the EICTA also offers one specific recommendation in this

-—-—
-
/ - P Service
- . (s 3
F) Proprietary Interface
] Service N e.p. technology C (i)
1 Open Standard B + AY hY e-Science
] (e.g. technology B) ~ - Infrastructure
1 e ~ Type A
L}
| Service Service
Open Standard A + AX Y | Openstandard A +4X
| e.g. techonology E e.g. technology F|
~
\
- Service \
- s Open Standard A + AX
e.g. technology G
N Service \ ke £ S)
h) Open Standard A + AX \ »
{e.g. technology H) (ii)
e-Science
N Infrastructure
J Service e . . 1 TypeB
“Open Standard B+ AY) Service
(e.g. technology A) OpenstandardB+ AY | |
-~ e.g. technology D)
S - eam e e -
Legend: i Data Resource [Compute Resource ™ "= = Individual Infrastructures

Figure 5.44: Reference architecture core building blocks refinements over time.

174 CHAPTER 5. ARCHITECTURAL DESIGN

particular context for the standard development process: 'Consider making a range of prototype
implementations and interoperability testing part of the standard development’ [158].

The reference architecture implementations of a reference model and its major concepts
as well as its standard-based architecture lead to insights as to how open standards can be
improved. Based on the experience of the early adoption, such standards also need to be re-
fined with improvements as illustrated in Figure 5.44 in which refinements are indicated with
A standing for additions to open standards. These refinements (cf. Definition 48) should be
based on an analysis process, which takes many different existing approaches as well as lessons
learned of experimental field studies into account, especially those gained from working with
applications across infrastructures. Expected outputs of this analysis are a couple of non sup-
ported, but additional concepts, which have the potential to significantly improve the efficiency
of applications across infrastructures, but do not break the standards themselves.

Finally, Table 5.26 summarizes the aforementioned improvements of associated elements
of the architecture work and provides an overview how the requirements of Chapter 4 are
addressed.

Requirement Definition | Addressed in which manner

Definition 81 Segment three recommending
(Reference Implementation Developments) | reference implementations;

Table 5.26: Addressed requirements as part of process segment three.

5.3.4 Segment 4: Standardisation Feedback Ecosystem

After the short-term initial segments towards interoperability in the previous sections, this sec-
tion addresses aspects on a medium to long-term perspective in order to reach sustained inter-
operability of reference architecture implementations. The requirements addressed alongside
the architecture work as part of the process are summarized as part of Table 5.27.

This segment is also about the process of improving open standards, but goes beyond the
previous segment. The idea is not new and also recommended in the EICTA white paper 2006
with "Provide feedback channels for standards maintenance’ [158]. This segment provides concrete
feedback to the standardisation process via such a channel by creating a whole 'group ecosystem’
with a production-oriented focus as raised in the requirement in Definition 82.

The implementation of the previous segment should improve the overall reference model
design in general and should enable end-users with e-Science applications across infrastruc-
tures in particular to take advantage of initial interoperability setups. This early adoption work
contribute to important lessons learned on how standards can be improved, but this is achieved
in many different technical areas at the same time with using specifications together as a whole
solution for a given problem (e.g. security with job submission). But that does not directly af-
fect one specific standardisation working group and therefore the feedback channel is unclear.
Investigations into the e-Science applications revealed as part of the case studies of this thesis
(i.e. WISDOM, VPH, and EUFORIA) that in many cases the use of one standard is coupled
with the use of another standard of a different technical area.

One practical example is the use of a computing standard within e-Science infrastructures
that also implies the use of multiple particular security standards. These security standards do
not directly specify how it should work with the specifications of the computational area. The
other way around, computational area specifications also often argue that security is out of the
scope. The corresponding working group responsibility of working on standards together in
order to work on production feedback is not always clear. The lack of responsibility from such

5.3. SEVEN SEGMENT-BASED PROCESS FOR INFRASTRUCTURE INTEROPERABILITY 175

nteroperability End-user access
in use to infrastructures
Infrastructure A ‘~yInfrastructure B o others / via standards-

based components

standardized lessons learned of standards-based
components components in practice

Standard adoptions& Standard compliance checks Standards
componentintegratio ’ ’

standard
specifications

GROUP A

=
he's
TP

Figure 5.45: Standardization feedback system within an SDO with two complementary groups.

a dedicated group represents a hindrance to providing production feedback to existing open
standards.

Based on these findings, the fundamental idea of this segment is to establish an overall
'standardisation feedback ecosystem’ that provide an appropriate channel back to the standardis-
ation activities that in turn is not trivial to establish. The fundamental challenge of providing
this feedback channel is that the use of standards in real production e-Science infrastructures
(cf. Definition 5) is very complex, because one activity often covers the joint use of multiple
standards at the same time to achieve certain functionality. One example is the job submis-
sion activity (i.e. job related standards) that in turn requires data-staging (i.e. data related
standards) to and from the computational resource in a secure manner (i.e. security related
standards). Hence, not every technical detail required for interoperability of technologies is
specified by a single standard.

The joint use of standards in one particular activity in turn makes it difficult to channel all
the different lessons learned about technology interoperability and end-user experience into
one respective working group within one particular SDO. SDOs have working groups focussed
on one dedicated concern (e.g. job management w/o security) or the aforementioned activities
take advantage of standards from different SDOs like OGF (e.g. OGSA-BES) and OASIS (e.g.
SAML) for example.

This thesis thus argues that SDOs need to establish two special kinds of overarching groups
that channel experiences from the use of standards back to such single working groups. This is
in particular also helpful, because one standard alone does not achieve necessary interoperabil-
ity between production technologies that use a wide variety of different standards at the same
time. Only a whole specified set of standards jointly used together across different technolog-
ical areas (e.g. data, security, etc.) increases the interoperability in e-Science infrastructures.

176 CHAPTER 5. ARCHITECTURAL DESIGN

This in turn generates lessons learned of how each individual standards can be improved for
production runs.

The aforementioned two special groups are illustrated in Figure 5.45, named Group A and
B. This figure shows in the upper part the infrastructure A and B that have already estab-
lished initial interoperability through the use of (emerging) standard components. Using these
standards-based components in practice generates a lot of lessons learned about standards that
need to be properly fed back to the corresponding SDOs with a well-specified process.

In order to provide such as process, it makes sense to establish one dedicated group (here
GROUP A) within one SDO that consists of members from both technology and infrastructure
providers. GROUP A needs to drive interoperability activities within cross-technical areas us-
ing real e-Science applications with standards, thus collecting lessons learned from practical
field studies until a critical mass has been gathered. Those relevant parts of the gained produc-
tion experience is given to another dedicated standardisation group (here GROUP B) that is re-
sponsible for understanding the joint use of the standards in practice. GROUP B needs to break
gathered improvements from GROUP A into chunks that can be processed by single-focussed
standardisation groups where appropriate (e.g. computational and security standards). After
the augmentation of these lessons learned into new specifications, their adoptions are likely
to be deployed again on infrastructures, thus making the illustrated 'red cycle of the feedback
ecosystem” in Figure 5.45 complete.

Finally, Table 5.27 summarizes the aforementioned improvements of associated elements
of the architecture work and provides an overview how the requirements of Chapter 4 are
addressed.

Requirement Definition ‘ Addressed in which manner

Definition 82 Segment four recommending
(Open Standard Evolution Process) | a standardization feedback ecosystem;

Table 5.27: Addressed requirements as part of process segment four.

5.3.5 Segment 5: Aligned Future Strategies and Roadmaps

The fifth segment of the process towards interoperability is about the alignment of future strate-
gies among different technology providers as defined in Definition 83. In many cases, inter-
operability could have been realised in e-Science environments by a common design when
the corresponding technology providers would have worked together on a common roadmap
rather than creating duplicate components over the years. One good example is the duplicate
developments of Grid middleware technologies in order to access the RMS of a particular com-
putational resource. The source-code and access paradigm to transfer jobs to the RMS (e.g.
Torque) is identical in many middleware systems such as within the wide variety of UNICORE
Target System Interfaces (TSIs) [293] and the Globus Gram component [167]. A good example
thus in this context for this segment is the common roadmap from the European Middleware
Initiative (EMI) project [27] where ARC RMS adapters have been considered to be re-used in
the gLite middleware system. The requirements addressed alongside the architecture work as
part of the process are summarized as part of Table 5.28.

This step goes one step further than the fourth segment about standardisation in terms of
an even closer collaboration between technology providers than just within the SDOs. While in
academically-driven e-Science this sounds relatively straightforward in the sense of collabora-
tion among scientists, such a collaboration is problematic in the field of business where expos-
ing future designs lead to risks in terms of time-to-market. In the scientific domain, however,

5.3. SEVEN SEGMENT-BASED PROCESS FOR INFRASTRUCTURE INTEROPERABILITY 177

the sharing of technologies and approaches plays a much more significant role that could lead
to decreased maintenance costs and better sustainability options. The e-Concertation meetings
of the commission aim at similiar benefits: "The Concertation meetings were thus initiated by the
Commission to be a bottom-up process for identifying commonalities and synergies between projects and
the various national action and research initiatives, standardisation activities, etc.’[134]. These meet-
ings are good for an initial understanding of the scope and goals of different projects, while this
segment can be considered as a next step where the opportunities for synergies is much more
explored on the technical level.

Within the context of e-Science following the vision expressed in Definition 3, the demand to
align whole technology roadmaps of component sets or future strategies on Grid developments
is surely critical. This step is one step beyond working together in standardisation groups to
define a couple of interfaces or protocols for components that are designed or already used
in production. The benefit of this segment relies on taking advantage of the different, often
complementary, experiences of the technology providers often gained by a special dedicated
focus potentially kept over years.

This indirectly also contributes to the vision of a common e-Infrastructure and its benefits
of 'leverage existing expertise and experience’ as described in the e-IRG Blue Paper 2010 [210].
There is no lack of innovation since new innovative concepts and prototypes can be still tested
in testbeds or simulation environments, but should be kept away from production e-Science
infrastructures until they become mature innovative technologies. The alignment of future
strategies also enables better re-factoring strategies” for harmonisation among the components
deployed and used on e-Science infrastructures. Aligned roadmaps enable the use of compo-
nents from one technology provider by different components of another technology provider

Grid Technology Grid Technology Grid Technology | ©id Technology
~. Provider A Provider B - ProviderC

Providers
often historically
formed and
in place since years

Collaboration under a common project umbrella

Figure 5.46: A common project that acts as an umbrella of different technology providers to harmonize activities.

178 CHAPTER 5. ARCHITECTURAL DESIGN

and vice versa, avoiding duplicate developments thus finally reducing costs and maintenance
efforts. This contributes to another benefit mentioned in the e-IRG Blue Paper 2010 towards a
common e-Infrastructure ‘avoiding unnecessary duplication in provision of ICT solutions’ [210].

One possible implementation of this segment is to create a joined project together with
interested technology providers as illustrated in Figure 5.46. This project is then an umbrella of
several distinct technologies used on various production e-Science infrastructures by different
user groups. Under this project umbrella these technology providers closely collaborate in
terms of aligning future strategies and technology roadmaps and thus jointly define the design
of the next generation of technologies used on infrastructures.

The prioritisation of technology requirements based on end-users is important in this re-
spect since innovation should be clearly not purely driven by technology innovations. This
includes the balance of interests of technology providers that are interested in engaging in
the fulfillment of end-user requirements. The work under such an umbrella can leverage the
complementary experience of the different technology providers, thus leading to a fruitful col-
laboration even over decades to come.

Over years the technology providers have been in competition and such a project collabora-
tion is a medium-term process that surely needs time to establish trust among them. Figure 5.46
summarises this segment with an illustration depicting how all discussed aspects fit together,
namely infrastructures, technology providers, components, and common projects.

Finally, Table 5.28 summarizes the aforementioned improvements of associated elements
of the architecture work and provides an overview how the requirements of Chapter 4 are
addressed.

Requirement Definition | Addressed in which manner

Definition 83 Segment five recommending
(Future Strategy Sharing and Common Roadmap Definition) | a alignment of future strategies;

Table 5.28: Addressed requirements as part of process segment five.

5.3.6 Segment 6: Harmonised Operation Policies

Another important factor of moving towards full interoperability between e-Science infras-
tructures are harmonised operational policies as defined in Definition 84. The requirements
addressed alongside the architecture work as part of the process are summarized as part of
Table 5.29.

It is important to understand the difference of what is possible in terms of technology inter-
operability and what is possible in terms of interoperability governed by policies within pro-
duction e-Science infrastructures. Full operational interoperability can only be achieved when
the technology-based interoperability is present, but where harmonized operation policies also
do exist. The latter is a difficult topic, and where a concrete solution cannot be given here, but
some elaboration of the problem is needed to raise the awareness that policy harmonisation is
essential in order to achieve interoperable e-Science infrastructures (cf. Definition 21).

One recommendation of of this segment is the creation of dedicated policy groups that
work on the harmonisation of operational polices on a regular basis in different areas (e.g. re-
source allocation, accounting, security, etc.). The aim of such a group is to collaborate towards
the goal of seamless interoperation of production e-Science infrastructures by respecting the
different requirements as best as possible. In many cases, such policy harmonisation is not a
short-term achievement thus being rather long-term activities with a gradually increasing har-
monisation over the years. Regular meetings are initially cumbersome but pay off after years

5.3. SEVEN SEGMENT-BASED PROCESS FOR INFRASTRUCTURE INTEROPERABILITY 179

of collaboration with increased seamless use of different production e-Science infrastructures
by end-users.

This segment also touches negotiation elements that leave the field of computer science
where methods from the "Harvard Concept’ [166] are helpful to come to a consensus about poli-
cies. Such fields vary from one type of infrastructure to another, but certainly a common often
relevant list of technology fields can in many cases be identified. Gained from experience over
the years, such typical fields that require a harmonisation of policies are security (authentica-
tion, authorisation), accounting, and, most notably, resource allocation. Other topics of interest
include the handling of security incidents in general as well as common user infrastructure
access methods such as clients, portals, or dedicated science gateways.

Security and mutual trust issues are often the major showstopper in interoperability se-
tups across different e-Science infrastructures, and as such this topic is a major topic of such
groups. Agreements can be reached by the openness of decision-makers or executive board
members, but in many cases operational policy agreements can be significantly supported by
technology improvements and demonstrative use cases. Examples are the availability of com-
mon technology features (e.g. common accounting records) in different components but also
the harmonisation of technologies to support a common interface. Other examples include ad-
ditional features that are dedicated to enable technical interoperability but also solve issues at
the policy level (e.g. finely-grained security features that enable flexible setups).

This segment addresses thus parts of the daily operation of e-Science infrastructures like
other topics (e.g. support, etc.). It surely makes sense to consider a start even before produc-
tion e-Science infrastructure starts its operation, or if it needs to be embedded into existing
infrastructure ecosystems.

The harmonisation of policies is often time-consuming and the challenge relies not seldom
on the mutual understanding of stakeholders. Even partial success in the harmonisation of op-
erational policies is already a success since it would not be an optimal situation when technical
interoperation would be possible, but the corresponding infrastructures disagree on a common
operational policy. Common calls for applications organised from different infrastructures to-
gether could stimulate the aspects of this segment by having strong arguments by application
end-users and their desire to have interoperable infrastructures instead of ‘operational Grid is-
lands’.

Finally, Table 5.29 summarizes the aforementioned improvements of associated elements
of the architecture work and provides an overview how the requirements of Chapter 4 are
addressed.

Requirement Definition ‘ Addressed in which manner

Definition 84 Segment six recommending
(Operation Policy Harmonisation) | operation policy harmonisation;

Table 5.29: Addressed requirements as part of process segment six.

5.3.7 Segment 7: Funding Sources and Cross-Project Coordination

The final segment of the process towards a sustained interoperability of production e-Science
infrastructures (cf. Definition 5) is the synergy of funding sources and cross-project coordina-
tion that are both tightly coupled in many ways, as also revealed in Definition 85. The require-
ments addressed alongside the architecture work as part of the process are summarized as part
of Table 5.30.

180 CHAPTER 5. ARCHITECTURAL DESIGN

This thesis is focussed on technical interoperability relevant to the scientific community
and thus it only briefly outlines recommendations for funding-related topics. Often the reason
for non-interoperable technologies deployed on production e-Science infrastructures relies on
the support from different funding sources (e.g. US vs. EC). This is partly due to the fact of
different non-cooperative projects funded by those different sources or even among projects
with the same funding source.

The ideal situation would clearly be to have a joint source of funding that is not project
grant-based (i.e. not time-limited) that in turn would enable more sustainable planning by
technology providers. Being aware of its innovative need from a particular perspective, this
thesis is not in the position to change these funding models but would like to raise awareness
to potentially influence funding sources where possible to increase the levels of cooperation
between funding sources and between funded projects. It is also clearly understood that re-
search and its goal of researching innovative concepts for the society is the focus rather than
sustainable operations across decades for a single technology space, while the latter also in-
cludes many innovative concepts over time. The desire to collaborate in a more structured way
among the different funding sources is not new and this segment emphasizes on the follow-
ing e-IRG recommendation: "The e-IRG recommends that Global Collaboration should move from its
ad-hoc character to a more structured and continued mode adequatly supported by the EC and national
funding agencies;’ [206].

There is a need to acknowledge that cooperation is not always possible due to numerous
constraints (e.g. organisational vs. project interests). But it makes sense to direct this segment
to known issues and raise the awareness that full sustained interoperability of academically-
driven e-Science infrastructures goes partly beyond the control areas of infrastructures and
technology providers. Technology providers and more notably production e-Science infras-
tructures need to establish models of getting sustained either by national membership fees for
a governing organization or industry collaborations where possible.

Today, partly interoperable production e-Science infrastructures already exist that are in-
dispensable for the effective support of research even across its borders (i.e. emerging interop-
erability setups). Increasingly, the boundaries between local, national and international resources are
blurring as researchers pool their resources to reach the resource scales required for their research’ [210].
This affects many areas like application enabling, user support, 24/7 operation monitoring,
technology knowhow and dedicated deployments for particular e-Science communities.

Getting all these indispensable services sustained as a long-term strategy is one of the major
parts of this final segment that naturally affects it more than perhaps any other segment. But
this thesis can only highlight to work on this topic while a concrete solution is out of scope thus
remaining a major challenge of the community. This critical challenge is best reflected by the
follwing statement in the 6th e-Infrastructure concertation report: "The long term sustainability
of e-Infrastructures has emerged as perhaps the most hotly debated topic in the world of European e-
Infrastructures’ [133]. Without sustainable infrastructure operations, its interoperability setups
with other infrastructures become meaningless and efforts are not even be started knowing
that some projects only have a limited life-time (i.e. trust issues). The aforementioned coop-
eration thus includes the exchange of ideas about such sustainability and relevant technology
roadmaps on the one hand, but also the prioritisation of the use and joint adoption of common
open standards on the other. This latter part ensures "international interoperability’ among tech-
nologies from different funding sources by promoting the use of open standards (cf. Definition
14).

Apart from cooperation between funding sources, one concrete implementation option
is to establish dedicated projects per technology area that addresses the aforementioned re-
quirements and review progress along the lines of standardization and the adoption of stan-

5.3. SEVEN SEGMENT-BASED PROCESS FOR INFRASTRUCTURE INTEROPERABILITY 181

dards. The European Commission used the e-Concertation meeting approach to review the
recent progress made by leading standardisation bodies and to allow for the sharing of best-practices
between e-Infrastructure projects (technical perspective)’ [133]. But this approach is only helpful as
quick check or start of activities since after the meeting there are no efforts directly available to
further facilitate the exchange of information for cross-projects work on a day to day basis.

In constrast, a dedicated project underpinned with funded efforts has much more the po-
tential to facilitate cooperation across projects that are all funded for their unique strength and
capabilities but in many cases also provide room for synergies and collaboration with other
projects although not being its priority. Here it is important to understand that this cross-
project aspect is different than segment 5 where one project was proposed that has the different
technology providers as members, thus referring to intra-project collaboration.

In contrast, the inter-project approach should focus on common roadmaps with relevant
projects making sure that a community view is adhered to in contrast to a single project-based
roadmap. The commitment of other projects to such an aforementioned neutral project can
be achieved by involving the funding source representatives in the process as close observers.
One example of such a project was the OGF-Europe project [64].

Other mechanisms are cross-project deliverables and milestones that need to be provided
in regular intervals to funding organisations.

Finally, Table 5.30 summarizes the aforementioned improvements of associated elements
of the architecture work and provides an overview how the requirements of Chapter 4 are
addressed.

Requirement Definition | Addressed in which manner

Definition 85 Segment seven recommending
(Funding and Cross-Project Coordination) | cross-project coordination;

Table 5.30: Addressed requirements as part of process segment seven.

182 CHAPTER 5. ARCHITECTURAL DESIGN

5.4 Conclusion

In this chapter it is described how the proposed reference model relates to various architectural
inputs (i.e. standards, specifications) from the distributed systems domain in general and from
the Grid domain in particular. The proposed IIRM addresses all the requirements of Chapter
4 taking into account the results in analysing a wide wide variety of lessons learned that have
been surveyed in Chapter 3.

The overall design requires aspects on different levels, meaning entities and relationships
that have been defined as part of the reference model level, while their more concrete, archi-
tectural core building blocks have been defined as part of the reference architecture level. As
a consequence of the academic analysis in Chapter 3, the core building blocks are defined as
(partly emerging) open standards meaning that all are well-specified and publicly available.
Having every aspect of the architecture well-specified significantly increases the chance of in-
teroperability of infrastructures and the possibility for any technology provider to provide im-
plementations that give end-users the benefit of not having vendor locks. At the same time the
evolution of standards and additional features are crucial to infrastructure production needs as
well, and thus different refinements are addressed in order to address the field study experi-
ence. All these refinements are given into the standardization process and via the PGI working
group it is ensured that all concepts influence the next evolutions of specifications of the core
building blocks.

The design layout in terms of technical details is presented and certain patterns described
that define more specific categories of the design such as the overall basic IIRM algorithm that
promotes interoperability. Another conclusion from this chapter is that security is present on
multiple levels and that the architectural design and security pattern address all those that
are relevant for production e-Science infrastructures, whilst also acknowledging their slow mi-
gration and update cycles. Concrete architectures will arise from a combination of reference
architectures, architectural patterns, and additional work such as the guidance given by the
seven segmented process. While the reference architecture forms the basis of core building
blocks for solutions, concrete architectures will define specific middleware adoptions of these
core building blocks thus providing concrete solutions. Several concrete architectures from dif-
ferent scientific application domains are presented in the next chapter that are all significantly
based on the findings of this more abstract design chapter. An important conclusion from
this, in turn, is that the specification of the reference model design and its associated architec-
ture is not implementation-specific, thus separating design from implementation being in-line
with software engineering principles. Reference architecture invariants have been also defined
that are often neglected when infrastructure integration activities are performed thus hinder-
ing seamless interoperability in many aspects. The reference architecture services are able to
satisfy the requirements for a secure submission of Grid jobs across HTC and HPC resources
including Grid storage.

Based on the findings of previous chapters, a complementary process to the reference model
and its architecture elements is defined. This seven segment process bears the potential to in-
crease interoperability between production infrastructures, specifically addressing those issues
and challenges that cannot directly be covered by technical reference model approaches. These
segments are basically known principles, but their collective power is often underestimated
meaning that over the years only a few segments have been followed by infrastructure and
technology providers. The final conclusion about the segments truly relies on the fact that their
implementation will take time and that they are put in a sequential order from various different
sources.

Chapter 6

Impact and e-Science Applications

In the initial chapters of this thesis, a model of the problem space was created that addresses
challenges of interoperability between production e-Science infrastructures. After a compari-
son with existing solutions in Chapter 3 and the definition of requirements in Chapter 4, po-
tential solutions are given in Chapter 5. The IIRM is presented as a technical solution alongside
a non-technical associated process addressing long-term interoperability challenges. Based on
these findings, this chapter makes important claims about the impact and applicability of the
ITRM and its reference architecture design.

Nevertheless, there are known challenges in the e-Infrastructure community ‘measuring the
contribution of using the e-Infrastructure and its importance to the final science output’ [156]. Where
possible, claims are underpinned with evidence from various sources such as existing produc-
tion e-Science infrastructures (cf. Definition 5) as well as real e-Science use cases (i.e. WISDOM,
VPH, EUFORIA) that take advantage of more than one infrastructure. Where possible, lessons
learned from OGSA are taken into account and how the thesis findings influence the problem
space highlighting thesis impact and contributions in several key sections.

In the first section, it is described how the seven segment-based process was implemented
in context of the given problem space using concrete architectures of real production infras-
tructures in order to present its impact on e-Science. This chapter thus aims to explain why
the reference model design is applicable in the given problem space, including examples of
the achieved impact on existing production e-Science infrastructures. The recommendations
incorporated in the seven segment-based process of Chapter 5 are discussed and information
about their implementation alongside the creation of this thesis is given.

In the second section, the reasons for significance and thus impact for e-Scientists (cf. Def-
inition 10) of the model is underpinned by architectures based on real production e-Science
infrastructures. These architectures will be reviewed in the light of how they adopt significant
parts of the reference architecture that is part of this thesis. Further reasons for the applicability
and broad impact of the reference model are given in this chapter by highlighting roadmaps of
key reference implementations of the European Middleware Initiative (EMI) [27] and the eX-
treme Science and Engineering Discovery Environment (XSEDE) [29] projects. Signficant parts
of the reference architecture are an integral part of both the EMI and XSEDE work plans thus
influencing the landscape of e-Science infrastructures in Europe and US.

In the remaining sections, scientific case studies from different scientific domains are dis-
cussed in detail. These sections give insights how the case studies adopt the IIRM thus indicat-
ing that the thesis findings are applicable in e-Science leading to scientific innovation by using
infrastructures as a ‘commodity tool’. The aim is to present how the thesis represents a benefit to
e-Scientists in the bio-informatics, e-Health, and fusion domain, including insights on scientific
activities emerging in various ESFRI projects.

184 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

6.1 Seven Segment-based Process Implementation and Impact

Abstract

Reference Model (Chapter 5)
[Reference Model Entities] [Reference Model Entities Relationships]
[Blueprint and Design Foundations]

‘uuided by
/(Reference \ (\
)

Architectures

(Chapter5) Process

{Chapter 5)

Functional Requirements

Requirements
{Chapter 4}
[Infra structure Integration Constra ints]

Motivation laccounts for|

(Chapter 2) | \[

Goals derived * Influenced by
(Chapter 2)

Concrete Production Infrastructure
\ Architectures (Chapter 6}
\ Architecture Work
accounts for
* constrained by

Service Oriented Architecture Implementations {Chapter 6}

Figure 6.1: Reference model associated process implementation in context of concrete architectures and SOAs.

Infrastructure Usage Model] considers

Profiles
hapter 5}

pecifications
{Chapter5)

Standards
{Chapter 5)

Related Work

i

N,

The initial chapters of this thesis indicated that the interoperability of production e-Science
infrastructures (cf. Definition 5) is not existing today. The lack of current approaches to adapt to
changes in infrastructure environments driven by various operational policies was also intro-
duced. Itis thus a challenge being able to cope with the dynamics of production infrastructures
while satisfying unique end-users demands in a reliable fashion. Chapter 3 concluded that the
adoption of open standards is not enough and a comprehensive reference model is required in
order to provide guidance to infrastructures and technology providers how standards can be
jointly used, developed, and maintained together.

In order to sustain interoperability, a complemtary process alongside the proposed refer-
ence model and its architecture is introduced in Section 5.3. It proposes the 'seven segment-based
process for infrastructure interoperability’ while each of its segment bears the potential to increase
the chance of interoperability between production e-Science infrastructures. The segments pre-
sented in Section 5.3. are technology- and infrastructure-agnostic and do not provide specific
solutions and rather represent "recommendations’ how interoperable solutions can be reached as
a long term process. In contrast, this section describes how the different segments have been
implemented in the context of concrete production e-Science infrastructures and their technol-
ogy providers as illustrated in Figure 6.1 as part of the thesis studies.

Table 6.1 provides an overview of the seven segments, including the areas of work con-
cering the implementation of the whole process that is collaboratively implemented with the

6.1. SEVEN SEGMENT-BASED PROCESS IMPLEMENTATION AND IMPACT 185

No Segment Areas of Work
1 Open Standards-based Reference Model design layout
Reference Model and its implementations in EMI and XSEDE
2 Collaboration with the EMI project with major
Right Set of Vendors EU middlewares and XSEDE in US
3 Reference Open standards reference implementations
Implementations including proposed additional concepts
4 Standardization Ecosystem of OGF GIN and PGI
Feedback Ecosystem to channel production feedback to standards
5 Aligned Future Aligning EMI and XSEDE roadmaps
Strategies & Roadmaps including ARC, gLite, UNICORE, and GENESIS
6 Harmonized Operation Middleware security group activities
Policies & Roadmaps supporting security harmonization activities
7 Funding Sources and EU EMI and US XSEDE participation

Cross-Project Coordination including activities in SIENA

Table 6.1: Seven segments with areas of work as part of the process implementation.

broader Grid community. The subsequent segments reveal how the thesis contributed to the
interoperability of production e-Science infrastructures and its technologies through this pro-
cess. The information about the implementation of the segments in the next sections thus also
aim to verify and validate that the segments make sense in practice.

The design and implementation of the process is published in [254] as a guide for other e-
Science infrastructures such as emerging ESFRI Rls. The process was presented and discussed
at the EGI technical forum 2010 in Amsterdam [26] and at Cloudscape-III in Brussels [88] thus
taken as input for the SIENA roadmap process [87].

6.1.1 Segment 1: IIRM and Standards-based Reference Architecture

The implementation of the first segment towards interoperability is one major part of this the-
sis by defining a reference model with an aligned standards-based reference architecture in
Chapter 5. The architectural design is defined under the umbrella of the broader reference
model term and named ITIRM. The IIRM is analysed in this paragraph based on the factors (cf.
Definition 26) and indicators (cf. Definition 25) defined in Chapter 3 and several requirements
identified in Chapter 4.

The verification need to start with the check whether the IIRM is in accordance with the
general design principles of reference models in software engineering as defined in Definition
28. The architectural design of the IIRM is abstract meaning that the entities and its refer-
ence architecture are only an abstract representation of potential deployments. The concept of
Grid services is used in the core building blocks (i.e. OGSA-BES, SRM, etc.) making no ar-
guments about real specific services in existing production infrastructures. Not any particular
OGSA-BES deployment is referenced, for instance as part of DEISA /PRACE or a specific SRM
deployment within EGEE/EGI. Being also in-line with Definition 28, a clear set of basic entities
of the reference model is defined, including their relationships.

The principle of defining a clear focused problem space for the reference model and its refer-
ence architecture is followed. The problem space is set as production e-Science infrastructures
(cf. Definition 5) with HPC, HTC and storage resources.

No assumptions about specific Grid middleware systems (cf. Definition 12) such as gLite,
UNICORE, or ARC are incorporated in the model or its derived reference architecture. But

186 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

many lessons learned from applying these systems to scientific use cases that take advantage
of more than one Grid have been used to refine core building blocks with several concepts.
These concepts have been specifically defined to support computational processing and related
data-staging activities as well as better e-Science application support and thus does not leave
the clearly defined problem space.

The IIRM is thus technology-agnostic and is described independently from real existing
production e-Science infrastructures although IIRM concepts have been used in practice with
these infrastructures to get feedback during the overall reference model design process and to
underpin the theoretical academic studies. As the previous paragraphs reveal, the IIRM is in-
line with the basic principles of reference models in software engineering and thus satisfying
Definition 28.

Relevant Factors ‘ Indicators OGSA IIRM
(a) Service based (1) Service Oriented Architecture (SOA)-
(Reference Model) based design for a distributed system Yes Yes
(2) Entities offer service interfaces Yes Yes
(3) Clear unique service semantics Yes Yes
(b) e-Science Context (4) Focussed on scientific use cases No Yes
(Reference Model) (5) Grid execution management elements Yes Yes
(6) Grid data management elements Yes Yes
(7) Grid security elements Yes Yes
(8) Grid information elements Yes Yes
(c) Specified relationships | (9) Information and Compute No Yes
between different (10) Information and Data No Yes
relevant functional areas (11) Security and Compute No Yes
(Reference Model) (12) Security and Data No Yes
(13) Information and Security No Yes
(14) Compute and Data No Yes
(d) Details for (15) Based on concrete Web services (WS)-
implementation based Architecture as SOA implementation ~ Yes Yes
(Reference Architecture) (16) Concrete specifications with referenced
portTypes (e.g. Operations) or schemas No Yes
(17) Invariants and constraints for the use of
information and security data exists No Yes
(e) Production- (18) Number of core service entities is
oriented lower than 5 (model not too broad) No Yes
(Reference Architecture) (19) Definition of core entities that must
be in place to form an infrastructure No Yes
(20) Used normative specifications are
already defined and publicly available No Yes
(21) Project that implements core entities
and relationships (funding exists) No Yes
(f) Standards based (22) Based on normative standard
(Reference Architecture) specifications No Yes
(23) Specifications from real SDOs No Yes
(24) No break of existing established
standard specifications No Yes
(g) Adoption in e-Science (25) EGEE / EGI technologies No Yes
production technologies (26) DEISA / PRACE technologies No Yes
(Derived Concrete (27) Production middleware systems
Architectures) (e.g. ARC, gLite, Globus, UNICORE) No Yes

Table 6.2: Factors and indicators of the ITRM in comparison with OGSA.

6.1. SEVEN SEGMENT-BASED PROCESS IMPLEMENTATION AND IMPACT 187

Complementary to this analysis about general reference model principles, another key con-
tribution of this paragraph is the evaluation whether the IIRM overcomes the limitations of
OGSA as published in [264]. The reference model factors and indicators from Chapter 3 are
used that have been obtained by critically reviewing OGSA in the light of the given problem
space. The summary of the analysis is shown in Table 6.2 thus claiming that the IIRM, in con-
trast to its major related model OGSA, fulfills all factors and indicators. It illustrates one key
contribution of this thesis that is the definition of a reference model with associated architec-
ture elements that overcomes limitations of OGSA. In more detail, Table 6.2 shows that for
each indicator where the OGSA analysis revealed a 'no’, the IIRM analysis reveals a yes’. This
can be at least partly explained by the fact that the illustrated factors and their indicators in-
clude lessons learned from OGSA experience after one decade that also majorly influenced the
requirements in Chapter 4.

Evaluations on the Reference Model Level

On the reference model level, the IIRM fulfils the requirement of being (a) Service based as Sec-
tion 5.1.1 reveals by being in-line with SOAs as defined in Definition 29. This factor is fulfilled
by having entities that are all service-based by offering abstract service interfaces and clear ser-
vice semantics as required by the Definitions 31, 32, 33, and 34 as Section 5.1.1 describes (cf
Table 5.2).

These entities are all derived from the IIRM focus on the (b) e-Science Context incorporated
in the requirements of Chapter 4 that mentions no e-business use cases or commercial require-
ments. The IIRM is thus in-line with Definition 30. The IIRM has (c) specified relationships between
different relevant functional areas as Section 5.1.1 reveals thus addressing all requirements defined
in Definitions 35, 36, 37, 38, 39, and 40 (cf. Table 5.2).

Evaluations on the Reference Architecture Level

On the more concrete reference architecture level, the IIRM and its reference architecture pre-
sented in Section 5.1.2 provides all (d) details for implementation necessary to realize the more
abstract IIRM design. The reference architecture thus satisfying the requirements raised in Def-
inition 41, 42, and 43 (cf. Table 5.4).

The IIRM reference architecture is (e) production-oriented, because its design is addressing
the requirements defined in Definition 44, 45, and 46 (cf. Table 5.4). In addition, as Section
6.2 will reveal, there are projects (i.e. EMI and XSEDE) that implement significant parts of the
IIRM reference architecture thus indirectly leading to an impact in real production e-Science
infrastructures. While more details are given later, evidence is provided as part of the EMI "de-
scription of work” [15], which content plans adoptions of many core building blocks and concepts
of this thesis for the middleware systems ARC, gLite, UNICORE, and dCache. Furthermore,
an XSEDE article [235] higlights that several XSEDE core building blocks are identical with the
IIRM reference architecture core building blocks. The aforementioned indicators and evidence
together sum up to a key impact of this thesis meaning that the IIRM is a compact solution that
can be applied in e-Science today and is not just a theoretical model for "testbeds’.

One of the key design element of the IIRM reference architecture is being (f) standards based
as required by Definition 47 and defined in Section 5.1.2. Although the reference architecture
also propose several refinements as defined in Definition 48, they do not break the backwards
compatibility of the standards-based core building blocks. These refinements are already fed
back to the standardization process via the OGF PGI working group influencing already other
relevant groups such as OGSA-BES, JSDL, or GLUE2.

188 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

Evaluations on the Concrete Architecture Level

Section 6.2 will reveal more evidence that the reference architecture is considered for (g) adop-
tion in e-Science production technologies as part of more concrete infrastructure architectures. For
the overall assessment of the IIRM in this section, again the EMI "description of work’ [15] pro-
vides evidence that ARC, gLite, and UNICORE are released together as EMI release that in turn
is part of the Universal Middleware Distribution (UMD) [14] deployed on the EGEE/EGI in-
frastructure. Evidence that the reference architecture adoption in UNICORE is used in PRACE
is provided in [78]: "UNICORE allows seamless access to distributed resources via the Internet. It is
deployed and proven in PRACE, the Partnership for Advanced Computing in Europe, to access systems
in the European HPC ecosystem’.

6.1.2 Segment 2: Collaboration of Infrastructures with Technology Providers

The second segment towards interoperability of e-Science infrastructures is described in Sec-
tion 5.3.2 and recommends a collaboration with key technology providers that have a real im-
pact on existing production e-Science infrastructures (cf. Definition 5). The mechanisms of
e-Concertation meetings was introduced, but the segment recommends collaboration beyond
such meetings that only happens once or twice a year.

The recommendation further indicates that the collaboration should start as early as possi-
ble, because later joins of new techology providers makes it unlikely that they accept certain
technology directions, like for instance, following the proposed reference model in segment
one. One example is the standardization effort of the initial OGSA-BES standard where many
commercial and academic technology providers have been involved (e.g. Microsoft, UNI-
CORE, etc.). Several academic-oriented providers such as gLite have been out of the process
for quite a while although having a significant impact on EGEE/EGI deployments. That led
to an initial rejection of the OGSA-BES concepts from the key technology provider gLite and
therefore it is still not widely deployed in the EGEE/EGI infrastructure. A closer collabora-
tion between the key technology providers UNICORE, gLite, and Globus changed this within
OMII-Europe where gLite got funding to develop CREAM-BES [220].

But also OGF acts as a forum for collaboration as part of the GIN community group and its
spin-of PGI group wherein the majority of technology providers from the production e-Science
infrastructure community are involved as shown in Table 6.3. Evidence for the discussion and
collaboration around use cases is provided as part of the PGI Use case document [270] that
contains a table with contributors that is the source for Table 6.3. To provide one example for
the importance of collaboration, as part of PGI, all the different technology providers came up
with more than 200 requirements [77]. The reference architecture and its refinement concepts
of this thesis have been also given as a major input to the process and are part of this table.
As part of the ongoing collaboration in GIN/PGI, the technology providers listed in Table 6.3
agreed to implement such requirements over the course of the next years given funding is
provided. And even if one provider might leave, often the pressure of community needs and
the desire of end-users to choose the technology they want can finally make a difference leading
to pressure to implement a standard for the ‘leaving provider” when all others implement it.
Furthermore, if funding is provided through projects for technology providers, they are more
likely to implement standards as the OMII-Europe case reveals implementing CREAM-BES for
gLite [220].

The international production Grid coverage of partners in Table 6.3 and in [270] clearly
reveals one key impact of the thesis as part of this segment: The collaboration in GIN and
PGI activities leads to a broader international IIRM adoption since many PGI requirements are
derived from this thesis [77].

6.1. SEVEN SEGMENT-BASED PROCESS IMPLEMENTATION AND IMPACT 189

Grid Technology Provider/Project Production e-Science Infrastructure

ARC NDGEF, EGEE / EGI

glLite EGEE / EGI, OSG (as part of VDT)

UNICORE DEISA / PRACE, TeraGrid / XSEDE, EGEE / EGI
Globus (IGE project), GENESIS TeraGrid / XSEDE

NAREGI / RENKEI NAREGI / RENKEI Infrastructure

EDGES / EDGI BOINC-based infrastructures (i.e. Desktop Grids)

Table 6.3: Key technology providers and projects with related infrastructures.

Having a collaboration with key technology providers such as in PGI is non-trival but the
evidence of the implementation of segment 2 shows that this can be done using a neutral forum
such as a SDO. Table 6.3 obtained from [270] clearly indicates that the implemented collabora-
tion consists of quite a significant fraction of key technology providers that in turn contribute
to the impact of this thesis. More evidence is given by the fact that the IIRM and its associated
reference architecture has been given as a starting input to PGI reported in [79]. Already at
the PGI kick-off session [67] the idea to follow the core building blocks of the thesis reference
model and associated architecture was presented and agreed including the idea of refinements.
Further evidence for impact is provided by the media [54, 79].

6.1.3 Segment 3: IIRM Reference Architecture Implementations

The third segment as described in Section 5.3.3 augments the theoretical work around reference
models and associated architectures with practical expertise arising from proof-of-concept im-
plementations. The key recommendation of this segment is to “consider making a range of proto-
type implementations and interoperability testing part of the standard development’ as mentioned in
the EICTA white paper 2006 [158].

One practical benefit is that the implementions usually cover more than one technical areas
like information and job management or security and data management. This directly leads
to dependencies between the reference architecture core building blocks meaning the relation-
ships and potential missing links between the choosen standard specifications. A reference
model should not only emphasize on its entities, but should also carefully define relationships
between different entities. The refinement concepts in Section 5.2 provides examples of filling
so called "missing links’ between open standard specifications (e.g. JSDL and GLUE2) on the ref-
erence architecture level. Reference architecture implementations can thus help to understand
various issues related to the use of multiple core building blocks of the reference architecture
in practice. This also implies creating prototypes of whether the choosen core building blocks
can work with existing infrastructure boundary conditions such as dedicated security setups
(e.g. proxies [300]).

Many thesis studies and reference architecture concept implementations have been per-
formed to complement the theoretical reference model with practical verification of their ap-
plicability in real production infrastructure setups. Many of these proof-of-concept implemen-
tations have been published with contributions listed in Section 1.4. Examples are the use of
SAML and OGSA-BES in [302], the GLUE2 integration with OGSA-BES in [224], using UNI-
CORE OGSA-BES with proxies and benchmarks [191], or OGSA-BES interoperability between
glite and UNICORE [220], just to list a few out of Section 1.4. Such proof-of-concept field stud-
ies are also listed throughout the definition of the reference architecture and its refinements
in Chapter 5. These publications of early developments points to one key contribution of this
thesis that is implemented through this segment meaning the performed proof-of-concept im-

190 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

plementations of IIRM reference architecture elements. Other reference architecture adoptions
can be found as part of the EMI “description of work” (e.g. GSI removal of EMI components or
SAML adoptions) [15].

The implementation of this segment also contributes to the finding that the reference model
approach is different from the existing profiling approach [122]. Profiling often takes a col-
lection of available standards and defines it together as a profile while often the important
relationships between them are neglected or only rarely described. By implementing this seg-
ment, ‘missing links’ between standard specifications became often visible. Profiles are often
focused on one dedicated technical concern (e.g. HPC-BP profile [154]) and realized as com-
plex "hierarchies of profiles” meaning that they reference several specifications, often from the
same technical area, that in turn are often based on profiles. The approch is thus not in-line
with Definition 44. When the number of profiles rises, the probability of having different tech-
nology providers adopt the same collection of profiles significantly descreases when not being
guided by a greater reference model.

For example, although first good experiences with implementations of the HPC-BP profile
[154] exists, it needs refinements to match production use case requirements. Examples are
the HPC extensions listed as part of Section 5.2 to efficiently run e-Science applications (cf.
Definition 9) on production HPC machines.

In contrast, the thesis approach defines the relationships between entities thus filling ‘miss-
ing links” between specifications such as GLUE2 and JSDL. In this context, the proof-of-concept
implementations during the IIRM definition have been a valuable step since they pointed in
many cases to missing links particularly arising from combining different functionality areas
such as data, compute, information, and security. The IIRM design and refinements in Sec-
tion 5.2 provides many concepts that include linked specifications in order to offer solutions
for these ‘missing links” originally identified by reference implementations. The listed publica-
tions in Chapter 1 as well as the IIRM refinement concepts presented in Section 5.2 contribute
to one of the major contributions of this thesis by identifying ‘missing links” between specifica-
tions of different technical areas and providing solutions.

The core building blocks and their inter-links create a reference architecture that defines the
basic functionality required in production e-Science infrastructures as Chapter 4 reveals. The
set of well-specified inter-linked and refined standard interfaces are underpinned with expe-
rience from various IIRM concept prototypes and implementations that have been published
and listed in Section 1.4.

Finally, this segment also contributes to the fact of being "production-oriented’ by having per-
formed several reference architecture prototypes to verify theoretical concepts (cf. Chapter 5)
with production e-Science applications (cf. Chapter 6 case studies) before full-blown produc-
tion begins. The overall design is based on the known idea of ‘keep it simple and focus on essential
services” according to the TCP/IP approach reviewed in Chapter 3, since the more complex (e.g.
OGSA), the more manifold the standard adoptions (e.g. profiles of profiles) and less likely is
full interoperability.

6.1.4 Segment 4: The GIN and PGI Standardization Feedback Ecosystem

The standardization feedback ecosystem is another important segment towards interoperabil-
ity that has been described in Section 5.3.4 in detail. The key recommendation of this segment
is to 'provide feedback channels for standards maintenance’” as mentioned in the EICTA white pa-
per 2006 [158]. This section focuses thus on the implementation of this particular segment in
the given problem space and describes how lessons learned in practically using standards are
channeled back to the OGF.

6.1. SEVEN SEGMENT-BASED PROCESS IMPLEMENTATION AND IMPACT 191

One particular cornerstone throughout Chapter 5 is the interoperability around the OGSA-
BES standard [169] that several relevant technology providers have already deployed in pro-
duction e-Science infrastructures like UNICORE in DEISA /PRACE [263]. This is only one ex-
ample, where the use of this open standard under the umbrella of the OGF GIN group was
used in production use cases by end-users (e.g. VPH e-Health community [263], WISDOM bio-
med community [259], and fusion community [225], etc.). These activities lead to numerous
important lessons learned on how these standards can be improved.

The immediate question arising from such an aforementioned example is how the experi-
ences are channeled back to the SDO while the OGSA-BES group is inactive for quite a while
and several insights have been also touching JSDL that is yet another group. The OGF errata
process [146] might be used or the creation of an "experience document’ [146] but both are only
about correcting a specification or documenting experiences with a specification rather than
actively working on the next generation of specifications.

The JSDL experience document [222] has been already written back in 2008 and also GLUE2
is related when considering production experience in terms of resource descriptions for large-
scale HPC resources (e.g. network topologies, etc.). The essense of this segment is therefore
to transfer lessons learned from production that cross the area of different specifications and
groups. This can not be done by a single group that is only focussed on one particular standard
while the gained experiences often crossed the border of one particular other standard. The
proposed solution to these aforementioned problems that arised in many similiar interoper-
ability setups is the implementation of this segment being illustrated in Figure 6.2.

Figure 6.2 illustrates the implementation of this segment by establishing an standardization
feedback ecosystem in the context of the SDO OGF providing an active channel for standards
maintenance of OGF specifications. The author of this thesis has been actively involved via co-

End-user access
= : - T 7 to infrastructures
il EGEE/EGI e others i / via standards-

based Grid services

standardized lessons learned of standards-based
components cemponents in practice

Standards
Knowhow

standard
specifications

Figure 6.2: Implementation of segment 4: Standardization feedback system in OGF with GIN and PGL

192 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

chairing of the GIN and PGI groups and works together with early adopters of open standards
under the umbrella of the GIN and PGI groups in order to enable cross-Grid applications on
real production e-Science infrastructures [270].

Performing realistic production e-Science infrastructure use cases and applications is thus
a key element of the fourth segment in general and the overall ecosystem in particular. It en-
sures that the early open standard adoptions are already used with real e-Science applications
from production Grids (cf. Definition 7) and thus lead to valuable lessons learned. Using open
standards with real e-Science applications goes far beyond the effectiveness that standard com-
pliance checks or simple interoperability demonstrations with 'bin-date-based applications’ can
provide.

The aforementioned direction beyond demonstrations prooves real technical feasibility in
practice but also guiding directions where specifications need to be tuned or refined (cf. Sec-
tion 5.2). It must be ensured that lessons learned of standard-based components in practice
are channeled back to OGF via valuable feedback for the next iteration of specifications (e.g.
OGSA-BES 1.1 or 2.0). This is illustrated via the overall red cycle in Figure 6.2 where the know-
how of using standards in practice within GIN are taken by the PGI group for discussion. The
aim of such an important element of the feedback cycle (i.e. PGI group) is to differentiate the
concerns in terms of lessons learned from different technical areas and specifications. Then
channel relevant feedback to the corresponding working groups of the different single techni-
cal areas (e.g. compute, security, data, information, etc.). In order to provide evidence, the PGI
use case document [270], that among other contributions, contains major key contributions of
proposed standard refinements from this thesis (i.e. Multi-Grid Drug Discovery Workflow), is
taken as an input by other groups such as OGSA-BES, JSDL, GLUE2, and others. One example
is the input from PGI to JSDL as presented in [76] that significantly overlap with this thesis
contributions.

Such a process is by far underestimated in complexity requiring technical knowledge and
knowhow of e-Science infrastructure setups. But the aforementioned facts and evidence high-
light another impact of this thesis by establishing an active standardization feedback system
with OGF GIN and PGI that is very active and continues to improve existing open standards
with lessons learned of production e-Science applications (e.g. JSDL and PGI group [76]).

In both groups GIN and PG, it is important that members of production Grids and rel-
evant technology providers are part of such groups as the use case document reveals in the
authors section [270]. This is required, because these experts act as a mediator between com-
plex multi-technical-area production requirements and multiple corresponding one-technical-
area-focused standardization groups. Regularly interactions between the channeling group
(e.g. PGI) and the other standardization groups (e.g. JSDL, OGSA-BES, GLUE2, UR, etc.) are
crucial.

In an ideal situation members of the channeling group should be actively participating in
the other groups, too. In the described implementation, members of groups like OGSA-BES,
JSDL, and GLUE2 contribute to PGI while PGI members essentially overlap with members of
these groups.

The field studies WISDOM [259], VPH [263], and EUFORIA [225], contribute to GIN and
PGI via lessons learned of how specific standards can be improved as documented in the PGI
use cases document [270]. The PGI group is actively steered by the thesis author to ensure
that the reference model proposed as part of this thesis also guides the work within the PGI
working group from its start [67].

Standard refinements that are relevant to the IIRM core building blocks (e.g. OGSA-BES,
JSDL, GLUE2, SRM, UR, etc.) are priorities in PGI while other standards (e.g. WS-Agreement,
DRMAA) being not a high priority [77, 67]. With having production infrastructure and key

6.1. SEVEN SEGMENT-BASED PROCESS IMPLEMENTATION AND IMPACT 193

technology provider members in the group [270] there is a high potential that the PGI require-
ments in general and the reference model in this thesis lead to new iterations of OGF standard
specifications (e.g. JSDL 1.1 [76]). With the implementation of this segment, the suitability of
open standards in real production environments is significantly increased through new emerg-
ing versions of the specifications. One of the key contributions of this thesis is thus with its
case studies in Chapter 6 that revealed numerous lessons learned of using OGF standards in
practice and by implementing this segment over years (e.g. OGF25 PGI session dates back to
March 2009 [67]).

6.1.5 Segment 5: Aligning Middleware Roadmaps with EMI and XSEDE

As described in Section 5.3.5, the fifth segment towards interoperability is complementing the
rather short-term and medium term technical activities from the previous segments with a
long-term strategic endeavour. This paragraph provides insights into the contributions to the
alignments of future strategies and roadmaps relevant for the scope of this thesis.

To recall from Section 5.3.5, the basic recommendation of this segment is to align future
strategies and roadmaps that go beyond meetings that take place at EU concertation meetings
[156] by affecting the day to day business of projects. In the particular context of this thesis,
benefits include the use of products from one provider by different products from another or
just providing complementary components across the technology providers. This avoids ser-
vices duplication and leads to a complementary services landscape on e-Science infrastructures
as illustrated in Figure 6.3. It also shows that not implementing this segment might lead to a
fragmented service landscape resulting in non-interoperable infrastructures (cf. Definition 19).

Tech Provider Tech Provider Tech Provider G"’"’;Tec';”""’gy
‘roviaers
-2 UNICORE

often historically
formed and
in place since years

Collaboration under EMI project umbrella

2i 8 !‘v& M&)&

Figure 6.3: The Implementation of segment 5: Common EMI project harmonizing ARC, UNICORE, and gLite.

194 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

Many aspects of the IIRM have significantly contributed to the technical work plan of one of
the EGEE/EGI major technology providers named as EMI as its "description of work’ reveals
[15]. Figure 6.3 illustrates the EMI project as an umbrella of three distinct Grid middleware
technologies (cf. Definition 12). These Grid middleware systems are used on various pro-
duction e-Science infrastructures [14, 78] such as gLite traditionally used in EGEE/EGI, ARC
traditionally used in NDGF, and UNICORE traditionally used in DEISA /PRACE.

By implementing this segment, within EMI these middleware providers collaborate in terms
of aligning future strategies and long-term technology roadmaps as the “description of work” de-
scribes often mentioning also "harmonization” activities [15]. The EMI project thus jointly defines
the design of the next generation of Grid technologies used in e-Science for the next couple of
years in Europe. The work on the reference architecture and its core building block have been
essential in the creation process of the EMI project and are incorporated in many places within
the EMI “description of work’ [15]. The contributions of this thesis to the EMI "description of work’
(e.g. harmonization of security, standardization, etc.) [15] significanly contributed to the align-
ment of roadmaps between ARC, gLite and UNICORE being thus another key impact of this
thesis.

One concrete example are the EMI execution service (EMI-ES) [283] prototypes that use
many of the proposed concepts listed in Section 5.2 while being currently standardized in PGI.
But the EMI-ES specification [283] also reveals that good concepts from OGSA-BES are taken
as a basis such as the data-staging concept.

By focussing first on short-term harmonization between the EMI middlewares with the
EMI-ES, the first steps are taken towards more long-term standardization activities and proof-
of-concept implementations in the spirit of segment three. In parallel, PGI enables the long-
term standardization of the implemented EMI-ES prototype concepts including other middle-
wares (e.g. GENESIS) with the aim to contribute to improved OGSA-BES specifications (e.g.
OGSA-BES 1.1 or even 2.0) that will most likely be finished after the EMI project. Nevertheless,
this can be still considered as a very important contribution to standardization as described
in the 6th e-Infrastructure concertation meeting report: "The participants agreed that although the
full cycle of development of standards may sometimes exceed the lifetime of a typical EU project, but the
projects can still make substantial contributions to at least part of the standards’ development cycle (if
not all of it) [133].

In thise sense, the key concepts of the EMI-ES specification then need to be refactored to-
wards the final standard specifications such as OGSA-BES 1.1 or JSDL 1.1 while standardization
activities of those specifications have been already started in OGE. Due to the long standardiza-
tion process, standard adoptions might even occur after EMI is finished (e.g. from GENESIS,
UNICORE, etc.). Another EMI example is the use of SRM with non-GSI methods and the ideas
of delegation avoiding the proprietary use of HTTPG (cf. Section 5.1.6) that is part of the EMI
work plans [15]. Studies of missing links have been taken up like, for instance, that GLUE2 is
broadly considered in the JSDL evolution parts of the EMI-ES job description [283] concepts
that is also in standardization within the JSDL group [76].

The roadmaps of the three EMI technology providers was different in the past where UNI-
CORE was focused on a design that satisfies HPC end-users where gLite was focused to satisfy
the needs of HTC-driven and data-oriented end-users. ARC was primarily used and devel-
oped in the nordic countries serving the needs of WLCG customers through the NDGF Grid.
Although the roadmaps of the three technologies are still having their own identity (e.g. secu-
rity setups), a significant fraction of each of the roadmaps is influenced by key themes of this
thesis since the EMI description of work [15] follows key concepts of this thesis.

To provide an example, the roadmap of UNICORE and its components is defined by the
UNICORE collaboration, but several components are influenced via the EMI roadmap to achieve

6.1. SEVEN SEGMENT-BASED PROCESS IMPLEMENTATION AND IMPACT 195

a better harmonization with gLite and ARC [15]. The difference in focus, usage, and unique-
ness in supporting different technology aspects or computational paradigms is one of the most
EMI benefits of the alignment and harmonization process given by this segment. For instance,
UNICORE is more than 10 years used in HPC while gLite requires HPC support and thus it is
wise to cooperate when roughly 10 years of experience can be transferred within a collaborat-
ing project from one technology provider to another.

While one can consider to even agree on one computational Grid middleware and merge
all three ARC, gLite, and UNICORE, all of them have still unique functionalities that can not
be easily merged without giving up their key unique architectural designs (e.g. brokering vs.
explicit choose of sites). One example might be the ‘component per Grid service” approach in
gLite versus the ‘multiple Grid services all-in-one container” approach as followed by UNICORE.
The support for large-scale distributed data-management in UNICORE can be improved (e.g.
SRM interface for UNICORE storage services [15]) while the gLite collaboration has experience
with this topic over 10 years now.

But focussing on Europe alone is not enough as the e-IRG white paper 2009 indicates with
"It has been long recognised that e-Infrastructures are not restricted to country borders; on the contrary
they must be planned and set up as global infrastructures in order to create and effective and competitive
scientific ecosystem’ [206]. In addition to European activities, this thesis in general and this seg-
ment in particular also influenced the XSEDE architecture [235] through collaboration in the
project XSEDE and by having the thesis author a part of the architecture team. The XSEDE
architecture [235] is influenced by the IIRM reference architecture with OGSA-BES, JSDL, and
other standards, by having members from XSEDE participating in GIN and PGI (e.g. GENE-
SIS) [270] over several years as a result of fruitful collaboration. The Juelich Supercomputing
Centre is an official project partner of the XSEDE project [78] bringing Europe and US closer
together through the interoperability activities between UNICORE and GENESIS.

Also Globus is still a technology provider of XSEDE and members of Globus are also part
of the architecture team to ensure a harmonized architectural design. The implemented seg-
ments have been essential for the establishment of this unique collaboration within one com-
mon project. Impact and evidence for the aforementioned segment implementations around
standardization is best reflected by recent XSEDE media articles [80, 81, 78]. Hence, another
key contribution of this thesis is the alignment with XSEDE roadmaps between GENESIS, UNI-
CORE and Globus under the XSEDE project umbrella.

6.1.6 Segment 6: Harmonized Security Setups and Operation Policies

This segment recommends complementary work to technical activities related to policy harmo-
nization via dedciated groups that all share the goal to ease the usage of (multiple) e-Science
infrastructures for end-users. Also, many activities undertaken as part of the e-Infrastructure
concertation meetings aim to lower the barrier for end-users to use e-Science infrastructures
(e.g. [133, 134, 156]). Section 5.3.6 highlights that this particular segment is important and rep-
resents a complementary field to technical interoperability towards a full operational model
where infrastructure boundaries are lowered.

This thesis segment was only implemented to a limited degree majorly because of its tech-
nical focus. This paragraph will thus give only some examples that have either directly or
indirectly influenced the findings of this thesis via several related minor contributions.

Section 5.3.6 explains that dedicated groups with specific key topics are a very important
"tool” towards operational interoperability. The field of Grid security groups that harmonize
security policies (e.g. authentication and authorization) is one example to work on interoper-
ability between production e-Science infrastructures. While many challenges in security are

196 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

tackled with technology approaches, important work needs to be done for harmonizing secu-
rity policies as well. One first example of such a policy oriented group is the Joint Security
Policy Group (JSPG) [50] that was regrouped to the EGI Security Policy Group (SPG) [13]. In
this policy group members of EGI, OSG, and other infrastructures discuss security policies that
lead to a more streamlined security setup over the long term and should be extended to other
e-Science infrastructures.

The aforementioned group complements results of the former Middleware Security Group
(MWSG) [56] where the thesis author participated. This group is focused on technology in-
teroperability in the field of security but having also members of production e-Science in-
frastructures. The thesis author as MWSG member [57] influenced roadmaps towards SAML
and XACML as a solution for infrastructure security setups having shown presentations and
demonstrators via UNICORE being interoperable with gLite [302] security setups at MWSG
meetings (e.g. [57]). This includes initial work in OMII-Europe [69] that afterwards influenced
EMI work plans [15] more recently. This evidence highlights another key impact of this thesis
by enabling the proxies, SAML, and XACML security harmonization between gLite and UNI-
CORE as part of the “description of work’ [15] of the EMI project as a result of being involved in
MWSG [57].

It often remains a policy decision which technology end-users can use in production in-
frastructures. But also technical progress has the potential to influence those policies and re-
alizing a harmonization in infrastructure interoperability setups. Many findings of this thesis
have been given as an input from a UNICORE perspective to the international MWSG (e.g.
[57]). The aforementioned aspects point to another key contribution of this thesis by promot-
ing within the MWSG the IIRM reference architecture security pattern based on open standards
(e.g. SAML and XACML [57]). As a consequence of this work within the MWSG group, SAML
and XACML play a crucial role for all three EMI middleware systems as well also influenced
by the contribution of the reference architecture security pattern (cf. Section 5.1.6) to the EMI
work plans [15] as security harmonization.

One of the case studies where the aforementioned policy aspects matter is EUFORIA [225]
that is presented in detail in Chapter 6. In short, the EUFORIA framework [225] access to
different e-Science infrastructures is largely based on proxies that have been in the past nei-
ther supported by UNICORE nor accepted by the DEISA/PRACE infrastructure. But as part
of the thesis work, EUFORIA uses EGEE/EGI and DEISA /PRACE resources jointly together
with the EUFORIA framework using parts of the security plumbings (cf. Section 5.1.6). The
agreement in terms of DEISA /PRACE security policies was supported by technology improve-
ments (i.e. X.509 proxies in UNICORE) that in turn led to harmonized operational policies.
UNICORE was enhanced with optional proxy support and the functionality of UNICORE was
increased to express more fine-granular policies using XACML and providing support for VOs
using attribute-based authorization methods [302]. This technological advancement enables
fine-grained policies where only end-users from EUFORIA are allowed to use proxies while all
others have to use their full certificates. Another example of this segment is work undertaken
in the EEF [23] where members also discuss operational issues between production e-Science
infrastructures and their emerging requirements.

6.1.7 Segment 7: Funding and Cross-Project Collaborations

The final segment towards interoperability is massively driven by sustainability and the desire
to have synergetic solutions across the projects of the whole e-Science community. Also the im-
plementation of this segment is undertaken partly with e-Infrastructure concertation meetings
as sources reveal [133].

6.1. SEVEN SEGMENT-BASED PROCESS IMPLEMENTATION AND IMPACT 197

Section 5.3.7 introduces this segment by acknowledging that different funding sources and
'scientific project-like” funding is enabling the mainstream of thesis activities. The thesis contri-
butions have only implemented this segment to a limited degree, because of its rather technical
nature.

But a first concrete example of minor contributions is part of the thesis work and about
the different funding sources of UNICORE and Globus. Both could have benefit from a very
close collaboration, but they have been developed over a decade by different funding sources
meaning US fundings for Globus and EC funding for UNICORE. This led to non-interoperable
solutions in the past that can be at least partly explained by these different funding sources.

The collaboration is increased in terms of the EU project collaboration of EMI [27] and the
IGE project [45], which represents Globus in Europe. Hence, this collaboration is supported
by one dedicated European project that bridges to the US-funded Globus project in USA while
OMII-Europe [69] was a joint project with Globus and other European middleware provider
(i.e. UNICORE and gLite) in the past. Relevant for this thesis is the fact that OGSA-BES was
implemented in Globus during OMII-Europe as a prototype. A OGSA-BES frontend for Globus
is provided in the 2.0 release of the IGE project that reveals the importance of such projects
[44]. Furthermore, the IGE project contributes to PGI [270] activities paving the way to better
interoperability across US and EU.

Apart from the previously mentioned XSEDE collaboration [235], another example for cross-
project collaboration activities is the FutureGrid project [34] that is open for European and US
technologies. Funded by the US government, this training infrastructure is used by EMI for
demonstrations and is performing end user trainings on it [16]. The basic idea of FutureGrid
is to have a permanent testbed for interoperability, evaluations, and trainings constantly up
and running. This directly address one challenge often observed in performing interoperabil-
ity across infrastructures within GIN where endpoints seem to be very unreliable. FutureGrid
provided evidence that interoperability matters for the US funding sources as within Europe
through OMII-Europe, EMI and IGE respectively.

All the aforementioned evidence sum up in another minor contribution of this thesis work
that includes cross-project collaboration among international partners mainly through OMII-
Europe, EM], as well as XSEDE. This also includes work with FutureGrid being the testbed for
technologies in XSEDE with UNICORE installations and now used in EMI as well [16].

Finally, Section 5.3.7 mentions that one central project should be in place to promote the
collaboration between other projects in terms of standardization roadmap activities. This seg-
ment is implemented by the thesis contributions to the SIENA project [87]. SIENA coordinates
a joint roadmap across six so-called DCI projects. These are EGI-InSpire [25], EMI [27], Initia-
tive for Globus in Europe (IGE) [45], European Desktop Grid Initiative (EDGI) [24], VENUS-
C [99], and StratusLab [93] while the SIENA project represents a technology neutral project.
SIENA discusses long-term standardization across these projects, including future possibilities
using cloud computing techniques. Several results of this thesis have been given as an input
to the SIENA roadmap process including the overall seven segment-based process that was
presented at Cloud-Scape III [88]. The contributions given to the SIENA roadmap process pro-
vides another evidence of the impact of the proposed seven segment-based process. The result
of SIENA is a common roadmap across the six projects providing also pieces of information
of how cloud technologies influence the e-Science infrastructure landscape. The fruitful col-
laboration within SIENA is another evidence that this segment and such projects are crucial to
enable long-term interoperable production e-Science infrastructures.

198 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

6.2 Concrete Architectures of Production e-Science Infrastructures

Abstract

Reference
Model
(Chapter 5)

Requirements / Reft_arenoe Patterns \ Protocols
(Chapter 4) A[rg:;l;;lru?is (Chapter 5) (Chapter 3)
Profiles

(Chapter 5)

Motivation accounts for| considers

(Chapter 2)

Specifications
(Chapter 5)

Standards
(Chapter 5)
\ Architecture Work /

constrained
by

Goals
(Chapter 2)

(=7
==
=3

g

Related Work

accounts for use

WISDOM VPH EUFORIA ESFRI Other
Applications Applications Applications Applications Applications
Concrete (Chapter 6) (Chapter 6) (Chapter 6) (Chapter 6) (Chapter 6)

Figure 6.4: Concrete architectures of the reference model are derived from the abstract reference architecture.

Chapter 2 provided the necessary background about the state-of-the-art e-Science infras-
tructures and several of their interoperability challenges that exist today. After identifying the
need for a reference model, its architecture, and an associated process in Chapter 3, the IIRM
design and the seven-segment process are presented in Chapter 5. Both are based on a precise
set of requirements raised in Chapter 4. Starting in Chapter 6 the seven-segment process is
described and how it is specifically implemented in the given problem space where the IIRM
is one important segment of it.

The necessary next step as part of this section is to provide evidence of how all the pre-
vious abstract and theoretical considerations lead to practical impact on production e-Science
infrastructures (cf. Definition 5). This impact is shown in terms of technology improvements
as well as in terms of scientific innovation through real e-Science use cases that take advantage
of more than one infrastructure. This moves the focus one step further from the abstract to
the more concrete as illustrated in Figure 6.4. It illustrates that the concrete architectures are
derived from the reference architecture. SOA-based implementations are constrained by the
concrete architectures, but enable applications well-embedded in an ‘interoperability by design’
environment. Several related models can be used together with these concrete architectures
but not need to be guided necessarily by the broader reference model design.

The next section thus aims to provide concrete architectures that are influenced with the
reference model elements, while subsequent sections reveal insights on the undertaken appli-
cation case studies in context. The concrete architectures as part of this section provide the

6.2. CONCRETE ARCHITECTURES OF PRODUCTION E-SCIENCE INFRASTRUCTURES 199

overviews of the basic infrastructure setups in Europe, US, and other regions in the world, in-
cluding the basic SOA implementations in Grid technologies that then provide an environment
for well-embedded scientific applications. Infrastructure architecture deployments are outlined
and the key contributions in this chapter are clearly the scientific case studies, since they use
concrete e-Science infrastructure setups, which are also introduced in this section. In subse-
quent sections of this chapter, details of how the conducted scientific case studies and concrete
applications benefit from the presented concrete architectures and the IIRM are presented.

6.2.1 Reference Model and Architecture Adoptions

Abstract
Reference Model (Chapter 5)

Blueprint and Design Foundations

~N
Reference Model Entities] [Reference Model Entities Relationships]
S

‘guided by
/ Reference \
Architectures
Process
{Chapter5) (Chapter 5)

Functional Requirements]

Requirements Protocols
(Chapter 4) (Chapter5)

[Infrastru cture Integration Constra inls]

Profiles

Motivation jaccounts for] [Infrastructure Usage Model] considers (Chapter 5)

(Chapter 2)
Spe ns
derived Influenced by (Chapter5)

Goals
(Chapter 2)

(TERAGRID/XSEDE] Standards
(Chapter5)

| peiswprace) [eceeea |
Concrete Production Infrastructure

Architectures {Chapter &)
K Architecture Work /

Related Work

accounts for
* constrained by
[Service Oriented Architecture Implementations (Chapter 6)]

Figure 6.5: Reference Model and Architecture Adoptions Overview.

One key principle in software engineering is to differentiate between ’architecture and its
implementation’ that in turn can be best supported by the adoption of open standards. As Fig-
ure 6.5 revealed, the thesis contributions are in-line with this principle thus also addressing
the IIRM requirement defined in Definition 28. Chapter 5 focussed on defining rather ab-
stract technology-agnostic concepts and core building blocks of a reference architecture that
are implemented with concrete middleware adoptions in order to be deployed in production
e-Science infrastructures. Emerging implementations of the IIRM concepts and core building
blocks in Grid middleware (cf. Definition 12) are explained in this section. Although these
are all in-line with the non-functional requirement raised in Definition 68, all presented Grid
middleware implementations are independent from the concrete architecture implementations
of e-Science infrastructures.

200 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

In this section, the focus is set on Grid middleware and their IIRM adoptions using SOAs,
while concrete production e-Science infrastructure architectures will be described in subse-
quent sections. This is a key aspect since firstly the Grid middleware can be deployed on more
than one production e-Science infrastructure using different configuration setups of its tech-
nical capabilities. Secondly, the concrete production e-Science infrastructure architecture itself
should be kept technology-neutral from its architectural design while its implementations use
Grid middleware that, in principle, can be exchanged. This is required in order to satisfy the
requirement defined in Definition 73. The EICTA white paper 2006 refers to this important
requirement as ‘enhancing users choice’ [158].

The European middleware systems gLite, ARC, and UNICORE, adopt the core building
blocks and the IIRM concepts through the EMI project [27] and evidence supporting this claim
is already given in numerous segments of the implemented process at the beginning of this
Chapter, but also given by the description of work of EMI [15]. Under the umbrella of the EMI
project, gLite, ARC, and UNICORE work together on work plans that are massively influenced
with the IIRM work over years [15]. The project therefore focusses on harmonization instead
of pure developments and as such the adoption of open standards (cf. Definition 14) plays a
major role in all of its technical areas [15].

The improvement concepts derived from the case studies in Chapter 6 and related GIN ac-
tivities have influenced the IIRM design and therefore its refinement concepts have been given
as an input to the PGI working group [270] of OGF and some parts are already in standard-
ization within the JSDL group [76]. PGI works with representatives of all EMI middleware
systems and beyond (i.e. listed in table within [270]) on the next versions of OGSA-BES, JSDL,
GLUE2, SRM, UR, to ensure that important production e-Science infrastructure requirements
are addressed. The standardization itself is a long-term activity that goes beyond the scope of
this thesis, especially when considering that standardization takes a long time and even might
be not finished during the run-time of the EMI project. These reworked lessons learned of pro-
duction applications within PGI [76] are considered for concrete adoptions through EMI (e.g.
EMI-ES [283, 15]) that in turn are one key contribution of this thesis.

In more detail, the EMI project has developed many IIRM concepts as part of the EMI-ES
specification [283] as a proof of concept implementation and aligning UNICORE, gLite and
ARC models. Many of these implementations bear the potential that middleware adoptions
are proposed in Section 5.2 are able to use resources more efficiently that is another key impact
of the thesis contributions. As open standard specifications of the emerging standards such
as OGSA-BES 1.1, JSDL 1.1, and GLUE 2.1 are not likely to appear very soon, it might be not
possible to develop them as part of the EMI project. It is further expected that either the collab-
oration of EMI is continued via other activities (e.g. joint open source software foundation like
ScienceSoft [85]) or that the middleware provider will adopt the standards after EMI if funding
is available. As traditionally standards have been important for UNICORE and GENESIS, it is
very likely that these standards will appear in these systems.

Apart from the computational side, refinement concepts of the data and resource tracking
domain are implemented as well [15]. For instance, the storage accounting record with the
goal to extend the UR with storage information as proposed as part of Section 5.2. The storage
accounting record [201] is another prototype that is currently developed and recently standard-
ization activities have been started in OGF leading to an UR 1.1 specification in future.

Furthermore, there is also harmonization in terms of security meaning that the project de-
velops aspects of the security pattern described in Chapter 5, including the work around SAML
and XACML most notably as the ‘description of work’ reveals [15]. It is influenced with the
thesis findings including the plan to adopt more open standards in the EU middleware gLite,
ARC, and UNICORE being another impact of this thesis.

6.2. CONCRETE ARCHITECTURES OF PRODUCTION E-SCIENCE INFRASTRUCTURES 201

This thesis can only provide an architectural design in terms of the IIRM and its associated
reference architecture including refinements for core building blocks and recommendations as
well as prototypes. All these are valuable inputs to the standardization process that have been
published over years in various occassions (cf. Section 1.4). But the detailed implementations of
these concepts (i.e. source-code level) and their long-term standardization activities (i.e. new
normative specifications) are beyond the scope (and timeline) of this thesis. This is not only
because also other technologies may have other improvements in addition to the mentioned
standards, but also because the 'standardization process’ itself is a community process that can
take several years.

Many implementations of the IIRM concepts are considered as part of the EMI distribution
implemented across the middleware systems gLite, ARC, and UNICORE [15]. The EMI dis-
tribution delivers middleware to existing production e-Science infrastructures (i.e. EGEE/EGI
and DEISA/PRACE) with unique software that not many others in the Grid community are
able to deliver. The emerging developments of EMI and its releases in EGI UMD [14] pro-
vide further evidence that the thesis influence existing production e-Science infrastructures by
implementing major concepts and ideas of this thesis [15].

The EMI “description of work’” [15] includes the IIRM core building blocks and its refinement
concepts (i.e. PGI activities in [15]) that in turn illustrates the impact of this thesis in production
technologies. Based on this evidence in particular and the EMI middleware in general, the
requirement about supportability” as defined in Definition 76 is satisfied.

But apart from the major involvement in Europe and through the process implementation
described in the beginning of this Chapter, other reference architecture adoptions have been
influenced with this thesis [235]. Most notably, US middleware providers are part of the activ-
ities within GIN and PGI as well [270]. Firstly, the US Grid middleware GENESIS [231] that is
specifically optimized for campus Grids already adopts core building blocks of the reference
architecture (e.g. OGSA-BES, JSDL, SAML, etc.) and is likely to adopt the refinement concepts
as part of the PGI process as well [270]. This process is even supported outside of the stan-
dardization activities by deep collaboration in the XSEDE project where GENESIS alongside U
NICORE are the middleware systems considered for the TeraGrid/XSEDE infrastructure that
is revealed as part of other contributions in this chapter and published in [235].

Secondly, also the Globus middleware is constantly participating in PGI [270] via the IGE
project [45] that already released OGSA-BES for Globus through integration with GridSAM
[213] as part of the IGE 2.0 release [44]. The IIRM core building blocks and its refinements thus
influence the European middleware adoptions, but also those in the US.

NAREGI/RENKEI and GridSAM are further middleware systems that are crucial to other
international production infrastructures such as NAREGI in Japan and NGS in the UK. Evi-
dence is provided through their constant participation in PGI [270, 84] and their involvement in
the OGSA-BES related GIN demonstrations since many years [84]. Also these middleware sys-
tems plan to adopt the refinements of the core building blocks as part of the PGI standardization
process [84], which outlines further evidence of international impact of the thesis results. The
aforementioned facts contribute to another thesis contribution by performing numerous OGF
activities to broaden the IIRM adoption beyond Europe (e.g. in GENESIS [235] and RENKEI
[84]).

6.2.2 European e-Science Infrastructures Setup

The principle of differentiating between “architecture and its implementation’ is relevant for mid-
dleware architectures, but also for e-Science infrastructures as Figure 6.6 illustrates. It enables
the creation of concrete SOA-based production infrastructures (cf. Definition 5) that can be con-

202 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

sidered as a "Network of interoperable Grid services” according to Definition 15. Hence, e-Scientists
are able to switch technologies that implement the same architecture core building blocks (e.g.
standards) without being forced to use one particular implementation of the architecture.

"As yet there is no single unified computing system in the sense that there is a single World Wide
Web; rather there is a (relatively small) number of grid, HPC and cloud services, each with different
interfaces’ [210]. Therefore, the major research question of this thesis is, "How a reference model for
a network of interoperable services in production e-Science infrastructures can be defined’. This vision
is llustrated in Chapter 2 in Figure 2.8 in the given problem domain. This section gives more
answers to this question based on the IIRM defined in Chapter 5. Complementary, the previ-
ously mentioned emerging middleware adoptions of the IIRM and its assocatiated architecture
work are put in context.

The first concrete architecture of European production e-Science infrastructures presented
in this section is the EGEE/EGI infrastructure as shown in Figure 6.6. The transition process
from a project based EGEE infrastructure towards an NGI-based sustainable infrastructure
with a governing EGl.eu organization is finished. But the majority of NGI sites still run the
gLite middleware with only a limited increase in UNICORE or ARC deployments. The flexibil-
ity of NGIs to choose the specific middleware they want motivates the thesis since the situation
in EGEE/EGI gets even more fragmented when NGIs partly decide which software to be de-
ployed. EGEE/EGI deploys middleware systems with the Unified Middleware Distribution
(UMD) and thus the infrastructure will face a wide variety of middleware technologies that
need to be interoperable when using resources of more than one NGI. The underlying compu-

Abstract
Reference Model (Chapter 5)

) (

Blueprint and Design Foundations

‘guided by

Reference

Reference Model Entities Reference Model Entities Relationships

N
)
)
p,

Requirements
{Chapter 4)

Motivation
{Chapter 2)

Goals
(Chapter 2}

ID)

jaccounts for

accounts for

7

Architectures

\\

{Chapter 5}

[Functional Requirements]

[Infraslruclure Integration Conslrainls]

' derived *Inﬂuenced by

~
(TERAGRID/XSEDE]

\L Infrastructure Usage Model

Architectures (Chapter 6)

Concrete Production Infrastructure
S Z/

Architecture Work

constrained by

considers

Process
(Chapter 5)

T
&]
=3
[]
=3
E=a

Protocols
{Chapter 5)

Profiles
(Chapter 5)

Specifications
(Chapter 5)

Standards
(Chapter 5)

Related Work

Service Oriented Architecture Implementations (Chapter 6)

EMI

J (

GENESIS

GLOBUS

] (

J (

others...

Concrete [[

Figure 6.6: European e-Science Infrastructures Setup Overview.

6.2. CONCRETE ARCHITECTURES OF PRODUCTION E-SCIENCE INFRASTRUCTURES 203

tational paradigm in this infrastructure has not changed and thus EGEE/EGI is still considered
as a HTC-driven infrastructure (cf. Definition 17). The requirements for interoperability within
EGEE/EGI and with other infrastructures is even higher than before the transition since there
is a demand for interoperability across the variety of middlewares deployed by many different
NGIs. Some NGIs (e.g. the UK NGS) provide other technologies (e.g. GridSAM) in addition
to those provided by UMD (e.g. UNICORE, ARC, gLite via EMI) and over time aim to get into
the UMD among others (e.g. Globus).

The concrete architecture of the EGEE/EGI production e-Science infrastructure is influ-
enced by the software within UMD. UMD in turn consists of middleware systems delivered
by many technology providers while the EMI project is one of its major ones. The UMD 1.0
release consisted only of middleware components of the EMI 1 distribution getting more and
more other software components. The influenced middleware adoptions with IIRM concepts
and refinements thus also influence the shape of the EGEE/EGI production e-Science infras-
tructure via EMI and UMD. Using EMI middleware UNICORE, ARC, and gLite, EGEE/EGI is
interoperable in the sense of Definition 21 among its NGIs as well as with other European in-
frastructures that are compliant with [IRM and its concepts such as DEISA /PRACE as the next
paragraph will reveal. The aforementioned facts contribute to one key impact of this thesis with
having IIRM core building blocks included in the EGI UMD mainly through EMI and its differ-
ent middleware systems. As EMI and its middleware adopts a wide variety of open standards
(e.g. OGSA-BES in UNICORE), the thesis further contributed to an increased interoperability
via standards-based software in EGI UMD.

The second concrete architecture of an European production e-Science infrastructure is the
DEISA /PRACE infrastructure that is still in the process of its transition. DEISA sites are con-
sidered to become part of the PRACE infrastructure and as such UNICORE is already installed
on the supercomputer sites that offer access to resources in the resulting DEISA /PRACE infras-
tructure. The underlying computational paradigm HPC will not change and thus it remains a
HPC-driven infrastructure (cf. Definition 16). The IIRM core building blocks and its refinement
concepts are adopted by UNICORE through EMI. As EMI in general and UNICORE in partic-
ular is considered to remain the middleware provider for DEISA /PRACE, further evidence is
thus provided that the IIRM influence the concrete architecture of DEISA/PRACE. Over the
years, the thesis findings contributed via standards-based software UNICORE elements to the
DEISA /PRACE infrastructure thus enhancing its interoperability capabilities.

Based on the aforementioned concrete infrastructure architecture setups of the EGEE/EGI
and DEISA /PRACE, more insights into how core building blocks work with these setups are
presented in the following paragraphs. With this, the IIRM satisfies the required production in-
frastructure integration constraints raised in Chapter 4. Figure 6.7 illustrates how the concepts
published in [260] and described in Chapter 5 are used in context of existing constraints in the
context of case studies like EUFORIA and WISDOM.

Figure 6.7 illustrates the concrete SOA-based production infrastructures EGEE/EGI and
DEISA /PRACE with an emphasis on those services that are relevant for the invariants. The
significance of the invariants in IIRM adoptions is visible in the computational parts when a
detailed step-wise job submission process in context of concrete infrastructure architectures is
described. The invariant implementations and applied methods are all also relevant for other
reference architecture core building blocks (e.g. SRM), but the focus here is on computation.
As shown in Figure 6.7, several core building blocks and their invariant implementations form
a relatively complex architecture with essentially four layers.

The ‘resource layer” stands for the e-Science infrastructure resources that are available in
EGEE/EGI and DEISA /PRACE. Examples are HPC- and HTC-computing resources while on
this layer also data storage resources can be found in concrete production setups, but that are

204 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

neglected to focus on the invariant description. On top of this layer, several IIRM reference ar-
chitecture services are shown that offer access to the underlying resource layer and its function-
alities realizing middleware functions. These services together form a "network of interoperable
services” as defined in Definition 15 and are as such independent from the "real physical e-Science
infrastructures” underneath (e.g. EGEE/EGI or DEISA /PRACE). The reason for this is because
of the interoperability among the servies based on the IIRM and conformance to the invariants
described in the next paragraphs.

One dedicated layer for the production infrastructures is added on top of these interop-
erable services to model the ‘infrastructure boundaries” as best as possible in Figure 6.7. This
layer would include policies that govern access methods to the infrastructure (e.g. computa-
tional time grants, VO membership, etc.). Another layer of the architecture stands for ‘scientific
clients” that can be any form of a 'scientific gateway’ providing easy access to e-Science infras-
tructure services used by scientists on a daily basis.

In this complex architecture, the IIRM invariants and its impact on the different levels are
described in a step-wise fashion during cross-infrastructure application runs based on the "de-
sign pattern” introduced in Chapter 5. Each step marked as (n) corresponds to one step (n)
within the provided production architecture setups illustrated in Figure 6.7.

An e-Scientist that works with a particular aforementioned scientific gateway (0) of his field
(e.g. bio-informatics portal) integrates clients that access numerous IIRM services (i.e. OGSA-
BES, SRM, etc.). Complementary to the functional services, there must be an integrated client

0 i {\.\,; ‘I‘E}(Scientific Gateway (client for OGSA-BES + AV and SRM + AY interface; Scientific
e = £ client for VOMS; client for corresponding used information service, e.g. LDAP) Clients
| A A Ll
(CIF "Il YO) MO Ol '

= Interoperable
DEISA / PRACE e
L PPl

EGEE/ EGI e-Science

Infrastructures

1 |
| . . |
1 Out-of-band Attribute Out-of-band 1
1 mechanism Authority mechanism | . Network of
" wAs? (e.g. LDAR) was?(e.g. VOMS) wA2” fe.q. SGAS | interoperable
1 || Information System 1 il Central System Accounting System I SEEES
1 NS 1
(OGSA-BES + AV (OGSA-BES + AV
N Interface 1 et Interface
";, UNICORE @
X o~
—_ 18
e
% rRus | e-Science
infrastructure
resources
for
} computation
L p '_ amj
HPC-based Grid resource HTC based Grid resource. =’ OfHPQ
HTC jobs

Legend: ' CPUs / cores %mmpu[‘efﬂbs e component :‘\"_ﬂ, standard Dj,sm . rnvananfrmpfememaﬂons@ Stepn

Figure 6.7: IIRM Infrastructure Integration Constraints applied to EGEE/EGI and DEISA /PRACE.

6.2. CONCRETE ARCHITECTURES OF PRODUCTION E-SCIENCE INFRASTRUCTURES 205

that obtains valid credentials from an AA like the VOMS system. The client require methods
to query an information service of interest (e.g. via LDAP) in order to obtain the status of the
e-Science infrastructures and their offered services (and underlying resource) capabilities.

Before the e-Scientist is even able to work with the interoperable infrastructures, the ex-
istence of computational resources and their capabilities are exposed in a consistent manner.
The global information invariant comes into play that raises the demand to expose such prop-
erties via GLUE2. As the example shows, a HPC resource is described with a GLUE2 entity
(1) and another HTC resource with another GLUE2 entity (2). These entities are exposed via
corresponding information providers (3 and 4) to an information system (5). Due to scalability
reasons we do not force specific WS-based interfaces as part of the IIRM and rather refer to
a mechanism that is not further specified but that provides a scalable solution (e.g. based on
LDAP). This satisfies the first invariant so that 'basic semantic interoperability’ is in place in the e-
Science infrastructure ecosystem between EGEE/EGI and DEISA /PRACE. This basic semantic
interoperability is essential since it clarifies the use of terms across infrastructures that previ-
ously have described their resources with different terms, languages, or information models.

The constraint of having one common information model enables interoperability in terms
of fundamental information exchange and gives clarity thus avoiding semantic loss of infor-
mation where one proprietary model might be transferred into another proprietary model and
vice versa (i.e. transformation logic, cf. Chapter 3). Based on this semantic interoperability, the
e-Scientist is able to use his client to query the information system (6) in order to search for re-
quired computational resources (across multiple infrastructures) that are accurately described
with GLUE2 entities.

When the systems have been identified, the right credentials can be obtained from the AA
that in our case is a VOMS server (7) augmented with a SAML interface as published in [302].
This server releases signed attribute statements about end-users (e.g. project or VO member-
ship, role possession, etc.) either encoded in SAML or in X.509 proxies depending on the rel-
evant systems of interest found in the query of the information service. This security setup
information is part of the GLUE2-based information about each service and thus available be-
fore the call to the relevant AA in context. The interoperability of the interface for the AA is
not as important as the agreement of the attribute formats stating the security content. It is
essential that the attribute statements are in the same common security attribute format in or-
der to achieve "basic authorization interoperability’. This lays the foundation to enforce the global
authorization attributes invariant later during authorization decisions within the service layer.

After the aforementioned basic steps are taken, the e-Scientist uses a HTC resource with an
embarrassingly parallel job. According to the IIRM design, the e-Scientist re-uses elements of
obtained resource description elements based on GLUE2 to form an enhanced JSDL document
(8) that is submitted to an enhanced OGSA-BES implementation within gLite. A missing link
between GLUE2 and JSDL is used to form more accurate resource requirement statements in
JSDL elements actually based on GLUE2 elements. One example of the enhancements of the
JSDL document is the use of GLUE2 elements in its resource description section. Along with
this submission is the security credential obtained from the VOMS server, such as an X.509
proxy credential with attribute statements that conforms to the common set of attributes stating
the VO and role of the e-Scientist. Before the execution of the job is performed, the authoriza-
tion policy framework of gLite (i.e. gJAF, or more recently Argus) (9) is responsible to extract
the attributes from the credential and to perform a check of the attributes against the security
policy. The constraints is set that also the policy definitions must be in the same common at-
tribute format (10), the access is granted (11) when the e-Scientist obtained the credential from a
trusted VOMS server that also then satisfies the global authorization attribute invariant. When
the execution of the HTC job is finished a usage record entity (12) is created and forwarded

206 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

-——— -
4 ~
I" -~ IIRM Instance Service
] IIRM Instance Service N i SRM + AY i
| OGSA-BES + AV ~ {e.g STORM) Traditionally
' (e.g. ARC middleware) ~ o~ HTC-driven
| = e-Science
l 1IRM Instance Service N Infrastructure
- { OGSA-BES + AV EGEE/EGI
l IIRM Instance Service ’ 5 :
(e.g. plite middleware)
SRM + AY
I i e.g.dCache IIRM Instance Service
\ WS-DAIS + AX
~ e.g. AMGA
IIRM Instance Service
‘ O0GSA-BES + AV
{e.g. GENESIS)
~ ()
~ Traditionally
~ HPC-driven
~ e-Science
IIRM Instance Service ~ IIRM Instance Service 1 Infrastructure
‘ OGSA-BES + AV ‘ OGSA-BES + AV DEISA/PRACE
{e.g. UNICORE) ~ ~ {e.g. UNICORE)]
Il
Legend: ' Data Resource . Compute Resource ‘ Large-scale Compute Resource --" Individual Infrastructures

Figure 6.8: IIRM adoptions enable individually formed infrastructures across EGEE/EGI and DEISA /PRACE.

via a dedicated accounting sensor (13) to a central accounting system (14) such as SGAS [279].
This basically concludes the HTC execution part of the greater scientific workflow following
the design pattern algorithm introduced in Chapter 5.

As [259] reveals, the results of the HTC-based workflows are evaluated, often also manu-
ally, before the best results are considered to be used in application submissions to HPC-based
workflow elements. As these steps are in many cases very similar like the HTC steps due to
the interoperability and common invariants usage, these parts are described shorter to avoid
the repetition of details. Starting with the HPC-based workflow, the scientific gateway is used
to submit an enhanced JSDL (15) with a different credential set (i.e. SAML assertion obtained
from AA) but that encodes the same attribute statements as used in the HTC setup, includ-
ing the same security information. The same context-based identity is used, but encoded in
a different way while the real security-relevant information (i.e. security attributes) remains
the same. This is an important aspect since it is related to the trust of end-users into the in-
frastructure and the feedback about their identity that remains the same independent of which
infrastructure is actually used underneath.

Afterwards, the authorization policy entity (16) of the UNICORE middleware extracts the
attributes encoded in a signed SAML assertion and performs an authorization decision based
on the common set of attributes (17). This satisfies the 'global authorization attribute invariant’
that here avoids the need to (often manually) setup dedicated authorization policy elements
for end-users of other e-Science infrastructures. Such a manual setup is often applied as in
the GIN setups [256] that reveal that they are often hard to maintain, time-consuming and in

6.2. CONCRETE ARCHITECTURES OF PRODUCTION E-SCIENCE INFRASTRUCTURES 207

many cases also error-prone leaving even security risks if users that are not allowed to use the
infrastructure anymore are not removed.

When the access is granted (18) based on a match of the provided end-user attributes in
the SAML assertion with the defined XACML security policy, the HPC execution is started.
In many cases, a resource management system (cf. Definition 11) is used to execute in this
step an MPI-based parallel HPC application. Finally, after the job run, a usage record entity
(19) is created and forwarded via an accounting sensor (20) to the same relevant accounting
system (21) as stated above (e.g. SGAS). This finally concludes the HPC workflow part and
as such the whole scientific workflow that covers the concrete production e-Science infrastruc-
tures EGEE/EGI as well as DEISA /PRACE. The IIRM invariants and infrastructure integration
constraints verify that the IIRM and its reference architecture is applicable to the concrete ar-
chitectures of EGEE/EGI and DEISA /PRACE.

'Since many of the ESFRI projects have stated that they have a clear need to make use of several
of the existing European e-Infrastructures, improving the interoperability between these structures will
have a definite added-value for all the user communities’ [161]. As shown in Figure 6.8, EGEE/EGI
and DEISA /PRACE thus have an emerging interoperability between them that in turn is get-
ting closer to the vision so that scientists can actually create ‘individually formed infrastructures’
as defined in Definition 20 across both of them. Both Figure 6.7 and Figure 6.8 and its afore-
mentioned descriptions provide evidence about one of the key impacts of that thesis enabling
technically individual infrastructures between EGEE/EGI and DEISA /PRACE.

But interoperability is in this context only achieved on the technical level. Common usage
policies need to be also defined while Figure 6.8 present one possible technical deployment
example. Their clients use seamlessly the heterogenous resources for scientific research as il-
lustrated in Figure 6.8. A comparison with this situation to the ideal situation, provides the
following results. An ideal situation might be that there is only one middleware across both
European infrastructures that in turn would make the problem of interoperability irrelevant.
That is not the case and and this ideal situation will not emerge in the near term, mostly be-
cause many end-users are already using technologies in the past and keep using them instead
of switching technologies.

Finally, further evidence on e-Science impact is provided by analyzing to which extend
the thesis satisfies the following requirements. Firstly, the technical foundation for end-users
is provided by the IIRM to choose resources from EGEE/EGI or DEISA /PRACE as defined
in Definition 73. The refinement concepts also have thus satisfied Definition 74. The thesis
approach avoids the use of transformation logic, which normally leads to performance reduc-
tions especially in cross-infrastructure use cases. End-users can use the HPC extensions for
efficient executions on HPC resources essentially not having performance reductions, because
optimizations (e.g. shapes, network topologies) can be used. This satisfies the requirement as
defined in Definition 75.

6.2.3 US and other e-Science Infrastructures Setups

The last section focused on the thesis results that affect Europe while this section describes how
the IIRM activities contribute to interoperability beyond Europe meaning mainly US as well as
Japan. This directly addresses one critical 6th e-Concertation meeting outcome: ‘Links to the
rest of the world-leading e-Infrastructures need to be streamlined’ [133]. This section aims to offer
some solutions for such an international link in the particular context of concrete production
e-Science infrastructures (aka e-Infrastructures) as shown in Figure 6.9.

That this is important is best reflected in the e-IRG white paper 2009 with "The engagement
in worldwide collaborations between the various e-Infrastructures will increase cross fertilization of

208 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

novel ideas across large scientific communities and harmonise policies and best practices between trans-
continental large scale e-Infrastructures towards the worldwide Knowledge Society’ [206].

The principle of differentiating between “architecture and its implementation’ is also followed
as part of the XSEDE project [29]. XSEDE is the follow-on project of the known TeraGrid infras-
tructure in the US that was traditionally a rather HPC-driven infrastructure (cf. Definition 16).
The precise architecture of the XSEDE infrastructure will evolve over time, but large elements
of the architecture are considered to be specified by open standards that are all in-line with the
IIRM and its concepts [235]. With the segment-based process implementation described in ear-
lier parts of this chapter, the close collaboration with members of GENESIS via OGF GIN and
PGI [270] lead to the collaborative XSEDE proposal including the adoption of open standards
in the architectural design.

The IIRM thus influenced the XSEDE architecture design starting from the use of SAML
and XACML for security and the use of OGSA-BES and JSDL in terms of Grid job submission
as illustrated in Figure 6.10 published in [235]. The "XSEDE Enterprise Services” are based on
open-standards and mandatory to be installed at every major XSEDE resource. The 'Comimu-
nity Provided Services’” are complementary optional installations. As the author is part of the
architectural design team, the architecture will be influenced to a large extend by the IIRM
design, including its reference architecture. The impact on the architecture is another contribu-
tion of this thesis to the open standards-based XSEDE according to IIRM as [235] reveals. But
XSEDE also aims to adopt some standards that have been intentionally left out of this thesis
scope, but that can be augmented to the IIRM without breaking its concepts over time. Exam-
ples include the Resource Namespace Specification (RNS) [243] that can be used in conjunction
with the core building blocks of the IIRM reference architecture.

Abstract '\
Reference Model {Chapter 5)
[Reference Model Entities] [R Model Entities Relationshi]
[Blueprint and Design Foundations]

‘guided by
Reference
/(Architectures \\ Process
:Chamer5’

[Functional Requirements]

Protocols

Requirements
{Chapter 5)

(Chapter 4)

[Imraslructure Integration Constra ims]

Motivation jaccounts for] [Infrastructure Usage Model] considers :Ci;o;-:':rsﬂ
{Chapter 2)] K j i

Specifications
Goals derived Influenced by (Chapter 5)
Y

.

{Chapter 5)

{Chapter2)

i)

[pEisarrace) [eceeea |
Concrete Production Infrastructure

Architectures (Chapter 6]
_ (Chapter 6) y,
Architecture Work

Related Work

accounts for
‘ constrained by
Service Oriented Architecture Implementations (Chapter 6)
EMI] GENESIS]{ GLOBUS]{ others...]
Concrete

Figure 6.9: US and other e-Science infrastructures setup overview.

6.2. CONCRETE ARCHITECTURES OF PRODUCTION E-SCIENCE INFRASTRUCTURES 209

In terms of US-based infrastructures, the OSG, as a traditional HTC-driven infrastructure,
is also important. Plans exist that OSG will become a status like 'sub-contractor of XSEDE" such
as other possible resource providers in the US. Mechanisms will be then established that enable
the use of XSEDE but inherently forward jobs to OSG for computation. XSEDE thus becomes
a hybrid infrastructure (cf. Definition 18) in the next years, since also HTC-driven campus
resources will be integrated over time. It is important to acknowledge that this thesis can only
partly influence the deployment situation of such infrastructures from a technical perspective.
The final deployments, also in terms of which technologies will be deployed might differ, but
here we outline the planned deployment situation as published in [235].

The key middleware technologies that are currently considered to implement the archi-
tecture are GENESIS and UNICORE augmented with several other tools like Globus Online
data transfers [39]. As [235] reveals, GENESIS is planned to be deployed on campusses while
UNICORE is planned to be used at major US supercomputing sites. Another key impact of
this thesis is therefore the numerous contributions to the standards-based software UNICORE
[257, 220, 302, 284] (cf. Section 1.4) that are considered for the XSEDE architecture for this par-
ticular reason. The aforementioned section about adoptions reveal, both GENESIS and UNI-
CORE adopt the core building blocks of the IIRM and considering the adoptions of the concept
refinements via PGI participation [270]. This evidence points to the fact that the IIRM and its
concepts also influence the concrete architecture of the production e-Science infrastructure Ter-
aGrid /XSEDE. Sites that in parallel deploy Globus might use its emerging OGSA-BES imple-
mentation by IGE via GridSAM [44] in order to achieve interoperability with TeraGrid /XSEDE
sites and with European infrastructures DEISA /PRACE and even EGEE/EGI as illustrated in
Figure 6.11.

The European interoperability is thus extended to TeraGrid/XSEDE as another concrete

production e-Science infrastructure (cf. Definition 5) that is enabling a ‘network of interoperable
Grid services” according to Definition 15. Based on the fact that Europe and US adopt middle-

‘ Extended Architecture

Applications, Transparent access APIs and CLls

Portals and via the file system
Access Layer Gateway;\/’

XSEDE Enterprise

Services & Services Community Provided
Web Services (JSDL/BES GridFTP Hm s
Infrastructure e RESH gt Amazon £C2
wslasp RNS/BytelO Application Development
Core Enterprise Other Resources, e.g.
Resources, e.g. Campus centers, Amazon,
Resources RP resources Research Group Data

Os S

Os

Figure 6.10: Emerging US XSEDE infrastructure architecture with IIRM core building blocks [29].

210 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

ware that adopts the IIRM core building blocks, e-Scientists are able to create an individually
formed infrastructure (cf. Definition 20). Such an infrastructure increases the effectiveness of e-
Scientists (cf. Defnition 10) in an unprecedented manner enabling seamless technical resource
usage across TeraGrid/XSEDE, DEISA /PRACE, as well as EGEE/EGI. This ideal situation is
illustrated in Figure 6.11 while the deployment in US is in progress and the situation in Eu-
rope is getting much more fragmented (e.g. UNICORE on EGEE/EGI in various NGlIs). Given
the secure environments of DEISA /PRACE, there is currently only UNICORE and some tools
of Globus planned to be deployed such as an implementation of GridFTP [109] that is also
in-line with the core building blocks of this thesis. With all the aforementioned key thesis con-
tributions interoperability is ensured and the thesis contributes to the enabling of individually
formed infrastructures across EU and US.

The IIRM and its associated reference architecture elements are already partly deployed on
the US and European production e-Science infrastructures. Based on this technical foundation,
the middleware boundaries are lowedred and e-Scientists are able to form individual infras-
tructures as needed using the resources they want. Nevertheless, it is important to mention
that usage policies must be set in place to enable them with the seamless use (e.g. comput-
ing time) of all the illustrated infrastructures or the submission of a peer-reviewed grant in
DEISA /PRACE has been succesful.

Apart from the US and as part of the seven segment-based process described earlier in this
chapter, a collaboration with the Japanese infrastructure activities initially called NAREGI [221]
and then Resources liNKage for E-sclence (RENKEI) [83] lead to IIRM adoptions as described in

Middleware Services in EGEE/EGI Middleware Services in NAREGI/RENKEI

(i)
iF} i [} Traditionally
m [| [| - HTC-driven
e-Science
Infrastructures

(ii)
Traditionally
HPC-driven
e-Science
Infrastructures

Middleware Services in DEISA/PRACE / Middleware Services in TeraGrid/XSEDE

Legend: i Data Resource [} Compute Resource [Services in middieware Individual Infrastructures

Figure 6.11: IIRM-enabled individual infrastructures across the US and Europe.

6.2. CONCRETE ARCHITECTURES OF PRODUCTION E-SCIENCE INFRASTRUCTURES 211

[84]. NAREGI/RENKEI members have been participating in GIN and PGl activities [270] while
also their infrastructure is able to work together with the European and US infrastructures as
described as follows. Based on the IIRM core building blocks adoptions within RENKEI [84],
e-Scientists are able to create "individually formed infrastructures” across Europe, US, and Japan.
The latter interoperability is still emerging and many sites of the infrastructure are not yet fully
interoperable thus providing only a limited adoption of the IIRM that will be broaden during
the course of the next years following the plan outlined in [84]. Recent activities in RENKEI
reveal [84] that it is majorly orientated towards the use of HTC (but with more and more HPC
resources over time) thus influencing the Figure 6.11 how this infrastructure is classified.

This evidence on the e-Science infrastructure impact is underpinned to which extend the
thesis satisfies the requirements in the context of the aforementioned e-Science infrastructure
architectures. The technical foundation for scientific end-users to choose resources from Tera-
Grid/XSEDE in the US or from the DEISA /PRACE infrastructure as defined in Definition 73
is provided thus ‘enhancing users choice’. The infrastructure interoperability setup is extended
to HTC-driven infrastructures (cf. Definition 17) such as EGEE/EGI with the UMD deploy-
ments [14]. The thesis thus contributed to the vision where technical infrastructure boundaries,
apart from the usage policies, do not exist. Comparing this architecture setup to the ‘optimal
setup’, there must be still work on harmonizing the usage policies since computational time on
TeraGrid /XSEDE as well as DEISA /PRACE is still subject of a peer-review process while the
accress to the EGEE/EGI infrastructure is different by joining a dedicated scientific VO.

In the particular interoperability setup between DEISA/PRACE (i.e. UNICORE) and Ter-
aGrid/XSEDE (i.e. GENESIS and UNICORE) both infrastructures aim to use the refinement
concepts of Chapter 5 with adoptions in GENESIS and UNICORE after PGI standardization
[270] thus also in-line with Definition 74. This is because the approach around the reference
architecture (e.g. using OGSA-BES) avoids the use of transformation logic (cf. Definition 27),
which normally leads to performance reductions especially in cross-infrastructure use cases.

End-users can use then the HPC extensions for efficient executions on HPC resources as
part of TeraGrid /XSEDE as well as DEISA /PRACE that are both rather HPC-driven infrastruc-
tures (cf. Definition 16). End-users that use this interoperability setup have not performance
reductions, because they can take advantage of optimizations (e.g. shapes, task/core map-
pings, etc.). These optimizations, which are commonly performed on HPC resources, satisfy
the requirement as defined in Definition 75.

6.2.4 Related Models for e-Science Applications

Figure 6.12 provides an overview of the approach throughout the thesis and illustrates elements
related to concrete architectures and SOA-based architecture implementations. But the figure
also reveals another element named as "Related Models’ (marked in red) that is addressed in this
brief section with a particular focus on those models that support e-Science applications and
that have some relationships with the core building blocks described in this thesis.

Many related models can be directly used with the reference model and its associated archi-
tecture work, because the thesis provides concrete basic specifications as part of its reference
architecture. The detailed foundational reference architecture can be considered by related
models and is as such another contribution of this thesis. The wide variety of e-Science ap-
plications (cf. Definition 9) can also be applications of the IIRM and its associated reference
architecture when the core building blocks described in Chapter 5 are used. The foundational
character of the key areas (i.e. compute, data, security, and information) of the core building
blocks, enables their use by related models such as "higher level frameworks’.

In the given context of production e-Science infrastructures (cf. Definition 5), the 'Simple

212 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

Abstract
Reference

A Model
(Chapter5)

Requirements / Reference Patterns \
{Chapter 4) [ﬁg:g:gr;* (Chapter5) (Chapter 5)

Profiles
(Chapter5)

Motivation accounts forl considers

(Chapter 2) =

derived
Specifications

{Chapter5)
Architectures Standards
{Chapter 6) {Chapter5)

Input \ Architecture Work / Related Work

accounts for constrained

Goals
(Chapter 2)

Concrete

00O

e

Concrete

Figure 6.12: Related Models for e-Science Applications Overview.

API for Grid Applications (SAGA) Framework’ [202] represents one concrete example of such a
related model to the IIRM and its associated reference architecture. The term SAGA stands for
two aspects. Firstly, SAGA is an open standard [186] to promote 'Grid interoperability on the
application level” developed by the OGE, but is not considered as an IIRM core building block
in this thesis. Secondly, the so-called 'SAGA framework’ is actively developed by a team that
adopts the SAGA standard as described in [202].

There are different reasons why the SAGA framework is relevant in the context of the thesis.
Most notably, it is a framework that enables a high-level programming abstraction, which sig-
nificantly facilitates the development and deployment of e-Science applications (cf. Definition
9). As such it provides a lot of application patterns (e.g. map-reduce, replication, parameter
studies, etc. [287]) that are useful for e-Scientists thus lowering the barrier in using production
e-Science infrastructures in general.

Apart from being a high-level application framework, [287] reveals that it can work on top
of the foundational core building blocks of the IIRM reference architecture (e.g. OGSA-BES,
JSDL, etc.). Although being previously bounded to proprietary interfaces of Grid middleware
systems as described in [202], in [287], the SAGA framework is thus extended towards OGSA-
BES and other related open standards that are in-line with the IIRM core building blocks. The
idea of SAGA is to expose the same functionality as standards like OGSA-BES or JSDL, but to
provide additional program level simplifications and abstractions to the e-Scientists in order
to hide the complexity of these underlying interfaces [287]. SAGA is not only a standard (cf.
Definition 14), but also an application framework that provides many features that in turn
reflects the classification of this work as one of the related models (cf. Figure 6.4).

The SAGA framework benefits from the IIRM reference architecture by requiring to support

6.2. CONCRETE ARCHITECTURES OF PRODUCTION E-SCIENCE INFRASTRUCTURES 213

open standard protocols (and possibly their refinements over time) for different middleware
systems instead of numerous different adapters for each middleware (cf. adapter approach
in Chapter 3) used in production e-Science infrastructures. User of the IIRM can benefit from
using the wide variety of SAGA application patterns with scientific applications on top of the
rather basic IIRM architecture.

Collaborations within GIN lead to initial prototypes, exploiting the mutual relationships
with e-Science applications in order to provide scientific innovation through the IIRM. The
IIRM and its architecture definition is a first step to provide a foundational architecture for
higher-level application frameworks such as SAGA. The aforedescribed facts point to another
contribution of this thesis that is the established foundation for higher-level application frame-
works such as SAGA [287]. More related models (e.g. workflow engines) are likely to appear
from the wide variety of application tools and models of ESFRI RIs using domain-specific tools.
One concrete example is the WebLicht [192] workflow tool used in computational linguistics
within the ESFRI Common Language Resources and Technology Infrastructure (CLARIN) in-
frastructure [306] that can be augmented with clients for the core building blocks in the refer-
ence architecture to take advantage of the computational power available in EGEE/EGI and
DEISA /PRACE today.

214 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

6.3 Architecture Implementation for the WISDOM Applications

Abstract

Reference
Model
(Chapter 5)

| Requirements / Reference \ Protocols
(Chapter 4) [Architectures Lutieins (Chapter 5)

(Chapter 5) (Chapter 5)

Profiles

Motivation Jaccounts forl jponsiders (Chapter 5)

(Chapter 2)
derived

Specifications
E —
(Chapter 2)
[Concrets] [Relaled Models]

Architectures Standards
(Chapter 6) {Chaptat;c) (Chapter 5)

I

Input Architecture Work Related Work
accounts for constrained use
by

\

Service Oriented Architecture Implementations
(Chapter 6)

VPH EUFORIA ESFRI Other
Applications Applications Applications Applications
Concrete (Chapter 6) (Chapter 6) (Chapter 6) (Chapter 6)
S

Figure 6.13: SOA implementation for WISDOM applications constrained by the concrete reference architecture.

This section describes concrete SOA-based implementation details about the scientific case
study named Wide In Silico Docking on Malaria (WISDOM) [135] that was conducted during the
definition of the proposed reference model. It contributed enormously to the findings of this
thesis and many aspects of it are published in [259] and [272]. Figure 6.13 provides an overview
of how the case study fits into the overall reference model approach and its implementations.

The path of the scientific investigation throughout the case study is also represented in the
structure of this section. An introduction to the WISDOM initiative and its basic framework is
given in order to understand how WISDOM e-Scientists use production e-Science infrastruc-
tures. The overall scientific WISDOM application workflows requires more than one e-Science
infrastructure.

Both the architectural analysis and the scientific application analysis set the foundation
for the critical academic analysis to explain the limitations of the basic WISDOM framework.
As a key contribution of this section insights into how those identified limitations are solved
by using the IIRM and its associated reference architecture implementations are given. The
necessary IIRM reference architecture core building blocks are already emerging on production
e-Science infrastructures as the previous sections revealed.

This section aims to verify that the reference model is applicable to the WISDOM scientific
workflows that seek to take advantage of more than one production e-Science infrastructure.
Many prototype developments and studies contributed to the case study thanks to the fruitful
collaboration between the WISDOM community and the OMII-Europe project [69]. These re-

6.3. ARCHITECTURE IMPLEMENTATION FOR THE WISDOM APPLICATIONS 215

sults have been presented at various events, such as the Supercomputing 2007 in Reno [94] at
the JSC booth as part of OGF GIN demonstrations.

6.3.1 Basic Framework of the WISDOM Initiative

The fundamental goal of the WISDOM initiative [135] is to support a broad drug discovery
process illustrated in Figure 6.14 using specific computational methods (i.e. in silico). The
approach is based on the so-called in silico drug discovery process’ [135], which uses computa-
tional simulations to speed up the identification and characterization of potential new drugs.
The focus here is on the docking of the 3D structures of plasmepsin and small molecules [135],
including their simulation over time once docked.

The SHARE project [86] indicates that pooling knowledge and computer technology to do
in silico drug discovery can correspond to savings of about 300 million US dollars. It further
states that this approach can reduce the development time of a new drug approximately by two
years per drug, which also represents a crucial scientific innovation from the case study. Phar-
maceutical research is constantly looking for ways of reducing the time and costs involved in
drug development. The interoperability of e-Science infrastructures breaks institutional bound-
aries to help achieve these goals by providing access to more computational capabilities than
one single infrastructure can provide. Such interoperable e-Science infrastructures bear a lot of
potential to perform cheaper and faster drug discovery using in silico methods.

In contrast to the broader SHARE project, the WISDOM initiative has a more focused strat-
egy aimed at developing new drugs for malaria. WISDOM scientists used only the EGEE/EGI
e-Science infrastructure via gLite for large-scale in silico docking methods, but mechanisms
as described in [259] have been established that make use of the DEISA /PRACE infrastruc-
ture, too. The basic WISDOM framework was created to enable the interoperation between
EGEE/EGI and DEISA /PRACE illustrated in Figure 6.15.

WISDOM

Initiative for grid-enabled drug discovery 3D-structure 3D-structures of
- of plasmepsin small molecules
against neglected and emergent diseases \ /
In silico docking
(WISDOM)
vide Biological and 1

questions. genomics tools mechanistic insights

L"‘K" development | \ rmmm al i [Metabosic pattmays
(stage-apecific | P s

Identity determination

Resont o
g » of hypothatical
proteins

Cell eycle reguiaters

Bioinfarmatics,
Proteomics 'Data mining

e S Drug/target
i - N identification

J o o and
/ \ characterization

!

Interactomics

Protein fnction |

| Relationships -
Rogustoey

2

Figure 6.14: The WISDOM initiative focusses on drug/target identification and characterization [135].

216 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

As shown in Figure 6.15, the WISDOM e-Scientists use a technology called GridSphere that
in turn is internally using the Vine Toolkit [278]. This toolkit provides adapter for various
middleware technologies and is based on Java representing a high-level API for managing jobs
on specific target sites. The environments in which Vine can be deployed are Java Web Start,
Java Servlet 2.3, and Java Portlet 1.0. It is optimized to run in Browser-based setups that acts as
the client tool for the GridSphere portal. The Vine version supports gLite and UNICORE (e.g.
SSL key generation, and job-based management, etc.), but also VOMS (e.g. proxies, registering
and un-registering users, etc.). In order to send jobs to a middleware, Vine has client classes for
each middleware. As part of a production installation, it has to be deployed as a WS application
deployed in a Web container. The URI of this container and the specific WISDOM portal is then
a fixed location that e-Scientist can use to perform their daily scientific application runs. Some
features that are used for the use case applications are the proprietary UNICORE interface for
job management, queries of up to date job statuses, VOMS and proxy generation.

Also the Arda Metadata Grid Application (AMGA) metadata catalogue [280] is used as
shown in Figure 6.15. AMGA is part of the EMI project, representing a metadata service that
enables users to attach metadata information to files. AMGA is used as a general access tool
to relational databases on the Grid, and has been also significantly used in WISDOM to attach
metadata for scientific results from computational Grid jobs.

Figure 6.15 summarizes the pre-production setup of the case study enabling GridSphere to
submit jobs, in this particular setup, to the EGEE/EGI and DEISA /PRACE infrastructures.

Grid
i 1'2.; WISDOM Scientific Portal (implemented using GridSphere and Vine toolkit technolo,] i
[18 { p‘_‘ E e il Clients
= —
[90'\;:-' Vine Toolkit [Middleware adapter for gLite, UNICORE, and AMGA with different security setups]]
7
_____________ ———
_"|'=' il EGEE/ EGI u DEISA / PRACE Grid
;-.L - Infrastructures
T
r L}
WISDOM
AMGA MetaData Catalog I I ;
NJ | \ Community
Perrletar\f | MetaData
PrDtDCDI ! and VO
| 1
Server
Pl A ___ -
1
T] 1! | | data transfer
R GridfTP [o o 1 ! 1 I technologies
_________ [— ! [
. 4 ¥
’ — IDL& | Proprietary 1SDL&)
0 Ipl . v % AUTHZ via ' UNICORE 55 AUTHZ via Grid
L gHiteinterace X.509 ACs | |nterface X.509 o VO) S
M| glLite Middleware CREAM|) | | UNICORE Middleware
———— I P L
@ : *
e Sy fin HPC Grid
e s Ll RMS ‘
HTC Resources I Dala resource i ii ii I Resources m Resources
Legend: %Compufe}obs a component D JsDiL ﬁ standard i Data

Figure 6.15: The basic WISDOM framework uses technologies of EGEE/EGI and DEISA /PRACE.

6.3. ARCHITECTURE IMPLEMENTATION FOR THE WISDOM APPLICATIONS 217

6.3.2 Scientific Applications of the Bio-informatics Domain

Whereas the previous section focused on the initial WISDOM framework from a technical per-
spective, this section reveals insights about the WISDOM scientific workflow from an end-user
perspective. The overall scientific bio-informatics workflow is illustrated in Figure 6.16 (using
elements of [259]) and illustrates three fundamental steps using two different infrastructures.

The first step uses the scientific application package FlexX [30] depending on which licenses
are available at which sites. The commercial company BioSolvelT [30] also kindly provided free
licenses for FlexX to enable parts of this case study. But sometimes also AutoDock [187] is used
that is a free software application package. These software packages are molecular docking
applications used to check whether one molecule is able to bind to another. The whole process
is described in [135], including information on its greater impact on the whole drug discovery
process. Important for the case study of this thesis is that the EGEE/EGI infrastructure is used
with the aformentioned applications with the HTC computational paradigm. At the time of the
studies relevant EGEE/EGI resources were accessible by gLite only using mostly HTC-based
resources.

The output of the aforementioned step 1 is only an intermediate result as shown in Figure
6.16. It is a list of best chemical compounds that are potential drugs and thus not the final so-
lution to performing the in vitro (i.e. real laboratory tests) and subsequent in vivo (i.e. living
organism tests) steps in laboratories. The results of the HTC workflow part executions need

Onethin client
Scientific-area specific WISDOM Portal to access all

Infrastructures

Implemented
Infrastructure Interoperability Reference Model Set of Standards standards in
middleware

Different
‘N‘ application
L packages
that firstly
generate
and then re-use

AutoDock, Intermediate AMBER intermediate
FlexX (docking) Results (data) (dynamics) results

(S)

;| Production
i e-Science

EGEE/EGI EGEE/EGI Joint DEISA/PRACE
Resources Storages Resources fnf rastructures

Figure 6.16: Accelerate Drug Discovery by using the core building blocks of the IIRM reference architecture.

218 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

No e-Science Infrastructure Setup e-Science Application Demands

1 EGEE/EGI Section 6.2.2 autodock and FlexX application
embarassingly parallel runs requiring
trivial computational power;
use of HTC resources feasible;

2 EGEE/EGI Section 6.2.2 data storage to store intermediate results;
for each result metadata needs to be stored;
3 DEISA /PRACE Section 6.2.2 massively parallelized AMBER

code psander using HPC resources;
required are data structure tranformations
before and after the job run;

Table 6.4: Summary of the e-Science infrastructure setups of the WISDOM case study.

to be stored on an infrastructure while EGEE/EGI provides several data storages for the WIS-
DOM VO. There are a massive amount of HTC runs in order to find potential drugs on a year
perspective and thus each result need to be properly described with metadata. This metadata
needs to describe which intermediate results are stored and which input data has been used.

A scientific method developed by Rastelli et al. [162] is used with molecular dynamics (MD)
computations to refine this best compound list. But MD computations are very computation-
ally intensive, so there is a lot of potential in using the Assisted Model Building with Energy
Refinement (AMBER) [242] MD package within DEISA/PRACE. As computational time on
rare HPC resources is limited, manual scientific investigation is required to pick those promis-
ing input data out of our intermediate result sets that actually make sense to be computed from
a scientific perspective.

AMBER itself consists of roughly 80 programs with different executables, parallel programs
using MPI and even smaller programs that are data format converters. The setup of AMBER
is non-trivial especially since several different AMBER applications are usually executed as a
sequence (not a Grid workflow) as published in [193].

Discussions with WISDOM e-Scientists revealed the high potential of using this workflow
with the IIRM and its reference architecture accessible via one dedicated WISDOM GridSphere
portal. This case study focuses on a very thin client layer access to the IIRM, including still
proper security mechanisms required to use real existing production e-Science infrastructures.
In contrast to subsequent case studies, the focus relies here on the requirement of manual se-
lection of input data for data transfer and the complexities that are experienced with broad
application packages such as AMBER.

Many scientific bio-informatics applications are very similiar to AMBER. Instead of AM-
BER, also other MD application suites that take advantage of parallel programming can be
used with HPC Grid resources such as NAMD [236] or GROMACS [214].

Table 6.4 summarizes the production e-Science infrastructure setup required by this specific
bio-informatics case study. It clarifies the question which e-Science infrastructure setup is used
with what concrete types of e-Science applications while the previous sections are referenced
for general infrastructure setup information in context. In this case study, the WISDOM e-
Scientists use various types of executables with different infrastructure resources (cf. Definition
6).

6.3.3 Academic Analysis and Production Infrastructure Setup Experience

This paragraph analyses the basic architectural WISDOM framework using the previously
mentioned scientific applications in order to understand limitations of the current approach.

6.3. ARCHITECTURE IMPLEMENTATION FOR THE WISDOM APPLICATIONS 219

No. | Limitation short description

(a) additional Layer Approach (transformation logic)
(b) no manual or client-initiated data-staging

(c) no job sequences (not workflows) support

Table 6.5: Overview of limitations after academic analysis of the WISDOM framework.

from WISDOM e-Scientists. The basic framework was used in production e-Science infras-
tructure use cases and the outcome of the analysis points to several limitations of the basic
framework that are summarized in Table 6.5.

The analysis of the general approach of the framework is the first step pointing to over-
all drawbacks of the approach before other details are presented of how specific concepts are
needed but not supported. Chapter 3 provides a classification of general approaches to achieve
interoperability. Among concepts like Adapter, Gateway, Mediator, and Neutral Bridge, there
is also the Additional Layer approach.

The first major limitation in the basic WISDOM framework is the use of the "(a) additional
layer approach’ to enable interoperability between e-Science infrastructures in general and their
corresponding Grid middleware gLite and UNICORE in particular. In the WISDOM case study,
the additional layer is represented by the Vine toolkit that provides specific adapters for all Grid
middleware systems and AMGA.

Apart from this general approach, a more fine-grained academic analysis of lessons learned
provides more clarity and points to specific challenges that are later addressed to improve the
efficiency of the WISDOM framework using the IIRM and its concepts. When applying the
WISDOM scientific workflow, a missing concept named as (b) no manual or client-initiated data-
staging’ was identified. This appeared after the first application run was performed on the
EGEE/EGI infrastructure and the intermediate results are kept in a joint storage. E-Scientists
would like to use only parts of the intermediate data after their evaluation, but there is no
way in which it can seamlessly be transfered into the job directory for further DEISA/PRACE
refinements using MD. As there is no convenient method, e-Scientists often copied the same
intermediate results to another location that in turn was used with automatic data-staging ca-
pabilities with UNICORE on DEISA /PRACE. The duplication of even intermediate results in
storage and the selection process are cumbersome and complicated. This limitation requires
one major improvement of their work process.

Another identified limitation is that middleware provides '(c) no job sequences support’. The
scientific application package AMBER consists of roughly 80 different programs of which a few
are used only to transform input and output formats between different programs that need
to run before or after specific programs, but in the same working directory. This is different
from coarse-grained workflows where the job can reside in different locations and must not
be executed in the same working directory. During the analysis, there was no way other than
writing huge error-prone manual UNIX scripts that call different programs while in between
the MPI program was executed. Job sequences that allow for pre- and post-processing of the
main executable (that could run in parallel) were considered here as a major improvement.

Although the aforementioned limitations have been the most important ones identified
there are other limitations (e.g. better HPC support) that overlap with those that will be ex-
plained in other use case studies (e.g. VPH). The focus in this case study is thus on those listed
in Table 6.5.

220 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

6.3.4 Reference Model Impact and Applicability

The goal of the here presented concrete reference architecture instance is to improve the e-
Science methods in the WISDOM initiative and thus significantly accelerate the drug discovery
process by seamlessly using EGEE/EGI and DEISA /PRACE, as shown in Figure 6.17. This
illustration represents a specific ‘architecture instance” of the IIRM and provides insights into the
core building blocks of the reference architecture. As the subsequent case studies will reveal,
several concept refinements (i.e. A) for the core building blocks are needed in order to run
scientific applications on resources either more efficiently in terms of resource usage, or more
seamlessly in terms of security. Improved open standards of the IIRM lead to a maintainable
and thus sustainable WISDOM framework for bio-informatic scientists providing HTC and
HPC resources.

The case study uses emerging IIRM core building blocks providing lessons learned that con-
tributed significantly to the concepts documented in Chapter 5. An overview of which concrete
core building blocks are needed as part of the WISDOM case study is in Table 6.6, following
which concrete refinement concepts can be applied in order to overcome the limitations iden-
tified in the previous section. This table and Figure 6.17 illustrates another key contribution of
this thesis by using IIRM core building blocks and their refinements with a real scientific use
case.

While Table 6.6 provides a general overview of the used core building blocks of the refer-
ence architecture, the next paragraphs provide a step-wise walkthrough of Figure 6.17 in order

rafa
4 :Q) Grid
i 2 ‘WISDOM Scientific Portal (implemented using GridSphere and Vine toolkit technolo,] i
[IE t L E c 5Y) Clients
L~ —
[J;;;’ [WS clients using (GLUEZ + AW), [WS-DAIS + AX), (OGSA-BES + AV), (JSDL+ AU)]]
1
j———-—--- Tm—m—m e ——— == 1
’ 1 .
- Grid
el o EGEE/ EGI DEISA / PRACE
[L“LAL;’ !] [M] Infrastructures
T T t
1 1
AMGA MetaData Catalo L [— 1 WISDOM
\J < L Attribute | Community
b Buthouy MetaData
) ws-Dms +AX 1 2 (e.2. VOMS) 1
I I and VO
Server
S . N L___ .
a_ s 1! ! data transfer
k% GridfTe [I j 1 technologies
S | I 1
€3 W 1 v sl
((JSDZ+AU]& 1 EJ;DL+,3U]
| [- &
@DGSA B‘E:t; r;"a‘g »va AUTHZ via @DGSA BIE:t;' r;:;g »-@ AUTHZ via Grid
o SAML/XACML @ o~ 7 SAML/XACML Servers
A N
N 1 g |te Middleware CREAM R | 1 UNICORE Middleware
1 I
e C (Y-
‘ Flexx / Grid
& *‘-\ (ol RMS
FTC Resource AutoDock I Détéresource -|| Resources
Legend: % compute jobs a component D 1SDL S?_, standard i Data @ Stepn

Figure 6.17: Enhanced WISDOM framework using the IIRM with bio-informatic applications.

6.3. ARCHITECTURE IMPLEMENTATION FOR THE WISDOM APPLICATIONS 221

Core building blocks | Specific usage in WISDOM

WS-DAIS + AX Storing/retrieving metadata and file locations in database

OGSA-BES + AV WS submission to create a Grid job using a middleware systems

JSDL + AU FlexX, AutoDock, and AMBER application job description; sequences
GLUE2 + AW Information about installed modules on HPC resources

SAML Encoding (i.e. SAML assertions) of WISDOM end-user security attributes
WS-Security Mechanism to transport SAML assertions in OGSA-BES WS messages
XACML Security policy for end-users (also from WISDOM)

GridFTP Transfer from computed data to be used by AutoDock, FlexX, and AMBER
X.509 Security X.509 certificate provided by each WISDOM end-user

GIN Exe Env Module for AMBER used by psander during execution

Table 6.6: IIRM core building blocks that are used in the WISDOM case study.

to understand which refinement concepts are used in detail. Table 6.7 provides a summary of
those refinements that matter most in the WISDOM case study, while it also takes advantage
of refinements described in subsequent case studies in more detail (e.g. HPC extensions).

The yellow numbers indicate different steps explaining the usage of the architecture while
at the same time it is described how limitations from the previous section are solved in the cor-
responding context. Step (0) indicates the desired work situation for WISDOM e-Scientists, i.e.
their use of the GridSphere WISDOM portal with a configured identity (i.e. X.509 certificate). In
step (1), this certificate is used to contact the VOMS system obtaining a SAML assertion using
the SAML interface to the VOMS system published in [302]. The SAML assertion includes role
possession, VO or project membership and it is signed with the identity of the VOMS server.

As shown in Figure 6.17, in workflow step (2), a GridSphere portal uses the SAML assertion
during an OGSA-BES compliant job submit using JSDL. The use of open standards in this
context of the IIRM avoids the need for transformation logic to be maintained in the Vine toolkit
that is another contribution of this thesis reducing the maintenance of the overall framework.

The JSDL describes the invocation of applications that are defined by the e-Scientists via the
portal GUL The parameters for the applications are also encoded within the JSDL description.
In the case study, the scientific applications FlexX and AutoDock are used in this particular step.
As part of gLite, the CREAM-BES [220] service uses the JSDL document to invoke the FlexX
and AutoDock applications with the CREAM backend on the EGEE/EGI e-Infrastructure. The
CreateActivity () operation of the CREAM-BES OGSA-BES implementation takes a JSDL
as input that is then further analysed for job execution. This step is indicated as (3) within
Figure 6.17, including authorization of WISDOM e-Scientists. Immediately before the job exe-
cution, the authorization layer within CREAM-BES checks whether the SAML assertion allows
the corresponding e-Scientist to execute applications on the infrastructure. A corresponding
XACML policy is in place that could be implemented via the Argus system [303]. As CREAM-
BES relies on X.509 proxies parts of the security pattern are used as described in Section 5.1.6.

In workflow step (4), FlexX and/or AutoDock are computed on the EGEE/EGI infrastruc-
ture as embarrassingly parallel scientific applications that require no interactions between the
processes on different CPUs. The outcome of this computational intensive job is an intermedi-
ary result in terms of a compound list that represents potential drugs. In step (5), these results
are transferred to a storage using GridFTP while its metadata and the link to the exact storage
locations (i.e. GridFTP URIs) are put into a relational database. This database is accessible
via a WS-DAIS-compliant specification implementation and is recognized as being part of the
AMGA metadata catalogue framework.

On the right side in Figure 6.18, the manual data-staging (blue) complements the already
existing concept auf automated data-staging (red) and thus realizes more control over the data

222 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

transfers during Grid job submissions. With this functionality enhancement the thesis provided
a mechanism for manual data-staging and better job control that illustrated the impact of the
IIRM in practice.

After storing results, the WISDOM e-Scientist again uses the portal to submit another J[SDL-
compliant job to the UNICORE OGSA-BES interface implementation installed at some HPC
resource within DEISA/PRACE. As shown in workflow step (6) in Figure 6.17, the JSDL de-
scribes the execution of a highly scalable AMBER c/fortran script. Not shown in the illustra-
tion, is that the WISDOM portal firstly obtains GLUE2 elements from an information service
that exposes the AMBER module and its characteristics (cf. Section 5.2.2 (c)) available on this
particular site. In step (6), these GLUE2 elements are simply re-used as part of the JSDL thus
enabling execution of module AMBER (cf. Section 5.2.2 (b)). In order to indicate that a manual
data-staging needs to be performed in the job directory, the e-Scientist set a corresponding hold
point as part of our concept of manual data staging (cf. Section 5.2.5 (a)). In terms of security,
the (not necessarily the same) SAML assertion must be transferred during the job submit [302]
to ensure the authorization of the e-Scientist later within the UNICORE authorization layer.

Workflow step (7) in Figure 6.17 shows that the UNICORE OGSA-BES implementation uses
JSDL to describe the AMBER application execution, taking the JSDL parameters (with GLUE2)
into account. As part of this process, the Grid job sandbox is formed and its location is exposed
to the end-user via GLUE2 according to our concept for enabling manual data staging (cf.
Section 5.2.5 (d)) within the OGSA-BES service. The OGSA-BES factory attributes (with GLUE2
refinements) are obtained using the GetFactoryAttributes operation. UNICORE OGSA-
BES is using its execution backend to enable a job submit to a RMS of a chosen supercomputer.
But before the application can be started on DEISA/PRACE, authorization of the e-Scientist
must be performed by using the SAML assertion in conjunction with XACML policy checks.

In order to use intermediary results of the EGEE/EGI job outcome within the DEISA in-
frastructure, the data must be transferred to the DEISA /PRACE storage systems at the corre-
sponding supercomputer site. The significant improvements compared to OGSA-BES is that
the progress of execution is not automatically started, because we used the aforementioned
holdpoint concept (cf. Section 5.2.5 (a) and (b)). Using AMGA and GridFTP [109], step (8) re-
quires a manual intervention by e-Scientists. Since getting and analyzing result queries from
AMGA is a manual process, the concept of more scalable query results is required for its WS-
DAIS interface usage (cf. Section 5.2.6). The scientific process requires e-Scientists to analyse
the outcome of the EGEE/EGI jobs and take particular data sets as input for the DEISA /PRACE

Grid middleware
systems parsing
improved JSDL
and handling
execution

- 3
Glite q‘?!

f_} Improved Grid Common Clients and -- |

Pre- Main Post- . JsDL Clients LI SO >
Processing Application Processing descriptions = AL 7] Scientific
Executable Executable Executable wer e Data Repository |
~
~
<

]
1Y
.
[Level of OGSA-BES Interface /”\\ -G OotaTransfers

parallism and Grid J
used processors Middleware ’I’Curmul information :)g

Serial Parallel Serial - 5
Execution Execution eecution Ml B copgbox 00] PPtProcessie gl - Job

within one job
sandbox 4
£ ///15DL Document with Working Directory|
~/ data-staging elements

1SDL Processing
Logic

Computational
Grid resource

Figure 6.18: The WISDOM case study uses the sequence (left) and manual data staging concepts (right).

6.3. ARCHITECTURE IMPLEMENTATION FOR THE WISDOM APPLICATIONS 223

A Functionality Extensions and Improvements Specific usage in WISDOM
AW | 5.2.2 (c) Execution Module Characteristics AMBER module exposure
AX 5.2.6 (f) More scalable query results AMGA responses

AV 5.2.5 (b) New Hold states in addition to HPC FSP states | Feedback that run is hold
AV 5.2.5 (c) Manual manipulation of job states Continue psander execution
AV 5.2.5 (d) Job sandbox location exposure Manual input data transfer
AU 5.2.1 (g) Application output joins Merge outputs of AMBER
AU 5.2.2 (b) Common Execution Modules Execution of AMBER module
AU 5.2.4 (a) Pre-job sequences (pre-processing) AMBER data conversions
AU | 5.2.4 (b) Post-job sequences AMBER data conversions
AU 5.2.5 (a) Pre-defined hold points Hold until manual transfer

Table 6.7: Functionality improvements used in the WISDOM case study.

jobs. Assuming that the data of the intermediary results are reachable within DEISA /PRACE
after the manual transfer, the concept of manual data-staging (cf. 5.2.5 (c)) allows for the con-
tinuation of the execution. With the aforementioned concepts within the reference architecture
limitation (a) of the previous section is solved.

After the authorization and the manual data-staging activities by the e-Scientist, the AM-
BER application is computed on the DEISA/PRACE infrastructure on massively parallel su-
percomputers as illustrated in step (9). Since AMBER is a huge set of executables that need to
be carefully setup, this execution takes advantage of the module concept (cf. Section 5.2.2 (b))
meaning that AMBER executables do not need to be configured anymore before executions.
As aforementioned, the MD script was developed by G. Rastelli et al. [162] and is executed
by using JSDL descriptions. The script itself uses several different programs of the AMBER
molecular dynamics package (e.g. ptray, psander, etc.), some in a serial mode and some in a
parallel mode as showns in Figure 6.18. The left parts of the figure shows how the WISDOM
case study can take advantage of the sequence concept with the AMBER set of executables.
The WISDOM e-Scientists raised the demand of sequences (cf. Section 5.2.4 (a) and (b)) that
are part of the reference architecture, and thus overcome limitation (c) identified in the previ-
ous section. To provide an example, one small program of AMBER is just used to transfer the
input data structure in a format that is understandable by psander and thus is executed before
the real parallel psander production run. In a similiar manner, after the execution of psander,
another conversation of data structures takes place with another small executable of AMBER
that makes the results suitable to be stored as final results in a database. More insights into
sequences with AMBER are given in [193]. With the functionality enhancement of sequences,
the thesis provided a mechanism that illustrates the impact of the IIRM in practice.

All the previously described activities happen as part of step (9) in Figure 6.17, where the
resource management system schedules different end-users on one Grid resource. During the
complex AMBER set of executions and for a more convenient analysis of the e-Scientists, ap-
plication output joins (cf. Section 5.2.1 (g)) are needed.

The overall computation is now significantly faster than without the interoperability be-
tween EGEE/EGI and DEISA /PRACE, because the AMBER code is scalable and thus capable
of leveraging the massive number of CPUs available on resources within DEISA /PRACE. The
outcome of this job is the final result for the laboratory experiments accessible via AMGA and
GridFTP indicated in step (10).

The overall aforementioned workflow steps describe a scientific solution that has been com-
puted within EGEE/EGI and DEISA /PRACE that would not be seamlessly possible without
the interoperable components of the IIRM. The work in this case study was mainly carried out
in collaboration with members of the WISDOM initiative and as part of the work of the author

224 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

Begin WISDOMWOREF LOW
Begin GridInformationProvisioning
Grid Information Providers (GIPs) publish pieces of
information about infrastructures (HPC and HTC resources)
End

Previously unsupported:

The information provider sends
information using GLUE + AW
elements such as available
modules. The Information service

WHILE (not scienceworkflowfinished) exposes it with a GLUE2 + AW
Begin Brokering instance.
End-user uses WISDOM portal (CT) and performs FlexX setup
and defines HTC requirement=s in loop one
and then defined HPC requirements for AMBER setup
in loop two (indicating the AMBER modnle use)
Compute resource (CR) of corresponding HPC and HTC infrastructuore is
found based on the information exposed by GIPs

.

scienceworkflowfinished = false

Previously unsupported:
WISDOM scientists can specify HTC
requirements for FlexX or autodock

o

En JobSubmi tToResource in the first loop and HPC
If CR.type is HTC then requirements for AMBER
End-user of CT submits HTC-based FleXX job to a HTC resource simulations in the second loop
using middleware glite of the EGEE/EGI infrastructure
End IF

Previously unsupported:

The same client is used by scientists
to submit jobs to HTC resources in
EGEE/EGI and to HPC resources in
DEISA/PRACE for using sequences
and an AMBER module

If CR.type is HPC then
End-user of CT submits HPC-based AMBER job to a HPC resource
using middleware UNICORE of the DEISA/PRACE infrastructure
End IF
End
Begin AnalysisScienceAndTransfer
If CR.type is HPC then
Scientist performs manual data-staging between EGEE/EGIL and
DEISA/PRACE using the obtained job sandbox location
sciencework flowfinished = true

Previously unsupported:
WISDOM scientists are able to

r_ 7

MEM Lef manually transfer results of the HTC
End While run into the Grid job sandbox where
End the HPC run is taken place

(i) Listing: Pseudo-code of basic design pattern algorithm applied to the WISDOM case study

Figure 6.19: The WISDOM scientific workflow can be mapped to the IIRM run-time pattern algorithm.

in the OMII-Europe project following several subsequent activities. Some details about the
work in WISDOM is illustrated in Figure 6.18 to increase the understanding of key concepts
used in this particular case study. More insights into the scientific workflow are described in
[259] that lead to the more formal definition of the multi-Grid algorithm as illustrated in Fig-
ure 6.19. It also highlights the previously unsupported elements within this workflow that
are realizable by using the concepts of the IIRM. The pseudo-code notation maps the WIS-
DOM workflow to the general design pattern defined in Chapter 5 alongside the architecture
work. The reference architecture is thus applicable to the WISDOM workflow and its different
steps that use different key IIRM architecture aspects and concepts. Evidence that supports
this claim is the possibility to map the workflow to the general design pattern. This in turn
highlights another key impact of this thesis by enabling the use of WISDOM applications with
EGEE/EGI and DEISA/PRACE. As a consequence, the proposed framework with IIRM ele-
ments contributes to cheaper and faster drug discovery as scientific innovation as another key
impact of this thesis.

Another collaboration with e-Scientists lead to activities appling for a DECI project [301] in
order to obtain computational time on the HPC-driven Grid infrastructure DEISA /PRACE as
WISDOM is already organized as one VO in EGEE/EGI. This higlights an important aspect,
because even if the technical foundations are in place the policies for obtaining computational
time in DEISA /PRACE are still valid and thus access needs to be requestes for CPU allocations
and need to be granted by the corresponding peer-review committee. The technical interoper-
ability achieved with the IIRM in this context is important, but also the work around resource
access policies to streamline interoperability can be improved by the corresponding infrastruc-
tures (e.g. policy groups as described by segment 5 in the aligned process).

6.4. ARCHITECTURE IMPLEMENTATION FOR THE VPH APPLICATIONS 225

6.4 Architecture Implementation for the VPH Applications

Abstract

Reference
Model
(Chapter 5)

Requirements / Reference \ Protocols
(Chapter 4) Architectures Patterns (Chapter 5)
(Chapter 5) (Chapter 5)
Motivation accounts forj considers -[C:T'fll:r!)ﬂ
(Chapter 2) h

derived

IE0)

Speci i
Goals (Chapter 5)
(Chapter 2) C "
oncrete
Architectures Re[léthzd :: ??STIS Standards
(Chapter 6) P (Chapter 5)
\ Architecture Work Related Work
accounts for constrained use
by

Service Oriented Architecture Implementations
(Chapter 6)

WISDOM EUFORIA ESFRI Other
Applications Applications Applications Applications
Concrete (Chapter 6) (Chapter 6) (Chapter 6) (Chapter 6)

Figure 6.20: SOA implementation for VPH applications constrained by the concrete reference architecture.

This section describes the concrete SOA-based implementation of the scientific case study
named Virtual Physiological Human (VPH) [92] that was conducted during the definition of the
proposed reference model. It contributed enormously to the findings of this thesis and is pub-
lished in [263] and [272]. Figure 6.20 provides an overview how the case study fits in the overall
reference model approach and its implementations.

The path of the scientific investigation throughout the case study is represented in the struc-
ture of this section. A short introduction to the VPH roadmap and its basic framework is given
in order to understand how VPH e-Scientits use production e-Science infrastructures. Then
scientific applications used in VPH are introduced that require more than one e-Science infras-
tructure.

The architectural analysis and the scientific application analysis set the foundation for a
critical academic analysis to explain the limitations of the basic VPH framework. As a key con-
tribution of this section, insights are given into how those identified limitations can be solved
by using the IIRM and its associated reference architecture implementations. These imple-
mentations are already emerging in production e-Science infrastructures as previous sections
revealed.

This section aims to verify that the reference model is applicable to a wide variety of VPH
applications that seek to take advantage of more than one production e-Science infrastructure.
Many prototype developments and studies contributed to the case study based on a fruitful col-
laboration between the VPH community, OMII-Europe [69], and later also the DEISA2 project

226 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

[184]. Results have been presented at the Supercomputing 2008 in Austin [95] at the JSC booth
as part of the OGF GIN demonstrations.

6.4.1 The STEP Roadmap and the Basic VPH Framework

Today, e-Health can be considered as one of the most important research fields. This includes
the use of information and communication tools as well as using computational methods to
support these tools behind the scene or to support the understanding of health fundamentals.
It thus plays a significant role in improving the health of world-wide citizens.

While e-Health is a large scientific research field, the focus in this section is on recent work
towards the VPH that is part of a greater roadmap organized from the Strategy for the Euro-
Physiome (STEP) consortium [92]. VPH needs computational Grid resources in order to realize
the three major working cycles illustrated in Figure 6.21. As part of the academic studies, the
interest in this thesis is in having scientific applications to gather insights using models and
data and to validate them in a cyclic fashion as illustrated in Figure 6.21.

Since several years, VPH e-Scientists take already advantage of single e-Science infrastruc-
tures to perform computationally-intensive investigations of the human body. But a known
limitation of these approaches are that they tend to consider each of the constituent parts sep-
arately without taking into account the multiple important interactions between those parts.
Subdivisions make it impossible to investigate the systematic nature in which the body func-
tions, however, many e-Science applications in this area are limited by the computational
power provided in the respective e-Science infrastructures while sharing it with other appli-
cations of science and engineering. The VPH vision is a methodological and technological
framework that enables collaborative investigations of the human body as a unique complex
system. In order to achieve this, the basic VPH framework was created to enable the interoper-

INDUSTRY
\

Models
& data

Seeding the
EuroPhysiome: IS

HEALTH
\ models & data

insights for decision

&validation |~ support

Models
& data

ACADEMIC

Figure 6.21: The VPH vision includes three major cycles in the health, industry, and academic domain [92].

6.4. ARCHITECTURE IMPLEMENTATION FOR THE VPH APPLICATIONS 227

Y _ - ; . Grid
[ie od VPH Scientific Client Tool — Application Hosting Environment [AHE)] i
Clients
e

~ ==

[&‘\:-' AHE logic [Middleware adapter for Grid5AM, UNICORE, Globus, with different security setups]]
x N

m e e, — e — - - - 4-=-=1 _

: - HPC-driven
[u- NGS] [“ DEISA / PRACE] Grid

Infrastructures

T
| 1
_ P [i _
GridFTP L | | Grid
Server | | Servers
| 1
| o
Proprietary RSL& | Proprietary JSDL&)
GridSAM % AUTHZ via | G UNICORE % AUTHZ via Grid
Interface X.509 | Interface X.509 Servers
A . A
1 GridSAM Middleware | ':.,.‘ 1 UNICORE Middleware
T |
- — = - —— L -
AL (Y73 ‘ ALS
Network
?| Topelogies
Computational
. Task/Core . Grid
i " High Messages Application Mapping E Resource
Small-scale HPC-based resource Large-scale HPC-based resource

Legend: %compurejobs a component D JspL w standard iDara

Figure 6.22: The basic VPH framework uses technologies of NGS and DEISA /PRACE.

ation between the National Grid Service (NGS) [59] in the UK and the European HPC-driven
infrastructure DEISA /PRACE as illustrated in Figure 6.22.

Figure 6.22 indicates a key requirement of the VPH community that is related to the seam-
less access of different infrastructures. The e-Scientists often use their own specific clients that
in this case is named as the Application Hosting Environment (AHE) [308]. The fundamental
goal of this tool is to allow clinicians to seamlessly interact with a large amount of computa-
tional power available in different e-Science infrastructures even from within their operation
theatre.

This specific use case implies the interactive access to resources of these infastructures as
well in order to perform computational steering in real-time. Computational steering refers
to the change of application parameters on the fly during the application execution on one of
the resources within an e-Science infrastructure. The goal of these real time visualization and
computational steering is to allow clinicians to interact with the simulations as they run in
order to review the possible effects of various surgical investigations. This leaves the scope of
this thesis, but approaches are given in [139]. In [255] it is shown that foundational concepts
(e.g. job submission, etc.) are used to establish an interactive steering channel that can work
seamlessly together with the IIRM core building blocks being part of this thesis as they are very
similiar (e.g. job submission interfaces).

Figure 6.22 illustrates the pre-production setup of the case study enabling the AHE to sub-
mit jobs, in this particular example, to the NGS and DEISA /PRACE.

228 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

6.4.2 Scientific Applications of the e-Health Domain

The previous section focussed on the basic VPH framework from a technical perspective. This
section reveals insights about one particular e-Health VPH application from an end-user per-
spective. The overall idea is illustrated in Figure 6.23 (using elements of [263] and [272]) that
basically illustrates the use of three e-Science infrastructures.

The VPH initiative is part of the larger international Physiome Project that clearly raise the
demand for aligning world-wide interoperable e-Science infrastructures for collaborative re-
search within its roadmap [92]. This is needed in order to tackle the computational-intensive
challenges that the simulation of the VPH implies. The VPH community seeks to serve the de-
velopment and integration of multi-scale models, which have different computational require-
ments. The range is from single processor desktop machines to the largest supercomputers
available in different kinds of e-Science infrastructures as shown in Figure 6.23. The STEP in
general and the VPH community in particular provides a lot of scientific applications that can
take advantage of interoperable e-Science infrastructures. Here, one application is picked for
the case study that is very similiar to all the others. They basically all share in common that
the majority of codes are parallel computing techniques using MPI while the VPH framework
makes also partly use of non-parallel codes on HTC-driven infrastructures such as EGEE/EGI.

The particular pre-production setup from the case study is using one specific application in
the research field of cardio-vascular diseases that are the cause of a large number of deaths in
the developed world. The problems of patients are often due to anomalous blood flow behav-
ior in the neighborhood of bifurcations and aneurysms within the brain. Cerebral blood flow
behaviour plays a crucial role in the understanding, diagnosis, and treatment of this disease.
The central goal of this application is to simulate the blood flow behaviour using the computer

One Client
Scientific-area specific client Application Hosting Environment to access all
Infrastructures
Implemented
Infrastructure Interoperability Reference Model Set of Standards standards in
middleware
_ Different
v}f‘r_\‘ varieties
g of HemelB
Pressure Field Pressure Field N Executions
(low-scale) (high-scale) Velocity Fie (in parallel)
SR
Ul e-Science
NGS DEISA/PRACE TeraGrid/XSEDE
Resources Resources Resources fﬂf rastructures

Figure 6.23: HemeLB brain bloodflow simulations with core building blocks of the IIRM reference architecture.

6.4. ARCHITECTURE IMPLEMENTATION FOR THE VPH APPLICATIONS 229

No e-Science Infrastructure Setup e-Science Application Demands

1 NGS Section 6.2.2 moderate parallelized HemeLB
blood flow pressure field code (low-scale)
requires small to medium-sized
computational Grid resources;
2 DEISA /PRACE Section 6.2.2 massively parallelized HemeLB
blood flow pressure field code (high-scale)
requires large-scale HPC
resources with optimized BlueGene code;
3 TeraGrid/XSEDE Section 6.2.3 massively parallized HemeLB
blood flow velocity field code
requires modern large-scale
computational Grid resources;

Table 6.8: Summary of the e-Science infrastructure setups of the VPH case study.

power available on multiple production e-Science infrastructures today. The application thus
raises a demand for a large amount of computing resources offering different scales, because
simulating a whole blood flow in a brain is computational-intensive.

The Grid Enabled Neurosurgical Imaging Using Simulation (GENIUS) project [36] is work-
ing in this particular field and is mainly concerned with performing neurovascular blood flow
simulations in support of clinical neurosurgery. It uses a lattice-boltzmann scientific code
named HemeLB [219] designed to simulate fluid flow in the sparse topologies of the patient
brains. According to [219], the simulation models are derived from patient-specific brain x-ray
angiography scans that are in turn used as input to the simulation. The infrastructure setup
thus requires the possibility for large and effective file transfers that are able to transport the
x-ray-based data to the computing resources across boundaries of existing e-Science infrastruc-
tures. This circumvents a duplicate storage of these large datasets in each different e-Science
infrastructure that is used.

There is a high potential to use the VPH workflow with the IIRM and its reference archi-
tecture, but e-Scientists also require the seamless access with their already existing tool named
AHE introduced in the previous section. The difference to the first case study is that the IIRM
is used with a community-specific integrated framework that already uses a scientific-area spe-
cific client instead of a thin Web-based GridSphere portal.

Many scientific e-Health applications are very similiar to the HemeLB code that is used as
part of the studies. All these applications have thus a very similiar setup and are not even
restricted to the VPH scientific field, but can be actually used throughout the whole e-Health
domain and beyond using the same infrastructure setup.

Table 6.8 summarizes the production e-Science infrastructure setup required by the specific
case study. It clarifies the question which e-Science infrastructure setup is used with what con-
crete types of e-Science applications while references to previous sections are given for infras-
tructure setup information. In this case study, the VPH e-Scientists use the HemeLB application
with different computational Grid infrastructure resources (cf. Definition 6).

6.4.3 Academic Analysis and Production Infrastructure Setup Experience

This sections analyses the basic architectural VPH framework using the scientific application
HemeLB. The basic framework has been already used in production e-Science infrastructure
use cases, but the outcome of this analysis points to limitations of the basic framework that are
summarized in Table 6.9.

230 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

No. | Limitation short description

(a) additional Layer Approach (transformation logic)
(b) no large-scale and recent HPC resource architecture support
(c) no common information model

(d) no support for sequential compiling applications before the Grid job

Table 6.9: Overview of limitations after academic analysis of the VPH framework.

The high-level analysis of the general approach of the framework points to drawbacks of
the overall approach. According to Chapter 3, the first major limitation identified in the basic
VPH framework is the use of the '(a) additional layer approach’ to enable interoperability between
e-Science infrastructures in general and their corresponding Grid middleware GridSAM and
UNICORE in particular. In the VPH case study, the additional layer is represented by the
AHE tool that provides specific adapters for all Grid middleware systems such as GridSAM,
UNICORE, Globus, and others.

Apart from this general approach, a more fine grained academic analysis of the lessons
learned provides more clarity and points to specific challenges that need to be addressed to
improve the efficiency of the VPH framework using the IIRM reference architecture. There
is a limitation that '(b) no large-scale and recent HPC resource architecture support’ is present in
the basic framework. Also when using OGSA-BES and JSDL (i.e. core building blocks) in
context point to limitations. The HemeLB application is an MPI code that is able to run more
efficiently when several missing HPC resource aspects that modern HPC architectures provide
are specified in the job description. Some of these advanced features have been the support
for network topologies, shape support, and task/core mapping support. In addition, there is a
demand for more easier access to the high messages of a particular HPC resource.

Closely related is the limitation of having (c) no common information model” in order to ex-
press the resource information in a coherent way so that it can be easily parsed by the AHE and
transformed in subsequent resource requests during job submission. Each HPC system offers
distinct functionality (e.g. network topologies) and capabilities (e.g. shapes) and each of those
are not part of one common information model. The information must be transformed (i.e.
transformation logic is used) in a way that the AHE is able to understand it. In several cases
resoure information gathering is even performed manually obtained by e-Scientists looking on
partly outdated Websites leading to error-prone job submissions. In context of running the
above described HemeLB application on different HPC machines in different versions, there
was '(d) no support for sequential compiling applications before the Grid job’.

While the aforementioned limitations have been the most important ones identified in this
case study, there have been also other limitations (e.g. manual data-stagings) that overlap with
those that have been already explained in other use case studies (e.g. WISDOM). The focus in
this case study is on those listed in Table 6.9 complementary to those of other use cases.

6.4.4 Reference Model Impact and Applicability

The fundamental goal of the concrete reference architecture instance described in this sec-
tion is to improve the VPH e-Science methods thus significantly contributing to the VPH vi-
sion of seamlessly using NGS and DEISA/PRACE as shown in Figure 6.24. As the usage
of DEISA /PRACE is similiar to TeraGrid/XSEDE in this particular usage, the description of
the use case focus only on NGS and DEISA/PRACE workflow steps. The usage of Tera-
Grid/XSEDE resources can be seen in analogy to the DEISA/PRACE usage and thus Figure
6.24 shows only two infrastructures. This figure represents a specific ‘architecture instance” of

6.4. ARCHITECTURE IMPLEMENTATION FOR THE VPH APPLICATIONS 231
e - - - Grid
el @ VPH Scientific Client Tool — Application Hosting Environment [AHE] ,
[T-g = — i £ AR Clients
~ ==
[@:‘;-" [WS client classes using (OGSA-BES + AV), (JSDL+ AU), (GLUEZ + AW), ...]]
) L
—————————————— —-——
I T 1 _
* HPC-driven
[u— NGS] [“ DEISA / PRACE] Grid
. . Infrastructures
I —— 1
1 [7 s I
e" i UL Grid _
1) EGE - [@:,(GLUEHAW] Instance Entity] l;" " | Grid
Server A~ Information Servers
1 T System |
I
! | ;
-
GSA-BES +AV) o9 (/SDL+AU) & | o [SDL+AU) & OGSA-BES+AV) :
Interface o AUTHZ via | s AUTHZ via Interface Grid
5 SAML/XACML I SAML/XACML '~ Servers
A
N 1 GridSAM Middleware | || UNICOREMiddleware *
T |
= (=
Al
___________________________________ HemelB Task/Core HemeLB
Application Mapping Application { Resource
Small-scale HPC-based resource Large-sca.\e HPC-based resource
Legend: % compute jobs a companent D 5oL S\?, standard i Data

Figure 6.24: Enhanced VPH framework using the IIRM with e-Health applications.

the IIRM and provides insights in the used core building blocks. Several concept refinements
(i.e. A) to the core buildung block functionality have been necessary to do production runs on
DEISA /PRACE and partly also on TeraGrid/XSEDE. The production runs on DEISA /PRACE
have been supported by computational time of the DEISA virtual community VPH [301].

The case study with using emerging IIRM core building blocks created lessons learned that
contributed significantly to the findings documented in Chapter 5. An overview of which
concrete core building blocks are provided as part of the case study is presented in Table 6.10.
The concrete refinement concepts (e.g. indicated with A) are used in order to overcome the

Core building blocks | Specific usage in VPH

OGSA-BES + AV WS submission to create a Grid job using a middleware systems

JSDL + AU HemeLB application job description

GLUE2 + AW Computational Grid resource information details

SAML Encoding (i.e. SAML assertions) of VPH end-user security attributes

WS-Security Mechanism to transport SAML assertions in OGSA-BES WS messages

XACML Security policy for end-users (also from VPH)

GridFTP Transfer from patient-specific data to be used by HemeLB

X.509 Security X.509 certificate provided by each VPH end-user

GIN Exe Env Common environment variables used by HemeLB during execution
Table 6.10: IIRM core building blocks that are used in the VPH case study.

232 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

limitations listed in the previous section. While Table 6.10 provides an overview of the used
core building blocks, the next paragraphs provide a step-wise walkthrough of Figure 6.24 in
order to understand which refinement concepts are used in detail. This table and Figure 6.24
illustrates another key contribution of this thesis by using IIRM core building blocks and their
refinements with another real scientific use case.

Table 6.11 summarizes those refinements that matter most in this particular case study,
while also this case study partly takes advantage of refinements already described in our pre-
vious case study (e.g. manual data-staging and sequences).

The yellow numbers in Figure 6.24 indicate steps explaining the usage of the concrete ar-
chitecture while at the same time the identified limitations are addressed. Step (0) indicates the
usual work situation for VPH e-Scientist meaning that they are using their AHE tool with their

and interacts with

User sees Visualization|
application

Bi-directional channel via SSHtunnel | _ _—===""
(visualization data + steering commands)|

running & connecting
to the socket port

GUI Client |>

identifier for rank 0 compute node
(R00-M0-N14.zam.kfa-juelich.de)

~
~
~

ilo node provides a full hostname incl. l‘

R00-MO0-N14
(e.g. rank o where
socket is opened)

1ilo node
(addressable hostnames)

~|

OGSA - Basic Execution Grid Information Service GLUE2-
Service (BES) Interface G E ST S, B ‘ based.
Job Subi n Interface OSFamily_t : AIX information
Using JSDL Documents o OSName_t: AIX exposure
: o= Networiniort: igabetmernet about
e Tl Kt = low-level
B frsEiTee Benchmark_t: linpack = value
: S details
- \
. missing links between specifications \\
. \
. RS JSDL
Computational Job Description N augmented
Job Data- Job Job Job Ressource (WGLUE2 with
Staging Identification Application Requirement schema GLUE2
Descriptions Description Description Description ins‘? nce))
= information
7
’
syntax and semantic consistency is provided ,/
Z
-
System properties: GLUE2-based
OSFamily_t type: AIX e
0OSName_t type: AIX description
Platform_t type: powerpc of
Networkinfo_t : GigabitEthernet computational
Benchmark_t: linpack = value Grid resources

Laptop used for
demonstration
(created SSH TUNNEL)

Firewall (ssh port open
via public key access)

2 login nodes
(jugene1 and jugene2 - both
accessible via alias jugene)

128 Compute Cores
(running HemeL.B)

Figure 6.25: The VPH case study uses improvements of Chapter 5 (top) and difficult HPC setups (bottom).

6.4. ARCHITECTURE IMPLEMENTATION FOR THE VPH APPLICATIONS 233

A Functionality Extensions and Improvements Specific usage in VPH

AU 5.2.3 (a) Network topology (torus, global tree, etc.) | Describe BlueGene-specific capabilities
AU 5.2.3 (b) Shape reservation (x X y X z) Describe BlueGene-specific capabilities
AU 5.2.3 (f) Task/Core Mapping Definition Describe BlueGene-specific capabilities
AU 5.2.4 (a) Pre-job sequences (compilation) Compile machine-specific HemeLB
AW | 5.2.3 (c) Network information enhancements BlueGene capabilities exposure

AW | 5.2.3 (d) Available shape characteristics BlueGene capabilities exposure

AW | 5.2.3 (e) High message support Computational resource status

AW | 5.2.3 (g) Available task/core mappings BlueGene capabilities exposure

Table 6.11: Functionality improvements used in the VPH case study.

configured identity (i.e. X.509 certificate). In step (1), the end-user is able to obtain accurate
HPC resource information from an information service using the common information model
GLUE?2, including some refinements in order to address low-level HPC resource capabilities
as described in Chapter 5. Obtaining information in a common format overcomes the identi-
fied limitation (b) and enables a common understanding of HPC functionalities (e.g. available
CPU/ core/threads setups, network topologies, etc.) across different Grid infrastructures. This
step in particular is using the HPC refinement concepts (cf. Section 5.2.3 (c), (d), (e), and (g)).
The use of this enhanced functionality to increase the HemeLB efficiency on recent HPC re-
sources illustrates the impact of the IIRM in practice.

In step (2), the AHE is then able to use these pieces of information as part of an OGSA-
BES call to GridSAM that includes the refined JSDL (cf. Section 5.2.3 (a), (b), and (f)) meaning
that initially obtained GLUE2 elements are simply re-used for the JSDL job submission. Using
open standards with IIRM core building blocks avoids the need for transformation logic to
be maintained in VPH AHE that is another key contribution of this thesis. This solves the
identified limitation (c) since the refined JSDL is able to express support for recent HPC systems
such as the used HECTOR system within NGS. The application described in the JSDL is the
HemeLB application variant for lower scale systems in this specific context. Using the JSDL
data-staging concept, GridFTP is used to transfer the patient-specific data into the job directory
on the Hector system in step (3).

After that, step (4) indicates the low-level machine level where the sequence concept is used
(cf. Section 5.2.4 (a)) in order to overcome our identified limitation (d). The HemeLB applica-
tion is compiled for the corresponding machine type while the sourcecode can be provided as
another staged-in data or accessible via a global file system. Immediately after the compilation
within the “same’ Grid job sandbox, the run of the HemeLB application is started simulating
a low-scale pressure flow of a human brain based on previously transferred data. The provi-
sioning of this mechanism to ease the machine-specific compiling of applications illustrates the
impact of this thesis in practice.

After the job submission to the NGS, the e-Scientist uses the AHE in order to obtain also
standardized information about HPC resource information available in DEISA/PRACE via
GLUE2 and the refinements (cf. Section 5.2.3 (c), (d), (e), and (g)) in step (5). Pieces of in-
formation in a common format are present that expresses details about modern large-scale
HPC resources such as the BlueGene system in Juelich as part of DEISA/PRACE. This pieces
of information can consist of recent HPC features such as task/core mapping definitions for
the particular machine or available shape setups. Such very accurate pieces of information
are necessary to be part of the refined JSDL (cf. Section 5.2.3 (a), (b), and (f)) that is submit-
ted to the OGSA-BES implementation in step (6) decribing another HemeLB execution specif-
ically optimized to perform large-scale simulations. Within DEISA /PRACE, GridFTP is used
to transfer patient-specific data orginally obtained from an MRT into the working directory of

234 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

the job indicated as step (7). Step (8) indicates the execution of HemeLB on the Juelich machine
within DEISA /PRACE being compiled specifically for the BlueGene architecture beforehand
(cf. Section 5.2.4 (a)). It efficiently simulates the pressure field of a human brain bloodflow
in high-scale. TeraGrid/XSEDE executions are kept out for clarity and to reduce duplication,
since it follows essentially the same steps while HemeLB might be used with such resources to
simulate, for instance, the bloodflow velocity field.

All in all, the steps described a scientific solution that has been computed within NGI,
DEISA /PRACE, (and partly TeraGrid/XSEDE) that would not be seamlessly possible without
interoperable components of the IIRM reference architecture. The work in this case study was
mainly carried out in collaboration with the VPH community and as part of the work in the
OMII-Europe and DEISA2 project. Some details about the work in VPH is illustrated in Figure
6.25 to increase the overall understanding of the concepts used in the case study. As shown in
Figure 6.25, the VPH case study started using resources like the Supercomputer JUMP (left) the
study then continued on BlueGene supercomputers JUBL and JUGENE (right, including steer-
ing setup). As part of this process of bringing the HemeLB application from one architecture to
these others, several insights have been gathered for the functionality improvements in Chap-
ter 5. More insights into both computational steps are described in [263] that lead to the more
formal definition of the multi-Grid algorithm as illustrated in Figure 6.26. It also highlights
the previously unsupported elements within this workflow but that are possible by using the
concepts of the IIRM. The pseudo-code provides evidence that it is possible to map the VPH
workflow to the general design pattern defined in Chapter 5 algongside the architecture work.
The reference architecture is thus applicable to the VPH workflow and its different parallel
steps that in turn use different application scales on different HPC resources. Evidence that

Begin VPHWOREF LOW

Begin GridInformationProvisioning Previously unsupported:
Grid Information Providers (GIPs) publish pieces of The information provider sends
information about infrastructures (small-/large-scale HPC resources) information using GLUE2
End
\ elements such as network
scienceworkf lowfinished — false topologies, shape setups or
task/core mappings. The
CEIS (fesit SemerEg mriilarinndie:d Information service exposes it
Begin Hrokering with a GLUE2 Instance

End-user uses AHE Client (CT) and performs HemelB setup
and defines small-scale HPC reguirements in loop one
and then defined large-scale HPC regquirements for HemelB setup Pre'\riously unsuppﬂrted:
in loop two

Compute resource (CR) of corresponding HPC infrastructures are

VPH scientists can specify small-

found based on the information exposed by GIPs scale and large-scale HemelB
End simulation runs that can be even
Begin JobSubmitToResource submitted in parallel or sequentially
If CR.type is =mall-scale HPC then as needed

End-user of CT submits small-scale HPC-based HemelB job
to a HPC resource using GridSAM of the NGS infrastructure

End If Previously unsupported:

If CR.type is large-scale HPC then Using the same client the scientists
End-user of CT submits large-scale HPC-based HemelB job can subml'tjobs to small-scale

En;oli HPC resource using UNICORE of the DEISA/PRACE infrastructure resources in the UK NGS while also

they are able to submit to large-
Begin AnalysisScience scale resources of DEISA/PRACE

If CR.type is small-scale or large-scale HPC then —
Scientists perform manual data-staging with GridFTP to r\eposltor} Previously unsupporta:

sciencework flowfinished = true VPH scientists are actually able to
End manually transfer analyzed results
L manually to their patient-specific

End organized repositories

(i) Listing: Pseudo-code of basic design pattern algorithm applied to the VPH case study

Figure 6.26: The VPH scientific workflow can be mapped to the IIRM run-time pattern algorithm.

6.4. ARCHITECTURE IMPLEMENTATION FOR THE VPH APPLICATIONS 235

supports this claim is the possibility to map the workflow to the general design pattern. This
highlights another key impact of this thesis by enabling the use of VPH applications with NGS,
DEISA /PRACE, and TeraGrid /XSEDE.

The presented use case was a collaboration between e-Scientists in the context of the DEISA
VPH virtual community [301] that was specifically getting computational time on the HPC-
driven Grid infrastructure DEISA /PRACE. The access to the NGS system was achieved with-
out the direct involvement of the author. During the preparation period it turned out that the
policies to apply for large scientific endeavours is still cumbersome for the e-Scientists that
can not rely on using these systems in general since their proposal may be rejected. Technical
interoperability is achieved with the IIRM in this context. But the usage policies of getting com-
putational time on the rarely available HPC resources is pointing to the importance of solving
the policy issues raised as part of the segmented process in Chapter 5.

236 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

6.5 Architecture Implementation for the EUFORIA Applications

Abstract

Reference
Model
(Chapter 5)

| Requirements / Reference Protocols
{Chapter 4) [Architectures [(;aanp:?sﬁ) (Chapter 5)
(Chapter 5)
. " Profiles
[:‘:ﬁuv‘auozn’ accounts forl considers (Chapter 5)
| apter
derived
Specifications
Goals (Chapter 5)
(Chapter 2) P "
oncrete
Architectures Re[l(a:::;j g:}g,els Standards
(Chapter 6) P (Chapter 5)
Architecture Work Related Work
accounts for constrained use
by

Service Oriented Architecture Implementations
(Chapter 6)

WISDOM VPH ESFRI Other
Applications Applications Applicati Applicati
Concrete (Chapter 6) (Chapter &) (Chapter 6) (Chapter 6)

Figure 6.27: SOA implementation for EUFORIA applications constrained by the concrete reference architecture.

This section describes the concrete SOA-based implementation of the EU Fusion for ITER
Applications (EUFORIA) [247] case study that was conducted during the definition of the refer-
ence model. This study contributed enormously to the findings of this thesis and is published
in [225] and [272]. Figure 6.27 provides an overview of how the case study fits with the overall
reference model approach and its implementations.

The scientific investigation throughout the case study is also represented in the structure
of this section. A short introduction to the EUFORIA project [247] and its basic framework
is given in order to explain how e-Scientists from the fusion domain want to use production
e-Science infrastructures. Then scientific EUFORIA application workflows are explained that
require more than one production e-Science infrastructure.

The architectural analysis and the scientific application analysis in turn are the foundation
for the critical academic analysis explaining the limitations of the basic EUFORIA framework.
As a key contribution of this third case study, insights into how such identified limitations are
solved are given by using the IIRM and the associated reference architecture implementations.
These implementations are already used be fusion e-Scientists and thus emerging in production
e-Science infrastructures today.

This section aims to verify that the reference model is applicable to the EUFORIA scientific
workflows that seek to take advantage of more than one production e-Science infrastructure.
Many prototype developments and studies contributed to the case study which was based on
a fruitful collaboration between the EUFORIA project [247], the fusion community, and the

6.5. ARCHITECTURE IMPLEMENTATION FOR THE EUFORIA APPLICATIONS 237

DEISA2 project [184]. The results have been presented at the Supercomputing 2009 in Portland
[96] at the JSC booth as part of the OGF GIN demonstrations.

6.5.1 The EUFORIA Framework

The fundamental goal of the EU Fusion for ITER Applications (EUFORIA) project [247] is to
exploit production e-Science infrastructures for fusion science as illustrated in Figure 6.28. A
wide variety of scientific applications are used to simulate elements of the International Ther-
monuclear Experimental Research (ITER) [121] tokamak, which is a fusion device that may
become the basis for future fusion power-generating power-plants. It aims to demonstrate the
scientific and technical feasibility of fusion as a sustainable energy source for the future.

To exploit the full potential of the device shown in Figure 6.28 (using elements of [40] and
[247]), and to guarantee its optimal operation, a high degree of physics modelling and simu-
lation is required, even in the current construction-related phase of the ITER project. Detailed
modelling tools that are required for an adequate description of the underlying physics, are in
general very demanding from a computational point of view.

The EEF report 2010 summarizes the requirements of the ITER community as 'Compute re-
sources requirements range from small Linux clusters to supercomputers’ [161]. As a consequence,
this case study requires resources of the HPC-driven infrastructure DEISA/PRACE but also
resources of the HTC-oriented EGEE/EGI infrastructure. Many fusion applications form sci-
entific workflows across heterogeneous Grid resource types. Again, the EEF report summarizes
the requirements of this community as follows: 'Depending on the requirements, the work-flow is
executed on local resources, on a compute grid or on remote HPC. Standardized ways are needed for
code coupling and execution, for monitoring and for data management [161]. While ITER has many
activities, the focus in this case study is on leveraging the potential of DEISA/PRACE and
EGEE/EGI with the EUFORIA framework as illustrated in Figure 6.29.

As part of the client layer, the client tool is a GUI responsible for end-user interaction and
managing multi-site, distributed, and heterogeneous workflows. For managing workflows, the
architecture uses the Kepler [215] tool, which is a generic scientific workflow engine. This tool
is capable of supporting general job executions using so-called “actors’ [225], and therefore the
EUFORIA project defined HTC- as well as HPC-specific additional actors enabling job manage-
ment and data-staging functions. By combining a meaningful sequence of such actors, client

Figure 6.28: The EUFORIA project enables fusion research on production e-Science infrastructures [247].

238 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

applications can create a scientific workflow in a very flexible and convenient manner. Once
the workflow is verified, the request of each actor is forwarded to the so-called Resource Access
Server (RAS) [225].

The RAS in turn provides general functions of job management and monitoring as well
as certain data management functions. As shown in Figure 6.29, the RAS interacts with HTC
as well as HPC resources through Grid middleware-based adapters implementing transfor-
mation logic (cf. Chapter 3). For HTC-based job requests RAS communicates with gLite ser-
vices, whereas for HPC services it interacts with UNICORE services. The gLite middleware is
used in the EGEE/EGI infrastructure, whereas UNICORE provides access to resources of the
DEISA /PRACE infrastructure. Using these types of services and thus HPC or HTC resources,
fusion e-Scientists can conveniently execute serial and massively parallel jobs. The e-Scientists
decide an application launch only within Kepler, but they need to know low-level details of
execution in the basic framework in order to understand which fusion codes can run on which
resources. The knowledge of which libraries are installed is necessary to efficiently use the EU-
FORIA framework. In the production setup, UNICORE is used as an interface to HPC, because
of its wide range of support for modern resource management systems. As shown in Figure
6.29, RAS interacts with UNICORE using the Vine toolkit [278].

Figure 6.29 reveals that a fusion e-Scientist uses a scientific client that is implemented with
the NX technology [62], which handles remote X window connections to the NX Server in-
stalled on the fusion community Kepler server and thus in turn Kepler can be locally displayed

. . . Grid
| Scientific Client (implemented using NX technoloj](—)[| NX Client Technolo,] .
[38 (imp g 2y)) " 8y Clionts
”
n = Fusi
[USION
KEPLER Workflow Technology ‘5 NX server Technology] T
. [9 KEPLER Actors }(—)[& Submission Library] KEPLER

'J Server

- 2
- --
.

e > .
'(L-)) Resource Allocation Server (RAS) Service i ‘.:.‘ Vine Toolkit FUSIOI]_
el . Community

Middleware proprietary UNICORE] (RAS)
\J Middleware proprietary glite Ul] Atomic Services Client Adapter Server
re ras
" T
J\;‘ EGEE/ EGI u DEISA / PRACE Grid
g Infrastructures
L= = r -4
v ¥
[a Proprietary glite Interface] [a Proprietary UNICORE Atomic Services Interface] Grid
AR A Servers
& ogliteMiddleware 1 | N | UNICORE Middleware
1 |
- o
ﬁ. . - % — Grid
HTC Resources o I NI T HPC Resources ~ Resources
Legend: % compute jobs a compaonent

Figure 6.29: The basic EUFORIA framework uses technologies of EGEE/EGI and DEISA /PRACE.

6.5. ARCHITECTURE IMPLEMENTATION FOR THE EUFORIA APPLICATIONS 239

on the scientist’s desktop. Based on these connections and as illustrated in Figure 6.29, the
Kepler workflow technology is then used to set up fusion application workflows that use sev-
eral middleware-specific Kepler actors (e.g. gLite Actor, UNICORE Actor, etc.) and related
submission libraries to access the RAS server of the fusion community. Figure 6.29, illus-
trated two adapters that map the functionality of the middleware-specific Kepler actors within
the fusion-specific scientific workflow to the corresponding middleware-based requests of the
corresponding middleware systems. A proprietary gLite UI adapter is used to access HTC-
oriented resources within EGEE/EGI, but also the Vine toolkit supports gLite. It is used as
another adapter with the proprietary UNICORE Atomic Services (UAS) [293] and thus pro-
vides access to HPC-driven Grid resources within DEISA /PRACE.

6.5.2 Scientific Applications of the Fusion Domain

Whereas the previous section focused on the basic EUFORIA framework from a technical per-
spective, this section reveals insights about some of the scientific fusion codes from an end-user
perspective. The overall scientific workflow is illustrated in Figure 6.30 (using elements from
[91] and [40]) which shows two fundamental computational steps.

The EUFORIA project enhances modelling capabilities for ITER through the joint use of
HTC and HPC resources together with the fusion modelling community by adaptation, opti-
mization and integration of a set of critical applications for edge and core transport modelling

One client
Commonly used Scientific Workflow Tool Kepler (with new actors) to access all
Infrastructures
Implemented
Infrastructure Interoperability Reference Model Set of Standards standards in
middleware
_ Different
N fusion code
Wi > - e applications
that firstly
generate
HELENA ILSA and then re-use
(high resolution Intermediate (MHD stability intermediate
equilibrium code) Results (data) calculation) results
- i - H Production
| A e-Science
EGEE/EGI EGEE/EGI Joint DEISA/PRACE
ot e bl Infrastructures

Figure 6.30: HELENA and ILSA fusion simulations with core building blocks of the IIRM reference architecture.

240 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

as well as turbulence simulations. Most of these application codes allow construction of com-
plex, combined workflows that produce advanced physical results. The number of codes of
such combined workflows depends on their characteristics and a wide variety of them have
been enabled and optimized to be used partly with HPC as well as HTC resources.

The particular fusion use case application of the case study is HELENA-ILSA, which is one
scientific fusion workflow, illustrated in Figure 6.30 that includes parameter scan applications.
HELENA [198] is a high-resolution fixed boundary equilibrium code used to calculate the mag-
netic flux surfaces in a tokamak by solving the Grad-Shafranov equation. This involves solving
a large sparse band matrix equation iteratively.

ILSA [199] is a linear magnetohydrodynamics (MHD) code. It is used to compute linearly
unstable MHD modes (on a mesoscale) in tokamak plasma. Typical modes that can be calcu-
lated with ILSA are ballooning modes, peeling modes, kink modes, sawteeth, and neoclassical
tearing modes. ILSA also solves linearized set of coupled MHD PDEs using various solvers
(QR algorithm, inverse vector iteration, Lanczos algorithm, Nyquist method). The major use of
the framework is the inverse vector iteration and the calculation of the stability of a ballooning
mode in ideal MHD. Both of the aforementioned codes are used with the framework to pro-
vide the end-user with a seamless access method to HTC and HPC resources based on Kepler,
as illustrated in Figure 6.30. The HELENA code is first computed on HTC resources (using
EGEE/ECGI resources) and its outcome is further used by the ILSA application code on HPC
resources (using DEISA /PRACE).

The resources of the corresponding infrastructures are accessible via the EUFORIA VO of
EGEE/EGI and the DEISA EUFORIA virtual community [301]. Whereas the usage of comput-
ing resources in EGEE/EGI is essentially free for the EUFORIA VO, the EUFORIA VC has a
dedicated number of agreed compute cycles distributed over the DEISA /PRACE production
infrastructure.

After discussions with EUFORIA e-Scientists, a high potential of using this workflow with
the IIRM and reference architecture was revealed when using Kepler. This case study thus
focuses on a an integration into a workflow engine in order to get access to the IIRM model,
including proper security mechanisms required to use real existing production e-Science infras-
tructures. In contrast to subsequent case studies, the requirement of providing a more seamless
access to pre-installed software packages and libraries is presented. Also tracking resource us-
age is highlighted in this use case.

Many scientific fusion applications are very similiar to those that are part of this case study.
Other codes of the fusion community such as the fully kinetic massively parallel BIT1 described
in [225] have similiar requirements, including the need for necessary libraries [247].

Table 6.12 summarizes the production e-Science infrastructure setup required by the spe-
cific fusion case study. It clarifies the question which e-Science infrastructure setup is used with
what concrete types of e-Science applications while previous sections reveal general infrastruc-
ture setup information in context. The EUFORIA e-Scientists use various types of executables
with different computational Grid infrastructure resources (cf. Definition 6).

6.5.3 Academic Analysis and Production Infrastructure Setup Experience

The architectural framework and the use case application experience is analysed in this section
to find out how the efficiency of fusion e-Scientists can be improved. The framework runs in
production e-Science infrastructure use cases, but the outcome of the analysis points to limita-
tions of the framework and these are summarized in Table 6.13.

The analysis of the general approach of the framework is the first step. Chapter 3 presents a
classification of general approaches to interoperability. Among concepts like Additional Layer,

6.5. ARCHITECTURE IMPLEMENTATION FOR THE EUFORIA APPLICATIONS 241

No e-Science Infrastructure Setup e-Science Application Demands

1 EGEE/EGI Section 6.2.2 HELENA application;
embarassingly parallel runs requiring
trivial computational power;
use of HTC resources feasible;

2 EGEE/EGI Section 6.2.2 data storage to store
intermediate results;
3 DEISA /PRACE Section 6.2.2 massively parallelized ILSA

code using HPC resources;
easy access to pre-installed
libraries and software necessary;

Table 6.12: Summary of the e-Science infrastructure setups of the EUFORIA case study.

Adapter, Gateway, or Mediator, the Neutral Bridge approach is defined. The first major limita-
tion in the basic EUFORIA framework is the use of the well-known "(a) Neutral Bridge approach’
to enable interoperability between e-Science infrastructures in general and their corresponding
Grid middlewares gLite and UNICORE in particular. In the EUFORIA case study, the neutral
bridge is represented by the RAS server that is accessed with the neutral RAS protocol that
channels the middleware-specific setups of the Kepler actors through to the bridge.

Apart from this general approach, a more fine-grained academic analysis of lessons learned
provides more clarity and points to specific challenges that are addressed to improve the ef-
ficiency and supportability of the EUFORIA framework. The use case application HELENA-
ILSA workflow revealed several challenges when accessing the different infrastructures. There
were '(b) no common ways of specifying Grid applications’ in a meaningful way (e.g. even without
specifying the concrete application executable location) or using pre-installed software pack-
ages or libraries. In addition, there have been even limitations on the lowest level with '(c)
having no common way of Grid application execution environments’ (e.g. environment variables).
This particular case study also raised the challenge for detailed tracking of computational re-
source usage. A '(d) lack of detailed resource usage tracking througout different resources’ was identi-
fied when using computational Grid resources in EGEE/EGI, DEISA /PRACE, and also stand-
alone resources such as the dedicated HPC-FF system [42] for the fusion community in Juelich.
Tracking the resource usage on these machines including the information of which sub-project
of the fusion community is using which resources in a very detailed manner is required in this
case study.

Because of these aforementioned limitations and the unavailability of emerging standards
in production on the infrastructures, there has been a constant struggle in using the emerg-
ing IIRM core building blocks in production setups compared with the proprietary interfaces.
From time to time, the proprietary production interfaces have been used again, which was par-
ticularly the case in this particular case study. This is clearly not desirable, but once more again
a motivational factor to make the standards stronger and more suitable for production.

No. | Limitation short description

(@) Neutral Bridge (transformation logic)

(b) No common way of specifying Grid applications

(0) No common way of Grid application execution environments

(d) Lack of detailed resource usage tracking througout different resources

Table 6.13: Overview of limitations after academic analysis of the EUFORIA framework.

242 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

6.5.4 Reference Model Impact and Applicability

The goal of the concrete reference architecture instance is to improve the work of fusion e-
Scientists when using the EUFORIA framework with EGEE/EGI and DEISA /PRACE, as shown
in Figure 6.31. This illustration represents a specific ‘architecture instance” of the IIRM and pro-
vides insights into the core building blocks of the reference architecture. Several concept re-
finements (i.e. A) to the core building blocks are proposed in order to run scientific fusion
applications on Grid resources more easily for EUFORIA e-Scientists. This is important since
fusion research uses many different software codes requiring many libraries [247].

This case study uses emerging IIRM core building blocks created from lessons learned that
contributed significantly to the findings documented in Chapter 5. An overview of which
concrete core building blocks are interesting as part of the EUFORIA case study are provided in
Table 6.14. Those concrete refinement concepts that are used in this case in order to overcome
several identified limitations of the previous section are indicated with A. While Table 6.14
provides a general overview of the used core building blocks of the reference architecture, the
next paragraphs provide a step-wise walkthrough of Figure 6.31 in order to explain which
refinement concepts are used in detail. Figure 6.31 and Table 6.14 highlight one key impact of
the thesis by using IIRM core building blocks and their refinements with another real scientific
use case. Table 6.15 summarizes those refinements that matter most in the EUFORIA case
study, while it also takes advantage of refinements described in previous case studies (e.g.
HPC extensions).

aY

0] [Grid
ig Scientific Client { implemented using NX technology) W% NXClient Technology] -
3 - Clients
{1)
S .
KEPLER Workflow Technology i Fusion
#% NXServer Technology] Community

2

- | Q KEPLER Actors }H[Submissien Library] KSE‘;]I;EEF
_J ran

ik O

ae

y .

= . _ o Fusion

',_("')} Resource Allocation Server (RAS) Service w [Wb service clients using (OGSA-BES +AV)] Community

Vine and (J5DL + AU) and [GLUE2 + AW) (RAS)
4 Toolkit
. | r, 3 Server

Grid
FRiF EGEE / EGI DEISA / PRACE

[gy ! [M !] Infrastructures

——7) ~

= —]

W | T s] R
- Interface " Entity e Interface)D Entity i
' A gLite Middleware CREAM ' /-"\\ UNICORE Middleware

! al 5

Job execution of
HELENA executable
common env. variables

HTC Resources

Legend: % compute jobs a component D 15DL % standard . UR

bl

Figure 6.31: Enhanced EUFORIA framework using the IRM with fusion science applications.

6.5. ARCHITECTURE IMPLEMENTATION FOR THE EUFORIA APPLICATIONS 243

Core building blocks | Specific usage in EUFORIA

UR+AZ Detailed usage record tracking across infrastructures

OGSA-BES + AV WS submission to create a Grid job using middleware systems

JSDL + AU HELENA and ILSA job description; software application concepts
GLUE2 + AW Information about pre-installed fusion software

SAML Encoding (i.e. SAML assertions) of EUFORIA end-user security attributes
WS-Security Mechanism to transport SAML assertions in OGSA-BES WS messages
XACML Security policy for EUFORIA end-users

X.509 Security X.509 certificate provided by each EUFORIA end-user

GIN Exe Env Environment variables used during application executions

Table 6.14: IIRM core building blocks that are used in the EUFORIA case study.

The yellow numbers indicate the steps explaining the usage of the architecture while at the
same time they address how limitations from the previous section are solved. This paragraph
focus on the concepts listed in Table 6.15 and thus omits security details since they have been
described already in previous case studies whereas this case study is also using the security
pattern (cf. Section 5.1.6). Step (0) indicates the usual work situation for EUFORIA e-Scientists
by opening a connection to the fusion community server via the NX technology illustrated in
step (1). In step (2), the e-Scientist use the Kepler workflow tool with dedicated Kepler actors
and their configured identity (i.e. X.509 certificate). The Kepler actors include a submission
library that uses via the RAS server the Vine toolkit technology, as illustrated in step (3).

The Vine toolkit in turn uses Web service client classes in order to use core building blocks
of the IIRM reference architecture. In step (4), Vine uses the CREAM-BES [220] of gLite in order
to submit the HELENA application on a HTC resource within the EGEE/EGI infrastructure.
Using open standards and IIRM core building blocks points to another key contribution of this
thesis thus avoiding the need for transformation logic to be maintained in Vine toolkit for this
particular framework.

In step (5), the JSDL is analysed and the concept of application types classification (cf. Sec-
tion 5.2.1 (a)) is used to prepare the job submission in an optimized way. HELENA is consid-
ered to be a serial application running on an available HTC resource. But the HELENA code
needs to be called within a certain location and with various parameters thus making use of
our proposed revised application executable definition (cf. Section 5.2.1 (c)). After the end-user
processing of the JSDL is finished and the end-user is authorized, the HELENA job is executed
on a HTC resource. HELENA as a high resolution equilibrium code can take advantage of
the concept of common environment variables (cf. Section 5.2.2 (a)) to optimize its execution.
This step is marked as (6) in Figure 6.31 and the concept can be thus used to overcome the
identified limitation (c) in the previous section. The intermediate results from the HELENA
run is stored in EGEE/EGI storages that are accessible for DEISA /PRACE using different data
transfer methods like GridFTP or simple HTTP.

Step (7) stands for various WS message exchanges. This includes the communication with
OGSA-BES of UNICORE in order to obtain information about the chosen DEISA /PRACE re-
sources using the GetFactoryAttributes operation. In addition to OGSA-BES factory at-
tributes, this operation also exposes the GLUE2 refinements as published in [224]. As Figure
6.31 illustrates, the refinement concept of obtaining information of what software (e.g. pre-
installed ILSA) and fusion libraries are installed (cf. Section 5.2.1 (b) and (e)) is used too. This
information is re-used with the software requirements and software statements concept in JSDL
(cf. Section 5.2.1 (d) and(f)). It enables a precise description of the execution run within JSDL
defining the pre-installed ILSA application (including specified required libraries). This over-
comes the previously identified limitation (b) by having a common, more detailed, mechanism

244 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

A Functionality Extensions and Improvements Specific usage in EUFORIA
AZ 5.2.6 (a) Tracking of more HPC resource details ILSA run on HPC

AZ 5.2.6 (b) Tracking of VO information HELENA and ILSA record

AZ 5.2.6 (c) Re-use elements of GLUE2 ILSA on modern HPC

AU 5.2.1 (a) Application types classification HELENA as serial; ILSA as parallel
AU 5.2.1 (c) Revised application executable definition | in JSDL for HELENA

AU | 5.2.1 (d) Application software statement JSDL with pre-installed ILSA
AU 5.2.1 (f) Application software requirements ILSA software requirements
AW | 5.2.1 (b) Application type refinements pre-installed ILSA exposure
AW | 5.2.1 (e) Application Family extension fusion code libraries exposure
AW | 52.2 (a) Common Environment Variables ILSA use environment variables

Table 6.15: Functionality improvements used in the EUFORIA case study.

of defining Grid applications. This GLUE2-refined JSDL in turn is used with the second WS
message exchange using the OGSA-BES CreateActivity () operation. Providing this mech-
anism illustrates another key impact of this thesis by having easier software and library usage
supported by the IIRM in practice.

After receiving the JSDL, the OGSA-BES implementation of UNICORE analyses the JSDL
in Step (8). It setups the execution run taking advantage of clear definitions about necessary
required libraries and the definition of using a pre-installed application definition. The benefit
is that end-users do not need to know the exact executable path (e.g. in the HELENA example)
and thus calling ILSA remotely is signficantly reduced especially when different libraries are
used. In step (9), the well-defined job is forwarded to the RMS for execution making evailable
required libraries in step (10) and schedules in step (11) the ILSA application for its execution
on the HPC resource.

In order to overcome limitation (d), step (12) illustrates the refinement concepts of tracking
resource usage. This step (12) is highlighted on the HPC resource, because the concept signifi-
cantly extends the granularity of the UR format for this particular purpose (cf. Section 5.2.6 (a)
and (c)) by re-using GLUE2 elements that are also used in other concepts (e.g. amount of cores,
etc.). For accounting purposes, the concept of adding the information about VOs (cf. Section
5.2.6 (b)) is used in the particular case in DEISA/PRACE to use the identity of the EUFORIA
VC. The VO is thus set as VC since EUFORIA is a VO in EGEE/EGI and also a known VC in
DEISA/PRACE. This is in particular crucial, since the same resource might be used without
using DEISA/PRACE meaning a local access with the same user id and another computing
time contingent.

This case study thus demonstrates an important functionality in terms of accurate resource
usage tracking that is also relevant when pool accounts are used (cf. Section 5.2.6). Tracking
inside the UR the VO/VC identity (here EUFORIA VC) makes accounting easier, especially
when systems are not only locally available at a site, but also shared in production e-Science
infrastructures such as DEISA /PRACE.

The overall computation is now significantly easier to setup and to be used with the EUFO-
RIA framework, because e-Scientists are able to simply choose as part of their actors in Kepler
which applications and libraries they need for the job run. The framework hides the complex-
ity of the infrastructure setups so that fusion e-Scientists can concentrate on their science rather
than knowing the low-level details beyond the RAS server and Kepler.

The overall aforementioned workflow decribes a scientific solution that has been computed
within EGEE/EGI and DEISA /PRACE that would not be seamlessly possible without interop-
erable components of the IIRM. But also the collaborative work of the EUFORIA project was
important in terms of Kepler actors (e.g. BES Kepler actor) and Vine toolkit changes. This case

6.5. ARCHITECTURE IMPLEMENTATION FOR THE EUFORIA APPLICATIONS 245

Begin EUFORTAWOREFLOW

Begin GridInformationProvisioning Previously unsupported:
Grid Information Providers (GIPs) publish pieces of The information provider sends
information about infrastructures (HPC and HTC resources) information using GLUE + AW
End
elements such as available
scienceworkflowfinished = false software and libraries ata given
Grid resource. The Information
WHILE (nmot scienceworkflowfinished) service exposes it with a
Eoram R GLUE2 + AW instance.

End-user uses the EEPLER client tool (CT) and performs HELENA setup
and defines HTC requirements in loop one
and then defined HPC reguirements for ILSA setup Pre'uious\\r unsupported:
in loop two using different actors for HTC and HPC of EEPLER P N
Compute resource (CR) of corresponding HPC and HTC infrastructure is EUFORIA scientists (‘anspemfy HTC

found based on the information exposed by GIPs requirements for HELENA in the first
End loop and HPC requirements for ILSA
Begin JobSubmitToResource simulations in the second loop
If CR.type is HIC then using the KEPLER tool (and actors).

End-user of CT submits HTC-based HELENA job to a HTC resource
using middleware glite of the EGEE/EGI infrastructure

End If Previously unsupported:
If CR.type is HPC then Using the KEPLER client the scientists
End-user of CT submits HPC-based ILSA job to a HPC resource can submit jobs to either HTC
using middleware UNICORE of the DEISA/PRACE infrastructure resources in EGEE/EGI or to HPC
End IF
End resources in DEISA/PRACE using pre-
Begin AnalysisScience installed software and libraries
If CR.type iz HPC then scienceworkflowfinizhed = true Y
End Previously unsupported:
Begin ResourceUsageAnalysis VO/VC administrators of the fusion
Obtain usage record with low-lewel resource details at each time community can track resource
End N
End While usag_ewlth low-level HPC resource
End details based on UR + AZ

(i) Listing: Pseudo-code of basic design pattern algorithm applied to the EUFORIA case study

Figure 6.32: The EUFORIA scientific workflow can be mapped to the IIRM run-time pattern algorithm.

study relied substantially on the results of the EUFORIA project and its members that have
worked in parallel with the author to realize the described use case.

More insights into the aforementioned workflow steps are described in [225] that lead to the
more formal definition of the multi-Grid algorithm as illustrated in Figure 6.32. It highlights
the previously unsupported elements within this workflow but that are available by using the
concepts of the IIRM reference architecture. The pseudo-code notation maps this particular
fusion workflow to the the run-time pattern and general algorithm defined in Chapter 5. The
IIRM is thus applicable to the fusion workflow and as this workflow is very similiar to others
in the fusion science community, the IIRM is also useful there. Evidence that supports this
claim is the possibility of mapping the workflow to the general design pattern. This represents
another key impact of this thesis by enabling the use of EUFORIA applications with EGEE/EGI
and DEISA/PRACE. As a consequence, another key contribution of this thesis is supporting
the fusion modelling process as scientific innovation.

The case study benefitted enormously from a collaboration with the DEISA EUFORIA VC
[301]. Computational time was available on the HPC-driven Grid infrastructure DEISA /PRACE
as well as the dedicated HPC-FF resource in Juelich, whereas EUFORIA is already organized
as one VO in EGEE/EGI. Technical interoperability is achieved with the IIRM, but the usage
policies for obtaining computational time more conveniently on the rarely available HPC re-
sources remain to be solved by others (e.g. policy groups as described by segment 5 in the
aligned process).

246 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

6.6 Architecture Implementations for ESFRI and other Applications

Abstract

Reference
A Model

(Chapter 5)

Requirements / Reference \ Protocols
(Chapter 4) Architectures Patterns (Chapter 5)
(Chapter 5) (Chapter 5)
Motivation accounts fo considers [Ciz)‘:i:rss)
(Chapter 2) -
derived — -

Specifications
Goals (Chapter 5)
(Chapter 2) I "
oncrete
Architectures Re[lé:;d Iheﬂ :x;)els Standards
(Chapter 6) P (Chapter 5)

K Architecture Work / Related Work
accounts for tcon strained use
by

Service Oriented Architecture Implementations
(Chapter 6)

\ 4 WISDOM VPH EUFORIA
Applications icati icatit
Concrete (Chapter 6) (Chapter 6) (Chapter 6)

Figure 6.33: SOA implementation for ESFRI and other applications using the concrete reference architecture.

IED)

The previous sections describe concrete SOA-based implementation details about the scien-
tific case studies that have been performed alongside the definition of the IIRM and its reference
architecture. In contrast, this section reveals further e-Science applications that can take advan-
tage of interoperable infrastructures and the IIRM. The focus is on emerging architectures that
are very similiar to the conducted case studies. 'ESFRI and the e-IRG have identified the strong
need of ESFRI-projects for ICT tools and access to e-Infrastructures’[134]. Here, ICT tools can be
considered as those provided by the different e-Science infrastructures (aka e-Infrastructures)
in Europe. The focus is thus on some example applications that arise from Rls emerging from
the ESFRI roadmap and its projects as introduced in Chapter 2.

Figure 6.33 provides an overview resulting from collaborations with some ESFRI projects
illustrating the context to the reference model approach and its implementations. The structure
of this section is thus different than in previous detailed case studies. One potential architec-
tural framework is proposed in the context of several ESFRI projects, such as CLARIN and the
Digital Research Infrastructure for Arts and Humanities (DARIAH) [8] with close relationships
to EUDAT [22].

In general, the ESFRI projects have a broader scope as computation that is driving the find-
ings of this thesis. However an analysis of ESFRI requirements performed [161] indicated that
"The sensitive nature of the data to be stored leads to a need for fine-grained Authentication and Autho-
rization system, it also is imperative that such a system provides Single Sign On functionality” [161].
Furthermore, 'the ability to use grid/cloud compute facilities for the processing of the stored data is
also foreseen in some projects’ [161]. Both are just two examples of the synergies between emerg-
ing ESFRI Rls and the already established e-Science infrastructures presented in this thesis.

6.6. ARCHITECTURE IMPLEMENTATIONS FOR ESFRI AND OTHER APPLICATIONS 247

The aforementioned statements point to the need to access computational resources mainly for
large-scale data processing where both HTC and HPC resources as needed.

As key contribution of this section insights are given how the IIRM can provide benefits to
architectures arising from the ESFRI roadmap and its application requirements. This section
thus aims to verify that the reference model is applicable to other application domains as those
indicated in the three case studies.

6.6.1 Basic Framework for ESFRI Projects

This section is based on numerous discussions with members of ESFRI projects resulting from
several workshops with a particular focus on the ESFRI projects DARIAH [8] and CLARIN
[306]. Both CLARIN and DARIAH are emerging European Rls that are organized under the
ESERI umbrella and that consider to follow an architectural approach more in detail described
in [271] and that is outlined in Figure 6.34. It describes how a virtual workspace with numer-
ous features can be used by scientific-discipline specific Virtual Research Environments (VREs)
following a Web 2.0 YouTube-like design [271]. The impact of this thesis in this particular con-
text is the provisioning of a detailed reference architecture to DARIAH and CLARIN clarifying
exactly which interfaces provide access to computational resources (with limited storage capa-
bilities).

Figure 6.34 reveals that the ESFRI Rls are extremely complex but require among many other
elements, also HTC and HPC resources that need to be seamlessly integrated into the architec-
tural design. Open standards are a preferred method to access those resources and the IIRM
provides a collective set of interfaces in its associated reference architecture as a viable solution

¥ 28 W & 8 M & &

7 Community
\'@ [Web 2.0 YouTube-like Features][Workbench Features & Profile Acsess] “% }g Virtual
Scientific Application-specific VRE ﬁ\ ~ T Other VREs R{sseurch
- T Environments
1 - - _l |— authentication Il == 1
1 v v v :
i =5 Virtua
' | & O
| “‘!\!5’ PP ssess “\Zr Workspaces
I Core Functions *:{" List of Profiles Service Adapters &
Chosen
Il . : Profile
Y\ Frommany
I End-user Us er Access Communltv Confgured Conﬁgured P
XX ! Available
] 'v: ES Quota Policies Time Fllters Filters
Preconfigured
: ? User Profiles
| -_—== r 4 | = outhorization | i

Archives /Repositories resourcesm.m‘ mﬂ' Scientific Instrument

- [o] B e §
‘ HPC @ M.
Storage resources Generic and Common Services

Figure 6.34: Emerging SOA implementations for ESFRI projects such as CLARIN and DARIAH (from [271]).

248 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

to seamlessly access those resources. For very computationally intensive problems, European
production e-Science infrastructures such as EGEE/EGI or DEISA /PRACE are also required.
The context of the proposed IIRM in context of the emerging architectures is illustrated in Fig-
ure 6.34.

Complementary elements of the architecture are thin clients that leverage the Web 2.0 tech-
nologies within Web browers. Such thin clients should be used to access so-called "virtual
workspaces’ that includes identity and profile membership management. ESFRI e-Scientsts use
this workspace like a “workbench’ to access all their prefered tools and data.

Apart from accessing computational resources with a clear set of interfaces (e.g. such as
those provided by the IIRM), the e-Scientists need to access large data archives (e.g. provided
by iRods [229]). In the case study CLARIN, such data archives store files and media data used
for linguistic research that partly relies on computational methods. The difference to the work
in the IIRM is that the digital repositories are directly linked with Persistent Identifiers (PIDs)
such as those provided by European Persistent Identifier Consortium (EPIC) [21]. Microser-
vices of iRods are used to update PIDs for each element in the digital repository.

The WebLicht [192] workflow tool within the ESFRI CLARIN infrastructure [306] is one pre-
ferred tool that consists of 180 Web services that call different linguistic tools in a chain. Some
steps in this chain are very much computationally intensive and in this context the interfaces
to the IIRM are used as part of this particular tool by using Web services communication with
the IIRM core building blocks if needed. The WebLicht can be considered as one of the generic
community services also illustrated as part of Figure 6.34.

In terms of authorization and authentication slightly different methods are envisaged in
comparison with the IIRM, but that are still similiar to those provided by the IIRM. Many ES-
FRI research infrastructures aim to consider Shibboleth [232] as their preferred security mech-
anism. This security technology is based on the SAML standard that in turn is also one core
building block of the IIRM reference architecture, but used in a sligthly different manner. Mi-
nor work needs to be done to agree on common end-user security attribute formats since they
are different from those released from a VOMS server.

Other RI elements are less related to the thesis such as the access to scientific instruments
illustrated in Figure 6.34 to enable the access to measurement devices and other form of phys-
ical device. Other services such as Persistent Identifier (PID) services [21] enable the reference
to scientific data over decades to come. More detailed descriptions of the services and func-
tionality are available in [271] and only interesting for this thesis to a limited degree. The
infrastructures arising from the various ESFRI projects are not fundamentally different from
those known as production e-Science infrastructures over years. But e-Science infrastructures
have been majorly focussed on computation, while the ESFRI projects aim to have more belance
between resources in general and data, instruments, and computations in particular.

Many aspects of the IIRM and its reference architecture are useful to ESFRI research infras-
tructures as well, because these infrastructures, like the production e-Science infrastructures,
represent distributed systems facing similiar challenges in terms of technology provisioning,
its sustainability, and most notably its interoperability. This is another key contribution of this
thesis by providing a specific reference architecture currently usable by ESFRI projects when
computational capabilities are required.

6.7. CONCLUSION 249

6.7 Conclusion

The proposed reference model was abstractly described in Chapter 5, while this Chapter de-
scribes the impact on production e-Science technologies and infrastructures using concrete ex-
amples and case studies. The proposed IIRM has an impact on European and US-based pro-
duction e-Science infrastructures, including a limited extend to those in Asia through Japan.
Further evidence of the scientific impact of the IIRM is provided through accompanying case
studies from the bio-informatics, e-Health, and fusion domain.

The seven segment-based process implementation leads to major scientific innovation in
terms of technologies through the reference model and in terms of applications through the
means of our collaboratively performed case studies. Each implementation of the seven seg-
ments contributed to the overall impact of the thesis findings, including the important factor
of being significant for real production e-Science infrastructures as the major research ques-
tion required. The reference model in general and its applicability in particular in this chapter
provides community-proven evidence (e.g. papers, deployments, etc.) that the IIRM and its
concrete emerging deployments provide an answer to the given research question. Various
publications of the concepts are available using the proposed reference architecture core build-
ing blocks that provide evidence that the approach of IIRM in e-Science is meaningful. Many
prototype developments over years have been provided that led to the technical soundness of
the IIRM today and to the funding of multi-million projects like EMI and XSEDE that are both
delivering production implementations for SOA-based architectures that are based on the IIRM
design and its associated reference architecture. The aligment of the EMI work plans with the
ideas of the IIRM and the influence on XSEDE was a significant part to improve the interop-
erability between European and US-based e-Science infrastructures. The detailed refinements
concepts of open standards that represent core building blocks are contributions of this thesis
while several of the detailed implementations are the implementations of others for which the
author takes no credit for.

Instead, to prove that the IIRM has a real scientific impact, several scientific case studies
are provided with underpinning publications in both technology (i.e. concepts) and science
(i.e. application use case papers). The WISDOM case study takes advantage of the established
interoperability via the IIRM and several of its refinements concepts. It contributed enormously
to the findings in Chapter 5, but the fact that the WISDOM workflow works with the IIRM
provides evidence that the IIRM can work not only with WISDOM applications but also with
a wide variety of applications from the bio-informatics domain (e.g. other MD simulation
programs).

The VPH case study takes also advantage of the established interoperability, but with a
different focus as WISDOM by using primarily HPC-driven e-Science infrastructures and as
such the refinements of the core building blocks in order to enable more efficient runs on HPC
resources. Also this case study provides valuable lessons learned to the IIRM design in Chapter
5, but the fact that this case study works with the IIRM also provides evidence that similiar
HPC codes can be used than just those of the e-Health domain. The EUFORIA case study
also takes advantage of multiple e-Science infrastructures, but in a manner of integrating the
ITRM concepts into a larger framework driven by the fusion community. This use case, among
with the VPH AHE evidence, prooves that the IIRM and its associate reference architecture is
even applicable when its core building blocks need to be integrated with existing frameworks
such as the AHE in VPH or, more motably, the complex RAS server environment of EUFORIA.
Finally, an initial impact of the thesis work in the context of more complex Rls arising from the
ESFRI roadmap are given in general and from those in the context of DARIAH and CLARIN in
particular.

250 CHAPTER 6. IMPACT AND E-SCIENCE APPLICATIONS

Chapter 7

Conclusion

In the first chapter of the thesis, objectives have been defined in terms of five major contri-
butions and the major research question was formulated: "How a reference model for a network
of interoperable services in production e-Science infrastructures can be defined?” In this chapter, the
thesis work is reviewed and set it in the context of the desired results in order to understand
how the objectives have been achieved. Evidence is provided in context of earlier Chapters that
support the claims and the collective thesis contributions represent one possible answer to the
major research question.

The first major contribution of the thesis is the Infrastructure Interoperability Reference
Model and its associated architecture work, as described in Chapter 5, that altogether repre-
sent a trimmed-down version of the Open Grid Services Architecture in terms of functionality
and complexity. The overall IIRM design follows the TCP/IP approach (not ISO/OSI) that has
been proven to be succesful in the Web domain. The IIRM and its reference architecture is thus
more compact, but more specific than OGSA being thus also more production-oriented to be
used specifically with production technologies today. Evidence is provided in Chapter 6 where
the IIRM is compared with OGSA according to the production reference model factors and in-
dicators that have been defined after a thorough analysis of OGSA and related work in Chapter
3. Further evidence is provided in Chapter 6 indicating that the IIRM is being implemented in
various Grid middleware technologies that are all already deployed in production e-Science
infrastructures (i.e. EGEE/EGI, DEISA /PRACE, TeraGrid/XSEDE, etc.).

The history of computer science shows that often complex architectures (e.g. OGSA) are
used less than their trimmed-down versions (e.g. IIRM). For instance, the complex Structured
Generalized Markup Language (SGML) is used less than its smaller version well-known as
Extensible Markup Language (XML). XML is less complex and therefore quickly became a de
facto standard in Web data processing. The same principles can be exploited with OGSA by
defining a more limited but more focussed infrastructure reference model leading to the IIRM
and its associated architecture. This becomes increasingly important in the context of economic
constraints since the huge OGSA service ecosystem requires massive amounts of maintenance
whereas the reference model significantly reduces these maintenance costs by providing only
a small, but required basic subset of functionality. This is done in a more well-defined manner
tuned to today’s production usage. The case studies of Chapter 6 revealed that the IIRM has
already started to contribute to major research advances in science and engineering via devel-
opments from key technology providers such as EMI covering IIRM implementations of ARC,
gLite, and UNICORE.

Complementary to the academic investigations, the seven segment-based process, was de-
fined and implemented as a complementary applied research method that brought together
inputs from various sources (e.g. e-IRG, EU e-Infrastructure concertation activities, EEF re-

252 CHAPTER 7. CONCLUSION

ports, EICTA experience, etc.). This process is another complementary contribution to the IIRM
and its architecture work. As described in Chapter 5, the seven segment-based process deals
with change and policy aspects of production e-Science infrastructures and was implemented
through this thesis over years leading to real impacts of existing production e-Science infras-
tructures rather than on academic testbeds or prototype environments. By implementing this
process, in addition to the academic results, further relevance and impact of this thesis in real
production environments is given through collaborating with the right set of partners, projects,
and infrastructures as described in Chapter 6.

The second major contribution of this thesis results from an academic analysis of lessons
learned and field experience obtained by using the core building blocks (i.e. open standards)
of the proposed IIRM reference architecture in production e-Science infrastructures. Over time,
these results influenced the architectural design of the IIRM and the associated architecture
work that was complemented with several "refinement concepts’ of how the efficiency of the core
building blocks could be improved to specifically support e-Science applications. These results
also provide evidence that the IIRM goes far beyond what appears to be a combination of dif-
ferent Grid components such as taking SRM from gLite, SAML from UNICORE, OGSA-BES
from GENESIS, and GridFTP from Globus. Instead, over several years, various inputs to the
academic analysis have been gathered by using early production versions and best practices
of emerging open standards and prototypes within production environments with scientific
applications. Hence, these applications go beyond the ‘bin-date’ demonstration use case and is
more a production-oriented typical usage of an existing Grid middleware in one infrastructure.
These results influenced the design of the reference model and afterwards also the standard-
ization activities of OGF where a whole group ecosystem with GIN, PGI, and other groups (e.g.
OGSA-BES, JSDL, etc.) was created. Here, the goal was to influence new emerging versions
of open standards with lessons learned obtained from production and an academic critical re-
view of existing approaches offering several concept improvements and refinements. As part
of the seven segment-based process implementation, the feedback within PGI thus influences
the next generation of open standards.

But the concrete results of the standardization process (i.e. concrete normative specifica-
tions) are not part of this thesis since this is a community process that is already ongoing and
that this thesis only influences to a certain degree. But this thesis provides significant input
to this standardization process via many publications in the field of how standards can be im-
proved or work together as an ecosystem under one common reference model umbrella’. This
thesis thus not includes the final OGSA-BES 1.1 or JSDL 1.1 specifications although in prac-
tice the thesis results are one of the key contributions to such specifications with the proposed
refinements (e.g. OGSA-BES + AV) resulting from academic studies.

The third major contribution is twofold. First, ‘missing links’ between open standards spec-
ifications have been identified through the academic analysis of lessons learned and from the
work with real scientific applications. For example, the GLUE2 and JSDL dependencies are
shown throughout this thesis and represent one important missing link that needs to be filled.
The use of security specifications with others (e.g. SAML with OGSA-BES) is another filled
link. Various publications of this thesis concepts have been proposed in the past and as part of
this thesis in this regard. Second, GIN and PGI have been created as another applied research
process segment that is able to address the challenge to provide a feedback channel of stan-
dard experience to the right groups. This is difficult since the usage of standards are highly
interlinked but still standardized in isolation from each other and neglecting their important
relationships and interactions in many ways. The academic analysis revealed the necessity of a
new ’interdisciplinary research method” of how missing links between core building blocks of the
IIRM reference architecture can be found going beyond only one technical area. One further

253

example in this context is the work with SAML assertions instead of VOMS proxies to con-
vey security attributes of end-users during an OGSA-BES-based job submission and deriving
authorization decisions based on SAML with XACML policies. This is another missing link
published as one of the first results of the thesis with members of OMII-Europe in 2007 where
neither UNICORE 5 nor gLite used SAML in this specific way.

By aligning the IIRM and its reference architecture around open standards and by provid-
ing an associated ‘standardization feedback ecosystem’ as part of the process, building blocks are
constructed that are able to respond to ‘dynamic changes’ over time. This is given only when
the original concepts of the proposed standards are not completely changed, like for exam-
ple, a strange setup where OGSA-BES would be used as usage record schema instead for job
submission as it is used today.

The fourth major contribution is the work around the IIRM associated 'design pattern’ using
HPC resources together with HTC resources to run a scientific workflow leading to scientific
innovation by using resources across different infrastructures. In the majority of the scientific
applications and case studies analysed, e-Scientists still take advantage of using one computa-
tional paradigm for their science, essentially being also limited to one production e-Science in-
frastructure. The science in the case studies is already extremely complex and thus e-Scientists
should not deal with computational barriers in using HPC and HTC in order to focus on their
scientific challenges, which means that they do not need to know the underlying interfaces
and habits of different production e-Science infrastructures. The thesis thus in general and the
IIRM in particular focused on providing a 'frame of reference’ for using HPC and HTC together
with the same technologies, including missing concepts obtained from an academic analysis of
production usage and constraints of real e-Science infrastructures.

The aforementioned aspect is evidence of changing the foundation of a reference model
from intra-Grid to across infrastructures well focussed on the ‘problem of interoperability’. An-
other piece of evidence is that the seven segment-process is associated with the IIRM and it
was presented several times in important community events organized by EGI, EMI, or SIENA
in order to promote the idea of ‘interoperability by design” one level higher than on the purely
technical level. The possibilities on the technical level are limited, especially when the Grid
setup is compared with the electrical power Grid setup outlined at the beginning of this thesis.
Over decades, even the powerful and financially well equipped technical community around
electrical power Grids has still not significantly improved interoperability, so that different
adapters are still required in countries world-wide today. This situation is similiar in the Grid
community by indicating clear barriers for technical interoperability that can only be solved
by solutions that are conducted by, for example, harmonizing technologies through means of
close collaboration, in order to reach full interoperability in the long-term. The proposed seven
segment-based process is a proposed ‘guiding solution’ to this problem that was considered as
a good example at the SIENA CloudScape-III event in Brussels where the segments were pre-
sented as input to the SIENA standardization roadmap. Because some segments of the process
are not only technical in their nature, we acknowledge that their are other views on the seg-
ments and its impact. But the key contributions of this thesis remains the clearly technical work
around the IIRM and its architecture as well as its validation with use case applications.

The fifth major contribution of this thesis delivers evidence for the claims that the IIRM
and its associated architecture work not only has an impact on real production e-Science in-
frastructures, but also through the deployment leads to scientific innovation. This innovation,
that goes beyond the traditional methods (e.g. shell-based scripts, etc.), is described via three
accompanying case studies from different scientific fields covering bio-informatics, e-Health,
and also fusion science. These three case studies of WISDOM, VPH, and EUFORIA provide
evidence of the claim that the IIRM reference architecture works with different existing frame-

254 CHAPTER 7. CONCLUSION

works such as scientific community tools (Kepler, AHE, etc.) or 'thin client approaches” such as
Web browsers (e.g. GridSphere WISDOM portal). All these tools hide the complexity of the
underlying production e-Science infrastructures using parts of the IIRM architecture towards
the seamless execution of scientific workflows across the multiple infrastructures existing in
Europe, the US, and Japan. With the contributions of this thesis, e-Scientists as part of these
case studies, are able to create “individually formed e-Science infrastructures” according to their
needs in terms of computational or storage resources.

The same is true in terms of middleware usage being basically not forced to use one specific
Grid middleware technology enhancing thus users choice. From a technical perspective, they
can just choose the technology they want as long as it is conforms with the IIRM reference
architecture that at least cover the basic key infrastructure functionalities.

Further evidence is provided that some production Grid middleware already emerges that
implement IIRM concepts and associated architecture elements such as within gLite, ARC,
UNICORE via EMI in Europe, or others like GENESIS and Globus in the US, or even RENKEI
in Japan.

The thesis findings do not cover the concrete and exact implementations within these mid-
dlewares that may defer in terms of specific realization while the overall concepts are still being
adopted in one form or another as Chapter 6 revealed. General concepts with hints for possible
realizations have been part of this thesis while in some cases several other realizations of the
same concept can be achieved.

But these concepts and their prototypes verified the IIRM approach as well as emerging
open standard implementations. But the production quality implementations are provided by
the middleware consortia, which in turn is a process the author takes no credit for. It is the
implementation of the seven segment-based process and the various publications as evidence
that underpins that the thesis work in the context of production middleware and infrastructure
matters is relevant mainly because of using thesis aspects in key Grid community projects like
OMII-Europe, DEISA2, EMI, EGI, and XSEDE as well as the contributions to the OGF standard-
ization activities via GIN, PGI, and other groups over years.

This supports the claim that the IIRM, its associated architecture work, and the aligned
seven segment-based process is providing e-Scientists with an approach that has real impact
on existing production e-Science infrastructures. This is true regardless of the fact that there
is a period of “infrastructure change’ such as the transition of EGEE to EGI, the integration of
DEISAZ2 sites into PRACE, and the establishment of XSEDE integrating resources from the pre-
vious TeraGrid (indirectly including OSG as resource provider). All these are particularly not
as important as the transition process is mainly an infrastructure evolution providing the same
underlying resources according to the core computational paradigms HPC and HTC. As a con-
sequence, and having verified in Chapter 6 that the thesis works with real scientific use cases,
the overall conclusion is that the thesis provides one of more possible answers to the major re-
search question: the IIRM and its associated architecture elements as well as its complementary
process define a reference model (here in the sense of an umbrella term, cf. Chapter 3) leading
to a network of interoperable services in production e-Science infrastructures. This enables sci-
entific innovation and e-Science breakthroughs on an unprecedented scale and will continue
over the next decade.

At the end of this thesis, some directions of future work are given. In Chapter 6, insights
on ESFRI application projects such as CLARIN and DARIAH that can take advantage of the
IIRM and its reference architecture have been given. Future work might include to obtain new
requirements and concept refinements when the IIRM is used as part of other ESFRI Rls.

On the technical side, future work might be the academic analysis of the next generation
of open standards that are not yet reflected as part of the reference architecture. One concrete

255

example is DRMAA version 2.0 that is currently standardized and could be an interesting ex-
tension to the IIRM and its associated reference architecture. Another interesting area of future
work might include the extension towards other standards used in TeraGrid/XSEDE that are
currently not part of the reference architecture such as RNS for example. Another academic
analysis might be worthwhile to understand whether and how cloud-based e-Science infras-
tructures can be used with the core building blocks (e.g. within virtual appliances of virtual
machines). This not only include new research challenges such as dynamic deployment and
security models, but also the exploration of whether the IIRM is useful for e-Business although
being focussed on the scientific needs of the next decade in distributed computing.

256 CHAPTER 7. CONCLUSION

List of Acronyms

AA - Attribute Authority

AHE - Application Hosting Environment

AJO - Abstract Job Object

AMBER - Assisted Model Building with Energy Refinement
API - Application Programming Interfaces

ARC - Advanced Resource Connector

ARIS - ARC Information System

AMGA - Arda Metadata Grid Application

BDII - Berkeley Database Information Index

BOINC - Berkeley Open Infrastructure for Network Computing
CCA - Common Component Architecture

CCM - Cluster Compatibility Mode

CE - Computing Element

CIM - Common Information Model

CIS - Common Information System

CLARIN - Common Language Resources and Technology Infrastructure
CPN - Colored Petri Nets

CR - Computational Resource

CREAM - Computing Resource Execution and Management
CSA - Service Component Architecture

DAG - Directed Acyclic Graph

DARIAH - Digital Research Infrastructure for Arts and Humanities
DCI - Distributed Computing Infrastructure

DECI - DEISA Extreme Computing Initiative

DEISA - Distributed European Infrastructure for Supercomputing Applications
DGAS - Distributed Grid Accounting System

DMTF - Distributed Management Task Force

DPM - Disk Pool Manager

DRMAA - Distributed Resource Management Application API
E-IRG - e-Infrastructure Reflection Group

EDGES - Enabling Desktop Grids for e-Science

EDGI - European Desktop Grid Initiative

EEF - European e-Infrastrucure Forum

EGEE - Enabling Grids for e-Science

EGA - Enterprise Grid Alliance

EGI - European Grid Initiative

EICTA - European Informations, Communications, and Consumer Electronics Industry Technology As-
sociation

EMI - European Middleware Initiative

EMI-ES - EMI Execution Service

EPIC - European Persistent Identifier Consortium

ESFRI - European Strategy Forum on Research Infrastructures
ESM - Extreme Scalability Mode

ETSI - European Telecommunications Standards Institute

ETTF - Education and Training Task Force

EUDAT - European Data Infrastructure

EUFORIA - EU Fusion for ITER Applications

FQAN - Fully Qualified Attribute Name

FSP - File Staging Profile

FTP - File Transfer Protocol

GAALI - Global Authorisation Attributes Invariant

GAI - Global Accounting Invariant

GAL - Grid Abstraction Layer

GENIUS - Grid Enabled Neurosurgical Imaging Using Simulation
GGF - Global Grid Forum

GII - Global Information Invariant

GIN - Grid Interoperation Now

GILDA - Grid INEN Laboratory for Dissemination Activities
GOS - Grid Operating System

GPE - Grid Programming Environment

GRIA - Grid Resources for Industrial Applications
GSI - Grid Security Infrastructure

HPC - High Performance Computing

HPC FSP - HPC File Staging Profile

HTC - High Throughput Computing

HTTP - Hypertext Transfer Protocol

IETF - Internet Engineering Task Force

IGE - Initiative for Globus in Europe

IGIIW - Int. Grid Interoperability and Interoperation Workshop
IIRM - Infrastructure Interoperability Reference Model
IP - Internet Protocol

ISO - International Standards Organization

ISV - Independent Software Vendor

ITER - International Thermonuclear Experimental Research
JDL - Job Definition Language

JSDL - Job Submissiona and Description Language
JSPG - Joint Security Policy Group

LDAP - Lightweight Directory Access Protocol

LHC - Large Hadron Collider

LL - LoadLeveler

LSF - Load Sharing Facility

MD - Molecular Dynamics

MHD - Magnetohydrodynamics

MPC - Multi-Particle Collision Dynamics

MPI - Message Passing Interface

MRT - Magnetic Resonance Tomograph

MWSG - Middleware Security Group

NATO - North Atlantic Treaty Organization

NDGEF - Nordic DataGrid Federation

NGI - National Grid Initiative

NGS - National Grid Service

NJS - Network Job Supervisor

NSF - National Science Foundation

OASIS - Organization for the Advancement of Structured Information Standards
ODP - Open Distributed Processing

OGEF - Open Grid Forum

OGSA - Open Grid Services Architecture

OGSA-BES - OGSA - Basic Execution Services

OGSA-DAI - OGSA - Database Access and Integration
OGSA-RUS - OGSA - Resource Usage Service

OGSI - Open Grid Services Infrastructure

OMII - Open Middleware Infrastructure Institute
OSG - Open Science Grid

OSI - Open Systems Interconnection

PEPC - Pretty Efficient Parallel Coulomb-Solver

PGI - Production Grid Infrastructure

PID - Persistent Identifier

PKI - Public Key Infrastructure

PRACE - Partnership for Advanced Computing in Europe
PTP - Parallel Tools Platform

QSAR - Quantitative Structure-Activity Relationships
RAS - Resource Allocation Server

REB - Roadmap Editorial Board

RENKEI - Resources liNKage for E-sclence

REST - Representational State Transfer

RI - Research Infrastructure

RM-ODP - Reference Model for Open Distributed Processing
RMS - Resource Management System

RNS - Resource Namespace Specfication

RPC - Remote Procedure Call

RSL - Resource Specification Language

RUS - Resource Usage Service

SAGA - Simple API for Grid Applications

SAML - Security Assertion Markup Language

SGAS - Swedish Grid Accounting System

SGML - Structured Generalized Markup Language
SCP - Secure Copy

SDK - Software Development Kit

SDO - Standard Development Organization

SDOB - Service Data Object

SIENA - Standards and Interoperability for e-Infrastructure Implementation Initiative
SLA - Service Level Agreements

SMS - Storage Management Service

SOA - Service Oriented Architecture

SOAP - Simple Object Access Protocol

SPG - Security Policy Group

SPMD - Single-Program-Multiple-Data

SRM - Storage Resource Manager

SSH - Secure Shell

SSL - Secure Socket Layer STEP - Strategy for the EuroPhysiome
SQL - Structured Query Language

TCP - Transmission Control Protocol

TSI - Transport Layer Security

TSI - Target System Interface

UAB - User Advisory Board

UAS - UNICORE Atomic Services

UDP - User Datagram Protocol

UMD - Unified Middleware Distribution

UNICORE - Uniform Interface to Computing Resources
UR - Usage Record

UVOS - UNICORE VO Service

VC - Virtual Community

VDT - Virtual Data Toolkit

VISIT - Visualization Interface Toolkit

VO - Virtual Organization

VOMS - Virtual Organization Membership Service

VPH - Virtual Physiological Human

VRE - Virtual Research Environment

W3C - World-Wide Web Consortium

WISDOM - Wide In-Silico Docking on Malaria

WLCG - Worldwide Large Hadron Collider (LHC) Computing Grid
WMS - Workload Management System

WS - Web Services

WS-BPEL - WS Business Process and Execution Language
WS-DAI - WS-Data Access and Integration

WSDL - Web Services Description Language

WS-I - Web Services Interoperability

WSREF - Web Services Resource Framework

WS-S - Web Services Security

XACML - Extensible Access Control Markup Language
XML - Extensible Markup Language

XSD - XML Schema Definition

XSEDE - eXtreme Science and Engineering Discovery Environment

References

B
[3]
[4]
[5]
[6]
(7]

[8]
(9]

[10]
(11]

[12]

13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

[41]
(42]

[43]
[44]

GEANT?2, Infrastructure. http://www.geant2.net/.

BISGRID. https://bi.offis.de/bisgrid/tiki-index.php, September 2012.

CN - Grid. http://blog.sina.com.cn/webhpc, September 2012.

Common Component Architecture Forum. http://www.cca-forum.org, September 2012.

Common Information Model. http://www.dmtf.org/standards/cim/, September 2012.

CRAY XE6 Sugercomputer. www.cray.com/Products/XE/CrayXE6System.aspx, September 2012.
CRAY XE6 Supercomputer Modes. www.cray.com/Products/XK6/SolutionPartners.aspx,
September 2012.

DARIAH. http://www.dariah.eu, September 2012.

Database Access and Integration Services (DAIS). https://forge.gridforum.org/sf/go/projl070,
September 2012.

DEISA Trouble Ticket System. http://tts.deisa.eu, September 2012.

Disk Pool Manager. http://twiki.cern.ch/twiki/bin/view/LCG/DpmInformation, September
2012.

Distributed Computing Infrastructure Interoperability Minisymposium at PARA 2010. http://yourhost.
is/para2010/scientific-programme.html, September 2012.

EGI Security Policy Group. www.egi.eu/wiki/SPG, September 2012.

EGI UMD Repository. www.repository.egi.eu, September 2012.

EMI Description of Work. https://twiki.cern.ch/twiki/bin/view/EMI/EmiDocuments#
Public_Description_of_Work_DoW, September 2012.

EMI FutureGrid Project. www.portal.futuregrid.org/projects/170,September 2012.

EMI Security Token Service. www.eu-emi.eu/security-token, September 2012.

Enabling Desktop Grids for e-Science. http://www.edges-grid.eu, September 2012.

Enhanced-Science (e-Science) Definition. http://www.e-science.clrc.ac.uk, September 2012.
Environment Modules. http://modules.sourceforge.net, September 2012.

EPIC. www.pidconsortium.eu, September 2012.

EUDAT. www.eudat . eu, September 2012.

European - e-Infrastructure Forum. http://www.einfrastructure-forum.eu, September 2012.
European Desktop Grid Initiative. http://www.edgi-project.eu, September 2012.

European Grid Infrastructure. http://www.egi.org/, September 2012.

European Grid Infrastructure - Technical Forum 2010. www.egi.eu/EGITF2010, September 2012.
European Middleware Initiative. http://www.eu-emi.eu, September 2012.

European Persistent Identifier Consortium (EPIC). www.pidconsortium.eu, September 2012.

Extreme Science Engineering and Discovery Environment (XSEDE). www . xsede . org, September 2012.
FlexX. http://www.biosolveit.de/FlexX, September 2012.

From Open Grid Services Infrastructure to Web Services Resource Framework: Refactoring and Evolu-
tion. http://www.ibm.com/developerworks/library/ws—-resource/ogsi_to_wsrf_1.0.pdf,
September 2012.

FUJITSU K Supercomputer. www. fujitsu.com/global/about/tech/k, September 2012.

FUJITSU K Supercomputer - Network. www. fujitsu.com/global/about/tech/k/whatis/network,
September 2012.

FutureGrid. http://www. futuregrid.org, September 2012.

Gaussian. http://www.gaussian.com, September 2012.

GENIUS Project. wiki.realitygrid.org/wiki/GENIUS, September 2012.

GGUS. http://www.ggus.eu, September 2012.

GIN Execution Environment Draft. http://forge.gridforum.org/sf/docman/do/
listDocuments/projects.gin/docman.root.current_drafts.execution_environment,
September 2012.

Globus Online. www.globusonline.org, September 2012.

Grid interoperation now in euforia: Using egee and deisa for fusion science. http://zam581.zam.
kfa-juelich.de/jsc/news/sc09/tuesday, September 2012.

GRIDSITE Delegation Service. http://www.gridsite.org, September 2012.

HPC-FF. www.fz-juelich.de/ias/Jjsc/EN/Expertise/Supercomputers/JUROPA/JUROPA_
node . html, September 2012.

Hyper Text Transfer Protocol - HTTP. http://www.w3.0rg/Protocols/, September 2012.

IGE 2.0 Release. www.ige-project.eu/downloads/software/releases/200, September 2012.

262 REFERENCES

[45] Initiative for Globus in Europe. http://www.ige-project.eu, September 2012.

[46] International Grid Interoperation and Interoperability Workshop (IGIIW) 2007. http://www.
e-science2007.org/Workshops.htm, September 2012.

[47] International Grid Interoperation and Interoperability Workshop (IGIIW) 2008. http://www.
e-science2008.iu.edu/workshops/international/index.shtml, September 2012.

[48] International Standards Organisation. http://www.iso.org, September 2012.

[49] International Telecommunication Union - Telecommunication Sector. www.itu.int/ITU-T, September
2012.

50] Joint Security Policy Group. www . jspg.org, September 2012.

51] JUGENE Supercomputer. http://www.fz-juelich.de/jsc/jugene, September 2012.
52] JUMP Supercomputer. http://www.fz-juelich.de/jsc/jump, September 2012.

53] Load Sharing Facility. http://www.platform.com/Products/Platform.LSF.Family/, September
2012.

54] Media Video: PGI OGF25. http://www.youtube.com/watch?v=LASIMCrtI_s, September 2012.

55] MOLPRO Quantum Chemistry Package. http://www.molpro.net, September 2012.

56] MWSG. www.technical.eu-egee.org/index.php?id=146, September 2012.

57] MWSG Meeting Zuerich. www.indico.cern.ch/conferenceDisplay.py?confId=52862, Septem-
ber 2012.

58] National Grid Initiatives. https://wiki.egi.eu/wiki/NGI, September 2012.

59] National Grid Service. http://www.ngs.ac.org, September 2012.

60] NGI-DE. http://www.ngi-de.eu, September 2012.

61] Nordic Data Grid Facility. http://www.ndgf.org/, September 2012.

62] NX - Technology. http://www.nomachine.com, September 2012.

63] OASIS WS-Interoperability (merged with oasis). http://www.oasis-ws-1i.org, September 2012.

64] OGEF - Europe Project. http://www.ogfeurope.eu, September 2012.

65] OGF OGSA - Resource Usage Service (OGSA-RUS) Working Group. https://forge.gridforum.org/
projects/rus-wg, September 2012.
[66] OGF Reference Model Working Group. https://forge.gridforum.org/sf/projects/rm-wg,
September 2012.

67] OGEF25 PGI Session. www.ogf.org/gf/eventschedule/index.php?=1571, September 2012.

68] Open Grid Forum. http://www.ogf.org/, September 2012.

69] Open Middleware Infrastructure Institute - Europe. http://omii-europe.org/, September 2012.

70] Open Middleware Infrastructure Institute - UK. http://www.epcc.ed.ac.uk/projects/omii-uk,
September 2012.

71] Open Service Component Architecture (CSA). http://www.oasis-opencsa.org, September 2012.

72] Open Service Data Objects (SDO). http://www.oasis-opencsa.org/sdo, September 2012.

73] Organization for the Advancement of Structured Information Standards. http: //www.oasis-open.org/
home/index.php, September 2012.

74] Parallel Tools Platform. http://www.eclipse.org/ptp, September 2012.

75] PBSPro. http://www.altair.com/software/pbspro.htm, September 2012.

76] PGIJSDL linputs. www. forge.org.org/sf/go/doc16293, September 2012.

77] PGI Requirements List. www. forge.org.org/sf/go/docl16080, September 2012.

78] PRACE deploys UNICORE. www.prace-ri.eu/PRACE-partner-Julich-joins-XSEDE, September
2012.

[79] Press Article: International Science Grid This Week (isgtw) - Interoperability Reference Model. http://
archive.isgtw.org/?pid=1001481, September 2012.

[80] Press Article: Juelicher Software fuer US-supercomputing. http://www.silicon.de/technologie/
software/0, 39044013, 41555657, 00/ juelicher_software_fuer_us_supercomputing.htm,
September 2012.

[81] Pressemitteilung: 121 Millionen Dollar Projekt mit Juelicher Beteiligung. http://www.fz-juelich.
de/portal/DE/Presse/Kurznachrichten/2011/august2011l.html#docl040726bodyText4,
September 2012.

82] Reference Model for Open Distributed Processing. http://www.rm-odp.net, September 2012.

83] RENKEL http://www.e-scien.org/index—e.html, September 2012.

84] REsources liNKage for E-sclence - RENKEI www.e-sciren.org/publications/scl0.pdf, September
2012.

85] SCIENCESOFT. www.sciencesoft.org, September 2012.

86] SHARE. http://www.share-project.org, September 2012.

87] SIENA. http://www.sienainitiative.eu, September 2012.

88] SIENA - CloudScape III http://www.sieneinitiative.eu/StaticPage/Cloudscape.aspx,
September 2012.

89] SIMDAT. http://www.simdat .org, September 2012.

90] SMARTLM. http://www.smartlm.eu, September 2012.

91] Solving Grad-Shafranov numerically. https://perswww.kuleuven.be/~u0016541/Talks/helena.
pdf, September 2012.

[92] STEP - Constortium: Seeding the EuroPhysiome - A Roadmap to the Virtual Physiological Human (VPH).
http://www.europhysiome.org/roadmap, September 2012.

[93] StratusLab. http://www.stratuslab.eu, September 2012.

[94] Supercomputing Conference 2007. http://sc07.supercomp.org, September 2012.

REFERENCES 263

[111]
[112]
[113]
[114]

[115]

[116]

[117]

[118]

[119]

[120]
[121]

[122]
[123]

[124]

[125]

[126]

Supercomputing Conference 2008. http://sc08.supercomp.org, September 2012.

Supercomputing Conference 2009. http://sc09.supercomp.org, September 2012.

Supercomputing Conference 2010. http://sc10.supercomp.org, September 2012.

Torque Resource Manager. http://www.clusterresources.com/pages/products/
torque-resource-manager.php, September 2012.

VENUS-C. http://www.venus—c.eu, September 2012.

Virtual Data Toolkit. http://vdt.cs.wisc.edu/, September 2012.

W3C - Web Services Activity. http://www.w3.0rg/2002/ws/, September 2012.

WISDOM - Webpage. http://wisdom.healthgrid.org/, September 2012.

World Wide Web Consortium. http://www.w3.org, September 2012.

Worldwide Large Hadron Collider Computing Grid. http://lcg.web.cern.ch/lcg/, September 2012.
G. Aad, E. Abat,]. Abdallah, A. Abdelalim, A. Abdesselam, et al. The ATLAS Experiment at the CERN Large
Hadron Collider. Journal of Instrumentation, 3, 2008.

K. Aamodt, A. Quintana, R. Achenbach, S. Acounis, et al. The ALICE Experiment at the CERN Large Hadron
Collider. Journal of Instrumentation, 3, 2008.

J. Alexander, D. Box, L. Cabrera, D. Chappell, G. Daniels, C. Kaler, D. Orchard, I. Sedukhin, M. Simek, and
M. Theimer. WS - Enumeration. W3C Member Submission, 2006.

R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner, K. Lérentey, and F. Spataro. From Gridmap-
file to Voms: Managing Authorization in a Grid Environment. Future Generation Computer Systems, 21(4):549—
558.

W. Allcock. GridFTP: Protocol Extensions to FTP for the Grid. Open Grid Forum, Grid Final Document Nr. 20,
2006.

A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford, Y. Goland, A. Guizar, N. Kartha,
C. Liu, R. Khalaf, D. Koenig, M. Marin, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu. Web
Services Business Process and Execution Languge Version 2.0. Organization for the Advancement of Structured
Information Standards, 2007.

A. Alves, A. Filho, A. Barbosa, 1. Bediaga, G. Cernicchiaro, et al. The LHCb Detector at the LHC. Journal of
Instrumentation, 3, 2008.

D. Anderson. BOINC: A System for Public-Resource Computing and Storage. In Proceedings 5th IEEE/ACM
International Workshop on Grid Computing (Grid 2004), Pittsburgh, USA, pages 4-10, 2004.

S. Andreozzi, S. Burke, L. Field, G. Galang, B. Konya, M. Litmaath, P. Millar, and J. Navarro. GLUE Specifica-
tion Version 2.0. Open Grid Forum, Grid Final Document Nr. 147, 2009.

A. Andrieux, K. Czaijkowski, A. Dan, K. Keahey, H. Ludwig, T. Kakata, J. Pruyne, J. Rofrano, S. Tuecke, and
M. Xu. Web Services Agreement Specification. Open Grid Forum, Grid Final Document Nr. 107, 2007.

A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough, D. Pulsipher, and A. Savva. Job
Submission Description Language (JSDL) Specification Version 1.0. Open Grid Forum, Grid Final Document Nr.
136, 2008.

A. Anjomshoaa, M. Drescher, D. Fellows, S. McGougha, D. Pulsipher, and A. Savva. Job Submission Description
Language (JSDL) - Specification Version 1.0. Open Grid Forum, Grid Final Document Nr. 56 (Deprecated, new
Document Nr. 136, 2008), 2006.

M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N. C. Hong, B. Collins, N. Hardman, A. Hume, A. Knox,
M. Jackson, A. Krause, S. Laws,]. Magowan, N. Paton, D. Pearson, T. Sugden, P. Watson, and M. Westhead.
The Design and Implementation of Grid Database Services in OGSA-DAIL Concurrency and Computation:
Practice and Experience, 17:357-376, 2005.

M. Antonioletti, B. Collins, A. Krause, S. Laws, J. Magowan, S. Malaika, and N. Paton. Web Services Data
Access and Integration - The Relational Realisation (WS-DAIR) Specification, Version 1.0. Open Grid Forum, Grid
Final Document Nr. 76, 2006.

R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and B. Smolinski. Toward
a Common Component Architecture for High-Performance Scientific Computing. In Proceedings of the 8th
IEEE International Symposium on High Performance Distributed Computing (HPDC), Redondo Beach, USA, pages
13-20, 1999.

I. Avery. Polish Grid Infrastructure PL-Grid. Cel Publishing, ISBN 6200697256, 2012.

R. Aymar, V. Chuyanov, M. huguet, and Y. Shimomura. Overview of ITER-FEAT - The Future International
Burning Plasma Experiment. Journal of Nuclear Fusion, 41(1301), 2001.

K. Ballinger, D. Ehnebuske, C. Ferris, M. Gudgin, C. Liu, M. Nottingham, and P. Yendluri. Basic Profile
Version 1.1. In Web Service Interoperability (WS-I) Organization Final Document, 2004.

T. Banks. Web Services Resource Framework Primer. Organization for the Advancement of Structured Informa-
tion Standards, 2003.

R. Barbera, M. Fargetta, and E. Giorgio. Multiple Middleware Co-Existence: Another Aspect of Grid Interop-
erability. In Proceedings of the IGIIW Workshop, Third IEEE International Conference on eScience, Bangalore, India,
pages 577-583, 2007.

A. Barbir, M. Gudgin, M. McIntosh, and K. Morrison. Basic Security Profile Version 1.0. In Web Service
Interoperability (WS-I) Organization Final Document, 2005.

W. Barth. NAGIOS: System and Network Monitoring. Open Source Press GmbH, ISBN 1-59327-179-4, 2008.

264

REFERENCES

[127]

[128]

[129]

[130]

[131]

[132]
[133]

[134]
[135]

[136]

[137]

[138]

[139]

[140]

[141]
[142]

[143]

[144]
[145]
[146]
[147]
[148]

[149]
[150]

[151]
[152]

[153]

M. Beckerle, M. Buddhikot, D. Chatterjee, A. Clark, T. Coulter, M. Enescu, B. Goyal, J. Hammersley,
M. Kataoka, R. Kumar, D. Pearson, P. Peiravi, S. Reddy, T. Rodriguez, J. Saiyed, R. Schibler, S. Schleimer,
M. Schmitz, R. Sheen, H. Skardal, B. Souder, P. Strong, K. Sudo, B. Thome, and V. Viswanathan. EGA -
Reference Model and Use Cases Version 1.5 - Part 1 of 2. Enterprise Grid Alliance Draft Document, 2006.

M. Beckerle, M. Buddhikot, D. Chatterjee, A. Clark, T. Coulter, M. Enescu, B. Goyal, J. Hammersley,
M. Kataoka, R. Kumar, D. Pearson, P. Peiravi, S. Reddy, T. Rodriguez, J. Saiyed, R. Schibler, S. Schleimer,
M. Schmitz, R. Sheen, H. Skardal, B. Souder, P. Strong, K. Sudo, B. Thome, and V. Viswanathan. EGA -
Reference Model and Use Cases Version 1.5 - Part 2 of 2. Enterprise Grid Alliance Draft Document, 2006.

M. Beisiegel, H. Blohm, D. Booz, M. Edwards, O. Hurley, S. Ielceanu, A. Miller, A. Karmarkar, A. Malho-
tra, J. Marino, M. Nally, E. Newcomer, S. Patil, G. Pavlik, M. Raepple, M. Rowley, K. Tam, S. Vorthmann,
P. Walker, and L. Waterman. Service Component Architecture - Assembly Model Specification. Organization for
the Advancement of Structured Information Standards, 2007.

M. Beisiegel, D. Booz, C. Chao, M. Edwards, S. Ielceanu, A. Karmarkar, A. Malhotra, E. Newcomer, S. Patil,
M. Rowley, C. Sharp, and U. Yalcinalp. Service Component Architecture - Policy Framework. Organization for
the Advancement of Structured Information Standards, 2007.

A. Belapurkar, A. Chakrabarti, H. Ponnapalli, N. Varadarajan, S. Padmanabhuni, and S. Sundarrajan. Dis-
tributed Systems Security - Issues, Processes and Solutions. Wiley, ISBN 978-0-470-51988-2, 2009.

BELIEF Project and European Commission. 5th e-Infrastructure Concertation Meeting 2008 Report, 2009.
BELIEF Project and European Commission. 6th e-Infrastructure Concertation Meeting 2008 Report - Looking to
the Future: Sustainable e-Infrastructures, 2009.

BELIEF Project and European Commission. 7th e-Infrastructure Concertation Meeting 2009 Report, 2009.

L.-M. Birkholtz, O. Bastien, G. Wells, D. Grando, F. Joubert, V. Kasam, M. Zimmermann, P. Ortet, N. Jacq,
N. Saidani, S. Roy, M. Hofmann-Apitius, V. Breton, A. I. Louw, and E. Marechal. Integration and Mining of
Malaria Molecular, Functional and Pharmacological Data: How Far are we from a Chemogenomic Knowl-
edge Space? Malaria Journal, 5:110, 2006.

D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard. Web Services Architec-
ture. W3C Note, 2004.

D. Box, E. Christensen, F. Curbera, D. Ferguson, J. Frey, M. Hadley, C. Kaler, D. Langworthy, F. Leymann,
B. Lovering, S. Lucco, S. Millet, N. Mukhi, M. Nottingham, D. Orchard, J. Shewchuk, E. Sindambiwe,
T. Storey, S. Weerawarana, and S. Winkler. Web Services Addressing. W3C Member Submission, 2004.

C. Bratosin, W. Aalst, N. Sidorova, and N. Trcka. A Reference Model for Grid Architectures and its Analysis.
In Proceedings of the OTM 2008 Confederated International Conferences, CooplS, DOA, GADA, 1S, and ODBASE
2008, Monterrey, Mexico, pages 898-913, 2008.

J. Brooke, T. Eickermann, W. Frings, P. Gibbon, L. Kirtchakova, U. Lang, D. Mallmann, M. McKeown, S. Pick-
les, A. Porter, M. Riding, M. Romberg, A. Visser, and U. Woessner. Application Steering in a Collaborative
Environment. In Proceedings of the ACME/IEEE SC2003 Conference, Phoenix, USA, pages 61-68, 2003.

S. Burke, S. Andreozzi, and L. Field. Experiences with the GLUE Information Schema in the LCG/EGEE
Production Grid. In In Proceedings of the International Conference on Computing in High Energy and Nuclear
Physics 2007 (CHEP 2007), Victoria, Canada, 2007.

S. Canada. ISO Reference Model - Open Distributed Processing - Architecture. 1SO/IEC JTC1/SC7/WG19 HYD-
015, Final Draft International Standard, 2010.

S. Cantor, J. Kemp, R. Philpott, and E. Maler. Assertions and Protocols for the OASIS Security Assertion Markup
Language. Organization for the Advancement of Structured Information Standards, 2005.

A. Carbone, L. Agnello, A. Forti, A. Ghiselli, E. Lanciotti, L. Magnoni, M. Mazzucato, R. Santinelli, V. Sa-
punenko, V. Vagnoni, and R. Zappi. Performance Studies of the StoRM Storage Resource Manager. In
Proceedings of the Third IEEE International Conference on e-Science, Bangalore, India, pages 423-430, 2007.

M. Casalegno, G. Sello, and E. Benfenati. Top-Priority Fragment QSAR Approach in Predicting Pesticide
Aquatic Toxicity. Chemical Research in Toxicology, 19(11):1533-1539, 2006.

C. Catlett. HPC and Grids in Action Amsterdam, chapter TeraGrid: Analysis of Organization, System Architec-
ture, and Middleware Enabling New Types of Applications, pages 225-249. IOP Publishing Ltd., 2007.

C. Catlett, C. de Laat, D. Martin, G. Newby, and D. Skow. Open Grid Forum Document Process and Requirements.
Open Grid Forum, Grid Final Document Nr. 152, 2009.

R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald. Parallel Programming in OpenMP.
Morgan Kaufmann, ISBN 1-55860-671-8, 2001.

S. Chatrchyan, G. Hmayakyan, V. Khachatryan, A. Sirunyan, W. Adam, et al. The CMS Experiment at the
CERN LHC. Journal of Instrumentation, 3, 2008.

V. Chopra, S. Li, and J. Genende. Professional Apache Tomcat 6. John Wiley and Sons, ISBN 0471753610, 2007.
E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language - Version 1.1.
W3C Note, 2001.

S. Covey. The Seven Habits of Highly Effective People. Free Press , ISBN 0-7432-6951-9, 1989.

B. Demuth, B. Schuller, S. Holl, J. Daivandy, A. Giesler, V. Huber, and S. Sild. The UNICORE Rich Client:
Facilitating the Automated Execution of Scientific Workflows. In Proceedings of the 6th IEEE International
Conference on e-Science 2010, Brisbane, Australia, pages 238-245, 2010.

T. Dierks and C. Allen. The TLS Protocol Version 1.0. Internet Engineering Task Force, RFC 2246, 1999.

REFERENCES 265

[154]
[155]
[156]
[157]

[158]
[159]

[160]

[161]

[162]

[163]

[164]
[165]
[166]
[167]
[168]
[169]
[170]
[171]

[172]

[173]

[174]

[175]
[176]

[177]

[178]

[179]

[180]

[181]

B. Dillaway, M. Humphrey, C. Smith, M. Theimer, and G. Wasson. HPC Basic Profile Version 1.0. Open Grid
Forum, Grid Final Document Nr. 114, 2007.
M. Drescher, A. Anjomshoaa, G. Williams, and D. Meredith. [SDL - Parameter Sweep Job Extension. Open Grid

Forum, Grid Final Document Nr. 149, 2009.
e-ScienceTalk and European Commission. 8th e-Infrastructure Concertation Meeting 2010 Report, 2010.
P. Eerola, T. Elof, M. Ellert,]. Hansen, A. Konstantinov, B. Konya, J. Nielsen, E. Ould-Saada, O. Smirnova,

and A. Waananen. The NorduGrid Architecture and Tools. In Inn Proceedings of the International Conference on
Computing in High Energy and Nuclear Physics 2003 (CHEP 2003), La Jolla, USA, 2003.

EICTA. EICTA White Paper on Standardisation and Interoperability, 2006.

J. Elgeti and G. Gompper. NIC Symposium 2008, volume 39 of NIC series, chapter Hydrodynamics of Active
Mesoscopic Systems, pages 53-62. John von Neumann Institute for Computing, Juelich, ISBN 978-3-9810843-
5-1,2008.

M. Ellert, M. Gronager, A. Konstantinov, B. Konya, J. Lindemann, I. Livenson, J. Nielsen, M. Niinimaeki,
O. Smirnova, and A. Waeaenaenen. Advanced Resource Connector Middleware for Lightweight Computa-

tional Grids. Future Generation Computer Systems, 23(2):219-240, 2007.
European e-Infrastructure Forum. Euroepan E-Infrastructure Forum: ESFRI Requirements for Pan-European e-

Infrastructure resources and facilities, 2010.
A. Ferrari, G. Degliesposti, M. Sgobba, and G. Rastelli. Validation of an Automated Procedure for the Predic-

tion of Relative Free Energies of Binding on a set of Aldose Reductase Inhibitors. Bioorg Med Chem, 12(24),

2007.

L. Field, S. Andreozzi, and B. Konya. Grid Information System Interoperability: The Need For A Common
Information Model. In Proceedings of the IGIIW Workshop, Fourth IEEE International Conference on eScience,
Indianapolis, USA, pages 501-507, 2008.

L. Field and M. Schulz. Grid interoperability: the interoperation cookbook. In In Proceedings of thelnternational
Conference on Computing in High Energy and Nuclear Physics 2007 (CHEP 2007, Victoria, Canada, 2008.

L. Field, M. Schulz, and E. Laure. Grid Deployment Experiences: Grid Interoperation. Journal of Grid Com-

puting: Special Issue on Grid Interoperability, 7(3):287-296, 2009.
R. Fisher and W. Ury. Getting to Yes: Negotiating Agreement Without Giving In. Houghton Mifflin, ISBN

0140157352, 1981.
L. Foster. Globus Toolkit Version 4: Software for Service-Oriented Science. In Proceedings of Sixth IFIP Inter-

national Conference on Network and Parallel Computing, Beijing, China, pages 213-223, 2005.

L. Foster, D. Gannon, H. Kishimoto, and J. Reich. Open Grid Services Architecture Use Cases. Open Grid Forum,
Grid Final Document Nr. 29, 2004.

I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith, and
M. Theimer. OGSA Basic Execution Service Version 1.0. Open Grid Forum, Grid Final Document Nr. 108, 2007.
I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Architecture for Computational Grids. In 5th

ACM Conference on Computer and Communications Security (CCS5). San Francisco, California, pages 83-91, 1998.
L. Foster, C. Kesselmann, J. M. Nick, and S. Tuecke. Grid Computing - Making the Global Infrastructure a Reality,

chapter The Physiology of the Grid, pages 217-249. John Wiley & Sons Ltd, ISBN 0470853190, 2003.

L. Foster, C. Kesselmann, and S. Tuecke. Grid Computing - Making the Global Infrastructure a Reality, chapter
The Anatomy of the Grid - Enable Scalable Virtual Organizations, pages 171-198. John Wiley & Sons Ltd,
ISBN 0470853190, 2003.

L. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Maciel, E. Siebenlist, R. Sub-
ramaniam, J. Treadwell, and J. Reich. Open Grid Services Architecture, Version 1.0. Open Grid Forum, Grid

Final Document Nr. 30, 2005.
L. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist, R. Sub-
ramaniam, J. Treadwell, and J. Reich. Open Grid Services Architecture, Version 1.5. Open Grid Forum, Grid
Final Document Nr. 80, 2006.
I. Foster, T. Maguire, and D. Snelling. OGSA WS-RF Basic Profile 1.0. Open Grid Forum, Grid Final Document

Nr. 72, 2006.
I. Foster, Z. Yong, I. Raicu, and S. Lu. Cloud Computing and Grid Computing 360-Degree Compared. In

Proceedings of the Grid Computing Environments Workshop, Austin, USA, pages 1-10, 2008.
W. Frings, M. Riedel, A. Streit, D. Mallmann, S. van den Berghe, D. Snelling, and V. Li. LLview: User-

Level Monitoring in Computational Grids and e-Science Infrastructures. In Proceedings of German e-Science

Conference, Baden-Baden, Germany, Online-publication, 2007.

P. Fuhrmann and V. Guelzow. dCache - Storage System for the Future. In Proceedings of the Europar 2006,
Dresden, Germany, pages 1106-1113, 2006.

F. Gagliardi, B. Jones, F. Grey, M.-E. Begin, and M. Heikkurinen. Building an Infrastructure for Scientific Grid
Computing: Status and Goals of the EGEE project. Philosophical Transactions of the Royal Society, 363(15):1729—
1742, 2005.

D. Gannon, K. Chiu, M. Govindaraju, and A. Slominski. A Revised Analysis of the Open Grid Services

Infrastructure. Journal of Computing and Informatics, 21:321-332, 2002.
D. Gannon, K. Chiu, M. Govindaraju, and A. Slominski. An Analysis of the Open Grid Services Architecture.

A Report to the UK e-Sciences Core Program - http://www.extreme.indiana.edu/~aslom/papers/
ogsa_analysis3.pdf, 2002.

266

REFERENCES

[182]
[183]

[184]

[185]

[186]
[187]
[188]

[189]

[190]

[191]

[192]
[193]
[194]
[195]
[196]
[197]
[198]
[199]
[200]
[201]

[202]

[203]
[204]
[205]

[206]
[207]

[208]

[209]

[210]
[211]

H. Gardner and G. Manduchi. Design Patterns for e-Science. Springer, ISBN 978-3-540-68088-8, 2007.

W. Gentzsch. Sun Grid Engine: Towards Creating a Compute Power Grid. In Proceedings of the First
IEEE/ACM International Symposium on Cluster Computing and the Grid 2001 (CCGRID 2001), Brisbane, Australia,
pages 35-36, 2001.

W. Gentzsch, A. Kennedy, H. Lederer, G. Pringle, J. Reetz, M. Riedel, B. Schuller, A. Streit, and J. Wolfrat.
DEISA: e-Science in a Collaborative, Secure, Interoperable and User-Friendly Environment. In Proceedings of
e-Challenges 2010 Conference, Warsaw, Poland, pages 1-10, 2010.

M. Gjiermundrod, M. Dikaiakos, M. Stuempert, P. Wolniewicz, and H. Kornmayer. g-Eclipse - An Integrated
Framework to Access and Maintain Grid Resources. In Proceedings 9th IEEE/ACM International Conference on
Grid Computing (Grid 2008), Tsukuba, Japan, pages 57-64, 2008.

T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, A. Merzky, J. Shalf, and C. Smith. A Simple API for Grid
Applications (SAGA). Open Grid Forum, Grid Final Document Nr. 90, 2008.

D. Goodsell, G. Morris, and A. Olson. Automated Docking of Flexible Ligands: Applications of AutoDock.
Journal of Molecular Recognition, 9(1-5), 1996.

S. Graham and J. Treadwell. Web Services Resource Properties 1.2. Organization for the Advancement of
Structured Information Standards, 2006.

M. Gronager, D. Johansson, J. Kleist, C. Sottrup, A. Waananen, L. Field, D. Qing, K. Happonen, and T. Linden.
Interoperability between ARC and gLite - Understanding the Grid-job Life Cycle. In Proceedings of the IGIIW
Workshop, Fourth IEEE International Conference on eScience, Indianapolis, USA, pages 493-500, 2008.

M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and H. Nielsen. SOAP Version 1.2 Part 1: Messaging
Framework. W3C Recommendation, 2003.

F. Hedman, M. Riedel, P. Mucci, G. Netzer, A. Gholami, M. Memon, A. Memon, and A. Shah. Benchmarking
of Integrated OGSA-BES with the Grid Middleware. In Proceedings of the Europar 2008, Gran Canaria, Spain,
pages 113-122, 2008.

E. Hinrichs, M. Hinrichs, and T. Zastrow. Weblicht: web-based LRT services for German. In Proceedings of
the 10th ACL System Demonstration, Association for Computational Linguistics, Stroudsburg, USA, 2010.

S. Holl, M. Riedel, B. Demuth, M. Romberg, A. Streit, and V. Kasam. Life Science Application Support in an
Interoperable E-Science Environment. In Proceedings of the 22nd IEEE International Symposium on Computer-
Based Medical Systems (CBMS), Perth, Australia, pages 1-8, 2009.

G. Host and L. Laaksonen. e-IRG White Paper 2011. e-Infrastructure Reflection Group, 2011.

R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key Infrastructure. Internet Engineering Task
Force, RFC 2459, 1999.

T. Hows, M. Smith, and G. Good. Understanding and Deploying LDAP Directory Services. Pearson Education
Inc., ISBN 0-672-32316-8, 2003.

M. Humphrey, C. Smith, M. Theimer, and G. Wasson. JSDL HPC Profile Application Extension, Version 1.0.
Open Grid Forum, Grid Final Document Nr. 111, 2007.

G. Huysmans. HELENA. In Proceedings of Conference on Computational Physics (CP90), 1991.

G. Huysmans. ILSA. Phys. Plasmas, 8(10), 2001.

IEEE. IEEE - The Authoritative Dictionary of IEEE Standard Terms, 7th Edition. 1EEE Standards Information
Network, ISBN 0-7381-2601-2, 2000.

T. Jensen, P. Millar, R. Mueller-Pfefferkorn, J. Nilsen, M. Zsolt, and R. Zappi. Definition of a Storage Accounting
Record. EMI Project, http://cdsweb.cern.ch/record/1352472,2011.

S. Jha, H. Kaiser, A. Merzky, and O. Weidner. Grid Interoperability at the Application Level Using SAGA.
In Proceedings of the IGIIW Workshop, Third IEEE International Conference on eScience, Bangalore, India, pages
584-591, 2007.

1. JTC1. ISO Reference Model - Open Distributed Processing - Overview. I1SO/IEC 10746-1, Final Draft Interna-
tional Standard, 1998.

P. Kacsuk, Z. Farkas, and G. Fedak. Towards making BOINC and EGEE Interoperable. In Proceedings of the
IGIIW Workshop, Fourth IEEE International Conference on eScience, Indianapolis, USA, pages 478-484, 2008.

S. Kannan, M. Roberts, P. Mayes, D. Brelsford, and J. Skovira. Workload Management with LoadLeveler. IBM
Redbook, ISBN 0738422096, 2001.

F. Karagiannis. e-IRG White Paper 2009. e-Infrastructure Reflection Group, 2009.

N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-enabled implementation of the Message Passing
Interface. Journal of Parallel and Distributed Computing, 63(5):551-563, 2003.

V. Kindratenko, J. Enos, S. Guochun, M. Showerman, G. Arnold, J. Stone, J. Philips, and H. Wen-mei. GPU
clusters for high-performance computing. In Proceedings of the IEEE Cluster Computing and Workshops (Cluster
2009), New Orleans, USA, pages 1-8, 2009.

B. Kryza, L. Skital, J. Kitowski, M. Li, and T. Itagaki. Analysis of Interoperability Issues between EGEE
and VEGA Grid Infrastructures. In Proceedings of High Performance Computing and Communications: Second
International Conference (HPCC 2006), Munich, Germany, pages 793-802, 2006.

L. Laaksonen. e-IRG Blue Paper 2010. e-Infrastructure Reflection Group, 2010.

J. Larson, B. Norris, E. Ong, D. Bernholdt, J. Drake, W. Elwasif, M. Ham, C. Rasmussen, G. Kufert, D. Katz,
S. Zhou, C. DeLuca, and N. Collins. Components, the Common Component Architecture, and the Cli-
mate/Weather/Ocean Community. In Proceedings of the 84th American Meteorological Society Annual Meeting,
Seattle, USA, 2004.

REFERENCES 267

[212]

[213]
[214]

[215]

[216]
[217]
[218]

[219]

[220]

[221]
[222]

[223]

[224]

[225]

[226]
[227]
[228]
[229]
[230]
[231]
[232]
[233]
[234]
[235]

[236]

[237]
[238]

[239]

E. Laure, S. Fisher, A. Frohner, C. Grandi, P. Kunszt, A. Krenek, O. Mulmo, F. Pacini, F. Prelz, J. White, M. Bar-
roso, P. Buncic, . Hemmer, A. D. Meglio, and A. Edlund. Programming the Grid with gLite. Computational
Methods in Science and Technology, 12:33-46, 2006.

W. Lee, A. McGough, and J. Darlington. Performance Evaluation of the GridSAM Job Submission and Mon-

itoring System. pages 915-922, 2005. Proceedings of the UK 2005 All Hands Meeting.
E. Lindahl, B. Hess, and D. van der Spoel. GROMACS 3.0: A Package for Molecular Simulation and Trajec-

tory Analysis. Journal of Molecular Modeling, 7(8):306-317, 2001.

B. Ludaescher, 1. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. Lee, J. Tao, and Y. Zhao. Scien-
tific Workflow Management and the Kepler System. Concurrency and Computation: Practice and Experience,
18(10):1039-1065, 2006.

R. Mach, R. Lepro-Metz, S. Jackson, and L. McGinnis. Usage Record - Format Recommendation. Open Grid

Forum, Grid Final Document Nr. 98, 2007.

C. MacKenzie, K. Laskey, F. McCabe, P. Brown, R. Metz, and B. Hamilton. Reference Model for Service Oriented
Architecture 1.0. Organization for the Advancement of Structured Information Standards, 2006.

T. Maguire and D. Snelling. OGSA Profile Definition Version 1.0. Open Grid Forum, Grid Final Document Nr.

59, 2006.
S.Manos, S. Zasada, M. Mazzeo, R. Haines, G. Doctors, S. Brew, R. Pinning, J. Brooke, and P. Coveney. Patient

Specific Whole Celebral Blood Flow Simulation: A Future Role in Surgical Treatment for Neurovascular

Pathologies. In Proceedings of the 3rd TeraGrid Conference, Virginia, USA, 2008.

M. Marzolla, M. Riedel, P. Andreetto, V. Venturi, A. Ferraro, A. Memon, M. Memon, B. Tweddell, D. Mall-
mann, A. Streit, S. van de Berghe, V. Li, D. Snelling, K. Stamou, Z. Shah, and F. Hedman. Open Standards-
based Interoperability of Job Submission and Management Interfaces across the Grid Middleware Platforms
gLite and UNICORE. In Proceedings of the IGIIW Workshop, Third IEEE International Conference on eScience,
Bangalore, India, pages 592-601, 2007.

S. Matsuoka, S. Shinjo, M. Aoyagi, S. Sekiguchi, H. Usami, and K. Miura. Japanese Computational Grid
Research Project: NAREGI. Proceedings of the IEEE, 93(3):522-533, 2005.

A. McGough and A. Savva. Implementation and Interoperability Experiences with the Job Submission Description
Language (JSDL) 1.0. Open Grid Forum, Grid Final Document Nr. 140, 2008.

A. Memon, M. Memon, P. Wieder, and B. Schuller. CIS: An Information Service based on the Common
Information Model. In Proceedings of the Third IEEE International Conference on e-Science, Bangalore, India,
pages 465-472, 2007.

M. Memon, A. Memon, M. Riedel, A. Streit, and F. Wolf. Enabling Grid Interoperability by Extending HPC-
driven Job Management with an Open Standard Information Model. In Proceedings of International Conference
on Computer and Information Science (ICIS 2009), Shanghai, China, pages 506-511, 2009.

M. S. Memon, M. Riedel, A. Memon, E. Wolf, A. Streit, T. Lippert, M. Plociennik, M. Owsiak, D. Tskhakaya,
and C. Konz. Lessons Learned from Jointly Using HTC- and HPC-driven e-Science Infrastructures in Fusion
Science. In Proceedings of 2nd IEEE International Conference on Information and Emerging Technologies (ICIET
2010), Karachi, Pakistan, 2010.

D. Merrill. Secure Addressing Profile 1.0. Open Grid Forum, Grid Final Document Nr. 131, 2008.

D. Merrill. Secure Communication Profile 1.0. Open Grid Forum, Grid Final Document Nr. 132, 2008.

H. Moore, K. Dvorakova, N. Jenkins, and W. Breed. Exceptional Sperm Cooperation in the Wood Mouse.
Letters to Nature, 418(174):174-177, 2002.

R. W. Moore, A. Rajasekar, and R. Marciano. Proceedings iRODS User Group Meeting 2010 - Policy-based Data
Management, Sharing, and Preservation. CreateSpace, ISBN 1452813426, 2010.

M. Morgan. BytelO Specification 1.0. Open Grid Forum, Grid Final Document Nr. 87, 2007.

M. Morgan and S. Grimshaw. Genesis II - Standards Based Grid Computing. In Proceedings of the Seventh
IEEE/ACM International Symposium on Cluster Computing and the Grid 2007 (CCGRID 2007), Rio de Janeiro,
Brazil, pages 611-618, 2007.

R. Morgan, S. Cantor, S. Carmody, W. Hoehn, and K. Klingenstein. Federated Security: The Shibboleth
Approach. EDUCAUSE Quarterly, 27(4):12-17, 2004.

E. Morris, L. levine, C. Meyers, P. Place, and D. Plakosh. Systems of Systems Interoperability (SOSI) - Final
Report. Carnegie Mellon University, Technical Report, CMU/SEI-2004-TR-004, 2004.

T. Moses. eXtensible Access Control Markup Language - Version 2.0 - Core Specification. Organization for the
Advancement of Structured Information Standards, 2005.

M.Riedel and B. Demuth. UNICORE in XSEDE: Towards a Large-Scale Scientific Environment based on
Open Standards. 9(2):18-19, 2011.

M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. Kale, R. Skeel, and K. Schulten. NAMD: A Parallel, Object-
Oriented Molecular Dynamics Program. International Journal of High Performance Computing Applications,
10(4):251-268, 1996.

B. Neuman and T. Tso. Kerberos: An authentication service for computer networks. In IEEE Communications
Magazine 32(9), pages 33-88, 1994.

H. Neuroth, M. Kerzel, and W. Gentzsch. D-Grid: German Grid Initiative. Universitaetsverlag Goettingen,
ISBN 978-3-938616-99-4, 2007.

R. Nieuwpoort, T. Kielmann, and H. Bal. User-friendly and Reliable Grid Computing Based on Imperfect
Middleware. In Proceedings of the International Supercomputing Conference 2007, Reno, USA, pages 1-11, 2007.

268

REFERENCES

[240]

[241]
[242]

[243]
[244]
[245]
[246]

[247]

[248]

[249]

[250]

[251]

[252]
[253]
[254]

[255]

[256]

[257]

[258]

[259]

J. Novotny, M. Russell, and O. Wehrens. GridSphere - An Advanced Portal Framework. pages 412-419, 2004.
Proceedings of the 30th Euromicro Conference (EUROMICRO’04), Rennes, France.

P. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, ISBN 1558603395, 1996.

D. Pearlman, D. Case, J. Caldwell, W. Ross, T. Cheatham, S. DeBolt, D. Ferguson, G. Seibel, and P. Kollman.
AMBER, a Package of Computer Programs for Applying Molecular Mechanics, Normal Mode Analysis,
Molecular Dynamics and Free Energy Calculations to Simulate the Structural and Energetic Properties of
Molecules. Computer Physics Communications, 91(1-3):1-41, 1995.

M. Pereira, O. Tatebe, L. Luan, and T. Anderson. Resource Namespace Service Specification. Open Grid Forum,
Grid Final Document Nr. 101, 2007.

S. Pfalzner and P. Gibbon. Many-Body Tree Methods in Physics. Cambridge University Press, ISBN 0521019168,
1996.

R. Piro, A. Guarise, and A. Werbrouck. An Economy-based Accounting Infrastructure for the DataGrid. In
Proceedings for the 4th International Workshop on Grid Computing, Phoenix, USA, pages 202—-204, 2003.

D. Piscitello and A. Chapin. Open Systems Networking: TCP/IP and OSI. Addison Wesley, ISBN 0201563347,
1993.

I. C. Plasencia, E. Fernandez, L. Cabellos, M. Plociennik, M. Owsiak, B. Guillerminet, and A. Soba. Modelling
Mixed Workflows between Grid and HPC in EUFORIA. In Proceedings of the 3rd Iberian Grid Infrastructure
Conference, Valencia, Spain, pages 256265, 2009. ISBN 978-84-9745-406-3.

R. Pordes, B. Kramer, M. Livny, P. Avery, K. Blackburn, T. Wenaus, K. Wuerthwein, I. Foster, R. Gardner,
M. Wilde, A. Blatecky, and R. Quick. The Open Science Grid. Journal of Physics: Conference Series, 78, 2007.
G. L. Presti, O. Barring, A. Earl, R. Rioja, S. Ponce, G. Taurelli, D. Waldron, and M. Coelho. CASTOR: A
Distributed Storage Resource Facility for High Performance Data Processing at CERN. In Proceedings of the
24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007), San Diego, USA, pages 275-280,
2007.

H. Rajic, R. Borbst, W. Chan, F. Fersti, J. Gardiner, A. Haas, B. Nitzberg, D. Templeton,]. Tollefsrud, and
P. Troeger. Distributes Resource Management Application API Specification 1.0. Open Grid Forum, Grid Final
Document Nr. 133, 2008.

R. Ratering, M. Riedel, A. Lukichev, D. Mallmann, A. Vanni, C. Cacciari, S. Lanzarini, P. Bala, K. Benedy-
czak, M. Borcz, R. Kluszcynski, and G. Ohme. GridBeans: Supporting e-Science and Grid Applications. In
Proceedings of the Second IEEE International Conference on e-Science 2006, Amsterdam, Netherlands, pages 45-51,
2006.

J. Reich. Open Grid Services Architecture Use Cases Tier 2. Open Grid Forum, OGSA-WG Draft, 2004.

W. Reisig. System Design using Petri Nets. In Requirements Engineering, Arbeitstagung der GI, Friedrichshafen,
Germany, pages 29-41, 1983.

M. Riedel. Guide to e-Science: Next Generation Scientific Research and Discovery, chapter E-Science Infrastructure
Interoperability Guide - The Seven Steps towards Interoperability for e-Science. Computer Communications
and Networks. Springer, ISBN 978-0-85729-438-8, 2011.

M. Riedel, T. Eickermann, W. Frings, S. Dominiczak, T. Duessel, A. Streit, P. Gibbon, F. Wolf, W. Schiffmann,
and T. Lippert. Design and Evaluation of a Collaborative Online Visualization and Steering Framework
Implementation for Computational Grids. In Proceedings of the 8th IEEE/ACM International Conference on Grid
Computing (Grid 2007), Austin, USA, pages 169-177,2007.

M. Riedel, E. Laure, T. Soddemann, L. Field, J. P. Navarro, J. Casey, M. Litmaath, J. P. Baud, B. Koblitz,
C. Catlett, D. Skow, C. Zheng, P. M. Papadopoulos, M. Katz, N. Sharma, O. Smirnova, B. Konya, P. Arzberger,
F. Wuerthwein, A. S. Rana, T. Martin, M. Wan, V. Welch, T. Rimovsky, S. Newhouse, A. Vanni, Y. Tanaka,
Y. Tanimura, T. Ikegami, D. Abramson, C. Enticott, G. Jenkins, R. Pordes, S. Timm, G. Moont, M. Aggarwal,
D. Colling, O. van der Aa, A. Sim, V. Natarajan, A. Shoshani, J. Gu, S. Chen, G. Galang, R. Zappi, L. Magnoni,
V. Ciaschini, M. Pace, V. Venturi, M. Marzolla, P. Andreetto, B. Cowles, S. Wang, Y. Saeki, H. Sato, S. M. P.
Uthayopas, S. Sriprayoonsakul, O. Koeroo, M. Viljoen, L. Pearlman, S. Pickles, D. Wallom, G. Moloney,
J. Lauret, J. Marsteller, P. Sheldon, S. Pathak, S. D. Witt,]J. Mencak, J. Jensen, M. Hodges, D. Ross, G. N.
S. Phatanapherom, A. R. Gregersen, M. Jones, S. Chen, P. Kacsuk, A. Streit, D. M. F. Wolf, T. Lippert, T. De-
laitre, E. Huedo, and N. Geddes. Interoperation of World-wide Production e-Science Infrastructures. In
Concurrency and Computation: Practice and Experience, volume 21, pages 961-990, 2009.

M. Riedel and D. Mallmann. Standardization Processes of the UNICORE Grid System. In Proceedings of 1st
Austrian Grid Symposium 2005, Schloss Hagenberg, Austria, pages 191-203. Austrian Computer Society, 2005.
M. Riedel, D. Mallmann, and A. Streit. Enhancing Scientific Workflows with Secure Shell Functionality in
UNICORE Grids. In Proceedings of the First IEEE International Conference on e-Science 2005, Melbourne, Australia,
pages 132-139, 2005.

M. Riedel, A. Memon, M. Memon, D. Mallmann, A. Streit, E. Wolf, T. Lippert, V. Venturi, P. Andreetto,
M. Marzolla, A. Ferraro, A. Ghiselli, F. Hedman, Z. A., J. Salzemann, A. DaCosta, V. Breton, V. Kasam,
M. Hofmann-Apitius, D. Snelling, S. van de Berghe, V. Li, S. Brewer, A. Dunlop, and N. DeSilva. Improving
e-Science with Interoperability of the e-Infrastructures EGEE and DEISA. In Proceedings of the IEEE 31rd
International Convention MIPRO 2008, Opatija, Croatia, pages 225-231, 2008.

REFERENCES 269

[260]

[261]

[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]
[270]

[271]

[272]
[273]
[274]
[275]
[276]

[277]

[278]

M. Riedel, M. Memon, A. Memon, D. Mallmann, T. Lippert, D. Kranzlmueller, and A. Streit. e-Science Infras-
tructure Integration Invariants to Enable HTC and HPC Interoperability Applications. In Proceedings of the
Eights High-Performance Grid Computing Workshop, International Parallel and Distributed Processing Symposium
(IPDPS 2011), Anchorage, USA, pages 922-931, 2011.

M. Riedel, M. Memon, A. Memon, A. Streit, E. Wolf, T. Lippert, B. Konya, O. Smirnova, A. Konstantinov,
L. Zangrando, M. Marzolla, J. Watzl, and D. Kranzlmueller. Improvements of Common Open Grid Standards
to Increase High Throughput and High Performance Computing Effectiveness on Large-scale Grid and e-
Science Infrastructures. In Proceedings of the Seventh High-Performance Grid Computing Workshop, International
Parallel and Distributed Processing Symposium (IPDPS 2010), Atlanta, USA, pages 1-7, 2010.

M. Riedel, R. Menday, A. Streit, and P. Bala. A DRMAA-based Target System Interface Framework for UNI-
CORE. In Proceedings of the 2nd International Workshop on Scheduling and Resource Management for Parallel and
Distributed Systems, 12th International Conference on Parallel and Distributed Systems (ICPADS 2006), Minneapo-
lis, USA, pages 133-138, 2006.

M. Riedel, B. Schuller, M. Rambadt, M. Memon, A. Memon, A. Streit, F. Wolf, T. Lippert, S. Zasada, S. Manos,
P. Coveney, F. Wolf, and D. Kranzlmueller. Exploring the Potential of Using Multiple e-Science Infrastruc-
tures with Emerging Open Standards-based e-Health Research Tools. In Proceedings of the 10th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing (CCGrid 2010), Melbourne, Australia, pages 341-
348, 2010.

M. Riedel, A. Streit, D. Kranzlmueller, D. Mallmann, and T. Lippert. Requirements of an e-Science Infrastruc-
ture Interoperability Reference Model. In Proceedings of the IEEE 34th International Convention MIPRO 2011,
Opatija, Croatia, pages 221-226, 2011.

M. Riedel, A. Streit, T. Lippert, F. Wolf, and D. Kranzlmueller. Concepts and Design of an Interoperability
Reference Model for Scientific- and Grid Computing Infrastructures. In Proceedings of Applied Computing
Conference in Mathematical Methods and Applied Computing (ACC 2009), Athens, Greece, pages 691-698, 2009.
M. Riedel, A. Streit, T. Lippert, F. Wolf, and D. Kranzlmueller. Towards Individually Formed Computing
Infrastructures with High Throughput and High Performance Computing Resources of Large-scale Grid
and e-Science Infrastructures. In Proceedings of the IEEE 33rd International Convention MIPRO 2010, Opatija,
Croatia, pages 192-197, 2010.

M. Riedel, A. Streit, D. Mallmann, F. Wolf, and T. Lippert. Experiences and Requirements for Interoperabil-
ity between HTC- and HPC-driven e-Science Infrastructures. In Proceedings of the Korea e-Science All Hands
Meeting, Workshop HPC for e-Science: Future Applications and Middleware Technology on e-Science, Daejeon, Korea,
2008, pages 113-123, 2010.

M. Riedel, A. Streit, F. Wolf, T. Lippert, and D. Kranzlmueler. Classification of Different Approaches for
e-Science Applications in Next Generation Computing Infrastructures. In Proceedings of the Fourth IEEE In-
ternational Conference on eScience 2008, Indianapolis, USA, pages 198-205, 2008.

M. Riedel and G. Terstyanszky. Grid Interoperability for e-Research. Journal of Grid Computing: Special Issue
on Grid Interoperability, 7(3):285-286, 2009.

M. Riedel and J. Watzl. OGF Production Grid Infrastructure: Use Case Collection, Version 1.0. Open Grid Forum,
Grid Final Document Nr. 180, 2011.

M. Riedel, P. Wittenburg, J. Reetz, M. van de Sanden, J. Rybicki, B. von St. Vieth, G. Fiameni, G. Mari-
ani, A. Michelini, C. Cacciari, W. Elbers, D. Broeder, R. Verkerk, E. Erastova, M. Lautenschlaeger, R. Budig,
H. Thielmann, P. Coveney, S. Zasada, O. Buechner, C. Manzano, M. Memon, A. Memon, D. Lecarpentier,
H. Helin, K. Koski, and T. Lippert. A Data Infrastructure reference Model with Applications: Towards Real-
ization of a ScienceTube Vision with a Data Replication Service. Journal of Internet Services and Applications,
4(1), 2013.

N([.)Riedel, E. Wolf, D. Kranzlmueller, A. Streit, and T. Lippert. Research Advances by using Interoperable
e-Science Infrastructures - The Infrastructure Interoperability Reference Model applied in e-Science. Journal
of Cluster Computing, Special Issue on Recent Advances in e-Science, 12(4):357-372, 2009.

T. Rings, G. Caryer, J. Gallop, J. Grabowski, T. Kovacikova, S. Schulz, and I. Stokes-Rees. Grid and Cloud
Computing: Opportunities for Integration with the Next Generation Network. Journal of Grid Computing:
Special Issue on Grid Interoperability, 7(3):375-393, 2009.

C. Rizzuto. European Roadmap for Research Infrastructures. European Commission, ISBN 978-92-79-10117-5,
2008.

A. Robbins. UNIX in a Nutshell. O'Reilly Media, ISBN 0596100299, 2005.

M. Rosen. Applied SOA: Service-oriented Architecture and Design Strategies. John Wiley and Sons, ISBN
0470223650, 2008.

H. Rosmanith and J. Volkert. Traffic Forwarding with GSH/GLOGIN. In Proceedings of the 13th Euromi-
cro Conference on Parallel, Distributed and Network-based Processing (PDP), Lugano, Switzerland, pages 213-219,
2005.

M. Russell, P. Dziubecki, P. Grabowski, M. Krysinski, T. Kuczynski, D. Szjenfeld, D. Tarnawczyk, G. Wol-
niewicz, and J. Nabrzyski. The Vine Toolkit: A Java Framework for Developing Grid Applications. In
Proceedings of the Seventh International Conference on Parallel Processing and Applied Mathematics (PPAM 2007),
Gdansk, Poland.

270

REFERENCES

[279]
[280]
[281]
[282]
[283]
[284]
[285]
[286]

[287]

[288]

[289]
[290]

[291]

[292]

[293]

[294]
[295]
[296]

[297]
[298]

[299]
[300]

[301]
[302]

[303]

[304]

[305]

[306]

T. Sandholm, P. Gardfjaell, E. Elmroth, O. Mulmo, and L. Johnsson. A Service-Oriented Approach to Enforce
Grid Resource Allocation. International Journal of Cooperative Information Systems, Vol.15, 15:439-459, 2006.

N. Santos and B. Koblitz. Security in Distributed Metadata Catalogue. Concurrency and Computation: Practice
and Experience, 20:1995-2007, 2008.

A. Savva. [SDL SPMD Application Extension, Version 1.0. Open Grid Forum, Grid Final Document Nr. 115,
2007.

J. Schuhmacher. NIC Symposium 2008, volume 39 of NIC series, chapter The Fine-Scale Structure of Turbu-
lence. John von Neumann Institute for Computing, Juelich, ISBN 978-3-9810843-5-1, 2008.

B. Schuller, M. Riedel, S. Memon, A. Memon, B. Konya, O. Smirnova, A. Konstantinov, S. Andersen, L. Zan-
grando, M. Sgaravatto, and E. Frizziero. EMI Execution Service Specifation. EMI Project, https://twiki.
cern.ch/twiki/pub/EMI/EmiExecutionService/EMI-ES-Specification_v1l.0.odt,2010.

B. Schuller, M. Riedel, and A. Streit. Recent Advances in the UNICORE 6 Middleware. inSiDE, 8:46-49, 2010.
M. Siddiqui, A. Villazon, R. Prodan, and T. Fahringer. Advanced Reservation and Co-Allocation of Grid
Resources: A Step towards an invisible Grid. In Proceedings of the 9th IEEE Int. Multitopic Conference INMIC,
Karachi, Pakistan, pages 1-6, 2005.

A. Sim and A. Shoshani. The Storage Resource Manager Interface Specification - Version 2.2. Open Grid Forum,
Grid Final Document Nr. 129, 2008.

C. Smith, T. Kielmann, S. Newhouse, and M. Humphrey. The HPC Basic Profile and SAGA: Standardiz-
ing Compute Grid Access in the Open Grid Forum. Concurrency and Computation: Practice and Experience,
21(8):1053-1068, 2009.

D. Snelling, D. Merrill, and A. Savva. OGSA Basic Security Profile 2.0. Open Grid Forum, Grid Final Document
Nr. 138, 2008.

B. Snyder, D. Bosanac, and R. Davies. ActiveMQ in Action. Manning, ISBN 1933988940, 2011.

C. Sosa and B. Knudson. IBM Blue Gene Solution: Blue Gene/P Application Development. IBM Redbook, ISBN
0738433330, 2009.

1. Stokes-Rees. A REST Model for High Throughput Scheduling in Computational Grids. PhD thesis, Oxford
University, 2006.

D. Stone, S. Marcio, N. Miranda, and F. Costa. A Model for Transparent Grid Interoperability. In Proceedings
of the Seventh IEEE/ACM International Symposium on Cluster Computing and the Grid 2007 (CCGRID 2007), Rio
de Janeiro, Brazil, 2007.

A. Streit, P. Bala, A. Beck-Ratzka, K. Benedyczak, S. Bergmann, R. Breu, J. Daivandy, B. Demuth, A. Eifer,
A. Giesler, B. Hagemeier, S. Holl, V. Huber, D. Mallmann, A. Memon, M. Memon, M. Rambadt, M. Riedel,
M. Romberg, B. Schuller, T. Schlauch, A. Schreiber, T. Soddemann, and W. Ziegler. UNICORE 6 - Recent and
Future Advancements. Annals of Telecommunication, 65(11):757-762, 2010.

A. Streit, D. Erwin, T. Lippert, D. Mallmann, R. Menday, M. Rambadt, M. Riedel, M. Romberg, B. Schuller,
and P. Wieder. UNICORE - From Project Results to Production Grids. Grid Computing: The New Frontiers of
High Performance Processing, Advances in Parallel Computing, 14:357-376, 2005.

A.S. Tanenbaum. Computer Networks. Prentice Hall, ISBN 9780130661029, 2002.

A.S. Tanenbaum and M. van Steen. Distributed Systems - Principles and Paradigms. Prentice Hall International,
ISBN 0132392275, 2006.

J. Treadwell. Open Grid Services Architecture Glossary of Terms, Version 1.5, 2006.

A. Trefethen, V. Menon, C. Chang, G. Czajowski, C. Meyers, and L. Trefethen. MultiMATLAB: MATLAB on
Multiple Processors. In Technical Report CTC96TR293. Cornell Theory Center, 1996.

S. Tuecke, K. Czajkowski, L. Foster, J. Frey, S. Graham, C. Kesselman, T. Maquire, T. Sandholm, D. Snelling,
and P. Vanderbilt. Open Grid Services Infrastructure, Version 1.0. Open Grid Forum, Grid Final Document Nr.
15, 2003.

S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Internet X.509 Public Key Infrastructure (PKI)
Proxy Certificate Profile. Internet Engineering Task Force, RFC 3820, 2004.

S. Vaerttoe. DEISA - Advancing Science in Europe. DEISA, ISBN 978-952-5520-32-3, 2008.

V. Venturi, M. Riedel, A. Memon, M. Memon, F. Stagni, B. Schuller, D. Mallmann, B. Tweddell, A. Gianoli,
V. Ciaschini, S. van de Berghe, D. Snelling, and A. Streit. Using SAML-based VOMS for Authorization within
Web Services-based UNICORE Grids. In Proceedings of the 3rd UNICORE Summit 2007, 2007 Conference on
Parallel Processing (Euro-Par 2007), Rennes, France, volume LNCS4854, pages 112-120, 2008.

V. Venturi, E Stagni, A. Gianoli, A.Ceccanti, and V. Ciaschini. Virtual Organization Management Across
Middleware Boundaries. In Proceedings of the IGITW Workshop, Third IEEE International Conference on eScience,
Bangalore, India, pages 545-552, 2007.

Y. Wang, D. Roberto, M. Boniface, D. Qian, D. Cui, and J. Jiang. Cross-Domain Middlewares Interoperability
for Distributed Aircraft Design Optimization. In Proceedings of the IGIIW Workshop, Fourth IEEE International
Conference on eScience, Indianapolis, USA, pages 485-492, 2008.

G. Wasson and M. Humphrey. HPC File Staging Profile, Version 1.0. Open Grid Forum, Grid Final Document
Nr. 135, 2008.

P. Wittenburg, N. Bel, L. Borin, G. Budin, N. Calzolari, E. Hajicova, K. Koskenniemi, L. Lemnitzer, B. Mae-
gaard, M. Piasecki,]J. Pierrel, S. Piperidis, I. Skadina, D. Tufis, R. Veenendaal, T. Varadi, and M. Wynne.
Resource and Service Centres as the Backbone for a Sustainable Service Infrastructure. In Proceedings of 7th
International Conference on Language Resources and Evaluation (LREC) 2010 Conference, Valetta, Malta, 2010.

[307] Z.XU, W. Li, L. Zha, H. Yu, and D. Liu. VEGA: A Computer Systems Approach to Grid Computing. Journal
of Grid Computing, 2(2):109-120, 2004.

[308] S. Zasada and P. Coveney. Virtualizing access to scientific applications with the Application Hosting Envi-
ronment. Computer Physics Communications, 180(12):2513-2525, 2009.

Schriften des Forschungszentrums Jalich
IAS Series

1. Three-dimensional modelling of soil-plant interactions: Consistent
coupling of soil and plant root systems
by T. Schréder (2009), VIII, 72 pages
ISBN: 978-3-89336-576-0
URN: urn:nbn:de:0001-00505

2. Large-Scale Simulations of Error-Prone Quantum Computation Devices
by D. B. Trieu (2009), VI, 173 pages
ISBN: 978-3-89336-601-9
URN: urn:nbn:de:0001-00552

3. NIC Symposium 2010
Proceedings, 24 — 25 February 2010 | Jilich, Germany
edited by G. Miinster, D. Wolf, M. Kremer (2010), V, 395 pages
ISBN: 978-3-89336-606-4
URN: urn:nbn:de:0001-2010020108

4. Timestamp Synchronization of Concurrent Events
by D. Becker (2010), XVIII, 116 pages
ISBN: 978-3-89336-625-5
URN: urn:nbn:de:0001-2010051916

5. UNICORE Summit 2010
Proceedings, 18 — 19 May 2010 | Jilich, Germany
edited by A. Streit, M. Romberg, D. Mallmann (2010), iv, 123 pages
ISBN: 978-3-89336-661-3
URN: urn:nbn:de:0001-2010082304

6. Fast Methods for Long-Range Interactions in Complex Systems
Lecture Notes, Summer School, 6 — 10 September 2010, Julich, Germany
edited by P. Gibbon, T. Lippert, G. Sutmann (2011), ii, 167 pages
ISBN: 978-3-89336-714-6
URN: urn:nbn:de:0001-2011051907

7. Generalized Algebraic Kernels and Multipole Expansions
for Massively Parallel Vortex Particle Methods
by R. Speck (2011), iv, 125 pages
ISBN: 978-3-89336-733-7
URN: urn:nbn:de:0001-2011083003

8. From Computational Biophysics to Systems Biology (CBSB11)
Proceedings, 20 - 22 July 2011 | Julich, Germany
edited by P. Carloni, U. H. E. Hansmann, T. Lippert, J. H. Meinke, S. Mohanty,
W. Nadler, O. Zimmermann (2011), v, 255 pages
ISBN: 978-3-89336-748-1
URN: urn:nbn:de:0001-2011112819

Schriften des Forschungszentrums Jalich
IAS Series

10.

1.

12.

13.

14.

15.

16.

UNICORE Summit 2011

Proceedings, 7 - 8 July 2011 | Torun, Poland

edited by M. Romberg, P. Bata, R. Miller-Pfefferkorn, D. Mallmann (2011), iv,
150 pages

ISBN: 978-3-89336-750-4

URN: urn:nbn:de:0001-2011120103

Hierarchical Methods for Dynamics in Complex Molecular Systems
Lecture Notes, IAS Winter School, 5 — 9 March 2012, Julich, Germany

edited by J. Grotendorst, G. Sutmann, G. Gompper, D. Marx (2012), vi,

540 pages

ISBN: 978-3-89336-768-9

URN: urn:nbn:de:0001-2012020208

Periodic Boundary Conditions and the Error-Controlled Fast Multipole
Method

by I. Kabadshow (2012), v, 126 pages

ISBN: 978-3-89336-770-2

URN: urn:nbn:de:0001-2012020810

Capturing Parallel Performance Dynamics
by Z. P. Szebenyi (2012), xxi, 192 pages
ISBN: 978-3-89336-798-6

URN: urn:nbn:de:0001-2012062204

Validated force-based modeling of pedestrian dynamics
by M. Chraibi (2012), xiv, 112 pages

ISBN: 978-3-89336-799-3

URN: urn:nbn:de:0001-2012062608

Pedestrian fundamental diagrams: Comparative analysis of experiments
in different geometries

by J. Zhang (2012), xiii, 103 pages

ISBN: 978-3-89336-825-9

URN: urn:nbn:de:0001-2012102405

UNICORE Summit 2012

Proceedings, 30 - 31 May 2012 | Dresden, Germany

edited by V. Huber, R. Muller-Pfefferkorn, M. Romberg (2012), iv, 143 pages
ISBN: 978-3-89336-829-7

URN: urn:nbn:de:0001-2012111202

Design and Applications of an Interoperability Reference Model
for Production e-Science Infrastructures

by M. Riedel (2013), x, 270 pages

ISBN: 978-3-89336-861-7

URN: urn:nbn:de:0001-2013031903

Computational simulations and thus scientific computing is the third pillar alongside theory
and experiment in todays science. The term e-Science evolved as a new research field that
focuses on collaboration in key areas of science using next generation data and computing
infrastructures (i.e. e-Science infrastructures) to extend the potential of scientific computing.
During the past decade, significant international and broader interdisciplinary research is increas-
ingly carried out by global collaborations that often share resources within a single production
e-Science infrastructure. More recently, increasing complexity of e-Science applications that
embrace multiple physical models (i.e. multi-physics) and consider a larger range of scales (i.e.
multi-scale) is creating a steadily growing demand for world-wide interoperable infrastructures
that allow for new innovative types of e-Science by jointly using different kinds of e-Science
infrastructures. But interoperable e-Science infrastructures are still not seamlessly provided
today and this thesis argues that this is due to the absence of a production-oriented e-Science
infrastructure reference model. The goal of this thesis is thus to present an infrastructure inter-
operability reference model (IIRM) design tailored to production needs and that represents a
trimmed down version of the Open Grid Service Architecture (OGSA) in terms of functionality and
complexity, while on the other hand being more specifically useful for production and thus easier
to implement. This reference model is underpinned with lessons learned and numerous experi-
ences gained from production e-Science application needs through accompanying academic case
studies of the bio-informatics, e-Health, and fusion domain that all seek to achieve research
advances by using interoperable e-Science infrastructures on a daily basis. Complementary to
this model, a seven segment-based process towards sustained infrastructure interoperability
addresses important related issues like harmonized operations, cooperation, standardization as
well as common policies and joint development roadmaps.

This publication was edited at the Jillich Supercomputing Centre (JSC) which is an integral part
of the Institute for Advanced Simulation (IAS). The IAS combines the Jilich simulation sciences
and the supercomputer facility in one organizational unit. It includes those parts of the scientific
institutes at Forschungszentrum Jilich which use simulation on supercomputers as their main
research methodology.

IAS Series

Volume 16 ’J JUL|CH

ISBN 978-3-89336-861-7 FORSCHUNGSZENTRUM

