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Capturing Parallel Performance Dynamics

Zoltán Péter Szebenyi

Runtime call-path profiling is a conventional, well-known method used for collecting summary 
statistics of a parallel application’s execution such as the time spent in different call paths of 
the code. However, these kinds of measurements give the user only a summary overview of the 
entire execution, without regard to changes in performance behavior over time. As present day 
scientific applications tend to be run for extended periods of time, understanding the patterns 
and trends in the performance data along the time axis becomes crucial. 

As shown by our analysis of a representative set of scientific codes, profiling every iteration separately 
provides a wealth of new data that often leads to invaluable new insights. However, with the  
introduction of the time dimension, memory usage and file sizes grow considerably. To counter 
this problem, a low-overhead on-line compression algorithm was developed that exploits similarities 
between different iterations.

While standard, direct instrumentation, which is assumed by the initial version of the compression 
algorithm, results in fairly low overhead with many scientific codes, in some cases the high 
frequency of events makes such measurements impractical. Therefore, a hybrid solution was 
developed that seamlessly integrates sampling and direct instrumentation techniques in a single 
unified measurement, using direct instrumentation for message passing constructs, while sampling 
the rest of the code. Finally, the compression algorithm was adapted to the hybrid profiling  
approach, avoiding the overhead of pure direct instrumentation.

Evaluation of the above methodologies shows that our similarity-based compression algorithm 
provides a very good approximation of the original data with very little measurement dilation, 
while the hybrid combination of sampling and direct instrumentation fulfills its purpose by showing 
the expected reduction of measurement dilation in cases unsuitable for direct instrumentation.

This publication was written at the Jülich Supercomputing Centre (JSC) which is an integral part 
of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences 
and the supercomputer facility in one organizational unit. It includes those parts of the scientific 
institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main 
research methodology.
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Capturing Parallel Performance Dynamics – Abstract

Supercomputers play a key role in countless areas of science and engineering, enabling the
development of new insights and technological advances never possible before. The strategic
importance and ever-growing complexity of the efficient usage of supercomputing resources
makes application performance analysis invaluable for the development of parallel codes.
Runtime call-path profiling is a conventional, well-known method used for collecting summary
statistics of an execution such as the time spent in different call paths of the code. However,
these kinds of measurements only give the user a summary overview of the entire execution,
without regard to changes in performance behavior over time. The possible causes of temporal
changes are quite numerous, ranging from adaptive workload balancing through periodically
executed extra work or distinct computational phases to system noise. As present day scientific
applications tend to be run for extended periods of time, understanding the patterns and trends
in the performance data along the time axis becomes crucial.
A straightforward approach is profiling every iteration of the main loop separately. As shown
by our analysis of a representative set of scientific codes, such measurements provide a wealth
of new data that often leads to invaluable new insights. However, the introduction of the time
dimension makes the amount of data collected proportional to the number of iterations, and
memory usage and file sizes grow considerably. To counter this problem, a low-overhead on-
line compression algorithm was developed that requires only a fraction of the memory and file
sizes needed for an uncompressed measurement. By exploiting similarities between different
iterations, the lossy compression algorithm allows all the relevant temporal patterns of the
performance behavior to be reconstructed.
While standard, direct instrumentation, which is assumed by the initial version of the com-
pression algorithm, results in fairly low overhead with many scientific codes, in some cases
the high frequency of events (e.g., tiny C++ member function calls) makes such measurements
impractical. To overcome this problem, a sampling-based methodology could be used instead,
where the amount of measurement overhead becomes a function of the sampling frequency,
independent of the function-call frequency. However, sampling alone is insufficient for our
purposes, as it does not provide access to the communication metrics the compression
algorithm heavily depends on. Therefore, a hybrid solution was developed that seamlessly
integrates both types of measurement techniques in a single unified measurement, using
direct instrumentation for message passing constructs, while sampling the rest of the code.
Finally, the compression algorithm was adapted to the hybrid profiling approach, avoiding the
overhead of pure direct instrumentation.
Evaluation of the above methodologies shows that our semantics-based compression algorithm
provides a very good approximation of the original data with very little measurement dilation,
while the hybrid combination of sampling and direct instrumentation fulfills its purpose
by showing the expected reduction of measurement dilation in cases unsuitable for direct
instrumentation. Beyond testing with standardized benchmark suites, the usefulness of these
techniques was demonstrated by their key role in gaining important new insights into the
performance characteristics of real-world applications.





Erfassung paralleler Leistungsdynamik –
Zusammenfassung

Hochleistungsrechner spielen eine Schlüsselrolle in einer Vielzahl von Disziplinen in Wissen-
schaft und Technik. Sie ermöglichen die Entwicklung neuer Erkenntnisse und technologischen
Fortschritt in nie da gewesenem Maße. Der strategische Stellenwert von Hochleistungsrech-
nern bei gleichzeitig stetigem Anstieg der Nutzungskomplexität macht die Leistungsanalyse
paralleler Anwendungen unverzichtbar für deren Entwicklung. Callpath-Profiling ist eine
gängige Methode, um Laufzeitstatistiken, wie zum Beispiel die Zeit, welche die Anwendung
in verschiedenen Aufrufpfaden verbringt, zu ermitteln. Diese Art der Messung gibt dem
Entwickler jedoch nur einen Überblick über die gesamte Laufzeit der Anwendung, ohne
zeitliche Veränderungen im Programmverhalten zu berücksichtigen. Die möglichen Ursachen
solcher zeitlichen Variationen können vielschichtig sien, von adaptiven Lastumverteilungen
über periodisch auftretende zusätzliche Funktionsaufrufe und spezielle Berechnungsphasen
bis hin zu Systemrauschen. Da heutige wissenschaftliche Anwendungen aber oft über längere
Zeiträume ausgeführt werden, ist es jedoch unerlässlich, die zeitlichen Muster und Tendenzen
in den Leistungsdaten zu erfassen und zu verstehen.
Um dies zu bewerkstelligen, wird in einem einfachen Ansatz für jede Iteration der Haupt-
schleife ein separates Profil erstellt. Wie durch eine Analyse von repräsentativen wissen-
schaftlichen Simulationen gezeigt, liefern solche Messungen eine Fülle neuer Daten und wert-
volle Einsichten in das Laufzeitverhalten. Durch die Einführung der Zeitdimension wächst
jedoch die Datenmenge mit der Anzahl der Iterationen, wodurch Hauptspeicherbedarf und
Dateigrößen beträchtlich ansteigen. Um diesem Problem zu begegnen, wurde in dieser Arbeit
ein effizientes Online-Kompressionsverfahren mit geringem Laufzeitoverhead entwickelt, das
den für die Messdaten benötigten Platz auf einen Bruchteil reduziert. Durch Ausnutzung von
Ähnlichkeiten zwischen verschiedenen Iterationen gestattet der verlustbehaftete Kompres-
sionsalgorithmus die Rekonstruktion aller relevanten zeitlichen Muster.
Obwohl vollständige direkte Instrumentierung, welche dem ursprünglichen Kompressionsal-
gorithmus zugrunde liegt, bei vielen wissenschaftlichen Simulationen mit vertretbarer Lauf-
zeitdilation genutzt werden kann, gibt es Fälle, bei denen die hohe Frequenz von Mess-
punkten, wie zum Beispiel Aufrufe von in C++ üblichen extrem kurzen Objektmethoden,
dies unmöglich macht. Um diesem Problem zu begegnen, wird normalerweise auf Sampling
ausgewichen, dessen Overhead proportional zur Samplingfrequenz wächst, jedoch unabhängig
von der Frequenz der Messpunkte bzw. Funktionsaufrufe ist. Sampling allein ist allerdings
nicht adäquat für das obige Kompressionsverfahren, da es keinen Zugriff auf die Kommu-
nikationsmetriken gestattet, anhand derer die Ähnlichkeit von Iterationen festgestellt wird.
Daher wurde eine Hybridlösung entwickelt, die beide Messmethoden nahtlos miteinander in
einer einzigen Messung verbindet. Dabei wird direkte Instrumentierung für die Erfassung der
Kommunikationsmetriken und Sampling für den Rest der Anwendung genutzt. Abschließend
wurde der Kompressionsalgorithmus an diesen Hybridansatz angepasst, um so den Overhead
reiner direkter Instrumentierung zu umgehen.
Die Auswertung hat gezeigt, dass der die Semantik der Daten ausnutzende Kompressionsalgo-
rithmus eine sehr gute Näherung der Originalmessungen mit sehr geringer Laufzeitdilatation
liefert, während die hybride Nutzung von direkter Instrumentierung in Kombination mit Samp-
ling den Messoverhead in denjenigen Fällen reduziert, die für direkte Instrumentierung allein
nicht geeignet sind. Neben Tests mit standardisierten Benchmarks haben die hier vorgestellten
Methoden bei der Gewinnung von wichtigen Einsichten in die Leistungscharakteristiken von
echten Simulationsanwendungen ihren Nutzen erwiesen.
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Chapter 1

Introduction

The single word that characterizes the field of supercomputing is “growth”. Everything
grows as the years pass by: number of processors, cores, threads; input datasets; complexity
of both software and hardware; the user base; and last but not least, the electricity bills.
Parallel computing is growing, and so is its already significant importance. Tools that can
effectively help in making software use the available parallel hardware performance efficiently
are more valuable than ever. The goal of this project was to advance the state-of-the-
art in the field of parallel performance analysis by providing deeper insight into the time-
dependent performance behavior of high performance computing applications. To get a good
understanding of how and what we did to reach this goal, we have to start at the basics.

1.1 Supercomputers

The term supercomputer can be applied to a variety of different kinds of machines, many of
them being quite distant relatives. Old trends fade away and new ones appear on the horizon.
The usage of accelerator blades, FPGAs (field-programmable gate arrays), GPUs (graphics
processing units) are current trends, some of which might gain more ground in the future.
In this work, we are concentrating on two classes of mainstream supercomputers, Linux
clusters and specialized large machines, in particular IBM’s Blue Gene/P solution. Linux
clusters are the standard choices for universities [72] and similar institutions [49] that have
to support a variety of users, as they are powerful all-around machines built from commodity
parts occasionally combined with some specialized networking hardware. They tend to make
use of the same line of processors as high-end desktop PCs, which often means some x86 64
solution these days.

Blue Gene [44] on the other hand is a thoroughbred supercomputer, and it is only usable by
developers who have made a good job parallelizing their code already. Blue Gene started off
as an exotic experiment like many others, and it turned out to be a huge success, with several
installations among the top of both the Top 500 [2] and Green 500 [1] lists, which means top
performance combined with extreme energy efficiency. By now it constitutes its own category
in supercomputing with its unorthodox solution of sacrificing single core performance at a
clock speed of 850MHz in exchange for lower voltage, compact packaging, easier cooling,
lower energy consumption, better memory/processor clock ratio and lots of processor cores.
And to make this all work together at top performance, it has multiple interconnect networks,
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1. INTRODUCTION

all optimized for their specialized tasks: a three-dimensional torus network for point-to-point
communication, specialized barrier network for extra quick MPI Barrier calls, and a tree
network for MPI reductions. The operating system that runs on those cores is a minimal Linux
kernel that runs a single process only. This simplicity on the software side and the specialized
networking hardware provide an environment where system noise is virtually non-existent.
Ideal for developers interested in reproducible performance and performance tuning.

Large supercomputing centers often have multiple supercomputers with different capabilities
to be able to serve all possible user needs. Their largest machines, which are often specialized
systems like Blue Genes are called capability systems, while the smaller, more standard all-
around systems are called capacity systems. The capability system is used by a limited
number of high priority, highly scalable codes, capable of making good use of the extreme
characteristics of such a system, while the capacity system is used to serve the needs of all
other projects. It is interesting to note that the naming scheme would sometimes also work the
other way around, as capability systems often have a higher capacity while capacity systems
often have more capable individual processors and compute nodes.

1.2 Parallel programming

Most scientific codes are still serial, or start off as serial projects and are only parallelized
later on through a series of patches and hacks, which leads to suboptimal solutions. Of course
many codes are still in a kind of prototype phase, implemented in e.g. Matlab. They still have
to make the most important and perhaps hardest step towards supercomputing, switching to a
programming language capable of driving the hardware at its full performance, which usually
means C/C++ or Fortran. It is possible to get good performance with Matlab, especially when
the problem maps well to the available libraries, but the specialized hardware and extreme
parallelism of today’s supercomputers often requires the usage of lower-level languages.

Once the code is in C/C++/Fortran, people are happy with the performance gained from
switching programming languages, but at some point they eventually realize that they need
more. They want to process more data, they want quicker answers. At this point, the
quickest and easiest step towards parallelization is usually via OpenMP [71], which has the
added benefit that parallelization can be done incrementally, in arbitrarily small steps. The
user inserts compiler directives into the code that help the compiler parallelize the marked
parts of the code. It is usually enough to insert these directives for the most important core
solver loops to get a performance boost from the machine’s multithreading capabilities on
SMP (symmetric multiprocessing) compute nodes. The drawback of OpenMP is that it is
limited to the number of cores on a single compute node that can be used simultaneously
without oversubscription. This usually means around 8 to 16 threads, and even when using
tricks like hyper-threading typically not more than 256 threads. This is due to the fact that
OpenMP requires shared memory, which is only available inside a single compute node,
with the above mentioned limited number of cores. Of course there are special machines
with very large processor counts sharing the same memory address space using solutions
like ccNUMA (cache-coherent Non-Uniform Memory Access) architecture, or software-
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based virtual shared memory solutions [76], but they are still the exceptions, not the typical,
mainstream supercomputers.

To gain access to more parallelism, developers have to embrace the idea of distributed-memory
programming, with all its challenges. Distributed-memory machines simply mean lots of
shared-memory compute nodes connected through a high performance network. The problem
here is that it is not possible for the compiler to take care of data transfers automatically any
more. The user has to specify all communications and synchronizations between the processes
on the compute nodes explicitly, for which the standard tool is MPI [60], or the Message
Passing Interface. It is a standardized API provided on every supercomputer — often by fine-
tuning an open-source implementation for the given architecture — and provides basic as well
as more advanced communication and synchronization capabilities. There are two extreme
cases of parallelizing an already existing serial code using MPI: the developers may be lucky
enough that the parallelization of their existing code is feasible with relatively little effort, or
they may have to start over from scratch. Of course there is a whole spectrum of options, such
as parallelizing only certain parts of the code. Still, both extremes have their pros and cons.
Once they overcome this challenge, one or the other way, and their code scales reasonably well
up to a few hundred cores, they can be considered expert users. They are probably eligible for
larger allocations on capacity systems with their codes. To get even further, and become elite
users, they can take advantage of the help of parallel performance experts, or tune their code
themselves until it scales well to thousands, or tens of thousands of cores. At that point, they
become eligible for an allocation on a capability system. Of course taking advantage of the
full machine available there, perhaps hundreds of thousands of cores requires lots of additional
effort, often completely replacing certain algorithms with more scalable ones, but it is worth
noting how much progress we made already from the original serial prototype code in Matlab.

At this point, depending on their codes, users may choose to switch from MPI to a hybrid
combination of MPI and OpenMP, which has the potential for additional performance gains
by using OpenMP for intra-node synchronization while MPI is used for inter-node communi-
cation and synchronization only. Using shared memory for intra-node communication has the
advantage of (i) reduced memory usage (e.g. for ghost cells or communication buffers), (ii)
less data movement necessary between these cores and (iii) the number of MPI links between
nodes can be kept at a minimum for improved scalability.

1.3 Serial performance tools

The most well known performance analysis tools are probably the classic serial tools, such
as gprof [18] or Intel VTune [46] (which also has parallel components now). The most
basic technique employed by these tools is sampling-based profiling, which means setting
a timer to generate an interrupt at predetermined time or hardware counter intervals, reading
the execution state at every interrupt, and aggregating and displaying overview statistics in
post-mortem analysis. These tools might have a myriad of more advanced features, including
compiler-based instrumentation, which enables exact, deterministic measurements; and call-
stack unwinding, which provides information about complete call paths in sampling-based
measurements, at the price of potentially higher measurement dilation. We differentiate

3



1. INTRODUCTION

between two main kinds of profiling: flat profiling, where the tool provides performance
statistics broken down by functions, and call-path profiling, where the complete call path
to each function call is also stored.

Call-path profiling [35, 7, 16, 58, 9], which aggregates performance metrics across the entire
execution broken down by call path, is a widely-used method of linking a performance
problem to the context in which it occurs. Especially when investigating the use of library
functions that may be used at multiple places in the source with different parameters, call-
path information can be critical in tracking performance problems back to their roots in the
user code. For example, during the analysis of MPI programs, call-path information is often
essential to decide where in the program a communication bottleneck occurs. However, the
context expressed in the call path usually reveals little about the temporal evolution of a
performance phenomenon. As a result, important insights as to how and why certain behaviors
develop may be lost.

1.4 Parallel performance measurement and analysis

Effectively harnessing the many-fold parallelism available on modern supercomputers be-
comes increasingly challenging. In particular, meeting the performance expectations for
programs running on today’s complex hardware can require significant effort. We can reduce
this effort through appropriate performance-analysis technology, such as performance profiles
that measure the execution time spent in different parts of the program. State-of-the-art parallel
profilers, such as HPCToolkit [3] and TAU [79], further reduce the effort through context-
sensitive analysis that differentiates not only between different functions, but also between
the call paths leading to those functions, which delineate the performance phenomena more
precisely. In addition to time and hardware counters, parallel profilers may also acquire
parallelization metrics such as message counts and the communication volume.

Parallel performance tools are usually more complex as they have to deal with data collected
by potentially thousands of processes and threads, while collecting more data per process than
serial performance tools. Serial tools concentrate on measuring time and hardware counters,
while the main focus for parallel performance tools is largely shifted towards communication
and synchronization performance. This is due to the fact that it does not matter how quickly
code could potentially run when it is not running. And that is exactly what happens in
processor cores while waiting for communications to finish: they are doing nothing productive.
When a hundred thousand processes do nothing most of the execution time, because they
have to wait on a single process that has more workload, it can quickly become extremely
expensive. These kinds of problems are inevitably becoming increasingly common just based
on factors such as system noise as we move on towards computers with millions or billions of
cores, as shown by [41]. Still, keeping this problem to the very minimum by understanding
and fine-tuning the communication performance is necessary in order to minimize wastage of
resources.

Most importantly, the user might be wasting huge resources without even realizing it. There
is no easy way to tell if a code is making efficient use of the hardware or wasting 95% of the
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potential computing power, without taking performance measurements using tools. Of course
taking measurements at different scales and drawing scalability graphs gives an overall idea.
There are two main modes of scaling applications: in weak scaling the problem size is scaled
proportionally to the process count, leading to equal execution times in the optimal case,
while in strong scaling the same problem is solved using more processes, with the intention
of calculating the solution more quickly. All the test cases used in this thesis are using strong
scaling. If the scalability graph looks bad, there is no chance that the application is efficient
at scale, but even if the graph shows linear speedup, it might still be wasting half of the time
waiting in communications. The only way to a definite answer is to measure using a parallel
performance tool.

Clearly, drawing a simple scalability graph is just a first step in predicting application
performance at different scales or on different machines, there is a separate discipline called
performance modeling, which builds an elaborate model of the application performance, often
using detailed knowledge of the underlying algorithms and the architecture of the machine.
Performance modeling is usually applied to applications of high importance, as it requires
significant amounts of manual labor from specialized domain experts. Parallel performance
tools are also invaluable in the performance modeling process, both in the creation and the
validation of the performance model [50, 82, 40].

1.4.1 MPI measurements and metrics

Parallel performance tools measure specialized metrics beyond execution time. They use
the PMPI profiling interface [60], which is based on weak symbols pointing to the actual
implementation functions. By overriding the weak symbols with wrapper functions (e.g. by
library preloading), the tools get information about every MPI call, including the complete
argument list. The most important metrics obtained in this way include MPI communication
time, further broken down to Point-to-point communication time, Collective communication
time and Collective synchronization time; and some count-based metrics, such as Collective
communication count or Bytes transferred, to name a few examples. Some MPI applications
also use one-sided Remote Memory Access (RMA) operations or MPI file I/O and additional
metrics may be provided for them.

1.4.2 Profiling vs. tracing

Parallel performance analysis tools can be distinguished by the way they collect and store data
during measurement. The main categories are profiling and tracing tools, or combinations
thereof. Profiling tools accumulate aggregate information about the application’s execution,
immediately extracting the most important statistics from events on the fly. In contrast, tracing
tools collect every event into a large buffer and provide this very detailed data for post-mortem
analysis and/or visualization. These measurements can provide much more detailed analysis
than profiling tools, but they are generally harder to use properly due to limited buffer space
capacity and prohibitive file I/O costs. To summarize the differences:
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• Profiling is used to get a compact summary of the execution characteristics.

• Tracing is used to record all relevant performance events as they occur for detailed post-
mortem analysis.

Especially on present day supercomputers, memory space is becoming an increasingly scarce
resource. Experienced performance analysts would first take uninstrumented measurements
for reference at different scales, then take a first profile measurement and use it to fine-tune
parameters for subsequent measurements. Once the first low-overhead profiling measurements
are complete, they can decide if subsequent tracing measurements are necessary and/or
feasible.

TAU [79] is a typical profiling tool with an outstandingly large feature set. It is known for
early adaptation of new trends such as supporting JAVA, Python or GPU-based systems.

Vampir [68] is a trace collector with a powerful commercial trace visualizer component.
It allows the user to zoom into the collected event trace data and see how long certain
function calls or communications took, visualized using parallel timelines, as shown in
Figures 1.2 & 1.3. Messages between processes are shown using arrows between the send
and receive events in a quite intuitive way. Vampir is a great tool for exploring the details of
certain performance problems, but the performance analyst can quickly become a bottleneck
in the analysis process, as it is beyond human limits to grasp the meaning of visualizations
depicting thousands of processes each with millions of events.

This problem is partially resolved by the Scalasca profiling and tracing tool, which gets
rid of this performance bottleneck by automating the trace analysis. Parallel traces contain
such a huge amount of data that processing them serially is impractical even for a computer.
This is why Scalasca uses a parallel trace analysis that runs on the same number of cores
as the original application, thereby solving the scalability problem introduced by growing
process counts. As the analysis is replay-based, the analysis tool is roughly as scalable as
the application being analyzed, although it often runs somewhat quicker as it only has to
replay the communications but not the computation. It looks for higher level communication
inefficiency patterns, a typical example of which is Late sender time. It means that a process
started waiting on a message, but the timestamps in the trace of the sender process indicate
that the corresponding send call was not yet initiated.

As Scalasca is the tool we extended with additional features during this project, we introduce
it in somewhat more detail.

1.4.3 Scalasca toolset

Scalasca is an open-source toolset for scalable performance analysis of large-scale parallel
applications [90, 74]. It includes integrated runtime measurement summarization and event
tracing [94] with automatic trace analysis based on parallel replay [29], to ensure scalability
for long-running and highly-parallel MPI, OpenMP and hybrid applications.

When the Scalasca instrumenter is prepended to each of the application’s compile and link
commands, it produces fully-instrumented executables, exploiting the standard PMPI library
interposition interface, and function entry and exit instrumentation capabilities provided by
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most modern compilers. It is important to note that compiler-based instrumentation has a
potential for inhibiting certain compiler-based optimizations. A source preprocessor is also
provided for OpenMP pragma/directive and annotated region instrumentation (though not used
in this work). Manual annotation of significant code regions (e.g., initialization, phases) can
also be done using a macro-based user API.

Scalasca measurement collection and analysis is performed by a workflow manager that is
prefixed to the normal application-execution command line, whether part of a batch script or
interactive run invocation. Performance metrics such as execution time, message statistics,
and hardware counters are aggregated individually for every thread and call path encountered
during the entire program execution, creating a call-path profile, which merges the information
gained from the PMPI wrappers about the MPI calls and from user-code instrumentation about
the user call paths. Experiments with an instrumented executable can be configured to collect
runtime profiles and/or event traces (optionally including hardware counters [93]), with the
latter automatically analyzed with the same number of processes as used for measurement.
Whereas the former are needed to identify the most resource-intensive call paths in the
program, the latter can be used to identify call paths that exhibit a significant fraction of idle
time. The result of such a trace analysis is therefore similar in structure to a runtime call-
path profile but enriched with higher-level communication and synchronization inefficiency
metrics. Both summary and trace analyses are generated in the same profile format, which can
be interactively explored with the Scalasca analysis report explorer GUI (shown in Figure 1.4).
Command-line tools are also provided for processing analysis reports, for example to compare
measurements or produce filters for subsequent measurements (which we will describe later
in more detail). An overview of the Scalasca experiment workflow is shown in Figure 1.1.

The metrics collected during a profiling measurement of MPI applications are listed in
Table 1.1 (on page 16), with indentation representing the hierarchical relationship between
them. They are divided into a subset M = {M1, . . . ,Mm} that is directly measured and
another subset D = {D1, . . . , Dd} derived by later analysis (set in italic). The metrics
shown with white background are the most significant ones, whereas the metrics with gray
background are either not relevant for the techniques introduced here, or not appearing in our
measurements. For example, initialization and finalization of both the measurement system
and MPI are typically one-off expenses outside the primary computational loop that we are
trying to characterize. Optional hardware counter metrics and specific MPI metrics related
to file I/O, collective communication, etc., may not exist or be entirely zero-valued in certain
measurements. OpenMP-related metrics are also not used here, as the focus is on pure MPI-
based applications in this document.

Scalasca defines call paths as lists of visited regions (usually starting from the main function)
and maintained in a tree data structure. Thus, a new call path is specified as an extension of
a previously defined call path to the new terminal region. When a region is entered from the
current call path, any child call path and its siblings are checked to determine whether they
match the new call path, and if not a new call path is created and appropriately linked (to both
parent and last sibling). Exiting a region is then straightforward as the new call path is the
current call path’s parent call path. When execution is complete, a full set of locally-executed
call paths are defined, which are merged into a global set during program finalization, serving
as a basis for later call-tree visualizations.
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Instrumented
target

application

Measurement
library

Parallel
analysis

Local
event traces

Wait-state
report

Summary
report

Optimized measurement configuration

Figure 1.1: Schematic overview of the performance data flow in Scalasca. Grey rectangles denote
programs and white rectangles with the upper right corner turned down denote files.
Stacked symbols denote multiple instances of programs or files running or being processed
in parallel. The GUI shows the distribution of performance metrics (left pane) across the
call tree (middle pane) and the process topology (right pane).
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1.5 Motivation: Sweep3D

1.5 Motivation: Sweep3D

In our study [91] of the execution performance of the ASC Sweep3D [56] application on the
Blue Gene/P system in Jülich, we investigated a serious computational imbalance that severely
impacted scalability. The analysis of Sweep3D uncovered several interacting performance
patterns. Each iteration consists of several “sweeps”, each one sending data in one of the
eight possible diagonal directions in the application’s three-dimensional coordinate system.
These sweeps introduce a communication imbalance, as the processes receive data from their
neighbors in the order dictated by the current sweep direction. Furthermore, after four sweeps,
the fifth one goes in the exact opposite direction of the fourth sweep, which means that the
complete “sweep pipeline” has to be empty before the fifth sweep can start, it is not possible to
overlap those sweeps. Figures 1.2 & 1.3 show a 1024-process trace of a Sweep3D execution in
the Vampir viewer. Figure 1.2 gives an overview of the complete execution, while Figure 1.3
zooms in on a single iteration, iteration 8 (of twelve).

In the top part of the figure we see the timelines of a small subset of the processes, where
red means communication (MPI) and turquoise means computation. The above mentioned
imbalance caused by the sweep calls is clearly visible in these timelines. In the center of
the figure, the timeline view for process 0 shows two sweep function calls in this iteration.
This is because four logical sweeps are combined into a single sweep function call, so an
iteration contains only two sweep function calls and not eight. The lower part of the figure
shows the communication matrix. At first glance it might not look very informative, but
it actually gives us a lot of interesting information, including a first indication of another
important performance pattern. The process range between 608 and 639 is one column of the
two-dimensional process topology of the application which is responsible for computations in
a single plane in the three-dimensional logical coordinate system. The communication matrix
tells us that communication times are significantly higher in the middle part of this process
range, indicating that there might be an imbalance between the processes in the middle and
the processes on the edges.

Indeed, a look at the application’s two-dimensional grid topology in Figure 1.4 confirms this,
showing a clearly visible, well-defined imbalance pattern differentiating the a rectangular
region in the middle of the topology from the rest of the processes. Using manual source-
code instrumentation annotations we were able to isolate the origin to a serious workload
imbalance that only manifests in certain solver iterations. After adding macros to isolate
specific regions of the core sweep function, we found that the code region where corrective
‘fixups’ are applied is responsible for the imbalance. A lower number of fixup iterations was
necessary on the processes in an interior rectangular block of the logical topology than in other
processes, leading to the imbalance. The pattern is shown in the right panel of the screenshot
in Figure 1.4. Since input configuration specifies that fixup operations are only applied after
the seventh iteration, the major solver iteration loop in the inner function was annotated
with increasing values of the iteration variable its, each time defining a new region labeled
with the corresponding value of its, as seen in the call-tree panel (middle) of the screenshot
in Figure 1.4. The topology display in the screenshot provides a summary of the Exclusive
execution time in all iterations, while the bottom row shows the evolution of the same metric

9



1. INTRODUCTION

Figure 1.2: Vampir interactive analysis and visualization of an entire trace of a Sweep3D execution
on BG/P with 1024 MPI processes, showing master timeline view (top) with ‘thumbnail’
navigation panel, process timeline view (center) for process 0 showing the 12 iterations
of double sweep calls and execution time summary profile, and communication matrix
(bottom) showing average duration of nearest-neighbor communication.
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Figure 1.3: Vampir interactive analysis and visualization of imbalanced iteration 8 in trace of
Sweep3D execution on BG/P with 1024 MPI processes, showing master timeline view
(top) with ‘thumbnail’ navigation panel, process timeline view (center) for process 0
showing the double sweep calls and execution time summary profile, and communication
matrix (bottom) showing average duration of nearest-neighbor communication.
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1. INTRODUCTION

its=7 its=8 its=9 its=10

Figure 1.4: Execution time metric variation by iteration in a 16,384-process Sweep3D execution on
the Blue Gene/P (top, center), and computational imbalance evolution shown using the
logical topology for iterations 7 to 10 (bottom).

in iterations 7-10. Everything is balanced up to iteration seven, and the imbalance kicks in at
iteration eight, where the fixup operation is applied for the first time.

Drilling down deeper, more manual instrumentation was applied to distinguish the sweep
octants of the main solver core, that is, the eight subsequent sweep directions executed in
the core. Figure 1.5 shows the distribution of the Late Sender waiting time as a complement
to the distribution of pure computation time arising from the fixup calculations seen in
Figure 1.4. Under the GUI screenshot, the top row shows how the different octant sweeps
cause gradual changes in Late Sender waiting time corresponding to the specific sweep
directions in iterations with no fixup operations, while in the bottom row this pattern is clearly
superimposed with the imbalance pattern caused by the fixups, as shown in Figure 1.4.

It is clear that this kind of detailed information about specific iterations and sub-phases of
those iterations is generally useful and provides insight that would otherwise not be possible,

12
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Iterations without fixups:

Iterations with fixups:

octant=1+2 octant=3+4 octant=5+6 octant=7+8

Figure 1.5: MPI Late sender time metric variation by sweep octant in a 16,384-process Sweep3D
execution on the Blue Gene/P for initial 7 non-fixup and subsequent 5 fixup iterations (top)
and waiting time distributions for the octant pairs 1+2, 3+4, 5+6, 7+8 in computationally
balanced non-fixup (middle) and imbalanced fixup (bottom) iterations.
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1. INTRODUCTION

not only in this case, but also in many other applications. In general, as numerical simulations
model the temporal evolution of a system, their progress usually occurs via a series of discrete
points in time. According to this iterative nature, the core of such an application is typically
a loop that advances the simulated time step by step — the entire loop often preceded by
initialization and concluded by finalization procedures. However, the manual instrumentation
necessary to define separate regions for each iteration is too inconvenient for performance
analysts to follow this method regularly, even for a dozen iterations as seen in this example.
This makes a clear case for the necessity of support for iteration and phase-instrumentation
capabilities in our measurement system, which was implemented as part of this thesis project.
This now provides an easy-to-use API for applying such iteration instrumentation with as little
manual work as possible.

But creating the iteration instrumentation API was just the first step. It was not the first such
API ever designed, and certainly also not the last. The specific goal for its design was to
provide a wide range of possibilities for further experimentation on how to collect time-series
call path profiles in the most efficient way. So we started experimenting. Our studies of the
SPEC MPI2007 benchmark suite and other applications gave us reassurance and motivation
for digging deeper into the topic, proving that this simple technique can uncover a wealth of
new and relevant data about the time-dependent performance behavior of HPC applications.
As we will see in Chapter 3, there is a wide range of non-trivial performance patterns that can
only be observed by taking the time dimension into account.

However, the new technique presented us with new challenges along with the new oppor-
tunities. The memory and disk space requirements of time-series profiling measurements
grew linearly with the number of iterations, which could easily reach thousands or more in
many cases. In order to reduce these requirements, a new on-line, lossy, clustering-based
compression algorithm was developed, taking advantage of the inherent redundancy in the
generated time-series profiles. While the compression is lossy, meaning that not all metric
values can be reconstructed exactly, our evaluations show that the algorithm provides a good
(and configurable) tradeoff between compression quality and resource utilization. Moreover,
the algorithm provides certain problem-specific guarantees, the most important being that the
call tree structure of every iteration can be reconstructed exactly, even if different iterations
sometimes have different call trees.

Another important issue we needed to resolve was the excessive measurement dilation caused
by the standard compiler-based instrumentation of Scalasca in a certain class of user codes.
Specifically, we found that the overhead of measuring codes with a large number of small
function calls, such as C++ operators was overwhelming. The DROPS C++ application —
which we will introduce later in more detail — ran more than 90 times slower with our
measurement system, and even after applying aggressive filtering to reduce the overhead, it
was still more than three times slower than the uninstrumented version. To enable our users
to take meaningful measurements of this class of applications, we had to come up with a
new measurement method. Sampling is the well-known alternative to direct instrumentation.
The performance analyst has more direct control of the measurement overhead when using
sampling, so it was a reasonable solution for our measurement dilation problem. However,
sampling only provides statistical data, and does not provide detailed communication metrics,
such as number of messages sent or bytes transferred. As having exact and full information
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1.5 Motivation: Sweep3D

about communication behavior is one of the main goals of taking a Scalasca measurement,
and also imperative for our compression algorithm to function properly, a hybrid solution
was developed. The new measurement technique uses direct instrumentation for measuring
communication events and sampling for the rest of the execution. While integrating data com-
ing from the two kinds of sources simultaneously proved to be challenging, after overcoming
some initial problems we were able to create a powerful new hybrid measurement technique,
integrating the best capabilities of both sampling and direct instrumentation.

Moreover, we adapted the compression algorithm to the new challenges presented by the
hybrid measurement technique. In these measurements, only the data about the communi-
cation part of the execution is guaranteed to be exact, the rest is only statistical. For this
reason, the comparison rules in the call-tree structure comparison methods of the algorithm
had to be relaxed, to accommodate the new kind of data. With the synthesis of these new
measurement techniques, a new, significantly more powerful measurement system has been
developed, combining robustness, low overhead, and a range of opportunities to gain new
insight into the performance behavior of present day HPC applications.

The rest of the document is structured as follows: Chapter 2 introduces a study of a represen-
tative set of MPI applications using existing Scalasca capabilities, providing the foundations
for our later evaluations. This study is followed by the detailed description and evaluation of
our main contributions:

• The implementation and evaluation of time-series profiling based on iteration-instrumentation
in Chapter 3, finding a wide range of non-trivial patterns in the time-dependent behavior
of our test applications.

• The design of a novel on-line compression algorithm developed to reduce the memory
footprint of time-series profiles is described and analyzed in Chapter 4.

• A hybrid measurement method combining the advantages of both sampling and direct
instrumentation is discussed in Chapter 5. It achieves low-overhead measurements while
still collecting enough information for our compression algorithm to function properly.

• An implementation that integrates the on-line compression algorithm with the hybrid
sampling-based profiling method, with specific adjustments in the compression algo-
rithm to fit the new, less deterministic input data is evaluated in Chapter 6.

Finally, Chapter 7 reviews related work not covered in the introduction and Chapter 8 presents
the conclusion and future work.
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Table 1.1: Summary metrics collected and derived by Scalasca.
Category Metric
Time Total

Measurement overhead
Execution

MPI
MPI init/exit
MPI synchronization

MPI collective synchronization
MPI one-sided synchronization

MPI one-sided active-target synchronization
MPI one-sided passive-target synchronization

MPI communication
MPI point-to-point communication
MPI collective communication
MPI one-sided communication

MPI file I/O
MPI collective file I/O

OpenMP
OMP flush
OMP thread management . . .
OMP thread synchronization . . .

Idle threads
Limited parallelism

Computational imbalance . . .
Counts Call path visits

MPI synchronizations
MPI point-to-point synchronizations

MPI point-to-point send synchronizations
MPI point-to-point receive synchronizations

MPI collective synchronizations
MPI one-sided synchronizations

MPI one-sided fences
MPI one-sided GATS epochs

MPI one-sided access epochs
MPI one-sided exposure epochs

MPI one-sided locks
MPI one-sided pairwise synchronizations
MPI communications

MPI point-to-point communications
MPI point-to-point send communications
MPI point-to-point receive communications

MPI collective communications
MPI collective communications as source
MPI collective communications as destination
MPI collective exchange communications

MPI one-sided communications
MPI one-sided puts
MPI one-sided gets

MPI bytes transferred
MPI point-to-point bytes transferred

MPI point-to-point bytes sent
MPI point-to-point bytes received

MPI collective bytes transferred
MPI collective bytes incoming
MPI collective bytes outgoing

MPI one-sided bytes transferred
MPI one-sided bytes sent
MPI one-sided bytes received

MPI file operations
Individual MPI file operations

Individual MPI file read operations
Individual MPI file write operations

Collective MPI file operations
Collective MPI file read operations
Collective MPI file write operations

Hardware counters (optional)
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Chapter 2

Experimental Setup

2.1 Introduction

This chapter gives an overview of the different application codes used throughout the dis-
sertation for testing and evaluating the newly introduced techniques. An extended, more
comprehensive set of initial measurement results is provided in Appendix A for reference,
using standard capabilities of the Scalasca measurement system.

While Scalasca has two main modes of operation, runtime summarization (aka profiling) and
trace collection and subsequent automatic trace analysis, this work expands upon the more
basic summarization mode, so no trace measurement results are shown here. This does not
mean that the techniques introduced here are generally incompatible with tracing. In Chapter 3
we show how iteration instrumentation is used in tracing measurements.

Furthermore, iteration instrumentation can be used in our implementation to direct tracing to a
given subset of the iterations (selective tracing). The intended use case for this kind of selective
tracing is that the user identifies the most relevant iterations using a profile measurement
combined with iteration instrumentation, and then collects a trace of only those selected
iterations, thereby decreasing the measurement’s memory footprint.

Based on past experience, we can safely assume that the largest computers currently on Earth
will be lagging behind the leaders in two years and history in 4-5 years. It is therefore
no wonder that a range of machines was used in the past years to evaluate our techniques,
including an IBM Power 4 and a Power 6 system both called JUMP, the Blue Gene/L system
JUBL, the Blue Gene/P system JUGENE and several x86 64-based systems, most prominently
JUROPA. See Table 2.1 for details. All of the listed machines were main production systems
of the Jülich Supercomputing Centre (JSC) at some point. For clarity and better comparability,
we present all our results on the JUROPA and JUGENE systems, which are the main workhorses
of the Jülich Supercomputing Centre at the time of this writing.

The results presented here cover the SPEC MPI 2007 2.0 benchmark suite [83, 66, 64, 65]
with its 18 benchmark codes as well as the DROPS computational fluid dynamics code [37]
developed at RWTH Aachen and the PEPC coulomb-solver [34] developed at Jülich Super-
computing Centre. The PEPC code is used as a challenging real-life example in Section 3.3,
while the DROPS code is used in a similar role in Section 5.3.

Benchmark suites are commonly used for parallel performance tools studies, such as the
evaluation of the Vampir trace collection and visualization toolset with the 13 applications
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2. EXPERIMENTAL SETUP

Table 2.1: Characteristics of the JSC computer systems used.
JUMP 4 JUMP 6 JUBL JUGENE JUROPA/HPC-FF

Vendor IBM IBM IBM IBM Sun/Bull
Type SP2 p690+ p6-575 Blue Gene/L Blue Gene/P Constellation
Processors Power 4+ Power 6 PowerPC 440 PowerPC 450 Xeon X5570
” manufact. IBM IBM IBM IBM Intel
” frequency 1700MHz 4700MHz 700MHz 850MHz 2930MHz
” bitness 32/64 32/64 32 32 64
Racks 41 1 8 72 24
Nodes/rack N/A 14 1 024 1 024 137
Procs/node 16 16 1 1 2
Cores/proc 2 2 2 4 4
Cores 1 312 448 16 384 294 912 26 304
Mem./node 128GB 128GB 0.5GB 2GB 24GB
Mem./core 4GB 2GB 0.25GB 0.5GB 3GB
Agg. memory 5.2TB 1.8TB 4.1TB 144TB 79TB
Filesystem GPFS GPFS GPFS GPFS Lustre
Op. system AIX5.3 AIX5.3 CNK & SLES9 CNK & SLES10 SLES11
Compilers XLC8,XLF10 XLC10, XLF12 XLC8, XLF10 XLC9, XLF11 Intel 11
MPI POE 4.2 POE 5.1 BG-MPICH1 BG-MPICH2 ParaStation 5.0
Switch HPS N/A Blue Gene/L Blue Gene/P Sun Data Center
Networks N/A 10Gbps Eth., 3D torus, 3D torus, Fat Tree

Infiniband, Global tree / Global tree / Infiniband QDR
1Gbps Eth. coll. netw., coll. netw.,

barrier netw., barrier netw.,
1Gbps Eth. 10Gbps Eth.

LinPack Rpeak 8.9TF 8.4TF 45.9TF 1002.7TF 308.3TF
LinPack Rmax 5.6TF N/A 37.3TF 825.5TF 274.8TF
Top500 first #21 N/A #8 #3 #10
Top500 curr. N/A N/A N/A #9 #23
Prod. start Feb-04 May-08 Jul-05 Feb-08 Aug-09
Prod. end Jul-08 Jan-10 May-08 N/A N/A

of the SPEC MPI benchmark suite and the ompP profiler with the 11 applications of the
SPEC OpenMP benchmark suite [22], or the evaluation of ScalaTrace using the NAS Parallel
Benchmarks.

While the SPEC MPI benchmark codes are derived from real-world applications, we also
present some actual real-world application studies where we were able to provide new insight
into the performance characteristics of important applications using the techniques introduced
in this work, contributing to substantial improvement in the performance of the PEPC code,
and to the first high-quality, low-overhead performance measurements of the DROPS code,
which a number of tools including the released version of Scalasca previously were unable to
provide [48].

2.2 Experiment configuration

Version 1.0 of the SPEC MPI2007 benchmark suite [83, 66] was released in June 2007 to
provide a standard set of MPI-based HPC application kernels for comparing the performance
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2.2 Experiment configuration

of parallel/distributed systems’ hardware, operating system, MPI execution environment and
compilers. This initial release includes 13 applications and a medium-sized ‘mref’ reference
dataset (MPIm2007) for benchmarking runs requiring up to 2GB of memory per process and
configurable for up to 512 processes. As the benchmarks are configured for strong scaling,
that is, solving the same problem size at different process counts, their running times became
very short at larger scales, limiting the value of studying the performance at those scales.

This problem was partially remedied with the release of version 2.0 in February 2010 and the
introduction of the large-sized ‘lref’ reference dataset, which scales up to 2048 processes,
provides much better scalability and more reasonable run times at larger scales. Version
2.0 introduced one new application (125.RAxML) and updated versions of four applications,
bringing the total count to 18 benchmark codes.

Table 2.2 summarizes the 18 benchmark codes of the MPI2007 suite as well as the PEPC
and DROPS codes, showing that they derive from a wide variety of subject areas and are
implemented using a representative cross-section of programming languages (C/C++/Fortran,
often combined). As a convention, the SPEC MPI applications that only have an ‘mref’
medium sized dataset are shown with a grey background. From the MPI usage breakdown
in the table, it can be seen that a variety of MPI functions are used at many locations (‘sites’)
in the source code, however, performance analysis can concentrate on the smaller number of
communication and synchronization functions (shown as c&s/used ‘funcs’) and the distinct
program call-paths on which they are actually executed during benchmark runs (‘paths’).

2.2.1 Initial measurements

We compile the SPEC MPI codes with the Intel 11.1 compilers and run them with ParaStation
MPI 5.0 on the JUROPA system. The DROPS code is also evaluated using the same machine
configuration, while we make an exception with the PEPC code and evaluate it using the IBM
Blue Gene/P system JUGENE, the system where it is regularly used in production runs.

There were some compile/link/run-time issues with some of the applications using the Intel
11.1 compilers. In these cases we resolved the issues by falling back to the Intel 11.0
compilers in some cases, or progressively removing aggressive optimizations in others, until
a viable application executable was produced. This is a typical procedure for SPEC MPI
benchmarking, though we were not aiming to strictly follow SPEC benchmarking rules. Full
optimization of the code and run-time environment were neither essential nor particularly
desirable for our purposes, as the study is focused on ‘typical’ application performance in a
representative HPC environment rather than on benchmarking.

The scalability of the applications in our test suite is shown in Figure A.1, on page 143.
The programs generally exhibit good scalability for fixed problem sizes: 1024-process
runs complete in a few minutes in most cases, although the scalability of 142.dmilc and
128.GAPgeofem is poor after 256 processes. We prefer longer measurement runs since run-
to-run variation of several seconds (e.g., due to use of the shared file system) complicates
performance comparisons. Thus, we focus on the 256-process executions.
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Figure 2.1: Measurement overhead percentage for executions with compiler instrumentation of all
user-level source routines (also employing filtering) with call-path profiling, and basic
PMPI-only routine profiling.

With this processor count, we measure each code three times and observe under 5% run-to-run
variation in most cases. However, some executions took considerably longer than the average.
To reduce the impact of this variability, we use the fastest of the three runs as the reference
time for an uninstrumented execution, which we compare to the fastest runs with Scalasca to
assess measurement overheads.

The measurements employ the Scalasca measurement library in its default runtime summa-
rization mode, which produces an analysis report that integrates call-path profiles from each
process. The measurements include a full complement of wrappers for MPI routines, enabling
capture of MPI Init and MPI Finalize and all other MPI events according to its runtime
configuration.

If the user chooses to disable compiler-based instrumentation, the Scalasca measurement
library is simply linked into the executable, including all MPI wrappers. This provides the
most basic Scalasca measurement possible, consisting only of a (flat) profile of MPI routines.
We expect this measurement to have the lowest overhead, providing comprehensive MPI
communication and synchronization statistics, albeit without call-path contexts. The rightmost
(blue) set of bars in Figure 2.1 shows that, while 143.dleslie execution took 3.5% longer
than the uninstrumented reference, the other applications (including DROPS) were dilated
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2. EXPERIMENTAL SETUP

less than 1%, confirming the low overhead of basic PMPI profiling with Scalasca. While
unnecessary for these applications, we could disable groups of MPI events if required to reduce
measurement overhead further.

Figure 2.1 gives an overview of Scalasca measurement dilation in the different basic measure-
ment modes. Only those SPEC MPI applications with ‘lref’-sized datasets are included here,
as ‘mref’-sized datasets are generally too small to be relevant at the 256-process scale we
use for evaluation. The red bar shows dilation percentage using the PMPI profiling interface
combined with compiler instrumentation for user function entry and exit events.

Given that we consider any measurement with dilation above 15% (red line) to be seriously
perturbed for our current purposes, overhead ratios shown in this graph for around half of the
applications are unacceptable. High measurement overheads are a common problem among
parallel performance systems [48], and care must be taken when applying the Scalasca (or any
other) measurement system to measure the performance characteristics of any application. Just
taking a measurement without any precautions and naively assuming that it is representative
of the actual application execution behavior is dangerous. This is perhaps the most important
rule of performance analysis tools, and users must be trained to be aware of this fact. A
wide variety of techniques have been developed to circumvent these problems and bring the
measurement dilation down to acceptable levels (preferably under the green line at 5%) in as
many cases as possible. In some cases quite simple methods suffice, while in others more
complex or manual solutions have to be employed to fine-tune the measurement [27, 67].

A simple way of reducing overhead is to turn off compiler-based instrumentation entirely
and rely solely on PMPI wrappers. As the blue bars in the figure show, it reduces overhead to
essentially negligible levels in nearly all cases. Turning off all compiler-based instrumentation
is certainly an effective way of reducing overhead, but it causes significant losses in the
amount of information our measurement is able to extract from an execution. While the
counts and timings of MPI operations are collected, without instrumentation of the user source
routines making the MPI calls, it is not possible to resolve which calls from which part of the
application are most critical to overall performance. In some cases this amount of information
is enough to get an idea of the application’s performance characteristics. In other cases, we
need more, and we need to use more elaborate methods.

Excessive measurement dilation is usually caused by small, generally not very important
functions which are called extremely frequently. As the measurement system is called and
records every entry and exit to all of these functions each time they are called, these small
functions can easily have devastating effects on measurement overhead. A semi-automatic
method of dealing with these functions is run-time measurement filtering. Based on the
initial measurement we use a post-processing tool that generates a list of the functions in
the measured application in decreasing order of visit counts. Furthermore, it also lists the
relative time spent in each function. The ones with high visit count and low time values are
the best candidates for filtering. The tool also marks every function as belonging to different
categories, based on what call paths they appear on [73, 75]. We refer to these call-path
categories often in the rest of the document:

• MPI call paths are calls to MPI functions.

• COM call paths call MPI call paths directly or indirectly.
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2.2 Experiment configuration

• USR call paths do not call MPI or COM call paths, neither directly nor indirectly.

Functions appearing on COM or MPI call paths should not be filtered, as we generally want
to be able to differentiate between calls to the same MPI function from different call paths.
USR functions — especially the ones where very little time was spent — can safely be filtered
as they usually do not have an immediate impact on our understanding of the communication
characteristics of the application. USR functions are useful for understanding the performance
characteristics of local computations and probable causes of workload imbalances, but small,
frequently called functions would introduce too much dilation and contribute too little to the
understanding to justify keeping them.

By ignoring entry and exit events of these functions, overhead can be substantially reduced
while not losing too much valuable information. The time spent in the filtered functions
will not be lost to our measurement, it will show up in their respective parent call paths,
as if they were inlined into their calling functions. The green bars in the figure show that
(runtime) filtering is a good compromise between the two extremes, bringing the dilation
to acceptable levels in nearly all cases. 122.tachyon and DROPS still show very significant
overhead. In these cases instrumented events appear so frequently that simply making the
run-time decision to ignore them takes too much time. In these cases, more labor-intensive
solutions are available, like selective instrumentation (aka static filtering). In Chapter 5 we
will look at some alternative methods of reducing measurement overhead while still collecting
detailed performance measurements.

Table 2.3 shows application execution characteristics determined from the 256-way Scalasca
runtime summarization experiments. Application programs are seen to typically consist
of hundreds to thousands of global timesteps or solver iterations, with the farming-based
122.tachyon being an exception. Although 130.socorro only does 20 iterations, it has by
far the most complex call-tree of all SPEC MPI applications. The deepest call tree is that of
125.RAxML , which has MPI calls as deep as 36 levels from the root. The largest and most
complex call tree is that of DROPS , which is also the application that uses the widest selection
of MPI calls. DROPS was specifically selected for this purpose, to evaluate our methods on
an extraordinarily complex C++ application.

The memory usage data of the applications shows that most applications have relatively
modest memory requirements at the 256 process scale, in the 50-300MB range, with some
as high as 600-1000MB per process. Also, the average and maximum memory consumption
of the processes roughly match in most cases, indicating that all processes are doing similar
work, with the exceptions 126.lammps , 147.l2wrf2 and DROPS , which show significant
differences. In most cases this is because the master process does some additional processing
which requires more memory.

Although this work is not about the tracing capabilities of Scalasca, trace buffer usage is a
good measure of the effectiveness of a filter, so we included trace buffer-related metrics in
this table. The trace buffer usage of a measurement is roughly proportional to the number of
events recorded during measurement, a good indicator of the event frequency, which in turn
is strongly related to the measurement dilation level. Where the trace buffer usage is low, the
measurement dilation can also be expected to be low.
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2.2 Experiment configuration

As the table shows, in many cases the trace buffer would require gigabytes or even hundreds
of gigabytes of memory without filtering, which can be reduced to much more realistic levels
(in many cases to just a few megabytes) by filtering out a handful of functions, usually less
than a dozen. In the case of DROPS , we filtered out every user function not on a call path to
MPI calls, but we still encountered very significant overhead.

Note that in the max individual/total unique call paths column of Table 2.3 there are contra-
dicting numbers shown for DROPS, the individual number being higher than the maximum
number. This is due to bugs in the Intel C++ compiler instrumentation of routines. These
bugs cause multiple routines to have incomplete or missing names, and after unification of
call trees these are no longer distinguished. While the presence of such errors is a nuisance,
by automatically marking the occurrences of these anomalies in the call tree we were able to
reduce the impact of these bugs to a negligible level.
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Chapter 3

Performance Dynamics

In this chapter we build on the concept of phase-based performance characterization. There
are several, slightly different definitions for phases in the literature, which we discuss later
in Section 7.1. In our definition, the execution of a program can be naturally divided into
phases, which form the building blocks of its performance behavior. Since phases have
different execution characteristics and may react differently to external stimuli such as the
change of the execution configuration or of the input problem, it seems reasonable to analyze
their performance behavior independently instead of looking at the execution only as a whole.
While phases provide a general concept to represent arbitrary logical and runtime aspects
of the computation, our approach concentrates only on major timestep loop iterations to
allow comparisons between execution intervals that occur on the same logical level. With
this method we build on the fact that applications tend to be iterative in nature, repeating
roughly the same sequence of operations until some stoppage criterion is fulfilled. This can
be convergence to a final result or reaching the end of the simulated time interval (in time-
stepping loops). Moreover, applications often have a single main iterative loop, where the
majority of the work is done and most of the execution time is spent. Later we will show an
example where this latter assumption does not hold, the 142.dmilc application, where there are
five distinct phases of execution, each having their own main loop, and significant amounts of
execution time spent in each of those phases. This special case, while not impossible to handle
correctly, falls beyond the scope of this thesis.

As we have seen in Section 1.5, going beyond standard summaries of a complete execution,
and comparing performance phenomena occurring in separate iterations has great potential
for providing new and interesting insight into application behavior. In particular, performance
behavior may vary between individual iterations, for example, due to periodically re-occurring
extra activities [51] or when the state of the computation adjusts to new conditions in so-called
adaptive codes [80]. Motivated by such examples, a source-code instrumentation API was
implemented that provides a straightforward way for collecting data from iterations separately.
An example of the code necessary for marking the main iterative loop of an application is
shown in Listing 3.1. The macro and variable names used in the instrumentation all start with
“epik ” or “EPIK ”, the name of the measurement system. In the most straightforward case
iteration instrumentation could be as simple as marking the beginning and the end of the body
of the main loop (see the lines referring to epik phase iteration). In this figure, we
introduced some additional phases to separate the initialization and finalization part of the
execution from the core part, but the necessary source-code instrumentation is still less than
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3. PERFORMANCE DYNAMICS

Listing 3.1: Typical example of manual iteration instrumentation in C source code.

1 / / i n c l u d e u s e r i n s t r u m e n t a t i o n h e a d e r
2 # i n c l u d e ” e p i k u s e r . h ”
3
4 i n t main ( i n t a rgc , c h a r ∗ a rgv [ ] ) {
5 i n t e p i k p h a s e s e t u p , e p i k p h a s e c o r e ;
6 i n t e p i k p h a s e f i n a l i z e , e p i k p h a s e i t e r a t i o n ;
7
8 / / s t o r e t h e phase i d i n t h e v a r i a b l e and p r o v i d e name
9 EPIK PHASE REGISTER ( e p i k p h a s e s e t u p , ”SETUP” ) ;

10 EPIK PHASE REGISTER ( e p i k p h a s e c o r e , ”CORE” ) ;
11 EPIK PHASE REGISTER ( e p i k p h a s e f i n a l i z e , ”FINALIZE” ) ;
12 EPIK PHASE REGISTER ( e p i k p h a s e i t e r a t i o n , ”ITERATION” ) ;
13 EPIK PHASE START ( e p i k p h a s e s e t u p ) ;
14
15 / / s e t u p and i n i t i a l i z a t i o n r o u t i n e s
16 . . . ;
17 EPIK PHASE END ( e p i k p h a s e s e t u p ) ;
18 EPIK PHASE START ( e p i k p h a s e c o r e ) ;
19
20 / / main loop
21 f o r ( i =0 ; i <100; i ++) {
22 EPIK PHASE START ( e p i k p h a s e i t e r a t i o n ) ;
23 / / main loop c o n t e n t s
24 . . . ;
25 EPIK PHASE END ( e p i k p h a s e i t e r a t i o n ) ;
26 }
27 EPIK PHASE END ( e p i k p h a s e c o r e ) ;
28 EPIK PHASE START ( e p i k p h a s e f i n a l i z e ) ;
29
30 / / f i n a l i z a t i o n r o u t i n e s
31 . . . ;
32 EPIK PHASE END ( e p i k p h a s e f i n a l i z e ) ;
33 }
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20 lines. Compared to the size of the codes we are typically analyzing, this is negligible. Also,
in optimal cases we are working together with the application developers who can easily point
out the main loop of the application in a matter of minutes, but even when not having access to
application developers our experience shows that finding the main loop of an application based
on the visit counts (number of calls on each call path) seen in a standard Scalasca measurement
is quite straightforward and usually does not take more than an hour.

To clarify our usage of these two important terms in the rest of the document:

• Phase refers to the execution of a specific part of the application source code, whose
instances constitute a contiguous interval in time during execution.

• Iteration refers to a single execution instance of a repetitively executed phase. In the
code it is typically the body of a loop structure.

Note that it may be expected that marked phases and iterations appear the same number of
times at the same part of the call tree on every process. This is an intuitive expectation from
the user’s point of view, but this is neither required nor guaranteed by our infrastructure. In
most cases it is true, but this only depends on the application being measured.

It is also interesting to note that unlike some other tools [58], we don’t differentiate between
phases and iterations in the marker API, we use a single kind of marker for both cases.
By default, we handle everything in the same way, so if they are executed repetitively, all
instances will be collected separately. If the user needs fine-grained control over collecting
every instance of certain marked regions separately and aggregating others, this capability
is provided through a runtime configuration file. The advantage of this approach over using
different kinds of markers in the API is that there is no need to recompile and relink the
application in order to change the measurement configuration. We gain greater flexibility at
the cost of negligible runtime overhead.

For evaluation purposes, we looked at each application of our test suite, and for those
with identifiable repetitive phases, corresponding to global timesteps or solver iterations, we
inserted this additional source-code instrumentation. This kind of instrumentation was only
applied to the applications that provide a large reference dataset, as we needed reasonably
long run-time at the scale of 256 processes for our evaluation. Also, most of the applications
that only had a medium reference dataset were simply older versions of benchmarks that had a
large reference dataset, so using both would have been duplicate usage of essentially the same
benchmark. Manual iteration instrumentation was possible for all except 122.tachyon which
is based on a task-farming parallelization. In the case of 142.dmilc , which has a complex
structure of nested loops and branches, we instrumented the most significant loop, which still
only takes around 20% of the overall execution time. As Table 3.1 shows, the overhead of this
additional instrumentation during measurement is in most cases sufficiently low. It is mostly
at the same level as the run-to-run variation between executions of the same application.

Here we introduce a formal definition of these time-series profiling measurements to ensure
clarity in our discussions later on. Let C be the set of call paths reached from within
the timestep loop body (those outside can be ignored because they are irrelevant to draw
comparisons between iterations), I the set of loop iterations, P the set of application processes,
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3. PERFORMANCE DYNAMICS

Table 3.1: Test applications’ execution wall-clock times in seconds and relative execution times at
different instrumentation levels.

Instrumentation
Without With With filtering

Application code None filtering filtering & iterations
121.pop2 461 103.7% 101.1% 102.0%
125.RAxML 630 121.8% 100.6% 103.8%
126.lammps 574 104.4% 102.3% 101.9%
128.GAPgeofem 575 103.1% 104.0% 104.2%
129.tera tf 281 131.0% 126.0% 126.3%
132.zeusmp2 247 100.8% 100.8% 103.2%
137.lu 269 100.7% 101.1% 101.1%
142.dmilc 186 149.5% 104.3% 115.1%
143.dleslie 251 106.0% 102.0% 105.6%
145.lGemsFDTD 326 112.3% 99.7% 99.7%
147.l2wrf2 867 119.4% 115.1% 115.1%
DROPS 5841 9493.7% 202.6% 202.3%
PEPC 12836 136.8% 105.4% 106.1%

and M the directly measured metrics among the ones listed in Table 1.1. Then we can define
a time-series call-path profile as a mapping

t : (c, i, p) �→ �m

which maps a call path c ∈ C, an iteration i ∈ I , and a process p ∈ P onto a vector of
metric values �m ∈ M1 × . . . × Mm (e.g., the time and visit count values of thread t in call
path c while executing iteration i). Note that the derived metric values are implied in this
definition. The process dimension P can be omitted when considering the data of only a
single process, which will often be the case, for example, in Chapter 4, as the compression
algorithm introduced there is a purely process-local operation.

3.1 Analysis methods

The variety of different analysis techniques made possible by iteration instrumentation is
illustrated here through the example of the SPEC MPI application 132.zeusmp2. The iteration-
augmented call-path profiles can be analyzed in several ways. The most common methods are
listed below, and illustrated in Figure 3.1.

• The Scalasca analysis report explorer, a multidimensional tree browser [25] that allows
a user to interactively explore the entire performance space spanned by mapping t
including the derived metrics and, in particular, to examine the performance behavior of
individual call paths (Figure 3.1(a)).

• 2-dimensional iteration graphs, which for each iteration (x-axis) show the maximum,
median, and minimum values of a given metric (y-axis) calculated from all processes
(Figure 3.1(b)).
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3.1 Analysis methods

• Value maps, which display the value of a given metric color-encoded as a rectangular
block in a 2-dimensional grid with the x-axis representing iterations and the y-axis
representing processes (Figure 3.1(c)). There are several coloring modes available, such
as linear gradient between the minimum and maximum values, linear gradient between
0 and the maximum value, or histogram-equalized coloring for maximum contrast.

Figure 3.1(a) illustrates the use of the standard Scalasca analysis report explorer GUI with an
iteration-instrumented profile measurement. From the metric pane in the left tree the Exclusive
execution time metric is selected. The term exclusive means that we only include the value
at this level of the metric hierarchy, as opposed to inclusive, where the values of all the sub-
metrics would also be included. In this particular case, exclusive execution time means pure
computation time, while inclusive execution time means the overall execution time, including
computation and all kinds of communication time. In the middle pane the dynamic call tree
of the application includes the iterations of the main loop. Each iteration can be analyzed
individually, by expanding its call tree and looking at the performance characteristics of its
individual call paths.

An example of this is iteration 100, shown here with an expanded call tree. In this case we
found that most Exclusive execution time is spent in the function hsmoc , 101.75 of the
overall 271 seconds aggregated from all 512 processes. However, iteration 100 is selected
in the middle pane, which means that the overall Exclusive execution time of that iteration
is displayed for each process in the right pane. As 132.zeusmp2 is one of the applications
that uses MPI Cart create to set up a virtual process topology, Scalasca was able to
automatically capture this call and present us with the virtual topology view here in the GUI.
The color of each square indicates the metric value of the corresponding process in the three-
dimensional, 8x8x8 topology. The color scale is shown at the bottom of the window, the
yellow end of the spectrum representing low values and the red end representing high values.
The highest computational load is found in a spherical region in the middle of the topology,
and the values become lower as the distance from the middle grows. 132.zeusmp2 simulates
a blast, which takes place in the center region. Thus, it is safe to assume that the processes on
the edges are just taking care of the boundary conditions while the main problem is actually
focused in the middle, with correspondingly higher computational workload. This is clearly an
important source of workload imbalance, which is likely to deteriorate performance at scale,
as the processes with less workload will always finish earlier and have to wait for the others
at synchronizing communication calls. More detailed analysis of the workload imbalance in
132.zeusmp2 is available in [10].

Figure 3.1(b) should be interpreted as follows: The horizontal axis identifies the iterations,
whereas the vertical axis corresponds to the metric values in those iterations. The metric used
here is Exclusive execution time. Green, blue and red bars show the minimum, average and
maximum values, respectively across all processes in the given iteration. For 132.zeusmp2 the
minimum and the average values are both constant over time, the average being 0.53 seconds
per iteration for all but the first iteration that takes slightly longer. This indicates that most
processes are likely to have a constant workload, which is generally a good sign. In contrast,
the red part of the graph shows that one or more processes take progressively more time,
growing from 0.55s initially to 0.61s at iteration 200.
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(a) Scalasca analysis report explorer with Exclusive execution time metric selected (left pane). The call tree of
iteration 100 is opened up for inspection and selected in the call-tree in the middle pane, with its values displayed
in the application’s 8x8x8 virtual process topology on the right.
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(b) Exclusive execution time iteration graph with
maximum (red), median (blue), and minimum (green)
values.
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(c) Exclusive execution time value map with the red
end of the color spectrum indicating higher values
(i.e., 0.61 seconds).

Figure 3.1: Different ways of analyzing a 512-process iteration-instrumented 132.zeusmp2 experi-
ment.
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3.2 Temporal patterns

We get a better understanding of the situation by examining Figure 3.1(c). This color-coded
value map is based on the same data as Figure 3.1(b), it is just a different view. The horizontal
axis still identifies the iteration number, but the vertical axis corresponds to the process rank.
For a given iteration-rank pair, the corresponding color on the chart shows the metric value
using a linear scale from the minimum to the maximum value of any process in any of the
iterations i.e. 0.52 to 0.61 seconds. The darker the color, the higher the value. The MPI ranks
corresponding to the sphere in the middle of the topology as seen in Figure 3.1(a), are the
horizontal dark lines in the chart, whereas the yellow background color corresponds to the
ranks closer to the edges. In line with our observations from Figure 3.1(b), the workload on
the processes further away from the center is relatively constant, while the progressive growth
seen in the maximum (red) part happens on the processes in the central region of the virtual
topology, which means that the workload imbalance gets worse over time.

While we have only shown the analysis of a single metric of 132.zeusmp2 here, the power of
iteration instrumentation is already clear from this example. We used 512 processes here to
get a more insightful, 8x8x8 topology, as opposed to the 8x8x4 used in the 256-process case.
However, from here on all analysis of the SPEC MPI applications will use 256 processes.

3.2 Temporal patterns

Figure 3.2 gives an overview of the Inclusive execution time metric of the 11 SPEC MPI appli-
cations where we instrumented iterations. Some classes of behavior can already be identified
from this very coarse overview, such as 129.tera tf and 132.zeusmp2 both showing a gradual
increase in iteration time, or 126.lammps, 137.lu, 142.dmilc, 143.dleslie and 147.l2wrf2 all
showing a relatively flat baseline with periodic peaks at the same time on all processes.
121.pop2 seems similar but not quite as flat in the baseline. After more detailed analysis
we see that despite the very similar behavior seen at this level of examination the underlying
performance characteristics vary significantly among these applications. Appendix B provides
a detailed description of the temporal patterns along with a relevant set of supporting graphs
and charts for each application.

3.3 Case study: PEPC

PEPC [34] is a 3-dimensional particle simulation code which employs a hierarchical, parallel
tree algorithm implemented using MPI to compute the forces on the particles. The code is
presently used for various applications in plasma physics and astrophysics. According to the
author of the code, the version of the code we analyzed had potential bottlenecks in the domain
decomposition routine, tree construction and tree ‘walk’, the last of which requires significant
point-to-point communication of multipole information between processors, and is thereby
sensitive to load imbalance. At the time of our study they did not know what exactly caused
the bottleneck, and our study played an important part in their understanding of the problem.
Since then a new version of the code has been developed, which overcomes these problems,
partially due to the insight gained by our analysis.
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Figure 3.2: Iteration inclusive execution time maps of the test applications.
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3.3 Case study: PEPC

In this study [86], PEPC was analyzed using the extended version of Scalasca providing the
additional capability of iteration instrumentation. This means that after manually identifying
the main time-stepping loop of the application and inserting markers around the loop body,
subsequent Scalasca measurements become aware of individual iterations and support the
analysis of the time-dependent behavior of the application. Whereas this thesis focuses
primarily on runtime summary measurements, for this case study a trace measurement was
collected and subsequently analyzed using Scalasca’s automated communication-pattern anal-
ysis framework. This resulted in additional metrics being collected and incorporated into the
analysis report, which require comparison of measurements from different processes. An ex-
ample is the Late sender time associated with an early receive blocking until the corresponding
send is initiated, which is a subset of the MPI point-to-point communication time. While most
of the metrics used in this analysis are available in standard summary measurements as well,
we chose to introduce this example using trace measurements as a few of the trace-based
metrics were used to gain important insight in the analysis process of this application. After
considering examples of such PEPC execution analyses and presentations, these are assessed
to determine requirements for the potential future integration of the employed iteration-
profiling capabilities with Scalasca.

3.3.1 Experimental results

A 1024-way test case, which was run for 1,300 timesteps on the JUGENE system, is used
here as an example to show what we have learned about the performance characteristics of
the application using the tools provided by the extended Scalasca toolset. This example was
chosen as it shows not only interesting patterns of time-varying behavior, but also performance
problems, such as serious communication imbalance growing rapidly over time.

Figures 3.3 and 3.4 show an example of the usefulness of having analysis data individually
for all the iterations instead of having just the whole program execution. Figure 3.3 shows
the case where the iterations are not distinguished and only aggregate metrics are available.
When looking at the MPI point-to-point communication count metric, a few processes appear
as hot-spots in the topology pane, showing that there is some imbalance. This is important
to recognize, however, additional insight can be extracted from the extended, iteration-
instrumented analysis. When selecting in turn the individual iterations distinguished in
Figure 3.4, the execution behavior can be observed evolving over time. During the first
iterations, the communication is relatively balanced and there are no extreme hot-spots visible.
Over time some hot-spots appear and become increasingly pronounced, and they move at
slightly different speeds from one MPI rank to the next. The number of hot-spots diminishes
towards the end of the 1,300 steps, however, the severities of the highest ones are rapidly
increasing.

Figure 3.5 shows four different views of the same metric, point-to-point sent message count, to
compare the different kinds of information they provide. The phase graph (upper left) gives an
overview of the evolution of the values over time. Looking at this graph it is obvious that there
is a serious communication imbalance in the application, as the minimum and median values
are relatively low and constant throughout the execution, but the maximum value is growing
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3. PERFORMANCE DYNAMICS

Figure 3.3: Scalasca analysis-report explorer showing a PEPC trace experiment with significant
imbalance in the number of point-to-point communications (selected in left pane). The
1,024 application processes are arranged according to the Blue Gene/P physical network
topology (right pane).

Figure 3.4: Scalasca analysis-report explorer showing a PEPC trace experiment with timesteps
distinguished via iteration instrumentation (center pane).
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Figure 3.5: Different analysis presentations of the point-to-point sent message count metric in PEPC.

rapidly, and it rises many times higher than the minimum or median values. This suggests that
within each timestep most of the processes are behaving in a relatively balanced fashion, but
that there are a few processes being involved in many more communications.

Which processes are responsible for the imbalance? On the Process graph (upper right), the
x-axis shows the different process ranks, so the different colors now distinguish the minimum,
median and maximum value across all timesteps for the given process rank. It is not obvious
which process is responsible for the imbalance, as many processes show very high maximum
values. The minimum and median values, however, are consistently low for all processes
(except for the first and last few ranks where the median is somewhat higher), which suggests
most of the iterations have low values on all processes.

The case is getting increasingly confusing, and we still do not see what is going on here with
these high values, but the linear-scale map on the lower left makes it much clearer. On a linear-
scale map, the x-axis shows the iteration number, the y-axis the process rank, and the values
are color-coded from light yellow (for the lowest value) to dark red (for the highest value, here
around 5000). The map shows that at the beginning all processes start off relatively balanced,
however, after a few hundred timesteps a low number of hot-spots gradually appear whose
values get much higher over time than the average. What is interesting about these hot-spots
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is that they are not bound to any specific process, but rather they seem to move to neighboring
processes in a seemingly coordinated manner. As they migrate, some hot-spots appear to
merge, so after around 700 timesteps only five hot-spots remain (the first and last MPI ranks
and three others in between), each consisting of a few processes.

This movement of the hot-spots is responsible for the confusing values seen in the Iteration
and Process graphs, so understanding their behavior in more detail is useful. Taking a closer
look at the light yellow area of the Linear-scale map reveals that the values in the background
are not exactly the same. There are also some patterns there, but they are not very easy to see
as their differences are small compared to the range of the graph. On the Histogram-equalized
map, light yellow and dark red still mean the same lowest and highest values as on the Linear-
scale map, but here the histogram of the map values is equalized so that every color level is
used for approximately the same number of data points. This produces the maximum contrast
on the map and reveals previously invisible details: there are many more systematic details
down to the finest granularity than there are visible on the Linear-scale map.

Figure 3.6 shows more metric graphs of the test case execution, including the time taken by
different activities and the number of bytes transferred in each timestep. Where no explicit
legend is given, the different colors have the same meaning as before.

The Execution Time Breakdown graph (upper left) uses a different coloring where turquoise
is the average time each process spent in pure computation (i.e. non-MPI functions), the
small magenta part is the useful time spent in MPI communication, orange is the blocking
time in situations such as late sender, and black is synchronization time at barriers. Together,
these values make up the total execution time of each timestep, averaged over all processes.
PEPC iteration execution time does not show any differences between processes as collective
synchronizations and communications synchronize the processes in every timestep.

The high peak values every 100th iteration are due to checkpointing. Also notable on this
graph is the evolution of the total execution time per iteration along the 1,300 timesteps,
gradually increasing more than twofold from around 5.5 seconds to more than 12 seconds.
From the breakdown this is seen to be due to the computational workload itself growing over
time (as the pure computation time is growing in the same way), however, MPI blocking and
synchronization times are growing as well.

On the Execution Time Proportions graph (upper right), the same data is normalized for each
iteration to show the fraction of execution time spent in each activity. This graph shows
that the proportion of pure computation time is shrinking from around 78% down to 73%,
while the proportion of MPI waiting time grows from 3% to 6% and the proportion of MPI
synchronization grows from 18% to 19%. MPI blocking time is therefore the fastest growing
problem, even though the time spent in synchronizations is still higher.

The Point-to-point Communication Time graph (lower left) shows the communication imbal-
ance very clearly, as the median and maximum times spent in point-to-point communications
are much higher than the minimum, and the median is around halfway between the minimum
and maximum. This means that the imbalance in point-to-point communication time involves
many or most of the processes. Comparing with Point-to-point Late Sender Time (lower
right), most of the time is actually spent in situations where the receiver is blocked, waiting
for the corresponding send to be initiated, which suggests that some point-to-point messages
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Figure 3.6: Graphs of time and bytes transferred in different communications in PEPC.
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Figure 3.7: Maps of time and bytes transferred in different communications in PEPC.

are not sent in time. This causes a majority of processes to spend more time in point-to-point
communication than is absolutely necessary (which is around the minimum value shown in
green).

The Collective Communication Time graph (center, left) also shows an imbalance very much
like that seen on its point-to-point counterpart, however, with a much higher minimum.
Apparently, the minimum time for collective communication in each timestep is longer than
the corresponding point-to-point time, but everything in excess of this minimum closely
resembles the point-to-point late sender time. The high peaks every 100th iteration are due
to checkpointing activity in those timesteps.

Figure 3.7 shows some maps that help clarify the nature of the communication time imbalance.
The Point-to-point Time map (upper left) shows how the above mentioned communication
time imbalance is distributed among the processes in a very specific and systematic way.
Generally the higher the MPI process rank, the more time it spends in point-to-point com-
munication. There are some exceptions to this rule, as the processes which send more point-
to-point messages take somewhat longer than their neighbors, particularly the hot-spots which
all have higher communication times.
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Figure 3.8: Graph and chart of MPI Point-to-point bytes received in PEPC.

The Point-to-point Late Sender Time map (upper right) shows a rather similar distribution,
with one major difference being the hot-spots. These show very low waiting time in late sender
situations, but they have a very high amount of time spent in point-to-point communication.
This means that they really communicate a lot and then do not spend much time waiting, while
all the others that must wait for them do.

The Collective Time map (lower left) also shows something interesting. It seems to be the
inverse of Point-to-point time, in the sense that the order of MPI ranks is reversed here. The
higher the MPI rank, the less time it spends in collective communications. This suggests that
the price of the communication imbalance in point-to-point communications must be paid
again in collective communications. First point-to-point communication causes the processes
to get out of balance, then the next collective communication synchronizes them again, and
the processes which wait less in point-to-point and are slightly ahead of the others have to wait
more while the ones that are later wait less. So in the end they accumulate the same amount
of blocking time, which, however, is distributed in reversed fashion across the processes.

This phenomenon is clearly shown in the Communication Time Proportions graph (center,
right) in Figure 3.6, which shows the process ranks on the x-axis, and the proportion of
MPI point-to-point communication time (magenta), point-to-point blocking time (orange),
collective blocking time (maroon) and collective communication time (violet) on the y-axis.
The most important aspect of this graph is the diagonal border between point-to-point blocking
time and collective blocking time. The higher the MPI rank, the more point-to-point blocking
time and the less collective blocking time was diagnosed, with both waiting time categories
consuming around 80% of the total communication time. This highlights how seriously this
problem degrades communication efficiency.

But what causes the imbalance? Examining the Point-to-point Bytes Sent graph (lower right)
in Figure 3.7 it is clear that the hot-spot processes are sending much more data than any other
process. The comparison of Point-to-point Bytes Sent (Fig 3.7, lower right) and Received
(Figure 3.8) graphs reveal that while the amount of bytes received is relatively balanced
through both the process and time dimension, the amount varies heavily between senders.
Therefore the hot-spot processes send much more data than other processes, and they send
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Figure 3.9: Maps of application-specific metrics from log files written every tenth timestep.

data to all. This suggests that the hot-spot processes are the communication bottleneck, as
they send much more data than the others, and as seen in Fig 3.5, they also send many more
messages than the others. Moreover, as the developers pointed out, the messages are sent
in process rank order, such that higher-ranked processes have to wait for them to complete
sending data to lower ranked processes before they receive any data themselves.

Figure 3.9 shows maps of two application-specific metrics extracted from PEPC application
log files written every tenth timestep. On the Workload map we see the workload metric
calculated by the application. According to the developers, PEPC runs a workload-balancing
algorithm every timestep where it balances this metric, therefore it is no surprise that it really
is balanced over the processes. It further shows some growth over time which correlates with
the growing computational part of the execution time. On the Particle Number map we see
the number of simulated particles assigned to each process. This means that the workload-
balancing algorithm assigns a very large number of particles to the hot-spot processes which
in turn causes a communication bottleneck to appear on those processes and leads to the
communication imbalance.

The TAU Paraprof 3D visualizer [58] is a third-party tool able to visualize Scalasca analysis
reports. As illustrated in Figure 3.10, 3D visualization is a promising complement to 2D
maps, as it can be easier to compare scales of data at different (iteration, process) coordinates
by comparing the height of bars as opposed to comparing the brightness of colors.

3.3.2 Conclusion

In our analysis of the PEPC execution on JUGENE we have identified some complex perfor-
mance patterns, and have found a good potential for communication performance improve-
ment. The PEPC developer team gained valuable insight from our analysis, and they have
since been able to confirm our findings about the serious imbalance in particle numbers that
we identified as the root cause of the point-to-point communication problem. They have
conducted a significant rewrite of their algorithms since our analysis, enabling them to avoid
this problem.
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Figure 3.10: Point-to-point sent message count in the Paraprof 3D visualizer.
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The depth of analysis we conducted in this case would not have been possible without
our Scalasca extensions, namely iteration instrumentation and the different visualization
techniques used to make the huge amounts of data collected accessible to the user. During
the course of the analysis, we have found all the different kinds of visualization techniques
(iteration and process graphs, linearly-scaled and histogram-equalized 2D maps, 3D visual-
ization) useful in many ways, as the insights they provide often complement each other.

We have also found that there are serious limitations concerning the visualization of the huge
amounts of data collected, as it can easily happen that on the monitor or printer used for
displaying the data it is not possible to get sufficient resolution to have one pixel for each
application process or iteration. Other groups also identified this issue [53, 11] and found
different solutions, such as zooming in on the visualized data while also displaying a miniature
map of the whole chart marking the zoomed region, or letting the user choose from different
display options when there is more than one data point for a single pixel, such as the maximum,
minimum, mean, or median of the values. These techniques can provide partial solutions to
the problem, but further investigation of this topic could also prove to be valuable in the future.

Visualizing time-dependent behavior with an animation, where the user can step through
iterations to track changes of a metric over time, also seems to be an interesting possibility that
proved useful in understanding PEPC measurement results. Furthermore, 3D visualization
such as the one offered by TAU was found to be extremely valuable and perhaps the most
insightful of all the different visualization techniques, but also the technically most challenging
due to problems such as very large polygon counts required to completely visualize large
datasets. Further research and development work in the performance visualization area is
expected to yield valuable results but falls outside the focus of this thesis.

The most important lesson learned from this study is that sometimes, especially in the case
of applications using dynamic load balancing, looking at an overall call-path profile of the
application might simply not be enough. To understand certain performance issues, we have
to understand the evolution of the application’s performance behavior over time. We found
that time-series profiling, combined with good visualization techniques, taking the iteration as
the natural building block for characterizing application performance is an invaluable tool for
gaining new insights into the performance of such applications.

3.4 Summary

As we have shown in this chapter with additional details in Appendix B, temporal variations
are wide-spread and may appear in highly diverse patterns ranging from gradual changes and
sudden transitions of the base-line behavior to both periodically and irregularly occurring
extrema. The SPEC MPI applications provide a wealth of examples showing the variety of
performance dynamics patterns. To complicate matters further, the temporal behavior can
be subject to significant process-dependent variations, that is, the performance behavior can
be a function of both time and space. Recognizing the relationship between temporal and
spatial patterns can be crucial for the understanding of performance problems, as shown by
the example of the PEPC Coulomb solver, which was found to suffer from a gradually in-
creasing communication imbalance caused by a small group of processes with time-dependent
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constituency, as shown in Section 3.3. Sometimes, behavioral deviations may also be caused
by outside influences, such as operating system jitter or application interference, which may
limit their reproducibility.

Deferring further investigation/consideration of iteration analysis presentation and visualiza-
tion challenges, the next chapter will address the analysis storage which grows linearly with
the number of iterations and would cause problems in the case of long-running applications
consisting of thousands and sometimes millions of iterations. Instead of storing every iteration
separately, we introduce a novel, clustering-based lossy compression algorithm tailored to
the specific problem of compressing iterative call-path profiles. This compression method
offers an easily configurable tradeoff between storage requirements and compression quality,
enabling the collection of high quality data at a fraction of the original memory footprint.
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Chapter 4

Compression of Time-series Profiles

Writing a separate call-path profile for every iteration poses scalability problems in terms
of the number of iterations that can be captured and analyzed. The most severe restriction
arises from the buffer space required to store such a time-series call-path profile measurement
because adding a time dimension multiplies the amount of data by the number of timesteps.
If flushing of profile data buffers is to be avoided during measurement, due to its disruptive
impact on the behavior to be observed, time-series call-path profiles can exceed available
buffer space — especially when the call tree is large and more than one metric is collected.
We expect that this problem will be aggravated by the shrinking memory/core ratio in planned
future systems, such as the Blue Gene/Q. Moreover, even if the perturbation caused by flushing
can be tolerated or compensated for, the aggregate size of the profile across a potentially
large number of iterations and processes may hinder post-processing and interactive end-user
analysis, which often occurs on a front-end node or desktop with moderate processing and
memory capacity. This is another problem expected to get worse over time, as the number of
cores in typical machines and consequently in typical jobs shows a steadily increasing trend,
leading to growth in file sizes in an additional dimension.

In this chapter, we present a runtime approach for the (lossy) semantic compression of time-
series call-path profiles. Our approach of incremental on-line clustering of single-iteration
profiles enables the collection of multi-metric call-path-level data for thousands of iterations,
while consuming only a few times the space of a single-iteration profile to circumvent the need
of intermittently flushing the data to disk. Exploiting repetition in the time-dependent behavior
of the target application, we achieve good compression rates without sacrificing important
performance details or introducing major artifacts. Since calculating the similarity between
two iterations based on one or more metrics and a potentially large number of call paths may be
prohibitively time consuming, we keep the runtime overhead low by calculating the separation
distance based on only a condensed version of the profile data. At the same time, this measure
also helps in reducing the impact of the curse of dimensionality by reducing the dimensionality
of the distance operator. Moreover, to account for the fact that different processes may exhibit
different temporal patterns, the compression is a purely local operation, resulting in a custom-
tailored process-local partitioning of the iteration space, not requiring any communication or
synchronization at runtime.

The chapter is structured as follows: we explain our compression algorithm along with our
design choices in Section 4.1. In Section 4.2, we offer a quantitative evaluation of our approach
based on the SPEC MPI 2007 benchmark suite in terms of (i) the accuracy of the compressed
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data, and (ii) the runtime overhead incurred. Section 4.3 discusses the qualitative evaluation
of the compression algorithm based on visual comparison of metric graphs before and after
compression, to give some first-hand impressions about the compression quality. A detailed
large-scale example using the PEPC application presented in Section 4.4 demonstrates the
value of our solution for the performance analysis of long-running applications with significant
time-dependent behavior. Finally, in Section 4.5, we summarize and discuss future work.

4.1 Compression algorithm

We introduced the Scalasca measurement library in Section 1.4.3. The standard call-path
profiling techniques were extended to time-series profiling in Chapter 3. On page 30 we
introduced a formal definition of these time-series profiling measurements, which we will use
again in this chapter to facilitate easier discussion of the compression algorithm.

Our compression algorithm is based on the idea of incremental clustering. Clustering is the
process of grouping a set of physical or abstract objects into classes of similar objects. A
cluster is a collection of data objects that are similar to others within the same cluster and
dissimilar to the objects in other clusters [39]. In our case, the objects to be clustered are
the metric profiles collected for individual iterations as they are generated while the target
application progresses. As the goal is to achieve the best overall characterization, iterations are
considered as independent entities for clustering without regard to their sequential order. To
accurately cover process-dependent variations of temporal patterns, each application process
makes independent clustering decisions, which has the additional advantage that neither
communication nor synchronization among different processes are required at runtime. Thus,
we can restrict our discussion to the actions performed by a single process. The algorithm is
lossy in the sense that the compressed data no longer contains all the information necessary to
restore the original data, although we will show that the result of such a reverse transformation
comes very close to the original data.

4.1.1 Clustering

With every new iteration i, a new process-local iteration profile ti : c �→ �m is created, which
maps a call path onto a vector of directly measured metric values and which can be stored
as a matrix T i

c,m. The clustering occurs incrementally because every new iteration initially
constitutes a new cluster. Once a predefined maximum number of clusters is reached, the
two clusters closest to each other are merged. For each cluster, we store only the iteration
indices assigned to it and the mean profile, which is obtained by performing an element-
wise arithmetic mean operation on the constituent matrices T i, exploiting the associativity of
the mean operator when merging clusters that represent more than one iteration. Using the
disjoint-set forest data structure [14] makes cluster creation and merge plus retrieval of the
constituent index set an asymptotically constant-time operation as opposed to a naive linear-
time implementation.
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4.1.2 Distance function

Which clusters are closest to each other is determined based on the distance between cluster
means. However, calculating a distance function based on entire profile matrices is inefficient
and may also adversely affect the clustering quality, which is sensitive to the dimensionality
of the distance function (|C| ∗ |M | if the full matrix is considered). If too large, similarities
between objects may be hidden. For this reason, the distance is computed based on a
condensed version of the profile matrix. The condensed version is a vector

�e = (M1, . . . ,Mm, D1, . . . , Dd)

composed of an extended set of metric values aggregated across the entire iteration (i.e., all
call paths), such as the total time spent in that iteration. The values M1, . . . ,Mm represent
the directly measured metrics, whereas D1, . . . , Dd represent the derived metrics, together
comprising the full set of metrics listed in Table 1.1. The idea behind the condensed profile is
that �e still carries enough information to characterize the performance behavior of an iteration
accurately enough although it no longer refers to individual call paths, thus eliminating the
need to compare full matrices T i

c,m. Instead, differences with respect to individual call paths
are approximated by adding more specific derived metrics. For example, the MPI point-to-
point communication time metric is the sum of time values on MPI point-to-point commu-
nication call paths. At the same time, the condensed profile lowers the runtime overhead by
making the distance calculation much more efficient and enables more conclusive clustering
decisions by drastically reducing the dimensionality of the distance function (|M |+|D| usually
� |C| ∗ |M |).
The distance between two vectors �e1 and �e2 is then calculated using the Manhattan dis-
tance [59]. Whenever a new cluster is created from a fresh iteration profile, we calculate
the distance between the new cluster and those that already exist. In addition, if the desired
maximum cluster count has been reached and a merge operation takes place, the distance of
the resulting new cluster from all remaining clusters also has to be calculated. Overall, this still
leads to linear computational complexity O(C) in terms of the maximum number of clusters
C for each new iteration. Note that the distance calculation count is at most twice as much as
the iteration count (every time, there is one new iteration and at most one merge). In contrast,
the space complexity is O(C2) because we need to store the distance between every pair of
clusters.

Since metrics may have different domains and their values may cover different ranges of
magnitude, we face the question of how much weight to assign to an individual metric when
calculating distances. Table 1.1 shows the full set of possible Scalasca metrics produced
by summary measurements. The metrics not applicable in our test cases (e.g., OpenMP
metrics) or not relevant from the compression’s standpoint (e.g., Measurement overhead),
are marked with grey background. Metrics are organized in tree hierarchies defined by
subset relationships, with general metrics as tree roots and more specific metrics as leaves
in the tree (e.g., total time → execution time → MPI time → MPI communication time
→ MPI collective communication time). On the one hand, the subset relationship implies
that more general metrics have higher values than more specific metrics. On the other
hand, more specific metrics are typically more indicative of performance problems, such as

49



4. COMPRESSION OF TIME-SERIES PROFILES

communication overhead. We therefore decided to assign metrics equal weights and normalize
the vector elements accordingly.
As reference value for the normalization, we chose the process-local running average for
all preceding iterations because it is relatively stable with respect to noise-induced outliers.
Where necessary, the average over all iterations could be obtained from a prior run, and can
be expected not to vary substantially in the presence of minor run-to-run variations. The
first distance calculation is performed only after the desired maximum number of clusters has
been reached, therefore a fair number of iterations have passed before the current average
is determined for the first time. In principle, the first distance calculation could be delayed
even further, depending on the availability of memory to hold iteration profiles representing
unmerged clusters. Although the use of the running average may lead to premature distance
calculations, which would be hard to redo without incurring substantial runtime overhead, our
results in Section 4.2 indicate that the inaccuracy resulting from this limitation has overall
little influence on the fidelity of our compression. We therefore believe that in most cases a
single measurement will be sufficient.

4.1.3 Emphasizing the baseline

The algorithm discussed so far has a serious shortcoming. It emphasizes noise and extrema
much more than it characterizes the baseline behavior. In some cases, for example in the
Point-to-point time metric of 143.dleslie, which is quite noisy due to the quite low magnitude
of the data, the algorithm might blur periodic low-amplitude changes in the baseline by
merging their constituent clusters, while preserving a number of prominent but noise-induced
extrema that are distinct enough to have dedicated clusters reserved for them. The problem
occurs whenever the distance between extrema is large compared to the distances within the
small-scale repetitive pattern. However, baseline changes often carry valuable information on
general performance trends and are therefore desirable to keep, whereas extrema often turn
out to be irreproducible noise and a minor contribution to overall performance.
To better accentuate the baseline in comparison to extrema, we exploit the fact that the number
of iterations that stand out is usually much smaller than the number of iterations on the baseline
level. Using a heuristic, we distort the distance metric in such a way that the distance among
larger clusters becomes higher, whereas the distance between smaller clusters with only a few
elements becomes lower. Two small clusters are then much more likely to be merged than
two larger clusters representing many iterations. As distances are calculated whenever a new
cluster is created and used for later comparisons, we have to make sure that that the values
used in the heuristic at the time of the calculation are still valid when the distance value is
used. Indeed, the heuristic only depends on the number of iterations associated with a cluster.
This can only change when two clusters are merged, at which point the distances are also
re-calculated, which means that the values used in the heuristic remain correct as long as the
distance value is used. As a result, distances do not have to be recomputed until one of the
clusters is merged with another one, leaving the complexity linear in terms of the maximum
number of clusters.
To distort the Manhattan distance, we multiply the distance by a value that is a function
of the sum of the sizes of the two clusters (i.e., the number of iterations associated with
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them). The exact function applied here (chosen after trying several possibilities) is defined
by Equation 4.1, where n is the sum of the sizes of the clusters.

m(n) =

{
0.4 + 0.05n, if n ≤ 12√
0.4 + 0.05n, otherwise

(4.1)

At low n values, the multiplier is growing fast, while at larger clusters the speed of growth
decreases so that the difference between multipliers of large clusters becomes less dominant.

4.1.4 Call-tree equivalence

The algorithm explained so far is based on an elastic distance criterion, allowing iterations with
very different call trees to be merged. This property may allow the occurrence of phantom call
paths in the compressed profile, which are call paths associated with an iteration although they
have never been visited during this iteration. Since phantom call paths may lead to an invalid
performance assessment, they are a serious problem and should be avoided whenever possible.
Furthermore, call-tree equivalence between two iterations is often a good indicator of similar
performance characteristics. For these two reasons, we only merge iterations with equivalent
call trees. Call-tree equivalence between two iterations i1 and i2 can be defined in two ways:

• Weak equivalence: every call path visited in i1 has also been visited in i2 and vice versa.

• Strong equivalence: every call path has been visited as many times in i1 as it has been
visited in i2.

Weak equivalence excludes phantom call paths, while strong equivalence also considers
quantitative similarity. To enforce call-tree equivalence between clusters before they are
merged, we partition the clusters into call-tree equivalence classes. Then every new iteration
profile either forms a new class or is added to an existing one, depending on whether there
is already a cluster whose call tree is equivalent to the new one. If the maximum number of
clusters would be exceeded, the two clusters closest to each other that are located within the
same call-tree equivalence class are merged.

Since call-tree equivalence is no longer an elastic criterion, the number of equivalence classes
is not configurable. Especially when strong call-tree equivalence is used, the total number
of clusters may exceed the predefined threshold, resulting in a large number of equivalence
classes each with only a single cluster, increasing storage requirements and also potentially
degrading the compression fidelity as distance-based clustering is then suppressed (every
iteration in the same call-tree equivalence class is merged immediately, no matter what the
distances are). On the other hand, if their number is small enough, enforcing call-tree
equivalence can improve the compression fidelity with respect to call-tree structure and count-
based metrics, as we will see in Section 4.2. Whether and to which degree call-tree equivalence
should be enforced is therefore highly application-dependent and must be decided based on
the total number of call-tree equivalence classes, which would have to be determined from a
prior measurement. To avoid this extra measurement, a dynamic scheme can be employed that
starts with strong equivalence and switches to weak equivalence after re-grouping the existent
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clusters if the number of call-tree equivalence classes grows too large in comparison to the
desired number of clusters, thus keeping the number of clusters in check.

Since in our test cases the number of weak equivalence classes exceeded 8 only in two cases,
as can be seen in Table 4.1, we expect at least weak equivalence to be a viable option for
most applications. Note that the data about DROPS is based on measurements taken using a
special measurement technique, a hybrid sampling-based approach which we will introduce in
Chapter 5, as collecting meaningful measurements using our normal approach is not possible
in the case of DROPS.

To give a high-level overview of the algorithm, Figure 4.1 illustrates the basic steps of our
algorithm for one process using a maximum number of four clusters. Understanding this
example facilitates the discussion of the algorithmic complexity in the rest of this section.

While enforcing call-tree equivalence adds the cost of comparing potentially large call trees
to determine the equivalence class of an iteration, it also reduces the number of distance
calculations because distances are calculated only within each class. The performance
disadvantage therefore diminishes as the number of clusters is increased. Table 4.2 presents
an overview of the time and space complexity of the different steps of the algorithm. Locating
a single entry in the matrix that stores the pre-calculated distances takes O(C) time as the
distance matrix is implemented as a hierarchy of linked lists that facilitates frequent addition
and removal of rows and columns and keeps track of the lowest distance in the matrix as a
side effect of stepping through the lists. A naive solution to updating class assignments after a
single merge could easily become O(I), where I is the iteration count, but using the disjoint-
set forest data structure mentioned before brings this down to O(1). The hash table used for
differentiating equivalence classes has O(P ) comparisons for inserting a single iteration in the
worst case, but it is asymptotically O(1), meaning one tree traversal to generate the hash and
exactly one tree comparison afterwards in most cases.

4.1.5 Reconstructing aggregate profiles

Although our algorithm performs a lossy compression, we can accurately reconstruct an
aggregate profile that summarizes across all iterations. Adding up all clusters weighted
by the number of iterations they represent will yield an exact profile without any errors
introduced by the lossy compression, as if obtained without iteration instrumentation. While
small differences between an original and a reconstructed summary profile may be caused
by compression overhead, compression errors manifest only when considering individual
iterations.
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4. COMPRESSION OF TIME-SERIES PROFILES

Figure 4.1: Incremental on-line clustering of iteration call-tree profiles into a maximum of four
clusters. (i) The call-tree profiles for the first four iterations are stored directly, yet divided
into two equivalence classes. (ii) The call-tree profile for iteration 5 is matched to the
equivalence class of iteration 1. (iii) The pair of clusters with the shortest separation
distance (here 3 and 4) are merged to retain only the desired number of clusters.

4.2 Evaluation

For evaluation purposes, we use the same applications as in Chapter 3, the SPEC MPI 2007
applications with ‘lref’-sized datasets on JUROPA and the PEPC application on JUGENE. The
application 142.dmilc is not used due to its complicated nested loop structure involving goto
statements, which does not fit our model completely. Also, 142.dmilc does not have a main
loop, but five different loops at the highest level taking about the same amount of time. While
handling this application would not be impossible, it would require much more elaborate
handling, providing little benefit at the expense of complicating the chapter. Execution
characteristics of the applications are summarized in Table 4.1. The PEPC application will
be considered separately in Section 4.4.

In addition to the wall-clock execution time and number of iterations (or timesteps) in the main
computational loop of each application, full summary measurements with instrumentation dis-
tinguishing each iteration allow analysis of the call-tree sizes, which is included in Table 4.1.
Call paths for each iteration are further distinguished to consider only those ending with MPI
communication and synchronization functions. Minimum, average and maximum call-path
count statistics are also calculated. (The number of call paths included in a summary profile
depends on function in-lining by the compiler and filtering applied during measurement [86].)
Furthermore, by enforcing call-tree equivalence among the sets of call paths, the number
of classes resulting from weak and strong equivalence were determined. Where strong
equivalence resulted in an excessive number of equivalence classes, weak equivalence was
used instead (i.e., for 125.RAxML, 147.l2wrf2 and PEPC). The SPEC MPI2007 benchmark
suite and the PEPC application have a rich variety of execution and call-tree characteristics,
as detailed in Chapter 3 and Appendix B.
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Table 4.2: Overview of the compression algorithm’s complexity.
# of clusters in equiv. class C
# of metrics M
# of equivalence classes E
# of call paths per iteration P
distance matrix size O(C2)
time to compute a distance O(M)
time to locate an entry in matrix O(C)
time to update distance matrix O(MC + C2)
cost of a tree comparison O(P )
# of tree comparisons O(1)
time to update class assignments O(1)
time to update equivalence classes O(P )

Based on the numbers of iterations and call-tree equivalence classes found in these application
executions, we chose to compare results using cluster counts that are powers of two from 8 to
256. Eight clusters offer a relatively small storage overhead but require aggressive compres-
sion, and can be expected to only coarsely represent complex execution characteristics. On
the other hand, 256 clusters should provide improved fidelity, but at a corresponding storage
cost factor for the results.

4.2.1 Off-line version

Exact evaluation of the quality of the compressed data based on the on-line approach is not
possible by simply taking measurements with and without compression and comparing the
results. In that case, differences caused by run-to-run variation cannot be distinguished from
those caused by the lossiness of the compression. Additionally, accurate time and memory
usage measurements of the algorithm can not be taken while it runs together with the actual
application measurement. Therefore, our first approach for the evaluation, as a proof of
concept for the overall technique is based on an off-line version of the algorithm which works
on previously collected, non-compressed measurement results. The compression algorithm is
applied to this input data to create virtual “measurement results” which are equivalent to those
that would be collected by the on-line version of the algorithm. These off-line compression
runs were performed on the same system where the original measurements were collected to
make timings comparable. The effectiveness of different configurations of the compression
algorithm can also be readily compared, as they are all based on the same real measurement
data. After providing proof of concept using the off-line evaluation, we present an evaluation
of measurements performing compression on-line at run time in Chapter 6.

4.2.2 Quality assessment

A variety of quality characteristics were investigated for PEPC and the SPEC MPI2007
applications with different numbers of clusters.
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Figure 4.2: Proportion of erroneously added ‘phantom’ call paths in reconstructed profiles when call-
tree equivalence is not enforced during compression.

Erroneous call paths

All execution call paths are accurately captured when call-tree equivalence is enforced,
however, without it call paths can be erroneously associated with iterations where they do not
actually occur by merging two iteration clusters with different call trees. Figure 4.2 shows
that there are indeed significant numbers of ‘phantom’ call paths added for 125.RAxML,
132.zeusmp2, and PEPC. For 126.lammps and 145.lGemsFDTD this only occurs when using
8 clusters, and 16 or more clusters are enough to avoid this problem in those cases. The
remaining six applications never had ‘phantom’ call paths introduced. Although many of
the ‘phantom’ call paths are not MPI call paths, and therefore less of a concern, ‘phantom’
MPI call paths are found for 125.RAxML, 126.lammps and 145.lGemsFDTD with smaller
numbers of clusters, and predominate for PEPC at all cluster counts. It is important to
note that these graphs are on a logarithmic scale. Since the call trees often differ, and can
differ significantly especially at low cluster counts, enforcing call-tree equivalence is therefore
essential for accurate time-series call-path profiling. For this reason, call-tree equivalence is
always enforced in the remainder of our evaluation with the specific equivalence relation (i.e.
weak or strong) determined based on the number of resulting classes, as indicated by the bold
numbers in the rightmost two columns of Table 4.1. In most cases, we were able to apply
strong equivalence, but for 125.RAxML, 126.lammps, 147.l2wrf2 and PEPC we had to resort
to weak equivalence.

Error rates for entire iterations

Figure 4.3 shows the comparison of the average error rates with and without call-tree parti-
tioning, for both the mean and the maximum metric values for entire iterations. These mean
and maximum values are the blue and red columns respectively in the iteration graphs such as
Figure 3.1(b). First of all, for every application we get better or equal results when using call
tree equivalence classes showing that enforcing call-tree equivalence does not significantly
reduce compression quality, and generally helps to achieve a better representation of the data.
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Figure 4.3: Average error rates of the maximum and mean metric values for entire iterations, of all
metrics, with and without call-tree partitioning.

This is because in many cases call-tree partitioning has a high correlation with the changes
appearing in many of the metrics, and applying call-tree partitioning gives a boost to the
quality of the resulting graphs. This only makes a real impact at low cluster counts, as at higher
counts the basic metric-based clustering algorithm also identifies these changes correctly, and
the difference between the quality of the two methods diminishes.

We see exactly the same error rates with call-tree partitioning for 8 and 16 clusters in the
125.RAxML case, as it has 18 call-tree equivalence classes even in the weak equivalence case,
and call-tree partitioning takes precedence over metric-based clustering. When the number
of allowed clusters is set to a lower value than the call-tree equivalence class count, every
equivalence class is created (even if there are more of them than the allowed maximum), and
no metric-based clustering takes place. As soon as we reach 32 clusters, the allowed cluster
count is larger than the number of call-tree equivalence classes, and metric-based clustering
takes place again, improving the quality of the compressed data.

Considering the error rates at 64 clusters, the highest value of the average error of the mean
graphs without call-tree partitioning is 0.38% (143.dleslie) and under 0.07% for 8 out of the
10 SPEC MPI2007 applications. With call-tree partitioning the highest value is 0.48% and
under 0.12% for 8 of the 10 applications. For the maximum graphs the highest values are
more than doubled, but 7 of the 10 applications are still under 0.29% in both cases. Error rates
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Figure 4.4: Average error rates of the mean values of the count-based metrics for entire iterations,
with and without call-tree partitioning.

are somewhat higher when applying call-tree partitioning, as it leaves a slightly lower number
of cluster merging decisions to be made based on metric-based distance computations. Still,
the additional guarantees provided by call-tree partitioning easily make up for these small
differences.

It is much easier to get good results for some metrics than for others. In particular, the count-
based metrics, such as Visit count and Bytes transferred, are usually much more reproducible
than time-based metrics, as they are not subject to noise and small measurement variations,
and their changes often coincide with changes in iteration call-tree structure. In fact, for 7
out of 10 applications we get perfect results with call-tree partitioning (Figure 4.4) even at
the lowest cluster counts, and the error rates of the remaining three are also very low (under
0.04% at 64 clusters). Without call-tree partitioning we only get perfect results for 2 of the
10 applications at the lowest cluster counts, which grows to 6 at 64 clusters. This means that
while there is no guarantee of perfect results, for most of the applications the graphs based on
the compressed data for the count-based metrics are extremely reliable, especially when using
call-tree partitioning.

Error rates for individual call paths

To evaluate the quality of the metric data for each call path within each iteration, a different
method is employed. Figure 4.5 shows the average error rates in the value of time-based
metrics for each non-zero call-path excluding its children (i.e., the exclusive value), with and
without call-tree partitioning. To emphasize the most significant call paths, error rates for each
metric are normalized using the maximum value of this metric across all iterations. There are
only slight differences between the two modes here, mainly at low cluster counts, where using
call-tree partitioning sacrifices clusters for correct call-tree partitioning and has less clusters
to use for metric-based clustering (the more equivalence classes prescribed by the call-tree
partitioning, the less freedom for the clustering algorithm in its merging decisions). In both
cases every application has an error ratio below 0.7% even at the lowest cluster counts, and 5
out of 10 have an error ratio lower than 0.11%. The worst case is 129.tera tf, where the quality
is relatively low at low cluster counts, and grows only when increasing the cluster count. This
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Figure 4.5: Average error rate of time-based metrics for individual call paths, with and without call-
tree partitioning.
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Figure 4.6: Average error rate of count-based metrics for individual call paths, with and without
call-tree partitioning.

is because this application has a quite complex continually changing behavior, as evident in
Figure B.7 on page 163, and so it is a much more challenging case for our approach than most
of the other applications.

Looking at the error rates of the count-based metrics in Figure 4.6, we see that all applications
that were perfectly represented at the iteration level are also perfectly represented at the deeper,
call-tree level. Even without call-tree partitioning, the error rates are below 0.16% even at the
lowest cluster counts. It is also notable that the count-based metrics are perfectly represented
for the challenging 129.tera tf application.

Quantized call-path error rates

Where the very existence of call paths is false, their values are considered as error in all metrics
at the call-path level, however, some amount of error is also inherent in the metric values
reconstructed for every true call path from the compressed representations. For each call path,
the magnitude of the error in the metrics can be determined from the difference of metric
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Figure 4.7: Proportion of call paths in profiles reconstructed from 64 clusters having quantized error
rates for MPI time-based and count-based metrics.

values between the full-fidelity and reconstructed call-path profiles. The absolute differences
for each metric have been normalized using the corresponding maximum exclusive call-path
value, before they were averaged and histogrammed in buckets for orders of magnitude:
Figure 4.7 summarizes the results for the case using 64 clusters. (Call paths which actually
have zero-valued metrics are not included in this comparison to avoid dilution.)

As an example of interpreting the graph, in the case of 121.pop2lref, the first white bar in the
time-based metrics shows that nearly all call paths have more than zero error, the yellow bar
indicates that around half of the call paths have more than 0.001% error, the orange bar shows
that around a quarter of the call paths has more than 0.01% error, the first red bar shows that a
bit more than 5% of the call paths have more than 0.1% error, the second red bar tells us that
around 0.025% of the call paths have more than 1% error. The absence of the darker bars in
this case indicates that no call path had more than 10% error. The absence of any bars for this
application in the MPI count-based metrics graph indicates that no call path had any error in
those metrics.

With 64 clusters, only two of the SPEC MPI applications have any error in their count-
based metrics, one of which is 125.RAxML, where the errors are all less than 0.001%. For
126.lammps around one in every five hundred call paths have errors exceeding 1%, and with
PEPC around one in every forty call paths have more than 10% error. For time-based metrics,
entirely error-free reconstructions are rare, and call-path error rates over 10% for the time-
based metrics are found for PEPC and 6 out of 10 SPEC MPI2007 applications. Such large
errors typically affect less than one in every thousand call paths in these applications, with MPI
call paths somewhat more frequently concerned. The largest call-path errors are found to have
a magnitude of 48% for 128.GAPgeofem and 100% for PEPC. Except for 125.RAxML and
145.lGemsFDTD, all applications have call paths with more than 1% error in the time-based
metrics, which affects one in ten of 126.lammps MPI call paths. Larger numbers of clusters
can be employed to reduce the magnitude and frequency of these errors.
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Figure 4.8: Average time to perform the compression of a single iteration.

4.2.3 Processing time

Comparing the average time required to perform iteration clustering with and without call-tree
partitioning (Figure 4.8) shows that including it takes much longer. For the SPEC MPI 2007
applications on JUROPA, with call-tree partitioning it reaches an average value of 0.0019s
per iteration in the slowest case (147.l2wrf2), while without call-tree partitioning they are
all under 0.00064s even at the higher cluster counts, and under 0.00015s for 64 clusters.
This also explains why there are not very large differences between the processing times
of different cluster counts for any given application, as the call-tree partitioning part always
takes around the same amount of time, and the differences that come from the other parts of
the algorithm are nearly negligible compared to this. Without call-tree partitioning, the much
lower clustering times show an O(C2) increase rate. While this could pose a scalability issue
at higher cluster counts, the intent of the method is to prefer low cluster counts, and even at
the relatively high value of 256 clusters, the time spent in distance computations is acceptably
low. In some cases, however (125.RAxML, 128.GAPgeofem and 143.dleslie), it surpasses
the amount of time used with call-tree partitioning included. This is because with call-tree
partitioning, the algorithm does not have to calculate distances between clusters in separate
call-tree equivalence classes. This optimization makes the compression time with call-tree
partitioning grow much more slowly with the cluster count than without the partitioning.

In the cases of 129.tera tf, 132.zeusmp2 and 137.lu, the 256 cluster case requires less
processing time than the 128 cluster case, since those applications have less than 256 iterations
(129.tera tf: 190, 132.zeusmp2: 200, 137.lu: 180). When every iteration is preserved, no
merging operation takes place and calculated distances never have to be updated.

More important than the absolute time of the compression operation is its duration relative to
that of a single iteration. Figure 4.9 shows how much overhead the algorithm introduces into
the run time of the application. When not using call-tree partitioning, 8 of the 10 applications
are under 0.29% even at the highest cluster counts, with 125.RAxML and 143.dleslie being
the exceptions. As Table 4.1 shows, these applications combine a high iteration count (and
correspondingly fast iterations) with a large number of call-paths (which means more data to
deal with for the algorithm), however, even these applications are under 0.25% for 64 clusters.
By far the worst case is 125.RAxML with nearly 17% clustering overhead.
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Figure 4.9: Average compression time as a proportion of iteration execution time.
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Figure 4.10: Memory usage of the compression algorithm for different numbers of clusters.

With call-tree partitioning included, the processing overhead for 8 of the 10 applications is
under 0.38%. The worst cases are 125.RAxML and 143.dleslie, the applications with the
very short iterations. Notably in both cases, but especially in the 125.RAxML case, using
call-tree partitioning actually lowers the overhead significantly at higher cluster counts, as
only the distance calculations between clusters in the same call-tree equivalence class have to
be calculated. Overall, this means that we can safely use call-tree partitioning in every case
without having to fear extreme compression overhead (generally much less than 1%, in case
of very short iterations somewhat more). For PEPC, dilation due to compression when using
call-tree partitioning is much more, but still negligible compared to the average iteration time.

4.2.4 Memory requirements

Figure 4.10 shows the memory consumption of the algorithm. Most of the memory is used
for storing precomputed cluster distances, so there is an O(C2) growth with the cluster
count. With call-tree partitioning, only the distances between clusters of the same call-tree
equivalence class have to be computed (and stored), which makes this growth somewhat
slower for applications with many call-tree equivalence classes. Even with cluster sizes as
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large as 256, the memory requirements are less than 6MB and therefore negligible where
memory available per process is typically 512MB or more.

4.2.5 Comparison with PEPC

Comparing the error rates of the PEPC graphs to those of the SPEC MPI2007 applications
on Figure 4.3, it is clear that PEPC has a higher error rate at the lowest cluster counts than
most of the applications, but more importantly, its error rate does not shrink as fast as for the
other applications, having notably high values even at 256 clusters, especially in the graphs
of the maximum values. This is because PEPC has a constantly changing behavior in all its
metrics, which is much harder to characterize. Also, representing the maximum value (the
red part of the graphs like Figure 3.1(b) on page 32) exactly is difficult, as a single outlier
on any of the 1024 processes ruins the maximum for any given iteration. As PEPC is an
adaptive code, its count-based metrics also show constantly changing behavior, and are not
much easier to characterize than the time-based metrics. This leads to the situation that while
all the SPEC MPI2007 applications have a negligible error rate on their count-based metrics,
in the PEPC case the count-based metrics have an only slightly better error rate than the time
based metrics. Enforcing call-tree equivalence clearly gives an advantage when characterizing
the count-based metrics, though — even in such a difficult case.

The average error rates of the time-based metrics for individual call paths (Figure 4.5 on
page 59) are among the worse examples. With respect to count-based metrics, however, it is
the worst example and not substantially better than with respect to time-based metrics, but still
clearly acceptable, as we will see in the visual evaluation section.

4.3 Visual evaluation

Although quantitative evaluation of the compression quality is very important, in the end it
largely comes down to what the user will actually infer from the difference. As in the case of
MP3 music files, it is also true here that if from a practical point of view the original and the
compressed representations appear identical, the applied lossy compression can be considered
good enough. This is why it is important to also evaluate the quality visually, to get first hand
impression of the compression quality. Figure 4.11 and Figure 4.12 give such an overview,
using the MPI Point-to-point communication time metric as a non-trivial example. Note that
the compression algorithm is trying to achieve low error rates for all metrics at the same time,
not just this one, but it would not be practical to show all graphs and charts from any given
measurement. Also, since 125.RAxML does not have any point-to-point communication, we
use the MPI Collective communication time metric there instead.

In every case, we show a comparison of a graph based on the original measurement and a
reconstructed graph after the lossy compression. The two graphs are based on the same
measurement, so ideally they should match completely. For every application, we chose a
cluster count that is a borderline case between acceptable and good. Choosing any higher
cluster counts would just make it even harder to see any difference between the original and
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Figure 4.11: Comparison of original and reconstructed clustered iteration graphs of communication
time in the SPEC MPI applications.
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Figure 4.12: Comparison of original and reconstructed clustered iteration charts of communication
time in the SPEC MPI applications.
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reconstructed graphs. Overall, we get quite good similarity with a maximum of 64 clusters in
every case. It is also interesting to note that getting a visually good match on value maps is
generally easier than on the graphs. Although the color maps show more data, the graphs are
the harder cases, as they exaggerate one-off outliers, especially in the maximum.

4.4 Detailed Example: PEPC

As a large-scale example, we return to the PEPC Coulomb-solver run with 1024 processes on
JUGENE, in which we were able to find the root causes of a serious performance problem
using our iteration-instrumentation approach, as discussed in section 3.3. PEPC is much
harder to characterize than the previously considered SPEC MPI2007 applications, in that
its performance is completely different on each process, its baseline is continually growing for
many metrics, and the few bottleneck processes whose communication differs significantly
from all others are constantly relocated by the computational load-balancing algorithm.

It is therefore no surprise that the quality analysis and comparison in in the previous section
show PEPC to be much more susceptible to ‘phantom’ call paths (Figure 4.2) when not
enforcing call-tree equivalence, especially ‘phantom’ MPI call paths, and substantial error
rates requiring 256 or more clusters for reasonable accuracy of both entire-iteration aggregate
metric values (Figure 4.3) and individual call-path exclusive metric values (Figs. 4.5 and 4.7).
On the other hand, even with 256 clusters, processing overheads are reasonable (Figure 4.9).

Figure 4.13 gives an impression of the quality of the data produced by different maximum
cluster counts. It shows the iteration graphs and value maps of two of the key metrics,
MPI point-to-point communication count and time, reconstructed from compressed data with
different cluster counts, and compared to the full-fidelity originals. This shows that PEPC is a
good example of an application where the count-based metric graphs and value maps (in the
leftmost two columns) are complex, yet the reconstructions are surprisingly good and with 32
clusters all the main features of the originals are already present.

MPI point-to-point communication time metric graphs and value maps (in the rightmost two
columns), however, show that even 64 clusters is insufficient to reconstruct this application
execution behavior. With 128 clusters it is relatively close, especially the average values, but
clearly 256 clusters are needed for a really good characterization of the maximum values.
The maximum value is difficult to characterize perfectly, as a single outlier on any of the
processes changes the maximum for a given iteration. Still, the value map of the same metric
reconstructed from 128 clusters is very close to the original, and the important features needed
to find the performance problem in this application (the dark diagonally moving lines and the
growth of the point-to-point communication time with the process rank) are already clearly
visible with 64 clusters.

Figure 4.14 compares the MPI time profile of the full 1300-iteration PEPC analysis report with
a reconstruction from 128 clusters. Aggregate metric values for entire timesteps are in broad
agreement, with up to 5% error for timestep 1292, and even the detailed call-path profiles show
good agreement, with the selected MPI Waitany call path in the penultimate timestep 1299
having only 9% error. The distribution of the selected call-path metric values over the 1024
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Figure 4.13: Comparison of full-fidelity (bottom) and reconstructed iteration graphs and value maps
of MPI point-to-point communication count (left columns) and time (right columns) for
PEPC with different cluster counts.
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Figure 4.14: Scalasca analysis reports of the full fidelity PEPC measurement (left) and that re-
constructed from 128 clusters (right), showing the MPI time metric, and with a call
path ending in MPI Waitany selected in the tree walk routine of the penultimate
timestep.

processes of the Blue Gene topology also shows reasonably good characterization, although
significant differences for certain processes are evident.

At least 256 clusters therefore seem to be required to characterize all important features of
PEPC, which means that we need less than 20% of the buffer space to store the call-path
profile data at run-time, and still get sufficiently high quality data. This is especially important
for PEPC on a Blue Gene machine with limited per-core memory: the developers naturally
optimize their code using as much of the machine’s memory as possible, leaving only a small
amount for Scalasca measurement data.

4.5 Summary

A method for time-series call-path profiling is introduced and evaluated which uses incre-
mental clustering of call trees with similar metric values for space-efficient storage. While
using a distance function based on aggregate metric values allows efficient clustering deci-
sions, accuracy of the compressed call-path profiles can be ensured by enforcing call-tree
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equivalence based on visited call paths and heuristics that reduce the impact of extrema. An
implementation is demonstrated which has acceptable processing time and memory overheads.

Whereas the call-tree and execution characteristics of the simplest applications such as
137.lu lend themselves to accurate representation with as few as 16 clusters, more complex
applications are found to need more, with 64 clusters being enough for most of them. For the
PEPC application, however, at least 256 clusters are required for good time-series call-path
characterization of its complicated execution behavior. 64 clusters therefore generally seems
to be a reasonable default setting for a first measurement, as this value is usually high enough
to get good compression quality and still has relatively low time and memory requirements.
When considered insufficient, measurement can be repeated with a larger number of clusters.
Still, one of the weaknesses of the compression technique is that it is hard to tell if the right
number of clusters was used. When the cluster count is way too low, longer constant intervals
appear in the time-based metrics and noise mostly disappears, which can be suspicious, but
probably only to an experienced user. The best one can do to avoid this problem is to still use
relatively high cluster counts, probably never less than 64.

Evaluation of the compression algorithm using the off-line prototype gave us much valuable
insight and confidence to go on and implement the algorithm in the actual Scalasca mea-
surement system, for which it was intended. The evaluation of those results is presented
in Chapter 6, but before starting with this final evaluation, we present a novel measurement
method in Chapter 5 we introduced to make low-overhead measurements possible even for
applications where our standard instrumentation methods fail to deliver acceptable results.
This new method sacrifices the capability of collecting exact data for achieving lower over-
head, while still collecting all the necessary MPI communication data to achieve high-quality
compression using the algorithm introduced in this chapter.
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Chapter 5

Combining Sampling and PMPI Event
Profiling

As we have seen earlier from our measurements in Figure 2.1 on page 21, the Scalasca
measurement system that we build on in this thesis is capable of collecting low-overhead
measurements of most of our test applications, requiring filtering in some cases to lower the
overhead. Still, there are a few codes where it fails to deliver adequately low measurement
dilation, resulting in executions so perturbed by the measurement itself that the collected
data is close to useless. In this chapter, we introduce a new measurement methodology
capable of overcoming these problems by selectively applying a lower overhead, less precise
measurement method to the less important, computational part of the execution, while still
collecting precise information about communication-related events. As the primary focus in
performance profiling is on communication, having exact data about communication and sta-
tistical data about the computational part is just the right amount of information for meaningful
analysis. This combination enables us to take high-fidelity, low-overhead measurements while
still collecting enough information for the compression algorithm introduced in Chapter 4 to
work properly. The compression algorithm relies heavily on the availability of the count-based
communication metrics, which this technique can provide through the direct instrumentation
of the communication events.

One can broadly distinguish between two performance measurement techniques: sampling
and direct instrumentation. The first approach periodically samples the program counter as the
program progresses to measure performance aspects statistically. From the program counter
value, a profiler can easily derive the function the program was executing when the sample
was initiated by an interrupt. We then estimate the fraction of the overall runtime spent
in a given function by the fraction of samples that occur during its execution. In contrast,
direct instrumentation (or event-based instrumentation), inserts hooks at function entry and
exit points. This insertion can occur at levels ranging from the source code to the binary file
or even the memory image [78]. These hooks allow the profiler to maintain a shadow stack
at runtime. The stack stores the time at which a function is entered, which is subtracted from
the time when the function returns. The accumulated differences precisely capture how much
time was spent in each function. The Scalasca measurement system that this work is based on
uses direct instrumentation as its measurement approach.

Many tools build a dynamic call tree of the application execution to attribute times to
individual call paths, as introduced in Section 1.3. Such a call-path profiler tool can determine
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5. COMBINING SAMPLING AND PMPI EVENT PROFILING

the current call path in two different ways: It can maintain a shadow function stack, keeping
track of the current call path by taking advantage of the deterministic characteristics of direct
instrumentation; or it can use the technically more complex stack unwinding, sometimes
also referred to as stack walking [9]. While stack unwinding is applicable to both direct
instrumentation and sampling, it is typically only used in combination with sampling, as it
is expensive, and the simpler and more efficient shadow stack-based method can be used in
the direct instrumentation case. In the sampling case, keeping track of the current call path is
not possible, as it does not provide a continuous stream of function entry and exit events, and
any number of unknown changes to the current call path can be made between two sample
interrupts without our knowledge.

Sampling and direct instrumentation both have advantages. We can easily control measure-
ment dilation under sampling by adjusting the sampling frequency. However, it delivers
an incomplete picture, potentially missing critical events or providing inaccurate estimates.
Moreover, because the timer interrupt can occur at arbitrary program locations, sampling
complicates accessing not only the current call path, but any details of the program state, such
as the arguments of the current function. As a result, many tools resort to direct instrumen-
tation to capture communication metrics such as message payload sizes. The MPI profiling
interface [60], which leverages direct instrumentation through interposition wrappers, reflects
this insight. However, direct instrumentation can result in excessive measurement dilation
if applied indiscriminately, which quickly becomes apparent in C++ programs, which often
have many short but frequently called class member functions. While heuristics can balance
the amount of direct instrumentation with the need to cover all relevant program regions, they
often require additional program runs.

Our approach combines the two methods in a unified framework that exploits the strengths of
each. Specifically, we make the following contributions:

• The design of a call-path profiling technique that combines direct instrumentation of
MPI routines with sampling of all other program regions;

• Modifications of the call-path profiler of the Scalasca toolset [28] to implement this
technique;

• An inexpensive and portable enhancement of the classic stack-unwinding mechanism
that can identify the call paths of frequently called communication routines without
incurring excessive overheads;

• A study of the DROPS fluid-dynamics code written in C++ that demonstrates how our
profiling technique sufficiently reduces measurement intrusion to take low-overhead
measurements of a challenging real-world code and gain insight into its execution
characteristics.

Overall, our approach captures accurate call-path profiles with a variety of communication
metrics for a broad range of applications – including the growing class of C++ programs
– without requiring cumbersome selective function instrumentation or expensive runtime
filtering mechanisms.

The next section presents our call-path profiling approach and its integration into Scalasca. In
Section 5.2, we conduct a detailed experimental comparison of our new method to Scalasca’s
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traditional profiling options, giving evidence of cases for which it was the only way to achieve
acceptable overhead. Section 5.3 presents our study of the DROPS fluid-dynamics application,
and finally Section 5.4 gives an evaluation of the compression algorithm introduced in
Chapter 4 when applied to data collected using the hybrid call-path profiling method.

5.1 Hybrid call-path profiling

Call-path profiling requires two ingredients: (i) a mechanism to determine the call path at a
given point in time and (ii) a method to decide when such a point has arrived. In our approach,
we use stack unwinding for the former and combine sampling with direct instrumentation for
the latter.

We conceptually divide the execution of each MPI process into two disjoint, alternating phases
– execution outside and inside the MPI library. Outside the MPI library, we use sampling,
which is independent of the frequency of routine entries and exits and, thus, provides better
control of runtime overhead. Inside the MPI library, we use direct instrumentation, which
greatly facilitates calculation of metrics based on parameters of MPI routines, such as the total
number of bytes sent. We can easily intercept MPI calls with PMPI wrappers by relinking
or dynamic loading, thus avoiding complex code transformations required for some direct
instrumentation mechanisms.

Stack unwinding is central to our approach. Maintaining a shadow stack would require direct
instrumentation of user code, but we only use direct instrumentation for MPI routines. In
contrast, stack unwinding is essentially a stateless operation that can be applied at any time
during program execution, and it allows the call path that leads to the invocation of a particular
MPI routine to be determined whenever it occurs. Thus, stack unwinding is triggered by two
different classes of events, either when a timer interrupt occurs during computation or when
the program enters an MPI routine.

Another distinction concerns the attribution of the time spent in these two states. We calculate
the time spent inside MPI based on entry and exit timestamps, while we assign the time spent
outside MPI to individual call paths based on the samples that exhibit them. Our solution
combines the advantages of both techniques: rich and reliable MPI performance information
including messaging statistics and a low-overhead approximation of application performance
elsewhere with small, frequently called functions having no impact on runtime dilation.

We integrated our solution into Scalasca, primarily targeting the reduction of measurement
dilation during call-path profiling, particularly dilation occurring due to frequently called
class-member functions in C++ applications. The previous version of the call-path profiler
included in Scalasca relied exclusively on direct instrumentation to track the current call path
and to determine the time spent in specific call paths, which made it vulnerable to excessive
dilation caused by frequently called small functions.

Although source-code translators and binary instrumentation are also available, Scalasca
most commonly employs automatic compiler instrumentation to insert hooks for direct in-
strumentation into user functions. Scalasca can dynamically filter out small but frequently
called functions to lower the overhead of indiscriminate user-code instrumentation, as detailed
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previously in section 2.2.1. These functions, which cause significant dilation but contribute
little to the overall execution time, are placed on blacklists that prevent them from invoking
the code that was added during instrumentation. However, this approach usually requires an
extra run of the application under full instrumentation to identify the functions to place on
the blacklist. Moreover, just making the filtering decision for the blacklisted functions takes
some time, which can lead to significant overhead when dealing with functions that are called
extremely frequently. Our new hybrid approach eliminates these costs.

Our approach generically builds on third-party libraries to perform the stack-unwinding
procedure, which provides increased portability and flexibility. We focus primarily on an
implementation that is based on libunwind v0.99 [63], an easy-to-use C library that supports
a range of platforms and offers advanced features such as changing the instruction pointer,
the stack pointer or different processor registers. The latter capability directly supports our
stack unwinding optimizations. Even though we focus on the libunwind implementation and
x86 64 platform here, our optimizations are independent of the platform or the unwinding
library, and there is ongoing work to port our implementation to PowerPC (JUGENE) based on
StackwalkerAPI v1.2 [17], a C++ library with stack unwinding functionality similar to that of
libunwind.

Our approach faces two challenges. First, we must reduce stack unwinding overhead in the
presence of frequent MPI calls. Second, we must integrate sampling-based and event-based
time measurements within the same experiment. We discuss these challenges in the following
subsections.

5.1.1 Fast call-path unwinding

Although we will see in Section 5.2 that our approach avoids excessive measurement dilation
of user-code profiling through sampling, unwinding the call stack during every MPI call can
still dilate measurements significantly if MPI calls are frequent. While we can easily adjust the
sampling rate, the rate at which an application calls MPI functions is beyond our control. We
therefore introduce several optimizations to lower the overhead of stack unwinding including
non-trivial measures such as caching function start addresses and thunk stacks.

Unwinding only relevant MPI functions

In extreme cases, MPI call frequency exceeds the the sampling frequency of 100Hz that we use
in our implementation by orders of magnitude. Many applications repeatedly invoke auxiliary
MPI functions with insignificant execution times. For example, in the SPEC MPI2007
application 142.dmilc, more than 99.5% of all MPI calls are to MPI Comm rank, while
68.4% in 147.l2wrf2 are to MPI Cart shift. We exploit Scalasca’s ability to configure
measurement of certain groups of MPI wrappers individually to turn off stack unwinding for
a broad range of MPI functions that are not performance critical. However, we still count
the occurrences of those calls where unwinding has been disabled with negligible overhead,
which facilitates eliminating unnecessarily frequent ones.
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Caching region identifiers

Using libunwind to determine the name of a function with a given start address incurs
significant overhead. We also incur a high cost to map function names to region identifiers
by which Scalasca uniquely identifies the functions internally. Thus, we implement a hash
table that maps start addresses to their corresponding region identifiers, which eliminates the
name lookup and string matching except for each function’s first occurrence.

Caching start addresses

We must use another, even more expensive libunwind call to look up the start address of
the function being executed based on the current value of the instruction pointer. Caching
this information using a hash table is non-trivial because the timer interrupt can occur during
execution of essentially any instruction, which would present a large set of keys for non-trivial
applications. Fortunately, this problem only applies to the topmost stack frame. For all other
frames (and the topmost stack frame when unwinding from MPI wrappers), the instruction
pointer must refer to an instruction just after a function call site, corresponding to the return-
pointer value of the function being called. Since the largest applications have only several
thousand call sites, we can use a hash table to look up the function start address for most
stack frames. We handle instruction addresses in the topmost stack frame (i.e., those the timer
interrupts) with a separate, less efficient look-up structure, in which we check if the address
falls in between the start and end address of a known function. Caching the start address is our
most effective optimization, removing 90% of our unwinding overhead.

Light-weight thunk stacks

The optimizations that we have discussed so far either reduce the number of unwind operations
or the time to perform actions related to a single stack frame. Our next optimization reduces
the number of stack frames that we must examine to determine the full call path. Specifically,
we detect when the current frame is the last element of a prefix of a previously unwound
call path. Since we already know the prefix, we can avoid re-examining its stack frames. To
mark prefix frames, we change each frame’s return address as we unwind the stack. Based on
these special return addresses, we can later identify marked frames and associate each with its
corresponding prefix.

Changing bits in return addresses to mark frames could alter the program’s control flow.
Instead, we allocate a special region of contiguous memory to hold a thunk stack, shown
in Figure 5.1(b). The thunk stack is composed of entries, or thunks, that mirror the state
of the runtime stack when it was last unwound. Each time we walk over a stack frame
during unwinding, we create a thunk in the stack that branches to that frame’s return address.
We then modify the original return address to point to the thunk. Since we know that
instrumented return addresses will fall somewhere inside the thunk stack, we can identify
them by comparing each return address to the thunk stack’s location. Entries in the thunk
stack are constant-size, so we can compute the depth of a particular prefix by subtracting the
address of the bottom of the thunk stack from an instrumented return address.
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Figure 5.1: Prefix optimization mechanisms.

Other tools use different mechanisms to perform the same optimization. HPCToolkit uses a
lightweight trampoline, as shown in Figure 5.1(a) [20]. Instead of pointing return addresses to
a stack, the topmost function of a prefix is instrumented to return into a trampoline function.
The trampoline performs bookkeeping for profiling and tracks the frame in the dynamic call
tree to which it currently points. Upon return, the trampoline installs itself in the next lower
stack frame so that that frame’s function will also call the trampoline when it returns.

A thunk is much simpler than the HPCToolkit trampoline function. Figure 5.1(b) shows
our thunk implementations. On x86 64, the 64-bit jump performed by the thunk is a single
instruction, and on PowerPC it only requires four instructions. Further, our thunks do not
modify the stack as the trampoline does. We thus avoid signal safety issues within our
instrumentation code, as our sampling signal handler does not need to check whether it is
within the trampoline to avoid conflicts. Our instrumentation is confined within unwind
routines and isolated from our thunks.

This arrangement decouples our optimization from the particular stack unwinder used. The
trampoline approach requires that trampoline code can interpret stack frames and insert itself
in the proper location in the next frame. Our thunks do not perform stack surgery and,
thus, can be implemented separately from the main stack unwinding logic, which makes our
implementations less complicated than trampoline-based implementations. Stack unwinding
APIs only must support writing to return address locations as we unwind the stack, a feature
that both libunwind and StackwalkerAPI provide.

Finally, our approach avoids the problem of non-local function exits. In languages that
implement exception handling, a routine may return into a routine other than its caller. This
event causes control flow to skip the return that would install the trampoline in a lower frame.
The trampoline approach thus must instrument all non-local exits to routines, which requires
more complex code analysis [20]. Our approach avoids this analysis by simply placing a thunk
at every level of the call stack. Thus, our scheme already instruments the frames in the prefix
of any frame that a non-local exit skips, whereas a trampoline may be skipped entirely by a
non-local exit.
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Counting call-path visits

Our thunks support efficient counting of the number of times that a call path is visited. If a
stack-walk step encounters a function in which we have installed a thunk, then this function
has not returned since the previous unwind. Had it returned and been called again, its return
address would not point to the thunk. This count is only an estimate, because we do not
necessarily take a sample at every execution of a given call path, and we do not instrument
non-local routine exits. However, this count is a guaranteed lower bound, as the function had to
be entered and exited this number of times. Further, a unique property of our solution increases
the accuracy of this lower bound. We perform stack unwinds not only during arbitrary timer
interrupts but also inside every PMPI wrapper. Thus, we frequently unwind COM call paths
(as introduced on page 22). In most cases, functions on these call paths always call at least
one MPI function (directly or indirectly) every time they are executed, making sure that we do
not miss any instances of those COM function calls. We might unwind from several MPI calls
from within a single COM function call, but this does not cause a problem in the counting
as the thunks indicate when we have not left a call path between unwind operations. These
properties together mean that our visit count is likely to be exact for COM call paths. Overall,
we provide lower bounds for the visit counts of arbitrary call paths, and exact visit counts for
most COM call paths (those that call MPI every time they are called). HPCToolkit similarly
tracks the visit count, but does most of the bookkeeping work inside its trampoline, whereas
we do this work within our unwind calls.

5.1.2 Hybrid sampling methodology

Our hybrid profiling approach combines two profoundly different measurement modes. This
combination requires that we prevent undesirable interference between their underlying mech-
anisms. Further, we must integrate their measurements in a consistent and statistically sound
manner.

Timer interrupts inside MPI

A possible interference between the two modes arises when timer interrupts occur during
MPI calls. Although at first glance it may seem reasonable just to pause the timer whenever
control is transferred to MPI, the high frequency of MPI calls makes this approach extremely
expensive. Thus, we simply ignore interrupts that occur inside MPI functions. We explain
below how we correctly account for ignored interrupts and how we avoid inaccuracies due to
MPI calls, which are not part of the sampled population.

MPI calls inside sample intervals

While we directly measure the time spent inside MPI, we only statistically measure the time
spent outside MPI (which we refer to as computation in the following). We must separate
these two measurement realms so that we represent each of them as accurately as possible
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Figure 5.2: The impact of MPI calls on the effective sample interval length.

while maintaining the invariant that their sum equals the directly measured overall execution
time.

Classic sampling methodology estimates the Execution time tc consumed by a certain call path
c as:

tc =
nc

n
∗ t

with t being the total execution time, n being the total number of samples, and nc being the
number of samples exhibiting call path c. We could calculate the execution time within a
computational call path either by including the ignored samples into n, as if we were sampling
everything, or by rescaling the equation variables as if the entire execution consisted only of
computation. Either choice could result in inconsistent timings due to the representation of
overall MPI time in two different ways, directly via explicit wall-clock readings and indirectly
via the number of interrupts that occur inside MPI.

The frequency of MPI calls makes these solutions inadequate. Our experiments confirm
that the two representations correspond well, as long as applications alternate between large
contiguous phases of computation and communication. However, there are slight deviations
when the frequency of MPI calls rises. Further, time assignments may be biased depending on
when a call path primarily executes at runtime, because the MPI call frequency may differ not
only between applications, but also between different phases of the same application.

Classic sampling methodology assumes evenly distributed samples across the execution time
with intervals between consecutive samples having about the same length. Our hybrid
approach violates this assumption for two different yet related reasons. First, we drop timer
interrupts that occur inside MPI calls. Second, the interval between two valid interrupts may
include MPI calls, which influence the effective length of the interval. Depending on the
duration of these MPI calls, the effective length of this interval can be shorter or longer
than the normal timer interval. As illustrated in Figure 5.2, we define the effective sample
interval length of a sample taken at interrupt i as the sum of the computation intervals since
the last interrupt outside MPI (i− 2 in the figure). We can calculate this length as the distance
between i and i − 2 minus the intervening time spent in MPI as determined by our direct
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measurements. Depending on the extent of MPI execution, the effective length can be greater
than (Figure 5.2(a)) or less than (Figure 5.2(b)) the regular timer interval length.

Instead of excluding the MPI time at a global level by rescaling all measurements by the same
factor, we use a more flexible solution that locally rescales the time attributed to a sample.
This approach accounts for local fluctuations of the sampling frequency caused by MPI calls.
Our solution assigns a weight that corresponds to the length of the effective sample interval
to each sample taken outside MPI. Thus, we use a variable sampling frequency that assigns
more weight to samples that are taken in regions with a lower effective sampling frequency and
less weight to call paths in regions with a higher effective frequency. At the same time, this
approach ensures that effective sample intervals and MPI times add up to the overall execution
time, preserving consistency as desired.

Figure 5.3 presents an example where we require this approach, the SPEC MPI2007 applica-
tion 128.GAPgeofem. The bins in the histogram in Figure 5.3(a) represent the sample interval
before we subtract the time spent in MPI. 75% of the intervals have normal length, 14% are
twice as long, 6% are three times as long, and the remaining 5% are more than three times
as long. Figure 5.3(b) shows the histogram after we subtract the MPI times, resulting in the
effective sample interval length. 34% of the intervals have exactly the normal length, which
means that they did not include any MPI execution. Another 42% of the intervals have a length
between zero and the normal timer interval length. These intervals typically have the normal
length (they are in the first peak at bucket 120) in Figure 5.3(a), but their lengths are reduced
in Figure 5.3(b), as they include some time in MPI calls.

When looking at Fig 5.3(b), we see a local maximum around bucket 70. As the normal
interval length falls into bucket 120, this indicates that the typical amount of time spent in
MPI in those sample intervals where MPI calls are present is slightly less than half of the
sample interval for this application. We also see a dip to the left of the normal interval length,
between buckets 110 and 120, as any given interval rarely includes less than 0.001s of MPI
execution. Intervals that comprise the second peak of Figure 5.3(a) typically appear to the right
of the normal interval length in Figure 5.3(b). These intervals, which must have included MPI
execution (otherwise they would be normal length intervals), are now distributed similarly
to the samples from the first peak, but at a different scale (on the logarithmic y-axis). The
similarity in the distributions is due to the fact that both sets of values were generated based
on the same MPI time distributions, just subtracting these MPI distributions from one or two
sample interval lengths, respectively. The histogram shows that even though we allow variable
and theoretically unbounded sample interval lengths, most of the interval lengths are very
close to the normal timer interval. Having many arbitrarily long sample intervals would not
invalidate our method, but would slow down its convergence, which means that we would
need longer executions to get high quality statistical data.

5.1.3 Implementation challenges

While the basic ideas behind the hybrid measurement method may be simple, implementing
the prototype on a real-life system offered significant challenges. A selection of the most
interesting challenges is discussed in this section.
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(a) Sample interval length before subtracting MPI time.
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(b) Sample interval length after subtracting MPI time.

Figure 5.3: Logarithmic histograms of sample interval lengths with 0.0001s resolution buckets on the
x-axis for 128.GAPgeofem; the last bucket contains all intervals that do not fit into the
first 500 buckets.
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Compiler optimizations

Unwinding the call stack on the x86 64 architecture requires great care. Some compiler
optimizations such as tail calls or even hand-written assembly code may confuse libunwind,
leading to incorrect return values [87]. Especially when using thunks, bogus return values
from the unwinder will almost certainly lead to a fatal error. To avoid such errors, we
validate libunwind return values by ensuring that the preceding instruction was a call to the
corresponding function. If it is not, we simply do not install the thunk. StackwalkerAPI did
not exhibit this problem.

Signal safety

Each function called from our interrupt handler must be signal safe. However, we require that
our signal handler has access to the full Scalasca measurement infrastructure, which is not
signal safe. We solve this problem through guards to every entry point of the Scalasca library.
The guards check a single atomic flag (volatile sig atomic t) and immediately return
if it is set. After the guards, the flag is set, and it is unset at Scalasca’s exit points, which
eliminates race conditions within Scalasca.

5.2 Experimental evaluation

We investigate the benefits of our techniques using the same set of SPEC MPI2007 v2.0
benchmark suite [83] applications we used for evaluating our methods in Chapters 3 and 4.
We also use the DROPS application for evaluating our methods, since 126.lammps is the only
C++ application in SPEC MPI2007, and complex C++ codes are typical use cases where these
techniques can be beneficial. The DROPS software package [38, 19, 36] is an object-oriented
computational fluid dynamics framework that solves the problem of efficiently simulating
two-phase incompressible flows. In our test case it is simulating a rising droplet in a fluid.
DROPS is implemented in C++, and incurs prohibitive measurement overheads under direct
instrumentation [48].

The measurements are taken on JUROPA using similar configurations as in Chapter 2. We
compare two Scalasca measurement sets. The first set uses Scalasca’s existing capabilities
based on direct instrumentation, previously introduced in section 2.2.1. The second set uses
our new hybrid sampling-based approach.

5.2.1 Direct instrumentation

The Scalasca instrumenter, when used as a prefix to the usual compile and link commands,
configures the compiler to instrument the entry and exits from user-level source routines.
Although details vary by compiler, almost all contemporary compilers offer such a capability.
By observing these entry and exit events for routines, the Scalasca runtime library can track
the current call stack of instrumented routines as they execute and update its call-path profile
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accordingly on each process. As MPI events occur, delivered by the PMPI wrapper library,
they naturally augment the call paths in the profile.

Figure 5.4 gives an overview of the runtime dilation observed at different instrumentation
levels for each application. The green and red lines at 5% and 15% are the thresholds we
used for categorizing overheads as acceptable, borderline or excessive. Of course these are
arbitrary thresholds, but still realistic and based on common sense. The leftmost (red) bars
in Figure 5.4 show that five of the applications have less than 5% measurement overhead,
which is sufficiently low for most uses. While 143.dleslie and 145.lGemsFDTD (12%)
are borderline, 147.l2wrf2 (19%), 129.tera tf (31%), 142.dmilc (50%), 122.tachyon (237%)
have excessive overhead. Finally, the 9394% overhead for DROPS confirms that plain
direct instrumentation is not capable of providing meaningful, reliable results in certain more
challenging cases.

When we instrument and measure every user-level source routine, high dilation can occur,
particularly for small/short computational routines that execute frequently. We can reduce
this overhead significantly by filtering such routines with the filtering approach discussed in
Section 2.2.1. Filtering means that we lose information about these routines, but they are
typically less important routines where very little time is spent, such as overloaded relational
or array indexing operators.

Filtering reduces overhead in every case, as the middle (green) set of bars in Figure 5.4
shows. The overhead reduction in the case of 125.RAxML, 142.dmilc and 145.lGemsFDTD
are substantial and result in acceptable overheads. In the cases of 129.tera tf and 147.l2wrf2
filtering proved to be useful, but less effective. Although the 122.tachyon overhead is down
to 47%, it remains a concern: with all overhead due to a single routine, static filtering could
be employed to avoid instrumenting it entirely. While static filtering is a viable option, we
generally consider it a more involved method for advanced users. DROPS measurement also
benefits from a comprehensive filter (listing more than a thousand routines), yet the dilation of
227% may still result in undesirable distortion. We examine this issue in detail in Section 5.3.
Overall, instrumentation of user-level source routines proves straightforward and effective for
most but not all applications and is sometimes inconvenient. Ideally, we would like to have
a measurement method that provides all relevant information with low overhead, but without
any complicated manual configuration or the need to run the same experiment several times.

5.2.2 Hybrid sampling

In this section, we evaluate the new hybrid sampling-based measurement method, and show
that it is a useful alternative to direct instrumentation, providing consistently low overhead
already on the first run, without a need for filtering or any other complicated manual measure-
ment configuration.

An important drawback of not using direct instrumentation is that we cannot simply update
the current call path at every event by adding or removing one call from the previous call
path. If we want to build a dynamic call tree, we have to do expensive stack unwinding
from every event, both from signal handlers and PMPI wrapper functions. As we control
the frequency of samples but have no control over the frequency of MPI calls, most of the
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unwinding overhead often results from unwinding from PMPI wrappers, so it is also important
to evaluate the measurement overhead in those cases where we turn sampling off completely
and do stack unwinding from PMPI wrappers only. In these cases, the resulting call-path
profile roughly corresponds to that produced by the filtering scenario that excludes all user-
level source routines not on call paths to MPI operations. We expect small differences, for
example when the compiler changes inlining decisions and from routines that the compiler
does not instrument (such as Fortran interfaces to MPI library routines).

The rightmost (dark brown) set of bars in Figure 5.5 shows the measurement dilation when
unwinding from PMPI wrappers only with no sampling. For most applications, this overhead
is under 2%. Exceptions are 143.dleslie (3%), 147.l2wrf2 (8%), DROPS (10%) and 142.dmilc
(14%). The PEPC application is not used for evaluating this technique as we measured it on
the JUGENE system, where hybrid sampling is not yet implemented.

147.l2wrf2 and 142.dmilc incur more overhead primarily because they frequently invoke
certain MPI routines that we do not really need to profile. The Scalasca measurement library
defines groups of MPI routines as shown in Table A.1 on page 138. In the hybrid sampling-
based measurement mode we can use these MPI groups to selectively disable unwinding
from these MPI calls while still collecting all other data about them. Although disabling
these calls would be unnecessary when using plain direct instrumentation, the additional cost
of frequent stack unwinding from such routines is prohibitive. Disabling unwinding from
the CG_MISC group containing MPI_Comm_rank for 142.dmilc and this group plus the
TOPO group containing MPI_Cart_shift for 147.l2wrf2 reduces measurement overheads
to under 1%. After noting that these functions are called very often, it is safe to disable
unwinding for them, as they generally do not contribute much to the understanding of the
overall execution characteristics. Also, we are still counting their occurrences and measuring
time in them, we just do not do the stack unwinding from them, meaning that their exact
position in the call tree will be lost in subsequent measurements. This is a tradeoff that we can
safely make in order to ensure low-overhead, high-fidelity measurements. Figure 5.5 shows
the best results with solid bars, and the two cases without this optimization with outlined white
bars.

with an interval timer configured to deliver interrupts at a specified rate to each process, we
can use stack unwinding from these signals to augment the call-path profile with non-MPI
call paths approximating the profiles produced by (unfiltered) compiler instrumentation. This
approach includes additional call paths since signals occur during execution of uninstrumented
routines (such as those in system libraries). The leftmost (light brown) and central (orange)
sets of bars in Figure 5.5 show measurement dilation when using one-hundredth of a second
(100Hz) and one-tenth of a second (10Hz) timer interrupts, respectively. We find slightly
higher measurement overhead as expected, but it remains below 4% for all SPEC MPI
applications but 143.dleslie, for which it rises to 12% at 100Hz. Overheads for DROPS are
relatively high when compared to the other codes (around 12% at 100Hz), but much lower
than in the direct instrumentation case (which was over 100% even with filtering).

We measured the time to perform stack unwinding from PMPI and non-PMPI events for
each application, as Figure 5.6 shows for 10Hz and 100Hz. It is important to note that these
overhead numbers are based on the reported time spent in different unwinding operations, and
are not directly comparable to overall overhead numbers based on the ratio of instrumented
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and uninstrumented execution times. The PMPI unwind cost (lower/cyan bars) dominates in
most cases, equivalent to over 9% of the execution time for DROPS, 3% for 128.GAPgeofem
and 2% for 143.dleslie. Non-MPI unwind costs (middle/orange bars) are negligible at 10Hz
and only close to 1% at 100Hz for 147.l2wrf2, 132.zeusmp2, 137.lu and 143.dleslie.

Stack unwinding from PMPI or non-PMPI events sometimes fails, which we categorize
as “failed unwinds” in the Scalasca profiles. These failures typically occur within system
libraries, hand-optimized assembly code in mathematical libraries, and the MPI library. The
upper/purple bars in Figure 5.6 show that the proportion of time spent in regions where
unwinding failed is generally low and roughly consistent regardless of the sampling frequency.
For seven of the SPEC MPI codes call-stack unwind failures correspond to under 0.2% of
execution time, with the worst cases being 122.tachyon (3.8%) and 147.l2wrf2 (6.6%). For
DROPS it is a moderate 1.7%.

We show libunwind measurement overheads with and without our thunk optimization in
Figure 5.7. 142.dmilc shows significant improvement, however, only when we include
unwinding from unimportant MPI routines. Although the thunk does not provide a major
reduction in overhead, at least on JUROPA, it still helps to provide more accurate call path visit
counts.

Overall, our new approach provides reliable and convenient comprehensive call-path profiling
of PMPI and user-level routines. We observe negligible measurement overheads (well under
5%) for all test applications except 143.dleslie and DROPS on JUROPA. Those two worst-
cases show moderate, 12% overhead, which is still acceptable, especially where the overhead
from direct instrumentation would be significantly higher.

5.3 C++ application example: DROPS

As already seen in Figure 5.5, the DROPS application shows excessive overhead when
using direct instrumentation (9394% without filtering, down to 227% when using aggressive
filtering). This makes it a suitable candidate for evaluating the hybrid sampling measurement
method. As we achieved significant reduction of measurement dilation using the hybrid
sampling technique — down below 15% as seen in Figure 5.5 — it is important to evaluate
if the decreased measurement dilation is only a quantitative difference or if it provides
qualitatively different insight. We compare two key metrics, Exclusive execution time and
MPI collective communication time in the following sections.

5.3.1 Execution time metric

Figures 5.8 and 5.9 show views of the Scalasca summary analysis reports of DROPS execu-
tions on JUROPA with 512 processes, one using direct instrumentation and the other combining
PMPI measurements with 100Hz call-path sampling. Metrics listed in the leftmost panel apply
to the entire measurement (e.g., time aggregated for all processes), which can be refined to
selected call paths shown as a tree in the middle panel. The Exclusive execution time metric
is selected here, which is also known as Computation time, as it contains the time spent in
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Figure 5.8: Scalasca analysis report from a compiler-instrumented measurement of DROPS with 512
processes, highlighting call paths which are the hot spots in the Execution time metric.

computation, but excludes the time spent in communication. The five most important call path
groups are highlighted for comparison in both screenshots. We are not comparing individual
call paths here as those are not directly comparable due to instrumentation differences like
filtering and inlining. What we highlight are in all cases the equivalent call paths from both
measurements.

First of all, it is important to note that the absolute values are often quite different, as the values
from the direct instrumentation measurement are typically highly dilated, here by over 100%
for the entire execution compared to 12% with hybrid sampling. Here we are concentrating
on the ratio of time spent in each key call path group against the overall value of the metric.
The most important finding is that the dilation affects the call paths in a non-uniform way,
causing certain call paths to be shown as much more important than they really are. The direct
instrumentation measurement shows the first highlighted group having 41.1% of the overall
execution time, making it the most prominent in the measurement, while it only has 28.8%
in the hybrid sampling measurement, which has significantly less dilation. Conversely, the
hybrid sampling measurement shows the second highlighted call path group having about the
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Figure 5.9: Scalasca analysis report from a hybrid sampling-based measurement of DROPS with 512
processes, highlighting call paths which are the hot spots in the Execution time metric.

same ratio, 30% of the overall execution time, while the same call paths account for only 9.9%
of the overall execution time in the direct instrumentation measurement.

5.3.2 MPI collective communication time metric

After comparing computation times on the most significant call paths, the logical next step is
to also compare measured times on the most important communication call paths. While
there is a broad match in the comparison of the ratio of time spent in Point-to-point vs.
Collective communication time (with the respective dilations applied), going down to the level
of individual call paths shows that the heavily dilated direct instrumentation measurement is
misleading in this case as well. In particular, the direct instrumentation-based measurement
highlights the MPI Allreduce inside the ParTimer::GetMaxTime call path as the
most significant one, having 43.7% of the overall MPI Collective communication time, while
it only has 4.5% in the hybrid sampling case, which in turn highlights the MPI Allreduce
inside DROPS::StandardGramSchmidt as the most important, with 55.3% of the MPI
Collective communication time rather than 16.8% in the direct instrumentation case.
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Correctly identifying the call paths where most of the communication time is spent is crucial
in the process of performance analysis. It often reveals important workload imbalances or
other factors that lead to waiting times in the communication. Again, the conclusions drawn
from the two measurements would be very different on where to look for the most significant
performance problems.

5.3.3 Deciding the question

In both of the previous examples we have two different measurement methods reporting
largely different results on what the most important call paths are for directing further
analysis. While the hybrid sampling-based measurement is likely to be more accurate, as
it has significantly lower dilation, the results are not conclusive. To decide the question,
we executed a third kind of measurement, using the MPI wrappers only and no direct
instrumentation or sampling for the computation code. Instead, we inserted a minimal amount
of source-code instrumentation to annotate the hot spots already identified, just enough to
deliver the data necessary to decide this question. This measurement is aggressively tuned for
minimal overhead, taking (and interpreting) such measurements is generally considered too
advanced and labor-intensive for average users. It involves carefully placing manual source-
code instrumentation at certain call-path depths to clearly differentiate the MPI calls we are
interested in from the others, while keeping the measurement dilation as low as possible.
Using this method, we achieved measurement dilation as low as 4.6%, which might still
sound relatively high, but it is still much lower than either of the other measurement types
could reach.

Figures 5.10-5.11 compare the measurement results from the three different measurement
techniques. They compare the absolute values reported by the different measurement methods
for the computation and the collective communication hot spots. The hot spots are named in
the graphs after important, representative function names on their call paths. As we consider
the measurement based on MPI wrappers and source-code instrumentation only as the most
accurate, the more similar the bars representing the other two measurement methods are to
the bar on the right hand side of each figure, the more accurately they represent reality.
In Figure 5.10 the results from the hybrid sampling-based method matches nearly exactly
those from the special low-overhead measurement, while the values reported by the direct
instrumentation measurement are clearly heavily dilated, and not even close to reality. In
Figure 5.11 the match is again much better in the hybrid sampling case.

Comparing relative values, to see how close the match is between the proportions derived from
each measurement in Figures 5.12-5.13), we find again that the hybrid sampling measurement
is in good accordance with the purely MPI wrapper-based measurement, while direct instru-
mentation was dilated unproportionately, leading to less reliable values. This comparison if
perhaps even more important than the comparison of the absolute values, as it is generally
the relative weight of a given call path from the overall execution time that we evaluate when
looking for candidates for further analysis.
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Figure 5.10: Comparison of absolute time reported for the computation hot spots by direct instru-
mentation, hybrid sampling and pure MPI wrapper-based measurement.
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Figure 5.11: Comparison of absolute time reported for the MPI collective hot spots by direct instru-
mentation, hybrid sampling and pure MPI wrapper-based measurement.
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Figure 5.12: Comparison of proportion of time reported for the computation hot spots by direct
instrumentation, hybrid sampling and pure MPI wrapper-based measurement.
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Figure 5.13: Comparison of proportion of time reported for the MPI collective hot spots by direct
instrumentation, hybrid sampling and pure MPI wrapper-based measurement.
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Figure 5.14: The impact of OpenMP and marked regions on the effective sample interval lengths.

5.3.4 Conclusion

While the two measurement approaches generate similar call trees and it is possible to match
the call paths of the measurements to each other, it is often not a 1:1 match, as inlining and
filtering make the call trees different in the two measurements. In particular, the aggressive
filtering required by the direct instrumentation method to make a measurement feasible at all
causes large parts of the call tree to disappear completely, limiting the insight gained into
where most of the Execution time is spent. Moreover, as dilation affects different call paths in
a non-uniform way, the heavily dilated direct instrumentation measurement leads us astray in
both the Exclusive execution time and MPI collective communication time metrics, identifying
the wrong call path as the most important one in both cases. This makes the hybrid sampling
measurement superior in both the extent of details provided in the call tree and even more
importantly the quality and reliability of the data presented to the user.

5.4 Compression of hybrid time-series profiles

When designing the hybrid sampling-based measurement method, one of the main design
goals was compatibility with our existing methods. In particular, it was our goal to be able
to use the iteration instrumentation and clustering-based compression capabilities on data
collected using the new method. The most important feature enabling this capability is that
we collect full information about MPI communication events, complete with all the relevant
arguments such as number of bytes transferred. In this way, we have access to the full range
of metric values required to get good representations of the iterations and compress them
accordingly. In the following section we review the particular opportunities and challenges
encountered during the process of bringing these features together.

5.4.1 Exact measurement of iteration and marked region times

The source-code instrumentation applied for marking source-code regions and iterations is a
form of direct instrumentation, but slightly different from the usage of the PMPI interface.
As our general philosophy for measuring time in hybrid sampling measurements is to use
all available information for providing the most exact results possible, we wanted to take
advantage of the fact that we have access to exact time stamps at the beginning and end of
iterations. This means that the overall time spent in the iteration is measured exactly, not just
as the sum of the time associated with the samples inside the iteration.
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We apply a similar, but more fine-tuned approach, as illustrated by Figure 5.14: the sample
interval in which a source code instrumented region begins is cut in two halves based on the
time stamp of the start of the region. The first half stays outside the region (i1), and only the
second half will be attributed to the call path next hit by a sample inside the region (i − 3).
Similarly, when leaving a region, the first half of the sample interval stays inside (i − 1), and
the second half, together with the first half of the entering interval is attributed to the first call
path hit outside the region (i1 + i2). This is a very small adjustment, typically at the scale of
0.01s per user region, but it can make a difference in case of very short user regions, and it
guarantees that the time inside such a region or iteration stays exact.

Measuring OpenMP region times exactly

Measuring time in marked source-code regions exactly might sound like a minor issue at first,
but it quickly becomes a question of major importance as soon as we start thinking about
adding OpenMP support to the system. As an OpenMP region can essentially be handled
as a source-code instrumented region, much like our iterations, the same solutions apply as
well. And since these regions can often be very short, there is a good chance that statistical
sampling will not be able to give a good estimate for the time spent in the region. If we also
apply iteration instrumentation, this prevents the same OpenMP call path from improving its
accuracy by collecting samples from a longer time period. In these cases, taking advantage
of the exact timing information obtained from time stamps of the marked regions, while
maintaining consistency with the sampling-based time information proves invaluable. As
OpenMP support is beyond the focus of this work, we will not go into detailed analysis of
this technique, but our preliminary results indicate that this technique provides the expected
results.

5.4.2 Modified call-tree comparison methods

Another challenge for combining the hybrid sampling approach with the compression algo-
rithm is that sampling inevitably provides non-deterministic results. Most of the metrics that
the compression is based on are measured exactly, such as iteration time, time spent in different
kinds of MPI communications and synchronizations, the counts of different MPI events, or
Bytes transferred. One of the most important metrics however, Visit count is not measured
exactly. In fact, for user call paths we only provide a lower bound, while for call paths leading
to MPI communications we provide some limited guarantees. The only call paths where the
Visit counts are exactly known are the terminal MPI call paths. Furthermore, sampling does
not provide a guarantee of a complete call tree. Only the subtree with the call paths leading to
MPI calls is guaranteed to be complete when employing our hybrid sampling scheme.

Under these circumstances, comparing call trees the same way as we do in compiler-
instrumented measurements would be senseless. A number of modified call-tree comparison
methods have been developed for this purpose. The common theme in these new comparison
methods is that they compare only a subset of the call-tree nodes to avoid differentiating iter-
ations based on call-tree features that are only statistically correct. The most straightforward
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method is to compare the MPI visit counts only and ignore the call tree altogether. A more
sophisticated approach is to ignore the purely computational parts of the call tree (the USR
call paths, as introduced on page 22), but compare the structure and visit counts of the subtree
consisting of the COM and MPI call paths only. This turned out to be overly strict in some
cases, as the guarantees for the visit counts on COM call paths are not exact. The method we
found most effective lies between these two extremes: compare the structure of the subtree
consisting of the MPI and COM call paths, ignoring USR call paths, and compare visit counts
on MPI call paths, but not on USR or COM call paths. This method leads to acceptable
structural partition counts, typically less than six.

A side effect of the compression is that call trees of similar iterations are merged, potentially
resulting in large numbers of ‘phantom’ USR call paths, coming from other similar iterations.
This is an undesired effect when using direct instrumentation, but is actually useful in the
sampling case. As we compared the MPI subtrees of the iterations before merging them, we
know that they are as similar as possible, at least from the standpoint of their communication
patterns. It is therefore likely that they are actually iterations with similar executed call trees.
As sampling in many cases fails to collect the complete call tree of an iteration — especially
when the iterations finish very quickly — getting a more complete call tree for the most often
executed iterations is certainly a positive outcome.

After the decisions of the call-tree structure-based partitioning algorithm, the metric-based
clustering algorithm takes care of the rest of the data compression. Our updated partitioning
algorithm ensures that the partition count is not exceedingly high, which ensures that the clus-
tering algorithm can easily adapt to the circumstances provided by the structural partitioning,
using more clusters for partitions containing more varied iterations. In this way, using a high
enough cluster count automatically results in a good representation of the original data, as we
will see in the evaluation in the next section.

5.4.3 Evaluation

The quality of the results from this adapted form of the compression algorithm is first evaluated
as an extension of the off-line prototype implementation, using the same kind of evaluation
graphs as introduced in Chapter 4. No visual comparisons are included in this chapter, as
Chapter 6, where we evaluate the actual on-line implementation shows such comparisons. It
is more relevant to analyze those results in detail, as they are generated by the actual final
implementation. The main point of the evaluation in this chapter is to provide error statistics
undisturbed by run-to-run variation, using the off-line, post-mortem implementation.

As the distance between iterations is calculated the same way as in the direct instrumentation
case, and only the structural partitioning algorithm has changed, we concentrate on this
new aspect of the algorithm. To make comparisons between the evaluation of the direct
instrumentation and the hybrid sampling method as easy as possible, we tried to keep the scale
of the evaluation graphs the same as in the direct instrumentation case wherever possible.
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Figure 5.15: Average error rates of the maximum and mean values when compressing hybrid sam-
pling data.

Error rates for entire iterations

Figure 5.15 shows the average error rates of the maximum and mean values in the graphs,
both for all metrics and for the count-based metrics separately. Looking at the maximum error
rates for all metrics, the overall trends are clearly as expected, using more clusters yields better
accuracy. For most applications, we still get less than 1% error levels even at the lowest cluster
counts, which is negligible for all practical purposes. There are no extremely high error rates
in these graphs, the two worst cases are 125.RAxML and 143.dleslie, but they also get close to
the 1% level at 64 clusters, which is a quite low cluster count given that these two cases both
have several thousand iterations. DROPS is also one of the worse cases, but still at a quite
acceptable error level. The error rates of the mean values are similar, just lower, much like we
have seen them earlier in Figure 4.3 in the direct instrumentation case.

In the direct instrumentation case the error in the count-based metrics was zero for most
applications, as those metrics contain no noise, are quite deterministic and correlate well with
structural partitioning (see Figure 4.4 on page 58). In contrast, the same metrics have non-zero
error for many applications when using the hybrid sampling method, which is a difference
from the direct instrumentation case. This is because one of the most important count-based
metrics, the Visit count is not deterministic any more under hybrid sampling, as the USR
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Figure 5.16: Average error rates of individual call paths, when compressing hybrid sampling data.

and in some cases the COM call paths are encountered a non-deterministic number of times,
depending on when and from where the unwind operations happen. Still, these error values
largely remain under the 1% level, and much lower than the errors for all metrics, indicating
the same trends as in the direct instrumentation case.

Error rates for individual call paths

Figure 5.16 shows average error rates of individual call paths. For time-based metrics, the
trends are largely similar as in the direct instrumentation case before (see Figure 4.5 on
page 59), 129.tera tf is still the worst case, but there are also differences, like the improvement
in the 143.dleslie case and the slight worsening of the 137.lu case. Given that in this case
we only evaluated error rates on COM and MPI call paths, as opposed to COM, MPI and
USR in the direct instrumentation case, since we can not expect the same USR call paths to
be present on call trees of equivalent iterations with hybrid sampling, these surprisingly low
differences between the two cases indicate that the main characteristics of the compression
remained largely the same when switching to the hybrid sampling method and the adapted
compression techniques, which is certainly a positive result.

The error of count-based metrics in the direct instrumentation case was 0% for most appli-
cations (see Figure 4.6 on page 59). The results are similar with the hybrid sampling-based
methods, as most of the error levels are very close to 0%. Exactly 0% error rates might not
be realistic, as a few unwinding errors here and there are inherent to the new method, which
introduces some slight variability to the Visit count metric on the COM call paths even where
it would be completely constant between iterations.

Quantized call-path error rates

Figure 5.17(a) shows the quantized call-path error rates when using 64 clusters. Again, the
trends are very similar to direct instrumentation (see Figure 4.7(a) on page 60), with the highest
error rates occurring with slightly lower probability here. This is likely because we only take
into account errors on COM and MPI call paths when evaluating the hybrid sampling method.
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Figure 5.17: Proportion of call paths in profiles reconstructed from 64 clusters having quantized error
rates when compressing hybrid sampling data.

Figure 5.17(b) shows the same quantized error rates in count-based metrics, where 4 appli-
cations show non-zero error. 126.lammps is similar to the direct instrumentation case (see
Figure 4.7(b) on page 60), with 125.RAxML showing clearly larger errors, and 128.GAP-
geofem and DROPS being new additions. 125.RAxML and 128.GAPgeofem likely changed
because of the slight variations caused by unwinding errors, while DROPS was expected to
have relatively high variability by design, due to its use of automatic workload balancing.
High, non-systematic variation in the count-based metrics makes them similar to time-based
metrics, generally not predictable enough for perfect characterization.

Processing time

Figure 5.18 shows the absolute and relative average iteration processing times of the compres-
sion algorithm. We found in the direct instrumentation case (see Figure 4.8 on page 61) that
most of the overhead was caused by call-tree comparisons, as opposed to distance calculations.
As the algorithm adapted to hybrid sampling data only compares the COM and MPI call paths
and ignores the USR call paths, which are the most numerous in most cases, processing times
dropped significantly. Whereas 125.RAxML had an overhead problem before, this problem
is gone here. The only case with significant processing times is 143.dleslie, which has many
iterations, and many MPI and COM call paths. In this case, the overhead is around the same
as before, which is still much lower than 1% at the 64 cluster case, rising to around 5% in the
256 cluster case.

Overview

Overall, it was expected to find some amount of difference between compressing directly
instrumented and hybrid sampling data, but the differences were quite low, and in a number of
cases in favor of the newly adapted algorithm. In light of these results, we can conclude that
the adapted algorithm works equally well on hybrid sampling data as the original algorithm
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Figure 5.18: Average time to perform the clustering of a single iteration.

works on data from direct instrumentation, and can proceed to the evaluation of the actual
on-line compression.

5.5 Summary

We have presented a novel hybrid approach for call-path profiling. This approach combines
the low overhead of sampling with the detailed measurement of MPI routines possible with
direct instrumentation. This enables the collection of all data necessary for the compression
algorithm introduced in Chapter 4 to work properly, while avoiding potentially high overhead
from small, frequently called functions. While the concept is straightforward, we found that
multiple challenges arise in practice. First, we must unwind the stack even from the directly
instrumented PMPI wrappers, since we can no longer observe (nearly) all calls to keep track of
the changes of the current call path. However, the frequency of MPI calls requires several stack
unwinding optimizations to keep measurement overhead sufficiently low. Second, we must
ensure that the two measurement techniques do not interfere with each other. This challenge
led us to develop a novel sampling methodology that accounts for the omission of samples
that occur during MPI routines.

We implemented our hybrid profiling approach within Scalasca and presented a detailed
evaluation of the costs to gather call-path profiles with direct instrumentation and our hybrid
sampling approach. We found that both approaches work well for many applications in the
SPEC MPI2007 suite. However, direct instrumentation suffers significant overhead for some
applications, while pure sampling alone makes gathering some critical information — like the
metrics based on MPI arguments — difficult. In contrast, our hybrid combination of direct
instrumentation for MPI and sampling for the rest of the execution effectively overcomes
these issues and provides a good combination of measurement quality, efficiency and ease
of use. Our case study of the DROPS CFD application in Section 5.3 demonstrates that the
detailed information and reduced overhead of our hybrid approach facilitates the analysis of
real applications where it was impractical before. Overall, our approach significantly improves
on existing techniques and we are working to make it available in a forthcoming release of the
open-source Scalasca toolset.
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5.5 Summary

In Chapter 6, we evaluate the on-line usage of the compression algorithm and discuss several
examples including the DROPS code along with graphs of compressed measurements for
visual evaluation. We give special attention to the comparison of the quality of data collected
using direct instrumentation and hybrid sampling, and the compression quality achieved when
applying the compression to data from the two measurement methods.
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Chapter 6

Evaluation of On-line Compression

After the positive evaluation of the newly developed compression technique using the off-line
prototype, the final step towards a complete solution was the actual on-line implementation
of the algorithm in the framework of the Scalasca measurement system. The design remained
largely the same between the two implementations, but certain aspects had to be adjusted to
the general limitations of a highly portable production measurement library. An example is
that the prototype was conveniently implemented in C++, while the measurement library is
written in a limited subset of C to facilitate easier linking with C & Fortran applications. Also,
we had to adapt to the existing characteristics of the data structures used in the measurement
library, and implement a few new features not previously provided there. An example is
the ability to remove call paths from the call tree when their iterations are eliminated by the
compression, as previously call paths were only added, but never removed. Other than these
kinds of implementation details, the algorithm and design remained largely the same as in the
off-line prototype.

We found that prototyping such complex systems first in the highly flexible C++ environment
provided by our post-processing tool infrastructure and doing the actual implementation in
the much more limited measurement system code based on the experiences gained from
the prototype worked out very well. Having such an exact design in mind and a good
understanding of the implementation challenges in advance leads to robust, clear and efficient
code.

6.1 Evaluation

We evaluate the on-line implementation of the compression algorithm using both compiler-
based direct instrumentation and the newly developed hybrid sampling approach side-by-side.
This has the additional benefit that we can compare the impact of the different instrumentation
techniques and their associated overheads on the quality of the measurement data.

DROPS is not included in the set of direct instrumentation measurements due to its excessive
dilation. The PEPC application is not included in the hybrid sampling measurements as the
technique is currently not supported on the Blue Gene. Although a Blue Gene implementation
of the stack unwinding infrastructure is under development, it has not reached the required
level of maturity for complete measurements. For initial results, refer to [84].
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Figure 6.1: Average error rates of the maximum and mean metric values for entire iterations, of all
metrics, with direct instrumentation and the hybrid sampling approach.

It is important to point out that both quantitative and qualitative evaluation is more complicated
in the on-line case, as it is susceptible to run-to-run variation and noise. While in the case
of the off-line prototype we could use exactly the same measurement to test every different
compression configuration, in the on-line case every measurement is unique and they can
not be expected to match exactly. Also in this case the runtime overhead of the compression
algorithm itself can have an impact on the measured data, which it does not in the post-mortem
evaluation. Based on our evaluation of the run-time and memory footprints of the algorithm
in the off-line case we expect this impact to be relatively low, but it can not be assumed to be
non-existent nor uniform on all processes being measured.

6.1.1 Error rates for entire iterations

A new element in our quantitative evaluation is the inclusion of a “no compression” result
for every application. This shows the difference between two complete, separate measure-
ments, which were not compressed. These measurements are the two best quality, lowest
measurement dilation measurements from a population of five measurements, to minimize
the chance of outliers. This is meant to characterize the impact of run-to-run variation on the
given error metric for each application. Where this impact has the same magnitude as the error
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Figure 6.2: Average error rates of the mean values of the count-based metrics for entire iterations,

with direct instrumentation and the hybrid sampling approach.

level indicated for the compressed data, that can be viewed as “perfect reproduction quality”,
as there is no way to do better than having broadly the same amount of difference from the
reference data as that caused by simple run-to-run variation.

Looking at the error rates of the mean metric values for entire iterations, the black bars in
Figure 6.1, the average error rates caused by run-to-run variation are around 1-2% for most test
suite applications in the direct instrumentation case with the notable exceptions of 143.dleslie
which is over 5% and PEPC which is quite close to zero. A possible reason for 143.dleslie
having such high relative error is having a large number of very short iterations, which makes
large relative errors out of small absolute differences. The same holds for 125.RAxML, which
shows a high error mainly in the error of the maximum values. The run-to-run variation of the
PEPC measurements is expected to be lower in every way than that of the other applications,
as the Blue Gene/P machine has inherently less run-to-run variation due to its specialized
hardware and software stack (see page 1 for details).

Both run-to-run variation and the compression errors in the hybrid sampling case show
higher error values than direct instrumentation. This can be expected of the inherently non-
deterministic sampling approach, as unwinding costs from samples and even MPI events are
expected to vary based on when and where in the code samples hit during the measurement.

In Figure 6.1, looking at the error rates of mean values in compressed measurements in the
direct instrumentation case, we see that 8 out of 10 applications show error rates at the same
level as the run-to-run variation. It is also true that there is apparently no clear trend towards
less error with more clusters in most cases, except perhaps 129.tera tf and definitely PEPC.
Overall, it seems that in most cases the run-to-run variation dominates the error rates of the
compression itself. In the hybrid sampling case, the overall picture is somewhat worse, as
most applications have around twice as much error when compression is used as their run-to-
run error rates, with no clear indication of improvement with larger cluster counts.

Figure 6.2 shows that count-based metrics are still very well reconstructed in both direct
instrumentation and hybrid sampling cases. Most applications show zero or negligible error
rates in both cases, with the notable exception of PEPC, where we also did not expect perfect
results due to its highly irregular patterns in count-based metrics, and the eight-cluster case of
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Figure 6.3: Average error rate of time-based metrics for individual call paths, with direct instrumen-

tation and the hybrid sampling approach.

125.RAxML, which shows very high error rates in this regard. It is known that 125.RAxML
has a large set of fundamentally different iterations, which is a likely reason for eight clusters
not being sufficient to represent these metrics well. The call-tree partitioning algorithm
identifies nine partitions in the direct instrumentation case, versus only seven with the more
limited comparison in the sampling case. It seems that those two partitions make a real
difference in the count-based metrics for 125.RAxML.

6.1.2 Error rates for individual call paths

Drilling down to the call-path level in Figure 6.3, we find generally higher error rates than
in the off-line compression case again, which is not surprising. Still, most applications show
less than 0.2% average error rate, which is on the same scale as the run-to-run variation. It is
worth noting that only the communication subtrees consisting of COM and MPI call paths (as
defined on page 22) are compared in the hybrid sampling case, as only that part of the call tree
is deterministic and USR call paths are only statistically represented in the iteration call trees.

As expected, when we look at the count-based metrics only in Figure 6.4, we find substantially
lower error rates for all applications except PEPC, which shows unusually complicated
patterns in these metrics, which are harder to reconstruct exactly. It is also worth noting that
in the hybrid sampling case we have more applications with non-zero error in these metrics,
which is caused by the usage of less strict call-tree partitioning rules on the call trees.

6.1.3 Quantized call-path error rates

We compare quantized call-path error rates in Figure 6.5 in two different cases: in the
first case, we compare compressed data with 64 clusters to a full measurement with no
compression, whereas in the second case the comparison is between two full measurements
without compression. This second comparison gives us a baseline measure for what amount
of difference should be expected just based on the run-to-run variation. First of all, it is worth
noting that these graphs show MPI time-based metrics only, which means that we are not
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Figure 6.4: Average error rate of count-based metrics for individual call paths, with direct instrumen-
tation and the hybrid sampling approach.

comparing timing differences on purely computational call paths here. It would not even be
very meaningful in the sampling case, as there is no guarantee that the call trees match in two
separate measurements. This means that we have a fair comparison between the two modes
here, as this measure is meaningful in both cases.

The most important part of these graphs is the top region. It probably does not matter much
if one call path in a million has a 100% error (e.g., if a value is erroneously doubled on some
small, obscure call path). More important are the error rates that occur more often, on more
than 1% or 10% of the call paths.

When comparing the two modes, it is very hard to declare a clear winner. There are
differences, but they are mostly subtle, and each method wins over the other in some
comparisons. Looking at the bottom (no compression) graphs, it seems that the pattern is
mostly a characteristic of the application, and we get around the same kind of run-to-run
variation irrespective of what method we use. The pattern depends a lot on how many
different call paths there are, and what their scale is. Very small values can be expected to
be more noisy in a time measurement. 125.RAxML is a special case as it does not have point-
to-point communication at all, so the MPI time differences can only show up on collective
communication call paths, which are apparently much more deterministic than point-to-point
calls. One possible reason for this is that when multiple collective communications are done,
one following the other, the first one synchronizes the processes, and subsequent collectives
will be able to start immediately since the processes are already synchronized, making the
time spent in those calls much more deterministic.

The comparison between the two rows, using compression with 64 clusters and no compres-
sion is perhaps the most important here. As we have seen in earlier comparisons, 64 clusters
tend to be enough for most applications to get a good representation of the original data in
the graphs. Here we see that this is also true at the call-path level, as the differences after
compression are at the same level as the differences caused by run-to-run variation. There is a
clear exception from the rule, which was to be expected: 64 clusters are not enough for PEPC,
where we see many more call paths having much more error than in the non-compressed case.
As the previous recommendation from the off-line evaluation in Section 4.4 for PEPC was 256
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Figure 6.5: Proportion of call paths in profiles having quantized error rates for MPI time-based
metrics, with direct instrumentation and the hybrid sampling approach.

clusters, seeing higher error rates when using 64 clusters here is understandable. This also
shows that these comparisons have a potential for pointing out compression quality problems
where they are significantly larger than the run-to-run variation.

Figure 6.6 shows the same comparison for MPI count-based metrics. As always, count-based
metrics are much more deterministic and show no run-to-run variation, at least in the direct
instrumentation case, as we see in the bottom left graph. In the sampling case, we see a very
low amount of run-to-run variation in these metrics in the applications 121.pop2 and DROPS,
which is certainly a bad sign, as no such variation was expected in these metrics. In the
121.pop2 case the differences are caused by measurement artifacts, while in the DROPS case
they are inherent to the application.

The problem with 121.pop2 is not in our power to fix, as it originates in third-party code,
during unwinding. Still, we are able to detect the occurrences of this problem and handle them
in the most meaningful way possible. The problem is caused by two MPI Allreduce calls
relatively deep in the call tree, where the call-stack unwinding sometimes fails. Although this
is very rare and occurs only on a few processes, it is enough for the MPI count-based metrics
not to match up properly on these call paths. Of course we do not lose these MPI calls, and
the overall values are correct if we add up everything, the difference is just that these few
cases appear separately, in a separate section of the call tree for failed unwinds. It also does
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Figure 6.6: Proportion of call paths in profiles having quantized error rates for MPI count-based
metrics, with direct instrumentation and the hybrid sampling approach.

not influence our analysis of the iterative behavior at all, as the problem only occurs in the
initialization phase of 121.pop2.

The DROPS case is perhaps even more interesting, as it shows a rare but existing phenomenon
that we have not observed in any other application in our test suite. Here the differences
are caused by the fact that the application’s execution is non-deterministic, which is quite
surprising at a first glance. We would more naturally expect multithreaded applications to
be non-deterministic, but probably not MPI-based physics simulations without any multi-
threading whatsoever. In fact, when we run the application with the same input data in
the same batch job twice, it produces (very slightly) different results. As the developers
confirmed, there is indeed non-determinism in the execution, whose source is inside the
ParMetis parallel graph-partitioning library they use for their domain decomposition. The
ParMetis library in turn likely gets the non-deterministic behavior from some not completely
defined MPI operations, such as receiving messages in an undefined order from several source
processes. It is a well-known fact that even just adding floating point numbers in a different
order can yield different results, and this phenomenon is strong enough to lead to slightly
different domain-decompositions, which in turn cause one iteration of the solver loop more
(or less) to be executed based on these differences. We observe the first occurrences of such
deviations after around 40 iterations of the main timestep loop, therefore this seems to be

107



6. EVALUATION OF ON-LINE COMPRESSION

the amount of computation required to aggregate enough uncertainty so that it shows such
an effect. We could also verify our observations through the application’s own monitoring
system, as it reports a residual value after each iteration of the main time-stepping loop, which
shows the same kind of slight divergence develop over time. The slight differences caused by
this phenomenon clearly do not invalidate the results, but we should certainly reconsider our
thinking about reproducibility and comparability of results in the light of these observations.

When 64-cluster compression is used (top row), we still get no errors from the majority
of the applications, but 125.RAxML and 126.lammps show a small amount in the direct
instrumentation case, joined by 128.GAPgeofem and the 121.pop2 application, which has
the aforementioned problem in the hybrid sampling case. PEPC of course is also an exception
here, as it shows more significant error in the MPI count-based metrics when compression is
used, since those metrics are extremely non-deterministic in the PEPC case.

A selection of characteristic applications from the test application suite are now considered in
detail to establish and compare the quality of compressed data for the different measurement
approaches.

6.1.4 Example: 128.GAPgeofem

128.GAPgeofem is a simple example with relatively constant behavior. Still, it is a good
test case to see if the compression retains the abrupt change that occurs around iteration 500
properly. The answer is yes, even with eight clusters the main features of the communication
behavior are already there, as seen in Figure 6.7 and Figure 6.8. It could be argued that
using somewhat more clusters gives some more fine grained detail, but it also makes noise
more visible. Of course, this is not necessarily a bad thing. It is also clear that there is
some unwanted noise introduced when using the hybrid sampling approach, especially in the
collective communication times. This is likely because of the additional operating system
activity to maintain internal timers and deliver interrupt signals for sampling and the variable
amount of time unwinding takes, which can introduce some workload imbalance that has to
be synchronized at collective communication events. Still, looking at the graphs and maps in
both modes, even the very low cluster counts give a good representation of the uncompressed
data.

6.1.5 Example: 129.tera tf

129.tera tf is one of the more challenging examples with its gradually changing metric values
over time, therefore we can not expect a very low cluster count to suffice here. We see
gradually improving quality as the cluster count grows, but interestingly enough, we get quite
good representations as early as 32 clusters in both Figure 6.9 and Figure 6.10, especially
in the average values (blue) on the graphs. The maps also show the main patterns quite
early on, although it is around 64 clusters when they become mostly indistinguishable from
the uncompressed ones. Still, the main trends can be observed already with eight clusters,
especially in the direct-instrumentation case. The hybrid sampling case needs more clusters

108



6.1 Evaluation

direct instrumentation hybrid sampling 8 clusters

0 500 1000 1500 2000 2500
Iteration #

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Ti
m

e 
[s

]

0 500 1000 1500 2000 2500
Iteration #

0

32

64

96

128

160

192

224

256

Pr
oc

es
s #

0 500 1000 1500 2000 2500
Iteration #

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Ti
m

e 
[s

]

0 500 1000 1500 2000 2500
Iteration #

0

32

64

96

128

160

192

224

256

Pr
oc

es
s #

direct instrumentation hybrid sampling 16 clusters

0 1000 2000
Iteration #

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Ti
m

e 
[s

]

0 500 1000 1500 2000 2500
Iteration #

0

32

64

96

128

160

192

224

256

Pr
oc

es
s #

0 500 1000 1500 2000 2500
Iteration #

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Ti
m

e 
[s

]

0 500 1000 1500 2000 2500
Iteration #

0

32

64

96

128

160

192

224

256

Pr
oc

es
s #

direct instrumentation hybrid sampling 32 clusters

0 500 1000 1500 2000 2500
Iteration #

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Ti
m

e 
[s

]

0 500 1000 1500 2000 2500
Iteration #

0

32

64

96

128

160

192

224

256

Pr
oc

es
s #

0 500 1000 1500 2000 2500
Iteration #

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Ti
m

e 
[s

]

0 500 1000 1500 2000 2500
Iteration #

0

32

64

96

128

160

192

224

256

Pr
oc

es
s #

direct instrumentation hybrid sampling 64 clusters

0 500 1000 1500 2000 2500
Iteration #

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Ti
m

e 
[s

]

0 500 1000 1500 2000 2500
Iteration #

0

32

64

96

128

160

192

224

256

Pr
oc

es
s #

0 500 1000 1500 2000 2500
Iteration #

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Ti
m

e 
[s

]

0 500 1000 1500 2000 2500
Iteration #

0

32

64

96

128

160

192

224

256

Pr
oc

es
s #

direct instrumentation hybrid sampling No compression

0 500 1000 1500 2000 2500
Iteration #

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Ti
m

e 
[s

]

0 500 1000 1500 2000 2500
Iteration #

0

32

64

96

128

160

192

224

256

Pr
oc

es
s #

0 500 1000 1500 2000 2500
Iteration #

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Ti
m

e 
[s

]

0 500 1000 1500 2000 2500
Iteration #

0

32

64

96

128

160

192

224

256

Pr
oc

es
s #

PMPI only No compression

0 500 1000 1500 2000 2500
Iteration #

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Ti
m

e 
[s

]

0 500 1000 1500 2000 2500
Iteration #

0

32

64

96

128

160

192

224

256

Pr
oc

es
s #

Figure 6.7: Comparison of iteration graphs and value maps of MPI point-to-point communication
time for 128.GAPgeofem with different cluster counts.
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Figure 6.8: Comparison of iteration graphs and value maps of MPI collective communication time
for 128.GAPgeofem with different cluster counts.
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to represent the first few iterations correctly. Still, the overall picture is surprisingly well
represented at relatively low cluster counts in both cases.

One more thing is immediately obvious when looking at these figures: The direct instrumen-
tation results do not exactly match the hybrid sampling results. While the patterns match quite
well, their magnitude is off by a factor of 2. We cannot observe the application execution
without measuring it, and it is generally not possible to measure something without changing
it, but we can reduce our impact by using as little instrumentation as possible. Using the PMPI
wrappers only is the lowest impact solution in our case. As the figures clearly show, these
measurements in the lower right graphs match the hybrid sampling measurements quite well.
This is because the sampling approach has lower measurement dilation, as previously seen in
Figures 5.4 and 5.5 on page 83, which means potentially less waiting time in communication
calls due to imbalance caused by the instrumentation. Another important factor is that
compiler-based direct instrumentation has the potential for inhibiting certain compiler-based
optimizations such as inlining. This alters the behavior of the application, meaning that both
measurements are perfectly valid, but the two executables are optimized differently. In this
case the hybrid sampling approach is preferable, as its optimization level is closer to that of an
uninstrumented executable.

6.1.6 Example: 132.zeusmp2

Figure 6.11 and 6.12 show the compression quality for 132.zeusmp2, which is a similarly
challenging application as 129.tera tf. It is somewhat more interesting, as the minimum values
(green) are also prominent in Figure 6.11, adding more data to be represented on the graphs.
With both techniques, relatively good representations start at the 16 cluster level, although
the maps show the most important details already at the 8 cluster level. Note that there is
some amount of noise present in the measurements, with significant noise peaks appearing
somewhat more often in the hybrid sampling case.

The two measurement-collection methods differ in the magnitude of their results again,
although the difference is not as large as in the 129.tera tf case. As the measurement using
the PMPI-only version indicates, it is most likely that the hybrid sampling approach provides
results closer to what data from an uninstrumented executable would look like if we could
measure it without interference from the measurement. This is another example where the
hybrid sampling method proves advantageous, as it gives the opportunity for measuring
behavior more similar to an uninstrumented executable, while still providing much more
insight than a simple PMPI wrappers only measurement.

6.1.7 Example: 143.dleslie

As Figures 6.13 and 6.14 show, and our earlier results in Figure 5.4 and Figure 5.5 on page 83
also suggested, 143.dleslie is one of the rare cases where the hybrid sampling method causes
significantly more overhead than direct instrumentation. 143.dleslie is a hard example, not
because of its behavior changing so much over time, but because of its large number of very
short iterations. They cause all our metric values to be at a much lower scale than in other
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Figure 6.9: Comparison of iteration graphs and value maps of MPI point-to-point communication
time for 129.tera tf with different cluster counts.
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Figure 6.10: Comparison of iteration graphs and value maps of MPI collective communication time
for 129.tera tf with different cluster counts.
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Figure 6.11: Comparison of iteration graphs and value maps of MPI point-to-point communication
time for 132.zeusmp2 with different cluster counts.
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Figure 6.12: Comparison of iteration graphs and value maps of MPI collective communication time
for 132.zeusmp2 with different cluster counts.
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applications, making them more susceptible to noise. Combined with the hybrid sampling
method’s stronger tendency to introduce noise, 143.dleslie becomes a good counterexample
where using the hybrid sampling method is disfavored. Another argument against hybrid
sampling in this case is that the measurements taken using direct instrumentation resemble
much more closely the low-interference measurement using only PMPI wrappers. It is worth
noting that in Figure 6.13 only the first 2500 iterations are shown, as otherwise the finer
details would not be visible. In Figure 6.14 zooming in was not necessary, as not all of
the iterations use collective communications and the graph is therefore not as dense as in
the point-to-point communication case. It is also worth noting that in Figure 6.13, there are
two main features on the maps: the ‘horizontal’ and the ‘vertical’ ones. Here horizontal
lines correspond to differences among processes, while vertical lines correspond to differences
among iterations. These vertical lines indicate that some iterations spent more time in point-
to-point communication, and these iterations occur in a very systematic manner. The most
puzzling feature of these patterns is that they are not shown in every measurement with the
same magnitude. They are clearly visible in a number of measurements, but obscure or not
present in others. In those measurements where they are very prominent, their much higher
magnitude obscures the horizontal patterns in the variation among processes. It is not known
what causes these variations between the measurements, but this illustrates the challenges
of visualizing all the important information present in the measurements, as patterns with
a larger magnitude tend to obscure others which might still be more important despite their
lower magnitude. Variation among processes is likely to be more important here than iterations
that take somewhat longer every few hundred iterations, as in the latter case only a select few
iterations are affected, not the whole measurement experiment.

6.1.8 Example: PEPC

As previously mentioned, we evaluated PEPC on JUGENE, where unwinding was not avail-
able, so we can only show the direct instrumentation case here. Figure 6.15 shows the MPI
point-to-point communication time and communication count metrics, to be comparable to our
earlier results in Section 4.4. Testing the on-line compression of PEPC on the JUGENE system
led to only partially satisfying results. Looking at the MPI point-to-point communication count
graphs it is clear that the data provided by compressed measurements is in good agreement
with the non-compressed data even at quite low cluster counts. The overall Execution time
and other metrics also show good agreement. On the other hand, the MPI point-to-point time
metric shows significant differences. The data seems to be converging to a certain pattern
(which is very similar to what we have seen earlier in our tracing-based measurements), but
the non-compressed profiling measurement does not match that pattern completely. Around
half of the iterations are matching the pattern seen in all the other measurements, while the
other half spends significantly less time in point-to-point communication. As we used the
Blue Gene for PEPC, where system noise affects measurements to a much lesser degree, this
result is also largely reproducible. Our most likely conclusion is that although the compressed
data reproduces the temporal pattern with sufficiently high fidelity, the imbalance introduced
by applying the algorithm perturbs the execution in a way that results in a somewhat different
temporal pattern. This shows one of the main pitfalls of taking performance measurements in
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Figure 6.13: Comparison of iteration graphs and value maps of MPI Point-to-point communication
time for the first 2500 iterations of 143.dleslie with different cluster counts.
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Figure 6.14: Comparison of iteration graphs and value maps of MPI collective communication time
for 143.dleslie with different cluster counts.
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general: by measuring a complex system, we also interact with the system in a very complex
way, and there is no way to tell after taking the measurement how close our results are from
the behavior we would see if we would not be taking a measurement. Great care must be taken
both when setting up a measurement and when interpreting it. It is worth mentioning here that
it is possible to reduce the impact of the compression algorithm on the execution by running
it at global synchronization points, something we plan to implement for future versions of our
solution.

6.1.9 Example: DROPS

Figure 6.16 shows the MPI Point-to-point communication time and MPI Collective commu-
nication time metrics at different cluster counts. In general, the reconstructed data shows
good agreement with the non-compressed measurements, with all the important details, like
the overhead of the reparametrization in every 20th iteration and the performance increase
in the next few iterations clearly visible even when using lower cluster counts. However,
when compared against the minimal-overhead measurement taken using the PMPI wrappers
only, we see that the more heavy-weight measurement techniques did impact the measurement
results, especially the Collective communication time metric, which generally tends to be
sensitive to any sources of noise or imbalance because of their impact on waiting times
in collective synchronizations. Still, this is a relatively easy case for compression, and the
algorithm performed well even at lower cluster counts.

6.1.10 Overview

Figures 6.17 and 6.18 give an overview of data from compressed and non-compressed
measurements. The clustering-based compression algorithm is applied at run-time. As the
compressed and non-compressed cases are based on two separate measurements here, run-to-
run variation is expected to introduce slight differences between measurements. Therefore, the
best we can expect is that we get similar, but not exactly matching results. Note that the optimal
cluster count — shown above each graph in bold — was used in every case, determined by
empirical analysis. In general, we find that the results obtained with or without compression
match quite well and the compressed data still represents the performance dynamics of the
application reasonably well in every case. When using direct instrumentation, 64 clusters
was enough for a good representation for all of the SPEC MPI benchmark codes. It is worth
noting though that when using the hybrid sampling method there is some amount of additional
noise introduced, which leads to higher optimal cluster counts, generally twice as much as in
the direct instrumentation case. On the other hand, the lower measurement overhead of the
hybrid sampling method often provides results closer to what is likely happening when no
measurement is made, as in the case of 129.tera tf.
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Figure 6.15: Comparison of iteration graphs and value maps of MPI Point-to-point communication
time (left) and MPI Point-to-point communication count (right) for PEPC with different
cluster counts using direct instrumentation.
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Figure 6.16: Comparison of iteration graphs and value maps of MPI Point-to-point communication
time (left) and Collective communication time (right) for DROPS with different cluster
counts using hybrid sampling.
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Figure 6.17: Comparison of communication time iteration graphs without compression and recon-
structed from acceptable compressed representations using direct instrumentation.
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Figure 6.18: Comparison of communication time iteration graphs without compression and recon-
structed from acceptable compressed representations using the hybrid sampling method.
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6.2 Summary

In our evaluation of the on-line compression implementation we found that run-to-run varia-
tion and measurement noise is present in our measurements taken with both techniques, but to
a greater degree when using the hybrid sampling method. Largely because of this variability,
and the inherently less accurate call-tree comparison a generally larger number of clusters is
required for a good compression when using the hybrid sampling method. Differences in the
observed results when using the different measurement methods point out the importance of
carefully assessing the impact of the measurement itself on the experimental results before
jumping to conclusions. This consideration shows the value of having a more diverse set of
measurement methods to choose from, as different applications need different treatment for
the lowest overhead and best measurement quality.

In the next chapter we introduce related work. While some of the work related to the basic
measurement techniques has been covered in Chapter 1, we discuss work related to our more
advanced concepts here, in this separate chapter.
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Chapter 7

Related Work

Work related to the basics of this work, including MPI, OpenMP, call-path profiling and
tracing, as well as the main serial and parallel performance tools is introduced in Chapter 1.
In this chapter we discuss what has been done in the field related to each of the main topics
introduced in the previous chapters.

7.1 Performance dynamics

Perhaps the most straightforward approach to analyzing the evolution of performance behavior
over time is by collecting trace data and visualizing the temporal changes of certain metrics
like hardware counter values as in Vampir [68]. Traces can also be used to display timeline
views differentiating between different communication and computation regions using tools
such as Vampir or Paraver [54]. Regions of interest, such as main execution phases or
iteration loops can be determined automatically or marked manually through iteration or
phase instrumentation. The term “phase” has been defined and used in numerous papers in
a number of different ways. An early occurrence of the term’s usage in parallel performance
analysis can be found in the 1990 paper describing the prototype of the Paradyn tool, where the
authors talk about “periods of time where some combination of performance metrics maintain
consistent values” [61]. In a subsequent paper they show an example of marking execution
phases manually [42]. The Oracle (formerly Sun) Studio Performance tools provide an API for
delimiting intervals in the program execution, providing coarse-grained overview statistics of
each interval separately [92]. Phase profiling in the TAU performance system allows the user
to obtain a separate profile for every marked program interval, distinguishing between static
and dynamic phases [58]. Whereas performance metrics are aggregated across all executions
of a static phase, a separate profile object is created for every instance of a dynamic phase.
According to this distinction, marking the main time-stepping loop to measure the iterations
separately, as we do in this work, can be classified as collecting instances of a dynamic phase.
Similar in spirit, incremental profiling in the OpenMP profiler ompP takes a separate profile
for every fixed-sized execution time interval, using elapsed wall-clock time instead of the
dynamic program structure as the delimiter between phases [21].
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7.2 Compression of time-series profiles

The principle of dividing the execution of a program into intervals and grouping them into
phases according to their performance characteristics has already been studied by Sherwood
et al. in the context of microprocessor hardware simulation [81]. Using clustering algorithms,
they identified representative subsections of the instruction stream of a program that can be
used as input for simulations that would otherwise be too slow if fed with the complete
stream. The results of these shorter simulations can subsequently be extrapolated to reflect
the execution of the entire program. In the context of large-scale parallel applications, various
statistical and data mining techniques have been employed to reduce the size and improve the
understanding of performance data. While projection pursuit [89] and clustering [69] have
been applied to improve the understanding of real-time performance data, Ahn et al. have
shown that multivariate statistical techniques provide a useful means to identify correlations
between hardware performance metrics and to highlight clusters of similar behavior in process
topologies [4], which could be used for compression in a similar way as we do. Moreover,
PerfExplorer [43] structures profile data of parallel programs post-mortem by performing
hierarchical and k-means clustering on vectors of metric values whose elements correspond to
program regions.

Space limitations of highly-structured performance data sets that include a time dimension
are most apparent for event traces containing timestamped records for a huge number of
program actions. Complete call graphs are able to compress event traces by exploiting
repetitive patterns [52], but require their prior existence at full length, as runtime overhead
prevents the method from being applied on-line. Similarly, automatic structure extraction
starts from very large trace files, explores their internal structure using signal processing
techniques, and selects meaningful parts [12]. Whereas the previous approaches target the
time dimension, Gamblin et al. lower the overall trace volume by tracing only a subset of
the processes [23], with sample size periodically readjusted based on summary performance
data sent to a central client process at runtime. ScalaTrace uses a combination of intra-
node and inter-node compression techniques to provide a concise representation of large-scale
traces [70].

Finally, application signatures provide a way of summarizing the time-dependent behavior
expressed in historical trace data in a much more compact representation [57]. Here, the
temporal evolution of a metric vector is described as a metric trajectory using curve fitting as
compression mechanism, simplifying the comparison between two signatures.

7.3 Combining sampling and direct instrumentation

Individually, both statistical sampling and direct instrumentation are used in a wide array of
tools. HPCToolkit [3] is one example of a tool that exclusively relies on sampling to deliver
a comprehensive performance profile to the end user. It implements call-path profiling by
gathering stack traces at each sample. It uses this information to map the profile data back
to the user’s source code and provide dynamic execution path information. In order to keep
the overhead low, HPCToolkit applies a trampoline-based prefix optimization [20, 87], similar
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to the thunk optimization presented in Section 5.1.1. Arnold and Sweeney implemented a
similar technique earlier in a sampled call-path profiler for Java Virtual Machines [6], but their
approach required virtual machine support for marking return addresses with special bits.

Direct instrumentation can be used for both profiling (i.e., providing aggregate information
over the runtime of the process) and tracing (i.e., delivering all events as they occur during
the execution of the program). Closely related to our work is mpiP [88], a profiler for MPI
operations. Like our system, it uses the PMPI profiling layer to gather basic statistics about
the application’s MPI usage, and call-stack unwinding to provide call-path context.

On the tracing side, tools such as strace [55] provide per-process trace information. For
parallel applications, tools such as Vampir [68], Jumpshot [13] or the Intel Trace Analyzer
and Collector [45] record all message transfers between MPI processes and store them to disk
complete with timestamps. They can then display the collected events on a timeline. This
approach allows the user to carefully examine each individual message event, but it comes at
the price of large storage requirements for the detailed trace files.

So far, little work has combined these two paradigms. However, several tools exist that offer
both sampling and direct instrumentation side by side. The standard UNIX tool gprof [35]
uses direct instrumentation to build an estimate of the call graph for sequential programs
in addition to sampling for a separate flat profile. In the area of parallel performance
analysis, multiple tool sets offer both approaches in a single environment. CrayPAT [15] has
mutually exclusive sampling and direct instrumentation modes. Open|SpeedShop [77] and
the Oracle (formerly Sun) Studio Performance Tools [47] simultaneously record sampled and
instrumented events, but ultimately present separate analyses. Only recently and concurrently
to our work, TAU/ParaProf [8] started to prototype integrating sampling and instrumentation
annotation events in a single measurement and to visualize them together [62]. However, the
TAU approach records profiles and traces separately from the two sources of information, and
is only able to merge them after measurement. By comparison, our work integrates the two
sets of events into call-path profiles as they occur and carefully accounts for their interaction.
Another interesting combination of the two techniques can be found in Extrae [30], which
adds samples to traces based on direct instrumentation to provide a more detailed view of the
evolution of hardware counter metrics inside the instrumented regions. It applies a folding
mechanism to derive fine-grained data from coarse-grained sampling by superimposing trace
data from similar phases based on iteration instrumentation [32] or clustering of computation
phases [31].

127





Chapter 8

Summary and Outlook

Over the course of this work, we touched a variety of topics and gained new insights into the
challenges of performance analysis on present day HPC systems. Chapter 1 introduced the
field and showed why scalable parallel performance analysis tools are essential for supporting
the tuning and scaling of HPC applications. In the end of the chapter, the analysis of the
Sweep3D application served as an example showing the importance of the analysis of time-
dependent behavior in understanding complex performance phenomena in HPC applications.

In Chapter 2 we introduced the set of HPC applications used for evaluation purposes through-
out this work. We used Scalasca to analyze the execution performance of these applications
on two HPC platforms, and determined that the current release of Scalasca and its direct
instrumentation approach was efficient and apparently accurate for most but not all codes.
Applications with frequent calls to small routines suffered unacceptable measurement dilation
from direct instrumentation.

In Chapter 3 we applied iteration instrumentation to these applications, taking advantage of
the fact that most (but not all) of these HPC applications have a clearly distinguishable main
timestep/iteration loop. Instrumenting these for separate measurement/analysis revealed a
variety of interesting dynamic behaviors in configurable iteration charts and value maps of dif-
ferent metrics. This opened up an important new analysis dimension. The new measurement
dimension also introduced a new problem: measurement storage/post-processing/presentation
costs being proportional to the number of iterations. However, there are often considerable
similarities between iteration executions.

In Chapter 4, applying our novel clustering-based compression algorithm to time-series
call-path profiles demonstrated to offer significant reductions in measurement storage/post-
processing costs. Our compression algorithm is necessarily lossy, however, with suitable
methods effective reconstruction of complete iteration charts and maps is possible (even
for challenging cases such as the PEPC application). Typically 64 or fewer clusters are
required for acceptable fidelity, and when necessary more can be used to reduce the number
of measurement artifacts.

Chapter 5 introduced a newly developed alternative measurement technique that we investi-
gated to overcome the problem of excessive measurement dilation from direct instrumentation
in certain applications. Moreover, we needed a solution that despite its lower overhead
still provides full information about communication events, as these are important for the
analysis of the results, and also essential for the compression algorithm to work. The solution
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is customized to appropriately combine direct instrumentation of MPI (using standard MPI
wrappers) and sampling driven by POSIX interval timers. Call-path profiling required careful
unwinding of call-stacks from both samples and PMPI wrappers, and sophisticated integration
of both types of measurement. The new hybrid, sampling-based measurement method has its
limitations: the measurements are more challenging to interpret since they are partially only
statistically accurate and subject to increased system noise; there is a significant number of
call-stack unwind failures; in some cases even the highly optimized unwind operation is too
expensive to be used from every MPI event; and the additional system dependencies restrict
portability/availability. Still, this is a valuable complement to the purely direct instrumentation
approach and essential for the analysis of certain applications. It is easier to use than direct
instrumentation, as there is no need to set up function filters, and provides generally low
measurement dilation, even in the cases where full direct instrumentation was problematic.

Our compression algorithm can be applied independently on each process during measure-
ment, adding each iteration to the compressed dataset immediately after they are generated,
and realizes considerable savings in measurement storage. In Chapter 6, comparing mea-
surements based entirely on direct instrumentation to those based on the hybrid sampling-
based measurement solution validates both approaches. The quality of data collected using
each measurement approach for iteration-instrumented executions was found to depend on the
application-specific measurement dilation of the given measurement technique. System noise
was evident in both types of measurement, however, additional noise introduced in hybrid
sampling measurements of parallel executions made their interpretation more difficult.

The techniques developed in this thesis and prototyped in the Scalasca toolset provided
valuable insight into the performance dynamics of parallel HPC applications, assisting in
understanding and tuning execution performance, as demonstrated by our real-world appli-
cation case studies, conducted in cooperation with the application developers. Our analysis of
PEPC on JUGENE contributed to the developers’ understanding of a serious communication
imbalance, enabling them to remove a significant bottleneck from PEPC, while our hybrid
sampling-based measurement method has proven to be the first measurement technique
capable of collecting high-quality, low-overhead call-path profile measurements of DROPS,
giving the developers a new, powerful tool for analyzing the performance of their code.

Our main contributions can be summarized as follows:

• Appropriate source-code iteration instrumentation and presentation techniques that open
up a new perspective on the performance dynamics of parallel applications.

• An on-line compression algorithm that reduces both run-time memory overhead and
analysis report writing/storage costs, taking advantage of the inherent redundancy in
measurement results collected using iteration instrumentation.

• A hybrid measurement method that provides a seamless combination of direct instru-
mentation for MPI communication events and sampling for computation, providing
an alternative technique for low-overhead measurements in cases where compiler-
instrumentation overhead would be excessive, while still collecting enough information
for the compression algorithm to function properly.
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Table 8.1: Summary of measurement dilation and iteration analysis compression for direct instrumen-
tation and hybrid sampling approaches with the test application suite.

Dilation Cluster count
direct hybrid direct hybrid Iterations Remarks

121.pop2 1% 4% 64 128 440
122.tachyon 47% 1% — — —
125.RAxML 1% 0% 64 64 21 268
126.lammps 2% 1% 64 64 300
128.GAPgeofem 4% 3% 64 64 2 501
129.tera tf 26% 1% 64 128 190
132.zeusmp2 1% 3% 16 32 200
137.lu 1% 3% 64 64 180
142.dmilc 4% 1% — — 8+241 Some MPI ignored
143.dleslie 2% 14% 64 256 15 054
145.lGemsFDTD 0% 1% 32 64 1 500
147.l2wrf2 15% 2% 32 64 720 Some MPI ignored
DROPS 204% 13% N/A 32 250
PEPC 5% N/A 256 N/A 1 300 No BG implementation

• Analysis of the newly developed techniques using the SPEC MPI 2007v2.0 benchmark
suite, and two detailed case studies of real-world applications, conducted in cooperation
with the developers of the PEPC and DROPS codes.

Table 8.1 shows an overview of our experiences from applying the different techniques to
the test application suite. The first two columns compare the measurement dilation (without
compression applied) for the applications using direct instrumentation and the hybrid sampling
method. We used the green color for dilation under 5%, yellow for moderate overhead (5%-
15%) and red beyond 15%. The data shows that while direct instrumentation works very well
in the majority of the cases, it introduces unacceptable levels of measurement dilation in a
few cases. At the same time, the hybrid sampling solution provides reasonable overhead in
every case, with only a few borderline cases. Also, taking a measurement using the hybrid
sampling solution is easier as it does not require setting up a function filter list, as is generally
the case with direct instrumentation. It is worth mentioning though that for 142.dmilc and
147.l2wrf2 some MPI groups had to be turned off to get a low-overhead measurement, so
in these cases some manual labor is necessary also when using the hybrid sampling-based
measurement method.

Looking at the cluster counts of the two measurement methods, 64 proved to be the general
sweet spot in the direct instrumentation case, while the hybrid sampling method generally
needed around twice the number of clusters to provide a good representation, due to the
increased amount of noise and less precise call-tree structure comparison.
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8.1 Future work

It is clear that the work presented in this thesis is by no means “finished”. We solved
a number of questions and introduced new ones. We explored new areas and found new
problems which could and potentially will fill several more theses. The goal was not to solve
everything, as whenever we solve one problem, a dozen new questions arise. The goal was
to create a solid foundation and build good solutions on it, paving the way for our future
work. Part of this foundation work was the collection of extensive experience with a relatively
large number of applications, a significant contribution to the understanding of the diverse
characteristics and problems of HPC applications, especially focusing on time-dependent
performance behavior. Still, in the near future we will extend the scope of applications studied
even further, introducing OpenMP and hybrid MPI+OpenMP measurements combined with
the techniques developed in this thesis.
A large amount of important implementation work also has to be done. We need to extend our
support for the hybrid sampling capability to other architectures, in particular to Blue Gene,
by reaching full integration of other third party unwinding tools beyond libunwind, especially
StackWalker API [17], where some early results are already available in [84]. Another very
important development area is reducing the impact of the compression algorithm on the
application execution. One idea for this is to execute it in a synchronized way just after a
collective synchronization (e.g. MPI Barrier), which could be marked by a simple API, and
adding another MPI Barrier just after the compression has finished processing the current
iteration. If this technique proves to be successful, it will open up a way of minimizing the
performance impact of other potentially high-overhead activities of the measurement system,
giving us more flexibility when designing new features for the measurement system.
There are still some unsolved questions, such as finding the optimal cluster count for a
measurement, or how to tell when the cluster count is too low. An automated system with
that capability would certainly be a useful asset, especially for less experienced users. While
there are certain meaningful defaults and rules of thumb, and an experienced human can likely
tell the difference between good and bad compression results, automating this process can still
prove to be a significant challenge. One idea that works well in manual analysis is to compare
the mean and the maximum curves of the iteration graphs. The mean usually has much better
quality than the maximum, resulting in a smooth line for the mean and a jagged line for the
maximum in cases where the cluster count was too low.
There is also ongoing work in co-operation with other members of the Scalasca developer
team, where better integration of the iteration instrumentation data into the general Scalasca
framework will become possible by introducing a new analysis file format [26], which is in the
final stages of implementation at the time of this writing. Another unsolved problem that ties
into this is developing better visualization techniques for large iteration and process counts and
exploring new ways of visualizing the data, along with better integration of these techniques
into the Scalasca analysis report explorer. In particular, we hope to be able to extend our
studies in the very promising field of 3D visualization, providing a scalable solution for the
visualization of time-dependent behavior integrated into our report explorer.
As for longer term goals, it is planned that these measurement techniques will be re-
implemented in production quality, potentially reducing the abundance of features — a typical
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characteristic of prototype implementations — to achieve smoother user experience. The re-
implementation will take place in the framework of Score-P, a measurement system developed
in cooperation between the developers of the performance tools Periscope [33], Scalasca, TAU
and Vampir, in an effort to create a single, unified measurement infrastructure, shared by all
of these tools. As part of this unified measurement system, the impact of this work will
be greatly magnified, potentially evolving into a de facto standard in several areas, including
low-overhead, small memory footprint measurement techniques and iteration instrumentation.
With these contributions to the state-of-the-art of performance tools, we hope to provide HPC
users with easy to use and powerful analysis techniques, assisting them in the quest of coping
with the growing complexity of HPC systems as the world slowly approaches the era of exaflop
supercomputers.
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Appendix A

Detailed Analysis of the Application
Suite

In this appendix, we take a more detailed look at the basic characteristics of the test application
suite. We present statistics about the suite’s coverage of the MPI standard, first through an
overview of the different MPI groups, and then breaking it down to individual MPI functions.
After this, we compare the characteristics of both uninstrumented and instrumented measure-
ments at a range of scales between 8 and 1,024 processor cores. As the rest of this work
mainly focuses on 256-process measurements, it is important to understand how the discussed
characteristics can be expected to change at different scales to get a full understanding of our
overall results.

Even though the studied applications cover a wide variety of MPI patterns, it is interesting
to point out that a large portion of MPI functions are still not used, as shown by Table A.1.
The coverage of communication functions and those dealing with communicators, groups and
topologies is quite good, while many of the less frequently used features, like parallel I/O
or one-sided communication, introduced by version 2.0 of the MPI standard are not used.
Still, the most important features are covered, and the set is expected to be representative of
present day HPC applications using MPI as their means of communication. Note that the CG
and TOPO groups are the ones where unwinding was disabled for two of the applications in
Chapter 5 to reduce excessive unwinding overhead.

Tables A.2-A.4 tally the MPI functions used by 256-way benchmark executions (1024-way
in the PEPC case). The values in the table are per-process average function call counts.
Approximate values are shown where the average is not an integer. The table shows that a
diverse range of MPI programming patterns are implemented, for example blocking, non-
blocking, or persistent point-to-point communication, with or without extensive collective
communication, etc. (SPEC rules allow only MPI parallelization, so auto-parallelization
capabilities of compilers must be disabled, at least in the current versions of the benchmark
suite.) The suite therefore provides a comprehensive test, both for MPI benchmarking
purposes, but also for examining the effectiveness of parallel performance tools with real-
world applications.

Table A.2 shows that except for the farming-based 122.tachyon and 125.RAxML, all applica-
tions show a wide variety and large number of point-to-point communication calls. Evidently,
the most important, most frequently used function isMPI Irecv, followed by MPI Isend
and MPI Send. This is a good sign, as it means that a large fraction of the applications is
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A. DETAILED ANALYSIS OF THE APPLICATION SUITE

Table A.1: Breakdown of the test application suite’s MPI function usage by MPI function groups
as defined in the Scalasca measurement system. The numbers suggest that only a small
fraction of all available MPI functions is used in most cases.

MPI group Count Used Description
CG 25 8 Communicators and groups

CG ERR 4 0 Error handlers for communicators and groups
CG EXT 12 0 External interfaces for communicators and groups
CG MISC 4 0 Misc. functions for communicators and groups

COLL 18 10 Collective communication and synchronization
ENV 7 3 Environmental management
ERR 9 0 Common error handlers
EXT 10 0 Common external interfaces
IO 52 0 Parallel I/O

IO ERR 4 0 Error handlers for parallel I/O
IO MISC 2 0 Misc. functions for parallel I/O

MISC 26 0 Misc. functions
P2P 34 17 Point-to-point communication
PERF 1 0 Profiling interface
RMA 14 0 One-sided communication

RMA ERR 4 0 Error handlers for one-sided communication
RMA EXT 7 0 External interfaces for one-sided communication
RMA MISC 2 0 Misc. functions for one-sided communication

SPAWN 12 0 Process spawning
TOPO 20 5 Topology (Cartesian and graph) communicators
TYPE 35 0 Datatypes

TYPE EXT 7 0 External interfaces for data types
TYPE MISC 2 0 Misc. functions for data types

Sum 311 43 Count over all MPI groups

capable of using asynchronous point-to-point communication to overlap communication with
computation, thereby reducing communication overhead.

The most frequently used collective communication & synchronization calls in Table A.3
are MPI Allreduce, MPI Broadcast and MPI Barrier. MPI Reduce is also used
in more than half of the applications. The usage of collective communication is generally
much more efficient than using self-written implementations of the same functionality based
on point-to-point communication. Still, care must be taken when using these calls as many
of them are synchronizing, which can easily become a scalability problem at large scales.
MPI Reduce and MPI Allreduce are very powerful calls, providing an easy means to
define calculations that summarize data in an efficient way from all processes in parallel.
MPI Reduce is most frequently used for collecting data on the master process for output,
while MPI Allreduce is more often used as part of intermediate computations, for example
when synchronizing results between two iterations.
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This is also reflected by the calling frequencies of the two functions. MPI Bcast is in many
cases used for distributing input data from the master process to the others, but it can also be
used to send control messages to the slaves from the master, as is the case in 125.RAxML.
Performance experts often discourage frequent usage of MPI Barrier, as it can very easily
become a scalability bottleneck, often without a good reason. As the table shows, the
developers are aware of this, and although most of them use MPI Barrier, they use it
sparingly. One exception is PEPC, where there is quite a large number of MPI Barrier
calls. This is because we were working with a development version of the code where they
used these calls to separate the execution’s main phases for their own profiling purposes. The
current production version of PEPC does not contain MPI Barrier calls in its main loop.

The functions in Table A.4 are mostly dealing with communicator, group and topology
management. None of these applications uses these features extensively. We have seen
problematic cases (at least for our measurement system) caused by the usage of extreme
numbers of communicators in other applications [24], but this kind of problem is not
represented in this suite. The most often used calls from Table A.4 are MPI Comm rank
and MPI Comm size, two quite basic features of MPI. While most applications use these
relatively rarely, many only once per process, 104.milc and 142.dmilc use them very often.
Also, MPI Cart shift is used very often by 147.l2wrf2. Interestingly, this is not the case
in 127.wrf2, its predecessor. These MPI functions are typically less important from the parallel
performance characterization point of view, but their frequent calls in some applications cause
unnecessary, excessive measurement overhead in Chapter 5, where we deal with this problem
separately.

A.1 Initial measurements

Figure A.1 shows a graph of the benchmark execution times with different numbers of pro-
cesses, on a log–log scale, from which the scalability of each benchmark can be determined.
Strong scaling applications appear as straight lines decreasing with larger process counts. To
reduce the impact of variability in run times (due to non-dedicated use of the communication
switch and filesystem in the production configuration of the JUROPA system), the best run time
of several measurements is taken although this is contrary to the SPEC benchmark rules, where
dedicated systems are used and the median of all run times is taken. Including confidence
intervals in the graphs and tables would be appropriate in a comprehensive study, however,
these have been omitted to reduce unnecessary clutter and clarify the underlying behavior. In
general, measurements on the JUROPA system show significant run-to-run variation, which
depending on the application and other circumstances can reach around 5%, while such
variability on the JUGENE system is virtually non-existent, thanks to the better isolation of
jobs on Blue Gene systems.

The SPEC MPI applications that do not provide a large reference dataset (‘lref’) were
evaluated using the medium reference dataset (‘mref’). These measurements were taken
using 8-1024 processors. As the smallest configuration for the large reference dataset is 64
processes, the 8-32-way measurements were omitted in those cases. It was not possible to run
DROPS using 1024 processes so 512 is the highest scale in that case. With respect to PEPC,
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Figure A.1: Application execution times at different scales.

we were specifically interested in the 1024-way JUGENE configuration only, and the input data
provided to us was configured for that scale.

While most of the benchmarks scale well, it is clear that certain others have very limited
scalability, before no further speed-up is possible or performance degrades unacceptably. The
most prominent example is 113.GemsFDTD, where scaling beyond 128 processes causes a
slowdown instead of a speedup, caused by the inefficient use of collective operations for
distributing the input data. The scalability of this application was later improved based on
our feedback to the original application authors [5]. 145.lGemsFDTD, the SPEC MPI v2.0
version of the same application doesn’t show the same scalability limitations. Other examples
of bad scalability include 104.milc, 115.fds4 and 127.wrf2 beyond 512 processes (all ‘mref’-
sized), and 128.GAPgeofem beyond 256 processes, an ‘lref’-sized measurement.

Although no tuning has been done for JUROPA, and measurements were taken on a non-
dedicated production system, from review of published SPEC benchmark results [83] the
same scalability limitations are seen to be comparable to specifically optimized benchmark
measurements on dedicated systems.

Of course, analyzing the performance of optimally-tuned applications that scale perfectly has
much less value than identifying potential opportunities for improvement of applications with
problems, and is key to producing better performing and more scalable applications.
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Figure A.2: Measurement dilation percentage at different process counts, when using full compiler
instrumentation without filtering.

A.2 Basic Scalasca measurements

Figures A.2-A.4 expand upon the basic information shown in Figure 2.1 (page 21) by showing
how overheads change with different process counts. Changes in measurement dilation are
influenced by a number of factors, and as such are not easily predictable. In these cases
perhaps the most important factor is that these test cases are strong scaling, solving the same
problem size at every scale. This means less work to be done on every process, leading to
shorter execution times, while the communication counts stay the same or even grow in some
cases, depending on the application. These factors cause a larger frequency of measurement
events both from user and MPI functions, leading to increased measurement dilation.

On the other hand, with growing process counts the ratio of time spent in MPI usually also
grows, as we will see in Figure A.9. The additional MPI time is most often spent waiting
in some synchronization or blocking communication calls as a result of inevitable workload
imbalance. As in these time intervals actually nothing happens on those processes, there are
also no measurement events, and so no measurement overhead in them, causing a decrease in
the perceived measurement dilation. This illustrates that measurement dilation is actually non-
uniform over time, depending on the frequency of measurement events in a given time interval.
Characterizing this non-uniformity could be an interesting task, but generally reducing dilation
to a more-or-less negligible level is clearly superior to that approach. Still, keeping these
effects in mind never hurts the quality of our analysis.

Figure A.2 shows the measurement dilation at different scales, experienced when using full
compiler-based instrumentation of every function call in the application source code. Around
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Figure A.3: Measurement dilation percentage at different process counts, when using PMPI wrappers
only.

half of the applications show relatively stable overhead below the 20% line, while some of the
others show extremely high, clearly unacceptable measurement dilation (e.g. around 600%
for 122.tachyon, and over 2000% for DROPS, which could not be shown on this scale).
The correlation between process count and measurement dilation is not uniform. 104.milc
and 122.tachyon show progressively decreasing overhead at higher process counts, whereas
113.GemsFDTD and 145.lGemsFDTD show increasing overheads.

Moving to the other end of the instrumentation-level spectrum, Figure A.3 shows measurement
dilation when using only the PMPI wrappers for instrumentation. Note that the scale on the
vertical axis is very different from that of Figure A.2. Clearly, in this instrumentation mode
overheads are generally much lower, often in the 5% range, which is at the same scale as
run-to-run variation.

By filtering out the most frequently called user functions we can reduce the overhead to
acceptable levels in nearly every case, as seen in Figure A.4. Many applications have
overheads in the 5% range, which is similar to the range of normal run-to-run variation,
while most others have a value under the 15% threshold, with the prominent exceptions of
122.tachyon, 129.tera tf and DROPS which still have excessive overheads. DROPS is not
visible on the graph as its overhead is around 210% at all measured scales.

It is also interesting to note that some applications consistently show negative measurement
dilation. Of course the measurement always causes positive amounts of overhead, but certain
side effects can reduce or negate its impact. Specifically, our instrumentation disables certain
optimizations (depending on the platform and compiler used), which may — in some cases —
have a positive effect. We investigated this hypothesis using the 137.lu application on JUROPA
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Figure A.4: Measurement dilation percentage at different process counts, when using full compiler
instrumentation with filtering.

using the Intel 11.0 compilers, and found that disabling inter-procedure optimization actually
improves performance. This also shows that great care has to be taken when interpreting
performance measurement results of any kind. Measuring something is never possible without
changing it. We can only try to understand and reduce the impact of this change.

Figure A.5 shows the same kind of overhead information when using the newly introduced
hybrid sampling-based measurement method at 100Hz sampling rate. We see surprisingly
heavy fluctuation and high overheads in a number of cases, nearly all of them being applica-
tions with mref-sized input datasets. The reason is that due to the strong-scaling nature of the
input datasets, these applications have very little computation to do compared to the amount
of communication (number of MPI calls). In this case, unwinding from every MPI call causes
significant overhead compared to the relatively low computation time.

The solution to the problem is to use more reasonably sized, larger datasets, such as the
applications with lref-sized cases. When looking at the larger datasets (marked with dashed
lines) with more computation to do between communications, the overhead ratio descends
under the 5% level for most of the applications, with some applications showing higher
overhead at the 1024-process scale, again due to strong-scaling issues. The worst cases are
143.dleslie and DROPS where the overhead is significantly higher than in the other cases and
starts growing heavily at much lower scales than in the case of the other applications. The
bottom line here is that measurement dilation is present, in some cases it even reaches the
15% threshold, but there is no case with extreme overhead (hundreds of percents), and most
applications show less than 5% overhead when using large enough input cases.
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Figure A.5: Measurement dilation percentage at different process counts, when using the hybrid
sampling method at 100Hz sampling rate.

Figure A.6 shows the function call and MPI event frequency when using full compiler
instrumentation without filtering at different scales. Fig A.7 shows the same data when using
filtering. It is clear from comparing these two figures that filtering has great potential in
reducing the event count, often by several orders of magnitude. Comparing the filtered graph to
Figure A.8, which shows the MPI call frequency, we see no great differences. This means that
for most applications filtering reduces the compiler event count to a negligible level compared
to the MPI call frequency, since most of the measurement overhead comes from MPI events.

Looking at the data of DROPS, which had the most extreme overhead from compiler instru-
mentation, we see that it has an extremely high frequency of calls, as expected, but actually
not the highest. Among the large reference sized SPEC MPI examples, both 122.tachyon and
142.dmilc feature higher values at some scales. Both of these applications show significant
measurement dilation without filtering, but not as high as DROPS. Similarly, after applying
filtering, DROPS is in the higher call frequency ranges, but certainly not the very first. One
reason for it still having the highest overhead when filtering can be that it still has to check
the filter at a very high frequency, which involves looking up the current function from a very
long list of function names.

Another message to take away from these graphs is that the MPI call frequency grows
significantly with the scale, due to the strong scaling nature of our input data sets. This is
an important factor in the growth of the unwind overhead with scale, as seen in a number of
applications in Figure A.5.

Figure A.9 shows a very important characteristic derived from our measurements: the ratio of
time spent in communication and synchronization calls to the overall execution time. Ideally,
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Figure A.6: Function call and MPI event frequency when using full compiler instrumentation without
filtering.
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Figure A.7: Function call and MPI event frequency when using full compiler instrumentation with
filtering.
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Figure A.8: MPI call frequency.
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Figure A.9: Percentage of overall execution time spent in MPI communication and synchronization
at different process counts on the JUROPA system.
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no time would be spent communicating and we could use every cycle of every processor to
do useful computations. In real life HPC applications, this is never the case. In fact, as
the level of parallelism increases, time spent in communication tends to increase in all but the
simplest cases, and it is generally only a matter of adding a few more orders of magnitude until
communication time starts to dominate computation time. This is because in the performance
model of any application, there are always some small, ‘negligible’ constituents which cause
no harm at all at smaller scales, but easily ruin performance as the scale is raised to a
sufficiently high level.

We are only considering moderate scales here by present day’s standards, as the largest
measurements in the graph are 1024-way, but these effects are already clearly illustrated in
this graph. In some cases slowly, in others more rapidly, the proportion of time spent in MPI
grows in every case. While the percentage is under 10% in nearly all 64-way measurements,
most applications fall into the 20-50% range at 1024 processes, with some as high as 75%.
75% means that only 1 out of 4 processor cycles on average is spent on useful computations.
This is a huge waste of resources, a clear scalability bottleneck, and reducing the impact of
these problems on HPC applications is the main goal of performance analysis tools. The
usage of these tools raises the user’s awareness of the scalability problems, and focuses the
optimization effort on the most important bottlenecks.
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Appendix B

Overview of the Application Suite’s
Time-dependent Behavior

Figures B.1–B.16 show graphs and value maps of a selected set of metrics for each test suite
application to illustrate the breadth of time-dependent performance characteristics found in
our test application suite using 256-process executions on JUROPA.

The graph in the upper left in each set is slightly different from the other graphs. It still
shows the iterations on the horizontal axis and metric values on the vertical axis, but it is a
composite graph that gives a compact overview of the amount of time spent in computation
and communication in each iteration. It shows Computation time (light blue), Point-to-
point communication time (magenta), Collective communication time (violet) and Collective
synchronization time (black) stacked on top of each other. All these values are averages of
all 256 processes. Ideally, Computation time should cover an overwhelming proportion of the
graph, and all others should be negligibly small, but as we have seen in our earlier analysis,
this is only rarely the case in real-life applications, and the situation becomes progressively
worse, as we scale applications to higher process counts. Note that collective synchronization
time in MPI Barriers is negligible and only visible at all for 129.tera tf & PEPC, this is
why the black color seems to be absent in most of the cases.

The rest of the graphs in the first column are back to “normal”, as described in section 3.1. As
opposed to the top left graph, these graphs are not stacked, all their values should be interpreted
as the distance between the top of a colored bar and the horizontal axis.

The value maps on the right-hand side show the same metrics as the graphs on the left do,
just in a different view. They show the process ranks on the vertical axis, and represent the
values using the darkness of the colors on the value map. These value maps provide a better
understanding of the distribution of values both in space (processes) and time (iterations),
while the graphs on the left provide a clear understanding of the proportions of the values.
The value map in the top right always shows Exclusive execution time, which corresponds to
the light blue part of the overview graph on its left.
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B.1 121.pop2

The first thing that comes to mind looking at the Execution time overview graph is that quite
a large fraction of the time is spent in MPI throughout the execution. Around 60% is spent
with calculations, while 10% is in point-to-point and 30% in collective communication. The
overall baseline behavior does not change much over time: after an initial period of slightly
decreasing iteration time the baseline remains relatively constant until the final iteration.
Looking at the Communication count graphs, it is clear that these changes in the execution
and communication times are driven by the fact that the amount of work done per iteration is
changing over time. We can see remarkably good correlation here. Still, the most time is spent
in collective communications by those processes that spend the least time in computations.
This is a classic indicator of waiting time at a synchronization point: the processes that have
less to calculate and/or communicate than the rest have to wait the longest for the other
processes at every synchronizing collective. As we see in the Communication count graph,
the difference between the lowest and the mean value is very large, while the differences
between the processes in the Communication time graphs are also very large. This means
serious communication imbalance, which is bound to ruin performance at higher scales. Also,
the application spends more time in specific iterations at regular intervals, around every 17
iterations, likely because certain aspects of the model are only updated in these iterations.
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Figure B.1: Iteration graphs and value maps of 121.pop2. 153
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B.2 125.RAxML

125.RAxML has over 20,000 iterations, so showing an overview and the fine details at the
same time is not possible. This is why we provide two sets of graphs here, one for an overview
of all iterations in this section, and one for showing some finer details for 500 iterations in the
next section. This is a farming application in the sense that there is a master process that
spends its time managing the workload of the others. The only communications are collective
communications between the master and the rest of the processes. This is a highly efficient,
very scalable communication scheme, what is known as embarrassingly parallel. As it is
clear from the overview graph, an overwhelming proportion of the time is spent with useful
calculations and communication time is negligible. Looking at the call trees of the iterations,
it is also clear that this application uses a large variety of very different types of iterations.
Looking at the corresponding source code we found that in every iteration a switch statement
chooses the action executed in this iteration from a long list of possibilities, based on the input
from the master process. This variability can be observed on virtually all the graphs, as the
iteration execution characteristics switch back and forth between well-defined states.
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Figure B.2: Iteration graphs and value maps of 125.RAxML. 155



B. OVERVIEW OF THE APPLICATION SUITE’S TIME-DEPENDENT BEHAVIOR

B.3 125.RAxML zoom

Zooming in on one of the peaks around iteration 11,500 we see that there is some very
systematic, fine-grained behavior in such “peaks”, as shown by Figure B.3. These are not
simply a few iterations that take much longer than others. This is a range of iterations where
the application keeps switching between different iteration modes, but not the same ones as
before.

While there are many interesting features to study here, this is not a very interesting application
from a parallel performance analyst’s point of view, as there is nearly no time spent in
communication. Our measurements show that the communication in this application is
effective and uses the processor resources efficiently.

156



B.3 125.RAxML zoom

Execution time overview Exclusive execution time

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e 
[s

]

MPI synchronization time

MPI collective communication time
MPI p2p communication time

Execution time

0

32

64

96

128

160

192

224

256

Pr
oc

es
s #

Collective communication time

0.000

0.002

0.004

0.006

0.008

0.010

T
im

e 
[s

]

0

32

64

96

128

160

192

224

256
Pr

oc
es

s #

Visit count

0

100

200

300

400

500

C
ou

nt

0

32

64

96

128

160

192

224

256

Pr
oc

es
s #

Communication count

11250 11375 11500 11625 11750
Iteration #

0

5

10

C
ou

nt

11250 11375 11500 11625 11750
Iteration #

0

32

64

96

128

160

192

224

256

Pr
oc

es
s #

Figure B.3: Iteration graphs and value maps of 125.RAxML (zoom). 157



B. OVERVIEW OF THE APPLICATION SUITE’S TIME-DEPENDENT BEHAVIOR

B.4 126.lammps

126.lammps spends most of its time in useful computations, so this is also not an extremely
interesting example at this scale. It has a flat baseline behavior with systematic peaks every
5-8 iterations, at irregular intervals. As seen on the Visit count graph, the peaks are caused by
more work being done in those iterations. The point-to-point and collective communication
time metrics also show good correlation with these peaks in the Visit count, but they are still
negligible at this scale.

There is also a regular pattern observable in the value maps of the point-to-point and collective
communication time metrics. 126.lammps is another of the SPEC MPI 2007 applications
using a Cartesian topology. Looking at the topology display in the Scalasca GUI reveals a
checkerboard-like pattern in the 3-dimensional Cartesian topology, a characteristic of the way
communication is organized in 126.lammps.
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Figure B.4: Iteration graphs and value maps of 126.lammps. 159
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B.5 128.GAPgeofem

128.GAPgeofem introduces a new kind of time-dependent behavior, sudden change in the
baseline. This shows why it is important to analyze a longer range of iterations: if we only
measured the first 500 iterations, we would think that this application has nearly perfectly flat
behavior, and would not realize the sudden change just a few iterations later. The change
is reproducible, also appearing in the Visit count metric which is a deterministic metric.
A significant amount of time is spent in communications, so there is room for potential
improvement here. Roughly the same amount of time is spent in point-to-point and collective
communications, which show significant variations among processes. It is also typical that
Collective communication time shows up as the inverse of Point-to-point communication
time: where less time is spent in one, more time is spent in the other, caused by the use
of synchronizing collectives. This latter behavior is somewhat harder to see on the standard
maps, as it involves relatively small changes in the baseline. We have the capability to generate
histogram-equalized value maps in order to maximize the contrast and make such small-scale
details more visible. These value maps for the appropriate communication metrics are shown
in Figure B.5.

Although some noise is present throughout the execution, more pronounced noise is found in
the Communication time for several of the later iterations.
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Figure B.5: Histogram-equalized value maps of communication time metrics in 128.GAPgeofem.
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B.5 128.GAPgeofem
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B. OVERVIEW OF THE APPLICATION SUITE’S TIME-DEPENDENT BEHAVIOR

B.6 129.tera tf

This is one of the more interesting cases. The Execution time overview graph shows that
Exclusive execution time is roughly constant over time, while Communication time shows
significant gradual increase. In the first iterations, Communication time is still a small portion
of the Inclusive execution time, which grows to around 50% by iteration 180. While Point-to-
point communication dominates it throughout the execution, Collective communication time
also grows from a quite insignificant to a significant level. What makes the problem more
puzzling is that the Bytes transferred metric (and counts of communication operations that
aren’t shown) is constant throughout the execution.

Looking at the Exclusive execution time value map gives a more detailed impression of what
is happening. The Execution time overview graph, showing only the average values, was
misleading. Exclusive execution time is actually not constant. It is nearly constant on average,
and it is constant on most processes, but a number of processes show the gradually growing
behavior that we observed in the communication metrics. This suggests that the root of the
problem is that those processes have some additional processing to do, and the time required
for this grows over time. This leads to waiting times in Point-to-point communications on the
processes which do their work in constant time, and the Execution time is finally evened out
by a synchronizing collective call.

It is important to note the similarity between the graphs and value maps of 129.tera tf and
132.zeusmp2 (Figure B.8). As we have seen previously in Figure 3.1(a), the very characteristic
growing stripes in the Exclusive execution time value map of 132.zeusmp2 are caused by
higher workload in the middle of a three-dimensional topology. We can not directly access
129.tera tf’s logical topology, as it does not use MPI Cart create to create one, but we
know that a similar topology is logically present in the code from the application’s description
on the SPEC MPI 2007 website [83].
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B.6 129.tera tf

Execution time overview Exclusive execution time
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B. OVERVIEW OF THE APPLICATION SUITE’S TIME-DEPENDENT BEHAVIOR

B.7 132.zeusmp2

As pointed out in the previous subsection, 132.zeusmp2 is similar to 129.tera tf, showing a
constant average Exclusive execution time with gradually growing Communication time, of
which Collective communication time is the more dominant here. The Bytes transferred is
constant over time again, and the root of the problem seems again to be located in the gradual
increase of the Exclusive execution time on a subset of the processes, which are known to
correspond to the middle of the logical topology in this case [10]. Nearly everything we
said about 129.tera tf is true for 132.zeusmp2 as well. Maybe the most important difference
is that the first 32 processes of 132.zeusmp2 show communication patterns quite different
from the rest of the processes. There seems to be no reason for these differences in the
Exclusive execution time or the count-based metrics like Bytes transferred, so this difference
is unexplained.

Still, the remarkable similarities between the performance characteristics of the two applica-
tions suggest that this kind of behavior is not a one-off, special case, but rather the rule for a
certain class of applications, and as such is an important candidate for further studies.
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B.7 132.zeusmp2
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B. OVERVIEW OF THE APPLICATION SUITE’S TIME-DEPENDENT BEHAVIOR

B.8 137.lu

The interesting thing about 137.lu is that its main loop does not have any collective synchro-
nization points, so the processes are just loosely synchronized by point-to-point communica-
tions. The behavior is basically just a flat baseline with constant amount of work done in each
iteration, as illustrated by the Visit count graph, with an overwhelming amount of time spent
in useful computation and the rest in point-to-point communication and a single synchronizing
collective communication in the very last iteration. The periodic peaks in the point-to-point
communication seem to be the result of such peaks showing up on ranks 48-55 in the Exclusive
execution time value maps. Indeed, the Point-to-point communication time value map shows
the peaks on every rank except for these, which is a good indication of the correlation. It is
also interesting to note that these peaks are also visible in the Inclusive execution time value
map in Figure 3.2 on page 34, where we also see that the peak in the Exclusive execution time
of one iteration causes a peak in the Point-to-point time of the next iteration. This is caused
by the propagation of the computational workload imbalance into the subsequent iteration,
made possible by the lack of collective synchronizations in the iterations. The computational
imbalance leads to waiting times in the point-to-point communications.
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Figure B.9: Iteration graphs and value maps of 137.lu. 167



B. OVERVIEW OF THE APPLICATION SUITE’S TIME-DEPENDENT BEHAVIOR

B.9 142.dmilc

142.dmilc is a complicated application with many loops, but no clear main loop. We
instrumented the conjugate gradient loop, where around 20% of the execution time is spent.
Most of the time in the loop is spent in actual computations, with around 10% spent in Point-to-
point communication time. There are no clear changes visible over time other than the system
noise, which can be expected from such a simple kernel. The Communication count graph
shows that there are also not many communication events in the iteration loops, and their count
stays constant over time. These communication events are overwhelmingly point-to-point
communications. Overall, this loop of the 142.dmilc application is relatively uninteresting
from the performance dynamics point of view.
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B. OVERVIEW OF THE APPLICATION SUITE’S TIME-DEPENDENT BEHAVIOR

B.10 143.dleslie

143.dleslie is an application with lots of short iterations, so this is another case where we
decided to present a set of graphs for both the overview and a subset of the iterations for
more details. The Execution time overview graph indicates that most of the time is spent
in useful computations. The Exclusive execution time shows a gradually increasing baseline
with periodic spikes. The communication is overwhelmingly point-to-point with periodically
appearing collective communication. The collectives seem to coincide with the peaks in the
Exclusive execution time suggesting that the same action, taken at periodic intervals causes
both of them.

Significant amounts of noise in the Communication time seem apparent throughout the
execution’s series of very short iterations.
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B. OVERVIEW OF THE APPLICATION SUITE’S TIME-DEPENDENT BEHAVIOR

B.11 143.dleslie zoom

Interestingly enough, the peaks of the Point-to-point time seem to be relatively uncorrelated
with the much smaller peaks in Exclusive execution time. At first glance these peaks might
seem to be simple noise, but zooming in on a shorter range of iterations shows that this is
indeed quite organized, systematic behavior. Around every 400 iterations there is a double
peak in the Point-to-point communication time, the two peaks separated by around a hundred
iterations. These peaks are not individual iterations, but each consist of around twenty
iterations themselves.

It is obvious that there is some highly sophisticated behavior present here which would require
additional analysis for complete understanding. However, as most of the time is spent in
useful computations at this scale, 143.dleslie is not the highest priority candidate for further
investigation into its communication performance.
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B. OVERVIEW OF THE APPLICATION SUITE’S TIME-DEPENDENT BEHAVIOR

B.12 145.lGemsFDTD

Just by looking at the Execution time overview graph, 145.lGemsFDTD seems to be a
rather uninteresting application with a slight increase in the baseline execution time over
time and around 10% of the time spent in point-to-point communication, and with collective
communication showing up only on the first iteration. Drilling down a bit deeper, we find
that there is an unusual pattern of workload imbalance in the Bytes transferred metric, with
more data being communicated on the top 144 process ranks. The quite significant imbalance
in Point-to-point communication time is not correlated with the pattern seen in the Bytes
transferred metric. Rather, it is the inverse of the pattern found in the Exclusive execution time
value map, suggesting that the imbalance is caused by actual imbalance in the computational
workload. From our prior experience with 145.lGemsFDTD [5] we know that this is an
MPMD (Multiple Program Multiple Data) code, meaning that not all processes are doing
the same kind of computation, separate process groups are assigned to do different kinds of
calculations. This separation of responsibilities between processes is reflected well in our
measurement results.
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B. OVERVIEW OF THE APPLICATION SUITE’S TIME-DEPENDENT BEHAVIOR

B.13 147.l2wrf2

147.l2wrf2 spends most of its time in useful computations. Its Exclusive execution time shows
flat baseline behavior with periodic peaks every 40 iterations, where more calculations are
included in the weather prediction model. The Point-to-point communication time shows a
slight increase of the average over time with the minimum value staying flat, or even slightly
decreasing. The periodic peaks are also present in this metric, at the same iterations. Both the
relatively constant baseline of the Exclusive execution time and the constant Communication
count suggest that the application’s behavior does not change over time the same way as the
Point-to-point communication time, there must be some other explanation for those changes.
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B. OVERVIEW OF THE APPLICATION SUITE’S TIME-DEPENDENT BEHAVIOR

B.14 DROPS

The Execution time overview graph shows that DROPS spends around 80% of the time in
useful computations, and its behavior changes relatively little over time. Still, the effect of
the reparam function being called every 20th iteration is clearly visible: the next few iter-
ations can work with a freshly optimized domain decomposition, which makes them slightly
more efficient, but this advantage fades away over a few iterations as the simulated droplet
moves. Due to the prohibitive measurement overhead associated with direct instrumentation of
DROPS, this is a measurement based on the hybrid sampling method introduced in Chapter 5,
and as such, we measure the measurement overhead of unwinding from MPI events, shown in
red on the Execution time overview graph (there is no unwinding in the other measurements
of this chapter, therefore the red color only appears in this section). The Exclusive execution
time value map indicates that there is significant imbalance in the computation time, which
causes some waiting time in both Point-to-point communication and synchronizing collective
communication events. The Point-to-point communication count graph shows that there is
also significant imbalance in the communication count, and also that the adaptive workload
balancing causes the Point-to-point communication count to change considerably over time.
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B. OVERVIEW OF THE APPLICATION SUITE’S TIME-DEPENDENT BEHAVIOR

B.15 PEPC

This analysis is based on a 1024-process measurement of PEPC on JUGENE (the measure-
ments of all other codes were taken on JUROPA, but for PEPC JUGENE is the natural target
platform). As we used a development version of the PEPC code for this measurement, it had
many MPI Barrier calls, mostly to separate the different main phases of the application for
the developer’s own profiling purposes. This lead to a significant portion of the time to be spent
in Collective synchronization time, shown in black on the Execution time overview graph.
As this is a tracing experiment, the peaks every 100th iteration are due to the fact that this
measurement was collected in pieces of 100 iterations to avoid filling the trace buffer during
measurement. Writing the output at these points also caused an increase in the Collective
communication time. Still, the most important performance characteristics are the red lines
in the Point-to-point communication count value maps, caused by too many particles being
collected on a handful of processes by the workload balancing algorithm, as shown in Sec-
tion 3.3. These processes become bottlenecks for the point-to-point communication, leading
to processes with higher ranks having to wait much longer for certain messages, as seen on
the Point-to-point communication time value map. This imbalance is later synchronized at
barriers and synchronizing collective communication events, leading to even more waiting
time. A more detailed version of this study is available in [85].
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[59] Karl Menger. Square circles (the taxicab geometry). In Selected Papers in Logic and
Foundations, Didactics, Economics. D. Reidel Publishing Company, 1979.

[60] Message Passing Interface Forum. MPI: A message-passing interface standard, version
2.2: Profiling interface, September 2009. http://www.mpi-forum.org/docs/
mpi-2.2/mpi22-report.pdf.

[61] Barton P. Miller, Morgan Clark, Jeffrey K. Hollingsworth, Steven Kierstead, Sek-See
Lim, and Timothy Torzewski. IPS-2: The second generation of a parallel program
measurement system. Transactions on Parallel and Distributed Systems, 1:206–217,
1990.

[62] Alan Morris, Allen D. Malony, Sameer S. Shende, and Kevin A. Huck. Design and
implementation of a hybrid parallel performance measurement system. In Proceedings
of the 39th International Conference on Parallel Processing (ICPP), San Diego, USA,
September 2010, pages 492–501. IEEE Computer Society, 2010.

[63] David Mosberger. libunwind, 2011. http://www.nongnu.org/libunwind/.

[64] Matthias S. Müller. Applying performance tools to real world applications. In Proceed-
ings of Seminar 07341 on Code Instrumentation for Massively Parallel Performance
Analysis, Dagstuhl, Germany, August 2007, 2007.
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Purkayastha. A framework for performance modeling and prediction. In Proceedings of
the Supercomputing Conference (SC2002), Baltimore, MD, USA, November 2002. IEEE
Computer Society, 2002.

[83] Standard Performance Evaluation Corporation. SPEC MPI2007 benchmark suite, 2007.
http://www.spec.org/mpi2007/.

[84] Zoltán Szebenyi, Todd Gamblin, Martin Schulz, Boris R. de Supinski, Felix Wolf, and
Brian J. N. Wylie. Reconciling sampling and direct instrumentation for unintrusive call-
path profiling of MPI programs. In Proceedings of the 25th IEEE International Parallel
& Distributed Processing Symposium (IPDPS), Anchorage, AK, USA, May 2011, pages
637–648. IEEE Computer Society, 2011.

[85] Zoltán Szebenyi, Brian J. N. Wylie, and F. Wolf. Scalasca parallel performance analyses
of PEPC. In Proceedings of the Workshop on Productivity and Performance (PROPER)
in conjunction with Euro-Par 2008, Las Palmas de Gran Canaria, Spain, August 2008,
volume 5415 of Lecture Notes in Computer Science, pages 305–314. Springer, 2009.

[86] Zoltán Szebenyi, Brian J. N. Wylie, and Felix Wolf. SCALASCA parallel performance
analyses of SPEC MPI2007 applications. In Proceedings of the 1st SPEC International
Performance Evaluation Workshop, Darmstadt, Germany, June 2008, volume 5119 of
Lecture Notes in Computer Science, pages 99–123. Springer, 2008.

[87] Nathan R. Tallent, John Mellor-Crummey, and Michael W. Fagan. Binary analysis for
measurement and attribution of program performance. In PLDI ’09: Proceedings of the
2009 ACM SIGPLAN conference on Programming language design and implementation,
Dublin, Ireland, June 2009, pages 441–452, New York, NY, USA, 2009. ACM.

[88] Jeffrey S. Vetter and Chris Chambreau. mpiP: Lightweight, scalable MPI profiling, 2011.
http://mpip.sourceforge.net/.

[89] Jeffrey S. Vetter and Daniel A. Reed. Managing performance analysis with dynam-
ical statistical projection pursuit. In Proceedings of the Supercomputing Conference
(SC1999), Portland, OR, USA, November 1999. IEEE Computer Society, 1999.

[90] Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, Wolfgang Frings,
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Capturing Parallel Performance Dynamics

Zoltán Péter Szebenyi

Runtime call-path profiling is a conventional, well-known method used for collecting summary 
statistics of a parallel application’s execution such as the time spent in different call paths of 
the code. However, these kinds of measurements give the user only a summary overview of the 
entire execution, without regard to changes in performance behavior over time. As present day 
scientific applications tend to be run for extended periods of time, understanding the patterns 
and trends in the performance data along the time axis becomes crucial. 

As shown by our analysis of a representative set of scientific codes, profiling every iteration  
separately provides a wealth of new data that often leads to invaluable new insights. However, with  
the introduction of the time dimension, memory usage and file sizes grow considerably.  
To counter this problem, a low-overhead on-line compression algorithm was developed that exploits 
similarities between different iterations.

While standard, direct instrumentation, which is assumed by the initial version of the compression 
algorithm, results in fairly low overhead with many scientific codes, in some cases the high 
frequency of events makes such measurements impractical. Therefore, a hybrid solution was 
developed that seamlessly integrates sampling and direct instrumentation techniques in a single 
unified measurement, using direct instrumentation for message passing constructs, while sampling 
the rest of the code. Finally, the compression algorithm was adapted to the hybrid profiling  
approach, avoiding the overhead of pure direct instrumentation.

Evaluation of the above methodologies shows that our similarity-based compression algorithm 
provides a very good approximation of the original data with very little measurement dilation, 
while the hybrid combination of sampling and direct instrumentation fulfills its purpose by showing 
the expected reduction of measurement dilation in cases unsuitable for direct instrumentation.

This publication was written at the Jülich Supercomputing Centre (JSC) which is an integral part 
of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences 
and the supercomputer facility in one organizational unit. It includes those parts of the scientific 
institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main 
research methodology.
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