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Abstract

The simulation of pairwise interactions in huge particle ensembles is a vital issue in scientific
research. Especially the calculation of long-range interactions poses limitations to the system
size, since these interactions scale quadratically with the number of particles. Fast summation
techniques like the Fast Multipole Method (FMM) can help to reduce the complexity to O(N).
This work extends the possible range of applications of the FMM to periodic systems in one, two
and three dimensions with one unique approach. Together with a tight error control, this contri-
bution enables the simulation of periodic particle systems for different applications without the
need to know and tune the FMM specific parameters. The implemented error control scheme
automatically optimizes the parameters to obtain an approximation for the minimal runtime for
a given energy error bound.

Zusammenfassung

Die Simulation von paarweisen Wechselwirkungen für sehr große Teilchen-Ensembles ist eine
wesentliche Aufgabe in der wissenschaftlichen Forschung. Besonders die Berechnung von lang-
reichweitigen Wechselwirkungen legt der Systemgröße Beschränkungen auf, da die Anzahl der
zu berechnenden Wechselwirkungen quadratisch mit der Anzahl der Teilchen skaliert. Schnelle
Summationsverfahren wie die Fast Multipole Method (FMM) können dazu beitragen die Kom-
plexität auf O(N) zu reduzieren. Diese Arbeit erweitert den möglichen Anwendungsrahmen
der FMM auf Systeme mit ein, zwei oder drei-dimensionaler Periodizität in einem einheitlichen
Ansatz. Zusammen mit einer präzisen Fehlerkontrolle erlaubt der hier vorgestellte Ansatz, die
Simulation von Teilchensystemen für verschiedenste Anwendungen durchzuführen, ohne die für
die Simulation benötigten FMM Parameter kennen oder bestimmen zu müssen. Die implemen-
tierte Fehlerkontrolle ermittelt diese Parameter automatisch, um damit eine Näherung für die
minimale Simulationsrechenzeit für eine vorgegebene Energie-Fehlerschranke zu erhalten.
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1. Introduction

A system being given of a number whatever of particles attracting one another mutually
according to Newton’s law, it is proposed, on the assumption that there never takes place
an impact of two particles, to expand the coordinates of each particle in a series proceeding
according to some known function of time and converging uniformly for any space of time.

Gösta Mittag-Leffler, 1885 [1]

1.1. The N -body Problem

This introducing quote was first printed in Nature over 120 years ago. Advised by Prof. Mittag-
Leffler, King Oscar II of Sweden established a prize for the first one who could find a general
solution to this specific problem later known as N -body problem. This challenge describes the
interaction of N particles e.g. charges or masses, through e.g. the Coulomb force or the force
of gravity.

Unfortunately, the problem could not be solved, so the prize had to be awarded to another im-
portant contributor to classical mechanics which was considered of great interest for the progress
of science in those days. Finally Poincaré won the prize, even though he solved a different prob-
lem. Later on the originally stated problem was solved partly for three particles (N = 3) by
Sundman [2]. In 1991 Qui-Dong developed a transformation leading to the global solution of
the problem. Unfortunately, the speed of convergence is “terribly slow” [3]. Hence, for N > 3
no general solution was proposed until today. However, such systems can be solved numerically
with the help of computers. Therefore, iterative methods are used to calculate forces at discrete
time intervals on each particle prior to computing the corresponding velocities and updated po-
sitions.

Time Step loop of a N -body problem

A simple scheme using an iterative method to obtain all trajectories of N particles mutually in-
teracting with each other is shown below. Since there is no global solution at hand, the algorithm
represents an approximate solution to the problem. The first source of error is introduced by the
finite number of digits available on a computer system, producing only approximate particle-
particle forces. The second approximation occurs in the integration step. The time counter Δt
cannot be decreased arbitrarily low due to the limited precision of the computer.
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1.1. THE N -BODY PROBLEM

The force Fij of particle j with charge (or mass) cj acting on particle i with with charge (or
mass) ci is defined by

Fij =
cicj
r3ij

rij . (1.1)

The distance between the two particles is denoted as rij . The following algorithm describes how
a timestep loop of N mutually interacting particles can be computed.

1. Clear forces;

for i = 1 to N do
Fi = 0

end

2. Compute and accumulate forces;

for i = 1 to N − 1 do
for j = i+ 1 to N do

Compute force Fij of particle j on particle i;
Fi := Fi + Fij ;
Fj := Fj − Fij ;

end
end

3. Integrate equations of motions;

for i = 1 to N do
vnew
i := vold

i + Fi
mi

Δt;
xnew
i := xold

i + viΔt;
end

4. Update time counter;

t := t+Δt;

5. To calculate the subsequent timestep go back to step 1.

The algorithm [4] depicted above has a substantial computational overhead. Since the calcu-
lation of the double sum is represented by two nested for loops with each sum running up to
the total number of particles N , the algorithm has a complexity of O(N2). Doubling the number
of particles results in an increase of runtime of a factor of four. For few particles this behavior
may be negligible, but for a large number of particles this clearly slows down the simulation.

2



1. INTRODUCTION

1.1.1. Simple Schemes to Reduce the Complexity

To reduce the overall complexity it is possible to drop interactions which do not have a relevant
impact on the actual forces. Therefore, a cut-off radius is introduced. All particles within the
cut-off are taken into account for interaction. All particles outside the sphere are neglected. The
runtime and precision of the simulation clearly depends on the size of the sphere and hence
the cut-off radius. Assuming a homogeneous particle system (constant particle density), the
complexity can be reduced from O(N2) to O(N), since the number of neighboring and hence
interacting particles is constant for a certain cut-off.

1.1.2. Different Types of Potentials

We distinguish between two types of potentials depending on the value of the integral

I =

∫
1

rp
dr .

Short-range potentials decay rapidly with increasing distance r and the integral converges. In
R
n, potentials decaying faster than 1/rp with p > n are called short-range potentials, e.g.

the Lennard Jones potential with p = 6.

Long-range potentials decay slowly with increasing distance r and the integral does not con-
verge. In R

n, potentials decaying slower than 1/rp with p ≤ n are called long-range
potentials. The Coulomb potential (p = 1) is a long-range potential decreasing as 1/r.

Another classification of long- and short-range potentials from a physical point of view can be
found in reference [5]. However, in all considerations the Coulomb potential 1/r is related to a
long-range potential which does not allow a certain cut-off without violating the error bound.

1.2. Fast Summation Techniques

Unfortunately, cut-off schemes introduce undesirable artifacts [6] for long-range potentials.
Therefore, one has to choose another path to reduce the complexity. The calculation of the
forces in a Coulomb problem with kernel K(x, yi) and weights Wi can be generalized to a sum
of the form

U(x) =

N∑
i=1

WiK(x, yi) .

Straightforward computation is considered to be a direct summation. The evaluation at N target
points with N source points yields a O(N2) complexity. Algorithms that reduce the cost of
evaluating these sums at each of N target locations from O(N2) to O(N logN) or even O(N)
will be referred to as fast summation schemes.

3



1.2. FAST SUMMATION TECHNIQUES

Historic Development of Fast Summation Algorithms

The first proposal was made by Ewald in 1921 for periodic systems in three dimensions. The
overall complexity can be reduced to O(N3/2). With the advent of computers more sophisti-
cated schemes emerged. In the 1960s Fedorenko [7] and Bakhvalov [8] first conceived a multi-
grid method, which was brought to an efficient utility by Brand [9] in 1977. The method –
originally introduced to solve elliptic boundary-value problems – could be used for both open
and periodic systems and has a complexity of order N . In 1980 Eastwood et al. [10] proposed
a particle-mesh algorithm with a complexity of O(N logN). This was followed by a treecode
by Appel [11], Barnes and Hut [12]. Finally in 1987 Rokhlin and Greengard [13] proposed a
method similar to the treecode method, but with a priori error bounds and linear complexity.
This fast multipole method (FMM) was considered one of the top ten algorithms of the 20th
century [14].

Basic Ideas Behind Fast Summation Schemes

The basic ideas behind fast summation schemes can be explained with a simple example. Con-
sider the calculation of

U(xj) =
N∑
i=1

WiK(xj , yi) =
N∑
i=1

Wi(xj − yi)
2 (1.2)

for target points xj with j = 1, . . . , N , where the points in the sets {xj} and {yi} are located
on the real axis. Direct summation requires work proportional to O(N2). We know

(xj − yi)
2 = x2j − 2xjyi + y2i .

Substitution into (1.2) leads to

U(xj) = A0x
2
j − 2A1xj +A2

where

Ak =
N∑
i=1

Wiy
k
i .

Precomputation of the moments Ak can be done in O(N), as well as the subsequent calculation
of U at N target points. It is possible to generalize this scheme to summations (e.g. the Coulomb
problem) where the kernel K(x, y) can be expressed as a finite sum

K(x, y) =

p∑
k=1

φk(x)Ψk(y) . (1.3)
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1. INTRODUCTION

A fast summation algorithm is obtained by the following two–step procedure: First, compute
the moments Ak defined by

Ak =
N∑
i=1

WiΨk(yi) .

Second, evaluate U(x) at each target position with

U(x) =

p∑
k=1

Akφk(x) .

The amount of work required is O(Np) rather than O(N2). For p � N the computation
will be significantly faster than direct summation. A kernel that can be expressed as a finite
sum as in (1.3), is called a degenerate or separable kernel. Independent of the details of the
source distribution, U(x) has to be a linear combination of the functions {φ1(x), . . . , φp(x)}.
Therefore, the function space of U(x) is tremendously smaller than the N -dimensional space
containing the source and target data. Unfortunately, the kernel of interest for the Coulomb
problem is not of this type. The singularity of the potential demands a more sophisticated
scheme.

Key Features

In addition to the separable representation of the kernel, fast summation schemes dealing with
potentials with a singularity e.g. Coulomb potential need to introduce a spatial decomposition in
order to separate the singularities. Therefore, fast summation codes are based on a combinations
of the following key features:

• A specified accuracy ε for the computation,
• A hierarchical spatial subdivision of sources,
• A far field expansion of the “kernel” K(x,y) in which the influence of source and evalu-

ation points separates,
• (Optional) The conversion of far field expansions into local expansions.
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2. FMM in Three Dimensions

After the emergence of fast summation methods, the numerical solution to a variety of differ-
ent types of equations was accelerated. There exist methods accelerating the solution of the
Helmholtz equation [15] as well as other (partial) differential equations [16]. However, when
speaking about the FMM the most common implementation copes with the Laplace equation
[17]. Besides, there exist various different schemes for one- [18, 19], two- [17], and three-
dimensional [20] Laplace problems, since the computational overhead of the algorithm in one
or two dimensions is significantly smaller.

Since our targeted application will be a simulation of particles with coordinates in three di-
mensions, the following FMM algorithm is derived for the Laplace equation in three dimensions.
To simplify the expressions of the involved operators the derivation was performed in spheri-
cal rather than Cartesian coordinates. This chapter introduces the FMM for systems with open
boundaries. The enhancements for periodic boundaries are added in chapter 3.

2.1. Informal Description of the FMM

The main idea behind fast summation methods, especially the FMM, is to give an approximate
solution within a given precision goal ε of a certain quantity (energy, forces, potentials). How-
ever, this precision goal ε could be machine precision in which case the approximate solution
does not differ from the “exact solution” when computed numerically. For regular potentials a
fast summation scheme can be done by a simple factorization yielding the so called middleman
scheme. Unfortunately, the potential we are dealing with has a singularity for r → 0, thus the
expansion is not valid everywhere. Therefore, we have to employ a different scheme involving
a more complex algorithmic structure.

The presented approximation will benefit from the following observation. Assume a system
of several clustered particles. The contribution on the force or energy, respectively from nearby
particles on a test particle within a cluster will be dominant compared to the contribution from
remote particles outside the cluster. Admittedly, the remote contribution is not zero. Neglecting
these particles would correspond to a cut-off scheme without rigorous error control but ideal
complexity O(N).

Grouping Source Particles

However, a remote particle from a spatial group will have almost the same influence on the
test particle near the origin as another particle from the same remote group, since the distance

7



2.1. INFORMAL DESCRIPTION OF THE FMM

(a) 56 Direct Interactions (b) 8 Interactions: Grouped
Source Particles

(c) 7 Interactions: Grouped
Target Particles

(d) 1 Interaction: Grouped
Source & Target Parti-
cles

Figure 2.1.: The figure depicts the main idea behind fast summation methods with respect to a particle
system. The particles are distributed in space, but show clustering. Chart (a) shows the direct
interaction of all particles in one cluster with all particles in the other cluster. Inter-Cluster
interactions are not shown. Chart (b) shows the interaction via a source pseudo particle.
Chart (c) shows the interaction via a target pseudo particle. Chart (d) shows the interaction
with both, source and target pseudo particles.

between the test particle at the origin and the remote particles is dominated by a large cluster–
cluster distance. Therefore, all particles in a remote cluster could be combined together and
may be represented by a new single pseudo particle with a new common center. The influence
of several sources is combined into one source, which is depicted in figure 2.1b.

Grouping Target Particles

The grouping scheme can also be used in reverse. Considering a remote particle and a group of
particles clustered together near the origin, the remote particle has almost the same influence on
any source particle in the spatial group. Therefore, the interaction of this remote particle can be
reduced to the interaction with a pseudo particle containing the clustered source particles (see
figure 2.1c).

Grouping Both Source and Target Particles

Finally, the last two schemes can be combined together, allowing interactions of two pseudo
particles, one at source and one at target particles. This scheme is depicted in figure 2.1d. Inter-
action takes place only via pseudo particles and not particles itself. This is advantageous since
all particles in a simulation are sources and targets at the same time due to the mutual interac-
tion. Hereby the number of interactions between the particles is reduced even more compared
to asymmetric clustering of either source or target points.
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2. FMM IN THREE DIMENSIONS

(a) Direct (b) Middleman (c) Source Groups (d) Target Groups (e) Both Groups

Figure 2.2.: Schematic graphic of pairwise interactions of four particles. The black circles represent the
sources, the open circles represent the targets. Sources and targets may be identical particles.

Defining Groups of Different Size

To define near and remote particles, a space decomposition scheme is used. For reason of
simplicity we assume a recursive decomposition in cubic boxes. The different sized boxes are
stored in a tree-like (oct-tree) data structure providing efficient construction of interaction sets,
since source and target sets can be increased in size the more distant they are.

To generate the source and target sets from the given particle distribution, two operators are
necessary. We distinguish between operators working vertically and horizontally inside the
tree. First, the vertical operators shift expansions of source or target sets up and down the tree.
Second, the horizontal operator translates source sets into target sets on each tree level.

However, it is possible that a limited number of nearby particles is not able to interact via
pseudo particles. Therefore, these particles interact directly with each other. This restriction can
be avoided by very deep trees, hence a very fine spatial decomposition where each particle has
its own box. But this is not necessary, since the number of nearby particles is limited and thus
does neither impair the overall complexity nor the computation time.

Interaction Sets

Figure 2.3 shows the interaction matrix of 16 particles. Every cell represents a single interaction
pair. The crossed out cells represent interactions from particles with themselves which must
not be calculated (singularity) and are dropped eventually. The first interaction matrix in figure
2.3b represents all N(N − 1) interactions. Due to symmetry, the lower left half contains the
exact same elements of the upper half up to the sign. Thus, the overall interactions reduce to
1
2N(N − 1). The second interaction matrix in figure 2.3c represents the interaction of the same
particles via an FMM computation. Again, the crossed out cells are omitted. The dark-grayed
cells represent direct neighbors, which have to be calculated directly. All other cells represent
interactions via pseudo particles. The streaked cells are shown separately with their interaction
sets in figure 2.3a. One can easily see that with increasing distance more and more source
and target particles are grouped together which reduces the number of interactions dramatically.
Again, the lower triangle is symmetric to the upper triangle similar to the direct summation.
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(a) Direct and Clustered Interactions (b) Interaction Matrix (c) FMM Interaction Matrix

Figure 2.3.: Figure (a) depicts the direct interaction (first line) of a 1D system with 16 elements (black
circles) and the interaction via the FMM scheme. Figure (b) depicts the interaction matrix
of the direct interaction. Figure (c) depicts the interaction matrix via the FMM. Each square
represents a certain particle-particle or multipole-multipole interaction.

To establish an accurate algorithm, providing the mentioned features, we need to introduce
additional mathematical tools. In the next section we will derive the necessary theorems.

2.2. Mathematical Preliminaries

In three dimensions, functions which satisfy the Laplace equation

∇2Φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0

are referred to as harmonic functions. The theory of such functions is called potential theory. A
description of the theory can be found in [21, 22]. A solution satisfying the Laplace equation is
e.g. Φ = 1/d with d =

√
(x− x0)2 + (y − y0)2 + (z − z0)2.

If a point particle of unit strength is fixed at A = (x0, y0, z0) then the potential due to this
charge at an arbitrary but distinct point R = (x, y, z) is given by

Φ(R) =
1

d

with d representing the distance between point R and A. The electrostatic field is given by

�E(R) = −∇Φ = −
(
x− x0
d3

,
y − y0
d3

,
z − z0
d3

)
.

Next we want to derive a series expansion for the potential at R in terms of the distance from
the origin r.
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2. FMM IN THREE DIMENSIONS

Figure 2.4.: Expansion of the inverse distance 1/d into the radial parts a and r and the subtended angle γ
between OA and OR.

2.2.1. Expansion of the Inverse Distance

Given two points A(a, α, β) and R(r, θ, φ) with a, α, β and r, θ, φ being the spherical coordi-
nates, we define the distance d as

d := |r− a| =
√

r2 + a2 − 2ra cos γ .

Thus,
1

d
=

1

r
√
1− 2a

r cos γ + a2

r2

=
1

r
√
1− 2uμ+ μ2

,

having set

μ =
a

r
and u = cos γ .

For μ ≤ 1, the inverse square root can be expanded in powers of μ, resulting in the following
series

1√
1− 2uμ+ μ2

=
∞∑
l=0

Pl(u)μ
l ,

where

P0(u) = 1, P1(u) = u, P2(u) =
3

2
(u2 − 1

3
), . . . .

In general, the Pl(u) are the Legendre polynomials [23] of degree l and are defined by

Pl(x) =
1

2ll!

dl

dxl

[
(x2 − 1)l

]
.

Finally the expression for the inverse distance 1/d yields

1

d
=

1

r

∞∑
l=0

al

rl
Pl(u) =

∞∑
l=0

al

rl+1
Pl(cos γ) . (2.1)

The radial parts a and r of the two coordinates a and r are now factorized.
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θ

φ
y

x

z

r

�re

�φe

�θe

x

y

z

(a) Spherical Coordinate System (b) Analytic domain of a
multipole expansion of
the potential ΦO with
r > a

(c) Analytic domain of a local ex-
pansion of the potential ΦI

with r < a

Figure 2.5.: The solution for the potential Φ(r, θ, φ) consists of two separate solutions. The domain can
be split into two distinct parts. First, the local part inside the sphere. Second, the external
part outside the sphere.

2.2.2. Spherical Harmonic Addition Theorem

Unfortunately, Pl(cos γ) does still depend on both coordinates A and R via cos γ and cannot
be used to derive a fast summation scheme. A useful representation requires the introduction of
spherical harmonics, allowing to factorize both source and target locations. By transforming the
Laplace equation in spherical coordinates (see figure 2.5a), we get

1

r2
∂

∂r

(
r2

∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂φ2
= 0 .

The solution of the equation can be found by assuming a separable solution of the form

Φ(r, θ, φ) = R(r)T (θ)P (φ)

leading to an expression including spherical harmonics Ylm and coefficients Mlm and Llm

Φ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

LlmYlm(θ, φ)rl +
MlmYlm(θ, φ)

rl+1
.

Remark 2.2.1. It should be noted that for a potential ΦO(r, θ, φ) with r > â, the coefficients
Llm have to be zero to satisfy the decay at infinity for the potential ΦO as shown in figure 2.5b.
For the potential ΦI(r, θ, φ) with r ≤ â inside the sphere with radius â the elements Mlm must
be zero. (see figure 2.5c).
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2. FMM IN THREE DIMENSIONS

We define the spherical harmonics Ylm and their complex-conjugate counterparts Y �
lm as fol-

lows

Ylm(θ, φ) =

√
(2l + 1)

4π

√
(l −m)!

(l +m)!
Plm(cos θ)eimφ ,

Y �
lm(θ, φ) =

√
(2l + 1)

4π

√
(l −m)!

(l +m)!
Plm(cos θ)e−imφ .

The functions Plm(x) are called associated Legendre polynomials and can be derived as

Plm(x) = (−1)m(1− x2)m/2 dm

dxm
Pl(x) .

The number l is called degree and the number m is called order of the function Plm(x). The
products

cos(mφ)Plm(cos θ) and sin(mφ)Plm(cos θ)

only depending on the spherical angles θ and φ are called tesseral harmonics for m < l and
sectorial harmonics for m = l. The special case for m = 0 with

Pl0(cos θ) = Pl(cos θ)

reduces associated Legendre polynomials to Legendre polynomials and are called zonal har-
monics. The three different harmonics are shown in figures 2.6b, 2.6c and 2.6a.

To calculate the associated Legendre polynomials, recurrences can be used. For m = l ≥ 0
we can define

Pmm = (−1)m(2m− 1)!!(1− x2)m/2 ,

where n!! denotes the double factorial of n and can be defined for odd numbers n by

n!! =

{
1, if n = −1

n · ((n− 2)!!) if n > −1 .

For l �= m we obtain a recurrence relation

(l −m)Plm = x(2l − 1)Pl−1,m − (l +m− 1)Pl−2,m .

Theorem 2.2.2. Addition theorem for Legendre polynomials Let A and B be points with
spherical coordinates (a, α, β) and (r, θ, φ) and let γ be the angle subtended between them.
Then

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

Y �
lm(α, β)Ylm(θ, φ) .
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(a) Zonal Harmonic Y10,0 (b) Tesseral Harmonic Y10,5 (c) Sectorial Harmonic Y10,10

Figure 2.6.: Real part of spherical harmonics with different degree and order.

The proof of the theorem can be found in a text by Rose [24]. It can be derived with the use
of the Wigner D-matrices [25]. We will summarize this proof briefly. It is shown for arbitrary g
with

g =
l∑

m=−l

Y �
lm(α, β)Ylm(θ, φ) (2.2)

that g is invariant under rotations of the coordinate system with α → α′, β → β′, θ → θ′, φ →
φ′

g =
l∑

m=−l

Y �
lm(α, β)Ylm(θ, φ) =

l∑
m=−l

Y �
lm(α′, β′)Ylm(θ′, φ′) .

Therefore, g can be evaluated in any coordinate system. To obtain the addition theorem, we
position point A(a, α, β) on the z-axis and point B in the xz-plane by setting θ = 0. Now the
xz-plane is defined as the plane containing the origin 0, A and B. Thus α = 0 and φ = 0,
defining γ as angle subtended between the vectors of the two points. The angle-dependent part
of point A reduces to

Ylm(0, β) = δm0

√
2l + 1

4π

with δij being the Kronecker delta, while for point B the spherical harmonic Ylm(θ, φ) reduces
to Yl0(γ, 0). Equation (2.2) simplifies to

g =

√
2l + 1

4π
Yl0(γ, 0) .

Since we can evaluate g in any coordinate system, we may write√
2l + 1

4π
Yl0(γ, 0) =

∑
m

Y �
lm(α′, β′)Ylm(θ′, φ′) .
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By substituting and rearranging the prefactor

Yl0(γ, 0) =

√
2l + 1

4π
Pl(cos γ) ,

we finally obtain the spherical harmonic addition theorem

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

Y �
lm(α, β)Ylm(θ, φ) .

Remark 2.2.3. By redefining the spherical harmonics Ylm and Y �
lm without the normalization

factor
√
(2l + 1)/4π the addition theorem simplifies to

Pl(cos γ) =

l∑
m=−l

Y �
lm(α, β)Ylm(θ, φ) .

With the help of the last equation, it is possible to separate the source (a, α, β) and target
(r, θ, φ) coordinates from (2.1). The inverse distance 1/d is fully factorized by

1

d
=

∞∑
l=0

l∑
m=−l

al

rl+1
Y �
lm(α, β)Ylm(θ, φ) .

2.2.3. Expansion of Particle-Particle Interactions

Following the notation of Head-Gordon [26] and the derived formulas from the last sections, we
can expand the coordinates of a particle-particle interaction as follows

1

|r− a| =
∞∑
l=0

Pl(cos γ)
al

rl+1

=
∞∑
l=0

l∑
m=−l

(l −m)!

(l +m)!

al

rl+1
Plm(cosα)Plm(cos θ)e−im(β−φ) .

We define the scaled associated Legendre polynomials P̃lm and ˜̃Plm to ensure numerical stability
and to simplify the FMM operators with

P̃lm =
1

(l +m)!
Plm and ˜̃Plm = (l −m)!Plm .

Now, we define the multipole moments ωj
lm(qj ,aj) for a particle at aj with strength qj about

the origin (0, 0, 0). The chargeless version of the multipole is defined by Oj
lm(aj) with

ωj
lm(qj ,aj) = qjO

j
lm(aj) = qja

l
jP̃lm(cosαj)e

−imβj .
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Multipole moments of multiple particles j ∈ {1, . . . , k} about a common origin can be summed,
yielding

ωlm(q,a) =
k∑

j=1

ωj
lm(qj ,aj) =

k∑
j=1

qjO
j
lm(aj) =

k∑
j=1

qja
l
jP̃lm(cosαj)e

−imβj .

We can also establish the coefficients of a local Taylor-like expansion of the potential at the
origin due to a distant particle at rj . The chargeless version of the local Taylor-like expansion is
defined by M j

lm(rj) as

μj
lm(qj , rj) = qjM

j
lm(rj) = qj

1

rl+1
j

˜̃Plm(cos θj)e
imφj .

Again, coefficients with a common origin can be summed

μlm(q, r) =

k∑
j=1

μj
lm(qj , rj) =

k∑
j=1

qjM
j
lm(rj) =

k∑
j=1

qj
1

rl+1
j

˜̃Plm(cos θj)e
imφj .

We denote chargeless multipole expansions Olm and chargeless Taylor-like expansions Mlm for
k = 1 without the superscript j, subsequently. The corresponding potential Φ(P ) due to a set
of particles can be defined via the following two theorems.

Theorem 2.2.4. Multipole expansion Suppose that k particles of strengths qj , j = 1, . . . , k
are located at the points aj = (aj , αj , βj), j = 1, . . . , k with |aj | < â inside a sphere. Then for
any P = (r, θ, φ) ∈ R

3 with r > â, the potential Φ(P ) is given by

Φ(P ) =
∞∑
l=0

l∑
m=−l

ωlm(q,a)
1

rl+1
˜̃Plm(cos θ)eimφ

=

∞∑
l=0

l∑
m=−l

ωlm(q,a)Mlm(r) .

Theorem 2.2.5. Local expansion (Taylor-like) Suppose that k particles of strengths qj , j =
1, . . . , k are located at the points Rj = (rj , θj , φj), j = 1, . . . , k outside the sphere with radius
â with â < rj . Then for any P = (a, α, β) ∈ R

3 with a < â, the potential Φ(P ) is given by

Φ(P ) =

∞∑
l=0

l∑
m=−l

μlm(q, r)alP̃lm(cosα)e−imβ

=
∞∑
l=0

l∑
m=−l

μlm(q, r)Olm(a) .
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2.2.4. Addition Theorem for Regular Solid Harmonics

The addition theorem described in section 2.2.2 links a Legendre polynomial to a finite sum of
associated Legendre polynomials. To establish the FMM algorithm, another addition theorem
is needed, involving associated Legendre polynomials only. With the help of this recurrence
relation it is possible to represent two associated Legendre polynomials with different centers
by just one polynomial at a new center. A short proof of this theorem can be found in [27]. We
derive the formula briefly. To this end, we need to introduce the solid harmonics given by

Rlm(r) = rlPlm(cos θ)eimφ

Ilm(r) = r−l−1Plm(cos θ)eimφ .

The regular solid harmonics Rlm and the irregular solid harmonics Ilm are both solutions of the
Laplace equation.

Remark 2.2.6. It should be noted at this point that the regular solid harmonics Rlm differ from
the recently introduced Olm only by a prefactor

Rlm(r) = (l +m)!O�
lm(r) . (2.3)

Remark 2.2.7. Similarly to the regular solid harmonics Rlm, the irregular solid harmonics Ilm
can be written in terms of the elements Mlm

Ilm(r) =
1

(l −m)!
Mlm(r) . (2.4)

Let us express the vector r with its polar coordinates (r, θ, φ) in Cartesian coordinates (x, y, z)

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ .

The three dimensional representation can be reduced to a two dimensional one by choosing
φ = 0 and expressing vector r in the complex plane. Hobson [28] showed that the generating
functions of the solid harmonics can be written as

(z + ix)l =
l∑

m=−l

im
l!

(l +m)!
Rlm(r)

(z + ix)−l−1 =

l∑
m=−l

i−m (l −m)!

l!
Ilm(r) .

To obtain the addition theorem for r = r1 + r2 we know

(z + ix)l = [(z1 + ix1) + (z2 + ix2)]
l
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which yields after the expansion via the binomial theorem

(z + ix)l =
l∑

j=0

(
l

j

)
(z1 + ix1)

j(z2 + ix2)
l−j

with (
l

j

)
=

l!

j!(l − j)!
.

Substituting the generating function in the last equation yields

l∑
m=−l

im
l!

(l +m)!
Rlm(r) =

l∑
j=0

j∑
k1=−j

l−j∑
k2=−(l−j)

(
l

j

)
ik1+k2 j!

(j + k1)!

(l − j)!

(l − j + k2)!
Rj,k1(r1)Rl−j,k2(r2) .

After identifying the coefficients of terms with equal numbers m = k1 + k2 and k1 = k and
k2 = m− k it follows

l∑
m=−l

im
l!

(l +m)!
Rlm(r) =

l∑
m=−l

l∑
j=0

j∑
k=−j

im
l!

(j + k)!(l − j +m− k)!
Rj,k(r1)Rl−j,m−k(r2) .

Dropping the outer sum and rearranging the terms the remaining equation simplifies to

Rlm(r1 + r2) =

l∑
j=0

j∑
k=−j

(
l +m

j + k

)
Rj,k(r1)Rl−j,m−k(r2) . (2.5)

Equation (2.5) defines the addition theorem for regular solid harmonics. The addition theorem
for irregular harmonics can be derived similarly.

2.2.5. Addition Theorem for Irregular Solid Harmonics

For irregular solid harmonics Ilm we have to assume |z1+ ix1| > |z2+ ix2| to allow a binomial
expansion for r = r1 − r2 in the following equation

(z + ix)−l−1 = [(z1 + ix1)− (z2 + ix2)]
−l−1 .
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The expansion yields

(z + ix)−l−1 =

∞∑
j=0

(−1)j
(−l − 1

j

)
(z2 + ix2)

j(z1 + ix1)
−j−l−1 .

With the help of the generalized binomial coefficients(
l

j

)
= (−1)j

(−l + j − 1

j

)
and the substitution of the solid harmonics with their generating functions Rlm(r) and Ilm(r)
we get

l∑
m=−l

i−m (l −m)!

l!
Ilm(r1 − r2) =

∞∑
j=0

l+j∑
k1=−l−j

j∑
k2=−j

(
l + j

j

)
ik2−k1 j!(l + j − k1)!

(j + k2)!(l + j)!
Rj,k2(r2)Il+j,k1(r1) .

Again, identifying coefficients with m = k1 + k2 and k2 = −k and k1 = m+ k it follows

l∑
m=−l

i−m (l −m)!

l!
Ilm(r1 − r2) =

l∑
m=−l

∞∑
j=0

j∑
k=−j

1

l!
i−m−2k (l + j −m− k)!

(j + k)!
(−1)kR�

jk(r2)Ij+l,m+k(r1) .

For simplicity and to avoid an additional (−1)k we used the complex conjugate of Rjk. After
dropping the outer summation over m we identify the addition theorem for Ilm(r1 − r2) as

Ilm(r1 − r2) =
∞∑
j=0

j∑
k=−j

(l + j −m− k)!

(j + k)!(l −m)!
R�

jk(r2)Ij+l,m+k(r1) . (2.6)

2.2.6. Formal Double Sum Manipulations

To obtain the FMM operators several infinite sums have to be manipulated with respect to the
ordering of the elements. Following Choi [29] for absolutely convergent sums we have

∞∑
j=n

∞∑
l=j+(p−1)n

Ajl =
∞∑

l=pn

l−(p−1)n∑
j=n

Ajl with p− 1 ∈ N;n+ 1 ∈ N .
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(a) Summation over j and l (b) Summation over l and j

Figure 2.7.: The gray and black cells represent a certain element Ajk in the summation order. Figure (a)
shows the inner summation along the j axis followed by the summation over l. Figure (b)
shows the summation order, starting with the summation along the l axis [30] followed by the
summation over j. For absolute convergent sums the summation order can be interchanged.

To derive our FMM operators we need a simpler form of the identity with p = 2 and n = 0,
which corresponds to the summation over the infinite triangle 0 ≤ j ≤ l in two different ways
as depicted in figure 2.7.

∞∑
j=0

∞∑
l=j

Ajl =
∞∑
l=0

l∑
j=0

Ajl (2.7)

with {(j, l) : l ≥ j, j ∈ N} for the left double sum and {(j, l) : j ≤ l, l ∈ N} for the right
double sum representing the same elements Ajl.

2.3. Mathematical Operators

In this section we describe the required FMM operators, which can be derived from the prelim-
inaries of the last section to obtain a fast summation scheme. We need three different operators
to establish the FMM scheme. Two operators for the vertical up- and down-shifts between the
different tree levels and one operator for the conversion of remote multipole expansions at each
tree level. We denote the truncation of an expansion with p.

2.3.1. Translation of a Multipole Expansion (M2M)

With help of the addition theorem in (2.5) we are now able to shift the coefficients of a multipole
expansion around a point located at a to a point located at a+ b (Fig 2.8). Since

Rlm = (l +m)!O�
lm
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the addition theorem (2.5) has to be modified for the elements of chargeless multipoles Olm

instead of the elements Rlm. This can be done by substituting the elements Rlm and yields

Olm(a+ b) =

l∑
j=0

j∑
k=−j

Ojk(a)Ol−j,m−k(b) .

The addition theorem allows us to factorize the potential 1/|r − (a + b)| into a sum of triple
products depending separately on r, a and b as follows

1

|r− (a+ b)| =
∞∑
l=0

l∑
m=−l

Olm(a+ b)Mlm(r)

=
∞∑
l=0

l∑
m=−l

l∑
j=0

j∑
k=−j

Ojk(a)Mlm(r)Ol−j,m−k(b) .

The derivation for the multipole expansions ωlm is straightforward

ωlm(a+ b) =

l∑
j=0

j∑
k=−j

ωjk(a)Ol−j,m−k(b) .

We identify operator A with
Alm

jk (b) = Ol−j,m−k(b). (2.8)

This operator is also called Multipole2Multipole operator or M2M. Operator A is free of errors.
Independent of the length of the multipole expansion, all shifted moments are exact since the
operator only includes elements up to the order of the shifted ones. The M2M operator is a
vertical operator acting on boxes of different tree levels.

2.3.2. Conversion of a Multipole Expansion into a Local Expansion (M2L)

With help of the addition theorem in (2.6) we are able to transform an external multipole expan-
sion into a local Taylor-like expansion. Since,

Ilm(r) =
1

(l −m)!
Mlm(r)

we can substitute the irregular solid harmonics in (2.6) with the elements Mlm to derive a charge-
less version of the operator

Mlm(b− a) =
∞∑
j=0

j∑
k=−j

Mj+l,k+m(b)Ojk(a) .
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(a) Analytic Domain (b) Tree View

Figure 2.8.: M2M Operator for a two dimensional system. M2M is a vertical operator, exchanging infor-
mation between levels.

Similarly to the first FMM operator we can substitute the terms Olm and Mlm to obtain the
charged version of this operator. Now, we are able to transform coefficients of an external
multipole expansion around a to local Taylor-like coefficients around (b−a) as shown in figure
2.9. The transformed Taylor-like expansion can be represented as

μlm(b− a) =

∞∑
j=0

j∑
k=−j

Mj+l,k+m(b)ωjk(a)

with Multipole2Local (M2L) operator

Blm
jk (b) = Mj+l,k+m(b) . (2.9)

Besides errors arising from the truncation of the expansion ωjk with j < p, additional oper-
ator errors are introduced, because only 2p terms are considered in the sum for the elements
Mj+l,k+m with j + l < 2p. Since the operator itself is expanded up to 2p it allows to transform
all available elements in ωjk. The M2L operator is a horizontal operator acting on boxes of the
same tree level.

2.3.3. Translation of a Local Expansion (L2L)

The last operator can be obtained by using (2.5) again. With the help of the factorized potential,
given by

1

|r− (a+ b)| =
∞∑
l=0

l∑
m=−l

Olm(a+ b)Mlm(r)

=
∞∑
l=0

l∑
m=−l

l∑
j=0

j∑
k=−j

Ojk(a)Mlm(r)Ol−j,m−k(b) ,
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(a) Analytic Domain (b) Tree View

Figure 2.9.: M2L operator for a two dimensional system. M2L is a horizontal operator, exchanging in-
formation between boxes of the same level.

and the manipulation scheme for a double summation from (2.7) with elements

Ajl(a,b, r) =
l∑

m=−l

j∑
k=−j

Ojk(a)Mlm(r)Ol−j,m−k(b)

we can change the order of the summation

1

|r− (a+ b)| =
∞∑
l=0

l∑
j=0

Ajl(a,b, r) =
∞∑
j=0

∞∑
l=j

Ajl(a,b, r) .

Relabeling the indices l ↔ j,m ↔ k of the last equation and resubstituting the original multi-
pole and Taylor-like expansion yields

1

|r− (a+ b)| =
∞∑
l=0

∞∑
j=l

l∑
m=−l

j∑
k=−j

Olm(a)Mjk(r)Oj−l,k−m(b) ,

Separating the terms Oj−l,k−m and Mjk results in the operator C, which allows us to translate a
Taylor-like expansion located around r to its center at (r− b) as shown in figure 2.10 with

Mlm(r− b) =

p∑
j=l

j∑
k=−j

Oj−l,k−m(b)Mjk(r) .

This operator is also called Local2Local (L2L) operator. Compared to operator A, this operator
introduces errors due to the finite representation of the multipole expansion. However, com-
pared to operator B no additional operator errors arise. For a finite Taylor-like expansion with a
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(a) Analytic Domain (b) Tree View

Figure 2.10.: L2L operator for a two dimensional system. L2L is a vertical operator, exchanging infor-
mation between levels.

Operator Purpose Truncation Error Additional Operator Error

A Multipole to Multipole — —
B Multipole to Local • •
C Local to Local • —

Table 2.1.: The three FMM operators have different sources of error. The most error-prone operator is
operator B. To derive valid error estimation schemes, the influence of operator B must be
considered additionally to the truncation errors introduced by the finite expansion.

truncation at p poles the operator is exact with respect of the length of the Taylor-like expansion.
The operator L2L is used to shift finite Taylor-like moments from a parent box to its children
boxes’ centers. The charged version of the operator is given by

μlm(r− b) =

p∑
j=l

j∑
k=−j

Oj−l,k−m(b)μjk(r)

with L2L operator
C lm
jk (b) = Oj−l,k−m(b) . (2.10)

The L2L operator is a vertical operator acting on boxes of different tree levels.

Remark 2.3.1. Omitting operator M2M and L2L increases the complexity to O(N logN). Such
a scheme would behave like a Barnes-Hut treecode [12].

Obviously all operators induce a complexity of O(p4). Especially high precision calculations
are slowed down. To overcome this problem, improvements to the operators have been proposed.
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2. FMM IN THREE DIMENSIONS

2.3.4. Rotation-Based Operators

Unfortunately, the derived operators have a complexity of O(p4). Especially for high precision
calculation this is disadvantageous, because it will increase the amount of computation time. To
circumvent the problem, White and Head-Gordon [31] proposed a different scheme improving
the operator scaling to O(p3). The improved scheme is easy to implement with the proposed
standard FMM operators and only needs minor modifications. The increased memory usage
is negligible and no additional approximations are induced. The original error bounds are re-
tained. The rotation based operators are predicated on the observation that the three dimensional
problem is reduced to a one dimensional problem if the translation or shift is carried out along
the quantization axis (z-axis). Wigner rotation matrices are applied to rotate the multipole mo-
ments. A shift along the quantization axis with θ = 0 and φ = 0 yields a simplified form for the
representation of the chargeless multipole moments with

Olm(a) =
1

(l +m)!
alδm0

Mlm(r) = (l −m)!
1

rl+1
δm0 .

After substituting the new forms in the original operator formulae (2.8), (2.9), (2.10), we get

Alm
jk (b) =

1

(l − j +m− k)!
bl−jδm−k,0

Blm
jk (b) = (j + l − k −m)!

1

bj+l+1
δk+m,0

C lm
jk (b) =

1

(j − l + k −m)!
bj−lδk−m,0 .

The new shifted and translated moments simplify to

Olm(a+ b) =
l∑

j=0

bl−j

(l − j)!
Ojm(a)

Mlm(a− b) =
∞∑
j=0

(j + l)!

bj+l+1
Oj,−m(a)

Mlm(r− b) =
∞∑
j=l

bj−l

(j − l)!
Mjm(r) .

Simple rotations preserve the total angular momentum. Therefore, any rotated spherical har-
monic will be given as a linear combination of other spherical harmonics having the same order
p. The implementation of the FMM presented here is based on these rotation-based operators.
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(a) Interaction Set (b) Rotate ωlm (c) Translate ω′
lm (d) Rotate back μ′

lm

Figure 2.11.: (a) The box-box vector R between interacting box centers is usually not aligned along the
z-axis. Therefore, the coordinate system is rotated (b) to align box B along the new z′ axis.
The multipole moments ωlm transform into the rotated multipoles ω′

lm around the center of
box B. (c) Operator B is used to translate the external multipole expansion ω′

lm into the local
Taylor-like expansion μ′

lm around the center of box A. (d) Finally the Taylor-like expansion
μ′
lm is rotated back into the original coordinate system yielding μlm.

2.3.5. Further Operator Compression

The presented rotation-based operators as well as the rotations themselves provide a complex-
ity of O(p3). However, efforts were made to further reduce the complexity of the operators,
especially the translation operator B. Compared to the vertical tree operators A and C which
are invoked approximately once per box, the B operator is invoked 189 times for the smallest
interaction set. A first attempt was made by Berman [32] with a grid-based approach, showing
an operator complexity of O(p2). Unfortunately, this method lacks analytic error bounds and
demands an increased storage requirement. Another approach by Elliott and Board [33] facili-
tated a complexity of order O(p2 log p) via an FFT based approach. Unfortunately, this scheme
needs additional memory due to the use of the Fast Fourier Transform. Other disadvantages
are numerical instabilities and additional errors due to the use of the FFT. Yet another approach
proposed by Cheng, Greengard and Rokhlin [34] is based on a combination of multipole expan-
sions and exponential expansions (plane-wave expansions). Instead of expanding the potential
1/r into multipoles they use the following form

1

r
=

1

2π

∞∫
0

e−λz

2π∫
0

eiλ(x cosα+y sinα)dαdλ .

The integrals are solved numerically for certain accuracies. The translation from a multipole
in exponential form to a local expansion in exponential form comprises O(p2) operations. To
produce an exponential expansion in the first place operations with costs O(p3) are required.
However, the exponential expansion depends on the direction of the interaction. Therefore, six
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(a) Level 1 – Depth 0 (b) Level 2 – Depth 1 (c) Level 3 – Depth 2 (d) Level 4 – Depth 3

Figure 2.12.: The FMM tree is subdivided until a certain number of particles on the lowest level is
reached. Level L = 1 corresponds to the highest level, level Lmax corresponds to the lowest
level. The subdivision shown, adds four times the number of boxes to the tree for each level.
In three dimensions, the number of boxes increases by a factor of 8.

different operators in 3D are needed. Since this scheme also involves additional errors from the
approximation of the exponential expansion it was not considered for our implementation.

2.4. O(N logN) Algorithm

In this section we describe the details of the simpler algorithm not using any translation operators
which yields an overall complexity of O(N logN). However, the final FMM scheme can be
based on this approach. We start to enclose our given particles inside a cube and call this box
simulation box. Next, we introduce a hierarchy of boxes by subdividing this simulation box
by half along each axis. The refinement level of the entire simulation box is named level one
(L = 1). An arbitrary level of refinement L + 1 can be obtained by subdividing level L into
eight equal subboxes. The eight subboxes at level L + 1 are called child boxes of their parent
box at refinement level L. The scheme corresponds to the construction of an oct-tree depicted
in figure 2.12.

Now we can derive subsets of boxes via the following definitions.

Definition 2.4.1. Two boxes A and B are called next neighbors if they are at the same tree level
and box B is enclosed by a box of size (2ws+1)3 around the center of A with a box edge length
of one. Next neighbors interact in the near field (NF).

The former definition allows us to increase the range for the near field part to the full simula-
tion box (ws → ∞) yielding a direct interaction scheme with O(N2) complexity. A definition
for a minimal ws = 1 criterion can written as follows:

Definition 2.4.2. Two boxes are called next neighbors if they are at the same tree level and share
a boundary point (see figure 2.14b). Next neighbors interact in the near field (NF).
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(a) ws = 1 (b) ws = 2 (c) ws = 3 (d) ws = 4

Figure 2.13.: FMM well separateness criterion. For increasing ws the FMM leads towards the direct
summation scheme with unfavorable O(N2) complexity. All nearest neighbors B for box
A are shown. In figure (c) and (d) the nearest neighbors to the left and the bottom of A
already exceed the boundary of the simulation box.

The different interaction sets for the near field can be seen in figure 2.13. After defining the
near field, the far field has to be defined accordingly.

Definition 2.4.3. Two boxes A and B are called well separated if they are at the same tree level
and are not next neighbors (see figure 2.14c). Well separated boxes interact in the far field (FF).

The last definition does not limit the number of interactions in the far field, therefore we have
to set up a confined interaction list.

Definition 2.4.4. An interaction list i is associated with each box A, consisting only of children
of the next ws neighbors of A’s parent which are well separated from box A (see figure 2.14d).
The interaction list limits the number of far field (FF) interaction for each box.

These definitions allow us to compute interactions between a constant number of boxes on
each level.

The spatial refinement enables us to cluster together particles from one and the same box into
multipole moments. The expansion of the particles is performed around the box center. With
the help of definition 2.4.4 it is possible to define interaction sets for multipole expansions of
these boxes.

Definitions 2.4.3 and figure 2.12 show clearly that there are no interactions on level 1 and level
2 since these levels do not contain two separated boxes, hence all boxes are nearest neighbors.

Starting on level 3 with its 64 boxes we can use multipole expansions to compute interactions
between particles of a source box with a multipole expansion of particles in a remote box.
The error bound connected with these interactions will be discussed later in section 2.7. After
calculating the interactions on level 3, we can use a recursion scheme to include boxes on the
next refinement level (level 4). After subdividing all boxes on level 3, we again identify the
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(a) Box – Near field (b) Nearest Neighbors inter-
action set

(c) Full far field interaction (d) Far field interaction set

Figure 2.14.: Different interaction sets for fixed separation criterion ws = 1. (a) All particles within one
box (on the lowest level) interact directly. (b) Next neighbor boxes (on the lowest level)
interact directly, since the convergence of the expansions can not be guaranteed or may
converge slowly. (c) Boxes within the interaction list (on each level) interact via multipoles.

interaction set for each box. Since we already accounted for all interactions of boxes outside
the parent boxes’ next neighbors we must ignore these interactions. The scheme is repeated for
every tree level until we reach the lowest level. On the lowest level we calculate the missing
interactions for the direct neighboring boxes via a direct calculation. In the original work of
Rokhlin and Greengard the recursive process of refining is halted roughly after log8N levels
assuming a homogeneous particle distribution.

Computational Complexity

The complexity of the O(N logN) scheme can be derived as follows. Each particle contributes
p2 coefficients to each box multipole expansion independent of the box size. Therefore, we need
p2N operations to set up box multipole expansions on each level. The maximal interaction list
of each box consists of 189 boxes (ws = 1). If we assume to set up the multipole expansions for
every single particle separately (on the lowest level), 189Np2 operations are needed. Assuming
a homogeneous particle distribution on log8N levels, we end up with 8log8 N = N boxes on
the lowest level. The homogeneous distribution results in O(1) particles per box. Since not all
particles interact via multipoles we have to compute the near field parts directly requiring 27N
operations. Therefore, the total costs for this scheme sum up to

189Np2 log8N · O(1) + 27N · O(1) .

This scheme can be referred as arbitrary precision Barnes-Hut [12] scheme with error bounds.
The asymptotic complexity has improved from O(N2) to O(N logN). Unfortunately, the
speedup compared to a direct summation is only modest, since we have to set up multipole
moments on every level separately and do not use information from higher or lower levels.
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2.5. O(N) Algorithm

With the help of the introduced operators M2M, M2L and L2L it is possible to derive a scheme
with overall complexity O(N). A multipole expansion of a source box does not have to be eval-
uated for any particle in the target box. Instead we transform all far field multipole expansions
into a single local expansion in the target box. Then, the local expansion is evaluated at each
individual target particle position.

General Workflow

The original FMM proposed by Greengard and Rokhlin can be sectioned into five main steps.
The determination of the FMM parameter set, is influenced only by a worst-case error scheme,
the actual positions of the particles are not taken into account. We briefly want to outline the
single steps:

• Preprocessing steps
– Define the separation criterion ws
– Define the order of multipoles p for a given precision ΔE
– Define the depth of the FMM tree d
– Expand particles into multipole moments ωlm on the lowest level

• Pass 1 � Translate multipole moments ωlm up the tree
• Pass 2 � Transform multipole moments ωlm into Taylor moments μlm

• Pass 3 � Translate Taylor moments μlm down the tree
• Pass 4 � Compute the far field contributions of the system

– Compute the far field potential ΦFF(x, y, z)
– Compute the far field forces FFF(x, y, z)
– Compute the far field energy EFF

• Pass 5 � Compute the near field contributions of the system
– Compute the near field potential ΦNF(x, y, z)
– Compute the near field forces FNF(x, y, z)
– Compute the near field energy ENF

The outlined workflow is now described in detail in the following sections.

Preliminary Steps

The coordinates are scaled into a [0, 1]×[0, 1]×[0, 1] unit simulation box to guarantee numerical
stability of the computations and to simplify the involved FMM operators. Since the FMM
allows a priori error bounds the order of poles p can be set-up for a given separation criterion.
Let us assume for the moment a separation criterion ws = 1. A higher value of ws would yield
a faster convergence of the expansion (less multipole terms are needed) but higher costs in the
near field computations. Since this part scales quadratically in N , we want to eliminate as many
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(a) Particles inside a box A (b) Particles inside A’s neighbor boxes

Figure 2.15.: In general it is not possible to set ws to zero, since neighboring boxes may have particles
overlapping with the multipole expansion of a neighboring box. However, the convergence
of the expansion demands separation. Therefore, next neighbors must not interact via a
multipole expansion.

direct interactions as possible, therefore ws has to be set to one; it’s minimal value. The reason
for this minimum ws is shown in figure 2.15.

After defining the order of poles p, we are able to set up the FMM tree. The refinement of the
tree stops, once a certain number of particles in the lowest level is reached (e.g. k particles per
box, k � N ). The particles are sorted via a radix sort [35] into the lowest level boxes. Now
we expand all particles in each lowest level box into multipole moments about the center of the
same box.

Pass 1

Assuming we have more than 3 levels in the oct-tree, we now shift the multipole coefficients to
the center of the parent box via the M2M operator. Since each parent box consists of 8 child
boxes (in 3D) the moments of the expansion can be summed up at the new center and are stored
as moments of the parent box. The scheme is repeated until level 3 is reached. Now we have a
multipole expansion for each box on every level (starting at level 3).

Each child expansion at the center of the box at ai is shifted to the center of the common
parent box at a + b and then summed up with the shifted expansion of the other seven child
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boxes.

ω1
lm(a1 + b1) =

l∑
j=0

j∑
k=−j

Alm
jk (b1)ω

1
jk(a1)

...

ω8
lm(a8 + b8) =

l∑
j=0

j∑
k=−j

Alm
jk (b8)ω

8
jk(a8)

ωlm(a+ b) =
8∑

i=1

ωi
lm(ai + bi)

Pass 2

In the second pass we apply a modification of the already known scheme from the described
O(N logN) scheme. Instead of bringing every particle in a given target box to interaction
with all multipoles in the interaction set, we transform (at most) 189 source multipole moments
within each interaction set into local Taylor-like moments for each target box on each level.

μ1
lm(b1 − a1) =

p∑
j=0

j∑
k=−j

Blm
jk (b1)ω

1
jk(a1)

...

μi
lm(bi − ai) =

p∑
j=0

j∑
k=−j

Blm
jk (bi)ω

i
jk(ai)

μlm(b− a) =
ilist∑
i=1

μi
lm(bi − ai)

Pass 3

The third pass shifts the Taylor-like moments starting from level 3 to the lowest level via the
L2L operator. On the way downwards, the Taylor-like moments of the actual level are summed
up with the shifted interactions from a higher level. The following equations show a shift of a
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Taylor-like expansion μjk at level L to expansions μi
lm at level L+ 1

μ1
lm(r− b1) =

p∑
j=0

j∑
k=−j

Clm
jk (b1)μjk(r)

...

μ8
lm(r− b8) =

p∑
j=0

j∑
k=−j

Clm
jk (b8)μjk(r) .

Pass 4

The fourth pass finally computes the interactions between the Taylor-like moments representing
all effects of all well separated particles and the particles at positions ai = (ai, αi, βi) inside the
actual target box

ΦFF(ai) =

p∑
l=0

l∑
m=−l

μlm(r)aliP̃lm(cosαi)e
−imβi

FFF(ai) = −
p∑

l=0

l∑
m=−l

μlm(r)∇ai

[
aliP̃lm(cosαi)e

−imβi

]

EFF =

p∑
l=0

l∑
m=−l

μlm(r)ωlm(a) .

Pass 5

The fifth pass calculates the neglected interactions, hence all interactions which cannot be eval-
uated via far field expansions because of the chosen separation criterion ws. Since we ensured
that the number of particles per box M on the lowest level is independent of the total number
of particles N the costs of this pass is O(MN) with M � N . Pass 5 contains all interactions
from particles Mibox within one box ibox

Φ(ri) =

Mibox∑
j=1

qj
rij

(i �= j)

F(ri) = qi

Mibox∑
j=1

qj
r3ij

rij (i �= j)

Eibox
NF =

Mibox−1∑
i=1

Mibox∑
j=i+1

qiqj
rij

(i �= j)
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and particles Mjbox from all nb neighboring boxes jbox on the lowest tree level

Φ(ri) =

nb∑
k=1

Φk(ri) =

nb∑
k=1

Mjbox(k)∑
j=1

qjk
rijk

F(ri) = qi

nb∑
k=1

Fk(ri) = qi

nb∑
k=1

Mjbox(k)∑
j=1

qjk
r3ijk

rijk

E
jbox
NF =

Mibox∑
i=1

nb∑
k=1

Mjbox(k)∑
j=1

qiqjk
rijk

.

Computational Complexity

Let us derive the computational complexity of the presented algorithm. To set up the multipole
moments in the first pass we need O(p2) operations for each particle, which sums up to N ·O(p2)
for the entire system. To shift the multipole moments up the tree, a rough estimate for the number
of tree level is necessary. Clearly the number of operations increases with increasing number of
levels L, therefore we assume a lowest level with only one particle per box. The work on the
lowest level is proportional to 8L−1. On the next higher level the work is reduced by a factor
of eight yielding 8L−2. Since we assumed one particle per box on the lowest level, the total
number of boxes is given by

L−1∑
i=0

8i =
8L − 1

7
=

8N − 1

7
.

The work per particle hereby does not depend on the number of particles N but is constant

lim
N→∞

8N − 1

7N
=

8

7
.

Therefore, the complexity of Pass 1 depends linearly on the number of particles N and needs
about 8

7N · O(p4) operations. Using the rotation-based approach reduces the complexity to
8
7N · O(p3).

The translation of the multipole moments to Taylor-like moments in Pass 2 is done on every
level but only for boxes within the interaction set. The largest sets contains 189 boxes (ws = 1).
Therefore, the complexity is 8

7189N · O(p4) or 8
7189N · O(p3) applying the rotation based

approach.
The third pass has the same complexity as the first pass, since the Taylor-like moments are

shifted along the tree levels in the opposite direction. Therefore it results in a complexity of
8
7N · O(p4) or 8

7N · O(p3) depending on the complexity of the M2L operator.
Pass 4 requires a work proportional to Np2, since for every particle we have to calculate the

interaction from the Taylor-like expansion with O(p2) coefficients.

34



2. FMM IN THREE DIMENSIONS

Figure 2.16.: Comparison of the complexity of three different methods. Direct Interaction, Barnes-Hut
Treecodes and the FMM. The black lines represent steps in the algorithm where particles
or particle collections are transformed into expansions. The gray lines represent the actual
interaction.

Pass 5 has a quadratical complexity, however, the number of neighbor boxes and therefore the
number of particles in the near field is limited (one per box). Hence, the costs of this pass are
27N . The overall complexity for the original approach calculates to

8

7
191Np4 · O(1) + 2Np2 · O(1) + 27N · O(1)

and for the rotation-based approach calculates to

8

7
191Np3 · O(1) + 2Np2 · O(1) + 27N · O(1) .

A comparison of the asymptotical complexity of the FMM and the related Barnes-Hut algorithm
as well as the direct summation is depicted in figure 2.16.

2.6. Implementation Details

2.6.1. Fractional Tree Depth

For homogeneously distributed particle systems the FMM algorithm has to add a new level to the
tree, if the number of particles is increased by a factor of 8 to retain the linear scaling. For fewer
additional particles the tree is not changed resulting in a locally quadratical behavior as shown
in figure 2.18b. This effect can be reduced by introducing fractional levels [36]. Therewith it
is possible to generate an arbitrary number of lowest level boxes which allows a better balance
between the near and far field computations. Therefore, the simulation box is scaled (screwed
towards the center) to generate the desired number of boxes. This scaling is shown in figure
2.17. For flat trees with few levels the number of fractional levels is limited. For deep trees
however, the number of possible fractional levels increases and a useful balance can be obtained
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(a) df = 3.000 (b) df = 2.585 (c) df = 2.263 (d) df = 2.000

Figure 2.17.: (a) The fractional tree depth df is identical to the tree depth d = 3.000. (b) The fractional
tree depth df = 2.585 is smaller than the tree depth d = 3.000. The fractional tree depth in
(c) does not coincide with a subset of boxes. Therefore, it creates the same amount of empty
boxes as (b). However, the workload may be different since the particles occupy different
boxes. (d) The fractional tree depth df = 2.000 represents a tree depth of d = 2.000. The
gray boxes do not hold particles and therefore can be pruned from the calculation.

more easily as shown in figure 2.18a. To calculate the fractional depth df or fractional level Lf ,
we use

df = log2Nb and Lf = df + 1 = log2Nb + 1

with Nb being the number of non-empty (fractional) boxes in one dimension. The fractional
depth df can be obtained by minimizing the workload of both the near field and far field and
is described in section 2.6.3. It strongly depends on the user-requested error bound, the total
number of particles and the particle distribution of the system.

2.6.2. Data Structures

FMM Oct-tree

To store and manage the different boxes on different levels we use an oct-tree [37] as data
structure. It allows to hierarchically decompose three-dimensional data. The root node of the
tree contains all particles in the simulation box. Every recursively derived internal node (child
box) contains one octant of the parent node (parent box). The oct-tree is an extension to binary
trees in one dimension and quadtrees [38] in two dimensions. Thus, the spatial decomposition
of the simulation box is realized in a uniform manner.

Pruning Empty Boxes

To store a full FMM tree would be disadvantageous for nonuniform particle distributions. Not
only a huge amount of memory (8L boxes per level L) is needed to store the full tree FMMtree,
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(a) Available fractional levels Lf for every level (b) O(N) scaling with locally quadratical behavior

Figure 2.18.: The left figure (a) shows the density distribution of available intermediate fractional levels
for levels 2 to 10. The number of available fractional levels doubles with each additional
tree level. The right figure (b) shows the upper and lower bound of the scaling without
fractional levels. Applying the fractional level scheme yields a scaling curve near the lower
bound. The gray area represents the range of particles in which the direct summation is
faster than the FMM. The black dot represents the crossover point for the FMM with the
direct summation for a certain precision ε. The black squares represent a certain number of
particles for which an additional tree level is introduced.

but also a fragmented memory layout due to empty boxes will arise. The memory layout for
such an implementation looks like:

integer :: treedim = 2**Lmax
integer, dimension(treedim,treedim,treedim) :: FMMtree

boxnr = FMMtree(x,y,z)

In order to provide a memory efficient FMM scheme, boxes containing no particles are pruned
from the data structures. This also ensures small memory fragmentation. Additionally the mem-
ory consumption of all data structures not directly depending on the number of particles N
should be limited in order to have a memory complexity of order N :

integer :: N !number of particles
integer, dimension(N) :: FMMsmalltree

boxnb = FMMsmalltree(addr)

The box vector FMMsmalltree only holds non-empty boxes. To obtain the box number of a
certain particle, the list FMMsmalltree is accessed with the specific particle number. To generate
this one-dimensional list for all particles we use a space-filling curve scheme to reduce the three
dimensional space of box coordinates to a one-dimensional.
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(a) Z-Ordering (b) Integer box numbers (c) Binary box numbers

Figure 2.19.: (a) Ordering of boxes in the FMM tree according to a Morton (Z)-curve. Figure (b) shows
the integer representation of the box numbers resulting from a Z-ordering. Figure (c) shows
the binary representation of the box numbers.

Space-Filling Indexing

A space-filling curve (SFC) [39] allows us to continuously connect all sub-boxes on a certain
level of the FMM tree. A lot of different curves are proposed to fill space. The most com-
monly used curves are the Hilbert-Peano-, Gray- and Morton-SFC. Depending on the required
properties, some curves have advantages (locality, jumps) compared to others. A discussion of
important properties can be found in [40]. Since we have two FMM operators moving multipole
information between levels, it would be advisable to have a SFC scheme allowing to quickly
generate parent or child box numbers. Therefore, a Morton-ordered, i.e. Z-ordered SFC was
chosen to map the 3D box structure depicted in figure 2.19. The access pattern for the tree
therefore has to change. First, we have to calculate a SFC index xyz from the coordinates via a
separate function calxyz. Afterwards, the SFC address can be used to access the tree-structure
FMMsmalltree:
integer :: N !number of particles
integer, dimension(N) :: FMMsmalltree

xyz = calxyz(x,y,z)
if(xyz /= nonempty) then
boxnb = FMMsmalltree(xyz)

end if

Accessing Tree Nodes

The advantage of the Morton-ordered SFC scheme for FMM-based algorithms comes from a
straightforward box generation scheme. Let us assume we want to obtain the box numbers of
a parent box with binary representation 110101010. The 8 children can be generated by bit-
shifting the binary representation of the parent box by three digits to the left. The last three
digits are used to name the child boxes starting from 000 up to 111. Therefore, the box num-
bers of the childboxes yield 110101010000 up to 110101010111. Starting from the root-node
(simulation box) containing all particles the FMM tree is set up. Therefore, the full FMM tree
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Dimension
Mixing SFC Index

x y z

(x,y,z) x3 x2 x1 y3 y2 y1 z3 z2 z1 x3 y3 z3 x2 y2 z2 x1 y1 z1 xyz

(0,2,2) 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 24
(3,0,7) 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 111
(7,2,0) 1 1 1 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 308

Table 2.2.: Morton space-filling curve and bit mixing in three dimensions. Each box is represented by its
coordinates (x, y, z). This three dimensional representation can be transformed to a Morton
ordered one-dimensional box index (SFC index).

is stored implicitly by only storing the lowest level Lmax. All parent boxes can be generated by
performing a right-shift and thereby dropping the last 3 digits in the binary representation of the
box number. The function calxyz has to perform an interweave operation to generate the SFC
box number. This scheme is depicted in table 2.2.

Multipole/Taylor-Coefficients Symmetry

A large amount of memory is used by the multipole and Taylor-like expansions. The coeffi-
cients are stored separately in double precision variables for real and imaginary part, each part
consuming 8 bytes of memory (one “memory element”). These moments have to be stored for
every non-empty box up to order p, they consume (p + 1)2 “memory elements” per box (see
figure 2.20a). Since the associated Legendre polynomials for negative m are defined by

Pl,−m(x) = (−1)m
(l −m)!

(l +m)!
Plm(x) .

We can use this definition to generate the scaled associated Legendre polynomials P̃lm and ˜̃Plm

for negative m with

P̃l,−m = (−1)mP̃lm

˜̃Pl,−m = (−1)m ˜̃Plm .

Therefore, the redundancy in the multipole and Taylor-like moments can be reduced using

Ol,−m = (−1)mO∗
lm

Ml,−m = (−1)mM∗
lm .

The reduced set of coefficients only uses 1
2(p + 1)(p + 2) “memory elements” per non-empty

box, which can be seen in figure 2.20 and table 2.3.
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(a) Full Set (b) Reduced Set (c) Memory Order

Figure 2.20.: The full set of multipole moments (a) can be stored more efficiently without redundant
information (b). To allow linear memory access the multipoles are stored as a 1D-list (c)
not an 3D-array.

Memory Footprint

It is important for an O(N) algorithm to limit the use of memory to O(N). Therefore, all data
types, especially those containing tree information data need to be limited. However, the access
of neighboring boxes and interaction sets have to be performed frequently. As a compromise
the full tree (regardless of empty boxes) is stored up to a certain level Lm. For trees with
more levels Lmax > Lm a different scheme is used. On today’s general purpose computers we
found a reasonable limitation for the full tree at 128MB or 1GB. Especially inhomogeneous
particle distributions benefit from this modified memory access scheme. An overview of the
most memory consuming data structures are given in table 2.3.

2.6.3. Minimization of Near Field and Far Field Computation Time

Embedded in the error control scheme the optimal tree depth L is determined prior to the FMM
calculation. For a certain order of poles p and a certain level L, the workload for the far field
and near field can be computed. Since the workload for the near field computation decreases
with each additional level (see figure 2.21a) and the workload for the far field increases with
each additional level (see figure 2.21b), a crossover point will establish an optimal tree level
Lopt with minimal computation time (see figure 2.21c). The following scenario for the near field
may occur with an increasing number of levels. All associated labels in the list can be found in
figure 2.21a.

1 The workload decreases from level L to level L+ 1.
2 The workload remains constant from level L to level L+ 1.
3 The workload becomes zero from level L to level L + 1 and stays zero for all additional

levels.
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Type Scope Data Type Number of Elements Element Size

input coordinates double 3N 8 bytes
input charges/masses double N 8 bytes

output Cartesian forces double 3N 8 bytes
output Coulomb potential double N 8 bytes

aux. box vector integer N 8 bytes
aux. box scratch vector integer N 8 bytes
aux. box sort vector integer N 8 bytes
aux. FMM tree level* integer 8L 8 bytes
aux. multipole expansion double 1

2(p+ 1)(p+ 2)b 16 bytes
aux. Taylor expansion double 1

2(p+ 1)(p+ 2)b 16 bytes
* The full tree level is only stored for trees up to level l = 8. Afterwards a different access scheme is used to

avoid non-linear scaling of the memory.

Table 2.3.: Memory requirements for input, output and auxiliary data necessary for the FMM. The vari-
able b represents the number of all non-empty boxes on all tree levels and therefore depends
on the particle distribution. The expansions are stored in two real arrays instead of an single
array of type complex.

For the far field contributions a similar observation can be determined. All associated labels in
the list can be found in figure 2.21b.

1 The workload is zero from level L to level L+ 1 depending on the ws.
2 The workload increases from level L to level L+ 1.
3 The workload remains constant after a certain level L.

2.6.4. Limitations of the Algorithm

In contrast to the classical direct summation scheme the runtime of the FMM depends on the
positions of the particles. We identify the limitations with respect to the depth of the tree and
the order of poles.

FMM Tree Depth Dependencies

The linear complexity is only possible for systems with homogeneously distributed particles.
The workload W has to be distributed according to a geometric series

W =

∞∑
n=0

1

an
(a > 1, n ∈ N0)
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(a) Near field (b) Far field (c) Both Contributions

Figure 2.21.: The minimal workload (optimal FMM treedepth L) depends on the computational load in
the (a) near field and (b) far field for a certain order of poles p. The total workload is
represented by the black line in figure (c).

in order to be O(N). For a homogeneously distributed particle system the workload on the
lowest level Lmax is set to one. The next level Lmax − 1 has a workload of 1/8, the next level
Lmax − 2 has a workload of 1/64. The workload can be represented as a geometric series
with a = 8 for an ideal homogeneously distributed particle system in three dimensions. For
purely homogeneous 2D problems the workload W scales accordingly with a = 4, purely
homogeneous 1D systems will generate a workload W corresponding to a = 2.

For heavily clustered systems the complexity may increase to O(N2). An example can be
constructed as shown in figure 2.22, in which the tree has to add a new level with each new clus-
ter of size k. Depending on the implementation k can also be reduced to 1. The workload, i.e.
number of occupied boxes does not decrease by a constant factor, but by a term k · i. Therefore,
the tree depth depends linearly on the number of particles, creating a O(N2) complexity

W = k

N/k∑
i=0

i =
1

2
k
N

k

(
N

k
+ 1

)
∼ O(N2) .

For arbitrary particle systems there is no asymptotical boundary. Arbitrary dense distributions
scale as O(N2). However, such systems do not occur in standard MD simulations. It should
be noted that other fast summation schemes (Barnes-Hut, Multigrid) suffer the same problem,
since they are all based on a spatial domain decomposition. Schemes have been proposed [41]
to overcome this problem. However, the additional overhead due to the tree management makes
these schemes not favourable in most cases. A general discussion on the overall complexity of
the FMM can be found in [42] and in [43]. It is stated that for machine precision calculations
the complexity of the FMM is not O(N) but O(N log3N) for a rotation-based approach and
a homogeneous particle distribution. However, most simulations are carried out with a much
lower precision.

A similar argument can be used to state that a direct summation with supposed O(N2) com-
plexity has an even worse complexity, since the precision decreases with increasing number of
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Pass Pass–Box Dependencies Runtime Percentage Balanced

Setup* tree, level-wise ↓↔ 4.12s 11.90% —
Pass 1 tree (upwards) ↑ 1.87s 5.40% —
Pass 2 level-wise ↔ 13.32s 38.46% •
Pass 3 tree (downwards) ↓ 0.72s 2.08% —
Pass 4 lowest level � 2.60s 7.51% —
Pass 5 neighbors �� 12.00s 34.65% •
Total 34.63s 100.00%

* Includes full error control to define ws, dopt and popt and the setup of the tree data structures.

Table 2.4.: Approximate percentage of computation time for every pass. The corresponding test system
consists of 87 homogenously distributed particles. The error bound for the computation was
set to ΔErel = 10−6. The runtime was optimized for pass 2 and pass 5. The symbols ↑ and
↓ depict operations up and down the FMM tree, the symbol ↔ depicts operations in one level
of the tree.

particles due to the number of executed operations. The numerical error [44] induced by the
summation of N2 pairs is statistically proportional to

√
N2ε = Nε. For double precision cal-

culations with machine precision ε = 2−52 and e.g. one billion particles, the result of the direct
computation would yield only 7 significant digits instead of 16; 9 digits would be lost merely
due to the summation. The dependency of the computation with respect to the number of parti-
cles therefore is not a special FMM problem, but inherent in the numerical summation of large
number of terms. Compared to a direct summation the FMM will only lose

√
N digits, since the

scheme has a complexity of O(N).

Limited Order of Poles

Currently this implementation allows to simulate systems which can be represented with multi-
pole moments up to 50. Numerical studies showed that for large homogeneous particle systems
the order of poles did not exceed 50 poles not even for a requested relative energy precision of
ΔE = 10−15. If the necessity arises the implementation can be extended to a higher order of
poles.

Limited Number of Levels

The FMM tree is limited by the available integer number range on a certain machine. Most
popular architectures nowadays provide 64-bit integers. Since we need 3 bits for each level it
is possible to address 21 levels. Theoretically it is possible to store ≈ 1020 homogeneously
distributed particles. However, the available memory does not allow such system sizes yet. For
clustered distributions the 21-level limit can be reached much earlier, since an inhomogeneity
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(a) Worst case particle distribution (b) Corresponding binary tree

Figure 2.22.: The linear scaling of the FMM can only be achieved, if the tree depth grows logN with re-
spect to the number of particles N . However, a worst case particle distribution (a) increases
the complexity of the FMM to O(N2). For each subset of k particles the FMM will set up
an additional level in the tree (b).

demands deeper FMM trees. We easily reached an optimal FMM tree level of about 15 with
only 100.000 heavily clustered particles.

Error Control for ws > 1

The FMM allows to set the well-separateness criterion ws to arbitrary values (ws ≥ 1). How-
ever, the quadratical complexity overhead from the near field interactions makes this choice
unfavourable. Numerical tests showed that for any tested particle system (homogeneous, clus-
tered) a value of ws = 2 never achieved a better performance compared to the minimal value
ws = 1 even for high precision calculations. Therefore, the error control scheme is limited
to ws = 1, because the theoretical crossover of the order of poles and a larger near field is
presumed to occur beyond 50 poles.

2.7. Error Analysis

The control of the approximation errors is a crucial part for any fast summation algorithm.
Without error control the computation may lead to an unnecessary computational overhead if
the error bound is rough or even worse to inaccurate results if no error bound exists at all. The
well known cut-off scheme is afflicted with such issues. A small cut-off will result in a fast
computation, but the results may be defective. A large cut-off might be too precise and will lead
to a slow computation. Such an algorithm is not reliable for most applications and needs to be
tuned for the intended purpose by the user himself. An ideal fast summation scheme would offer
tight error bounds together with a minimal computation time for any given precision.

For the FMM there exists an a priori error bound. However, that error bound assumes a worst
case scenario. This leads to a slow computation, since the worst case does not reflect the real
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particle distribution and consistently overestimates the order of poles in the multipole expansion.
In addition to the occurring truncation error, the error from the finite B translation has to be taken
into account. Hence, the overestimation will increase even further.

In this section we want to derive an improved error bound with a smaller upper limit compared
to the worst case scheme. Unlike the original approach this scheme will include all FMM related
approximation errors and does depend on the particle distribution.

2.7.1. Worst Case Error Bound

To derive a valid error bound, we first have to revisit the three FMM parameters controlling the
error. First, multipole and Taylor-like expansions are truncated at p poles. Thus, for a given p the
FMM will impose two sources of error. The first source arises from the finite order of poles p we
use in the expansions. The second source results from the use of operator B. Both errors have
to be considered in order to establish a thorough error control scheme. Despite the truncated
expansions ωlm the FMM parameter ws will affect the precision of the computation as well.
The convergence of the expansion will improve rapidly for higher values of ws. Moreover, the
number of levels Lmax in the FMM tree influences the precision, because it defines the minimum
size dmin of the smallest possible box in the tree. Besides the FMM parameters, properties of
the particle system such as charge and particle distribution will influence the accuracy as well.

Truncation Error

First, let us consider the error for a given set (p, Lmax, ws) neglecting the operator errors [26].
The approximated potential ΦFMM introduces an error which depends on the positions of the
particles inside their respective boxes. An upper bound can be established by

|ΦFMM(r)− Φexact(r)| = |q| ·
∣∣∣∣∣∣

∞∑
l=p+1

Pl(cos γ)
al

rl+1

∣∣∣∣∣∣
≤ |q|

r − a

(a
r

)p+1
.

For a distribution-independent error bound, we have to assume the worst case distribution for
the particles to obtain the largest error. Therefore, the ratio a/r has to be maximized. We must
consider a position in box A which is located in one of the corners, with a =

√
3 · dmin. The

position of the second particle in box B will be at the face of the box closest to box A with
r = (2ws+ 1)dmin shown in figure 2.23. Therefore, the error in the potential Φ(r) for arbitrary
ws is bounded by

|ΦFMM(r)− Φexact(r)| ≤
∑N

i=1 |qi|
(2ws+ 1−√

3)dmin

( √
3

2ws+ 1

)p+1

.
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(a) ws = 1, a =
√
3 · dmin, r = 3 · dmin (b) ws = 2, a =

√
3 · dmin, r = 5 · dmin

Figure 2.23.: To obtain an error bound for the truncation of the multipole expansion, we locate two par-
ticles at the least favourable positions inside box A and B. The chosen positions maximize
the ratio a/r. The error bound depends on the choice of the separation criterion ws.

Translation Error

Additionally, the error connected with operator B has to be taken into account. By contrast, the
operators A and C are exact up to the order of poles p and therefore do not need to be considered
in an error estimation scheme. However, the truncation of the infinite sum of operator B will
not be exact for l ≤ p. Unfortunately, it is difficult to obtain a bound directly. With the help of
operator A, we are able to combine the bipolar expansion [45, 46] into a single expansion Olm.
Now we can use the same approach as in the last section. The bipolar expansion reduces to

1

|r− (a+ b)| =
∞∑
l=0

l∑
m=−l

l∑
j=0

j∑
k=−j

Olm(a)Mlm(r)Ol−j,m−k(b)

=
∞∑
l=0

l∑
m=−l

Olm(a+ b)Mlm(r) .

The new equation has a combined multipole at a + b and a B operator with distance r. The
maximum value of |a+ b| is two times the worst case for two separated boxes , i.e. 2

√
3 · dmin,

and the minimum value for the box–box distance r is 2(ws + 1) · dmin (see figure 2.24). Now
the error bound can be specified by

|ΦFMM(r)− Φexact(r)| ≤
∑N

i=1 |qi|
(ws+ 1−√

3)2dmin

( √
3

ws+ 1

)p+1

.

Different worst case error bounds have been proposed [47] to reduce the order of poles. How-
ever, the worst case does not reflect the true particle distribution for the majority of particle
systems and is therefore not practical. The overestimation due to the included translation error
will further increase the bound. Some authors proposed schemes where the worst case is re-
placed by an empirical bound [48]. Others applied Chebyshev economizations [49] in order to
reduce the order of poles p.
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(a) ws = 1, a+b = 2
√
3·dmin, r = 4·dmin (b) ws = 2, a+ b = 2

√
3 · dmin, r = 6 · dmin

Figure 2.24.: In addition the truncation error, the use of operator B induces errors. To obtain an upper
bound we apply operator A to the bipolar expansion. Now the translation error can be
obtained similarly to the truncation error. Again, the error bound depends on the separation
criterion.

2.7.2. Improved Workflow / Error Bound

We established a new error scheme in order to introduce an improved a priori error bound with
respect to the particle distribution. We do not take the error in the potential Φ as a measure,
but the error in the total energy E of the system, since most applications require energy error
bounds. However, the scheme can be derived for the potential or the forces as well. Let us start
by specifying the modified workflow including the new error scheme:

1. Apply stage I of error control scheme. Utilize user-requested energy error ΔE to define
the FMM parameter and set up FMM tree
− Separation criterion ws
− Tree depth d
− Intermediate order of poles p̄min assuming a homogeneous particle distribution in-

side each box on each level
2. Pass 5 � Compute the near field contributions of the system

− near field potential ΦNF(x, y, z)
− near field forces FNF(x, y, z)
− near field energy ENF

3. Apply stage II of error control scheme to refine order of poles p
4. Pass 1 � Expand and translate multipoles ωlm up the tree
5. Pass 2 � Transform multipole moments ωlm into Taylor-like moments μlm

6. Pass 3 � Translate Taylor-like moments μlm down the tree
7. Pass 4 � Compute the far field contributions of the system

47



2.7. ERROR ANALYSIS

− far field potential ΦFF(x, y, z)
− far field forces FFF(x, y, z)
− far field energy EFF

A separate error control scheme now precedes the original FMM scheme to obtain a set of
optimal FMM parameters. The error scheme itself consists of two stages. After obtaining the
set of parameters necessary to run the computation, the original FMM scheme continues in a
slightly changed order. To obtain a precise near field energy in stage II, pass 5 is moved to
the beginning of the computation. This rearrangement of pass 5 does not influence the far field
computations in pass 1-4, but allows to use the exact near field energy to determine the final
order of poles p in stage II. We will now derive both stages of the error estimation scheme.

2.7.3. Stage I of the Error Estimation Scheme

In the first stage of the error control scheme we assume a homogeneous particle distribution
inside each box. In the second stage the real particle positions will be taken into account. This
section briefly summarizes the basic ideas of the error control. A full derivation can be found in
a recent publication by Dachsel [50].

Box-Box Energy

We start with the formula for the far field energy of two boxes with distance R. Box A con-
tains NA particles, box B contains NB particles. The multipole expansions for both boxes are
described as ωlm(a1) for box A and ωjk(a2) for box B. The total energy reads

E =
∞∑
l=0

l∑
m=−l

∞∑
j=0

j∑
k=−j

(−1)jωlm(a1)
1

Rj+l+1
˜̃Pj+l,k+m(cos θ)ei(k+m)φωjk(a2) . (2.11)

The multipole expansion for box A and B is described by

ωlm =
N∑
j=1

qja
l
jP̃lm(cosαj)e

−imβj .

Averaged Multipole Moments

We assume the simulation box is extended from [0, 1] in each spatial direction. If the coordinates
of the considered system are not inside the cube with dimension [0, 1]× [0, 1]× [0, 1], we scale
the coordinates inside the [0, 1]-box and rescale after the computation accordingly. To simplify
(2.11), we bound the phase factors of the multipole expansions and the B operator to their upper
limit

|e−imβ | = 1, |ei(k+m)φ| = 1 .
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Figure 2.25.: Equation (2.11) is only valid, if we use the corresponding coordinate systems for the mul-
tipole expansions ωlm(a1) and ωlm(a2). The equation demands expansion 1 to be in the
coordinate system O1 and expansion 2 in coordinate system O2. Interchanging the coordi-
nate systems would yield an additional factor (−1)j+l in the energy.

We now define averaged multipole moments ω̄lm for a box with coordinate range [−1, 1] as
follows

ω̄lm =

(
N∑
i=1

|qi|
) ∫ 1

−1

∫ 1

−1

∫ 1

−1
al
∣∣∣P̃lm(cosα)

∣∣∣ dx dy dz∫ 1

−1

∫ 1

−1

∫ 1

−1
dx dy dz

.

The last equation can be simplified due to symmetry considerations

ω̄lm =

(
N∑
i=1

|qi|
) 1∫

0

1∫
0

1∫
0

al
∣∣∣P̃lm(cosα)

∣∣∣ dx dy dz .

A chargeless version Ōlm of the average multipole ω̄lm can be defined as

Ōlm =

1∫
0

1∫
0

1∫
0

al
∣∣∣P̃lm(cosα)

∣∣∣ dx dy dz

and links to the charged version with

ω̄lm =

(
N∑
i=1

|qi|
)
Ōlm .

The chargeless averaged multipoles Ōlm are calculated numerically up to order p = 250 and are
stored as constants for subsequent use. Additionally to the averaged multipoles we introduce a
corresponding correction term

(j + l)!

j! l! 2j+l+1
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to compensate the overestimation of poles due to taking the absolute value of P̃lm in the inte-
gral. The compensation is used for all terms in the expansion except the monopole-monopole
terms. For monopole interactions the associated Legendre polynomial P00(cosα) in the multi-
pole moment ω00 as well as the associated Legendre polynomial P00(cos θ) for operator B are
by definition

P00(cos θ) = P00(cosα) = 1

and therefore no correction is required. We will show later on that this additional term still
maintains the error bound.

Define a Level-Independent B Operator

We now return to the expression of the box-box energy in (2.11). As depicted in figure 2.24,
the distance R represents the distance of the box centers from A to B. However, the distance
R between two arbitrary boxes in an interaction set depends on the actual FMM level L. A
level-independent distance formulation with dmin = 1 yields

R̂ = 2LR .

Now the distance R̂ only depends on the separation criterion ws. The range of values for R̂ is
given by

2(ws+ 1) ≤ R̂ ≤ 2(2ws+ 1)
√
3

in case separated boxes exist on the actual level. The averaged chargeless version of the multi-
pole expansions allows us to derive a corresponding box-box energy as follows

Ē =
1

R̂
+

∞∑
l=0

l∑
m=−l

∞∑
j=0

j∑
k=−j

j+l>0

Ōlm
(j + l)!

j! l! 2j+l+1

(
1

R̂

)j+l+1∣∣Pj+l,|m+k|(cos θ)
∣∣ Ōjk .

Since we do not want to include the correction term for the monopole we split the summation
into a monopole term 1/R̂ and the remaining terms with j + l > 0.

Averaging Over a Full Far Field Interaction Set

The derived energy formula still depends on the actual box-box distance. It can be further
simplified by averaging over all box-box interactions in the interaction set for a given box. The
number of boxes n in the interaction list depends on the separation criterion ws as follows

np = [2(2ws+ 1)]3︸ ︷︷ ︸
Full far field

− (2ws+ 1)3︸ ︷︷ ︸
Near field

= 7(2ws+ 1)3︸ ︷︷ ︸
Interaction set

.
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(a) Child Box 1 (b) Child Box 2 (c) Child Box 3 (d) Child Box 4

Figure 2.26.: To obtain a fully symmetric interaction set, we average over all interaction sets of all 8
children of one parent box.

To avoid any effects from the asymmetric interaction set shown in figure 2.26, we also include all
interactions from all 8 boxes in the same parent box. Therefore, the number of total interactions
np increases by a factor of eight to

np = 56(2ws+ 1)3 .

The averaged chargeless energy ¯̄E now reads

¯̄E =
1

np

np∑
i=1

Ē .

We change the order of summation and obtain

¯̄E =
1

np

np∑
i=1

1

R̂
+

1

np

∞∑
l=0

∞∑
j=0

l∑
m=−l

j∑
k=−j

np∑
i=1

Ōlm
(j + l)!

j! l! 2j+l+1

(
1

R̂

)j+l+1∣∣Pj+l,|m+k|(cos θ)
∣∣ Ōjk

with j + l > 0.

Definition of Energy and Energy Error

Next, we introduce the element g00 for the first term

g00 =
1

np

np∑
i=1

1

R̂
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and elements gjl with j + l > 0 for the inner sums in the second term as

gjl =
l∑

m=−l

j∑
k=−j

np∑
i=1

Ōlm
(j + l)!

j! l! 2j+l+1

(
1

R̂

)j+l+1∣∣Pj+l,|m+k|(cos θ)
∣∣ Ōjk .

The energy ¯̄E is then found to be

¯̄E = g00 +

∞∑
l=0

∞∑
j=0

gjl with j + l > 0 .

However, we need to introduce a truncation to proceed further, since an FMM implementation
demands a finite order of poles p. Therefore, we split the infinite sums in the last equation, also
displayed in figure 2.27, as follows

¯̄E = g00 +
∞∑
l=0

∞∑
j=0

gjl

= g00 +

p∑
l=0

p∑
j=0

gjl︸ ︷︷ ︸
FMM Energy

+

p∑
l=0

∞∑
j=p+1

gjl︸ ︷︷ ︸
FMM Error

+
∞∑

l=p+1

p∑
j=0

gjl︸ ︷︷ ︸
FMM Error

+
∞∑

l=p+1

∞∑
j=p+1

gjl︸ ︷︷ ︸
FMM Error

(2.12)

= ¯̄E(p) + Δ ¯̄EA1(p) + Δ ¯̄EA2(p) + Δ ¯̄EB(p)︸ ︷︷ ︸
Δ ¯̄E(p)

with j + l > 0 and obtain a suitable representation for our implementation. The first sum now
represents the approximated FMM energy ¯̄E(p) up to p poles. The remaining sums represent
the error Δ ¯̄E(p) and can be combined to

Δ ¯̄E(p) =

p∑
l=0

∞∑
j=p+1

gjl +
∞∑

l=p+1

p∑
j=0

gjl +
∞∑

l=p+1

∞∑
j=p+1

gjl

=

p∑
l=0

∞∑
j=p+1

gjl +
∞∑

l=p+1

∞∑
j=0

gjl .

As described in section 2.6.4 for homogeneous particle distributions 50 poles are sufficient
to obtain accuracies up to machine precision (double precision). Therefore, we can precompute
and store the vector Δ ¯̄E(p) for all orders of poles in the range p ∈ {0, . . . , 50}.

Usage of the First Stage of the Error Scheme

In a simulation the error scheme could be used as follows. Starting from the root node (simu-
lation box), we repeatedly divide the box into its eight childboxes until we reach level L = 3.
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(a) E(p) + ΔE(p) (b) E(p) (c) ΔEA1(p) + ΔEA2(p) (d) ΔEB(p)

Figure 2.27.: The terms in (2.12) correspond to a certain order of summation. All subfigures are labeled
accordingly.

Now, there exist separated boxes which can be treated in the far field. We compute the total
charge QA of a box A and the total charge QB of a box B in the interaction list of A with

QA =

NA∑
i=1

|qi| , QB =

NB∑
i=1

|qi| .

For box A(L) on a certain level L and its interaction set of boxes B(A), we want to calculate
an order of poles sufficient to meet the user-requested error bound ΔEreq. Therefore, we have
to consider all interactions for box A and its interaction set of boxes B(A) via

ΔEbb ≥ Δ ¯̄E(p)QA

∑
B(A)

QB(A)

to obtain a certain box-box error ΔEbb. For systems with more than two non-empty boxes we
have to include all remaining boxes A(L) with their interaction sets on a certain level L by

ΔEL ≥ 1

2
Δ ¯̄E(p)

∑
A(L)

QA

∑
B(A)

QB(A) .

Since we included interactions from box A with B and again box B with A, the right-hand side
has to be divided by two to compensate the duplicate contributions. Finally by including all
interactions from all levels starting from the lowest level Lmin = �log2(ws+ 1)� + 2 up to the
current level Lcur and applying the level-dependent scaling factor 2L−1, we obtain an inequality
for the absolute error of the energy

ΔEreq ≥ 1

2
Δ ¯̄E(p)

Lcur∑
Lmin

2L−1
∑
A(L)

QA

∑
B(A)

QB(A) .

The order of poles p sufficient to satisfy the requested error is obtained by increasing p from
zero until the condition is met. If the estimated computation time of the FMM is not optimal
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at the current level Lcur, the scheme will proceed and add a new level to the FMM tree. The
procedure will continue until the optimal tree level Lopt is found or the maximum tree level
Lmax is reached.

2.7.4. Stage II of the Error Estimation Scheme

For homogeneously distributed particles, the first stage of the error control scheme is sufficient.
However, realistic simulations often do not meet that demand of homogeneity. Therefore, an
additional stage is required to guarantee the requested error bound ΔEreq also for inhomoge-
neous/clustered particle distributions.

Preliminary Steps

Similarly to the first stage, errors arising from box-box interactions are used to obtain an optimal
error bound. Additionally, stage II takes into account the real particle distribution in a box with
the following minor constraints. The real particle distribution is reduced to a particle distribution
inside a fine grid with 333 grid points in box A and a particle distribution on the connecting lines
from the center to the corners for box B. Let us recall the last steps we have performed to obtain
the FMM parameter set. The following status applies:

Now we proceed with the second stage of the error scheme. Since the error of a single particle
strongly depends on its position inside a box, we need to fix a certain tree depth before the second
stage starts.

Simplification of the Interaction Set

First, we have to reduce the number of possible box-box distances to a set of worst case box–box
distances. We only incorporate the largest of the three distances dx, dy and dz representing the
distance in one dimension from the center of box A to the center of box B by

dx =
∣∣xAc − xBc

∣∣ , dy =
∣∣yAc − yBc

∣∣ , dz =
∣∣zAc − zBc

∣∣
and from this

R̂ := d = max(dx, dy, dz) ≤
√

d2x + d2y + d2z .

Again we implicitly define a level-independent box-box distance R̂ with R̂ = 2L−1R. De-
pending on the chosen separation criterion ws, d can only take (ws + 1) different values. The
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(a) Minimum Box-Box Distance R̂1 = 4 (b) Maximum Box-Box Distance R̂2 = 6

Figure 2.28.: For a fixed separation criterion ws only two possible box-box distances exist for one spatial
dimension.

distances R̂s and the maximum distance R̂max are defined by

R̂s = 2(ws+ s), with s ∈ {1, . . . , ws+ 1}
R̂max = 2(2ws+ 1) .

For the considered case with ws = 1, only two possible distances exist

R̂1 = 4 , R̂2 = R̂max = 6 .

Positions of the Two Boxes

Without loss of generality, we assume a scenario which allows us to use the rotation-based
FMM operators with O(p3) complexity. Therefore, the two interacting boxes are assumed to be
located along the z-axis with minimal distance R := R̂1 from box center A to box center B. The
energy of such a system is obtained by

E =
∞∑
l=0

∞∑
j=0

min(j,l)∑
m=−min(j,l)

(±1)j+l(−1)j+mωlm(a1)
(j + l)!

Rj+l+1
ω∗
jm(a2) . (2.13)

Depending on the direction of interaction (A → B or B → A), the factor (−1)j+l has to be
used or dropped. Again we define a chargeless version of a multipole expansion Olm, but since
we want do take into account the real particle positions, we do not average, so that

Olm(a) = alP̃lm(cosα)e−imβ .

Now we can replace the multipole moments in (2.13) with the chargeless version of box A with
Olm(a1) and box B with Ojm(a2) and rearrange the B operator. We obtain two energy formulas,
depending on the relative position of the two boxes A and B depicted in figure 2.29.
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Figure 2.29.: The rotation-based FMM operators limit the possible box-box positions to the z-axis. Just
like stage I the direction of the interaction matters. Interchanging the coordinate systems
(or expansions) will result in an additional factor (−1)j+l in the energy (2.13).

The energies read

EA-B =
1

R

∞∑
l=0

∞∑
j=0

min(j,l)∑
m=−min(j,l)

(−1)j+mOlm(a1)
(j + l)!

Rj+l
O∗

jm(a2)

EB-A =
1

R

∞∑
l=0

∞∑
j=0

min(j,l)∑
m=−min(j,l)

(−1)l+mOlm(a2)
(j + l)!

Rj+l
O∗

jm(a1) .

We label the inner sum of the first equation as

Ŝlj(a1,a2,R) :=

min(j,l)∑
m=−min(j,l)

(−1)j+mOlm(a1)
(j + l)!

Rj+l
O∗

jm(a2)

and due to symmetry the inner sum of the second equation

(−1)j+lŜlj(a2,a1,R) =

min(j,l)∑
m=−min(j,l)

(−1)j+mOlm(a2)
(j + l)!

Rj+l
O∗

jm(a1) .

Since we do not want to store any information depending on the relative position of a1 and a2,
we introduce a general position-independent Slj as

Slj(a1,a2,R) = (±1)j+lŜlj(a1,a2,R) .

Following the scheme from the first stage, we now split up the outer infinite sums as follows

∞∑
l=0

∞∑
j=0

. . . =

p∑
l=0

p∑
j=0

. . .+

p∑
l=0

∞∑
j=p+1

. . .+
∞∑

l=p+1

p∑
j=0

. . .+
∞∑

l=p+1

∞∑
j=p+1

. . . .
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The indices of the term
∞∑

l=p+1

p∑
j=0

Slj(a1,a2,R)

can be swapped and the summation order is changed by applying the symmetry relation Ol,−m =
(−1)mO∗

lm , yielding
p∑

l=0

∞∑
j=p+1

Sjl(a1,a2,R) =

p∑
l=0

∞∑
j=p+1

(−1)j+lSlj(a2,a1,R) .

Hence, some error terms from the interaction of box A with box B are identical to error terms
from the interaction from box B to box A. The energy for the interaction of box A with box B
becomes

ΔEA-B =
1

R

p∑
l=0

∞∑
j=p+1

[
Slj(a1,a2,R) + (−1)j+lSlj(a2,a1,R)

]
+

1

R

∞∑
l=p+1

∞∑
j=p+1

Slj(a1,a2,R) .

The energy for the interaction of box B with box A yields

ΔEB-A =
1

R

p∑
l=0

∞∑
j=p+1

[
(−1)j+lSlj(a2,a1,R) + Slj(a1,a2,R)

]
+

1

R

∞∑
l=p+1

∞∑
j=p+1

(−1)j+lSlj(a2,a1,R) .

By adding the two energies EA-B and EB-A we obtain

ΔE =
1

R

p∑
l=0

∞∑
j=p+1

[
Slj(a1,a2,R) + (−1)j+lSlj(a2,a1,R)

]
+

1

2R

∞∑
l=p+1

∞∑
j=p+1

[
Slj(a1,a2,R) + (−1)j+lSlj(a2,a1,R)

]
.

To simplify the last double sum, we only take terms with j ≥ p+ 1 into account and drop all
terms l > p+ 2 as shown in figure 2.30. The equation yields

ΔE ≈ 1

R

p∑
l=0

∞∑
j=p+1

[
Slj(a1,a2,R) + (−1)j+lSlj(a2,a1,R)

]
+

1

2R

∞∑
j=p+1

[
Sp+1,j(a1,a2,R) + (−1)j+lSp+1,j(a2,a1,R)

]
. (2.14)
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(a) E(p) + ΔE(p) (b) E(p) (c) ΔEl={0,...,p}(p) (d) ΔEl=p+1(p)

Figure 2.30.: Similarly to stage I the infinite sums are split up. However, as shown in (d) only terms
l = p+ 1 are taken into account. All higher terms are neglected.

Now, both sums contain contributions Slj(a2,a1,R) expressed as interactions from box B on
box A. We therefore neglect these terms in the following procedure, but we will account them
in the scheme later on. We just have to guarantee that all box-box interactions occur. Therefore,
we must perform interactions from box A and B and again the interaction from box B to A.

Following a similar scheme as proposed in the first stage of the error control we perform the
summation of (2.14) stepwise with respect to l. For all values l < p + 1 only the first term of
(2.14) needs to be considered. For the last term l = p + 1 only the last term of (2.14) has a
contribution. Starting with the contribution from the first sum for l = 0 gives

ΔEl=0 =
1

R

∞∑
j=p+1

S0j(a1,a2,R) . (2.15)

It simplifies to

ΔEl=0(p) =
1

R

∣∣∣∣∣∣
∞∑

j=p+1

(±1)j
j!

Rj
Oj0(a2)

∣∣∣∣∣∣
=

1

R

∣∣∣∣∣∣
∞∑

j=p+1

(±1)j
(a2
R

)j
Pj0(cosα2)

∣∣∣∣∣∣ . (2.16)

The term (±1)j+l reduces to (±1)j , since we take the absolute value for each l separately. We
call ΔEl=0(p) the zeroth error contribution which is valid for any p ≥ 0. We calculate all
contributions from the zeroth order l = 0 up to l = p+ 1.

We return to the original approach of the worst case error bound and compare the results. If
we bounded the associated Legendre polynomial Pj0 in (2.16) with its upper limit∣∣(±1)jPj0(cosα2)

∣∣ ≤ 1 ,
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the energy error would take a form similar to the original approach

ΔEl=0 =
1

R− a2

(a2
R

)p+1
.

A geometrical interpretation for the former equation can be drawn by assuming a worst case
scenario with dmin = 1, maximum a2 =

√
3 and minimum R = R̂1 = 4, yielding

ΔEl=0 =
1

4−√
3

(√
3

4

)p+1

.

Compared to the worst case bound the error only varies in the value for R. Head-Gordon derived
it from the expansion of the inverse distance in terms of Legendre polynomials. By contrast,
our bipolar approach uses the full expansion in terms of the associated Legendre polynomials.
Therefore, in the original approach the minimum distance of two particles is R = 3 and in our
approach R = 4, since for l = 0 one particle is located at the center of the box. Again, treating
only contributions from the zeroth term without taking into account the proper contributions
from Pj0 will result in an overestimation of poles. Therefore, we incorporate error terms of
higher order and do not bound the elements Pjk to the upper limit.

Establishing Dense Grid Points in Box A

Equation (2.16) still depends on the particle position and may take any arbitrary values inside
box A. To reduce the number of possible particle positions, we introduce a fine grid with 32
uniform grid points per dimension in box A. Additional grid points are introduced on each
coordinate axis yielding a total of G = 333 grid points in box A. All particles within one of
the 323 grid boxes are mapped to the center of the grid box, i.e. the grid point. Particles with
coordinates on one of the three axes are mapped onto the next grid point on the axis. Since the
number of possible distances a1 and angles α1 and β1 now depends on the underlying grid, we
introduce new coordinates for box A as

aG with lim
G→∞

aG = a1 ,

αG with lim
G→∞

αG = α1 ,

βG with lim
G→∞

βG = β1 .

Performing a Step-Wise Calculation of ΔE(p)

Now we calculate the infinite sum in (2.16) for every pole up to a certain p numerically and store
the calculated values. We reduce the storage requirement by only keeping the maximum value
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(a) arbitrary subbox (b) 323 grid boxes (c) grid points (d) grid and particles (e) mapped particles

Figure 2.31.: Every box on every level is subdivided to apply a spatial grid with 333 grid points. All
particles inside a grid box are mapped to the center of this grid box; the grid point. Particle
on the coordinate axes are mapped to additional points on the axes.

for (±1)j in

F0p(aG, αG) = max
s∈{−1,1}

∣∣∣∣∣∣
∞∑

j=p+1

sj
(aG
R

)j
Pj0(cosαG)

∣∣∣∣∣∣ .
Next we examine errors from the first order l = 1. The contribution of this term is much more
complicated, since it depends on the coordinates of both particles. We write

ΔEl=1(p) =
1

R

1∑
m=−1

∞∑
j=p+1

S1j(aG,a2,R) (2.17)

with

ΔEl=1(p) =
1

R

a1
R

∣∣∣∣∣∣P10(cosα2)
∞∑

j=p+1

(±1)j(j + 1)
(aG
R

)j
Pj0(cosαG) −

P11(cosα2) cos(β2 − βG)
∞∑

j=p+1

(±1)j
(aG
R

)j
Pj1(cosαG)

∣∣∣∣∣∣ .

Defining Angular Parts of the Non-Grid Box B

Since we introduced a grid in box A, we should do the same for box B. However, an additional
fine grid would increase the complexity of the error scheme to O(M1M2) with M1 being the
number of particles in box A and M2 being the number of particles in box B. Therefore, we in-
troduce a different procedure to handle error terms with respect to the coordinates of the second
box. The largest impact on the error from box B is caused by the radial part a2 of the particle
coordinates with respect to the center of box B. Therefore, we do not confine the range of values
and allow all possible values a2 ∈ [0,

√
3]. However, the angles α2 and β2 are treated differently.
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(a) Non-grid Box a2 ∈ [0,
√
3] (b) Possible Angles (c) Mapping of Particles

Figure 2.32.: The second box allows all values for a2, but limits the angles α2 and β2 to the connecting
lines inside box B.

To ensure that the radial part can take its minimum amin
2 = 0 and maximum value amax

2 =
√
3,

the available angles are thereby fixed. The minimum value for a2 coincides with the center of
the box. The maximum value for a2 represents one of the 8 corners (see figure 2.32). Hence,
we only allow angles α2 and β2 on the connecting lines from the center to all box corners. We
introduce new coordinates for the angular part of box B so that

α2n with n ∈ {1, . . . , 8} and cosα2n = ±
√
3

3

β2n with n ∈ {1, . . . , 8} and cosβ2n = ±
√
2

2
, sinβ2n = ±

√
2

2
.

To avoid storing the grid box A for every possible angular part in box B we only store the
maximum error contribution for every grid point G and α2n , β2n . Therefore, the elements of
F1p implicitly depend on the maximum of the angular part of box B. Finally, the error terms of
the first order ΔEl=1(p) are found to be

F1p(aG, αG, βG) = max
n∈{1,...,8}

max
s∈{−1,1}

∣∣∣F̃n
1p(aG, αG, βG)

∣∣∣
with

F̃n
1p(aG, αG, βG) =P10(cosα2n)

∞∑
j=p+1

sj(j + 1)
(aG
R

)j
Pj0(cosαG)−

P11(cosα2n) cos(β2n − βG)
∞∑

j=p+1

sj
(aG
R

)j
Pj1(cosαG) .

Higher elements F̃2p, F̃3p, . . . F̃qp can be derived similarly. However, we will skip a somewhat
tedious derivation and continue directly with the equation for the general element F̃qp with
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q ≤ p+ 1. It can be written as follows

F̃n
qp(aG, αG, βG) =(2− δm0)

q∑
m=0

(−1)mP̃qm(cosα2n) cos(mβ2n −mβG)×
∞∑

j=p+1

sj(j + q)!
(aG
R

)j
P̃jm(cosαG) .

It should be noted that the terms q = p + 1 are generated by the second double sum in (2.14).
We only store the largest contribution for the error in Fqp as

Fqp(aG, αG, βG) =
1

1 + δp+1−q,0
max

n∈{1,...,8}
max

s∈{−1,1}

∣∣∣F̃n
qp(aG, αG, βG)

∣∣∣ .
Symmetry Considerations

A general bipolar expansion consists of a set of six independent coordinate variables, three
coordinates for particles within grid box A with aG, αG, βG and three coordinates for parti-
cles within box B with a2, α2, β2. We will reduce the set to four variables a2, aG, αG, βG.
The overall storage requirement for all elements Fqp with 0 ≤ q ≤ p + 1 = 50 would be
(p+ 1) · (p+ 2) · 333 · 8Bytes, approximately 730 MBytes. To reduce the total amount of pre-
computed data, we utilize the symmetry inherent in the approach. By employing the minimal
distance d in one dimension for all possible box–box distances, any rotations of the global co-
ordinate system around the coordinate axes must lead to the identical result for the error terms.
Therefore, we are able to reduce the number of grid points and benefit from a lower memory
requirement. Representing the elements Fqp in Cartesian coordinates and using the mentioned
symmetry relations implies

Fqp(xG, yG, zG) = Fqp(xG, zG, yG)

= Fqp(yG, xG, zG)

= Fqp(yG, zG, xG)

= Fqp(zG, xG, yG)

= Fqp(zG, yG, xG) .

The number of elements is reduced by a factor of six. Additionally we take the symmetry
for ±x,±y,±z into account, since we cannot distinguish between interactions with a special
direction by writing

Fqp(xG, yG, zG) = Fqp(±xG,±yG,±zG) .

Again the number of elements is reduced by a factor of 8. By now the total number of elements
should be reduced by a factor of 48. Since some faces and edges share some elements, which
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2. FMM IN THREE DIMENSIONS

(a) Gridded Set, 1st Octant (b) Reduced Grid Set Hqp (c) Redundant Grid Boxes (d) Full Grid Set

Figure 2.33.: Only one octant of the full grid box [−1, 1] is shown. Due to symmetry, the number of
unique grid boxes can be reduced from 333 to 969. The worst case elements from all
redundant grid points are stored in their reduced set of grid points.

can be seen in figure 2.33b, the set is reduced to 969 elements yielding a shrink factor of approx-
imately 37. The error control demands to sum up contributions for all F0p terms to achieve an
upper bound. However, numerical tests showed that more than 99% of all possible interactions
for a certain worst-case box-box configuration are sufficiently covered by the maximum term
only. The remaining “error-prone” contributions (1%) only occur for

• 6 out of 189 box–box configurations,
• boxes with only few particles.

Since we add up error contributions from box–box interactions on all levels, the influence of
the “error-prone” contributions can be neglected. Nevertheless additional measures have been
implemented to maintain the error bound. Details can be found in [50].

Including the worst-case elements and store contributions Hqp separately we get

H0p(x, y, z) = max

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F0p(x, y, z)
F0p(x, z, y)
F0p(y, x, z)
F0p(y, z, x)
F0p(z, x, y)
F0p(z, y, x)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
...

Hqp(x, y, z) = max

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fqp(x, y, z)
Fqp(x, z, y)
Fqp(y, x, z)
Fqp(y, z, x)
Fqp(z, x, y)
Fqp(z, y, x)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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(a) Original Positions (b) Rotated Positions (c) Shifted Positions

Figure 2.34.: The reduced set of grid boxes does not have any axis information stored in it. Therefore,
we do not need to execute an expensive rotation to move an interacting box on the Z axis
required in the approach. We simply shift the expansion. The worst-case error terms from
the full set of grid points ensure an adequate handling.

with x, y, z ∈ {
0,± 1

32 , . . . ,±29
32 ,±31

32

}
, p ∈ {0, . . . 50} and q ∈ {0, . . . p+ 1}.

Radial Part of the Non-grid Box B

The error terms stored in Hqp incorporate five of six coordinate variables. The remaining radial
part of particles in box B with a2 is subject of this section. We calculate functions fq for a set
of six sampling points q ∈ {0, 4, 9, 18, 36, 45} with the level-independent box–box distance R̂
and NB being the number of particles in box B as

fq =

NB∑
i=1

|qi|
(
ai

R̂

)q

.

The number of sampling points is chosen based on memory and accuracy considerations. A sin-
gle sampling point is not sufficient to represent the complicated error terms. Dozens of sampling
points help to increase accuracy, but cause a larger memory footprint. Therefore, we limit the
number of points to six, which ensures a satisfactory balance. The first three sampling points
are necessary to obtain a sufficient error representation for low precision calculations with only
a few multipoles. The last three sampling points provide a basis for high precision calculations.
The fq have to be computed for each box on each level, similarly to the grid box A. We com-
pute these elements separately for each of the ws + 1 displacements s ∈ {1, . . . , ws + 1}. For
the discussed case with ws = 1, we require two functions f1

q and f2
q . The level-independent

distance R̂ becomes R̂s = 2(ws+ s). For a general f s
qp we modify the last equation as follows

f s
qp =

(
R̂1

R̂s

)q+p+2 NB∑
i=1

|qi|
(

ai

R̂1

)q

.
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The term (
R̂1

R̂s

)q+p+2

=

(
R̂1

R̂s

)q

︸ ︷︷ ︸
l=q

·
(
R̂1

R̂s

)p+1

︸ ︷︷ ︸
j=p+1

·
(
R̂1

R̂s

)
︸ ︷︷ ︸

common factor

comprises all parts of 1/R from the general energy (2.13).
To link the error terms from the grid box and error terms from the radial part in the non-

grid box, we set up a corresponding grid structure QL
qp similarly to the precomputed grid Hqp.

The elements of the second grid are calculated at runtime. QL
qp stores all contributions from

the functions f s
qp for any non-empty grid box in box B. The level-independent definition of the

box–box distance R̂ allows us to sum over all contributions from all boxes. We define the QL
qp

as
QL

qp(G) = 2
∑
A(L)

qGmax
A(B)

max
s∈{1,2}

f s
qp (2.18)

The last equation can be used in the error scheme as follows. For every grid-box G with grid-box
charge qG, QL

qp(G) stores the error terms of the radial part a2 of box B and the charges of both
grid box G with qG =

∑NG
i=1 |qi| and non-grid box B. We do not sum up all error contributions

from the interaction set A(B), but take the maximum. Finally, we sum up all sets A(L) for a
certain level L. Hence, we store contributions from different levels L in different lists QL

qp(G).
All contributions from one level however are stored in an unique super grid box QL

qp(G).

Interaction Sets

To obtain the full set of error terms in QL
qp(G) we have to guarantee to have each box twice in

the interaction set. This requirement would be satisfied by summing up all interactions from the
interaction set A(B). However, it is sufficient to store the contribution for the maximum error
only. Since, this scheme does not guarantee to include interactions from box A with B and in
reverse, we have to multiply by a factor of two to compensate for the possible asymmetry. The
asymmetric interaction set is depicted in figure 2.35.

Interpolation Scheme for QL
qp(G)

The calculation of QL
qp(G) is only performed for the 6 sampling points q ∈ {0, 4, 9, 18, 36, 45}.

To obtain the remaining values for q ∈ {0, . . . , 51} we apply an interpolation scheme. We know

QL
0,p(G) > QL

4,p(G) > QL
9,p(G) > QL

18,p(G) > QL
36,p(G) > QL

45,p(G)

and since the function QL
qp is strictly monotonic decreasing, we use an interpolation scheme to

obtain the missing values.
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(a) max{SA} = B (b) max{SB} = C (c) max{SC} = B (d) max{SD} = B

Figure 2.35.: The application of the maximum instead of the sum in (2.18) demands additional care,
since we have to guarantee that the error terms from the individual box–box interaction are
included. This figure shows that the maximum does not guarantee that the symmetry is
conserved. Therefore, we add an additional factor of two to guarantee the error bound.

Linking Box A with Box B

The last sections described how we obtained the error terms for grid box A and the non-grid
box separately. To obtain the error terms for the interaction of these two boxes, we multiply the
contributions from A and B separately for every different order of poles q. We obtain

TL
0 (G) = QL

0p(G) ·H0p(G)

TL
1 (G) = QL

1p(G) ·H1p(G)

...

TL
q (G) = QL

qp(G) ·Hqp(G)

TL
q+1(G) = QL

q+1,p(G) ·Hq+1,p(G) .

Finally, we take the maximum of the error terms Tq and rescale the level-independent distance.
We sum up all error terms from all super grid boxes and all levels.

ΔEreq ≥
Lopt∑

L=Lmin

∑
G

2L−1

ws+ 1
max

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

TL
0 (G) + TL

1 (G)

TL
2 (G)

...
TL
q (G)

TL
q+1(G)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (2.19)

To obtain the necessary order of poles p for a computation, we start with q = 0 and increase q
until the right hand side of (2.19) is less or equal ΔEreq. The starting level Lmin depends on the
separation criterion ws with

Lmin = �log2(ws+ 1)�+ 2 .
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(b) 105 particles on a line, E = 1109014, 612 . . .

Figure 2.36.: The new error scheme significantly reduces the order of poles for a given precision (a).
However, for inhomogeneous particle distributions the truncation error may under- or over-
estimate the order of poles (b). Therefore, any scheme only depending on the truncation
error may not maintain the requested error bound.

After finalizing the second stage, the computation starts with the remaining FMM passes 1–4.
The current status of the computation is as follows

2.7.5. FMM without Far Field Contributions

The presented error scheme will return the order of poles p ≥ 0 necessary to meet the requested
error bound. In some cases the computation of the far field can be neglected at all for p < 0
since the energy obtained from the near field part already meets the error bound. In such a
case the presented method reduces to a cut-off scheme and the examined particle system can be
regarded as system without long-range interactions for the requested error bound. Especially for
periodic systems presented in chapter 3, the computation time can be further reduced for very
low precision calculations. We define an upper bound for the ratio of the exact far field energy
E and the monopole energy E0 by

E

E0
≤ cmax .

For ws = 1 the maximal ratio is
√
6 : 1. For ws = 2 the maximal ratio is

√
17 : 6.

67



2.7. ERROR ANALYSIS

(a) cmax(ws = 1) (b) cmax(ws = 2)

1 10 20 30 40 50
Separation criterion ws

0

0.5

1

1.5

2

2.5

E/
E 0

cmax(ws)

(c) cmax(ws = {1 . . . 50})

Figure 2.37.: Upper bound cmax for different worst-case particle positions depending on the separation
criterion ws. For infinite ws, lim

ws→∞ cmax(ws) = 1.

2.7.6. Further Analysis of the Error Bound

Let us reconsider the first stage of the error control now following a slightly different ap-
proach. Again we start with the formula for the far field energy of two boxes with distance
R = (R, θ, φ). The multipole expansions for both boxes are labeled as ωlm(a1) for box A and
ωjk(a2) for box B. The total energy reads

E =
∞∑
l=0

l∑
m=−l

∞∑
j=0

j∑
k=−j

(−1)jωlm(a1)
1

Rj+l+1
˜̃Pj+l,k+m(cos θ)ei(k+m)φωjk(a2) . (2.20)

The multipole expansion for a collection of particles N with spherical coordinates (aj , αj , βj)
is described by

ωlm =
N∑
j=1

qja
l
jP̃lm(cosαj)e

−imβj .

In contrast to the original approach we do not bound the phase factors e−imβj to one. Instead we
reformulate the multipole expansion ωlm(a) in Cartesian coordinates (x, y, z) [27]. Since we
are going to average the expansion inside each box, we define a chargeless multipole expansion

O∗
lm = (−1)m

� l−m
2 �∑

k=0

(−1)k(x+ iy)k+m(x− iy)kzl−m−2k

22k+m(k +m)!k!(l −m− 2k)!
.
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Averaged Multipole Moments

Without loss of generality, we define averaged multipole moments ω̄lm for a box with coordinate
range [−1, 1] as follows

ω̄lm =

(
N∑
i=1

|qi|
) ∫ 1

−1

∫ 1

−1

∫ 1

−1
Olm dx dy dz∫ 1

−1

∫ 1

−1

∫ 1

−1
dx dy dz

.

The former integral is almost identical to the integral introduced in section 2.7.3. Instead of
using bounded phase factors, we solve the integral analytically. The last equation simplifies due
to symmetry considerations to

ω̄lm =

(
N∑
i=1

|qi|
) 1∫

0

1∫
0

1∫
0

Olm dx dy dz .

A chargeless version Ōlm of the average multipole ω̄lm can be defined as

Ōlm =

1∫
0

1∫
0

1∫
0

Olm dx dy dz

and links to the charged version with

ω̄lm =

(
N∑
i=1

|qi|
)
Ōlm .

Since our chargeless multipole expansion Olm is formulated in Cartesian coordinates, we solve
the integral analytically for each l and m up to a maximum truncation order of 50. The integra-
tion was performed with the help of the computer algebra system MATHEMATICA [51]. A table
containing the first 20 non-zero elements can be found in Appendix A.1.

Level-Independent B Operator

To compute the box-box interaction energy with regard to (2.20) we also have to compute the
M2L operator for all possible box-box interactions. The number of box-box interactions is
limited to

np = [2(2ws+ 1)]3︸ ︷︷ ︸
Full far field

− (2ws+ 1)3︸ ︷︷ ︸
Near field

= 7(2ws+ 1)3︸ ︷︷ ︸
Interaction set

.

For ws = 1 we have a total of 189 box-box pairs. Due to symmetry considerations only 16
different sets can be identified. Therefore, we have to compute 16 different M2L operators to
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cover all 189 box-box pairs. Following our original scheme we expand all M2L operators up to
2p = 100.

We define the energy of two interacting boxes with averaged multipoles as follows

Ē = Ē(p) + ΔĒ(p)

with

Ē(p) =

p∑
l=0

l∑
m=−l

p∑
j=0

j∑
k=−j

(−1)jω̄lm(a1)
1

Rj+l+1
˜̃Pj+l,k+m(cos θ)ei(k+m)φω̄jk(a2) .

In the original approach we precomputed the error vector ΔĒ(p) for all order of poles in the
range p ∈ {0, . . . , 50}. Now we want to derive a different approach. First, we calculate the exact
interaction energy Ē. Afterwards, we simply compute for all p in the range p ∈ {0, . . . , 50}

ΔĒ = Ē − Ē(p) .

Analytic Solution for the Interaction Energy Ē

The evaluation of the Coulomb integral for cuboids with a uniform (averaged) density was pre-
sented in an analytic form by Mura and Handy in [52]. We will now derive a scheme to compute
the exact interaction energy for a box-box interaction in the FMM. We restrict ourselves to the
case ws = 1, but the scheme may as well be used for any other separation criterion ws.

The energy for a cuboid of size J ×K × L with uniform density is given by

EJKL =

J∫
0

J∫
0

K∫
0

K∫
0

L∫
0

L∫
0

dx1 dx2 dy1 dy2 dz1 dz2√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

.

The solution presented by Mura and Handy can be summarized as

ĒJKL =
1

30
Ē′

JLK (2.21)
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with

Ē′
JKL =5J4K log

(√
K2 + J2 +K√
K2 + J2 −K

)
+ 5KL4 log

(√
L2 +K2 +K√
L2 +K2 −K

)
+

5JK4 log

(√
K2 + J2 + J√
K2 + J2 − J

)
+ 5J4L log

(√
L2 + J2 + L√
L2 + J2 − L

)
+

5JL4 log

(√
L2 + J2 + J√
L2 + J2 − J

)
+ 5K4L log

(√
L2 +K2 + L√
L2 +K2 − L

)
−

5L(K4 − 6J2K2 + J4) log

(
R+ L

R− L

)
−

5K(L4 − 6J2L2 + J4) log

(
R+K

R−K

)
−

5J(L4 − 6K2L2 +K4) log

(
R+ J

R− J

)
+

40JKL(J2 −K2) sin−1

(
JL√

K2 + J2
√
L2 +K2

)
+

40JKL(J2 − L2) sin−1

(
JK√

L2 + J2
√
L2 +K2

)
+

4(L4 − 3(K2 + J2)L2 +K4 − 3J2K2 + J4)R+

4L5 + 4K5 + 4J5−
4(L4 − 3K2L2 +K4)

√
L2 +K2−

4(L4 − 3J2L2 + J4)
√

L2 + J2−
4(K4 − 3J2K2 + J4)

√
K2 + J2 − 20J3KLπ .

with R =
√
J2 +K2 + L2. For a unit cube A with size 1× 1× 1 we write for the energy

Ē000 = ĒAA

where EAA denotes the self energy (see figure 2.38b). The total energy of two unit cubes with
size 1× 1× 2 consists of

Ē001 = ĒAA︸︷︷︸
self A

+ ĒBB︸︷︷︸
self B

+ ĒAB︸︷︷︸
interaction AB

+ ĒBA︸︷︷︸
interaction BA

.

Since ĒAA = ĒBB and ĒAB = ĒBA we obtain for the interaction energy of A and B (see figure
2.38c)

Ē′
001 = ĒAB =

1

2

(
Ē001 − 2ĒAA

)
.
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(a) Ē012 (b) Ē′
000 (c) Ē′

001 (d) Ē′
002 (e) Ē′

003 (f) Ē′
011 (g) Ē′

012

Figure 2.38.: Interaction sets for the (012) cube in (a). It consists of 6 self-interaction elements (b), 7
interaction elements of type (c), 2 interaction elements of type (d), none interaction element
of type (e), 2 interaction elements of type (f) and 1 interaction element of type (g).

Now we are able to calculate another interaction energy Ē′
002 = ĒAC from Ē002 depicted in

figure 2.38d with

Ē002 = ĒAA + ĒBB + ĒCC + 2ĒAB + 2ĒBC + 2ĒAC

= 3ĒAA + 4ĒAB + 2ĒAC .

The interaction energy Ē′
002 = ĒAC can be computed directly since we have analytical expres-

sions for ĒAA, ĒAB and Ē002. The prefactors (3, 4, 2) can also be found in a reduced (symmetric)
form (3, 2, 1) in table 2.5 in the first column.

The total energy of the set 012 can be divided in five subgroups. The subgroups are shown in
figure 2.38 and in the second column of table 2.5. The energy Ē012 yields

Ē012 = 6Ē000 + 7Ē′
001 + 2Ē′

002 + 0Ē′
003 + 2Ē′

011 + 1Ē′
012 .

For the remaining interaction energies we can proceed in the same manner. However, we
have to identify the number of interaction subsets for each newly calculated set. The number of
interactions can be found in table 2.5. The interaction energies can be obtained with the help of
table 2.5. We start by calculating the energies of Ē000 and Ē′

001 as described above. Then, we
compute additional interaction energies starting at the leftmost column until we end up at the
last element Ē′

333. All 16 interaction energies are now calculated and can be found in table 2.6.

Comparison of the Two Error Schemes

The result of the additional error scheme is plotted in figure 2.39. The introduced correction
factor

(j + l)!

j! l! 2j+l+1

for the first error scheme is not valid for any order of multipoles considering only single box-box
interactions. The error exceeds the computed limit at p = 4. However, assuming a homogeneous
particle distribution in each box, changes the result slightly and validates the first error scheme.
The result is plotted in figure 2.39b.
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Far Field Box Coordinates xyz

xyz 002 003 012 013 022 023 033 112 113 122 123 133 222 223 233 333

000 3 4 6 8 9 12 16 12 16 18 24 32 27 36 48 64
001 2 3 7 10 12 17 24 20 28 33 46 64 54 75 104 144
002 1 2 2 4 6 10 16 4 8 12 20 32 27 42 64 96
003 – 1 – 2 – 3 8 – 4 – 6 16 – 9 24 48
011 – – 2 3 4 6 9 11 16 20 29 42 36 52 75 108
012 – – 1 2 4 7 12 4 8 14 24 40 36 58 92 144
013 – – – 1 – 2 6 – 4 – 7 20 – 12 34 72
022 – – – – 1 2 4 – – 2 4 8 9 16 28 48
023 – – – – – 1 4 – – – 2 8 – 6 20 48
033 – – – – – – 1 – – – – 2 – – 3 12
111 – – – – – – – 2 3 4 6 9 8 12 18 27
112 – – – – – – – 1 2 4 7 12 12 20 33 54
113 – – – – – – – – 1 – 2 6 – 4 12 27
122 – – – – – – – – – 1 2 4 6 11 20 36
123 – – – – – – – – – – 1 4 – 4 14 36
133 – – – – – – – – – – – 1 – – 2 9
222 – – – – – – – – – – – – 1 2 4 8
223 – – – – – – – – – – – – – 1 4 12
233 – – – – – – – – – – – – – – 1 6
333 – – – – – – – – – – – – – – – 1

Table 2.5.: Number of possible subbox positions (rows) xs × ys × zs in a cuboid box with dimension
x× y × z (columns). For ws > 1 additional box sizes have to be considered.

Additionally the scheme shows that for an increasing order of poles only the closest far field
contributions (002) need to be taken into account. The total error follows the error for the (002)
interaction for large multipoles precisely.

The derived error scheme presents the minimal order of poles, i.e. the lower bound, for
uniformly distributed particle system. Since the simulation has to deal with a finite particle
system the order of poles will be higher than the computed values.

In the next chapter we extend the FMM and stage I and II of the error-control scheme for
periodic boundary conditions.

73



2.7. ERROR ANALYSIS

0 20 40 60 80 100

Order of Poles

10
-30

10
-24

10
-18

10
-12

10
-6

10
0

R
el

at
iv

e 
E

ne
rg

y 
E

rr
or

EC Stage I
002
012
112
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(b) FMM scheme error bounds
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(c) FMM scheme error bounds for each possible far field box separately

Figure 2.39.: Analytical error bound for homogenously distributed particle systems. Single box-box error
bounds (a) do exceed the error bound given by stage I of the error-control scheme. However,
taking into account the actual FMM interaction set, the result from stage I (b) does not
exceed the lower limit provided by the analytical solution. For a high order of poles only
the contributions from (002) box-box interactions dictate the error bound (c). The remaining
contributions become insignificant with increasing order of poles.
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2. FMM IN THREE DIMENSIONS

xyz R2 1/R Energy

000 0 ∞ 1.882 312 644 389 660 16
002 4 0.500 000 000 000 000 00 0.499 139 847 013 560 54
003 9 0.333 333 333 333 333 33 0.333 215 481 099 826 00
012 5 0.447 213 595 499 957 94 0.447 100 395 342 384 79
013 10 0.316 227 766 016 837 93 0.316 177 059 082 768 54
022 8 0.353 553 390 593 273 76 0.353 591 183 594 328 64
023 13 0.277 350 098 112 614 56 0.277 352 772 190 202 96
033 18 0.235 702 260 395 515 84 0.235 707 391 268 263 31
112 6 0.408 248 290 463 863 02 0.408 331 273 621 761 74
113 11 0.301 511 344 577 763 62 0.301 495 607 797 756 90
122 9 0.333 333 333 333 333 33 0.333 391 890 319 486 35
123 14 0.267 261 241 912 424 38 0.267 271 135 829 273 37
133 19 0.229 415 733 870 561 77 0.229 422 572 539 922 13
222 12 0.288 675 134 594 812 88 0.288 715 087 097 265 34
223 17 0.242 535 625 036 332 97 0.242 548 590 198 871 85
233 22 0.213 200 716 355 610 43 0.213 208 250 460 023 95
333 27 0.192 450 089 729 875 25 0.192 455 276 681 293 53

Table 2.6.: Box-Box Energy for two boxes with homogenously distributed charges and
total charge Q =

∑∞
i=1 q = 1. The third column characterizes the monopole-

monopole interaction energy of two distinct boxes. Already three digits are
valid compared to the analytical solution displayed in the last column. For
ws = 1 all entries in the last column are sufficient to set up an error control
scheme for the FMM. The contribution of each box-box interaction to the
overall error is shown in figure 2.39c.
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3. FMM and Periodic Boundary
Conditions

The presented fast multipole scheme in chapter 2 for open boundary conditions can be extended
to periodic boundary conditions (PBC) as well. The periodic boundaries allow to derive macro-
scopic bulk properties of the simulated particle system. A huge (even infinite) ensemble of
particles is reduced to a smaller (finite) ensemble inside a finite-sized simulation box. This
simulation box then is replicated in all spatial directions. Hence, the influence of the boundary
on the particles enclosed in the finite simulation box vanishes and only the influence of the bulk
properties remains. As a particle moves through a boundary into a neighboring image box, it will
enter on the opposite site of the central simulation box, thus the number density is conserved.

To fill the entire 3D space, several different shapes of the central simulation box may be con-
sidered [53]. However, we only derive the algorithm for the most common shape, i.e. the cubic
box. The presented scheme may also be applied together with other shapes like parallelepipeds,
hexagonal prisms, octahedrons or dodecahedrons.

Some simulations even demand a mixed boundary condition with periodic boundaries in only
one or two dimensions, such as electrolyte solutions, membranes, nanopores or nanotubes [54].
The presented FMM scheme can also be applied to such mixed boundary systems. However, the
derivation of the algorithm in this chapter is performed for three dimensional periodicity if not
stated otherwise.

3.1. Minimum Image Convention

The direct computation of all mutual interactions of N particles in a system with open bound-
aries demands work proportional to N2. The cut-off scheme presented in section 1.1.1 reduces
the overall complexity to O(N). However, no a priori error bounds can be formulated.

The calculation of interactions in a periodic system via a direct method leads to new problems.
Now, the number of particles involved is infinite. Therefore, we cannot compute the direct in-
teractions straightforward, not even with the unfavorable O(N2) complexity. However, we may
apply the cut-off scheme together with a minimum image convention [55], which is displayed in
figure 3.1. The energy of such a system is computed by taking only the closest particle neighbors
into account. All interactions of pairs of particles with a distance larger than the spherical cut-
off radius rc are neglected, hence zero. The interaction region or image should have the same
size and shape as the periodic simulation box. Therefore, the implied minimum image limits
the cut-off to half the length d of the original simulation box. The overall complexity is reduced
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3.2. DEFINITION OF THE BOUNDARY CONDITION

(a) Simulation Box and Images (b) Minimum Image (c) Cut-off Interaction Set

Figure 3.1.: The minimum image convention only chooses the closest neighboring particles around each
particle. The spherical cut-off radius rc is limited to rc ≤ d/2 half the box size d. All pair
potentials φ(r) with r > rc are neglected.

to O(N). For rapidly decaying short-range potentials, the scheme may generate fast and suffi-
ciently precise results. However, long-range potentials will introduce large and uncontrollable
errors to the results such as

• discontinuities in the potential energy,
• discontinuities in the forces,
• violation of energy conservation,
• and changes in the thermodynamic properties of the system.

Possible countermeasures exist, e.g. potential shift, but do not eliminate the inherent problem.
For long-range potentials, the simulation box has to be expanded to minimize the listed errors,
but for large systems such a scheme is impractical.

3.2. Definition of the Boundary Condition

The definition of the boundary conditions can be performed in a general manner. We only
assume that the simulation cell must be translationally symmetric in order to fill the entire R

n

space. No additional assumptions on the basis vectors forming the periodic lattice are necessary.

3.2.1. Three Dimensional Periodicity

We define a simulation cell Γ(0) in three dimensions and the basis vectors a1,a2,a3 with

Γ(0) = {r = x1a1 + x2a2 + x3a3 : −1/2 ≤ xi ≤ 1/2, for i = 1, 2, 3} .

Additionally, we chose ai in such a way that the volume VΛ of the simulation cell is defined by
VΛ = a1 · (a2 × a3) > 0. Now, we set up a lattice Λ of translationally symmetric copies Γ(n)
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3. FMM AND PERIODIC BOUNDARY CONDITIONS

with n = n1a1 + n2a2 + n3a3 and ni ∈ Z of the original central simulation cell Γ(0) by

Γ(n) = {r : r− n ∈ Γ(0)} .
Each replica cell Γ(n) contains the exact same numbers of particles as the simulation cell Γ(0).
A particle with position ri in the central simulation cell Γ(0) has a replica particle at ri + n in
the lattice cell Γ(n).

3.2.2. Two Dimensional Periodicity

For the periodicity in two dimensions, we follow the derivation of the three dimensional case.
Without loss of generality, we establish the periodicity in the xy-plane and define the central
simulation cell Γ(0) again as

Γ(0) = {r = x1a1 + x2a2 + x3a3 : −1/2 ≤ xi ≤ 1/2, for i = 1, 2, 3} .
The corresponding lattice vectors in the xy-plane are n = n1a1 + n2a2 with ni ∈ Z. The
periodic lattice cells Γ(n) are given by

Γ(n) = {r : r− n ∈ Γ(0)} .

3.2.3. One Dimensional Periodicity

Without loss of generality, we choose the periodicity axis along the z-axis in a one dimensional
periodic system and define the central simulation cell Γ(0) as

Γ(0) = {r = x1a1 + x2a2 + x3a3 : −1/2 ≤ xi ≤ 1/2, for i = 1, 2, 3} .
The periodic images (replica cells) of the central cell Γ(0) are given by

Γ(n) = {r : r− n ∈ Γ(0)} ,
with n = n3a3. Since we want to derive our algorithm for the cubic box only, all basis vectors
are perpendicular to one another and our simulation box has a unit volume VΛ = 1.

3.2.4. Periodic Potential and Energy

We now define the potential Φ(R) inside a lattice box Γ(n) for a periodic system as

Φ(R) =
∑
n

N∑
j=1

qj
|R− rj + n|

as well as the energy

E =
1

2

∑
n

N∑
i=1

N∑′

j=1

qiqj
|ri − rj + n|

where the prime indicates that for the central box with n = 0 the singularity for i = j is
dropped.
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3.3. CONVERGENCE OF LATTICE SUMS

3.3. Convergence of Lattice Sums

Since the potential Φ(R) does not satisfy

|Φ(R)| ≤ A |r|−d−ε (3.1)

with d being the periodicity and A, ε > 0 for an arbitrary set of point particles with non-zero
monopole, dipole- or quadrupole moments, we have to add additional constraints. The following
interactions do not obey the inequality in (3.1):

• Charge–Charge Interactions (1D, 2D, 3D) |r|−1

• Charge–Dipole Interactions (2D, 3D) |r|−2

• Dipole–Dipole Interactions (3D) |r|−3

• Charge–Quadrupole Interactions (3D) |r|−3

Therefore, we add the additional constraint for all particles in the simulation cell

Q =

N∑
i=1

qi = 0 .

Hence, with box net charge Q = 0 only the dipole terms do not converge absolutely. We neglect
the dipole-dipole contributions temporarily, but will get back to them later.

Speed of Convergence

Since we want to simulate periodic systems under the influence of long-range forces even for
machine precision, we have to include more and more lattice cells Γ(n) in a direct summation
to obtain a sufficient precision. For a Madelung system [56] an upper bound for the speed
of convergence can be found. We can define a simple periodic lattice by a three-dimensional
Epstein zeta function

M(s) =
∑′

i,j,k∈Z

(−1)i+j+k

(i2 + j2 + k2)s
.

The prime again indicates that the singularity at the origin is to be avoided. The special case
M(1/2) is called Madelung constant. M(1/2) represents the potential energy at the origin in a
lattice of alternating unit charges. Clearly M(s) converges absolutely for all s > 3/2, but does
not converge for ever-expanding spheres. Borwein et. al. [56] showed that the sum converges for
ever-expanding cubes. However, no closed form exists for the 3D case. Let us for the moment
assume we want to tackle the problem by a direct approach, hence adding more and more lattice
cells (cubes). Since we carry out all operations on a limited precision machine, we may ask how
many layers of cubes are necessary to obtain the requested precision. Borwein et. al. estimated
the number of cubes as ∣∣∣∣∣∣M(1/2)−

∑′

|i|,|j|,|k|<m

(−1)i+j+k

(i2 + j2 + k2)1/2

∣∣∣∣∣∣ < 24

m
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3. FMM AND PERIODIC BOUNDARY CONDITIONS

with ma > 0 for a = {1, 2, 3} and m = min{m1,m2,m3}. Since the convergence only
depends on the minimal expanded dimension m, we are also able to utilize shapes other than
cubes, e.g. rectilinear shapes. However, the slow convergence demands different approaches to
solve the problem in acceptable time.

3.4. Ewald-Based Summation Schemes

The most famous scheme to approach the problem is the Ewald summation technique [57]. It
allows to reduce the complexity to O(N logN). The main idea behind the scheme is to convert
the sum into two absolutely convergent series. One part is evaluated in real space the other part
is evaluated in reciprocal space. The conversion is performed by representing all occurring point
charges as a Gaussian charge density decaying exponentially. A second Gaussian charge density
is applied to cancel the newly introduced function after the computation. The influence of the
canceling contribution is computed in reciprocal space, since it represents a smooth periodic
function which can be transformed into a fast converging Fourier series. This identity can be
written as

Φ(r) =
1

r
=

f(r)

r
+

1− f(r)

r
= Φrecip(r) + Φreal(r) .

The function f(r) used to split the potential is the error function erf(βr). The introduced pa-
rameter β is needed to control the precision of the result. We obtain for the real-space potential

Φreal(r) =
1

r
− erf(βr)

r
=

erfc(βr)

r

and the reciprocal space potential

Φrecip(r) =
erf(βr)

r
.

However, the scheme does not fit our requirements. The desired complexity should be of order
N instead of N logN . Besides, the given formulation does not allow for an FMM summation
scheme for the real-space part. Yet, the classical Ewald scheme can be adapted to the FMM in
three dimensions. In doing so, we must introduce a lattice operator for the periodic contributions.
Such a scheme is dicussed in the following section.

FMM + Ewald-like Summation

To formulate a suitable set of equations we recall the definition of the periodic potential

Φ(R) =
∑
n

N∑
j=1

qj
|R− rj + n| .
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3.4. EWALD-BASED SUMMATION SCHEMES

(a) particle system (b) Masked Gaussians with β1 (c) Masked Gaussians with β2

Figure 3.2.: The conditionally convergent sums are converted into two rapidly and absolutely convergent
terms. Each point charge (a) is masked by a Gaussian function (b) and (c). Depending on
the splitting parameter β, the width of charge distribution changes. The solid lines in (b) and
(c) represent contributions calculated in real space. The dotted lines represent contributions
calculated in reciprocal space.

Additionally, we do know the bipolar expansion for an open particle system (see figure 3.3) with

1

|r′ − a1| =
1

|R+ a2 − a1|

=
∞∑
l=0

∞∑
j=0

l∑
m=−l

j∑
k=−j

(−1)jωlm(a1)Bl+j,m+k(R)ωjk(a2) .

Since we can substitute R with n for the B operator, we are able to define a lattice operator L[n]
including all contributions from the entire lattice. The bipolar expansion of the lattice cells reads

1

|a2 − a1 + n| =
∞∑
l=0

∞∑
j=0

l∑
m=−l

j∑
k=−j

(−1)jωlm(a1)Ll+j,m+k(n)ωjk(a2) . (3.2)

At this point we do not need to keep the indices of the multipole moments ωlm(a1) and ωlm(a2).
Both expansions originate from the same particles, one representing the simulation box and the
other one representing a periodic image. Thus, we can just use one common expansion ωlm(a).
Since the sums from the last equation are absolutely convergent, if

|a1|+ |a2| = 2|a| < |n| ,

we are able to setup a partition for the periodic lattice satisfying this condition. The partition
is shown in figure 3.4 and divides the entire R

n space into two regions. Interactions in a lattice
region with n = 0 can be computed with the original FMM approach for open boundaries Eopen.
Contributions in the first layer Elayer1 of the lattice with max(n1, n2, n3) = 1 can be computed
with the original approach. However, only half of the energy belongs to the lattice energy of the
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3. FMM AND PERIODIC BOUNDARY CONDITIONS

Figure 3.3.: Equation (3.2) is only valid, if we use the corresponding coordinate systems for the multi-
pole expansions ωlm(a1) and ωlm(a2). The equation demands expansion one to be in the
coordinate system O1 with center 0 and expansion two in coordinate system O2.

Figure 3.4.: (left) The simulation box and its replicas fill the entire space. The space is divided in two
regions, a near field region (light grey) and a lattice region (dark grey).

83



3.5. PARAMETER-FREE RENORMALIZATION APPROACH

central box. The remaining interactions from lattice cells Elattice with max(n1, n2, n3) > 1 can
be computed via the introduced L operator. The partitioned energy can be expressed as

E = Eopen + Elayer1 + Elattice

with

Elattice =
1

2

∞∑
l=0

∞∑
j=0

l∑
m=−l

j∑
k=−j

(−1)jωlm(a)Ll+j,m+k(n)ωjk(a) .

The operator L is a universal constant of the cell geometry. It can be precomputed for each
lattice type up to a certain truncation order p by a number of approaches. Since our main goal –
the implementation of an FMM implementation for periodic boundaries with error control – de-
mands a parameter free approach for the lattice contributions, most of the available approaches
have to be dropped out. Introducing the additional demand that even mixed periodicities in
one- or two dimensions should be handled as easily as the 3D case, narrows the available ap-
proaches further. Ewald-based schemes do not provide advantageous algorithms for one- or
two-dimensional periodicities [58], especially when combined with a FMM scheme.

3.5. Parameter-Free Renormalization Approach

We follow the approach proposed by Kudin and Scuseria [59] and incorporate the algorithm
later on into our error control scheme.

3.5.1. Informal Description

The idea for the evaluation of lattice sums with a renormalization approach was first proposed
by Berman and Greengard [60]. The scheme reduces the infinite summation of lattice sites to
a rapidly converging finite summation yielding the lattice operator L. The potential Φ(0) at
the center of the central box (0, 0, 0) can be computed by adding up contributions from lattice
supercells of size (2ws + 1)j × (2ws + 1)j × (2ws + 1)j with j ∈ N going to infinity. Since
we want to translate the multipoles from lattice cells into Taylor-like (local) expansions around
the common center (0, 0, 0) of the central box, we can add up all contributions into a single
translation operator L. We do not add up an infinite number of lattice sites, however, the fast
convergence allows to precompute the lattice operator in machine precision. Since the available
number of digits is fixed, we can call a result below machine precision numerically exact and
therefore no additional runtime parameter is introduced.

3.5.2. Mathematical Operators

Since this approach is based on the original multipole scheme, we can reuse all introduced FMM
translation and conversion operators from chapter 2. The FMM operators are valid on multipole
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3. FMM AND PERIODIC BOUNDARY CONDITIONS

moments ωlm and Taylor-like expansions μlm and their chargeless counterparts Olm and Mlm.
For simplicity we only use the chargeless multipole moments Olm and chargeless Taylor-like
coefficients Mlm in this section.

Translation of a Multipole Expansion

Let us recall the translation of a multipole expansion Ojk(a) at a to a multipole expansion
around a new center a+ b

Olm(a+ b) =
l∑

j=0

j∑
k=−j

Ojk(a)Ol−j,m−k(b) .

We are dropping the indices and abbreviate the operator for the following lattice sum algorithm
via � into the form

O(a+ b) = A(b) � O(a) .

Conversion of a Multipole Expansion into a Local Expansion

A multipole expansion at a transforms into a Taylor-like local expansion at b− a via

Mlm(b− a) =
∞∑
j=0

j∑
k=−j

Mj+l,k+m(b)Ojk(a) .

Again, we abbreviate the operator into the form

M(b− a) = B(b)⊗O(a) .

Rescale a Multipole Expansion

Since we need a hierarchy of boxes and do not want to recompute multipole moments for each
hierarchy level we introduce a scaling operator for a multipole expansion with

SO(Olm(a)) = 3l ·Olm(a) .

Rescale a Local Expansion

For similar reasons, the rescaling has to be performed for the local expansion Mlm as well.
Therefore, we introduce a scaling operator for a Taylor-like expansion by

SL(Mlm(b)) =
Mlm(b)

3l+1
.

We limit ourselves to the case where ws = 1. For a larger separation criterion ws, we have to
substitute 3l and 3l+1 with (2ws+ 1)l and (2ws+ 1)l+1 accordingly.
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3.5. PARAMETER-FREE RENORMALIZATION APPROACH

Operator Properties

The operators derived in chapter 2 and the additionally introduced operators SL and SO are
linear operators. Therefore, the following properties apply for infinite expansions [59]

M ⊗ [O1 � O2] = [M ⊗O1]⊗O2 (3.3)

O1 � [O2 � O3] = [O1 � O2] � O3 (3.4)

SL(M)⊗ SO(O) = SL(M ⊗O) (3.5)

where M represents any Taylor-like local expansion and O represents a certain multipole ex-
pansion which still gives a convergent expansion when shifted or transformed. The hierarchy
of lattice boxes introduced in the next section guarantees that the speed of convergence and
precision is not degraded by the use of the operator properties.

3.5.3. Lattice Sum Algorithm

Let us derive the local moment in the central cell Γ(0) at the center (0, 0, 0) due to an arbitrary
lattice cell Γ(n) with n �= 0 and n = ja1 + ka2 + la3, j, k, l ∈ Z. We define the contribution
with the help of the B operator as

L(j,k,l) = B(n)⊗ ω

with ω being the total multipole moment of the lattice cell. Since all boxes are images of the
original simulation box at the center, the multipole expansion of each image box is given by

ω(n) ≡ ω(0) .

The contribution from all lattice cells for 1D-, 2D- and 3D-periodic systems reads

1D : L∞ =
∑

|max(0,0,l)|>1

B((0, 0, l))⊗ ω(a)

2D : L∞ =
∑

|max(j,k,0)|>1

B((j, k, 0))⊗ ω(a)

3D : L∞ =
∑

|max(j,k,l)|>1

B((j, k, l))⊗ ω(a) .

All nearest neighbors for the central box, i.e. the first layer are excluded to guarantee conver-
gence of the expansions. Since the B operator is a linear operator, it allows us to precalculate
B for the entire lattice before applying the unique multipole expansion ω. However, applying a
direct space summation like in the last set of equations is difficult, because the convergence of
the lattice sum is very slow. However, the evaluation of the lattice sum can be rapidly achieved
by introducing a hierarchy of supercells with variable size (2ws+1)j×(2ws+1)j×(2ws+1)j .
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3. FMM AND PERIODIC BOUNDARY CONDITIONS

Since we are only interested for the case where ws = 1, we use a hierarchy of size 3j × 3j × 3j .
We define an interaction set as follows. For the first interaction set Λ0 we include all lattice
cells in the far field of the central (0,0,0) cell but ignore all cells in the near field of the supercell
31 × 31 × 31. This rule is equivalent to the partitioning rule in chapter 2 for open boundaries.
We write

L∗ =
∑
Λ0

B((j, k, l)) .

The far field contribution from region Λ0 is then

L0 = L∗ ⊗ ω .

We proceed on the next supercell level for j = 1 with cell size 31 × 31 × 31. Again we only
add cells which are in the near field of the 32 × 32 × 32 supercell. The total contribution to the
lattice operator L after this step reads

L1 = L∗ ⊗ ω + SL(L∗)⊗ [O∗ � ω] .

The second contribution demands scaled local moments L∗. At the same time we combine
multipole moments from a 30 × 30 × 30 supercell into multipoles of a 31 × 31 × 31 supercell.
O∗ is defined for each periodic boundary condition by

1D : O∗ =
∑

Ω1=−1≤l≤1

A((0, 0, l))

2D : O∗ =
∑

Ω1=−1≤j,k≤1

A((j, k, 0))

3D : O∗ =
∑

Ω1=−1≤j,k,l≤1

A((j, k, l)) .

Now, we move on to the next level of supercells given by

L2 =L∗ ⊗ ω+

SL(L∗)⊗ [O∗ � ω]+
SL(SL(L∗))⊗ [SO(O∗) � [O∗ � ω]] .

Applying the operator properties from (3.5) yields expressions of the form Ln = Ln ⊗ ω. We
identify the following partial sums

L0 = L∗
L1 = L∗ + SL(L∗)⊗O∗
L2 = L∗ + SL(L∗)⊗O∗ + SL(SL(L∗))⊗ [SO(O∗) � O∗]

= L∗ + SL(L∗ + SL(L∗)⊗O∗)⊗O∗
= L∗ + SL(L1)⊗O∗ .
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(a) Llm 1D, z-axis (b) Llm 2D, xy-axes (c) Llm 2D, yz-axes (d) Llm 3D, xyz-axes

Figure 3.5.: Depending on the periodicity and the periodic axes the lattice operator Llm has only few
non-zero entries. These elements are shown in the gray boxes. Empty boxes represent zero
entries.

Again, the operator properties allow us to establish an infinite recursion scheme to set up the
lattice sum Ln for increasing n with

L0 = L∗
Ln+1 = SL(Ln)⊗O∗ + L∗ .

The full infinite lattice is defined via the lattice operator

L = L∞ .

Since we want to use the result on a limited precision machine, we halt the recursion after a
certain precision ε has been reached. The convergences of the lattice sum L increases with
increasing multipole order. Therefore, we have to perform the precision check for the low-
order elements. Since, by definition, the monopole element L00 does not converge and due to
symmetry not all elements Llm are non-zero, we halt the recursive scheme when

1D : |Ln+1
2,0 − Ln

2,0| < ε

2D : |Ln+1
4,0 − Ln

4,0| < ε

3D : |Ln+1
4,0 − Ln

4,0| < ε .

The precision goal we used to obtain the unique lattice operator was set to ε = 10−64. The
results of the calculation can be found in the appendix. Due to symmetry considerations many
elements of L are zero. The non-zero elements are shown in figure 3.5d. We selected the
periodicity axes in such a way that the number of non-zero items is minimal.
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3. FMM AND PERIODIC BOUNDARY CONDITIONS

(a) Expand simulation box (gray) to infinity in all periodic dimensions.

(b) Define first interaction set (light gray) and drop near field

(c) Combine multipole expansions

(d) Define second interaction set (light gray)

(e) Size of interaction sets

Figure 3.6.: 1D representation for the computation of the lattice sum. Figure (a) shows the expansion
of the (grayed) central simulation box to infinity. Figure (b) shows the dropped nearest
neighbors of the simulation box and the first interaction set. The second interaction set (c)–
(d) is generated by combining multipole expansions. Figure (e) shows the increasing size of
the interaction sets used with increasing distance to the central simulation cell.
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3.6. IMPLEMENTATION DETAILS

(a) Periodic subsets j = 1, 2 and partly 3 for sepa-
ration criterion ws = 1

(b) Periodic subsets j = 1 and partly 2 for separa-
tion criterion ws = 2

Figure 3.7.: Interaction set for (a) ws = 1 with size 3j × 3j × 3j and (b) ws = 2 with size 5j × 5j × 5j .

3.6. Implementation Details

To establish an FMM with periodic boudary conditions we have to add or modify certain parts
of the implementation in section 2.6. The error-controlled FMM for open boundaries can be
described by the following flow chart:

The periodic FMM needs changes to the scheme. In addition to the original approach we have to
add contributions from the lattice and the first layer around the central box. The changes occur
in

• the first stage of the error control,
• pass 5,
• the second stage of the error control and
• pass 2.
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3. FMM AND PERIODIC BOUNDARY CONDITIONS

Pass 1 has to be modified slightly to shift the multipole expansions up the tree until depth d = 0
is reached. In a related manner, pass 3 has to collect Taylor-like expansions starting from tree
depth d = 0.

3.6.1. Additional FMM Pass for the Lattice Operator

Our current implementation uses precomputed values for the lattice operator L in pass 2. Since
the implementation is based on cubic boxes, currently no other cell shapes are available. The
extension to different lattice cell shapes demands extra effort for the lattice operator L. It is pos-
sible to precompute L for all required lattices or compute L directly in the simulation. Therefore,
an additional pass has to be added prior to the error control to compute the missing L terms. The
workload of the additional pass is independent of the number of particles. It has a complexity of
O(p4) with respect to the order of poles p.

3.6.2. Modifications of FMM Pass 1–5

Pass 1

All multipole expansions have to be shifted to the highest level d = 0. The total charge of the
simulation cell (ω00) has to be zero in order to guarantee convergence.

Pass 2

In addition to the interactions inside the simulation box, far field contributions from image boxes
have to taken into account. These interactions will occur on all tree levels. Furthermore, inter-
actions from the lattice with the multipole expansion of the simulation box have to calculated.

Pass 3

The computed Taylor-like expansions in pass 2 have to be shifted into the lowest level boxes.
Since these expansions were generated on all levels, pass 3 translates expansions starting at
depth d = 0.

Pass 4

No changes occur in pass 4. All computed and shifted local moments are combined with the
multipole moments to yield the far field energy, forces and potentials of the system

Pass 5

Similarly to pass 2, the near field computation has to take into account interactions from replica
particles in image boxes.
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3.6.3. Fractional Tree Depth and Periodic Boundary Conditions

The FMM for open systems allows to use fractional instead of integral tree levels by shrinking
the full set of particles accordingly. However, the periodic FMM does not allow such a feature,
since a shrinking operation moves particles from image boxes into the simulation box. Since we
cannot create empty boxes by shrinking, the tree depth will take only integral values.

3.6.4. Dipole Correction

Until now we neglected the conditionally convergent dipole-dipole interactions. However, since
we added the lattice in a spherical manner the element L20 vanishes. A slabwise summation
would yield a different result with L20 �= 0. Unfortunately, the results of such a periodic FMM
computation are still not comparable with a standard Ewald summation scheme at this stage
[61]. To compare results we have to transform the obtained extrinsic energy into an intrinsic
energy obtained by an Ewald summation via

Ein = Eex − 2π

3
d · d

with d =
∑

i qiai being the dipole moment of the simulation cell. For the gradient at particle
position xi the correction is given by

∇iEin = ∇iEex − 4π

3
qid . (3.6)

The same correction has to be applied for the potential

Φin(R) = Φex(R)− 4π

3
(R−R0) · d+

2π

3
Q

with Q =
∑

i qiai ·ai being the trace of the Cartesian quadrupole tensor and R0 being the origin
of the coordinate system.

3.7. Periodic Boundaries and Error Control

The derived lattice operator allows for a straightforward implementation of the error control
scheme developed for open boundaries. The two-stage model remains intact, the derivation can
be performed almost identical.

3.7.1. Stage I of the Error Estimation Scheme

We rewrite the expressions for a bipolar box-box expansion as

Elattice =
1

2

∞∑
l=0

l∑
m=−l

∞∑
j=0

j∑
k=−j

(−1)j ωlm(a1)Ll+j,m+k ωjk(a2) .
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3. FMM AND PERIODIC BOUNDARY CONDITIONS

Now, box 1 represents the simulation box and box 2 represents a box in the lattice. The lattice
operator converts each contribution from all equal lattice boxes, i.e. box 2, into a single local
expansion around the center of the simulation box. We define averaged multipole moments with

ω̄lm =

(
N∑
i=1

|qi|
) 1∫

0

1∫
0

1∫
0

(a
2

)l ∣∣∣P̃lm(cosα)
∣∣∣ dx dy dz .

Again, we add a correction term to compensate for the overestimation of the averaged multipole
moments

(j + l)!

j! l! 2j+l+1
.

In contrast to the error scheme with open boundaries we do not need derive a special B operator,
since all contributions are already convoluted inside the lattice operator Llm. The averaged
chargeless version of the multipole expansions allows us to derive a corresponding lattice energy
as follows

Ēlattice =
1

2

∞∑
l=0

l∑
m=−l

∞∑
j=0

j∑
k=−j

(j + l)!

j! l! 2j+l+1
Ōlm|Ll+j,m+k|Ōjk .

In contrast to open boundary conditions, we do not need to introduce the element g00 for the
first term with l = j = 0 since

g00 = |L00| = 0 .

However, the remaining elements gjl for the inner sums in the second term are necessary and
are defined by

gjl =
l∑

m=−l

j∑
k=−j

(j + l)!

j! l! 2j+l+1
Ōlm|Ll+j,m+k|Ōjk .

Since the element g00 vanishes, we do not distinguish between the g00 and the other gjl terms,
despite the fact that the correction term is not valid for g00. The energy Ē is then found to be

Ēlattice =
1

2

∞∑
l=0

∞∑
j=0

gjl .
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3.7. PERIODIC BOUNDARIES AND ERROR CONTROL

However, we need to introduce a truncation to proceed further, since an FMM implementation
needs a finite order of poles p. Therefore, we split the infinite sums in the last equation as follows

Ēlattice =
1

2

∞∑
l=0

∞∑
j=0

gjl

=
1

2

p∑
l=0

p∑
j=0

gjl︸ ︷︷ ︸
Lattice Energy

+
1

2

p∑
l=0

∞∑
j=p+1

gjl︸ ︷︷ ︸
Lattice Error

+
1

2

∞∑
l=p+1

p∑
j=0

gjl︸ ︷︷ ︸
Lattice Error

+
1

2

∞∑
l=p+1

∞∑
j=p+1

gjl︸ ︷︷ ︸
Lattice Error

(3.7)

= Ēlattice(p) + ΔĒA1(p) + ΔĒA2(p) + ΔĒB(p)︸ ︷︷ ︸
ΔĒlattice(p)

The lattice energy error reads

ΔĒlattice(p) =
1

2

p∑
l=0

∞∑
j=p+1

gjl +
1

2

∞∑
l=p+1

p∑
j=0

gjl +
1

2

∞∑
l=p+1

∞∑
j=p+1

gjl

=
1

2

p∑
l=0

∞∑
j=p+1

gjl +
1

2

∞∑
l=p+1

∞∑
j=0

gjl .

Again, we precompute the error terms ΔĒ(p) up to order 50. To apply the scheme in an FMM
computation, we have to calculate the total absolute charge for all particles N in the simulation
box with

Q =
N∑
i=1

|qi| .

The number of particles in box 1 and box 2 are identical, since each lattice image box is a
replica of the original simulation box. The requested energy error couples to our precomputed
error terms with

ΔEreq ≥ Q2ΔĒlattice(p) .

The order of poles p sufficient to satisfy the requested error bound is obtained similarly to the
open boundary case. Since we reduced the interaction of the simulation box with the lattice to
just one box-box interaction, we obtained a much simpler form for the final equation.

3.7.2. Stage II of the Error Scheme

In comparison to the second stage of the error scheme with open boundaries, we can not use
the rotation-based approach O(p3) for the convoluted lattice operator L. Instead the O(p4)
operators are applied. Since this step does not depend on the number of particles, but the order
of poles p, the O(p4) overhead is still negligible.
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3. FMM AND PERIODIC BOUNDARY CONDITIONS

The lattice energy is defined by

Elattice =
1

2

∞∑
l=0

l∑
m=−l

∞∑
j=0

j∑
k=−j

(±1)j+l(−1)jωlm(a1)Ll+j,m+k ωjk(a2) . (3.8)

We define a charge multipole expansion as

Olm(a) = alP̃lm(cosα)e−imβ .

Box-Box Representation of the Lattice Energy

Now we can replace the multipole moments in (3.8) with the chargeless version of box A with
Olm(a1) and box B with Ojk(a2). We obtain two energy formulas, depending on the relative
position of the two boxes A and B. The energies read

EA-B =
1

2

∞∑
l=0

∞∑
j=0

l∑
m=−l

j∑
k=−j

(−1)jOlm(a1)Ll+j,m+kOjk(a2)

EB-A =
1

2

∞∑
l=0

∞∑
j=0

l∑
m=−l

j∑
k=−j

(−1)lOlm(a2)Ll+j,m+kOjk(a1) .

We label the inner sums of the first equation as

Ŝlj(a1,a2,R) =

l∑
m=−l

j∑
k=−j

(−1)jOlm(a1)Ll+j,m+kOjk(a2)

and due to symmetry the inner sums of the second equation as

(−1)j+lŜlj(a2,a1,R) =
l∑

m=−l

j∑
k=−j

(−1)jOlm(a2)Ll+j,m+kOjk(a1) .

Since we do not want to store any information depending the relative position of a1 and a2, we
introduce a general position-independent Slj as

Slj(a1,a2,L) = (±1)j+lŜlj(a1,a2,L) .

Following the scheme from the first stage, we now split the outer infinite sums as follows

∞∑
l=0

∞∑
j=0

. . . =

p∑
l=0

p∑
j=0

. . .+

p∑
l=0

∞∑
j=p+1

. . .+

∞∑
l=p+1

p∑
j=0

. . .+

∞∑
l=p+1

∞∑
j=p+1

. . . .
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Hence, some error terms from the interaction of box A with box B are identical to error terms
from the interaction from box B to box A. The energy for the interaction of box A with box B
becomes

ΔEA-B =
1

2

p∑
l=0

∞∑
j=p+1

[
Slj(a1,a2,L) + (−1)j+lSlj(a2,a1,L)

]
+

1

2

∞∑
l=p+1

∞∑
j=p+1

Slj(a1,a2,L) .

The energy for the interaction of box B with box A yields

ΔEB-A =
1

2

p∑
l=0

∞∑
j=p+1

[
(−1)j+lSlj(a2,a1,L) + Slj(a1,a2,L)

]
+

1

2

∞∑
l=p+1

∞∑
j=p+1

(−1)j+lSlj(a2,a1,L) .

By adding the two energies EA-B and EB-A, we obtain

ΔE =
1

2

p∑
l=0

∞∑
j=p+1

[
Slj(a1,a2,L) + (−1)j+lSlj(a2,a1,L)

]
+

1

4

∞∑
l=p+1

∞∑
j=p+1

[
Slj(a1,a2,L) + (−1)j+lSlj(a2,a1,L)

]
.

To simplify the last double sum, we take all terms with j ≥ p+1 into account and drop all terms
l ≥ p+ 2. The equation yields

ΔE ≈1

2

p∑
l=0

∞∑
j=p+1

[
Slj(a1,a2,L) + (−1)j+lSlj(a2,a1,L)

]
+

1

4

∞∑
j=p+1

[
Sp+1,j(a1,a2,L) + (−1)j+p+1Sp+1,j(a2,a1,L)

]
. (3.9)

Now, both sums contain contributions Slj(a2,a1,R) expressed as interactions from box B with
box A. We therefore neglect these terms in the following procedure, but include interactions
from box A and B and again the interaction from box B to A.

Following a similar scheme as proposed in the first stage of the error control, we perform the
summation of (3.9) stepwise with respect to l. For all values l < p+1 only the first term of (3.9)
needs to be considered. For the last term l = p+1 only the last term of (3.9) has a contribution.
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Starting with the contribution from the first sum for l = 0 gives

ΔEl=0 =
1

2

∞∑
j=p+1

S0j(a1,a2,L) .

It simplifies to the zeroth order energy with

ΔEl=0(p) =
1

2

∣∣∣∣∣∣
∞∑

j=p+1

j∑
k=−j

(±1)jLjkOjk(a2)

∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣
∞∑

j=p+1

j∑
k=−j

(±1)jLjka
j
2P̃jk(cosα2)e

−ikβ2

∣∣∣∣∣∣ .
Grid Box A and Radial Parts of Box B

We proceed and establish a grid in box A with 333 grid points (aG, αG, βG) and reduce all
coordinates in box B to their radial distance a2 and positions for the angles α2 and β2 on the
connecting lines of the box. The energy error ΔE(p) can now computed stepwise for each grid
point starting with l = 0

F0p(aG, αG, βG) = max
s∈{−1,1}

∣∣∣∣∣∣
∞∑

j=p+1

j∑
k=−j

sjajGP̃jk(cosαG)e
−ikβGLjk

∣∣∣∣∣∣ .
For all higher elements Fqp with q ≤ p+ 1, we store the maximum contribution of all possible
angles in the non-grid box as

Fqp(aG, αG, βG) = max
n∈{1,...,8}

max
s∈{−1,1}

∣∣∣F̃n
qp(aG, αG, βG)

∣∣∣
with

F̃n
qp(aG, αG, βG) =

q∑
m=−q

∞∑
j=p+1

j∑
k=−j

sjP̃qm(cosα2n)e
−imβ2nLl+j,m+ka

j
GPjk(cosαG)e

−ikβG .

Again we only store the largest contribution for the error Fqp as

Fqp(aG, αG, βG) =
1

1 + δp+1−q,0
max

n∈{1,...,8}
max

s∈{−1,1}

∣∣∣F̃n
qp(aG, αG, βG)

∣∣∣ .
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We follow the symmetry considerations in chapter 2, section 2.7 and define Hqp as

H0p(x, y, z) =
∑

perm{x, y, z}
F0p(x, y, z)

...

Hqp(x, y, z) =
∑

perm{x, y, z}
Fqp(x, y, z)

with x, y, z ∈ {
0,± 1

32 , . . . ,±29
32 ,±31

32

}
, p ∈ {0, . . . , 50} and q ∈ {0, . . . , p + 1}. Again,

perm{x, y, z} represents all possible permutations of the coordinates x, y, z.

Radial Part of the Non-Grid Box B

The remaining radial part from box B with a2 is handled via fq functions

fq =
N∑
i=1

|qi|aqi

To link the error terms from the grid box Hqp(x, y, z) with the radial part of the non-grid box,
we set up a corresponding grid structure Qqp(G) storing all contributions from fq of box 2 for
any non-empty grid box (box 1). The elements fq do not depend on p, therefore an element
Qq(G) is valid for any p. We define

Qq = qG · fq
with qG =

∑NG
i=1 |qi| being the charge of grid box G.

Linking Box A with Box B

Since we derived the error terms for the grid and non-grid box separately, we now have to
combine both contributions to obtain the optimal order of poles plattice. Therefore, we calculate
elements Tq by

T0(G) = Q0(G) ·H0p(G)

T1(G) = Q1(G) ·H1p(G)

...

Tq(G) = Qq(G) ·Hqp(G)

Tq+1(G) = Qq+1(G) ·Hq+1,p(G) .
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Finally we add up all error contributions from the grid points G and the contributions stored for
each different pole

ΔEreq ≥
∑
G

q+1∑
i=0

Ti(G) . (3.10)

The order of poles plattice necessary for the computation of the lattice energy is performed by
increasing q until the right hand side of (3.10) is less or equal to ΔEreq. Since we only use one
order of multipoles in our code, we find the optimal order of poles for the simulation by

p = max(plattice, pbox)

with plattice being the order of poles necessary to compute the periodic lattice and pbox being the
order of poles necessary to compute the contributions from the central simulation box.

Final FMM Parameter Set

After the error control stage I and II is conducted and we obtained the parameter set (ws, d, p),
we can start the actual FMM calculation, computing the total energy, potentials and forces of
the given particle system. This step does not differ from other FMM implementations and is
described briefly in section 2.5 for open boundaries and again in section 3.6.2 for the additional
steps with periodic boundaries.

In the next chapter we verify the scaling and precision of our error-controlled FMM imple-
mentation and compare against established competitor algorithms.
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Implementation

Fast multipole methods have been available since 1987. However, the FMM rarely earned huge
appreciation in the scientific community. Many scientific articles claimed that the advantage of
the linear complexity will only be visible for very large systems with millions or even billions
of particles [62]. These authors stated that large prefactors and the schemes to obtain the FMM
parameter set will slow down calculations for a moderate number of particles. Since these
statements strongly depend on the implementation and not on the FMM theory itself, in this
chapter we will shed light on this claim and compare our error-controlled implementation against
freely available codes from other groups dealing with long-range interactions. Thereby, we
will show that the expected theoretical linear scaling along with high precision calculations are
feasible – for open and mixed periodic boundary conditions as well.

4.1. Scaling

In the following section, we present the scaling of the derived algorithm with respect to the
number of particles N . All tests were performed on JUMP, an IBM Power6 system with 4.7GHz,
unless noted otherwise. We use five homogeneously distributed simulation sets. The smallest
set contains only 4096 particles. Since the computation time for this configuration is around
0.1 seconds, an even smaller test case will not give any additional information concerning the
scaling. The largest configuration contains about 16 million particles. All five sets listed in table
4.1, are used in a computation with mixed or full boundary conditions. The results are illustrated
in figure 4.1.

Crossover Point with Direct Summation

The crossover point between an FMM and a direct summation can only be specified for open
boundaries, since a direct summation is not possible for the periodic case due to the infinite

Periodicity Number of Particles Precision ΔE

Open, 1D, 2D, 3D 84 – 85 – 86 – 87 – 88 1.00 · 10−05

Table 4.1.: Number of particles N used in the scaling test.
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number of particles in such systems. For open systems, the crossover point is determined at
around 500 particles for low precision, i.e. ΔE = 10−3, and 4000 particles for high precision
calculations, i.e. ΔE = 10−12. The computation time of the error control scheme is included
therein.

Largest Test Set

Especially simulations in the field of astrophysics demand huge particle numbers. Therefore,
we performed a computation with approximately 20 billion particles to check whether the im-
plementation is capable of dealing with such an amount of data. The test set contained twice
the number of particles used in the Millennium simulation [63]. The computation of the energy
and forces took 2 days and 9 hours for one time step on a 1.6 GHz Itanium CPU with 1 TB of
main memory. The precision was set to ΔE = 10−2, which is sufficient for most astrophysical
calculations. This test example shows that this FMM implementation is capable of computing
even very large particle ensembles with limited resources.

4.2. Precision Verification

The precision of calculations with periodic boundaries can be verified directly against analyti-
cally known or rapidly converging solutions. That is, a Madelung particle system [64] serves
as reference system. The Madelung constant characterizes the potential Φ at the origin due
to the periodic lattice. The reference energy is determined by adding up all contributions
1
2

∑N
i=1 qiΦ(ri) inside the simulation box. The size of the simulation box for any periodicity

can be increased by adding more and more particles from replica boxes. Thereby, it is possible
to verify the precision of the algorithm even for millions of particles. All precision checks are
performed for several simulation box sizes up to approximately 16 million particles. The results
do not show any additional errors with increasing system size, except for minor fluctuations at
machine precision for 88 particles. The data plotted in figure 4.2 is taken from test runs with the
smallest possible Madelung particle sets, which can be constructed as follows.

Definition of 3D Periodic Systems

In three dimensions an ideal Madelung system consists of at least 8 particles as depicted in figure
4.3c. We define a simple periodic lattice by a three-dimensional Epstein zeta function [65], as
in section 3.3. This function is given by

M3D(s) =
∑′

i,j,k∈Z

(−1)i+j+k

(i2 + j2 + k2)s
.

Unfortunately, no analytical solution for M(s) is known. However, a rapidly converging double
sum is available [66]. Since we are dealing with a Coulomb potential, the parameter s takes the
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(a) Open boundaries, ΔE = 10−5
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(b) 1D periodic boundaries, ΔE = 10−5
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(c) 2D periodic boundaries, ΔE = 10−5
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(d) 3D periodic boundaries, ΔE = 10−5

Figure 4.1.: Scaling of the FMM with open, 1D, 2D and 3D periodic boundary conditions. The solid
black lines represent the actual periodicity. The remaining shaded lines show that the impact
of the periodic boundary is limited to a factor of two, independent of the number of particles.
All results show the optimal O(N) scaling compared to the reference scaling denoted by
a dashed line. When increasing the number of particles for each plotted point by a factor
of eight, the computation time increases roughly by a factor of eight. The difference in
the runtime between open, 1D, 2D and 3D periodic systems originates from the increasing
number of boxes at the boundary of the central box. For open systems, we do not have
any interacting boxes across the boundaries and are allowed to apply a fractional tree depth.
Therefore, the computation time for an open system will always be minimal compared to a
periodic computation.
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value s = 1/2. The double sum representation of M(1/2) reads

M3D(1/2) = −12π

∞∑
n=1

∞∑
p=1

sech2
(π
2

[
(2n− 1)2 + (2p− 1)2

]1/2)
≈ −1.747 564 594 633 182 190 636 212 035 544 4 . . . .

Using the computer algebra system MAPLE [67], we compute 100 digits of this reference con-
stant M(1/2), which is sufficient for double and quadruple precision calculations.

Definition of 2D Periodic Systems

For 2D periodic systems, a Madelung counterpart [68] with four particles exists with

M2D(s) =
∑′

i,j∈Z

(−1)i+j

(i2 + j2)s
.

The constant M(1/2) can be written in analytical form

M2D(1/2) = −4β(1/2) · η(1/2)
≈ −1.615 542 626 712 824 723 867 923 332 758 6 . . . ,

where β(s) denotes the Dirichlet beta function and η(s) denotes the Dirichlet eta function [69].

Definition of 1D Periodic Systems

Madelung systems for 1D periodic systems consist of at least two particles. The generating
function for such a periodic lattice is given by

M1D(s) =
∑′

i∈Z

(−1)i

i2s
.

The reference constant M(1/2) [70] reads

M1D(1/2) = −2 ln 2

≈ −1.386 294 361 119 890 618 834 464 242 916 4 . . . .

Verification of Precision and Order of Poles

In a first test, we increase the order of poles from 0 to 50 and check the achieved accuracy.
The double precision (dp) test shows that 25 poles are sufficient to reach machine precision
[71] εdp = 2−52 ≈ 2.22 × 10−16 for 1D and 2D periodic boundaries. The accuracy for 3D
periodic systems is slightly lower, but still near machine precision. The quadruple precision
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4. PERFORMANCE DETAILS OF THE FMM IMPLEMENTATION

(qp) test shows similar results. To reach the machine precision limit εqp = 2.47 × 10−32, 40
to 50 multipoles are necessary. Again, for 3D periodic systems the ultimate accuracy is slightly
lower. The results of these tests are illustrated in figures 4.2a and 4.2b. The target machine is an
IBM Power6 system having only 105 significant bits for quadruple precision instead of 112 bits.

Verification of Precision and Energy Error Bound

In a second test, we do not adjust the order of poles manually. Instead we use our error-control
scheme to obtain the optimal parameter set for runtime and precision. We increase the requested
relative energy error, starting from ΔE = 1 by an order of magnitude, until we pass machine
precision ΔE = 1× 10−17. Again the calculation is performed in quadruple precision as well.
Figures 4.2c and 4.2d show that the accuracy using the adjusted parameters does never exceed
the user-requested error bound. The order of poles is minimal for almost every data point. A
further reduction of multipoles for most data point would violate the requested error bound.
That is, the error-control scheme obtains the minimal order of poles possible for the requested
precision.

4.3. Benchmark

Finally, we compare our implementation against other available Coulomb solvers. The results
of this section are taken from a performance comparison conducted at JSC [72]. For this bench-
mark only the algorithmic performance without any additional parallelization is reviewed. The
consumable memory is limited to 6 GB. A full comparison with a larger variety of test cases and
precision thresholds can be found in [73]. In this work we will limit ourselves to the case with
periodic boundary conditions.

Test Case

The test case consists of an even number of randomly distributed particles inside a unit box
with charge qi = ±1. To ensure convergence of the periodic system, the total charge must
be Q =

∑N
i qi = 0. The total number of particles is limited to 46656, since the competi-

tor implementations exceed the provided resources for larger test sets. By contrast, the FMM
implementation itself can handle several million particles with the provided resources.

Competitors

We compare our implementation against codes from the ESPRESSO software package [74].
Namely, P3M for 3D periodic systems, MMM2D and ELC/P3M for 2D periodic systems and
MMM1D for 1D periodic systems. The asymptotical complexity is composed in table 4.2 Each
method includes an automatic tuning procedure for the forces. Since we compare timings for
a given relative energy error, we conduct several runs of these codes with different force error
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(b) Verification with quadruple precision

10
-15

10
-12

10
-9

10
-6

10
-3

10
0

Requested Relative Error ΔE

10
-15

10
-12

10
-9

10
-6

10
-3

10
0

FM
M

 R
el

at
iv

e 
E

rr
or

 Δ
E

10
-12

10
-6

10
0

10
-12

10
-6

10
0

Madelung 1D
Madelung 2D
Madelung 3D
Max. Error
Precision 2

-52

(c) Energy error bound with double precision
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(d) Energy error bound with quadruple precision

Figure 4.2.: Precision of FMM calculations with periodic boundary conditions. Approximately 25 poles
are sufficient to obtain results in the range of double precision with 52 mantissa bits (a). For
quadruple precision with 105 mantissa bits, 50 poles are sufficient to obtain the maximum
precision (b). The requested energy error bounds, pictured as dashed lines in (c) and (d) are
never exceeded.

(a) Madelung 1D (b) Madelung 2D (c) Madelung 3D

Figure 4.3.: All reference Madelung systems consist of alternating charges q ∈ {−1,+1}. The illustrated
simulation box is replicated along the black lines connecting the charges +1 and −1, repre-
senting an infinite number of particles on a line (a), in a plane (b) or in the R

3 volume (c),
respectively.
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4. PERFORMANCE DETAILS OF THE FMM IMPLEMENTATION

Method Periodicity Complexity Error Bound

FMM 1D, 2D, 3D O(N) energy
MMM1D [75] 1D O(N2) force
MMM2D [76] 2D O(N5/3) force
ELC/P3M [77] 2D O(N logN) force
P3M [78] 3D O(N logN) force

Table 4.2.: Asymptotic complexity and error bound measure of the compared Coulomb solvers.

Timings t [s] FMM Timings t [s]

Method Test Case N Tuning Solving Tuning Solving

MMM1D 1D Madelung 512 0.6 0.06 0.005 0.002
MMM1D 1D Madelung 4096 43.6 3.54 0.018 0.011
MMM1D Cube 4096 89.7 4.34 0.041 0.033
ELC/P3M 2D Madelung 576 9.9 0.03 0.003 0.001
ELC/P3M 2D Madelung 4096 328.0 0.46 0.013 0.013

P3M 3D Madelung 512 73.3 0.04 0.003 0.003
P3M 3D Madelung 4096 311.8 0.32 0.023 0.021
P3M Cube 4096 429.1 0.34 0.039 0.065

Table 4.3.: Tuning and solving time of established Coulomb solver compared to the overall FMM run-
time. Even for small particle systems the tuning time of other codes are substantial. The FMM
and the inherent error-control scheme provide the lowest computation times including error
control.

bounds. Then, we compute the corresponding energy error bounds, and use the results to set up
the energy error bound for the FMM. Due to the fact, that the tuning procedures of MMM1D,
MMM2D, ELC and P3M are not performed in every time step of the computation, we exclude
the runtime of the parameter estimation scheme as well. However, for the FMM we do not need
to exclude the runtime of the error control scheme, since we do have a small overhead of the
error control scheme even for few particles. The runtime of the automatic tuning procedure and
the runtime and tuning time of the FMM can be found in table 4.3.

Results

The runtime of the different algorithms is reviewed in [73] for several energy error bounds,
starting from ΔE = 10−3 up to ΔE = 10−11. We present the results for a medium precision of
ΔE = 10−5 for two- and three-dimensional periodicities and high precision ΔE = 10−11 for
one-dimensional periodicity only, since the left out runs qualitatively show the same behavior.
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For three-dimensional periodic systems up to 1500 particles, both algorithms roughly con-
sume the same runtime. For larger particle systems, the FMM outperforms P3M. In addition,
the P3M method does not reach a higher error bound than ΔE = 10−5.

For two-dimensional periodic systems two competitors, namely MMM2D and ELC/P3M, are
available. MMM2D is comparable in speed to the FMM for very small particle systems up to
256 particles. ELC/P3M does perform better and is comparable to the FMM up to 1000 particles.
For larger test cases with more particles the FMM exploits its linear complexity and performs
significantly faster.

The last test case for one-dimensional periodicity shows similar results. MMM1D consumes
roughly the same amount of time for up to 400 particles. Larger particle systems suffer from the
poor O(N2) complexity of the MMM1D algorithm.

The results for large particle systems are shown in figure 4.4. Finally, we can state that
the optimal theoretical complexity of the FMM can be utilized for N -body simulations and
allows to increase the number of particles significantly in a cubic simulation box for any kind of
periodicity. For any given precision, the FMM performs fastest for all system sizes starting with
only a few hundred particles.

4.4. Additional Features

The FMM is optimized to handle particle systems from several fields of research. Since the
requirements for a Coulomb solver, such as the FMM, differ for each scientific problem, not
all features can be discussed in the scope of this work. Therefore, we list the most important
additional features that were not mentioned in this thesis briefly. The majority of enhancements
were implemented to simulate highly clustered particle systems. The list starts with the most
general enhancements, which will affect homogenously distributed particle systems as well and
ends with features necessary to perform calculations in the field of laser-plasma physics.

• Available for single, double and quadruple precision
• Alignment of data for linear memory access
• Memory management preventing memory fragmentation for clustered systems
• Memory scaling with N , instead of tree depth Lmax or order of poles p
• Memory footprint below 50 Bytes per particle for p = 2
• Cache optimization for near and far field operators
• CPU optimization: far field operators utilize available FMAs
• Detachable FMM operators: M2M, M2L, L2L
• Supplemental P2L treecode operator for boxes with few particles
• Box management overhead below 1% of the computation time
• Interaction list compilation as sorted list without search
• Detachable error control for fast low precision calculations
• Interchangeable near field potentials: Coulomb potential or linear cusp potential
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(a) 1D Periodic System, FMM vs. MMM1D
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Figure 4.4.: Comparison of the FMM against MMM1D, MMM2D, ELC and P3M. For homogeneous
particle distributions the FMM outperforms other fast summation schemes. Especially for
1D and 2D periodic simulations, the optimal O(N) complexity of the FMM provides a sub-
stantial improvement over other algorithms.
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5. Conclusion and Future Directions

5.1. Conclusion

With early methods and approaches, the solution of the N -body problem posed severe limi-
tations to the number of particles used in a simulation. Due to the O(N2) complexity, large
particle ensembles could not be studied in a reasonable time period. With the advent of fast
summation methods in the 1960s to 1980s, those limitations were pushed to larger particle num-
bers. However, most of the developed schemes lack an a priori error bound. In 1987, Greengard
and Rokhlin proposed the Fast Multipole Method with optimal O(N) complexity and rigorous
error bounds. Unfortunately, the method comprises three additional parameters, which have to
be tuned in advance to obtain the desired scaling and precision. No analytical and still efficient
error bounds for arbitrary particle systems are known, so far. Therefore, the tuning of the pa-
rameter set has to be performed on-the-fly for every simulation step. Different approaches were
taken to circumvent this issue, one of them is described in this thesis.

In chapter 2, we introduced a uniform derivation of the FMM algorithm using a much simpler
notation than originally proposed. A two-stage error control scheme developed by Dachsel [50]
is presented as well. However, the first stage implies a correction factor, which has not been
proven to maintain the error bound. The second stage implies an assumption on error contribu-
tion of the interaction set. Both inconsistencies could be resolved. It is shown analytically that
both assumptions are valid and do not violate the error bound. In addition, for a homogeneous
systems, the minimal order of poles necessary for a certain precision was derived analytically.

In chapter 3, the FMM was successfully extended to periodic boundary conditions in one, two
and three dimensions. The universal lattice constants Llm were derived for one-, two- and three
dimensional cubic lattices in high precision. The requirements to preserve the optimal O(N)
scaling and to connect the error control scheme for open boundaries were met. We derived the
necessary modifications along with the new error control scheme for periodic boundaries. The
optimal O(N) complexity was maintained even for mixed boundary conditions.

In the last chapter, we performed the necessary benchmark tests to show that the implemented
structures still achieve linear scaling. The error estimation scheme was tested for several pre-
cisions with one-, two- and three-dimensional periodicity and revealed tight error bounds never
exceeding the requested threshold. The comparison against other Coulomb solver codes showed
superior scaling properties even for a small number of particles.

Finally, we can conclude that the presented FMM implementation provides an ideal Coulomb
solver for open and periodic boundary conditions. The scientific community may benefit from
this implementation, since algorithmic details, like tuning the FMM parameters are hidden from
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the user and will be adjusted automatically without affecting the computation time. Even high
precision calculations up to machine precision can be performed without degrading the runtime.
Furthermore, the developed FMM library is independent of third-party libraries, say FFTW or
BLAS, and has a small memory footprint.

The developed code provides a firm framework for simulations in the field of molecular
dynamics and astrophysics. It is well tested with real world examples and is used in a pro-
duction environment at Max Planck Institute for the Physics of Complex Systems in Dresden
[79, 80, 81, 82].

5.2. Future Directions

The FMM and especially the presented implementation offers a wide range of possibilities for
future enhancements. The following list depicts possible future directions for this implementa-
tion:

• Full parallelization of the code [83, 84]
• Extension to general potentials of the form r−n [85]
• Extension to one-component plasma calculations [86]
• Extension to periodicities with non-cubic simulation boxes
• Error control for the forces and the potential
• Extension to systems with dipoles instead of charges [87]

The ideal scaling and the superior sequential performance of the FMM are indispensable
requirements for all future directions. The parallelization of the FMM is the most vital issue and
will be addressed within the ScaFaCoS project [88].
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l m Ōlm

0 0 1.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 0× 10+00

2 0 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 0× 10+00

4 0 −6.076 388 888 888 888 888 888 888 888 888 888 888 888 888 888 9× 10−04

4 4 −4.340 277 777 777 777 777 777 777 777 777 777 777 777 777 777 8× 10−05

6 0 2.066 798 941 798 941 798 941 798 941 798 941 798 941 798 941 8× 10−06

6 4 −1.033 399 470 899 470 899 470 899 470 899 470 899 470 899 470 9× 10−06

8 0 2.664 233 010 912 698 412 698 412 698 412 698 412 698 412 698 4× 10−08

8 4 3.767 602 237 654 320 987 654 320 987 654 320 987 654 320 987 7× 10−09

8 8 1.345 572 227 733 686 067 019 400 352 733 686 067 019 400 352 7× 10−10

10 0 −1.060 147 815 790 176 901 288 012 399 123 510 234 621 345 732 5× 10−10

10 4 4.892 989 919 031 585 698 252 364 919 031 585 698 252 364 919 0× 10−11

10 8 4.077 491 599 192 988 081 876 970 765 859 654 748 543 637 432 5× 10−12

12 0 −1.399 537 380 973 005 352 965 670 425 987 886 305 346 622 806 9× 10−13

12 4 −1.234 134 326 318 241 713 827 031 287 348 747 666 207 983 668 3× 10−13

12 8 1.424 741 655 968 016 955 120 129 723 304 326 478 929 653 532 8× 10−14

12 12 −8.751 484 373 267 917 414 742 811 568 208 393 605 219 002 044 4× 10−17

14 0 9.918 348 956 370 306 403 375 186 443 969 512 752 581 535 650 3× 10−16

14 4 −4.171 540 884 591 040 634 360 740 180 846 000 951 821 057 641 2× 10−16

14 8 −7.584 619 790 165 528 426 110 436 692 447 274 457 856 468 438 5× 10−17

14 12 −2.917 161 457 755 972 471 580 937 189 402 797 868 406 334 014 8× 10−18

16 0 −6.898 541 667 295 929 079 355 195 750 828 077 832 953 857 437 7× 10−19

16 4 1.141 750 539 915 212 877 587 208 106 452 841 383 850 824 664 2× 10−18

16 8 −1.686 930 836 861 028 811 307 910 215 991 967 210 973 331 940 2× 10−19

16 12 −1.802 372 019 957 478 906 562 976 919 514 596 313 711 021 322 5× 10−20

16 16 1.861 954 566 071 775 729 920 430 701 977 888 753 833 699 713 3× 10−23

18 0 −2.349 516 002 320 344 973 685 058 771 508 339 423 007 997 823 7× 10−21

18 4 6.727 302 512 403 688 953 015 771 679 126 126 384 778 600 267 4× 10−22

18 8 5.039 130 372 498 612 291 221 247 842 666 173 914 636 045 860 6× 10−22

18 12 −2.538 604 721 661 769 416 232 366 671 368 349 579 161 735 949 9× 10−24

18 16 6.533 173 916 041 318 350 598 002 463 080 311 416 960 349 871 2× 10−25

20 0 3.934 798 872 544 174 981 882 536 980 622 681 026 062 887 993 1× 10−24

20 4 −3.382 538 200 640 741 116 500 133 088 363 849 242 836 078 872 4× 10−24

20 8 4.224 158 289 099 523 672 993 184 912 360 551 190 718 498 943 7× 10−25

20 12 1.189 225 242 839 065 363 215 210 153 099 716 893 809 165 959 3× 10−25

20 16 4.974 783 912 326 511 183 161 323 912 887 351 581 197 993 687 4× 10−27

20 20 −1.657 156 533 086 779 208 248 275 787 104 380 939 772 816 018 5× 10−30

Table A.1.: Averaged chargeless multipole moments Ōlm for a homogenously distributed particle system
inside a unit box with total charge Q =

∑∞
i=1 qi = 1.
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l m Llm

2 0 8.082 276 126 383 771 415 989 526 460 457 999 630 599 451 693 6× 10−01

4 0 1.772 532 246 881 756 463 905 543 349 937 640 066 739 884 136 1× 10+00

6 0 1.202 295 942 996 887 064 930 847 178 370 733 382 380 352 721 4× 10+01

8 0 1.619 567 974 952 697 706 556 473 109 017 085 575 592 558 564 8× 10+02

10 0 3.586 623 213 257 425 981 237 685 664 108 210 914 558 068 158 8× 10+03

12 0 1.175 597 796 629 048 537 535 289 981 272 694 379 418 371 282 4× 10+05

14 0 5.333 260 344 135 690 382 440 620 728 715 132 212 909 659 250 3× 10+06

16 0 3.195 829 630 218 132 633 113 762 230 287 582 205 028 306 347 5× 10+08

18 0 2.443 418 184 280 147 129 890 664 795 105 989 437 485 149 751 8× 10+10

20 0 2.320 662 442 643 474 513 636 486 394 994 172 927 521 838 413 5× 10+12

22 0 2.680 065 671 012 043 058 980 038 886 253 743 102 923 181 183 6× 10+14

24 0 3.698 307 224 343 398 304 098 927 152 679 744 744 623 336 748 3× 10+16

26 0 6.009 616 888 311 914 822 177 647 475 607 803 703 572 102 050 5× 10+18

28 0 1.135 806 479 353 612 288 448 329 536 880 984 569 532 259 100 9× 10+21

30 0 2.470 368 353 169 561 293 910 902 500 768 263 913 222 759 431 9× 10+23

32 0 6.126 501 680 296 544 447 284 919 102 519 967 395 502 570 761 6× 10+25

34 0 1.718 482 245 939 763 174 354 527 632 056 909 442 250 425 840 8× 10+28

36 0 5.413 217 009 265 466 591 467 282 132 417 883 654 079 081 125 7× 10+30

38 0 1.902 745 456 096 518 157 221 254 903 838 890 293 287 921 183 6× 10+33

40 0 7.420 706 719 506 456 303 035 205 746 047 194 586 644 117 231 3× 10+35

42 0 3.194 614 135 741 390 559 440 881 591 279 786 027 707 180 006 8× 10+38

44 0 1.511 052 463 710 709 654 471 879 559 629 321 548 825 933 854 4× 10+41

46 0 7.819 696 447 964 625 537 355 713 582 359 284 207 854 004 258 6× 10+43

48 0 4.410 308 783 683 000 655 281 503 546 993 278 137 255 706 817 7× 10+46

50 0 2.701 314 126 475 377 593 713 915 529 321 422 882 868 073 899 6× 10+49

52 0 1.790 971 264 812 866 837 947 624 571 469 202 318 946 523 599 0× 10+52

54 0 1.281 439 939 642 788 200 417 250 328 168 534 251 952 863 196 3× 10+55

56 0 9.867 087 534 117 336 516 110 792 879 668 841 474 536 195 295 0× 10+57

58 0 8.155 147 846 532 108 611 886 504 180 353 586 635 498 965 132 1× 10+60

60 0 7.217 305 844 017 340 588 142 510 100 595 776 181 220 242 913 7× 10+63

Table A.2.: Non-zero high precision coefficients Llm for cubic 1D periodic systems.
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l m Llm

2 0 1.797 422 737 979 606 871 425 168 454 745 963 191 097 381 805 2× 10+00

4 0 2.349 346 404 583 329 186 258 405 792 818 084 553 190 924 469 0× 10+00

4 4 1.604 987 200 845 380 002 407 942 643 682 803 942 848 481 601 8× 10+01

6 0 8.882 263 548 147 084 246 240 135 691 775 708 527 592 857 769 2× 10+00

6 4 3.220 589 033 162 925 356 576 340 186 273 781 478 191 205 872 6× 10+00

8 0 1.380 144 487 047 449 672 641 392 183 572 404 509 962 469 710 9× 10+02

8 4 1.227 678 963 816 241 808 486 636 372 422 657 735 077 862 293 0× 10+02

8 8 1.078 667 598 637 292 590 273 066 840 357 080 405 868 758 726 7× 10+04

10 0 2.165 806 347 210 116 496 745 264 250 097 006 229 232 175 477 8× 10+03

10 4 1.546 663 515 968 671 757 393 495 334 711 681 848 420 816 663 0× 10+01

10 8 −9.785 756 849 360 865 728 339 599 084 119 378 786 137 775 666 7× 10+03

12 0 1.598 019 973 372 856 838 618 981 311 669 383 509 347 273 036 1× 10+05

12 4 1.103 683 169 310 599 243 246 141 080 798 803 618 309 098 706 3× 10+05

12 8 4.303 842 787 865 130 279 920 729 264 630 707 980 343 456 665 7× 10+05

12 12 8.736 315 496 702 659 216 015 096 919 670 210 809 673 623 865 5× 10+07

14 0 4.392 284 573 648 583 640 732 888 271 441 448 519 223 714 611 4× 10+06

14 4 −1.888 692 716 650 118 963 136 673 285 503 138 243 957 898 221 7× 10+06

14 8 −1.450 922 800 380 728 348 289 821 337 066 626 085 326 879 494 9× 10+07

14 12 −2.725 386 102 343 095 947 152 371 803 830 225 020 098 715 040 5× 10+08

16 0 4.103 912 081 964 717 008 539 452 068 006 723 436 733 880 556 9× 10+08

16 4 1.196 930 011 890 428 992 944 079 421 078 321 668 930 933 156 2× 10+08

16 8 7.783 019 100 968 639 615 889 981 196 228 172 732 465 170 756 4× 10+08

16 12 1.090 776 974 897 381 759 526 168 866 801 397 999 819 363 437 0× 10+10

16 16 3.079 716 907 636 877 904 110 948 574 642 234 133 795 136 946 1× 10+12

18 0 2.079 412 301 782 584 720 309 192 850 084 927 791 580 008 931 4× 10+10

18 4 −8.143 684 568 934 241 063 913 438 944 481 334 294 725 470 756 6× 10+09

18 8 −2.098 504 440 998 830 120 353 196 600 977 688 698 563 700 166 4× 10+10

18 12 −4.436 726 028 931 628 068 530 826 894 912 220 990 370 536 235 8× 10+11

18 16 −1.831 589 839 076 762 591 341 771 241 083 797 228 086 312 891 1× 10+13

20 0 2.557 923 832 247 806 212 364 402 821 092 621 286 746 854 753 1× 10+12

20 4 3.045 350 350 032 337 515 301 314 442 208 313 797 356 752 799 1× 10+11

20 8 2.506 641 138 228 522 260 209 689 249 113 707 404 717 147 464 8× 10+12

20 12 2.092 539 153 353 154 546 511 320 346 340 116 199 344 909 319 0× 10+13

20 16 7.457 337 726 846 175 387 435 174 097 071 966 176 029 537 742 3× 10+14

20 20 3.113 812 187 187 460 002 648 484 847 731 479 054 971 092 500 7× 10+17

Table A.3.: Non-zero high precision coefficients Llm for cubic 2D periodic systems.
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l m Llm

4 0 2.811 930 487 188 866 820 620 048 187 991 885 560 411 823 167 8× 10+00

4 4 1.405 965 243 594 433 410 310 024 093 995 942 772 477 187 316 0× 10+01

6 0 5.479 590 873 932 164 406 932 770 290 083 406 409 437 389 876 9× 10−01

6 4 −3.835 713 611 752 515 084 852 939 203 058 384 603 676 375 428 1× 10+00

8 0 1.215 615 730 209 791 894 211 594 848 276 170 559 610 679 570 7× 10+02

8 4 1.215 615 730 209 791 894 211 594 848 276 170 560 410 027 970 6× 10+02

8 8 7.901 502 246 363 647 312 375 366 513 795 108 615 853 074 765 8× 10+03

10 0 3.117 991 673 610 912 310 782 258 727 428 012 496 691 124 166 1× 10+02

10 4 −6.859 581 681 944 007 083 720 969 200 341 627 518 609 716 215 7× 10+02

10 8 −1.166 128 885 930 481 204 232 564 764 058 076 677 748 007 657 7× 10+04

12 0 2.424 561 274 735 909 221 719 964 051 649 346 904 269 588 800 5× 10+05

12 4 2.037 585 826 414 026 651 016 255 763 388 558 102 533 054 445 9× 10+05

12 8 7.068 266 654 598 500 070 164 463 510 778 812 526 628 613 039 2× 10+05

12 12 2.370 243 598 452 707 828 763 961 791 327 126 302 592 553 616 2× 10+08

14 0 2.095 408 711 988 554 264 871 397 928 640 220 756 684 684 227 0× 10+06

14 4 −2.694 096 915 413 855 483 406 083 051 108 855 258 993 126 906 3× 10+06

14 8 −1.706 261 379 762 108 472 823 852 599 035 608 330 664 088 231 4× 10+07

14 12 −6.540 668 622 421 415 812 491 434 962 969 831 934 105 847 327 5× 10+08

16 0 5.427 985 829 965 016 962 438 288 507 697 746 506 181 830 989 5× 10+08

16 4 2.284 104 152 910 541 287 238 348 694 933 442 027 166 901 643 4× 10+08

16 8 1.297 330 185 489 575 858 291 814 405 833 207 725 597 430 834 1× 10+09

16 12 2.588 248 490 005 557 563 835 534 374 165 006 875 180 041 147 9× 10+10

16 16 6.997 365 354 798 420 565 674 532 024 803 329 188 583 401 105 4× 10+12

18 0 1.468 604 995 125 845 081 063 298 450 987 009 285 618 619 951 4× 10+10

18 4 −1.537 634 648 799 471 257 606 140 581 789 142 653 759 367 670 3× 10+10

18 8 −2.422 692 155 856 961 414 158 055 213 390 241 021 840 216 524 7× 10+10

18 12 −1.069 241 660 473 865 905 615 256 775 112 719 326 696 996 318 1× 10+12

18 16 −3.958 519 466 844 432 432 722 691 784 382 239 937 383 095 314 7× 10+13

20 0 2.941 412 491 004 323 318 234 070 093 506 719 255 480 372 919 4× 10+12

20 4 5.079 936 332 458 166 761 279 209 566 667 515 722 321 969 772 3× 10+11

20 8 4.331 937 552 580 612 828 009 012 457 415 272 217 340 902 547 5× 10+12

20 12 4.778 584 572 683 966 000 847 596 132 955 755 227 539 258 877 9× 10+13

20 16 1.610 388 383 673 194 996 618 067 442 771 793 943 162 737 928 3× 10+15

20 20 5.010 313 960 272 320 023 745 148 415 574 132 769 616 078 384 4× 10+17

Table A.4.: Non-zero high precision coefficients Llm for cubic 3D periodic systems.
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Periodic Boundary Conditions  
and the Error-Controlled Fast Multipole Method

Ivo Kabadshow

The simulation of pairwise interactions in huge particle ensembles is a vital issue in scientific 
research. Especially the calculation of long-range interactions poses limitations to the system 
size, since these interactions scale quadratically with the number of particles N. Fast summa-
tion techniques like the Fast Multipole Method (FMM) can help to reduce the complexity to O(N). 
 
This work extends the possible range of applications of the FMM to periodic systems in one, two and 
three dimensions with one unique approach. Together with a tight error control, this contribution enables 
the simulation of periodic particle systems for different applications without the need to know and 
tune the FMM specific parameters. The implemented error control scheme automatically optimizes 
the parameters to obtain an approximation for the minimal runtime for a given energy error bound. 
 
This publication was written at the Jülich Supercomputing Centre (JSC) which is an integral part of 
the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences and 
the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes  
at Forschungszentrum Jülich which use simulation on supercomputers as their main research 
methodology.
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