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edited by Johannes Grotendorst, Godehard Sutmann, Gerhard Gompper, Dominik Marx

The focus of this Winter School was on hierarchical methods for dynamical problems 
having primarily in mind systems described in terms of many atoms or molecules. 
One end of relevant time scales certainly is nonadiabatic quantum dynamics meth-
ods, which operate on the subfemtosecond time scale but influence dynamical 
events that are orders of magnitude slower. Examples for such phenomena might be 
photoinduced switching of individual molecules, which results into large-amplitude 
relaxation in liquids or photodriven phase transitions of liquid crystals. On the other 
end of the relevant time scales methods are important to investigate and understand 
the non-equilibrium dynamics of complex fluids, with typical time scales in the range 
from microseconds to seconds. Examples are the flow of polymer solutions, or the 
flow of blood through microvessels.

The Lecture Notes contain state-of-the-art information on methodological founda-
tions and methods coming from materials science, soft matter, life science and fluid 
dynamics. In addition to introducing discipline-specific methods, modern numerical 
algorithms and parallel programming techniques are presented in detail.

This publication was edited at the Jülich Supercomputing Centre (JSC) which is an 
integral part of the Institute for Advanced Simulation (IAS). The IAS combines the 
Jülich simulation sciences and the supercomputer facility in one organizational unit. 
It includes those parts of the scientific institutes at Forschungszentrum Jülich which 
use simulation on supercomputers as their main research methodology.
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Preface

Generating and analyzing the dynamics of molecular systems is a true challenge to
molecular simulation. It includes processes that happen on the femtosecond scale,
such as photoinduced nonadiabatic (bio)chemical reactions, and touches the range of
seconds, being e.g. relevant in biophysics to cellular processes or in material sciences
to crack propagation. Thus, many orders of magnitude in time need to be covered either
concurrently or hierarchically. In the latest edition of this series of Winter Schools in 2009
we addressed the topic of Multiscale Simulation Methods in Molecular Sciences with a
strong focus on methods which cover diversities of length scales. The key issue of the
present school is to dwell on hierarchical methods for dynamics having primarily in mind
systems described in terms of many atoms or molecules. One extreme end of relevant time
scales is found in the sub-femtosecond range but which influence dynamical events which
are orders of magnitude slower. Examples for such phenomena might be photo-induced
switching of individual molecules, which results in large-amplitude relaxation in liquids
or photodriven phase transitions of liquid crystals, phenomena for which nonadiabatic
quantum dynamics methods were developed. The other end of relevant time scales is
found in a broad range of microseconds, seconds or beyond and which governs e.g.
non-equilibrium dynamics in polymer flows or blood cells in complex geometries like
microvessels. Special mesoscopic techniques are applied for these time- and length-scales
to couple the atomistic nature of particles to the hydrodynamics of flows.

This Winter School has a daily stratification pattern starting with dynamics within the
realm of Materials Science with a focus on slow processes which nevertheless require most
detailed input at the level of electronic structure and interatomic potentials. In Biomolec-
ular Science one challenge is the concurrent handling of an electronic structure based
description of a “hot spot” within an enzyme with a computationally efficient treatment of
the protein environment in terms of parameterized interactions. Accelerated sampling is a
key issue whenever both slow and fast motion is relevant and applies methods in the fields
of metadynamics, force probe molecular dynamics or nonequilibrium dynamics using
fluctuation theorems. Finally, getting rid of atoms and molecules but still keeping a particle
perspective is achieved by coarse-graining procedures. In Soft Matter and Life Science, the
dynamics is often governed by the hydrodynamics of the solvent. A particular challenge
is here to bridge the large length- and time-scale gap between the small solvent molecules
and the embedded macromolecules or macromolecular assemblies (polymers, colloids,
vesicles, cells). Therefore, several mesoscale simulation approaches have been developed
recently, including Lattice Boltzmann, Dissipative Particle Dynamics and Multi-Particle
Collision Dynamics, which rely on a strong simplification of the microscopic dynamics
with a simultaneous implementation of conservation laws on mass, momentum and energy.

Last but not least most efficient implementation on current-day hardware is a strong
requirement to overcome computational barriers and to tackle large systems in multiscale
environments. Examples will be provided covering basic methods or well-established
optimal numerical methods like multigrid. In addition to lectures and poster sessions



this Winter School offers an introductory course to parallel computing techniques with
practical sessions.

The target group of this IAS Winter School, organized and supported by the Jülich
CECAM Node, are young scientists, especially PhD students and early postdocs.

Many individuals have significantly contributed to the success of the School. First of all
we are very grateful to the lecturers for preparing extended lecture notes in due time, in
spite of the heavy work load they all have to carry. Without their effort such an excellent
reference book on Hierarchical Methods for Dynamics in Complex Molecular Systems
would not have been possible.

We are greatly indebted to the School’s secretaries Elke Bielitza and Britta Hoßfeld
who were indispensable for this School by taking care of logistical details, transports,
registration and catering. Also, we would like to express our gratitude both to Monika
Marx for realizing the book of poster abstracts and to Oliver Bücker for technical and
administrational support. Particular thanks go to Martina Kamps, who compiled the
contributions and created the present high quality book.

Jülich and Bochum
February 2012

Johannes Grotendorst
Godehard Sutmann
Gerhard Gompper
Dominik Marx
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1 Introduction 533
2 Grid Partitioning and the Coarsest Grids 535
3 Scaling on JUGENE 536
4 Conclusions and Future Work 539

vi



Simulating Light-Induced Phenomena in Soft Matter

Nikos L. Doltsinis

Institut für Festkörpertheorie
Universität Münster, 48149 Münster, Germany

E-mail: nikos.doltsinis@wwu.de

The absorption of light by soft (bio-)materials initially causes photophysical or photochemical
molecular processes which are highly local in space and time. These fast quantum-mechanical
events often trigger much slower, macroscopically observable phenomena. Thus to simulate
light-induced macroscopic functionality of nanomaterials one needs to bridge many orders of
magnitude in space and time. In this lecture a suitable multiscale simulation strategy is out-
lined which connects the quantum to the mesoscopic level by bringing together nonadiabatic ab
initio molecular dynamics (QM), classical (force field) molecular dynamics (MM), and coarse
grained (CG) simulation techniques. This methodology is applied to model light-induced phase
transitions in a liquid crystal containing the azobenzene photoswitch – a prototypical example
for a wide range of light-triggered phenomena in soft matter.

1 Introduction

Although quantum-mechanical processes are typically local in time and space, they can
trigger a cascade of events on different length and time scales leading to macroscopically
observable phenomena. From the standpoint of computer simulation, the use of different
hierarchical levels of theory is required to describe such mesoscopic or even macroscopic
phenomena. However, traditionally, theoretical methods have been tailored to deal with
specific, limited, time and length scales without connecting to the levels above or below.

At the most detailed level, quantum-mechanical (QM) dynamical calculations of soft
matter can be performed using the ab initio molecular dynamics (AIMD) method1–3. This
technique is able to resolve the system’s electronic structure “on the fly” in an approxi-
mate fashion, typically within the framework of density functional theory. Due to the high
computational cost involved, however, applications are limited to systems containing a few
hundred atoms and to trajectories of a few tens of picoseconds.

Abandoning electronic structure while retaining atomistic resolution one arrives at the
molecular mechanics (MM) approach, i.e. classical molecular dynamics using (empirical)
force field potentials. While the MM method extends the simulation range to a few thou-
sand atoms on the nanosecond time scale, it typically does not allow for chemical reactions,
i.e. bond breaking and formation, or other inherently quantum-mechanical events such as
photoinduced processes and charge transfer. Such issues can be addressed using hybrid
QM/MM techniques, which treat the chemically active centre quantum-mechanically and
the chemically inert environment classically4–9.

To go beyond the MM time and length scales, atomistic resolution needs to be aban-
doned. By mapping groups of atomic centres onto an effective particle, the number of
interactions in a system can be significantly reduced10, 11. Coarse grained (CG) interaction
potentials between the effective particles are usually derived from the atomistic model by
fitting the parameters to reproduce thermodynamic and/or structural properties12–20. CG
models have been applied successfully to a variety of systems including polymers21–29,
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lipid systems30, 14, 31, 32, peptides33–37, and proteins38–40. More on recent advances in this
field can be found in Ref. 41.

The challenge is now to connect the different simulations levels – QM, MM, and
CG – in a suitable way. While in the bottom–up direction, mapping each representa-
tion onto the next one above is, in principle, straightforward, the situation is less ob-
vious in the opposite direction. However, suitable back-mapping recipes have been de-
veloped to switch back from the CG to MM description whenever a higher resolution is
required22, 42, 24, 43, 35, 44, 36, 37, 45.

Multiscale simulation methods generally attempt to connect more than two hierarchical
levels. In this lecture we describe our recent efforts to interlink the three simulation lev-
els QM, MM, and CG for molecular systems46 with particular emphasis on light-induced
processes in biosystems or photoswitchable materials. This introduces an additional level
of complexity as we need to go beyond the standard QM description, i.e. a ground state
Born-Oppenheimer treatment, and use a nonadiabatic approach (na-QM) coupling multiple
electronic states. Here we describe our na-QM/MM/CG multiscale simulation approach,
which is applicable to a wide range of mesoscopic photoinduced phenomena. As an appli-
cation prototypical of the vast area of light-controllable materials based on the azobenzene
(AB) photoswitch47–58, we discuss the photoinduced phase transitions in the 8AB8 liquid
crystal59.

The development of a na-QM/MM/CG multiscale method required us to couple a pre-
viously developed na-QM approach60, 61 to the MM level using a suitable QM/MM inter-
face62. The new na-QM/MM simulation tool is generally applicable to a wide range of
photoexcited systems; it has already been employed to study the photoisomerisation of
AB in the bulk liquid phase63, 64 and the light-triggered unfolding of a polypeptide65. To be
able to carry out multiscale simulations photoswitchable materials based on AB-containing
organic chains a suitable atomistic force field first needed to be developed46 by mapping
the results from QM (AIMD) simulations. In a subsequent step, a CG model of the 8AB8
liquid crystal was derived based on the atomistic azo force field44.

With the necessary tools in place, multiscale simulations of photoactive azo-materials
combining the na-QM, MM, and CG hierarchical levels can now be performed. We can
distinguish between two different ways. A sequential approach involves separate simula-
tions at the different levels and cross-linking by passing on the information obtained from
the simulation at the next higher/lower level in the form of initial conditions (see Fig. 1a).
The overall timespan covered by the simulation this way is long, as it is essentially deter-
mined by the CG level. The drawback is that the effects of a larger CG environment on
the QM subsystem is not taken into account. The alternative approach is a simultaneous
na-QM/MM/CG simulation (Fig. 1b), which would allow the modelling of larger systems
compared to the sequential approach at the expense of a much shorter timescale determined
by the fast QM process.

In simultaneous multiscale simulations the issue of partitioning the total system into the
QM, MM, and CG subsystems arises. Standard QM/MM simulations use fixed partitions,
i.e. atoms are assigned to the QM or MM regions prior to the calculation and remain in
their respective partitions throughout the run. Thus, no exchange of particles between the
QM and MM subsystems can take place, caused either by a moving QM/MM boundary or
by particle diffusion through the QM/MM boundary. This precludes the application of the
QM/MM method to the study of such important physical problems as, for instance, crack
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Figure 1. Schematic representations of the two different multiscale simulation approaches: sequential (a) and
simultaneous (b).

propagation in materials or solvated active sites in biomolecules.
Adaptive QM/MM resolution schemes designed to overcome the fixed partitioning

problem have been proposed66–72, but they generally suffer from either an excessive com-
putational overhead or a lack conceptual consistency (see Sec. 2.8), hence the number of
applications is small.

Other extensions would involve the inclusion of two or more QM centres at a given
time. In photoactive materials, this situation occurs when two chromophores in close prox-
imity are excited within a short time span. In the case of azomaterials, for example, one
may ask the question as to what extent the final state (cis or trans) of one AB chromophore
depends on the photoisomerisation dynamics of its neighbours? Currently, there is no
QM/MM scheme that allows for two separate QM regions.

In addition to spatial partitioning, there is also the issue of temporal switches between
different representations. For instance, different AB chromophores in an azo-material
absorb photons undergo photoisomerisation at different times. This scenario requires
“switching off” one QM subsystem (i.e. turning it into an MM system) and simultane-
ously “switching on” another QM subsystem using a suitable switching function.

In analogy to the QM/MM case, certain physical problems at the mesoscopic level call
for a hybrid MM/CG approach where the same partitioning problems persist. Therefore,
in the area of materials science, MM/CG dual resolution methods have been developed re-
cently, including a novel adaptive resolution molecular dynamics technique73–76 in which
the representation of a particular molecule (i.e. MM or CG) is dynamically adjusted ac-
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cording to its position relative to the MM/CG boundary.
In Sec. 2 some general background theory and the different hierarchical molecular dy-

namics simulation methods, which represent the building blocks for our multiscale model,
are briefly reviewed. Sec. 3 then presents illustrative example applications of these tech-
niques to various aspects contributing to our ultimate target system, namely the light-
induced phase transition in the 8AB8 liquid crystal.

2 Theoretical Background

2.1 Born-Oppenheimer Approximation

A complete, non-relativistic, description of a system of N atoms having
the positions R = (R1,R2, . . . ,RK , . . . ,RN ) with n electrons located at
r = (r1, r2, . . . , rK , . . . , rn) is provided by the time-dependent Schrödinger equa-
tion

HΞ(r,R; t) = i~
∂

∂t
Ξ(r,R; t) , (1)

with the total Hamiltonian

H(r,R) = T (R) + T (r) + V(R) + V(r,R) + V(r) , (2)

being the sum of kinetic energy of the atomic nuclei,

T (R) = −~2

2

N∑
K=1

∇2
K

MK
, (3)

kinetic energy of the electrons,

T (r) = − ~2

2me

n∑
k=1

∇2
k , (4)

internuclear repulsion,

V(R) =
e2

4πε0

N−1∑
K=1

N∑
L>K

ZKZL
|RK −RL|

, (5)

electronic – nuclear attraction,

V(r,R) = − e2

4πε0

N∑
K=1

n∑
k=1

ZK
|rk −RK |

, (6)

and interelectronic repulsion,

V(r) =
e2

4πε0

n−1∑
k=1

n∑
l>k

1

|rk − rl|
. (7)

Here, MK and ZK denote the mass and atomic number of nucleus K; me and e are the
electronic mass and elementary charge, and ε0 is the permittivity of vacuum. The nabla
operators ∇K and ∇k act on the coordinates of nucleus K and electron k, respectively.
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Defining the electronic Hamiltonian (fixed-nuclei approximation ofH) as

Hel(r,R) = T (r) + V(R) + V(r,R) + V(r) , (8)

we can rewrite the total Hamiltonian as

H(r,R) = T (R) +Hel(r,R) . (9)

Let us suppose the solutions of the time-independent (electronic) Schrödinger equation,

Hel(r,R)φi(r,R) = Ei(R)φi(r,R) , (10)

are known. Furthermore, the spectrum of Hel(r,R) is assumed to be discrete and the
eigenfunctions orthonormalised:∫ ∞

−∞
φ∗i (r,R)φj(r,R)dr ≡ 〈φi|φj〉 = δij . (11)

The total wavefunction Ξ can be expanded in terms of the eigenfunctions of Hel since
these form a complete set:

Ξ(r,R; t) =
∑
j

φj(r,R)χj(R, t) . (12)

Insertion of this ansatz into the time-dependent Schrödinger equation (1) followed by mul-
tiplication from the left by φ∗i (r,R) and integration over the electronic coordinates leads
to a set of coupled differential equations:

[T (R) + Ei(R)]χi +
∑
j

Cijχj = i~
∂

∂t
χi , (13)

where the coupling operator Cij is defined as

Cij ≡ 〈φi|T (R)|φj〉 −
∑
K

~2

MK
〈φi|∇K |φj〉∇K . (14)

The diagonal term Cii represents a correction to the (adiabatic) eigenvalue Ei of the elec-
tronic Schrödinger equation (10). In the case that all coupling operators Cij are negligible,
the set of differential Eqs. 13 becomes uncoupled:

[T (R) + Ei(R)]χi = i~
∂

∂t
χi . (15)

This means that the nuclear motion proceeds without changes of the quantum state of the
electron cloud and, correspondingly, the wavefunction (12) is reduced to a single term
(adiabatic approximation):

Ξ(r,R; t) ≈ φi(r,R)χi(R, t) . (16)

For a great number of physical situations the Born-Oppenheimer approximation can be
safely applied. On the other hand, there are many important chemical phenomena like, for
instance, charge transfer and photoisomerisation reactions, whose very existence is due to
the inseparability of electronic and nuclear motion. Inclusion of nonadiabatic effects will
be the subject of the following sections.
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2.2 Mixed Quantum–Classical Approach

Further simplification of the problem can be achieved by describing nuclear motion by
classical mechanics and only the electrons quantum mechanically. In this so-called mixed
quantum–classical (sometimes referred to as semiclassical) approach77, 78, the atomic nu-
clei follow some trajectory R(t) while the electronic motion is captured by some time-
dependent total wavefunction Φ(r; t) satisfying the time-dependent electronic Schrödinger
equation,

Hel(r,R(t))Φ(r; t) = i~
∂

∂t
Φ(r; t) . (17)

Again, the total wavefunction is written as a linear combination of adiabatic eigenfunctions
φi(r,R) (solutions of the time-independent Schrödinger equation (10)):

Φ(r; t) =
∑
j

aj(t)φj(r,R)e−
i
~
∫
Ej(R)dt . (18)

Insertion of this ansatz into the time-dependent electronic Schrödinger equation (17) fol-
lowed by multiplication from the left by φ∗i (r,R) and integration over the electronic coor-
dinates leads to a set of coupled differential equations:

ȧi = −
∑
j

ajCije
− i

~
∫

(Ej−Ei)dt , (19)

where

Cij ≡ 〈φi|
∂

∂t
|φj〉 (20)

are the nonadiabatic coupling elements. Integration of Eqs. 19 yields the expansion coeffi-
cients ai(t) whose square modulus, |ai(t)|2, can be interpreted as the probability of finding
the system in the adiabatic state i at time t.

We now want to develop a condition for the validity of the Born-Oppenheimer approx-
imation based on qualitative arguments. For this purpose, we shall consider a two-state
system. To illustrate the problem, Fig. 2 shows the avoided crossing between the covalent
and ionic potential energy curves of NaCl79, 80. As we can see, the adiabatic wavefunctions
φ1 and φ2 change their character as the bond length is varied. The characteristic length, l,
over which φ1 and φ2 change significantly clearly depends on the nuclear configuration R;
in the vicinity of the NaCl avoided crossing, for instance, the character of the wavefunc-
tions varies rapidly, whereas at large separations it remains more or less constant.

Division of the characteristic length l by the velocity of the nuclei, Ṙ = |Ṙ|, at a
particular configuration R defines the time the system needs to travel the distance l around
R:

passage time τp =
l

Ṙ
. (21)

In order for the Born-Oppenheimer approximation to be valid, the electron cloud has to
adjust instantly to the nuclear changes. The time scale characteristic of electronic motion
can be obtained from the relation

∆E = |E1 − E2| = ~ω (22)
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Figure 2. Avoided crossing between the covalent and ionic adiabatic potential curves of NaCl (thin lines: crossing
of diabatic states).

by taking the inverse transition frequency:

τe =
1

ω
=

~
∆E

. (23)

The ratio

ξ =
τp
τe

=
∆E l

~Ṙ
(24)

is the so-called Massay parameter. For values ξ � 1, i.e. large energy gaps ∆E and small
velocities Ṙ, nonadiabatic effects are negligible. In this case, if the system is prepared in
some pure adiabatic state i (|ai|2 = 1) at time t = 0, the rhs of Eq. 19 will be zero at all
times and the wavefunction expansion (Eq. 18) can be replaced by a single term:

Φ(r; t) = φi(r,R)e−
i
~
∫
Ei(R)dt . (25)

The atomic nuclei are then propagated by solving Newton’s equations

MKR̈K = FK(R) , (26)

where

FK(R) = −∇KEi(R) (27)

is the force on atom K.
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2.3 Approaches to Nonadiabatic Dynamics

2.3.1 Mean-Field (Ehrenfest) Method

As we have discussed in the previous section, nonadiabaticity involves changes in the adia-
batic state populations |ai|2 with changing nuclear configuration. Clearly, such a distortion
of the electron cloud will, in turn, influence the nuclear trajectory. Although there are situa-
tions in which the impact of electronic nonadiabaticity on nuclear motion is negligible (e.g.
for high energy collisions or small energy separations between adiabatic states), for many
chemical systems it is of prime importance to properly incorporate electronic–nuclear feed-
back81, 82.

The simplest way of doing this is to replace the adiabatic potential energy surface Ei
in Eq. 27 by the energy expectation value

Eeff = 〈Φ|Hel|Φ〉 =
∑
i

|ai|2Ei , (28)

where we have used Eq. 18. Thus, the atoms evolve on an effective potential representing
an average over the adiabatic states weighted by their state populations |ai|2 (as illustrated
in Fig. 3). The method is therefore referred to as mean-field (also known as Ehrenfest)
approach.

It is instructive to derive an expression for the nuclear forces either from the gradient
of Eq. 28 or using the Hellmann-Feynman theorem

FK = −〈Φ|∇KHel|Φ〉 . (29)

Opting for the latter, we start by writing down the relation

∇K〈φi|Hel|φj〉 = ∇KEiδij (30)
= 〈∇Kφi|Hel|φj〉+ 〈φi|∇KHel|φj〉+ 〈φi|Hel|∇Kφj〉 (31)
= 〈φi|∇KHel|φj〉+ (Ej − Ei)dji , (32)

where we have defined the nonadiabatic coupling vectors, dji, as

dji = 〈φj |∇K |φi〉 , (33)

and used Eq. 10 together with the hermiticity ofHel:

〈φi|Hel|∇Kφj〉 = 〈∇Kφj |Hel|φi〉∗ = 〈∇Kφj |Ejφi〉∗ = Eid
∗
ij = −Eidji . (34)

Note that

d∗ji = −dij , (35)

because

∇K〈φi|φj〉 = ∇Kδij = 0 (36)
= 〈∇Kφi|φj〉+ 〈φi|∇Kφj〉 = d∗ji + dij . (37)

Equating the rhss of Eqs. 30 and 32 one obtains after rearranging,

〈φi|∇KHel|φj〉 = ∇KEiδij − (Ej − Ei)dji . (38)

8



Figure 3. Top: avoided crossing between two adiabatic PES, E1 and E2, and effective potential, Eeff , on which
the nuclei are propagated in the Ehrenfest method. In the asymptotic region (right) Eeff contains contributions
from classically forbidden regions of E2. Bottom: corresponding adiabatic state populations |a1|2 and |a1|2.
The system is prepared in state 1 initially with zero kinetic energy. Upon entering the coupling region state 2 is
increasingly populated.

The nuclear forces (29) are thus given by

FK = −
∑
i

|ai|2∇KEi +
∑
i,j

a∗i aj(Ej − Ei)dji . (39)

Eq. 39 illustrates the two contributions to the nuclear forces; the first term is simply the
population-weighted average force over the adiabatic states, while the second term takes
into account nonadiabatic changes of the adiabatic state occupations. We would like to
point out here that the nonadiabatic contributions to the nuclear forces are in the direction
of the nonadiabatic coupling vectors dji.

The Ehrenfest method has been applied with great success to a number of chemical
problems including energy transfer at metal surfaces83. However, due to its mean-field
character the method has some serious limitations. A system that was initially prepared
in a pure adiabatic state will be in a mixed state when leaving the region of strong nona-
diabatic coupling. In general, the pure adiabatic character of the wavefunction cannot be
recovered even in the asymptotic regions of configuration space. In cases where the dif-
ferences in the adiabatic potential energy landscapes are pronounced, it is clear that an
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Figure 4. Top left: forward path effective potential, Eeff , for two weakly coupled adiabatic PES, E1 and E2.
Bottom left: state occupations for a system initially prepared in state 1. The final value of |a2|2 is equal to the
transition probability P12. Top right: backward path effective potential, Eeff , for two weakly coupled adiabatic
PES,E1 andE2. Bottom left: state occupations for a system initially prepared in state 2. The final value of |a1|2
is equal to the transition probability P21.

average potential will be unable to describe all reaction channels adequately. In particular,
if one is interested in a reaction branch whose occupation number is very small, the average
path is likely to diverge from the true trajectory. Furthermore, the total wavefunction may
contain significant contributions from adiabatic states that are energetically inaccessible
(see Fig. 3).

Fig. 4 illustrates another severe drawback of the mean-field approach. The principle
of microscopic reversibility demands that the forward path probability, P for

12 = |afinal
2 |2

for a system that was initially prepared in state 1 to end up in state 2 must be equal to
the backward path probability, P back

21 = |afinal
1 |2 for a system that was initially prepared

in state 2 to end up in state 1. One can easily think of situations, like the one depicted
in Fig. 4, for which the effective potentials for the forward and backward paths are very
different, resulting also in different populations, |ai|2. The Ehrenfest method, therefore,
violates microscopic reversibility.

It should be noted that the expansion of the total wavefunction in terms of (adiabatic)
basis functions (Eq. 18) is not a necessary requirement for the Ehrenfest method; the
wavepacket Φ can be propagated numerically using Eq. 17. However, projection of Φ onto
the adiabatic states facilitates interpretation. Knowledge of the expansion coefficients, ai,
is also the key to refinements of the method such as the surface hopping technique.

2.3.2 Surface Hopping

We have argued above that after exiting a well localised nonadiabatic coupling region it is
unphysical for nuclear motion to be governed by a mixture of adiabatic states. Rather it
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Figure 5. Top: avoided crossing between two adiabatic PES,E1 andE2, and two typical forward surface hopping
trajectories. Nonadiabatic transitions are most likely to occur in the coupling region. Bottom: corresponding
adiabatic state populations |a1|2 and |a1|2. The system is prepared to be in state 1 initially with zero kinetic
energy. Upon entering the coupling region state 2 is increasingly populated.

would be desirable that in asymptotic regions the system evolves on a pure adiabatic PES.
This idea is fundamental to the surface hopping approach. Instead of calculating the “best”
(i.e., state-averaged) path like in the Ehrenfest method, the surface hopping technique in-
volves an ensemble of trajectories. At any moment in time, the system is propagated on
some pure adiabatic state i, which is selected according to its state population |ai|2. Chang-
ing adiabatic state occupations can thus result in nonadiabatic transitions between different
adiabatic PESs (see Fig. 5). The ensemble averaged number of trajectories evolving on
adiabatic state i at any time is equal to its occupation number |ai|2.

In the original formulation of the surface hopping method by Tully and Preston84,
switches between adiabatic states were allowed only at certain locations defined prior to
the simulation. Tully85 later generalized the method in such a way that nonadiabatic tran-
sitions can occur at any point in configuration space. At the same time, an algorithm – the
so-called fewest switches criterion – was proposed which minimises the number of surface
hops per trajectory whilst guaranteeing the correct ensemble averaged state populations at
all times. The latter is important because excessive surface switching effectively results in
weighted averaging over the adiabatic states much like in the case of the Ehrenfest method.
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Figure 6. A two-state system with each state being equally (50% ) populated at time t. At time t+ ∆t the lower
and the upper state are populated by 40 % and 60 % of ensemble members, respectively. The top panel shows
how this distribution can be achieved with the minimum number of transitions, whereas the bottom panel shows
one alternative route involving a larger number of transitions.

We shall now derive the fewest switches criterion. Out of a total of N trajectories, Ni
will be in state i at time t,

Ni(t) = ρii(t)N . (40)

Here we have introduced the density matrix notation

ρij(t) = a∗i (t)aj(t) . (41)

At a later time t′ = t+ δt the new occupation numbers are

Ni(t
′) = ρii(t

′)N (42)

Let us suppose that Ni(t′) < Ni(t) or δN = Ni(t) − Ni(t′) > 0. Then the minimum
number of transitions required to go from Ni(t) to Ni(t′) is δN hops from state i to any
other state and zero hops from any other state to state i (see Fig. 6). The probability
Pi(t, δt) for a transition out of state i to any other state during the time interval [t, t + δt]
is then given by

Pi(t, δt) =
δN

Ni
=
ρii(t)− ρii(t′)

ρii
≈ − ρ̇iiδt

ρii
, (43)

where we have used

ρ̇ii ≈
ρii(t

′)− ρii(t)
δt

. (44)
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The lhs of Eq. 44 can be written as

ρ̇ii =
d

dt
(a∗i ai) = ȧ∗i ai + a∗i ȧi = (a∗i ȧi)

∗ + a∗i ȧi = 2<(a∗i ȧi) . (45)

Inserting Eq. 19 into Eq. 45 we obtain

ρ̇ii = −2<

∑
j

ρijCije
− i

~
∫

(Ej−Ei)dt

 . (46)

Substituting expression (46) into Eq. 43 the probability Pi can be rewritten as follows

Pi(t, δt) =

2<

∑
j

ρijCije
− i

~
∫

(Ej−Ei)dt

 δt

ρii
. (47)

Since the probability, Pi, for a switch from state i to any other state must be the sum over
all states of the probabilities, Pij , for a transition from state i to a specific state j,

Pi(t, δt) =
∑
j

Pij(t, δt) , (48)

it follows from Eq. 47 that

Pij(t, δt) =
2<
(
ρijCije

− i
~
∫

(Ej−Ei)dt
)
δt

ρii
. (49)

A transition from state i to state k is now invoked if

P
(k)
i < ζ < P

(k+1)
i , (50)

where ζ (0 ≤ ζ ≤ 1) is a uniform random number and P (k)
i is the sum of the transition

probabilities for the first k states,

P
(k)
i =

k∑
j

Pij . (51)

In order to conserve total energy after a surface hop has been carried out, the atomic ve-
locities have to be rescaled. The usual procedure is to adjust only the velocity components
in the direction of the nonadiabatic coupling vector dik(R) (Eq. 33)85. We can qualita-
tively justify this practice by our earlier observation that the nonadiabatic contribution to
the Ehrenfest forces also are in the direction of the nonadiabatic coupling vector dik(R)
(see Eq. 39). Certainly, such discontinuities in nuclear velocities must be regarded as a
flaw of the surface hopping approach. In most physical scenarios, however, nonadiabatic
surface switches take place only at relatively small potential energy separations so that
the necessary adjustment to the nuclear velocities is reasonably small. Nevertheless, a se-
vere limitation of the method is presented by its inability to properly deal with situations
in which the amount of kinetic energy is insufficient to compensate for the difference in
potential energy (so-called classically forbidden transitions). Tully’s original suggestion
not to carry out a surface hop while retaining the nuclear velocities in such cases has been
demonstrated86 to be more accurate than later proposals to reverse the velocity components
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Figure 7. Top: avoided crossing between two adiabatic PES,E1 andE2, and two typical forward surface hopping
trajectories. Nonadiabatic transitions are most likely to occur in the coupling region. The cross indicates a
classically forbidden transition; no switch is carried out in this case. Bottom: corresponding adiabatic state
populations |a1|2 and |a1|2. The system is prepared in state 2 initially with zero kinetic energy. Upon entering the
coupling region state 1 is increasingly populated. Upon exiting the coupling region, state population 1 decreases.
For configurations R for which E2 is in the classsically forbidden region, the percentages of trajectories in state
i, N∗i , are unequal to |ai|2; N∗2 is zero whereas N∗1 remains constant.

in the direction of the nonadiabatic coupling vector dik(R)87, 88. The example presented
in Figure 7 illuminates how classically forbidden transitions cause divergence between the
target occupation numbers, |ai|2, and the actual percentages of trajectories evolving in state
i, N∗i .

It should be noted that surface hopping exhibits a large degree of electronic coherence
through continuous integration of Eqs. 19 along the entire trajectory. On the one hand,
this enables the method to reproduce quantum interference effects85 such as Stueckelberg
oscillations77. On the other hand, due to treating nuclei classically, dephasing of the elec-
tronic degrees of freedom may be too slow, a shortcoming shared by the surface hopping
and the Ehrenfest method alike. A number of semiclassical approaches incorporating de-
coherence have, therefore, been proposed89–95. Some of these alternative methods attempt
to combine the advantages of surface hopping (mainly, pure adiabatic states in asymptotic
regions) with those of the mean-field method (no discontinuities in potential energy, no dis-
allowed transitions) by employing an effective potential whilst enforcing gradual demixing
of the total wavefunction away from the coupling regions93–95.
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2.4 Nonadiabatic ab initio Molecular Dynamics

In the last decade, a number of surface hopping implementations based on “on the fly”
ab initio molecular dynamics using different electronic structure methods have been pub-
lished60, 151, 152 (for a recent review see Ref. 153). The first general nonadiabatic AIMD
surface hopping method was formulated within the framework of density functional the-
ory60, 98, 61, 99. It used the Restricted Open-Shell Kohn-Sham (ROKS) method for the ex-
cited state and standard Kohn-Sham theory for the ground state. In the two-state formula-
tion, the total electronic wavefunction, Φ, is represented as a linear combination of the S0

and S1 adiabatic state functions, φ0 and φ1,

Φ(r, t) = a′0(t)φ0(r,R) + a′1(t)φ1(r,R) (52)

where the time-dependent expansion coefficients a′0(t) and a′1(t) are to be deter-
mined such that Φ is a solution to the time-dependent electronic Schrödinger equation
(17). The prime indicates that the coefficients now include the exponential factor, i.e.
a′k(t) = ak(t)e−

i
~
∫
Ekdt, for the sake of compactness.

In the present case, our adiabatic basis functions are the S0 closed-shell Kohn-Sham
ground state determinant,

φ0 = |ϕ(0)
1 ϕ̄

(0)
1 · · ·ϕ(0)

n ϕ̄(0)
n 〉 (53)

and the orthonormalized S1 wavefunction

φ1 =
1√

1− S2
[−Sφ0 + φ′1] (54)

where

S = 〈φ0|φ′1〉 (55)

is the overlap between the ground state wavefunction and the ROKS excited state wave-
function100–102

φ′1 =
1√
2

{
|ϕ(1)

1 ϕ̄
(1)
1 · · ·ϕ(1)

n ϕ̄
(1)
n+1〉+ |ϕ(1)

1 ϕ̄
(1)
1 · · · ϕ̄(1)

n ϕ
(1)
n+1〉

}
(56)

n being half the (even) number of electrons. Separate variational optimization of φ0 and
φ′1 generally results in nonorthogonality, the molecular orbitals ϕ(0)

l and ϕ(1)
l are different.

Please note, however, that for small S, φ1 ≈ φ′1.
Substitution of ansatz (52) into (17) and integration over the electronic coordinates

following multiplication by φ∗k (k = 0, 1) from the left yields the coupled equations of
motion for the wavefunction coefficients

ȧ′k(t) = − i
~
a′k(t)Ek −

∑
l

a′l(t)Dkl (k, l = 0, 1) (57)

where Ek is the energy eigenvalue associated with the wavefunction φk. For the nonadia-
batic coupling matrix elements

Dkl = 〈φk|
∂

∂t
|φl〉 (58)

the relations Dkk = 0 and Dkl = −Dlk hold, as our φk are real and orthonormal.
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In the Car-Parrinello molecular dynamics (CP-MD) formalism1, 2, computation of the
nonadiabatic coupling elements, Dkl, is straightforward and efficient, since the orbital ve-
locities, ϕ̇l, are available at no additional cost due to the underlying dynamical propagation
scheme. If, instead of being dynamically propagated, the wavefunctions are optimized at
each point of the trajectory (so-called Born-Oppenheimer mode), the nonadiabatic cou-
pling elements are calculated using a finite difference scheme.

Numerical integration of (57) yields the expansion coefficients a′k, whose square mod-
uli, |a′0|2 and |a′1|2, can be interpreted as the occupation numbers of ground and excited
state, respectively.

Following Tully’s fewest switches criterion85 recipe, the nonadiabatic transition prob-
ability from state k to state l is

Πkl = max(0, Pkl) (59)

with the transition parameter

Pkl = −δt
d
dt |a

′
k|2

|a′k|2
(60)

where δt is the MD time step.
A hop from surface k to surface l is carried out when a uniform random number ζ <

Πkl provided that the potential energy El is smaller than the total energy of the system.
The latter condition rules out any so-called classically forbidden transitions. After each
surface jump atomic velocities are rescaled in order to conserve total energy. In the case of
a classically forbidden transition, we retain the nuclear velocities, since this procedure has
been demonstrated to be more accurate than alternative suggestions86 .

The two-state surface hopping formalism presented here can be easily generalized to
include multiple excited states85. However, calculating a large number of electronic states
including nonadiabatic couplings between them from first principles is often either not
straightforward or too computationally demanding in practice.

2.5 Nonadiabatic QM/MM Molecular Dynamics

The nonadiabatic AIMD approach of the previous Section has the same limitations with
regard to system size as regular, adiabatic, AIMD. Therefore, in order to be able to study
light-induced processes in complex environments, the method has been extended and im-
plemented in a QM/MM framework, in which the electrons in the QM subsystem are repre-
sented by a total wavefunction ΦQM/MM satisfying the time-dependent Schrödinger equa-
tion (17), while the photochemically inert environment is described by an analytical force
field. The QM/MM coupling is established via a Hamiltonian62 HQM/MM which is a func-
tion of all the nuclear coordinates, i.e. both of the QM and the MM subsystems. Likewise,
the total wavefunction, ΦQM/MM, depends on the entire set of nuclear coordinates and is
expanded

ΦQM/MM(r,R, t) =
∑
i

a′i(t)φ
QM/MM
i (r,R) (61)

in terms of known electronic state functions, φQM/MM
i (r,R). The time-dependent expan-

sion coefficients, a′i(t), are determined by inserting this ansatz into the time-dependent
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Schrödinger equation (17), resulting in a system of coupled differential equations,

ȧ′i(t) = − i
~
a′i(t)E

QM/MM
i −

∑
j

a′j(t)C
QM/MM
ij (62)

where EQM/MM
i is the energy of electronic state i, and

C
QM/MM
ij = 〈φQM/MM

i | ∂
∂t
|φQM/MM
j 〉 = Ṙ〈φQM/MM

i | ∂
∂R
|φQM/MM
j 〉 (63)

are the nonadiabatic couplings between states i and j.
Here we discuss a two-state implementation which couples nonadiabatically the closed-

shell Kohn-Sham ground state, φQM/MM
0 , to the re-orthonormalized ROKS representa-

tion100, 103 of the S1 first singlet excited state, φQM/MM
1 , following the successful single-

scale na-QM technique60, 104–109. As a two-determinant representation (for reviews see
Refs. 2,61,3), the ROKS S1 state provides an improved reference to compute nonadiabatic
couplings110, and yields reliable S1 nonradiative lifetimes and decay mechanisms when
nonadiabatically coupled to the KS ground state60, 104–109; the level of accuracy obtained
by this efficient approach for the system of interest to this study, i.e. AB photoisomerisa-
tion, will be demonstrated in detail in Sec. 3.1.2.

In addition to the nonadiabatic QM component, the QM/MM approach also requires a
force field parameterization suitable for condensed phase simulations46 to define the MM
part ofHQM/MM. For the QM↔MM electrostatic coupling terms ofHQM/MM it is impor-
tant to include the correct electron density of the state the system is propagated in according
to the surface hopping prescription.

2.6 Classical Atomistic Molecular Dynamics

Although, strictly speaking, the term classical molecular dynamics refers to the fact that
the atomic nuclei are treated as classical particles, it is also synonymous with methods
that use analytical interatomic interaction potentials (known as force fields). Generally, an
empirical force field consists of terms that model the non-bonded interactions (Enonbond),
which include both the van der Waals and Coulombic interactions, the bond interactions
(Ebond), the angle bending interactions (Eangle) and the dihedral (bond rotations) interac-
tions (Edihedral):

E(R) = Enonbond + Ebond + Eangle + Edihedral. (64)

A large number of force fields, parametrised with different applications in mind, exist.
Because we have employed it in our multiscale simulations presented below, we discuss
here the Gromos force field111 in which covalent bonds are described by

Ebond =

Nb∑
i

1

4
kb,i(R

2
i −R2

0,i)
2 (65)

Eangle =

Nθ∑
i

1

2
kθ,i(cos θi − cos θ0,i)

2 (66)
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Edihedral = Edih,improp + Edih,prop (67)

where

Edih,improp =

Nξ∑
i

1

2
kξ,i(ξi − ξ0,i)2 (68)

and

Edih,prop =

Nφ∑
i

kφ,i[1 + cos(δi) cos(miφi)] (69)

The nonbonded interactions are given by

Enonbond = EvdW + Eel (70)

where

EvdW =

Np∑
i

C12,i

R12
i

− C6,i

R6
i

(71)

and

Eel =

Np∑
i

Qi
4πε0Ri

(72)

Qi being the product of the two atomic charges involved in pair i.

2.7 Coarse Grained Classical Molecular Dynamics

A number of different approaches have been proposed for systematically constructing CG
models in a way suitable for multiscale simulations, where one wants to switch back and
forth between different levels of resolution. Usually, coarse graining efforts underly the
constraint that they must reproduce structural and thermodynamic properties of a higher
resolution model.

In one class of coarse graining methods the derivation of CG interaction potentials uses
thermodynamic properties such as energies or free energies as a reference14, 16. While this
approach yields a good CG description of certain thermodynamic properties it is less suited
to describe the structure of the system112. The other class are the so-called structure-based
methods, where the CG interactions are fitted such that the model reproduces certain struc-
tural properties – often described by a set of radial distribution functions obtained from
all-atom molecular simulations12, 13, 44, 20. While these structure-based methods are able
to reproduce local structures, and are thus well suited to reinsert atomistic coordinates,
they are less reliable when it comes to predicting thermodynamic properties. There is also
uncertainty as to how well they reproduce higher-order (e.g. three-body) structural correla-
tions if they are not included explicitly in the parameterization process113. In the so-called
force matching method114–116 the difference between the (instantaneous) CG forces and
the underlying atomistic forces are minimized. The thus optimized CG interactions can be
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shown to reproduce a many-body multidimensional potential of mean force of the under-
lying atomistic system. Therefore the force matching method is related to the structure-
based CG methods, the only difference being that the latter usually rely on pair distribution
functions, i.e. pair potentials of mean force17, 113, 37, 117. Current research investigates the
limitations of the different approaches and explores possible hydrid CG potentials that are
both thermodynamically and structurally consistent with an atomistic description15, 118 and
transferable to different state points or system compositions117, 18, 119.

A structure-based method was used to parameterize the CG model for the liquid crys-
talline 8AB8 system44 and we dedicate the remainder of this Section to discussing this
approach in more detail. Typically one distinguishes between bonded/covalent and non-
bonded CG potentials, which are developed separately. The total potential energy UCG

can then be written as

UCG =
∑

UCGB +
∑

UCGNB (73)

Bonded interactions are tuned in such a way that they yield the correct conformational
statistics of the molecules in the CG simulation. In addition to being temperature depen-
dent, the conformational distributions PCG are usually functions of specific bond lengths
R, angles θ, and torsions φ between any pair, triple and quadruple of CG beads respectively,
i.e. PCG(R, θ, φ, T ). The reference distributions are obtained from atomistic simulations
(see below). Assuming that the different CG internal degrees of freedom are uncorrelated,
PCG(R, θ, φ, T ) factorizes into independent probability distributions of bond, angle and
torsional degrees of freedom

PCG(R, θ, φ, T ) = PCG(R, T ) PCG(θ, T ) PCG(φ, T ) . (74)

The corresponding CG potentials are then obtained by Boltzmann inversion of the individ-
ual probability distributions PCG(R, T ), PCG(θ, T ), and PCG(φ, T ):

UCG(R, T ) = −kBT ln (PCG(R, T )/R2) + CR (75)
UCG(θ, T ) = −kBT ln (PCG(θ, T )/ sin(θ)) + Cθ (76)
UCG(φ, T ) = −kBT ln PCG(φ, T ) + Cφ , (77)

CR, Cθ, and Cφ being constants used to shift the respective potential minima to zero.
This factorization can, however, lead to artifacts in the CG model. One way to improve

this is by a better choice of coarse units (mapping points). Furthermore, the introduction
of intramolecular potentials can alleviate this problem29.

Structure-based approaches to derive nonbonded CG interaction functions often em-
ploy the inverse Monte Carlo or the iterative Boltzmann inversion method12, 120 to numer-
ically generate a tabulated potential that accurately reproduces a given radial distribution
function g(R). These methods require an initial guess for a nonbonded potential UCGNB,0.
This is often taken to be the Boltzmann inverse of the target g(R), i.e. the potential of
mean force,

UCGNB,0 = −kBT ln g(R) , (78)

which is then used to perform a CG simulation of the liquid. This first step will not repro-
duce the target structure very well, since the potential of mean force is only a good estimate
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for the potential energy in the limit of high dilution, due to the neglect of multi-body in-
teractions. The iterative Boltzmann method then refines the CG potential self-consistently
until the desired structure is reproduced. It uses the following iteration scheme:

UCGNB,i+1 = UCGNB,i + kBT ln(
gi(R)

g(R)
) , (79)

An alternative solution would involve more complex, coupled potentials. Once the map-
ping is defined, UCG can be determined in an automated way using, for instance, the
recently developed VOTCA package113.

2.8 Adaptive Resolution Molecular Dynamics

We have seen in the previous Section that coarse-graining strategies based on atomistic ref-
erence models allow us to reduce the number of degrees of freedom of a problem in order
to study properties which are typical of mesoscopic (macroscopic) scales where atomistic
resolution does not play a direct role. Unfortunately, there are many situations in soft
matter physics in which a complete separation of scales is not possible. Rather, there is
a delicate interconnection between them, which impacts on the properties of the system.
For instance, in certain regions of a system an interesting phenomenon might occur at the
atomistic level, in while the remaining system a coarse-grained resolution is sufficient to
describe its equilibrium thermodynamic properties. In such cases it is desirable to properly
couple the atomistic description in the interesting region with the coarse-grained descrip-
tion of the rest of the system. For liquids and soft matter, where fluctuations are typically
large, the coupling must allow free exchange of particles between the two regions. When
a molecule leaves the atomistic region it slowly loses the atomistic degrees of freedom
and becomes a coarse-grained molecule, and vice versa from the atomistic to the coarse-
grained region. A particular challenge for adaptive resolution theories is the condition
that the overall thermodynamic equilibrium of the system should not be perturbed by the
fluctuations in the degrees of freedom. Several approaches along these lines have been
proposed recently121, 122, 70, 123, which differ mainly in the way thermodynamic equilibrium
is ensured.

We shall briefly describe here the AdResS method73–76, which has two basic ingredi-
ents. Firstly, a transition region is introduced between the atomistic and coarse grained
partitions, characterized by a continuous and monotonic switching function w(x) that is
zero in the coarse-grained region and unity in the atomistic region (see also Fig. 8). Sec-
ondly, the forces in the transition region are taken to be weighted average of the atomistic
and coarse-grained forces according to the formula:

Fαβ = w(Xα)w(Xβ)Fatom
αβ + [1− w(Xα)w(Xβ)]Fcg

αβ (80)

where the indices α and β label two different molecules, Fatom
αβ is obtained from the atom-

istic interactions between the atoms of molecule α and those of β, and Fcg
αβ is obtained

from the coarse-grained pair potential between the centres of mass of α and β. The recipe
in Eq. 80 leads to a smooth transition from atomistic to coarse-grained trajectories without
any major perturbation of the overall evolution of the system. A crucial point concerning
Eq. 80 is that, by construction, it obeys Newton’s Third Law demanding that the forces of
two bodies on each other are always equal and are directed in opposite directions. This
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Figure 8. Schematic picture of the AdResS box. Atomistic region on the right, coarse-grained left, and transition
region ∆ in between. w(x) is the switching function for the transition from a coarse grained to an atomistic reso-
lution and vice versa. Below the example of tetrahedral molecule (test system) that changes resolution according
to w(x). This representation is taken from Ref. 73.

adaptive force is, however, insufficient to ensure thermodynamic equilibrium, since it is
not conservative. This means that no potential energy expression can be given explicitly.
Thus conservation of energy is not ensured and as a consequence the equilibrium of the
system cannot be controlled. The problem boils down to the fact that different molecular
resolutions (atomistic, coarse-grained and a continuous sequence of hybrid resolutions in
the transition region) are coupled, each characterized by its own (intrinsic) chemical po-
tential. As a consequence, if one starts from a homogeneous density (e.g. the stationary
state of the full atomistic simulation), the system will evolve towards a stationary state
with non-homogeneous density, because the fugacity at the start is not uniform. This is,
of course, undesired, as the AdResS simulation should reproduce the uniform density of
the full atomistic target system. A solution to this problem has been proposed which in-
volves introducing a thermodynamic force and the coupling to a local thermostat. The
thermostat guarantees that locally the right amount of kinetic energy is provided so that
the slowly introduced degrees of freedom are at equilibrium with the surrounding as the
molecule crosses the transition region. In this way the molecule can enter the atomistic
region without encountering any kinetic barriers. An extension of the equipartition the-
orem to fractional degrees of freedom is used to define the temperature in the transition
region75, 76. The methodology introduced above is derived from basic principles of ther-
modynamics and statistical mechanics and has been shown to be rather robust in ensuring
overall thermodynamic equilibrium in AdResS simulations even for the delicate situation
of binary mixtures124.

It is tempting to apply the interpolation formula to Hamiltonians instead of forces, but
this has been shown to violate physical and mathematical principles125. The AdResS force
interpolation scheme has been applied to a number of different systems including polymers
in solution126, a series of solvated bucky balls (C60 − C2160)131, and liquid water127, 128. It
has also been extended to the coupling with a continuum129, 130.

Transferring the above ideas quantum–classical transitions is somewhat tricky, as this
would not only require a change in the number of degrees of freedom but also in the phys-
ical principle involved. While classical mechanics is governed by deterministic evolution,
quantum mechanics is of a probabilistic nature. When electrons are involved, a proper
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Figure 9. Adaptive resolution from path integral (ring polymer) representation to coarse-grained through a con-
tinuous sequence of intermediate resolution for the tetrahedral molecule. A liquid of such molecules was studied
with this adaptive resolution; results show that the equilibrium structures in the quantum (path integral) region
are the same as in a full path integral simulation. This representation is taken from Ref. 72 .

classical–quantum adaptive scheme based on the Schrödinger equation must be able to
deal with the problem of a variable number of particles and thus a varying particle nor-
malization condition as the system evolves. Existing schemes for this case are based on
pragmatism rather than providing a complete and consistent theoretical framework71, 69. If
instead the quantum particles are atoms without explicity considering the electrons, then
the quantum problem can be mapped on an effective classical one. Thus, the adaptive
coupling is between two classical descriptions. The idea is based on the path integral de-
scription of atoms in which a quantum atom is represented as a classical polymer ring. In
this concept, the beads of the polymer ring are fictitious classical particles. We can now
imagine a system, which has atomistic or coarse-grained resolution in a certain region and
a path integral resolution in another, where each atom is represented by a polymer ring. In
such a situation it is straightforward to apply the principles of AdResS, as this is equiva-
lent to the case of two classical regions with different numbers of degrees of freedom. It
has been shown from an application to study equilibrium statistical properties of a liquid of
tetrahedral molecules that this method is rather robust both conceptually and numerically72

(see also Fig. 9).

3 Results and Discussion

3.1 Azobenzene in the Gas Phase

3.1.1 Force Field Development

A new force field suitable for AB was developed using the GROMOS 45a3 force field
(see Sec. 2.6) as a starting point, adjusting only the bonded parameters and the charges
of the azo group while keeping the original values for the remaining parameters. The
parametrization was carried out in such a way as to achieve maximum agreement between
the dynamical distributions obtained from force field (MM) and ab initio molecular dy-
namics (QM) simulations in the gas phase at 300 K concerning the relevant bond lengths,
bond angles and dihedral angles. This ensures maximum compatibility between the QM
and MM descriptions – so that switching adaptively between the two descriptions for a
given AB unit is as smooth as possible in future adaptive multiscale applications.

Tab. 1 summarizes our results for the non–standard parameters. In all cases, the values
for the force constants are adapted to reproduce the widths of the distributions of bond
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entity force constant reference
Bonds: NN 1.40× 103 kJ/(mol Å4) 1.2625 Å

CN 0.72× 103 kJ/(mol Å4) 1.4325 Å
Angles: CNN 650.0 kJ/mol 116.5◦

CCN 560.0 kJ/mol 120.0◦

Dihedrals: CNNC 70.0 kJ/mol 180.0◦

CCNN 6.0 kJ/mol 180.0◦

XCCX 40.0 kJ/mol 180.0◦

Point charges: N -0.20 e
C(1) 0.20 e

C(2) – C(6) -0.10 e
H 0.10 e

Table 1. Non-standard force field parameters derived for azobenzene. For azobenzene structure and atomic
numbering scheme see Fig. 10a (X denotes any atom).

lengths, angle and dihedrals, starting out from the force field’s standard values for chem-
ically similar internal coordinates. In this spirit, we also decided to use the same force
constants and point charges for the cis and trans isomers; only the equilibrium reference
values for the bonded potentials differ.

The point charges for the atoms C(1) and N were adapted from average RESP
charges132 computed along the QM reference trajectories. Since the values obtained for
the aromatic ring atoms C(2)–C(6) and the hydrogen atoms were close to their standard
force field values, we decided to use the standard values and thus to take advantage of the
resulting small charge groups. Note that in contrast to the GROMOS convention but in
line with the AMBER convention133 and in order to distribute the forces evenly over all
contributing atoms we define explicitly all dihedral angles involving the two CN bonds, i.e.
the dihedral angles C(6)C(1)NN′, C(2)C(1)NN′, C(6′)C(1′)N′N, and C(2′)C(1′)N′N, which
consequently results in smaller force constants per dihedral compared to standard force
field values.

It was our aim to derive a single, unified force field for cis and trans which can be easily
applied to study, for instance, a mixture of trans and cis AB molecules in the condensed
phase. In addition, such a force field does not need to be modified during a simulation
once a photoinduced cis↔trans isomerisation has occurred in a preceding nonadiabatic
QM/MM simulation. Therefore, in the applications described below, we employ the aver-
age values determined for cis and trans (see Tab. 1). This is a minor approximation, as the
only differences between the two isomers concern the NN and CN bond lengths and the
CNN bond angle, which are merely 0.015 Å, and 5◦, respectively.

The most difficult parameter to adjust was the force constant for the dihedral angle
∠CNNC. Here we settled for the best compromise between sufficient dihedral flexibility
and a high enough barrier for the thermal trans↔cis isomerization in the ground state. Our
new force field yields a barrier along the torsional reaction coordinate of ≈ 140 kJ/mol,
in reasonable agreement with recent ab initio calculations134 predicting ≈ 160 kJ/mol.
Increasing the barrier in the force field would yield to an even narrower distribution func-
tion for the dihedral CNNC angles. On the other hand, the presently parametrized barrier
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Figure 10. a) Structure and atom numbering scheme of trans and cis azobenzene in the left and right panels,
respectively. b) Chemical structure of 4,4’-dioctyloxy-azobenzene (8AB8).

height is sufficiently large to prevent thermally induced cis ↔trans isomerizations in the
simulations of bulk AB at 400 K (corresponding to an energy of about 3.3 kJ/mol) (see
Sec. 3.2.1), which will not occur on the timescale accessible to classical simulation.

The new force field also reproduces the energy difference between the cis and trans
isomers reasonably well. It predicts the cis structure to be higher in energy by 36 kJ/mol,
which is close to the value of 50 kJ/mol obtained experimentally135 and from CASPT2 ab
initio calculations134.

A detailed comparison of dynamical and optimised structural data from QM and MM
calculations can be found in Ref. 46. The data underline the good quality of our parameter
set for trans and cis AB, respectively.

Based on this force field for the AB chromophore we have extended the set of force
field parameters to be able to study materials containing this photoswitch such as 8AB8,
introduced in Fig. 10, where aliphatic side chains are attached to the phenyl rings of AB via
ether bridges. We used methyl-phenyl-ether (H3C–O–C6H5) as a model system to derive
the force field parameters necessary to describe the C(4)–O–C(7) link unit (see Fig. 10 for
atomic numbering scheme) whereas the remainder of these side chains are treated using
standard force field parameters.

As for AB itself, a Car–Parrinello run at 300 K was performed with H3C–O–C6H5

as QM reference with the aim to parametrize those internal coordinates that involve the
oxygen atom of the ether group. In order to take into account dynamical fluctuations of
the C(5)C(4)OC(7) dihedral angle, RESP charges for C(4), O, and C(7) were calculated for
different angles between 0◦ and 90◦ in steps of 10◦. The resulting charge of the methyl
group is taken as the charge of the alkyl carbon atom C(7) (united atom approach), and the
resulting charge of the aryl carbon atom C(4) is adjusted so as to yield a neutral C(4)–O–
C(7) unit. Force field point charges were then obtained by Boltzmann averaging over the
torsion–angle dependent RESP charges. The resulting parameters for the ether linkage are
collected in Tab. 2.

24



entity force constant reference value
bonds: OC(7) 8.18× 102 kJ/(mol Å4) 1.430 Å

C(4)O 1.02× 103 kJ/(mol Å4) 1.360 Å
angle: C(4)OC(7) 620.0 kJ/mol 116.0◦

dihedral: C(3,5)C(4)OC(7) 6.0 kJ/mol 180.0◦

point charges: O -0.332 e
C(7) 0.178 e
C(4) 0.154 e

Table 2. Extension of azobenzene force field to include ether linkage C(4)–O–C(7) (see Fig. 10 for structure and
atomic numbering scheme).

3.1.2 Photoisomerisation of Azobenzene

The photoisomerisation of AB was studied using the nonadiabatic AIMD method intro-
duced in Sec. 2.4. Ten surface hopping trajectories were calculated for both directions,
trans→cis and cis→ trans, sampling the initial conditions randomly from ground state
AIMD runs at 300 K.

Potential Energy Landscapes It is important for the discussion below of the photoisomeri-
sation dynamics and mechanism to determine first the shape of the ground and excited state
potential landscapes, and to assess the quality of the ROKS S1 PES used in the na-AIMD
and na-QM/MM simulations. We have therefore calculated ROKS, CASSCF, and CASPT2

Figure 11. S0 and S1 energy profiles along the CNNC dihedral angle using structures optimized using DFT
(PBE) for the S0 ground state (left) and ROKS (PBE) for the S1 first excited state (right). The ROKS energies
(N—N) are compared to the state-averaged CAS(14,12) (4—4) and CASPT2 (♦—♦) data. S0 ground state
energies are shown for DFT (•—•), state-averaged CAS(14,12) (◦—◦) and CASPT2 (♦—♦). All energies are
relative to the respective S0 energies of trans-AB optimized with DFT in the S0 state; 0.7 eV have been added
to the ROKS energies as explained in Sec. 3.1.2.
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energy profiles along the CNNC dihedral angle, which is an important internal coordinate
for photoisomerisation in the S1 state64. On the left hand side of Fig. 11 we present DFT,
CASSCF, and CASPT2 S0 and ROKS, CASSCF, and CASPT2 S1 potential energy curves
for the DFT ground state minimum energy path (MEP) along the CNNC dihedral angle,
θ. Note that the ROKS energies have been corrected upwards by constant shift of 0.7 eV
which was originally determined from the difference between ROKS and experimental ver-
tical excitation energies64. All ground state curves in Fig. 11 have a maximum at 90◦, the
DFT curve being very close to the CASPT2 curve, while CASSCF is seen to overestimate
by about 0.2 eV compared to CASPT2 over a wide range of θ. The agreement between the
ROKS and CASPT2 excited state curves throughout the entire range of the isomerization
coordinate θ is remarkable, whereas the CASSCF S1 curve is very similar in shape but
shifted upwards by about 0.5 eV.

The right hand side of Fig. 11 shows ground and excited state energy profiles along
the ROKS optimised S1 excited state MEP along the CNNC dihedral. It is seen that the
ROKS curve has a shallow S1 minimum around θ ≈ 120◦ which can be reached by a
barrierless path from both the cis and trans Franck-Condon (FC) points at θ = 10◦ and
θ = 180◦, respectively. As for the S0 MEP, there is again striking agreement between the
ROKS and CASPT2 excited state curves, while the CASSCF energies are higher than the
CASPT2 data by 0.3–0.5 eV. With regards to the differences between the trans→cis and
cis→ trans photoisomerisation dynamics which we shall discuss below, it is important
to realise that there is a considerably larger potential energy difference between the FC
point and the S1 global minimum upon vertical excitation of the cis isomer as compared to
trans-AB.

At this stage it is concluded, based on the direct comparison to CASPT2 reference data

Figure 12. Time evolution of ψNN
′
(—), ψN (- -), and -ψN

′
(•–•) for typical cis→ trans trajectories in the gas

phase (a) and the liquid (b). Vertical lines indicate S1→S0 (- -) and S0→S1 (—) hops. Grey bars indicate the
ψNN

′
trans reference range. The insets show the rmsd’s of N, N′ (solid) and R, R′ (dashed) relative to t = 0.
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in Fig. 11, that the aforementioned constant blue-shift applied to the ROKS data indeed
corrects consistently the gap not only at 90◦ but along the entire MEPs along the CNNC
dihedral angle, which is a major component of the reaction coordinate of AB photoisomer-
ization, both in the S0 and in the S1 in the full range between 0◦ and 180◦.

Definition of internal coordinates To analyze in detail the isomerisation mechanism and
possible differences between the gas and the liquid phase, we describe internal motion in
terms of the plane normal vectors nR and nR

′
, of the two aromatic rings at their geomet-

ric centres, R and R′, together with the normal vectors nN and nN
′

of the C(1)NN′ and
NN′C(1′) coordination planes at N and N′. To measure torsion of the C(1)NN′ and
NN′C(1′) coordination planes, we define an intrinsic (right-handed) coordinate system
whose origin is at the geometric midpoint of the two nitrogen atoms, the x-axis is parallel to
the N=N′bond and the z-axis is parallel to the arithmetic mean of nN and nN

′
. The abso-

lute torsion is then monitored as the change in angle of the projection of the normal vector
nα onto the yz plane, nαyz , ψα(t) = ∠(nαyz(t),n

α
yz(0)), while ψαβ(t) = ∠(nα(t),nβ(t)),

with α, β ∈ {N,N′,R,R′}, gives relative changes, e.g. ψNN
′

is the C(1)NN′C(1′) dihedral
angle and ψRN captures rotation of the phenyl rings.

Cis→trans In this section, we analyze in detail the mechanism of cis-AB to trans-AB
photoisomerisation. In Fig. 12a we present the time evolution of ψNN

′
(i.e. the CNNC

Figure 13. Ensemble average of the CNNC dihedral angle, ψNN
′
(t), during time–evolution in the first excited

state, S1, where the specific value ψNN
′
at time t is reached for the first time after vertical photoexcitation

from S0 at t = 0: gas phase trans-AB-C2 (•–•), gas phase trans-AB (◦–◦), gas phase cis-AB (4–4) liquid
phase trans-AB (•–•), liquid phase cis-AB (N–N). In the case of cis-AB, 180◦− ψNN

′
is plotted. The per-

pendicular conformation, i.e. ψNN
′

= 90◦, is marked by the horizontal dashed line. For liquid trans-AB, the
non-monotonicity arises from the fact that ensemble averages were obtained with different numbers of trajec-
tories. The inset shows the optimised structure of trans-AB-C2; normal vectors indicate the orientation of the
phenyl rings, nR and nR′ (cyan, orange), and of the CNN coordination plane of the N atoms, nN and nN′ (red,
blue).
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Figure 14. Time evolution of ψNN
′
(—), ψN (- -), and -ψN

′
(•–•) for typical trans→ cis trajectories in the

liquid (top) and in the gas phase (bottom). Grey bars indicate the ψNN
′

cis reference range. See caption of
Fig. 12.

dihedral) for a typical cis→ trans trajectory together with the corresponding time evolu-
tion of ψN and ψN

′
. It is seen that ψNN

′
initially changes rapidly and after about 30 fs

reaches a value of ≈ 90◦. After the S1→S0 transition to the ground state, ψNN
′

reaches a
value of ≈ 180◦, thus indicating a successful cis→ trans isomerisation. Inspection of the
order parameters ψN and ψN

′
(cf. Fig. 12a) reveals that the total change in ψNN

′
is due

to equal contributions from the two coordination planes at N and N′ in opposite directions.
Photoisomerisation is dominated by a pedal motion of the CNNC group and not by large
amplitude rotation of the phenyl rings. This is illustrated by the inset of Fig. 12a which
shows the rmsd’s of the N atoms and the phenyl ring centres R. We can see that during the
first 30 fs it is mainly the translocation of the N atoms that is responsible for the change
in ψNN

′
by ≈ 90◦, while the phenyl rings remain largely fixed in space. Fig. 13 shows

the ensemble averaged changes of the CNNC angle (i.e. ψNN
′
) as a function of time after

vertical photoexcitation. The average time it takes a molecule to reach ψNN
′
= 90◦ is just

42 fs.

Trans→cis The time evolution of ψNN
′

in the trans→ cis case is displayed in Fig. 14a.
It shows a more or less smooth decrease from 180◦ at t = 0 to ≈ 90◦ at t ≈ 300 fs,
where a S1→S0 transition occurs. After the hop ψNN

′
rapidly falls to a value close to

0◦, thus indicating a successful trans→ cis isomerisation. As observed for the cis→
trans isomerisation, the total change of ≈ 180◦ in ψNN

′
is eventually accomplished by

equal contributions (≈ 90◦) from ψN and ψN
′

(dashed and circled lines), in opposite
directions. Interestingly, however, initially both nitrogen coordination planes rotate in the
same direction, thus producing no net change of ψNN

′
(e.g. at t = 50 fs). This is a crucial

difference from the cis→ trans photoisomerisation mechanism.
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As for the cis→ trans isomerisation, the change in ψNN
′

is produced by the translo-
cation of the N atoms, again indicating a pedal–motion–like mechanism (see inset of
Fig. 14a). Interestingly, a similar translocation at fixed ψNN

′
has been found in x-ray

diffraction experiments of azobenzene crystals136.
Being the characteristic feature also of the trans→ cis photoisomerisation, the pedal

motion of the two N atoms accounts for the experimental finding of fast isomerisation
dynamics in rotation–restricted trans-AB137 and clearly rules out an inversion-type mech-
anism as deduced from resonance raman intensity analysis138. Note, that there is no large-
amplitude rotation of the phenyl rings involved as has been suggested for the interpretation
of fluorescence anisotropy data139.

The trans→ cis photoisomerisation is significantly slower than cis→ trans. This
is illustrated by the ensemble averaged changes of the CNNC angle shown in Fig. 13.
The average time it takes a molecule to reach ψNN

′
= 90◦ is about 360 fs, one order of

magnitude longer than for cis→ trans. This observation is in accord with the longer S1

lifetimes measured experimentally for trans-AB compared to cis-AB140.

3.1.3 Photoisomerisation of Chemically Bridged Azobenzene

Recently, a greatly enhanced trans→cis quantum yield ΦAB−C2
trans→cis was reported141 for a

bridged azobenzene (AB-C2 in Fig. 13) in the S1 state as compared to the parent molecule
AB. This finding seemed surprising at first as the structural changes involved in isomeri-
sation should be expected to be hindered by the restriction due to the presence of a bridge
interconnecting the phenyl rings. Subsequent na-AIMD simulations142 then demonstrated
that counterintuitively the bridge does not hinder photoisomerization. On the contrary, it
suitably pre-orients the phenyl rings such that AB-C2 can more easily undergo trans→cis
isomerization thus yielding not only an enhanced quantum yield ΦAB−C2

trans→cis but also ultra–
short S1 lifetimes.

Upon chemical modification of AB to form AB-C2 (i.e. addition of a –CH2–CH2–
bridge in ortho position of the phenyl rings) the trans isomer becomes nonplanar, due to
the orientation of the phenyl rings, while only minor structural changes arise for the cis
isomer (Fig. 13). The mechanical strain introduced into trans-AB-C2 makes it less stable
than cis-AB-C2 by 0.31 eV according to DFT (which again compares favourably to the
CASPT2 value of 0.35 eV).

Performing nonadiabatic AIMD simulations after vertical S0 → S1 photoexcitation of
trans-AB-C2 roughly half of them are found to result in successful trans→ cis isomer-
ization, the quantum yield being, more precisely, ΦAB−C2

trans→cis = (47± 10) % including the
statistical error of the sample computed using the blocking method143. The computed num-
ber is consistent with the experimental finding141 of ΦAB−C2

trans→cis = (50±10) %. It is noted
in passing that the surface hopping method applied here is known to overemphasize co-
herence85, 144, which is a potential source of error when extracting quantitative information
such as quantum yields or excited state lifetimes. However, it has been shown145 to per-
form rather well when compared to other approximate methods suitable to simulate com-
plex molecular systems and, moreover, it has been demonstrated146 that surface hopping
quantum yields are only slightly underestimated for bare AB thus validating this approach
for the specific case. In stark contrast to trans-AB-C2, the parent compound AB features a
much lower experimental value of ΦAB

trans→cis = 24 %141, which is again in harmony with
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nonadiabatic AIMD where only roughly 20 % of the trajectories yielded isomerization64.
Thus, the computational approach reproduces the observed141 striking difference between
AB-C2 versus AB in terms of quantum yields. The calculations demonstrate that photoi-
somerisation of trans-AB-C2 is astonishingly fast according to Fig. 13, which shows that
trans-AB-C2 reaches the decisive perpendicular conformation, i.e. ψNN

′
= 90◦, in only

≈ 40 fs which is one order of magnitude faster than for the corresponding parent trans-AB
and, in fact, comparable to plain cis-AB. Moreover, in contrast to trans-AB, trans-AB-C2

is found to rapidly reach the region beyond the ground state barrier to trans→ cis iso-
merisation along the CNNC coordinate characterized by ψNN

′ � 90◦, thus entering the
cis-AB-C2 product potential well leading to successful photoisomerization (the optimized
value for the cis-AB-C2 product being ψNN

′

0 = 6.6◦ in S0). This behavior rationalizes
the greatly enhanced isomerization quantum yield found for trans-AB-C2 compared to
trans-AB consistently both in experiment141 and in these simulations.

But why is photoisomerization promoted upon bridging? First principles simulations of
the photoiomerization of AB in the bulk63, 64 (see Sec. 3.2.2) and suspended between gold
electrodes147, 148 reveal that spatial confinement and mechanical constraints, respectively,
only mildly affect cis→ trans isomerisation while a pronounced slowing down is seen for
trans→ cis. The reason can be traced back to the ultrafast pedal motion of the N atoms
yielding a CNNC angle of ψNN

′≈ 90◦ in the S1, which competes with the need to achieve
co-planarity of the CNN planes with their adjacent rings, ψRN ≈ 0◦. In this sense, trans-
AB-C2 is very similar to cis→ trans, since both have a very similar non-co-planar phenyl
ring orientation in the S0 equilibrium structure (ψRN = ψR

′N ′≈ 58◦ for cis-AB and≈ 53◦

for trans-AB-C2, see Fig. 13). The energetic reward associated with achieving co-planarity
turns out to be a driving force for ultrafast photoisomerisation. The same reasoning can
be applied to explain the large difference between trans-AB-C2 and its unbridged parent
trans-AB. While trans-AB-C2 tries to compensate the initial non-co-planarity of the phenyl
rings and the CNN planes, trans-AB is initially planar and therefore completely lacks this
incentive.

Hence, the “bridging” of AB – commonly viewed as a severe steric hindrance to photoi-
somerisation – counterintuitively yields a drastically improved photoswitch which isomer-
izes on a much shorter timescale with a significantly enhanced quantum yield. Extending
the same reasoning it is expected that bridging cis-AB to yield cis-AB-C2 will have only
a minor effect on the mechanism and, therefore, the cis→ trans photoisomerization of
AB-C2 should be as fast as for unbridged AB. This implies that both cis→ trans and
trans→ cis photoswitching of AB-C2 should be similarly effective. In fact, experiment
predicts a cis→ trans quantum yield of 72± 4 %, even larger than for trans→cis141. A
recent semiempirical nonadiabatic dynamics study of AB-C2 has confirmed that nonadia-
batic relaxation is ultrafast (< 100 fs) for both bridged isomers149. According to those sim-
ulations, however, the cis→ trans quantum yield is only 23 %. The authors attribute this
underestimation to early surface hops caused by subtle errors in the underlying semiempir-
ical potential energy surfaces.
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Figure 15. Distributions of structural parameters of the AB unit under various conditions at 400 K. Panels a and
b: Distance of the geometrical centres of the two phenyl rings. Panels c and d: CCNN dihedral angle. Panel
a: trans AB in liquid phase as well as in vacuum – solid line, trans 8AB8 in liquid phase (both isotropic and
smectic) and in vacuum – dashed line; panel b: cis AB in liquid phase – solid line, cis AB in vacuum – dashed
line; panel c: trans AB in liquid phase (equivalent to trans AB in vacuum and trans 8AB8 in vacuum) – solid
line, trans 8AB8 in isotropic liquid – dashed line, trans 8AB8 in anisotropic (smectic) phase – dotted line; panel
d: cis AB in liquid phase – solid line, cis AB in vacuum – dashed line.

3.2 Liquid Azobenzene

3.2.1 Classical Molecular Dynamics in the Ground State

Parametrizations of the azo group had been carried out at 300 K having in mind future ap-
plications of the force field at ambient conditions. The present applications to the study of
liquid AB (with a melting point of 341 K) and liquid crystalline AB-containing compounds
(with phase transition temperatures of 8AB8 between 372 and 385 K) required testing the
validity of the classical force field at an increased temperature of 400 K.

We therefore applied the new force field to study liquid AB at 400 K and analyze
separately the influence of the liquid environment on the structural properties of the cis
and trans conformers of AB by comparison with gas phase simulations at 400 K. As a
measure for the extension of the AB unit serves the distribution of the distance between
the geometric centres of the two phenyl rings as shown in Fig. 15a) and b). For trans AB
the distributions of the single molecule and the liquid phase are indistinguishable (solid line
in Fig. 15a), whereas the conformations of the cis isomer are slightly more affected by the
bulk environment (see Fig. 15b). In the liquid phase the cis AB unit is slightly stretched out
compared to the vacuum simulations. Similar observations can be made when analyzing
the out-of-plane motions of the phenyl rings by monitoring the distribution functions of the
dihedral angle between the normal vectors of the two phenyl rings (data not shown) and
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Figure 16. Time evolution of the CCNN dihedral angles of a cis AB molecule in liquid environment at 400 K.
The striped bars indicate the regions (±14◦ around the maxima of the distributions at ±54◦ and ±126◦, see
Fig. 15d) used to count the transitions between the states (see text). Snapshots of typical conformations are
included with the C(2) and C(2′) carbon atoms that are used to define the CCNN dihedral angles marked in red.

of the CCNN dihedral angle (see Fig. 15c and d). The conformations in trans AB are not
affected by the liquid environment (solid line in Fig. 15c), whereas in the case of the cis
isomer the amplitude of the ring motion (compared to a planar structure) is slightly larger
in the isolated molecule than in the bulk liquid at the same temperature (see Fig. 15d).
Additionally, it was found that the distribution functions of the CNNC dihedral angle are
not affected by the liquid environment – neither in the case of the trans nor in the case
of the cis isomer (data not shown), and it was verified that the system does not undergo
thermal cis↔trans isomerisation, which is a rare event that indeed should not occur on the
timescale presently accessible by such classical molecular dynamics simulations.

Fig. 15d shows that the distribution of the CCNN dihedral angle in cis AB has four
chemically equivalent maxima around ±54◦ and ±126◦ and consequently two types of
transitions between these states. As indicated in the figure, there is one ”fast” type of tran-
sition where the phenyl ring is intermediately standing perpendicular to the plane spanned
by the C(1) (or the C(1′)) carbon and the two N atoms, and one ”slow” type of transition,
where the ring is intermediately in–plane with the C(1) and the two N atoms (to avoid steric
hindrance in this planar conformation during the “slow” transition, the second phenyl ring
has to “make way” by adopting a conformation perpendicular to the plane). These tran-
sitions are observed in the classical simulations of cis AB, whereas the timescale of QM
simulations of a few ps are too short to sample these transitions systematically. Fig. 16
shows one example of such a process by monitoring the dynamics of the CCNN dihedral
angles of one AB unit in a simulation of liquid cis AB at 400 K, where both types of
transitions are observed. In addition, snapshots of representative cis AB conformations
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are shown to illustrate the conformational changes during the transitions. In order to get a
rough estimate for the timescale of these ring flips the transitions of both types are counted
for all CCNN dihedrals in a simulation of 343 cis AB molecules at 400 K. Since the sepa-
ration between the states, in particular between the states involved in the ”fast” transitions,
is ambiguous, narrow regions (±14◦) around the maxima of the distributions at ±54◦ and
±126◦ were defined (as marked in Fig. 16) and only transitions between these regions were
counted. This results in transition times of approximately 20 ps for the ”fast” and 200 ps
for the ”slow” ring flips. By Boltzmann inverting the dihedral distribution in Fig. 15d,
one obtains an effective barrier for the ”fast” transition of the order of about 3 kJ/mol
(≈ 1 kBT , where kB is the Boltzmann constant) and for the ”slow” transition a barrier of
about 12 kJ/mol (≈ 4 kBT ), which approximately reproduces the relative magnitude of the
two transition rates extracted from the dynamics.

3.2.2 QM/MM Photoisomerisation Simulations

Cis→trans The photoisomerisation of AB in the bulk liquid has been studied using the
nonadiabatic QM/MM simulation method introduced in Sec. 2.5. Condensed phase effects
are investigated by comparing results for the liquid with those for the gas phase (Sec. 3.1).
Fig. 12b shows the time evolution of ψNN

′
(i.e. the CNNC dihedral) for typical cis→

trans trajectories in the liquid together with the corresponding time evolution of ψN and
ψN

′
. Similar to the gas phase (Fig. 12a) ψNN

′
changes rapidly, in about 30 fs, to a value of

≈ 90◦ upon photoexcitation at t = 0; after the S1→S0 transition to the ground state, ψNN
′

reaches a value of ≈ 180◦, thus indicating a successful cis→ trans isomerisation in both
cases. Inspection of the order parameters ψN and ψN

′
(cf. Fig. 12) reveals that the total

change in ψNN
′

is due to equal contributions from the two coordination planes at N and
N′ in opposite directions. Note that the analysis presented in Fig. 12 shows no significant
differences between the liquid and the gas phase. The liquid environment obviously does
not impose any major constraints on the dynamics of the CNNC moiety. As discussed
above, this is due to the fact that photoisomerisation proceeds through a pedal motion of
the CNNC group which does not involve large amplitude rotation of the phenyl rings, as
illustrated by the inset of Fig. 12b) which shows the rmsd’s of the N atoms and the phenyl
ring centres R. Again, during the first 30 fs it is mainly the translocation of the N atoms
that is responsible for the change in ψNN

′
by≈ 90◦, while the phenyl rings remain largely

fixed in space.
While the “hula-twist” motion of the CNNC moiety during cis→ trans photoisomeri-

sation is practically unaffected by the bulk environment, we have observed a pronounced
hindrance of the rotation of the phenyl rings about the C-N bonds, measured by the rotation
angles ψRN and ψR

′N ′64. In the liquid, relaxation of the molecular structure to the ground
state equilibrium following a cis→ trans switch of the CNNC group is seen to be much
slower than in the gas phase.

Trans→cis Analogous to the above discussion, we now analyze the trans→cis photoiso-
merisation mechanism in the liquid as obtained from nonadiabatic QM/MM simulations64.
The time evolution of ψNN

′
in the trans → cis case is displayed in the bottom panel

of Fig. 14b. We observe a much slower decrease in ψNN
′

compared to the gas phase
(Fig. 14a). For the trajectory shown, a value of ≈ 120◦ is reached after 450 fs, still far
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from the 90◦ value where the S1→S0 hop took place in the gas phase. In fact none of
the trajectories in the liquid reached 90◦, and the average time to reach 120◦ is 672 fs,
compared to 259 fs in the gas phase (see Fig. 13). In contrast to the gas phase, there is no
sustained sign-change in either ψN or ψN

′
, explaining the fact that changes in ψNN

′
are

smaller in the liquid.
It may seem surprising at first that trans→cis photoisomerisation is strongly hindered

in the bulk, while cis→ trans is essentially unaffected. This can be easily rationalised,
however, in terms of the S1 potential landscape (see Sec. 3.1.2, Fig. 11). Vertical excitation
of the cis-AB isomer promotes the system to a steep Franck-Condon region in the S1,
providing a large driving force for isomerisation. The Franck-Condon region for trans-AB,
on the other hand, is comparatively flat and the resulting forces small, rendering trans→
cis photoisomerisation much more vulnerable to any environmental disturbances. A recent
nonadiabatic simulation study of the photoisomerisation of AB in various organic solvents
using a force field derived ab initio by Tiberio et al.150 has confirmed the pedal mechanism
and the strong impact of the solvent on decay times and quantum yields.

3.3 The 8AB8 Liquid Crystal

3.3.1 Atomistic Classical Simulations

As described in Sec. 3.1.1, we extended and partly reparameterized an existing classical
atomistic forcefield to be able to simulate the liquid crystalline compound 8AB8 which
consists of a central azobenzene unit and two octodecane chains connected to the oxy-
gens. We studied the phase behaviour of this compound by classical simulations using
replica exchange techniques46. Even though it is possible to use these techniques to equi-
librate preset liquid crystalline structures and to draw some conclusions about the stability
of certain phases in the atomistic model, the time and length scales required to properly
cover liquid crystalline phase transition processes and to extensively investigate the phase
behaviour of 8AB8 can only be reached with a coarse grained simulation approach. Atom-
istic simulation then again becomes important after a backmapping procedure, to “hand
over” well equilibrated structures of the liquid crystalline system obtained from CG sim-
ulations to the further classical and QM/MM investigation of the photoisomerization in
dense, ordered systems.

3.3.2 Coarse Grained Classical Simulations

In Ref. 44 a coarse graining scheme originally developed for amorphous polymers was
applied to liquid crystalline 8AB8. It is known that the behaviour of the polymer melts
strongly depends on chain connectivity and excluded volume interactions of the polymeric
beads. Consequently, it is often not essential for a correct prediction of the melt structure
and dynamics at the mesoscale to introduce attractive (nonbonded/intermolecular) interac-
tions. For liquid crystalline 8AB8 we find that specific (attractive) nonbonded interactions
between the different units are required to obtain a CG model that is capable of reproducing
the correct liquid crystal behaviour and that is closely linked to the atomistic level. This
makes switching between the levels of resolution possible. Fig. 17 shows how the atomistic
structure of 8AB8 was mapped onto the coarse grained beads. Intramolecular (bonded) CG
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Figure 17. Left: Chemical structure of (trans) 8AB8 and MM↔CG mapping scheme (CG beads are denoted C
= alkyl; P = phenyl; N = azo). Right: Snapshot of 8AB8 molecules in a backmapped liquid-crystalline structure.
Large spheres: CG beads (green: C; gray: P; blue: N); Purple small spheres: re-inserted atomistic coordinates
after equilibration with restraining to CG structure; Green, gray, blue (+white and red) small spheres: re-inserted
atomistic coordinates after 5 ps free MD simulation without restraining potential.

potentials were obtained from simulations of an all-atom single 8AB8 molecule while in-
termolecular potentials were developed based on all-atom simulations of isotropic liquids
of fragments of the 8AB8 molecule. Liquid benzene, liquid azobenzene (in its trans and
in its cis form), liquid octadecane and various mixtures of these compounds were used for
the intermolecular part. Based on the structure of these liquids (radial distribution func-
tions), nonbonded interaction potentials were determined, both using analytical potential
functions and the iterative Boltzmann inversion method.

An overview of all analytical and tabulated interaction functions obtained with this
procedure can be found in the Supplementary Material of Ref. 44. As an illustration of
this structure-based coarse graining method, Fig. 18 shows the radial distribution functions
characteristic of liquid trans and cis azobenzene. The figure shows the corresponding struc-
ture functions from atomistic simulations (mapped onto CG degrees of freedom) together
with the corresponding CG simulations with (numerical) interaction functions obtained
from iterative Boltzmann inversion, specifically for each isomer. The figure also shows the
result of CG simulations with an averaged interaction function which serves as a compro-
mise to be able to use a single set of CG potentials both for trans and cis azobenzene. The
resulting interaction functions obtained for isotropic liquids were then put together to sim-
ulate liquid (trans) 8AB8 to study the liquid crystalline phase behaviour. We found that the
use of (soft) analytical potentials which are purely repulsive (in the spirit of the previous
coarse graining examples of polymeric systems) did not yield the correct mesophase be-
haviour of 8AB8, in fact no long-range ordering was observed for the model chosen, even
with a rather wide scan of temperatures and pressures. With potentials generated with the
iterative Boltzmann inversion method, i.e. numerical (tabulated) potentials which are also
partly attractive, it is however possible to observe liquid crystalline structures. Thus, for
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Figure 18. Radial distribution functions, g(r). for liquid trans-AB (left panels) and cis-AB (right panels). Top
panels: phenylphenyl gPP(r). Middle panels: phenylazo gPN(r). Lower panels: azoazo gNN(r). Black solid
lines: g(r) from atomistic simulation. Red, fat dotted lines: CG simulation with potentials through iterative
Boltzmann inversion specifically for the respective trans and cis compounds. Cyan dashed lines: CG simulations
with average potential as compromise for trans / cis AB.

the given molecule, i.e. the given size and shape of the mesogen and the given molecular
flexibility of the alkoxy tails, it seems to be important to account for attractions between the
different beads in the CG model in order to reproduce liquid crystalline phases of 8AB8.
By varying simulation temperature and density it was possible to distinguish structures
with smectic layers and more disordered structures, which are however not truly nematic
but still exhibit a varying degree of positional order with partly interdigitated smectic lay-
ers, as illustrated in Fig. 20 which shows the z-positional order in the liquid crystal systems.
Several snapshots of the corresponding 8AB8 liquid crystal simulations at different densi-
ties and system sizes can be seen in Fig. 19. At this point it should be noted that with this
approach of building a CG model on an atomistic forcefield description of the molecule,
possible weaknesses of the atomistic model will be automatically transferred to the CG
model. With the given approach the mesoscale simulations maintain an important link to
the chemical structure, and through the inverse mapping procedure it is possible to obtain
atomistic coordinates of the system as illustrated in Fig. 17. This is important for passing
down the CG configuration and velocities to the MM level below, which, in turn, serves as
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a starting point for a na-QM/MM simulation during which one of the 8AB8 molecules is
photoswitched from trans to cis.

Figure 19. Snapshots of slices through the liquid crystal system from simulations at T = 0.8 with the average-
8AB8 FF. a) 1323 8AB8 molecules, density = 1.44 molecules per nm3; b) 1323 8AB8 molecules, density = 1.62
molecules per nm3; c) 6125 8AB8, density = 1.52 molecules per nm3.

Figure 20. Distribution of centres of 8AB8 molecules (N beads) along z-direction of the simulation box of the
liquid crystal system at T = 0.8 and various densities (see legend, densities are in molecules per nm3).

4 Summary and Outlook

A multiscale simulation approach has been presented which links nonadiabatic ab initio
molecular dynamics, atomistic classical molecular dynamics, and coarse grained classical
molecular dynamics, to make possible the simulation of mesoscopic processes triggered
by quantum-mechanical events highly local in space and time. As a test bed for our com-
bined approach we chose the liquid crystalline system 8AB8, consisting of an azobenzene
chromophore embedded in a hydrocarbon chain. By switching a fraction of AB units from

37



trans-AB to cis-AB using light of a suitable wavelength, transitions between ordered and
disordered phases can be induced in the 8AB8 liquid crystal.

First, an atomistic force field for AB and AB chain derivatives was derived from AIMD
data in the gas phase, and was then shown to be suitable for bulk liquid AB and liquid
crystalline 8AB8 as well. The atomistic force field was the prerequisite to be able to
perform nonadiabatic QM/MM simulations of the photoisomerisation of AB in the bulk,
and it formed the basis for the development of a coarse grained representation of 8AB8,
which was required to study the phase behaviour of the liquid crystal. We have indeed
demonstrated that the CG force field is capable of reproducing several ordered phases of
the 8AB8 liquid crystal and phase transitions between them.

We have gained unprecedented insights into the photoisomerisation mechanism of AB
from na-QM simulations. A clear relationship between the molecular structure of a par-
ticular AB-based photoswitch and its relevant properties, such as photoisomerisation effi-
ciency, has been established. This could pave the way for the rational design of improved
photoswitches for light-controllable nano-devices and materials. Nonadiabatic QM/MM
simulations of the photoisomerisation in liquid AB have revealed that the cis→ trans re-
action is large unaffected by the environment, while trans→cis is strongly hindered in the
bulk. The respective behaviours of cis-AB and trans-AB could be traced back to their pho-
toisomerisation mechanisms and rationalised in terms of the potential energy landscape.

All the necessary parts to perform a na-QM/MM/CG multiscale simulation are now
available and can be applied to study photoisomerisation in 8AB8 and its effect on the
liquid crystalline order. The most straightforward way of doing this is in a sequential fash-
ion. Having built the multiscale model from the bottom up, i.e. based on first principles,
the best way to tackle the liquid crystal is to apply the individual tools at the different
scales in a cyclic manner, starting from the top. This means that first an ordered liquid
crystalline phase needs to be produced in a CG simulation. The CG system then has to be
back-mapped onto the atomistic representation using the procedure presented here and an
MM simulation needs to be performed to reequilibrate the system. To simulate a photoi-
somerisation event, an na-QM/MM simulation has to be carried out subsequently. From
this bottom layer, the information is then passed back to the MM and eventually to the CG
level to complete the cycle.

Since, to induce a phase transition in 8AB8, a significant fraction of molecules need to
be switched, it is desirable to develop a purely analytical switching potential based on the
knowledge gained from na-QM/MM simulations about the mechanism. Such a switching
potential is currently being designed and tested.

At present, the multiscale simulations involve different codes for the different layers.
A great challenge consists in implementing a simultaneous na-QM/MM/CG simulation
method, which would facilitate applications to very extended systems, albeit at the ex-
pense of a limited timescale. This means that all the methods outlined in these notes can
be potentially combined in a single software package. Therefore, parts of the multiscale
strategy outlined here, such as the adaptive resolution scheme, are currently being extended
to be able to treat – with a single program – several scales, including the quantum level,
concurrently in a robust way.

Other desirable extensions are, for instance, an adaptive QM/MM partitioning, beyond
the path integral representation of atomic nuclei (without treating electrons explicitly),
allowing for particle exchange between the QM and the MM regions, multiple QM regions,
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and a theoretically sound method of switching “on” and “off” a QM region. These are
issues that need to be solved not only in the context of the project introduced here, but for
hydrid simulation schemes in general.

The multiscale strategy and methodology developed here presents a powerful tool, first
and foremost in the ever growing field of light-addressable azo-materials, but at the same
time it is transferable to a plethora of other applications, including (photo)biochemistry
and -biophysics.
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In this article, we give an introduction to transition path sampling, a computer simulation
methodology developed to investigate rare but important events between known long-lived sta-
ble states. Such rare event processes play an important role in many areas of biology, chemistry,
physics, and, in particular, materials science. Here, we focus on nucleation phenomena such
as the freezing transition of a liquid or the structural transformation of a crystalline solid, in
which the rare event is related to the formation of a critical nucleus of the thermodynamically
favored phase embedded in the metastable phase. Due to the arising free energy barrier, typical
nucleation times can exceed the basic time scale of particle motions by many orders of magni-
tude. Here, we will first lay out the general ideas of transition path sampling and explain how
this technique circumvents the problem of widely disparate time scales. We will then discuss
how transition path can be implemented and used to determine rate constants and reveal the
transition mechanics. Finally, we will demonstrate the practical application of transition path
sampling using the pressure induced structural transition of CdSe nanocrystals and the freezing
of a supercooled soft particle fluid as examples.

1 Introduction

Many processes occurring in materials are characterized by widely disparate time scales
occurring simultaneously. Consider, for instance, the diffusion of atoms or molecules ad-
sorbed on a surface1, 2. At sufficiently low temperatures, the atom typically resides at
adsorption sites caused by the interactions of the adatom with the surface atoms. Due to
thermal fluctuations, the adatom oscillates about the potential energy minimum on a time
scale of picoseconds. Rarely, the adatom crosses the potential energy barrier separating
the potential energy minima and jumps from one adsorption site to another. Note that this
motion can occur through the jump of a single particle, but more complex mechanisms
involving the motion of several atoms, for instance, the exchange with a sub-surface atom,
are possible as well1, 3. Since the jumps are thermally activated, these barrier crossing
events occur rarely at low temperatures with typical time scales that can exceed those of
basic atomic oscillations by many orders of magnitude. Nevertheless, jumps between ad-
sorption sites are very important as they determine the rate at which adatoms diffuse on the
surface. Another class of processes dominated by rare but important events are first order
phase transitions such as the freezing of a supercooled liquid or the structural transition of
a crystalline material under pressure. Away from the regime of spinodal decomposition,
first order phase transitions occur through a nucleation and growth mechanism in which a
nucleus of the stable phase forms in the metastable phase. This process involves the cross-
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ing of a barrier related to the free energetic cost of creating an interface between the two
phases. Once the system has crossed this barrier, i.e., the nucleus has reached a critical
size, the transformation process proceeds by further growth of the nucleus of the stable
phase, rapidly transforming the system in a barrier-less fashion. In this contribution, we
will concentrate on nucleation and growth processes occurring at first order phase transi-
tions, focusing on their computer simulation using transition path sampling, a methodol-
ogy designed to circumvent computational difficulties associated with rare barrier crossing
events.

A qualitative picture of nucleation processes occurring in metastable phases at first
order phase transitions is provided by classical nucleation theory4, 5 (CNT). This theory
asserts that transitions such as the freezing of a liquid or structural transformations in solids
proceed via the formation of a localized nucleus of the stable phase in the metastable phase.
Due to the free energetic cost associated with the creation of the interface between the two
phases, the free energy increases as a function of nucleus size in the early nucleation stages,
opposing rapid growth of the nucleus. Assuming that the nucleation occurs in the bulk of
the metastable phase (a scenario commonly referred to as homogeneous nucleation) and
the growing nucleus is spherical, the excess Gibbs free energy ∆G(r) of the system as a
function of the nucleus radius r is given by

∆G(r) = 4πr2γ +
4

3
ρsπr

3∆µ, (1)

where γ is the surface free energy per unit area, ∆µ < 0 is the difference in chemical
potential between the two phases, and ρs is the number density of the stable phase. Note
that if the nucleation occurs near impurities or at surfaces rather than in the bulk, i.e., in the
case of heterogeneous nucleation, similar expressions for the free energy as a function of
nucleus size can be derived6. While for small crystallite sizes the surface term dominates,
for larger sizes the volume term prevails. This results in a barrier of height

∆G∗ =
16πγ3

3ρ2
s∆µ

2
(2)

which becomes very high compared to the thermal energy kBT close to coexistence, where
the difference in the chemical potential between the two phases approaches zero, ∆µ ≈ 0.
As a consequence, depending on the external conditions such as pressure or temperature,
nucleation occurs very rarely on the time scale of basic molecular motions. Indeed, under-
cooled liquids can exist for almost arbitrary periods of time in the metastable state before
they eventually crystallize6. Only if a rare thermal fluctuation drives the nucleus past the
critical size, corresponding to the top of the free energy barrier, will the nucleus continue to
grow rapidly transforming the entire system into the stable phase. Thus, the formation of
the critical nucleus can be viewed as the decisive moment in the phase transition determin-
ing the rate at which the transformation occurs. While the concepts underlying classical
nucleation theory are qualitatively reasonable, quantitative discrepancies arise when this
theory is applied to specific models. For instance, the nucleation free energy of a freezing
soft sphere fluid, shown in Fig. 1, displays a barrier as predicted by CNT, but its shape
deviates from the CNT-form. In this case, the assumption of a spherical nucleus of the
stable phase is not strictly valid, as indicated by the critical cluster shown in the right hand
side panel of Fig. 1.
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Figure 1. Free energy ∆G as a function of the number n of particles in the crystalline cluster (left) and cross
section through a critical cluster (right) for a freezing soft sphere fluid. These results were obtained from a
simulation of 6668 Lennard-Jones particles at a temperature about 30% under the freezing temperature. In the
free energy plot on the left, the red line denotes simulation results and the dashed blue line is a fit of the classical
nucleation theory formula for the free energy. For further details on how these results were obtained see Ref. 7.

While experimental studies yield detailed information on the thermodynamics and ki-
netics of first order transitions and can place some constraints on the possible atomic mo-
tions that carry the system from one structure to the other, they lack the time and space res-
olution required to infer the exact atomic rearrangement mechanism. In principle, this in-
formation can be provided by computer simulations such as molecular dynamics8, 9, which
permit to follow the detailed motion of individual atoms, or molecules, as the transition oc-
curs. The high free energy barriers opposing the rapid transformation from the metastable
to the thermodynamically preferred stable phase, however, represent a huge challenge for
particle based computer simulations due to the wide gap between the time scales of atomic
motions and those of the nucleation events. While the height of free energy barriers can be
reduced by driving the system sufficiently strongly away from coexistence, such conditions
are usually unrealistic with respect to the situation studied in experiments. For more realis-
tic circumstances, straightforward computer simulation methods are not applicable due to
prohibitive demands on computing resources originating from small nucleation rates and
the resulting long waiting times before nucleation occurs.

Several approaches have been suggested recently to overcome the computational chal-
lenge posed by wide time scale gaps including metadynamics10, 11, coarse molecular dy-
namics12, 13 or temperature accelerated dynamics14, 15. These methods lead to a speed-up
with respect to regular molecular dynamics by introducing a bias acting on a set of prede-
fined collective variables or by raising the temperature in a controlled way, both with the
effect of promoting the crossing of free energy barriers and enhancing the rate at which
configuration space is sampled. In many cases, however, no information is available on
the specific mechanism of the transition. If the initial and the final state of the transition
are known and well characterized, transition path sampling (TPS)16–19, a computational
methodology based on the statistical description of all possible pathways connecting two
given stable states, is applicable. This method is based on the definition of the transition
path ensemble consisting of all dynamical trajectories connecting the initial with the final
state. This ensemble of pathways is then sampled using a Monte Carlo procedure designed
to harvest trajectories according to their likelihood to occur. Analysis of the collected
pathways can then yield important information on the transition mechanism, for instance,
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in form of a reaction coordinate capable of quantifying the progress of the transition. In the
framework of transition path sampling it is furthermore possible to calculate rate constants.

In the following sections, we will first introduce the fundamentals of the theory and
implementation of transition path sampling. Then, we will discuss the application of tran-
sition path sampling to the specific case of transitions occurring via nucleation and growth.
For an in-depth treatment of the transition path sampling methodology and related methods
we refer the reader to the original publications16–28 and recent review articles29–36. Other
rare event methods such as metadynamics10, 11, coarse molecular dynamics12, 13, temper-
ature accelerated dynamics14, 15, hyperdynamics37, 38, parallel replica dynamics39–41, the
string method42–44, and forward flux sampling45–49 are not treated in this article.

The remainder of this article is organized as follows. In the next section, we will intro-
duce the transition path sampling methodology and explain efficient algorithms to sample
the transition path ensemble and calculate reaction rate constants. Then, in Sec. 4, we
will discuss statistical tools that can be used to analyze transition pathways collected with
transition path sampling and recover the transition mechanism, i.e., to identify the collec-
tive coordinates that capture the important physics of the transition. Application of these
methods will be demonstrated in Sec. 5 using the pressure-induced wurtzite to rocksalt
transition in CdSe nanocrystals and the freezing of supercooled liquids as illustrative ex-
amples.

2 Fundamentals of Transition Path Sampling

The typical situation to which transition path sampling can be profitably applied is illus-
trated in Fig. 2. The landscape has many local maxima, minima and saddle points and
represents the potential energy (or free energy) surface of a complex particle system. The
landscape has two wide basins, A and B, each consisting of several local minima, sepa-
rated by a high and rough barrier. While barriers small compared to the thermal energy
kBT can be crossed easily leading to rapid local equilibration within the basins, surmount-
ing the higher barrier between A and B occurs only rarely. Hence, the time evolution of
the system, which is governed by some stochastic or deterministic equations of motion,
consists of long periods spent within the stable states A and B punctuated by rapid, but
rare transitions between them. We assume that states A and B can be characterized easily
as regions in configuration space, for instance, by specifying a certain range of an order pa-
rameter, while the nature of the barrier separatingA andB is unknown. In other words, we
know the initial and final states of the transition, but do not know the mechanism followed
by the system as it moves fromA toB. Finding this mechanism (or possibly several mech-
anisms) and identifying a reaction coordinate that captures the progress of the reaction is
exactly the goal of a transition path sampling simulation.

2.1 Transition Path Ensemble

The transition path sampling method is based on the definition of the transition path en-
semble, consisting of all pathways starting in state A at time t = 0 and reaching state
B within time T . Each pathway, or trajectory, is described as a sequence of microscopic
states,

x(T ) ≡ {x0, x∆t, x2∆t, . . . , xT }, (3)
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Figure 2. Hypothetical free energy landscape with two long-lived stable states, A and B. These states are stable
in the sense that the system spends extended amounts of time in these regions of configuration space. The rough
barrier between the stable states is crossed rarely at low temperatures and the system can travel from A to B
along different trajectories, two of which are shown as white lines.

where xt denotes the state of the system at time t specifying the positions and, if required,
the momenta of all particles in the system. Thus, each path consists of an ordered series
of snapshots of the system separated by a time increment ∆t, for instance, the time step
(or a multiple of it) of a molecular dynamics simulation. Assuming that the dynamics
is Markovian, i.e., that the probability of the future time evolution of the system is fully
determined by its current microscopic state, the probability (density) to observe a particular
trajectory x(T ) is given by

P[x(T )] = ρ(x0)

T /∆t−1∏
i=0

p(xi∆t → x(i+1)∆t), (4)

where ρ(x0) is the distribution of initial conditions x0 and p(xi∆t → x(i+1)∆t) is the
transition probability from xi∆t to x(i+1)∆t within the short time ∆t. The particular form
of the distribution of initial conditions depends on the particular situation one studies. In
typical transition path sampling applications, ρ(x0) is an equilibrium distribution, such
as the canonical or microcanonical distribution50, but non-equilibrium distributions of ini-
tial conditions have been considered as well51. Similarly, the specific form of the short
time transition probability p(xi∆t → x(i+1)∆t) depends on the type of underlying dynam-
ics governing the time evolution of the system. For popular types of Markovian dynam-
ics often used in molecular simulations52, including Newtonian dynamics, thermostatted
molecular dynamics in various ensembles, Langevin dynamics, Brownian dynamics or
even Monte Carlo dynamics, the short time transition probabilities can easily be written
down explicitly (as we will see below) and then be used to construct the probability of an
entire trajectory.

The path probability specified in Eq. 4 describes unconstrained pathways and does not
include any condition on where the path starts or ends. In a typical transition path sampling
simulation one is, however, interested only in those short stretches of the time evolution, in
which the rare barrier crossing event takes place. In fact, transition path sampling can be
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viewed as a strategy to avoid the simulation of the system during the long and uninteresting
waiting times between transitions. To include only reactive trajectories in the ensemble of
pathways, i.e., pathways starting in A and ending in B, we restrict the path probability of
Eq. 4 by multiplication with appropriate characteristic functions acting on the initial and
final points of each trajectory,

PAB [x(T )] ≡ hA(x0)P[x(T )]hB(xT )/ZAB(T ). (5)

The characteristic function hA(x) for region A is unity if x is in A and vanishes otherwise,

hA (x) =

{
1 if x ∈ A,
0 if x /∈ A. (6)

The characteristic function for region B is defined analogously. The definition of appro-
priate characteristic functions which include all typical configurations of the initial and
final stable states is often non-trivial and usually requires some trial and error. It is im-
portant that the definition of A does not include configurations that belong to the basin
of attraction of B or vice-versa, as in this case effectively non-reactive trajectories may
become part of the transition path ensemble. Frequently, the stable states can be speci-
fied by requiring that certain order parameters qA(x) and qB(x) are within certain limits,
λ

(min)
A < qA(x) < λ

(max)
A and λ(min)

B < qB(x) < λ
(max)
B , respectively. To study the

freezing of a supercooled liquid, for instance, one could define the liquid as initial state
A by requiring that the number of particles with a local crystalline environment is below
a certain threshold selected to accommodate typical thermal fluctuations, but which ex-
cludes any significant crystalline region. Analogously, for the crystalline state, region B,
one could require that the number of locally crystalline particle exceeds another threshold
far beyond the size of the critical cluster7.

The path distribution of Eq. 5 is normalized by the path integral

ZAB(T ) ≡
∫
Dx(T )hA(x0)P[x(T )]hB(xT ), (7)

which can be viewed as a path partition function. In this equation, the notation∫
Dx(T ) ≡

∫
· · ·
∫

dx0dx∆tdx2∆t · · · dxT (8)

implies an integration over all time slices of the path. The path probability density of
Eq. 5 assigns a statistical weight to all pathways connecting A to B and defines the tran-
sition path ensemble (TPE). Sampling this ensemble with methods that will be discussed
in subsequent sections yields a collection of transition pathways generated according to
their probability to occur in a hypothetical, extremely long straightforward computer sim-
ulation. Analysis of these pathways can then provide information to uncover the transition
mechanism (or mechanisms).

To complete the definition of the transition path ensemble for a particular application,
it is necessary to specify the short time transition probabilities appearing in the product on
the right hand side of Eq. 4. This transition probability depends on the dynamics chosen
to model the time evolution of the system under study; analytical expressions for various
kinds of dynamics are available16. For instance, consider a many-particle system evolving
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according to Newton’s equations of motion,

ṙ =
∂H(r, p)

∂p
, ṗ = −∂H(r, p)

∂r
. (9)

Here, r includes the positions of all particles in the system, p refers to their momenta and
H(r, p) is the total energy of the system. In this case, the time evolution is deterministic
and the initial state x0 = {r0, p0} completely determines the state xt = {rt, pt} of the
system a time t later,

xt = φt(x0). (10)

The corresponding propagator φt(x) is a function that uniquely maps x0 into xt. Since the
time evolution is deterministic, no stochastic spread occurs and the transition probability
is given as a Dirac delta function,

p(xt → xt+∆t) = δ[xt+∆t − φ∆t(xt)]. (11)

The transition path ensemble is then given by

PAB [x(T )] =
ρ(x0)

ZAB(T )
hA(x0)

T /∆t−1∏
i=0

δ[x(i+1)∆t − φ∆t(xi∆t)]hB(xT ), (12)

where the normalizing factor reduces to

ZAB(T ) =

∫
dx0 ρ(x0)hA(x0)hB(xT ) (13)

due to the properties of the delta function. The transition path ensemble of Eq. 12 also
describes the statistics of pathways arising from other forms of deterministic dynamics
such as Nosé-Hoover dynamics or Gaussian isokinetic dynamics.

For stochastic dynamics, the short time transition probability is spread out rather than
singular as a consequence of the noise acting on the system. Consider, for instance, a
particle evolving stochastically in the presence of a viscous solvent as described by the
Langevin equation in the high friction limit,

mγṙ = −∂V (r)

∂r
+ F , (14)

where V (r) is the potential energy as a function of the particle position r, m is the mass
of the particle and γ is the friction coefficient. In the above equation, F is an uncorrelated
Gaussian random force with zero mean and a variance given by

〈F(t)F(0)〉 = 2mγkBTδ(t). (15)

In this case, the short time transition probability takes a Gaussian form16

p(rt → rt+∆t) =
1√

2πσ2
exp

{
−

(rt+∆t − rt + ∆t
γm

∂V
∂r )2

2σ2

}
, (16)

with variance

σ2 =
2kBT

mγ
∆t. (17)
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Thus, this transition probability describes the motion of a particle as consisting of a sys-
tematic drift that depends on the external force −∂V/∂r and a Gaussian spread describing
the diffusion of the particle under the influence of the random noise. Transition probabil-
ities for other types of dynamics can be easily derived16. Note that the particular type of
dynamics is not a choice made in the framework of transition path sampling, but rather de-
pends on the physical properties of the particular model one intends to study. It is therefore
good practice to choose the dynamics that most closely represents the underlying physical
situation rather than the one that supposedly offers advantages in the implementation of
transition path sampling.

2.2 Sampling the Transition Path Ensemble

The central idea of transition path sampling is to harvest reaction trajectories according to
their weight in the transition path ensemble of Eq. 5. This can be achieved by sampling
pathways with a Monte Carlo approach that corresponds to carrying out a biased random
walk in the space of trajectories. The basic step of this procedure consists of generating a
new pathway x(n)(T ) from a given pathway x(o)(T ). This new trajectory is then accepted
or rejected depending on the ratio of the statistical weights of the new and old trajectory in
the transition path ensemble. If the newly generated trajectory is accepted, it becomes the
current one. In the case of a rejection, however, the old trajectory remains the current one.
Iterating this procedure using an appropriate acceptance rule (see below) will generate
reactive trajectories with frequencies proportional to their weight in the transition path
ensemble. If the sampling is ergodic, this Monte Carlo algorithm will find all important
pathways, which can then be further analyzed to identify the reaction mechanism. To start
the Monte Carlo procedure one needs an initial reactive pathway that must be generated
by other means. The most convenient way to construct an initial pathway depends on
the problem under study. In some cases, a high temperature or high pressure molecular
dynamics simulation might be used to obtain such a path, while in other cases an initial
pathway may be generated according to a postulated transition mechanism. Note that
the initial path does not need to be a fully dynamical trajectory satisfying the underlying
equations of motion. This freedom often facilitates the initialization of the transition path
sampling procedure.

An acceptance/rejection rule that guarantees the desired path distribution is sampled
can be derived from the detailed balance condition

PAB [x(o)(T )]π[x(o)(T )→ x(n)(T )] =

PAB [x(n)(T )]π[x(n)(T )→ x(o)(T )], (18)

where π[x(o)(T ) → x(n)(T )] is the probability to move from the old path x(o)(T ) to the
new path x(n)(T ) in one Monte Carlo step. The detailed balance condition guarantees sta-
tionarity of the path ensemble under the action of the Monte Carlo procedure and requires
that the average flux from the old path to the new one is exactly balanced by the flux in
reverse direction52. Reflecting the two-step character of the basic Monte Carlo move, the
transition probability π[x(o)(T )→ x(n)(T )] can be written as a product of the probability
to generate the new path from the old one and the probability to accept this newly generated
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pathway,

π[x(o)(T )→ x(n)(T )] =

Pgen[x(o)(T )→ x(n)(T )]× Pacc[x(o)(T )→ x(n)(T )]. (19)

Inserting this form of the transition probability into the detailed balance equation 18 yields
a condition on the acceptance probability, which can be satisfied with the celebrated
Metropolis rule53 leading to29

Pacc[x(o)(T )→ x(n)(T )] = hA[x
(n)
0 ]hB [x

(n)
T ]

×min

{
1,
P[x(n)(T )]Pgen[x(n)(T )→ x(o)(T )]

P[x(o)(T )]Pgen[x(o)(T )→ x(n)(T )]

}
. (20)

According to this criterion, only reactive trajectories for which hA[x
(n)
0 ] = 1 and

hB [x
(n)
T ] = 1 can have a non-vanishing acceptance probability ensuring that reactivity

is maintained throughout the course of the transition path sampling simulation. From the
general form of the acceptance probability as stated in Eq. 20 one can derive specific ex-
pressions for the acceptance probability valid for particular forms of path ensemble and
trajectory generation29.

The Monte Carlo procedure described in the previous paragraphs provides a general
framework for the development of specific algorithms for the generation of a new pathway
from a given one. The efficiency of the transition path sampling simulation, i.e., the rate
at which trajectory space is explored, depends crucially on this central part of the Monte
Carlo procedure. Exploiting the freedom given by the Monte Carlo approach, several path
generation algorithms have been proposed with acceptance probabilities derived from the
detailed balance condition30. Here, we discuss the so-called shooting move17, 18, because
it has proven particularly efficient and is generally applicable.

Figure 3. In a shooting move, a new pathway (blue) is generated from an old one (red) by randomly selecting
one time slice on the path, changing the momenta at that time slice by a displacement ∆p generated from an
appropriate probability distribution in momentum space, and finally integrating the equations of motion forward
and backward with the new momenta. In the case of stochastic dynamics, the momentum displacement may be
useful but is not strictly necessary, because the new and old trajectories diverge naturally due to the different noise
histories used in the generation of the trajectories. If the new trajectory is still connecting the stable states, it is
accepted with a probability that depends on the ensemble under study. Non-reactive trajectories are rejected.

The basic idea of the shooting move is depicted schematically in Fig. 3. In this move,
which makes use of the natural tendency of the system to relax into the stable states, a time
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slice x(o)
t′ , called the shooting point, is selected randomly from the given path, shown in

red in the figure. This time slice is then altered, for instance, by adding a small perturba-
tion ∆p, yielding the new time slice x(n)

t′ . Starting from this time slice one then integrates
the equation of motion forward to time T and backward to time 0 obtaining a complete
new path x(n)(T ). Since two initially close points in phase space diverge under the action
of chaotic dynamics, the new trajectory will differ from the old one. The magnitude of
the difference can be controlled by choosing a perturbation with an appropriate amplitude.
Thus, new trajectories can be generated with a high probability of being reactive, which is
necessary to obtain a satisfactory average acceptance probability and hence a good sam-
pling efficiency17–19. Note that for stochastic dynamics the perturbation step can be omitted
since, due to the stochastic noise, two trajectories will diverge even if they are initiated at
the same point in phase space. Modifying the shooting point can, however, increase the
efficiency of a transition path sampling simulation also in the case of stochastic dynamics.

Since the generation of trajectories with the shooting method is done using the natural
dynamics of the system, most factors of the acceptance probability in Eq. 20 cancel, leading
to a very simple form of the acceptance probability31,

Pacc[x(o)(T )→ x(n)(T )] = hA[x
(n)
0 ]hB [x

(n)
T ] min

[
1,
ρ(x

(n)
t′ )

ρ(x
(o)
t′ )

]
, (21)

where ρ(x) is the stationary distribution of the dynamics. For equilibrium systems the sta-
tionary distribution is the equilibrium distribution, but in non-equilibrium situations other
steady-state distributions may be appropriate. The acceptance probability of Eq. 21 is
valid for any dynamics that is microscopically reversible, including Newtonian dynamics
as well as stochastic dynamics such as Langevin dynamics. According to the above ac-
ceptance probability, non-reactive pathways are rejected while trajectories connecting A
with B are accepted with a probability that depends on how the perturbation applied to
the shooting point has changed its probability in the stationary distribution. If the shooting
point is left unchanged or the dynamics is Newtonian with a microcanonical distribution
of initial conditions, the acceptance probability further simplifies to

Pacc[x(o)(T )→ x(n)(T )] = hA[x
(n)
0 ]hB [x

(n)
T ], (22)

implying that the new trajectory is accepted if it is reactive and rejected otherwise.
Applying the shooting algorithm, usually combined with other path generation moves,

one can perform transition path sampling simulations that efficiently sample reactive tra-
jectories. If the transition of interest can occur through different and unconnected classes
of pathways, exploration of trajectory space may be slow. This situation is quite analogous
to sampling problems in conventional Monte Carlo simulations arising from large barriers
in configuration space. To improve the ergodicity of Monte Carlo simulations, a num-
ber of approaches has been put forward, which can be applied also in the transition path
sampling scheme. For instance, parallel tempering54 carried out at the path level55 can dra-
matically improve the sampling, as can the application of the Wang-Landau flat histogram
approach28. Another complication arises if broad barriers are crossed diffusively. In this
case, achieving a good acceptance probability is difficult, because, due to the long barrier
crossing times, the trajectory divergence is uncontrollably large. A solution, based on in-
troducing small stochastic elements in an otherwise deterministic dynamics combined with
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the generation of partial trajectories has been put forward in Ref. 56. Another solution to
this problem consists in using linearized equations of motion for small displacements57.

3 Kinetics

Determining reaction rates from computer simulations is important, because often this
offers a useful way to link simulation results with experimental observations providing im-
portant information on the reaction mechanism. For instance, analysis of the kinetics of
pressure induced phase transitions in nanocrystals as a function of particle size shed light
on the geometry of the critical nucleus and, hence, on the nucleation and growth mecha-
nism governing the transition58, 59. The central quantity used to characterize the kinetics of
homogeneous nucleation in macroscopic systems is the nucleation rate J , defined as the
number of nuclei that grow beyond critical size per unit time and unit volume. Alterna-
tively, one may specify the transformation rate constant k for the entire system, related to
the nucleation rate J simply by a multiplication with the volume, k = JV . Since a single
successful nucleation event transforms the entire system irreversibly into the stable phase,
the conditional probability PAB(t) for a system of volume V , prepared in the metastable
phase (state A) at time 0, to be observed in the stable phase (state B) at time t is governed
by the differential equation

dPAB(t)

dt
= k[1− PAB(t)]. (23)

In a system of macroscopic size the transformation is effectively irreversible, because the
stable phase is overwhelmingly more stable than the metastable phase. Therefore the bar-
rier for the backward transformation from the stable to the metastable phase is excessively
high such that the transformation never occurs in this direction. The solution of the above
equation, in which the factor [1− PAB(t)] takes into account that nucleation can only oc-
cur if the system has not transformed yet, yields an exponential approach to the asymptotic
value of unity with a characteristic time τ = 1/k = 1/JV ,

PAB(t) = 1− exp(−t/τ). (24)

Thus, provided one waits long enough, any metastable state will eventually convert to
the thermodynamically stable state. (The conversion time may be exceedingly long; for
instance, at room temperature a diamond crystal would not convert into the more stable
graphite form even on time scales comparable to the age of the universe.) Note that for
heterogeneous nucleation occurring at surfaces it is appropriate to consider a nucleation
rate that specifies the number of nucleation events per unit time and unit surface area rather
than unit volume. Furthermore, in small systems the transformation might be reversible
and a dynamical equilibration between the two phases might be observed, in particular
close to coexistence60, 61. In this case, transformation in the backward direction must be
explicitly taken into account in the kinetic description of the process36 and the equation for
the probability PAB(t) becomes

dPAB(t)

dt
= kAB [1− PAB(t)]− kBAPAB(t). (25)

Here kAB and kBA are the transformation rate constants for the forward transformation
from A to B and the backward transformation from B to A, respectively. Equation 25 is
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solved by

PAB(t) = PB [1− exp(−t/τ)], (26)

where the characteristic time τ for the approach to the asymptotic value, the relaxation
time, is given by τ = (kAB + kBA)−1 and PB is the equilibrium probability to find
the system in state B. The probabilities PA and PB to find the system in state A and
B, respectively, are related to the forward and backward transformation rate constants by
PAkAB = PBkBA, as follows by requiring stationarity. Thus, in this case, the probability
PAB(t) behaves exponentially as well, but with a relaxation time that depends both on the
forward and backward transformation rate constants and is dominated by the larger one
of the two. For nucleation in a macroscopic system, the backward transformation never
occurs and can be neglected, corresponding to the case kAB = k = JV , kBA = 0, and
PB = 1.

According to Eq. 24, the nucleation rate J can be determined experimentally62, 63 or
in molecular simulations64, 65 by determining the average time 〈t〉 one has to wait for a
nucleation event starting from a system prepared in the metastable state,

J =
1

V 〈t〉
. (27)

While this approach is usually feasible in experiments, nucleation rates can be calculated
from straightforward molecular dynamics simulations only in exceptional cases when the
nucleation barrier is made sufficiently low by selecting conditions far away from coex-
istence. Under typical experimental conditions, however, nucleation is unlikely to oc-
cur even once on the time scales accessible to the simulations. Homogeneous crystal-
lization of supercooled liquid water, for instance, occurs with nucleation rates of only
J = 104− 109 cm−3s−1 even at temperatures as low as −35 to −37 ◦C, as is known from
freezing experiments carried out on levitated water droplets63. Even at such extreme con-
ditions far below freezing a molecular dynamics simulation of about 1000 water molecules
in a box with a side length of about 3 nm would yield only one nucleation event every
1010−1015 seconds of real time requiring 1025−1030 molecular dynamics steps, which is
far beyond the capabilities of any currently available or imaginable computer system. The
origin for such long nucleation times can be understood in terms of classical nucleation
theory, as briefly discussed in the Introduction. Since the creation of the critical nucleus
implies a free energetic cost ∆G∗ associated with the creation of the interface between the
metastable and stable phase at the surface of the growing nucleus, configurations corre-
sponding to the barrier top have a small likelihood to occur proportional to the Boltzmann
factor exp{−β∆G∗}. Here, β = 1/kBT is the reciprocal temperature. Since formation of
the critical nucleus is the crucial (and least likely) event of the whole nucleation process,
this factor appears also in the nucleation rate,

J ∝ exp(−β∆G∗). (28)

Due to this exponential dependence of the nucleation rate on the barrier height ∆G∗, nu-
cleation time can be exceedingly long even if ∆G∗ is only a moderately large multiple of
the thermal energy kBT .

Such long time scales do not represent a difficulty for transition path sampling, which
was specifically designed to circumvent the problem of widely separated time scales. But
while transition rate constants can be determined in the general framework of transition
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path sampling, their computation requires procedures that go beyond those laid out in pre-
vious section. Transition path sampling focuses on reactive trajectories, i.e., on trajectories
belonging to the transition path ensemble. From these trajectories alone, however, transi-
tion rate constants cannot be determined. The reason is that the transition path ensemble
specifies only the relative weight of reactive trajectories compared to each other, but not
the absolute likelihood of these trajectories. To compute transition rate constants it is, thus,
necessary to compute the probability of observing a reactive trajectory compared to the
probability of a trajectory without this condition. In other words, one needs to determine
the combined statistical weight ZAB(T ) of the transition path ensemble of Eq. 5 with
respect to the weight of the ensemble of unrestricted pathways described by the path dis-
tribution of Eq. 4. This general procedure lies at the core of all transition path sampling
approaches for the calculation of rate constants as well as other methods such as forward
flux sampling45, 46, 48.

3.1 Rate Constants from Path Free Energies

One TPS-approach for the calculation of transition rate constants16, 17, 31 exploits the fact
that, for short times, the conditional probability PAB(t) is linear with slope kAB ,

PAB(t) ≈ kABt. (29)

This equation is valid for times t� τ after short time transients, related to the specific way
the barrier is crossed, have decayed. To determine the conditional probability PAB(t), one
expresses it as ratio of two path ensemble averages,

PAB(t) =
〈hA(x0)hB(xt)〉
〈hA(x0)〉

=

∫
Dx(t)P[x(t)]hA(x0)hB(xt)∫
Dx(t)P[x(t)]hA(x0)

. (30)

Here, the numerator depends on time but the denominator is time independent and equals
the equilibrium probability of the initial state, PA. This ratio can be viewed as a ratio
of two partition functions belonging to two distinct ensembles of pathways. The path
integral in the denominator corresponds to the partition function of all pathways having
their initial point x0 in A without any requirement on the location of the path endpoint
xt. The path integral in the numerator, on the other hand, is the partition function of all
pathways starting in A and ending in B. The ratio of partition functions can, thus, be
calculated by determining the reversible work, or free energy, in path space, required to
transform between these two path ensembles66, 67.

The path free energy required to change from a path ensemble with unconstrained
endpoint to one in which the endpoint is required to be in region B can be determined by
introducing an order parameter λ(x) in such a way that region B corresponds to a specific
range of this parameter, λ(min)

B < λ(x) < λ
(max)
B , and the entire configuration space

including region A corresponds to −∞ < λ(x) < ∞. From a path sampling simulation
of pathways starting in A without condition on their endpoint one could then, in principle,
calculate the probability distribution PA(λ, t) to find the path endpoint at a particular value
λ of the order parameter. Using this distribution, the sought conditional probability PAB(t)
can be expressed as an integral over region B,

PAB(t) =

∫ λ
(max)
B

λ
(min)
B

dλPA(λ, t). (31)
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Since we are dealing with rare events, the distribution PA(λ, t) can be very small in the
range of interest such that a direct calculation is impractical. One can solve this problem
by setting up the path equivalent of an umbrella sampling simulation68 and carry out a
series of independent path sampling simulations in which the order parameter λ(xt) at the
path endpoint is required to be inside a particular window. Order parameter distributions
calculated separately for a set of overlapping windows can then be connected to form
PA(λ, t), from which the conditional probability PAB(t) can be determined according to
Eq. 31. Combined with a particular and convenient factorization of PAB(t) this basic
procedure yields a practical algorithm31 for the calculation of transition rate constant.

Figure 4. In a transition interface sampling simulation one considers a set of interfaces defined as iso-surfaces
of an appropriate order parameter, λ(x) = λi, where the index i runs from 0 to n and numbers the interfaces.
The boundaries of regions A and B correspond to the values λ0 and λn, respectively. Trajectories belonging
to the path ensemble of interface λi are required to start in region A and cross interface λi. While the red
trajectory crosses interface λi and then returns to A before reaching interface λi+1, the blue trajectory, also
crossing interface λi, reaches interface λi+1 first.

3.2 Transition Interface Sampling

Another transition path sampling approach to determine transition rate constants, called
transition interface sampling (TIS)25–27, 69, 70, is based on the definition of a set of interfaces
spanning the space between region A and region B, as illustrated in Fig. 4. Akin to the
order parameter windows of the previous paragraph, these interfaces can be defined to
be the iso-surfaces of the order parameter λ for a set of n + 1 values λ0, λ1, · · · , λn
increasing monotonically. In this setting, we define region A by λ(x) ≤ λ0 and region B
as λ(x) ≥ λn. The theoretical basis of transition interface sampling is the expression of
the rate constant as a product of the effective positive flux Φ1,0 out of region A and the
conditional probability PA(λn|λ1) that trajectories that cross interface λ1 reach region B,

kAB = Φ1,0PA(λn|λ1). (32)

The effective positive flux Φ1,0 is defined as the number of times interface λ1 is crossed
by trajectories originating in stateA. Here, “effective” means that only trajectories coming
directly from A are counted (i.e., additional crossings of interface λ1 without return to
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A are not considered) and “positive” implies that only crossings of interface λ1 towards
B contribute. For an appropriate definition of interfaces λ0 (i.e., the boundary of region
A) and λ1, the effective positive flux Φ1,0 can be computed in straightforward molecular
dynamics simulation of state A by counting the number, per unit time, of first crossings of
interface λ1 after the system has left A.

The second factor in Eq. 32, the crossing probability PA(λn|λ1) that a trajectory com-
ing from A and crossing interface λ1 reaches the final region B, is more difficult to cal-
culate, because typically it is a very small number due to the high free energy barrier
separating the stable states. This difficulty can be circumvented by expressing the crossing
probability as a product of conditional crossing probabilities depending only on adjacent
interfaces,

PA(λn|λ1) =

n−1∏
i=1

PA(λi+1|λi). (33)

Here, the conditional probability PA(λi+1|λi) denotes the probability that a trajectory
coming from A and crossing interface λi reaches interface λi+1 rather than returning to
A. If interfaces λi and λi+1 are sufficiently close together, the conditional probability
PA(λi+1|λi) is a number of order 1, which can be computed in a transition path sampling
simulation of trajectories that are required to start in A and to cross interface λi. Trajecto-
ries in this ensemble either go on to cross interface λi+1 or go back to A without reaching
λi+1 first. The local crossing probability PA(λi+1|λi) is then simply estimated as the
fraction of trajectories of the former type. (Note that trajectories sampled in this scheme
have variable length as the integration of the equations of motion can be stopped as soon
as interface λi+1 or the boundary of region A are reached.) Combining the results of path
sampling simulations separately carried out for all interfaces λ1 to λn−1 with the effective
positive flux Φ1,0 computed in a molecular dynamics simulation, one finally obtains the
transition rate constant kAB for the entire process. How to place the interfaces in order to
optimize the efficiency of the TIS-simulation has been discussed in Ref. 71.

For processes involving slow, diffusive barrier crossing events, the efficiency of the
simulation can be dramatically increased by exploiting the memory loss along the corre-
sponding long transition pathways26. In this approach, called partial path transition inter-
face sampling (PPTIS), one considers short trajectory segments (partial paths) that only
cross one or two adjacent interfaces and are not required to start in stable state A. Several
other enhancements of the TIS-formalism are presented and discussed in Ref. 69. Com-
bining TIS with replica exchange moves can considerably improve the efficiency of a tran-
sition interface simulation72, 73. Furthermore, by applying a recently developed approach74

to the pathways sampled in a transition interface sampling simulation, one can remove the
bias introduced by requiring that certain interfaces are crossed and reconstruct an unbiased
ensemble of pathways. From this reweighted path ensemble (RPE) it is possible to calcu-
late equilibrium free energies with respect to arbitrary variables and to identify complex
non-linear reaction coordinates using a maximum likelihood approach75, 76.

3.3 Activation Energies from Transition Path Sampling

As an alternative, transition rate constants can be determined by a generalization of the
thermodynamic integration method77 to the space of trajectories. Here, the basic idea is to

61



use the transition path sampling method to calculate the derivative of the transition rate con-
stant with respect to a control parameter, rather than the transition rate constant itself24, 28.
This control parameter could, for instance, be the temperature, the pressure, or an interac-
tion parameter. Starting from conditions for which the transition rate constant is known,
i.e., from a reference state, one can then determine the transition rate constant under other
conditions by integrating its derivative with respect to the control parameter24, 28. The ad-
vantage of this procedure is that the derivative of the transition rate constant with respect
to the control parameter can be calculated from a straightforward TPS-simulation without
the need to partition space with interfaces or other special arrangements. Furthermore, the
derivative itself can be of interest as it yields the activation energy or activation volume, in
the case of the temperature and pressure derivatives, respectively. Also, no definition of in-
terfaces or any a priori knowledge of the transition mechanism is necessary. The drawback
of the method is that the transition rate constant derivative, which is expressed in terms of
path averages taken in the transition path ensemble, may be affected by considerable sta-
tistical uncertainties24, 28, such that enhancements of this general approach are necessary in
order to develop it into an efficient method for the calculation of transition rate constant.

4 Identifying the Transition Mechanism

A transition path sampling simulation typically yields in full atomistic detail many exam-
ples of transition trajectories along which the system moves from the initial to the final
state. While inspection of these trajectories with a molecular visualization program may
reveal some interesting features of the transition, it does not automatically yield a detailed
understanding of the underlying mechanism in terms of a small number of collective de-
grees of freedom. For instance, watching a crystalline nucleus grow in a supercooled liquid
does neither tell us at which stage the nucleus has reached critical size nor does it reveal
if other variables besides the nucleus size play an important role in the transition. Such
information can only be extracted by subjecting harvested pathways to further statistical
analysis, ideally resulting in a reaction coordinate.

In general, the reaction coordinate is a function q(r), usually defined in configuration
space, which quantifies the progress of a reaction. For the freezing of a supercooled liquid,
the size of the largest crystalline nucleus may serve for this purpose in some situations,
but in other cases it might be necessary to include other parameters such as the shape, the
structure, and the surface properties of the crystallite into the reaction coordinate. Finding
an appropriate reaction coordinate for a transition occurring in a complex molecular sys-
tem, however, is usually quite difficult. Furthermore, it is important to realize that there is
some arbitrariness in the definition of the reaction coordinate, as often different variables
may by used for this purpose. What, then, is a criterion for a good reaction coordinate
q(r)? It is reasonable to require that the reaction coordinate tells us, in a quantitative way,
how far a particular transition has proceeded and what will most likely happen next. In
particular, by looking at the reaction coordinate q(r) of a particular configuration r one
should be able to tell whether r is a transition state or if it rather belongs to the basins of
attraction of A and B.
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Figure 5. For a particular configuration r the committor pB(r), or commitment probability, is defined as the
probability that a trajectory started at r with random initial momenta will relax into state B rather than state A.
The committor can be estimated by initiating N trajectories at r and determining the number NB of trajectories
that reach B before they reach A, pB ≈ NB/N .

4.1 Committor

A practical criterion to gauge the quality of a postulated reaction coordinate can be es-
tablished by considering the commitment probability pB(r), also called committor. The
commitment probability pB(r) for a given configuration r is defined as the probability that
a trajectory started from r will reach stable state B rather than stable state A. The general
concept of the commitment probability goes back at least to Onsager78, who introduced
it under the name of splitting probability to analyze ionic dissociation, and was more re-
cently applied in the context of protein folding79, where it is known as pfold. In practice,
the committor of a particular configuration r can be estimated by initiating a certain num-
ber of trajectories at r and counting the fraction that reach B rather than A if followed in
time. As a probability, the committor is a number ranging from 0 to 1, which specifies
how “committed” a particular configuration is to region B. Configurations close to region
A will have a committor of pB ≈ 0, while configurations near B correspond to pB ≈ 1.
The committor also provides a natural definition of transition states80–84 as configurations
with pB ≈ 1/2, i.e., intermediate configurations that relax toA andB with equal probabil-
ity. This statistical transition state criterion, which generalizes the concept of the transition
state as a saddle point on the potential energy surface, as familiar from chemical dynam-
ics, also provides a generally applicable definition of the critical nucleus. Accordingly, the
critical nucleus is that nucleus which shrinks and grows with the same probability. It is
worth noting that, in the context of nucleation and growth, the pB = 1/2 criterion for the
critical nucleus was introduced by Honeycutt and Andersen already in 1984 to study the
freezing of a supercooled atomic liquid85, 86.

The committor can also be used to quantify the quality of a reaction coordinate. As dis-
cussed above, a good reaction coordinate should tell us the likely fate of a trajectory pass-
ing through a particular configuration. This information is exactly given by the committor,
based on which one learns how far the transition has proceeded and what is likely to hap-
pen next. As such, the committor may be viewed as the perfect reaction coordinate44, 87–89

encoding all the relevant information. While the definition of the reaction coordinate as
the committor is generally valid, it is unspecific and not particularly useful because one
desires to express the reaction coordinate in terms of variables with a physically transpar-
ent meaning that can also be probed or even controlled in experiments. The committor,
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however, provides the basis for distinguishing between a good and a poor reaction coor-
dinate. From a good reaction coordinate q(r) we require that its value for configuration r
determines the committor at r. In other words, a good reaction coordinate should param-
eterize the committor, pB(r) = pB [q(r)]. A poor reaction coordinate, on the other hand,
is not sufficient to specify the value of the committor. In the following, we will briefly
discuss several committor-based approaches for identifying good reaction coordinates and
extracting detailed information about the mechanism underlying the rare transition under
study.

4.2 Transition State Ensemble

One way to analyze transition pathways harvested by transition path sampling consists in
determining and comparing configurations with given committor values. In particular, it is
often useful to inspect the properties of the transition state ensemble (TSE), defined as the
set of all configurations on the collected transition pathways that have a committor of 1/2.
Members of the transition state ensemble can be determined by calculating the committor
for regularly spaced configurations along the transition pathways. Since the committor
is small for configurations near A and approaches unity near B, at least one but possi-
bly several transition states exist on each transition pathway. Comparison of such TSE-
configurations with ensembles of configurations corresponding to other committor values
has revealed important features of the transition mechanism in many cases, including ionic
dissociation in water20, biomolecular isomerization21, transitions in nanocrystals58, 59 and
the liquid-solid transition7, 90–93. In the case of the freezing transition, the wide distribution
of cluster sizes observed in the transition state ensemble indicates that the cluster size is
not sufficient to capture all essential properties of the transition7, 90–93.

4.3 Committor Distributions

As explained above, a good reaction coordinate parameterizes the committor, i.e., for any
configuration r the reaction coordinate q(r) completely determines the committor. This re-
quirement can be used to test the quality of a postulated reaction coordinate q(r) by plotting
the committor as a function of this particular reaction coordinate for a set of configurations
taken from the sampled transition pathways. In the case of a good reaction coordinate,
one expects all points to be roughly on a smooth curve expressing the unique dependence
of the committor on the reaction coordinate. Deviations from the smooth curve should
be only due to the statistical inaccuracy of the committor arising from the finite number
of trajectories used to determine it. In the case of a poor reaction coordinate, the reac-
tion coordinate does not fully determine the committor and configurations with the same
reaction coordinate can have different committor values. This lack of a unique relation
between reaction coordinate and committor leads to considerable spread of the pB-vs.-q
plot that is symptomatic for a poor choice of the reaction coordinate. For the freezing of
a supercooled liquid, for instance, the committor pB(n) takes values ranging from 0 to 1
for configurations with the same value n of the largest cluster size, indicating that the size
of the crystallite does not adequately capture the complete transition mechanism and other
parameters must be taken into account7, 90, 94.

While a large spread in the pB-vs.-q plot implies a poor choice of reaction coordinate,
a small spread is not a sufficient condition for a good reaction coordinate. The reason is
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that transition pathways cover only a small portion of configuration space, in which the
postulated reaction coordinate might just adiabatically follow the true reaction coordinate,
but considerably deviate from it in other parts of configuration space. Such a reaction co-
ordinate, while passing the pB-vs.-q test, would not be suitable to control the transition of
the system from the initial to the final state. A more stringent committor-based path analy-
sis, which is also able to detect such imperfect reaction coordinates, consists in calculating
committor distributions P (pB) for equilibrium ensembles of configurations with a given
value q∗ of the postulated reaction coordinate q(r)20,

P (pB) = 〈δ[pB − pB(r)]〉q(r)=q∗ (34)

Here the angular brackets 〈· · · 〉q(r)=q∗ denote an equilibrium average restricted to
q(r) = q∗. In the case of a good reaction coordinate, i.e., if the reaction coordinate de-
termines the committor, the committor distribution P (pB) will be strongly peaked around
the value pB(q∗). (The residual spread is due to the statistical error in the committor, as
pointed out by Peters95.) For a poor reaction coordinate, on the other hand, the committor
distribution may be broad and even have more than one maximum.

An analysis based on committor distributions can be particularly revealing if it is car-
ried out for a value q∗ of the postulated reaction coordinate that corresponds to the max-
imum of the free energy curve determined as a function of q. In this case and provided
that q(r) is a good reaction coordinate, configurations with q(r) = q∗ are expected to be
transition states with pB = 1/2. Correspondingly, the committor distribution computed
at q(r) = q∗ should have a single narrow peak at pB = 1/2. Committor distributions
deviating from the unimodal form indicate that additional variables must be included for
a complete description of the transition mechanism. In the case of the dissociation of two
ions in liquid water20, for instance, the interionic distance turned out to be an insufficient
reaction coordinate. Deceptively, the free energy profile computed as function of this vari-
able displayed a barrier separating the associated state, where the ions are close, from
the dissociated state, where the ions are separated by one water molecule. However, the
committor distribution, determined with the interionic distance constrained at a distance
corresponding to the top of the barrier, displayed two peaks, one at 0 and one at 1, imply-
ing that most configurations at the barrier top were not transition states but rather clearly
belonged to the basins of attraction of the stable states. Committor distributions have been
used in several other circumstances to determine the quality of a guessed reaction coordi-
nate21, 76, 87, 90, 92, 93, 96–98.

4.4 Extracting the Reaction Coordinate

While determining the transition state ensemble and committor distributions may yield
valuable insights into the transition mechanism, ideally one would like to have a more sys-
tematic approach to extract knowledge about the reaction coordinate from the information
stored in committor values. In particular, it would be very useful to identify the relevant
variables that capture the physics underlying the reaction mechanism and to separate them
from other variables which may be treated as random noise. Two approaches have been
developed recently for this purpose and we will discuss them briefly in the following.

In the method proposed by Ma and Dinner87, genetic neural networks (GNN)99, 100 are
used to screen large pools of possible reaction coordinates and to single out the combina-
tions of a few variables that best reproduce the functional dependence of the committor
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on the configurational variables. For this purpose, one first carries out a transition path
sampling simulation and collects a sufficient number of configurations, say a few thou-
sand of them, from the harvested transition pathways. For these configurations one then
computes the committor as well as a long list of collective variables which may contribute
to the reaction coordinate. This list of variables, compiled based on any prior knowledge
and/or intuition one might have about the transition mechanism, can be rather long with
thousands of entries. The weight coefficients of the neural networks are then optimized
for combinations of a few collective variables and a genetic algorithm is used to search
for the variable set that leads to the smallest deviation between the predicted and measured
committor values. Applied to the isomerization of alanine dipeptide in vacuum and explicit
solvent87, the genetic neural network procedure has produced a set of collective variables
that include internal as well as solvent degrees of freedom and point to the importance of
long-range electrostatic interactions for the isomerization process.

Another approach to process commitment data is to determine the optimum reaction
coordinate by likelihood maximization as proposed by Peters and Trout76, 97, 101. In this
method, a maximum likelihood102 procedure is used to identify the parameters of a postu-
lated reaction coordinate model that best explain the observed commitment probabilities.
A nice feature of this approach is that it does not necessarily require explicit calculation
of committors, but can also make use of the information on acceptances and rejections ac-
quired during a transition path sampling simulation, which are viewed as single instances
of a committor calculation. (Note that this can be done only if the shootings moves are car-
ried out without bias following the aimless shooting procedure.) The maximum likelihood
method is based on the construction of a model that stipulates how the reaction coordi-
nate depends on a list of collective variables. In the simplest case, a linear combination
of the collective variables fed into a sigmoidal switching function, for instance a hyper-
bolic tangent, is used for this purpose76. Likelihood maximization has been used to study
the mechanism of magnetization reversal in the Ising model76 and structural transitions in
solid terephtalic acid97. Recently, a procedure to carry out likelihood maximization with
a non-linear reaction coordinate model has been proposed by Bolhuis and collaborators75

by using ideas of the string method42–44. Application of this flexible maximum likelihood
algorithm to the freezing of a soft sphere liquid92, 93 has shown that the solid nucleus is
embedded in a cloud of highly correlated yet non-crystalline surface particles.

5 Applications

To date, transition path sampling has been applied to investigate a variety of pro-
cesses involving rare but important events including chemical reactions103–112, solva-
tion processes20, 113–116, the dynamics of liquids and clusters23, 117–121, glassy dynam-
ics122–124, transport and diffusion125, single-file water dynamics71, biomolecular isomeriza-
tions21, 87, 126, 127, protein folding128–130, DNA dynamics131–135, membrane dynamics136, 137,
chaotic dynamics138, and non-equilibrium processes51, 121, 139–145. In particular, transition
path sampling has been extensively employed to investigate nucleation and growth pro-
cesses occurring at first order phase transitions ranging from magnetization reversal in
the Ising model96, pressure induced phase transitions in semiconductor nanoclusters146,
the freezing of soft sphere systems90–93 and of mixtures7, crystallization of a supersatu-
rated solution147, demixing of a binary mixture148, phase separation and crystallization
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from the melt149, the solid-solid transition of terephtalic acid97, the liquid-vapor transition
of methane150, the wurtzite to rocksalt transition in bulk CdSe151, and the boiling of wa-
ter152 to pressure induced transitions of alkali halides153–158 and heterogeneous nucleation
around a tiny seed94. In the following, we will illustrate the application of transition path
sampling to nucleation using the pressure induced wurtzite to rocksalt transition in CdSe
nanocrystals9, 58, 59, 146, 159, 160 and the freezing of supercooled liquids7, 94 as examples.

5.1 Pressure Induced Structural Transitions in Nanocrystals

When high pressure is applied, many solid materials undergo a first order phase transition
from a low-density crystal structure to a structure with higher density and coordination.
Predicting the occurrence and stability of different crystal structures from first principles
is an important and challenging research field161–163. However, it is often the kinetics of
a structural transformation, rather than the relative thermodynamic stability of the crystal
structures, that dominates the phase behavior of crystalline solids. A well-known example
is carbon, whose diamond phase persists on astronomical time scales under ambient con-
ditions despite the thermodynamic stability of graphite. To understand the origin of such
structural metastability, a fully dynamic view of the transformation process on the atomic
scale is indispensable.

Despite major advances of the time and space resolution of electron microscopes60,
experiments can only provide a coarse-grained view of atomistic rearrangements in solids.
Molecular dynamics computer simulations have therefore emerged as the main tool for re-
vealing the microscopic mechanisms of structural transformations. However, the computer
simulation of the nucleation of a structural transformation is plagued by the very time scale
problem discussed in Sec. 1. Under experimental conditions, the free energy barrier associ-
ated with the transformation is typically large and prevents observation of the process with
straightforward molecular dynamics simulation. Of course, the transformation becomes
observable when much higher pressures are used that practically render the low-pressure
structure mechanically unstable. The disadvantages of such an approach are twofold: First,
mechanisms can be quite different compared to experimental conditions. Second, observ-
ables that link experiment and simulation, like the rate constant or its derivatives, cannot
be directly compared with experimental values. These drawbacks can be avoided by the
use of transition path sampling methods.

Transition path sampling has been successfully applied to the study of the homoge-
neous nucleation of pressure-induced transformations in bulk materials151, 158. In nanocrys-
tals, however, structural transformations can proceed strikingly different from the corre-
sponding bulk transformation due to the strong influence of surface free energies. The
phase diagrams and kinetics that govern the transformation process typically depend on
particle size, shape, and surface composition. This sensitivity to surface properties of-
fers the exciting possibility of stabilizing structures in nanocrystals that are unstable in
the bulk through suitable surface modifications. This prospect is particularly intriguing in
semiconductor nanocrystals, whose opto-electronic properties change dramatically during
structural transformations.

Driven by a comprehensive experimental study by Alivisatos and coworkers62, 164–167,
the semiconductor CdSe has emerged as the prototypical material for the study of pressure-
induced transformations in nanocrystals. Alivisatos and coworkers showed that the ther-
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modynamic transition pressure of the wurtzite to rocksalt transformation decreases with
increasing crystal size164, while activation enthalpies and volumes increase62, 165. This
size-dependence results in metastability of the high-pressure rocksalt structure at ambient
conditions for crystals larger than a certain threshold size167. The microscopic explanation
for these results was later revealed with TPS computer simulations59.

In a typical experiment, an ensemble of millions of nanocrystals, each consisting of
thousands of atoms, is pressurized simultaneously in a diamond anvil cell164. Even on
today’s fastest computers, simulating the dynamics of such a vast number of atoms is
hopelessly out of reach and simulations focus on trajectories of single nanocrystals. An
important ingredient in such a simulation is the specific way by which pressure is applied
on the nanocrystal. Experimentally, the choice of pressure medium is dictated by chem-
ical suitability and the requirement that no substantial solidification should occur up to
the highest applied pressure; the solvent should deliver hydrostatic pressure at all times.
While little is actually known about the structure and dynamics of the interface between
a nanocrystal and the surrounding solvent at high pressures, different methods have been
proposed that aim at modeling a perfectly hydrostatic pressure bath in molecular dynamics
computer simulations168, 169. One approach consists in the use of a modified Lennard-Jones
liquid, whose parameters are chosen to avoid crystallization170, 171. Constant pressure and
temperature are then applied by means of a Nosé-Hoover barostat52. A different method,
which leaves the equations of motion of the system unchanged, makes use of a soft sphere
pressure medium whose equation of state is known172, 173. In this method, the pressure is
adjusted by simply changing the interaction parameters of the soft spheres.

A third method, proposed by the authors, makes use of an ideal gas pressure medium
which is modeled in a grand-canonical approach159, 160. Such an ideal gas of non-
interacting particles guarantees ideally hydrostatic pressure, is conceptually simple and
computationally cheap. Since the particles interact only with the nanocrystal, it is only
necessary to follow their dynamics within close proximity of the crystal. Practically, this is
achieved by modeling the stochastic flow of ideal gas particles through a surface surround-
ing the nanocrystal. It is the statistics of this flow, the number of particles and their velocity
distribution, that determines both the temperature and pressure applied on the nanocrystal.
A snapshot taken from a simulation using the ideal gas barostat is shown in Fig. 6. In all
the methods described above, the interaction between pressure medium and nanocrystal
can be chosen freely and must only be sufficiently repulsive to avoid diffusion of the pres-
sure medium into the nanocrystal. It should be pointed out, however, that the details of this
interaction can have a profound influence on the surface free energy of the nanocrystal and
can also change the kinetics of structural transformations165.

Straightforward molecular dynamics simulations have shown that the mechanism of
the wurtzite to rocksalt transformation in CdSe nanocrystals depends strongly on the shape
of the nanoparticle9. While spherical crystals transform directly from wurtzite to rock-
salt, rod-shaped particles with low-energy surface facets transform in two steps, via a 5-
coordinated intermediate structure (space group 194, sometimes referred to as h-MgO,
BN, or stacked honeycomb structure). The study also revealed that at the strongly elevated
pressures used in straightforward molecular dynamics simulations, transformations can
proceed quite violently; different atomic rearrangement patterns were observed, as well
as simultaneous nucleation from different sites in the crystal, and the formation of grain
boundaries.
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Figure 6. Cross section of a simulation box holding a CdSe nanocrystal (blue and yellow atoms) surrounded by
a pressure medium of ideal gas particles (gray). The blue grid illustrates a simple implementation of the ideal gas
barostat using cell lists160.

To obtain an unbiased view of the transformation mechanism, TPS was used to study
the transformation of rod-shaped particles at much lower pressures, close to experimen-
tal conditions160. It had been assumed that CdSe nanocrystals under a certain size would
transform not through nucleation and growth, but rather through a simultaneous, concerted
rearrangement of all crystal atoms164. Indeed, a similar mechanism was observed in a
straightforward molecular dynamics simulation9. To investigate the prevalence of this
mechanism, TPS was started with a seed trajectory showing the concerted transformation
mechanism. The evolution of trajectories in this TPS simulation is illustrated in Fig. 7.
Within a few hundred iterations of the shooting algorithm, a profound change of mecha-
nism was observed. Instead of simultaneous atom rearrangements, the relaxed pathway is
characterized by a continuous growth of the rocksalt structure through sequential sliding of
parallel crystal planes. Further iterations of the algorithm only produced different realiza-
tions of the same mechanism. Since the frequency of occurrence of different pathways in a
TPS simulation reflects their relative statistical weights in the transition path ensemble, this
result strongly suggests that at experimental conditions a nucleation and growth scenario
is highly favored over concerted transformation mechanisms.

The simulation of thousands of trajectories of systems consisting of many thousands of
atoms requires the use of efficient interaction potentials to model materials like CdSe174, 175.
These potentials are typically optimized to reproduce a selected number of bulk material
properties and their predictive power for transformations in nanocrystalline systems needs
to be firmly established. This can only be achieved through a direct comparison of quan-
tities observed in both experiment and simulation. Rate constants, and derivatives like
activation energies and volumes, are quantities that closely reflect the underlying transfor-
mation mechanism and can be obtained within the transition path sampling framework.
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Figure 7. Relaxation of the transformation mechanism in a TPS simulation of a CdSe nanocrystal160. Rows (A)
trough (C) show snapshots along single trajectories within the TPS run, with time evolving from left to right. At
0 ps, the crystal is in the low pressure structure, at 20 ps it is in the high pressure structure. Crystals are viewed
along the wurtzite c-axis. (A) The first trajectory shows a transformation that proceeds through a concerted
motion of all atoms. All unit cells are transformed and new bonds are formed almost simultaneously. (B) A
hundred iterations of the shooting algorithm later, a second mechanism appears, characterized by a sequential
sliding of (100) crystal planes. (C) At iteration 400, the concerted mechanism is lost and the crystal transforms
through the pure sliding-planes mechanism.

Activation enthalpies and volumes, in particular, are characteristics of the central part of
a transformation, the transition state which holds the critical nucleus of the high-pressure
phase. Furthermore, no potentially costly free energy calculations are necessary to ob-
tain these quantities. In a systematic TPS study, the authors have used committor analysis
(as discussed in Sec. 4) to identify the transition states during the transformation of CdSe
nanocrystals of different sizes59, 58. The corresponding critical rocksalt nuclei are illus-
trated in Fig. 8. While classical nucleation theory predicts the occurrence of compact,
roughly spherical nuclei, the presence of a surface can drastically alter this picture. The
critical rocksalt nuclei in CdSe nanocrystals are elongated in shape and originate at the
crystal surface. With increasing crystal size, they predominantly grow in one direction,
along the long axis of the crystal. This particular size-dependence of the shape of the
critical nucleus directly reflects in a linear size-dependence of activation enthalpies and
volumes59. A comparison with experimentally determined values62, 165 showed a good
qualitative agreement and thus confirmed the observed nucleation mechanism.

In summary, TPS is a suitable tool for the discovery of the atomistic mechanisms of
pressure-induced structural transformations in nanocrystals. The nucleation of these trans-
formations can be observed under experimental conditions, allowing direct contact with
experiments to be established via the calculation of activation enthalpies and volumes.
This can be done following the systematic procedure proposed in Ref. 58, or directly by
calculating ensemble averages as discussed in Sec. 3.3.
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Figure 8. Typical transition states of the transformation of CdSe nanocrystals, for different crystal sizes and
pressures58. Atoms in the rocksalt structure are blue and constitute the critical nucleus, atoms in the low-pressure
structure are transparent gray. Note that all nuclei are strongly aspherical, have contact with the crystal surface
and span the entire length of the crystals. With increasing crystal size, these nuclei predominantly grow in one
direction.

5.2 Freezing of Supercooled Fluids

Transition path sampling methods have also proven very valuable in computational inves-
tigations of the freezing transition of supercooled liquids. Recently, interest in this par-
ticularly fundamental phase transition has been revived, sparked by freezing experiments
carried out on colloidal suspensions176. Taking advantage of modern optical microscopy
such systems can be studied in great detail with a time and space resolution that permits
to follow the motion of individual particles as the nucleation and growth process occurs.
From a computational point of view, colloidal particles can often be modeled accurately
using soft sphere interactions such as the Lennard-Jones177 or Gaussian pair potentials92.
Based on these interactions, large systems of soft colloidal particles can be simulated for
long times to study basic condensed matter phenomena ranging from the glass transitions,
gas-liquid-coexistence or the effective interactions of polymer coils178. In such colloidal
systems crystallization is a rare event on the time scale of the basic particle motions. Thus,
in straightforward simulations as well as in experiments the time spent waiting for the tran-
sition is long in comparison to the transition time. The application of TPS allows to restrict
the computational effort to the fraction of time when freezing actually takes place. In this
section we review recent transition path sampling results on the mechanism of the crys-
tallization of a supercooled Lennard-Jones fluid. In doing that, we place the emphasis on
the importance of the particular crystalline structures found in the crystalline nucleus, both
for homogeneous crystallization in the bulk as well as for heterogeneous crystallization
near a small crystalline template. The crystallization of a Lennard-Jones liquid has been

71



studied recently, using TIS, by Moroni and coworkers90 , who confirmed previous findings
such as Ostwald’s step rule179, 180, which states that the undercooled liquid transforms first
into a state closest in free energy to the initial state, even if other states are thermodynam-
ically most stable. Their results also provide new insights into the nature of the transition
pointing to the importance of the shape and structure of the formed crystallites90, 91.

Transition path sampling techniques allow to concentrate the analysis on the transition
itself without making any a priori assumptions about the way it takes place. In conventional
methods like umbrella sampling, the progress of the transition is monitored by the value
of a postulated order parameter (or several order parameters), and the system is forced
to follow a path on which the order parameter increases. In contrast, TPS requires only
the definition of the initial and the final states and allows the system to evolve freely be-
tween them. In order to define the initial and final states for the freezing transition (and
to analyze the harvested pathways) it is necessary to be able to determine local crystal
structures. Individual particles are identified as crystalline on the basis of the Steinhardt
order parameters181 following the scheme proposed by ten Wolde and coworkers177. For
each particle, the structure of the local environment is first described by a complex vector
composed by the spherical harmonics of the bonds between the particle and its neighbors.
The crystallinity of a particle is then defined by the degree of correlations between the lo-
cal structures surrounding the particle itself and its neighbors. A cluster analysis, in which
neighboring particles with the same local structure are considered to belong to the same
cluster, finally groups the crystalline particles in clusters surrounded by liquid particles.
The size of the largest of these crystalline clusters is used as the order parameter to define
the initial and final region.

Recent results obtained from TIS simulations7, 90, 91 showed that the size of the largest
solid cluster is insufficient for an accurate description of the crystallization process, and
that the structure of the clusters also plays an important role. These findings triggered a
renewed discussion about the best definition of the crystallinity order parameter. Currently,
there are several approaches for the determination of the crystalline order. Schilling and
coworkers182 proposed to look at the strength of the correlation between the local struc-
tures around a particle and its neighbors to define the degree of ordering. Lechner and
coworkers92 introduced a criterion to identify solid particles based on spatially averaged
bond order parameters183. Kawasaki and Tanaka184 combined these averaged bond order
parameters with temporal averaging.

Although the definitions of the crystallization order parameters vary, most of the new
approaches agree on a two-step freezing mechanism. The new parameters allow to identify
a pre-ordered phase in the first stage of the transition before the actual crystallization takes
place. In a recent investigation of this mechanism using the Gaussian core model, Lechner
and coworkers92, 93 applied a non-linear generalization75 of the likelihood maximization
approach76 to identify the best reaction coordinate and showed that the transition is best
described in terms of the number of particles in the largest solid cluster and of the aver-
aged order parameters. These spatially averaged order parameters present more stringent
conditions to the local ordering of the surroundings of a particle than the Steinhardt bond
order parameters. Thus, the degree of ordering of the crystallites appears to be an impor-
tant factor which was not included in the traditional definition of crystallinity. The main
conclusion of this work92, 93 was that the growing crystalline cluster is embedded in a cloud
of pre-structured surface particles that are highly correlated but not manifestly crystalline
yet.

72



10
-4

10
-3

10
-2

10
-1

10
0

 0  100  200  300  400

P
(n

la
s
t|
n

fi
rs

t)

ns

fcc

icos

Figure 9. Crossing probabilities as a function of the largest cluster size in the presence of a face-centered cubic
(blue line), an icosahedral (black line) and without a seed (red crosses), vertical lines indicate the positions
of the TIS interfaces. The size of the cluster, ns, is identified within the scheme proposed by ten Wolde and
coworkers177 (Figure adapted from Ref. 94.)

The role of the crystalline structure was also demonstrated by another recent study94,
that considered heterogeneous nucleation of an undercooled Lennard-Jones fluid near
small crystalline seeds of different structures but equal size. As explained in Sec. 3.2,
within the TIS method, the crystallization rate is expressed as a product of the flux factor,
or the rate (per volume) of leaving the initial state, and the probability to reach the final
state. To improve the sampling of the last term, the region between the initial and the final
state is divided into smaller portions by introducing interfaces, as indicated by the vertical
lines in Fig. 9. In this case, the interfaces have been defined using the size ns of the largest
crystalline cluster as the order parameter. On a particular interface, all configurations have
the same value of the order parameter, i.e., they all contain a crystalline cluster of the same
size. According to Eq. 33, the total crossing probability is written as the product of crossing
probabilities between neighboring interfaces, which are much easier to calculate in sepa-
rate path sampling simulations. Figure 9 displays the crossing probability accumulated up
to interface j,

PA(λj |λ1) =

j−1∏
i=1

PA(λi+1|λi). (35)

When the transition state has been crossed, this crossing probability saturates, because
essentially all trajectories that have made it beyond the transition state eventually reach the
final region and the local crossing probabilities become unity. In other words, a crystallite
that has reached critical size will continue to grow leading to the crystallization of the
entire system. For this reason, the sampling does not have to be performed for the whole
region between the initial and the final states, but should be concentrated on the interfaces
for which PA(λi+1|λi) differs from unity71.

The crossing probabilities, and hence the nucleation rates, of a fluid are strongly af-
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fected by the presence of small templates. Figure 9 shows the crossing probabilities ob-
tained for systems with small crystalline seeds of 13 particles kept at fixed positions and
also includes the respective result for the bulk system without a seed. Two situations are
considered: a seed with face-centered cubic (fcc) structure, which corresponds to the stable
bulk structure, and a seed with icosahedral structure, incommensurate with the preferred
bulk structure (see Fig. 10). As can be seen in Fig. 9, the conditional probabilities to reach a
fully crystallized state differ for the two structures by one order of magnitude (correspond-
ing flux factors are comparable), although the number of fixed particles and the radius of
the seeds are similar94. In the presence of the incommensurate icosahedral structure the
crystallization rate (J = (2.6 ± 0.6) × 10−8, in reduced Lennard-Jones units) is similar
to the homogeneous rate (J = (2.5 ± 0.6) × 10−8). For the commensurate seed with fcc
order the crystallization rate is one order of magnitude larger (J = (1.4± 0.2)× 10−7).
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Figure 10. Cluster size distributions in the transition state ensemble in the presence of a face-centered cubic (left)
and an icosahedral (right) seed. Vertical lines indicate the results for homogeneous nucleation. The size of the
cluster, ns, is identified within the scheme proposed by ten Wolde and coworkers177. The dark filling of the
histogram bins indicate the fraction of configurations in which the crystalline cluster is separated from the seed.
(Figure adapted from Ref. 94.)

A committor analysis of configurations taken from crystallization pathways obtained
from the TIS simulations allows to explain the reason for the observed enhancement of
the nucleation rate caused by the fcc seed. The transition state ensemble of the transition,
consisting of configurations with probability of pB = 0.5 to end in the final state, can be
divided into two distinct classes – with the crystalline clusters formed close to the seed
and far away from it. Figure 10 shows the projection of the transition state ensemble on
the standard reaction coordinate, the number of solid particles in the largest cluster. For a
system with an icosahedral seed the distribution is clearly double-peaked, and also for a
system with an fcc seed the wide shoulder in the distribution indicates the onset of a sec-
ond peak. This peak coincides with the cluster size distribution found for the homogeneous
crystallization as well as with the distributions found if only configurations in which the
crystalline cluster is separated from the seed are considered for both heterogeneous sys-
tems. Thus, two different crystallization pathways can be identified and their relative im-
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portance is determined by the structure of the seed. For an icosahedral seed, the crystalline
clusters are typically formed away from the seed, and the bulk crystallization scenario is
recovered. In contrast, the crystals mostly attach to the seed with a face-centered cubic
structure and the crystallization observed is heterogeneous.

In summary, the application of the transition path sampling to the crystallization of soft
spheres contributed to a better understanding of the process and highlighted the importance
of the crystalline structures for the description of the transition.

6 Conclusion and Outlook

As discussed in the previous sections of this article, transition path sampling is a generally
applicable and efficient computational methodology to study nucleation and growth occur-
ring at first order phase transitions. By concentrating on the rare barrier crossing events,
this method circumvents the computational problem of widely disparate time scales en-
abling the collection of many, possibly very different transition pathways. Transition path
sampling can be used to calculate transition rate constants and, perhaps more importantly,
to identify reaction coordinates, i.e., variables that describe the progress of the transition
and provide a handle to probe or even control the transition in experiments. To date, tran-
sition path sampling has been applied to many nucleation processes yielding new insights
but also pointing out open problems. For instance, it would be very useful to have a tran-
sition path sampling algorithm for the calculation of transition rate constants that does not
rely on the definition of an order parameter to transform the ensemble of free trajectories
into that of reactive trajectories. An approach in the spirit of thermodynamic integration
as outlined in Sec. 3.3 might lead to an advance in this respect. Other examples of worth-
while enhancement of the TPS method include the development of efficient algorithms for
ergodic sampling as well as more systematic procedures to find reaction coordinates and
infer the transition mechanism. Further research is required to bring about these and other
advances, that can be used to improve our understanding of nucleation and other rare event
processes occurring in materials hard and soft.
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172. R. Martoňák, C. Molteni, and M. Parrinello, Phys. Rev. Lett. 84, 682 (2000).
173. R. Martoňák, L. Colombo, C. Molteni, and M. Parrinello, J. Chem. Phys. 117, 11329

(2002).
174. E. Rabani, J. Chem. Phys. 116, 258 (2002).
175. P. Zapol, R. Pandey, and J. D. Gale, J. Phys.: Condens. Matter 9, 9517 (1997).
176. U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz, Science 292, 258

(2001).
177. P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104, 9932

(1996).
178. C. N. Likos, Phys. Rep. 348, 267 (2001).
179. W. Ostwald, Z. Phys. Chem. 22, 289 (1897).
180. P. R. ten Wolde and D. Frenkel, Phys. Chem. Chem. Phys. 1, 2191 (1999).
181. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).
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The availability of efficient interatomic potentials is a necessary prerequisite for molecular dy-
namics studies of large systems. An overwhelming number of potentials has been suggested in
the literature, from simple classical force fields to sophisticated potentials for applications in
materials science. Still, there is no type of potential, which allows for a unified description of
systems as different as covalent molecules, possibly interacting via weak van der Waals forces,
semiconductors and metals. Artificial neural networks are a promising new tool to construct
accurate potential-energy surfaces (PESs) for a variety of systems on an equal footing. They
are very flexible, they do not require any knowledge about the functional form of the potential,
and they can be constructed using high-level first principles methods. In this lecture the basic
properties of different types of neural network potentials are introduced and the current scope
and limitations of the method are discussed.

1 Introduction

In principle, the Hamiltonian of a system is fully defined by the positions of the nuclei
{Ri}, the nuclear charges {Zi}, and the total charge of the system Q. Unfortunately,
solving exactly the Schrödinger equation employing the resulting Hamiltonian is impossi-
ble for all but the most simple systems. Therefore, a full hierarchy of methods has been
developed by using different of levels of approximation, and to date many efficient first-
principles methods have become available, like e.g. Hartree Fock (HF) theory constructing
the wave function from a single Slater determinant only, or the evaluation of the electronic
exchange and correlation energy by an approximate functional in density-functional theory
(DFT)1, 2. In particular the combination of DFT with molecular dynamics, termed ab initio
MD3, 4, has become a standard tool in theoretical chemistry due to its high computational
efficiency.

Still, many problems in chemistry and physics cannot be addressed by these methods,
because the large number of atoms and/or the required simulation times result in a pro-
hibitively large amount of computing time. Therefore, a huge number of more efficient,
but also more approximate, empirical potentials has been suggested in the literature. In
principle, these potentials construct a direct functional relation between the atomic posi-
tions and the potential-energy of a system. The resulting “potential-energy surface” (PES)
is in general a high-dimensional function yielding the total energy E if the coordinates of
the atoms are provided in a suitable form. Apart from the total energy, the PES contains
also information on the forces F , which are the negative derivatives of the energy with
respect to some coordinate Ri,α of atom i in direction α = {x, y, z},

Fi,α = − ∂E

∂Ri,α
. (1)
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In principle the shape of the PES determines also all higher derivatives.
Potentials for atomistic simulations can be classified into two different types. In “phys-

ical potentials”, a physically reasonable functional form is chosen, and a rather small num-
ber of parameters is adjusted to reproduce a given set of first-principles data and/or experi-
mentally observed properties. The approximations made and the rather low flexibility often
prevent an equally accurate description of a wide range of properties, but the underlying
functional form ensures that an overall reasonable behavior is found in most applications.
Examples for such potentials are classical force fields5–9 for organic molecules, bond-order
based potentials like the Tersoff potential10, 11 for semiconductors, and the embedded atom
method12, 13 for metals.

In “mathematical potentials”, on the other hand, very general and highly flexible func-
tions are used, which do not contain any constraints on the physical properties of the sys-
tems and which are usually fitted to first-principles data. They often include a very large
number of fitting parameters, and a high numerical accuracy can be achieved, but the fitting
process has to be done with great care to ensure that no unphysical results are obtained.
Examples are splines14, interpolating moving least squares (IMLS)15, 16, modified Shep-
pard interpolation (MSI) based on a Taylor expansion17, 18, genetic programming19, and
Gaussian approximation potentials20.

Unfortunately, none of these potentials is equally accurate for all types of systems and
consequently the development of reliable potentials with a wider range of applicability is
still a very active field of research. The “perfect potential” should fulfill the following ten
criteria21:

1. It should be very accurate.

2. It should be possible to improve the potential systematically.

3. It should be general and applicable to all types of systems.

4. It should be able to describe the making and breaking of bonds.

5. It should be applicable to large systems.

6. It should not require much human effort to construct the potential.

7. It should be transferable.

8. It should be fast to evaluate.

9. It should not require much CPU time to construct the potential.

10. It should be easy to calculate analytic derivatives to obtain the atomic forces.

The goal of this lecture is to discuss, which of these criteria are fulfilled to which extent by
a promising, rather new type of potential based on artificial neural networks (NNs). NNs
represent a class of very flexible mathematical functions, which have been first developed
to study the signal processing in the nervous system. They have a lot of properties, which
make them ideal candidates to construct potentials for “difficult systems” that are hard
to describe by conventional potentials. In this lecture the advantages and limitations of
the NN method will be presented, and the current status with respect to the ten criteria
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mentioned above will be discussed in detail. The interested reader is also referred to a few
recent reviews on NN potentials22, 23, 21, which provide further information and a number
of examples.

2 Neural Networks

2.1 Overview

The first artificial NNs have been suggested by McCulloch and Pitts in 1943 to study the
signal processing in the brain24. Similar to a neuron in the nervous system an artificial neu-
ron first collects incoming signals. If the accumulated signal exceeds a certain threshold,
the neuron itself sends a signal to its neighboring neurons. A few years later, in 1958, the
perceptron was introduced by Rosenblatt25, which was the first NN consisting of a set of
neurons arranged in an input and an output layer. In 1969, Minsky and Papert have shown
that perceptrons have some serious limitations26, for instance they are not able to represent
all logical functions. However, soon this problem could be solved by introducing hidden
layers. The optimization of the weight parameters of these extended NNs first posed a sig-
nificant problem, which was solved in 1974 by Werbos27. Another important contribution
in the same year was the introduction of non-linear functions for the transformation of the
output of perceptrons28. This extension enabled the generation continuous output values
instead of the binary output of the early NNs. This has been a crucial step for the use of
NNs in function fitting.

A general definition of neural networks has been given by Kohonen29: “Artificial neu-
ral networks are massively parallel interconnected networks of simple (usually adaptive)
elements and their hierarchical organizations, which are intended to interact with the ob-
jects of the real world in the same way as biological nervous systems do.” There are many
types of NNs30, 31, but to date only a few of them have found applications in the field of
chemistry and physics32–35. Most of these applications are related to the ability of NNs to
recognize patterns in complex data sets and to classify information.

The topic of this lecture is a different kind of application, the construction of a compli-
cated high-dimensional function, the PES, using NNs. It has been shown by several groups
that NNs are able to approximate any real-valued high-dimensional function to arbitrary
accuracy by feed-forward NNs36, 37. This important result is the theoretical foundation for
the development of NN PESs. In general, the aim is to construct a functional relation be-
tween the atomic configuration and its energy using a discrete set of known points, which
have been determined by first-principles. Once available, this function can then be used to
provide the energies and forces for arbitrary atomic configurations, which is a mandatory
requirement for carrying out molecular dynamics simulations. In the following chapters,
the basic properties of NN potentials will be discussed.

2.2 Feed-Forward Neural Networks

The central component of any NN potential is the feed-forward neural network. A small
example network is shown schematically in Fig. 1. It consists of artificial neurons also
called nodes, which are arranged in layers. They are represented by the grey circles. The
goal of the NN is to construct a functional relation between the total energy of a system and
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Figure 1. Example for a small feed-forward neural network (NN) with two hidden layers each of which contains
five neurons. The hidden layers and their nodes determine the functional relation between the NN output E and
the three coordinates G1, G2, and G3, which define the atomic configuration. All nodes in adjacent layers are
connected by weight parameters, which are shown as arrows. The bias weights shifting the non-linear regions of
the activation functions are not shown. The full functional form of this NN is given by Eq. 3.

the atomic positions. For this purpose, the system is specified by a set of coordinates {Gi},
and accordingly the example NN in Fig. 1 represents a three-dimensional system, suitable
for the construction of a three-atomic molecule, as the number of degrees of freedom of an
N -atom system is 3N − 6. If the set of {Gi} is provided, the energy E is obtained in the
output node.

The functional form of the NN is given by its architecture, i.e., the number of hidden
layers and the number of nodes per layer in between the input and the output layer. The
nodes in the hidden layers have no physical meaning, but the more nodes and layers are
present, the higher is the flexibility of the NN. All nodes in adjacent layers are connected
by weight parameters, which are shown as arrows in Fig. 1. These are the fitting parameters
of the NN. Here, we use the symbol aklij for a weight connecting node i in layer k with node
j in layer l = k + 1.

In order to calculate the output of the NN, the values of all nodes are calculated step by
step starting at the input layer. In general, the numerical value of a node m in layer n, ynm,
is given by

ynm = fnm

bnm +

Mn−1∑
i=1

an−1,n
im · yn−1

i

 . (2)

First, a linear combination of the Mn−1 values of the nodes in the previous layer n − 1 is
calculated using the connecting weights as coefficients. Then, a bias weight bnm is added.
Its purpose is to shift the linear combination to the non-linear region of the activation
function fnm, which is finally applied to the result (cf. Sec. 2.3). In summary, a number
is obtained at each node of the first hidden layer. Then these numbers are multiplied by
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Figure 2. Scheme of an artificial neuron j in layerm. Its numerical value ymj is calculated according to Eq. 2 by

first constructing a linear combination of the values ym−1
k of the nodes in the previous layerm−1 and using the

connecting weights am−1,m
k,j as coefficients. Then, a bias weight bmj is added to adjust the non-linear region of

the activation function fmj , which is finally applied to yield ymj . This value is then multiplied by the connecting

weights am,m+1
j,l passed forward to the nodes in the next layer m+ 1.

the weights connecting the nodes to the nodes in the subsequent layer in order to calculate
the values in the next hidden layer. This flow of information in an artificial neuron is
summarized in Fig. 2. The procedure is then repeated layer by layer until the output value
E is obtained.

The complete functional form of the small example NN in Fig. 1 is then given by

E = f3
1

(
b31 +

5∑
l=1

a23
l1 · f2

l

(
b2l +

5∑
k=1

a12
kl · f1

k

(
b1k +

3∑
j=1

a01
jk ·Gj

)))
, (3)

and its architecture can be specified by the short notation 3-5-5-1, which provides the
number of nodes in each layer.

Neural networks typically contain a very large number of weight parametersNw, which
can be calculated by

Nw =

NHL+1∑
k=1

(Mk−1 ·Mk +Mk) , (4)

where NHL is the number of hidden layers and Mk the number of nodes in layer k. In
practical applications, even NNs of moderate size can contain a few thousand parameters.
This has to be kept in mind in the fitting process, since the number of fitting parameters
must not exceed the information content of the training points.

Initially, the weight parameters are chosen as random numbers and consequently the
NN output does not provide the correct energy of the systems. Still, the “correct” energy for
a number of configurations can be determined using electronic structure calculations, and
the NN parameters can be “trained” to reproduce these reference energies. Consequently,
the NN “learns” the topology of the PES. Once a set of weight parameters has been found,
which accurately reproduces all example points, the parameter set is frozen and the NN
can be applied to predict the energy of (similar) unknown structures.

2.3 Activation Functions

Neural networks obtain the capability to fit arbitrary functions by employing highly flexible
activation functions, which are also called basis functions or transfer functions. In general,
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these are non-linear functions, and in the NN method the target function is constructed as a
superposition of (nested) activation functions whose shapes are adjusted by the NN weight
parameters.

It general, activation functions have a very simple form, and they have the property that
they converge to some constant output for very large and very small arguments, while in
between they possess a non-linear region. Further, analytic derivatives need to be available
in order to optimize the NN parameters using gradient-based optimization algorithms, and
to enable the calculation of analytic derivatives of the target function. This is needed for
instance to calculate the forces, which are required in applications like geometry optimiza-
tions or molecular dynamics.

Many functional forms have been proposed for activation functions, like the sigmoid
function

f(x) =
1

1 + e−x
, (5)

the hyperbolic tangent

f(x) = tanh(x) , (6)

and the Gaussian function

f(x) = e−αx
2

. (7)

Figure 3. Activation functions typically used for the construction of neural network potentials. For the nodes
in the hidden layers usually non-linear functions like the sigmoid function (a), the hyperbolic tangent (b) or the
Gaussian function (c) are employed. In the output layer often a linear function (d) is used to avoid any constraint
in the range of output values.
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For the output node in most cases a linear function

f(x) = x (8)

is used. This has the advantage that the range of possible output values is not restricted to
some finite interval. The most common activation functions are shown in Fig. 3. In Fig. 4 it
is demonstrated how a cosine function containing a number of extrema can be constructed
as a superposition of hyperbolic tangent activation functions.

There are also some special cases, in which periodic activation functions like the cosine
function have been used38, which is advantageous in particular if the target function is
periodic, like e.g. in case of dihedral potentials.

Figure 4. Fit of the cosine function E = cos(R) in the interval [0, 22] by a 1-15-1 neural network (NN) using
a hyperbolic tangent activation function. The black symbols represent the training points to adjust the weights,
the red symbols are independent test points. The bias weight is plotted as dashed line, the contributions of the
individual nodes y1

m · a12
m1 as red lines. The total NN function is plotted in black. The input coordinate has been

preprocessed by shifting the average of all R values to zero. Accordingly, in the initial epoch the centers of the
non-linear regions of the activation functions are close to 11. It can be seen that after a few epochs (iterations)
the cosine function is well reproduced by a superposition of the red curves.

2.4 Input Coordinates: Symmetry Functions

One of the most important aspects of constructing a NN potential is the choice of a suitable
set of input coordinates {Gi} to describe the structure. Often, the easiest way to define a
structure is to simply specify the Cartesian coordinates of all atoms. Unfortunately, in
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case of NN potentials the Cartesian coordinates cannot be used, because their absolute
values have no physical meaning. Instead, the relative positions of the atoms are important
for the energy of a system. In other words, as the energy of a system is invariant with
respect to rotation and translation, the coordinates describing the atomic positions should
have the same property. This requirement is not fulfilled for Cartesian coordinates, since
their numerical values change for instance if the system is merely shifted in space. As the
NN is a purely mathematical approach processing numbers, generally a different output is
obtained if the input vector changes numerically, even if the system’s internal structure is
not modified.

A straightforward solution to avoid this problem is to use internal coordinates like
interatomic distances and angles. However, using internal coordinates is also not without
problems, because their number grows rapidly with system size, and the choice is not
unique. For this reason it has been proposed to use the full distance matrix to describe a
system39, but this is feasible only for small molecules.

Another even more critical problem of internal coordinates is the dependence of the
results on their order. As the weight parameters in a NN are generally all different, a dif-
ferent NN energy is obtained if the order of the values in the input nodes is switched. A
simple example to illustrate this problem is an isolated water molecule. There are two
OH bonds, which under real conditions (finite temperature) will always be different. If
we assume that ROH1 < ROH2 and carry out an electronic structure calculation for this
configuration, it is not necessary to calculate the same molecule again with exchanged hy-
drogen atoms (ROH1 > ROH2), because both situations are chemically indistinguishable.
Unfortunately, this equivalence is not included in the NN energy expression, because the
first input node refers to ROH1 and the second to ROH2. Both input nodes are connected to
the nodes in the hidden layers by numerically different weight parameters, therefore both
chemically equivalent configurations will yield a different energy output. Of course this
must be avoided.

For small systems it is possible to solve this problem by a transformation of the coor-
dinates in the spirit of Gassner et al., who have proposed a set of symmetrized coordinates
for the H2O-Al3+-H2O complex40. For a single water molecule, a solution is to use the
coordinates

G1 = |ROH1 +ROH2| (9)

and

G2 = |ROH1 −ROH2| (10)

instead of ROH1 and ROH2. In this new set of coordinates the order of the hydrogen atoms
is arbitrary and the NN output is invariant with respect to the particular choice. The full
geometry of the water molecule can be specified by adding a third coordinate RHH, which
is unique and thus does not need to be symmetrized.

In general, suitable sets of symmetry-adapted functions are called “symmetry func-
tions”. A set of symmetry functions is defined as a set of functions, whose vector of values
is the same for any energetically equivalent representation of a system. For instance, the
vector of symmetry function values must be the same if any two atoms of the same element
in a system exchange their positions. Further, symmetry functions contain also all infor-
mation on the symmetry of the system. If for example a molecule has mirror symmetry,
then both forms yield the same set of symmetry function values.
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Two basic solutions to avoid the introduction of symmetry functions are either to sort
the input coordinates according to their numerical values before providing them to the
NN or to include equivalent structures several times in the training set in each possible
atomic order. A drawback of the latter approach is an increased computational fitting
effort due to the larger training set. An even more severe problem of this approach is
that the different realizations of a given structure are not exactly equivalent, because the
NN learns all structures independently. As a result, the symmetry is necessarily broken
numerically.

In summary, the approach suggested by Gassner et al.40 is the best solution for small
molecules, and similar functions have also been proposed for the interaction of small
molecules with metal surfaces41, 42. Alternatively, it has also been suggested to deal with
the symmetry by using symmetric neurons43. Unfortunately, all these approaches are appli-
cable only to small systems containing just a few atoms, because of the rapidly increasing
complexity of the resulting functions.

Symmetry functions need to be constructed with care, since artificial symmetries in-
cluded in these functions necessarily become a property of the NN potential. This can be
demonstrated for the periodic function f(x) shown in Fig. 5. The function has a 2π period-
icity, which therefore should also be present in the symmetry functions. Thus, either a sine
or a cosine function could be used. If, however, just a cosine function is employed, which
has the additional property cos(x) = cos(−x), also the NN potential will have this sym-
metry, which is obviously not correct. A similar problem is present if only the sine function
is used. The wrong symmetry features can be removed by using a two-dimensional vector
of symmetry functions instead of a single function even in this case of a one-dimensional
system. The first component of this vector is the sine function, the second is the cosine

Figure 5. Illustration of the two-dimensional vector of symmetry functions required to fit a general periodic
function f(x) with a period length 2π. There is a unique relation between the vector of symmetry function
values and the value of the target function. Therefore, using either the sine function (red curve) or the cosine
function (green curve) alone is not sufficient, because they have a higher symmetry than f(x). Only the two-
dimensional vector containing the sine and the cosine function values for each x have the correct symmetry and
allow to construct f(x).
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function. The overall periodicity is then still correct, but the wrong additional symmetry
is broken. As can be seen in Fig. 5, there is a unique one-to-one correspondence between
f(x) and the vector (sin(x), cos(x)). This example shows that the dimensionality of the
systems is not necessarily always the same as the dimensionality of the symmetry function
vector. In Sec. 3 we will see how even high-dimensional PESs can be constructed using
rather low-dimensional symmetry function vectors.

Symmetry functions contain important features of the target function, but they are much
easier to construct than analytic potentials, because they to not have to match the PES in
value. Instead, in case of NN potentials the task to construct a functional relation between
the (Cartesian) coordinates of the atoms and the total energy of the system is split into
two independent problems. First, a coordinate transformation onto symmetry functions is
carried out. Then, in a second step the NN is used to associate the vector of symmetry
function values with an energy. In conventional empirical potentials, both problems need
to be solved in one step, which is a significantly more difficult task.

Symmetry functions are often specific for a given system. Still, there are also very gen-
eral recipes how more general symmetry functions can be constructed, e.g. for molecule-
surface interactions42. In Sec. 3 we will see that even for high-dimensional NN potentials
very general symmetry functions can be defined, which are basically independent of the
system.

Finally it should be noted that symmetry functions can have functional forms, which
are difficult to invert. This is possible, because the transformation of the coordinates has
to be done always just in one direction, from the Cartesian coordinates of the atoms to the
symmetry functions. This is true for the training of NNs as well as for applications. It
is not necessary in any situation to determine the Cartesian coordinates for a given set of
symmetry function values.

2.5 Fitting the Weight Parameters

The weight parameters are determined by minimizing the error function

Γ =

N∑
i=1

1

N
(Ei,ref − Ei,NN)2 (11)

using a set of known energies reference energies from electronic structure calculations. In
general, NNs contain a very large number of fitting parameters. Therefore, in most cases it
is impossible to find the global minimum. Still, many local minima are sufficiently accu-
rate to provide a good description of the PES. A wide range of optimization algorithms can
be used, like steepest descent, which is called backpropagation in the NN community44,
conjugate gradients45 and the global extended Kalman filter46, 47, just to give a few exam-
ples. For all these algorithms, the weights are adjusted iteratively, and the accuracy of the
fit is checked by calculating the root mean squared error (RMSE)

RMSE =

√√√√ 1

N

N∑
i=1

(Ei,ref − Ei,NN)2 . (12)
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Since the RMSE strongly emphasizes outliers, also the mean absolute deviation (MAD) is
often used,

MAD =
1

N

N∑
i=1

|Ei,ref − Ei,NN| . (13)

However, monitoring the error of the training set is not sufficient to ensure that a reliable
PES is obtained. Since in applications of the NN potential also energies and forces for
structures in between the training points are requested, it is important to validate that the
potential has the correct shape also for structures not included in the training set. The accu-
racy of such points can be investigated by the so-called “early stopping” method. Here, not
all available reference points are used for the optimization of the NN weight parameters,
but some fraction, usually 10 %, is used as an independent test or validation set. During
the fit, the error of both, the training and the test set is observed. In the initial stage of
the fit, both errors typically decrease rapidly. Then, while the error of the training set is
further decreasing, the test set error often exhibits a minimum and rises again. This is the
onset of overfitting, which is an improvement of the error of the training points for the
price of a reduced accuracy for atomic configurations, which are in between these points.
It is not possible to detect overfitting by investigating the error of the training points alone.
An example for overfitting is shown in Fig. 6. While the fitted black curve is close to all
known training points shown as black symbols, the overall shape of the potential exhibits
some additional extrema, which are not justified by the training set. This fit would yield a
very small error for the training set, but still the quality of the potential is not good.

Apart from the numerical values of the weight parameters, also the architecture of
the NN, i.e., the number of hidden layers and nodes per layeri, is important to obtain an
accurate PES. It has been suggested to adjust the number of nodes on-the-fly in the fitting
process48, 49, but such approaches are usually computationally very demanding. Often, it

Figure 6. Example for a poor potential showing overfitting. While the potential (black line) represents all training
points very accurately, the regions in between the training points exhibit spurious extrema. In order to detect such
situations, not all available points should be included for the fitting process, but some test points, which are not
used in the weight optimization, should be used to check the reliability of the potential in between the training
points.
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is easier to employ a trial and error approach and to construct a number of PESs using
different NN architectures. Then, the results for different NNs are compared and the best
fit is chosen. The optimum choice of the NN architecture can be guided by the errors of
the training and the test set. If both errors remain large, the NN is not sufficiently flexible
to resolve all subtle features of the PES and some details are averaged out. In this situation
the number of nodes should be increased. If, however, the error of the training set is very
low, but the error of the test set is clearly larger, overfitting is present, and the flexibility of
the NN is too high. The optimal choice for the NN architecture shows a similar error of
the training and the test set, which should both be acceptably small.

Finally, it should be noted that the fitting result does not only depend on the NN archi-
tecture, but also the initial values of the weight parameters, the choice of the optimization
algorithm and the order of the training points can have a strong influence on the obtained
potential, because under different conditions different local minima can be found.

2.6 Selection of the Training Points

The choice of the atomic configurations for the reference electronic structure calculations
requires special care. They must contain information about all relevant features of the
PES, because the NN itself does not have a physically meaningful functional form, and the
physical shape of the PES has to be learned from the example points.

For low-dimensional systems like e.g. small molecules, it is possible to map the un-
derlying PES systematically using a dense grid of points. It is not necessary that these
points are located on an equidistant grid, and consequently important low-energy regions
of the system can be mapped on a denser grid than less-important high-energy regions.
Still, this mapping can be done only for very small systems, because the number of points
increases exponentially with the number of degrees of freedom. Even if only a very sparse
grid with e.g. five points per degree of freedom is used, for a three-atom molecule this
results in 53 = 125 reference calculations. For a molecule containing six atoms, this num-
ber increases already to 56 = 15, 625. Therefore, for larger systems this mapping is not
feasible.

Fortunately, often a large fraction of configuration space is chemically not relevant,
because the energy is too high and the corresponding points cannot be visited in MD sim-
ulations at chemically meaningful temperatures. Many approaches have been proposed in
the literature to identify the important points, e.g. by carrying out molecular dynamics
simulations to sample configurations17, 50, 51 along typical reaction paths.

In general, the construction of NN PESs requires a significantly larger number of train-
ing points than empirical potentials. If too few training points are used, the NN can exhibit
physically wrong features. However, this drawback of the NN approach can be exploited
to identify important structures, which are missing in the training set without carrying out
unnecessary electronic structure calculations for configurations, which are already well
represented in the training set52. This is done in an iterative way. First, several initial po-
tentials with about the same RMSEs are constructed using a few hundred configurations
only. These potentials should have different functional forms, which can easily be achieved
by selecting different NN architectures. It is then not clear, which of these fits is the best,
and for sure they will not provide reliable energies and forces in all situations. Neverthe-
less, they can be used to suggest new important structures, which should be included in the

92



training set. This is done by generating a large number of trial structures using geometry
optimizations and MD simulations employing one of these fits. Then, the energies and
forces of these structures are recalculated using the other fits. If for a given structure all
fits predict a similar energy, then this structure if probably very close to a point already in-
cluded in the training set, and all NNs have been trained to reproduce its energy. If, on the
other hand, all fits predict very different energies, then an electronic structure calculation
should be carried out for this structure, and the result should be added to the training set to
refine the potential. Following this recipe, the NN potential can be improved step by step
until a consistent potential is obtained.

3 High-Dimensional Neural Network Potentials

Potentials based on a single feed-forward NN have been constructed for a wide range of
small molecules and also the interaction of small, in most cases diatomic, molecules with
frozen metal surfaces (cf. Sec. 4). Still, these potentials have a number of limitations and
NN potentials will become competitive for applications to large-scale MD simulations only
if NN PESs for high-dimensional systems become available.

One serious problem is that in general for each atom in the system there are three
degrees of freedom, which have to be provided as input nodes to the NN. Therefore, for
a large number of atoms NNs can get very large. Consequently, the evaluation becomes
more costly. Further, the more input degrees of freedom are considered, the more training
points are required to represent this high-dimensional configuration space. Finally, another
consequence of a large number of nodes is a large amount of connecting weight parameters
making the fitting process more difficult.

A second problem is the fixed dimensionality of NNs. Even if it would be possible to
construct a NN PES for a large system containing e.g. 1000 atoms, this potential could not
be applied to systems containing a different number of atoms. This is because for smaller
systems the input nodes of the missing atoms are not defined, and for larger systems the
required values of the additional connecting weights are not available. For generalized
high-dimensional NN PESs it is therefore necessary to find a way to apply a potential,
once it has been constructed, to systems containing different numbers of atoms.

Finally, the construction of suitable symmetry functions taking into account the per-
mutation symmetry of all atoms of the same chemical element is a formidable challenge
and the recipes developed for low-dimensional systems are not applicable.

A high-dimensional NN approach solving these problems has been suggested by Behler
and Parrinello in 200753. In this potential type, which is shown schematically in Fig. 7, the
total energy of the system is not constructed using a single feed-forward NN, but a separate
NN is introduced for each atom, which provides only the energy contribution of this atom
Ei to the total energy. The total energy is then the sum over all atomic energies,

E =
∑
i

Ei . (14)

The Ei depend on the local chemical environments of the atoms, which are defined by a
cutoff function

fc (Rij) =

{
0.5 ·

[
cos
(
πRij
Rc

)
+ 1
]

for Rij ≤ Rc

0 for Rij > Rc ,
(15)
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Figure 7. Structure of a high-dimensional neural network potential (NN) illustrated for anN -atom system53. The
total (short range) energy Es is a sum of individual atomic energy contributions Es,i. These contributions are
constructed using a separate atomic NN for each atom. The input for each NN is a vector of symmetry function
values Gi describing the atomic environment up to a cutoff radius Rc. The symmetry functions are many-body
functions depending on the Cartesian coordinate vectors R of all atoms inside the cutoff sphere.

which is similar to the cutoff function employed in the Tersoff potential10. The spatial
extension of the cutoff function is given by the cutoff radius Rc, which typically has a
value of about 6 Å. At Rc the cutoff function has zero value and slope.

The positions of all atoms in the chemical environment inside the cutoff sphere of an
atom i are then described by a set of many-body symmetry functions. Several functional
forms have been proposed54. The radial distribution of neighbors can be described by a
“radial function”

G1
i =

∑
j 6=i

e−ηR
2
ij · fc (Rij) . (16)

Rij is the distance between the central atom i and its neighbor j. This distance itself is
not a good choice for the symmetry function for two reasons. First, the numerical value
of Rij increases with distance, while the physical interaction decreases. Therefore, Rij
is replace by a Gaussian, which decays rapidly with increasing separation of the atoms.
Each Gaussian is further multiplied by the cutoff function to ensure that G1 has zero value
and slope at the cutoff radius. Second, for each neighbor j there is one Rij value, but the
final number of symmetry functions must be independent of the number of neighbors. This
is necessary because NNs always have a fixed number of input nodes, but the number of
neighbors j inside the cutoff sphere can change in the course of a molecular dynamics sim-
ulation. Therefore, the Gaussians for all neighbors j are added to yield a single symmetry
function value. The radial distribution of neighbors can be determined by using a set of
symmetry functions of type G1 with different spatial extensions, which are defined by the
Gaussian exponent η. This exponent is a parameter defining the shape of the symmetry
function, which is not changed during the iterative optimization of the NN weights. In
Fig. 8 several radial functions of type G1 are plotted for different values of η.

Apart from the radial symmetry functions, angular symmetry functions can be used to
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Figure 8. Radial atom-centered many-body symmetry functions used to describe the radial distribution of neigh-
bors in the high-dimensional neural network approach of Behler and Parrinello54.

specify the angular distribution of neighbors. They have the form

G2
i = 21−ζ

∑
j,k 6=i

(1 + λ cos θijk)
ζ · e−η(R

2
ij+R

2
ik+R2

jk)

·fc (Rij) · fc (Rik) · fc (Rjk) . (17)

The angle θijk = acos
(

Rij·Rik

Rij ·Rik

)
is centered at atom i, and there is one angle for each atom

triple ijk. The parameter λ can have values of +1 and −1 and determines if the maxima
of the cosine function are centered at θijk = 0◦ or θijk = 180◦. The angular resolution is
obtained by using several angular functions with different ζ values. More details on these
symmetry functions can be found elsewhere54.

In total, the atomic environments are typically defined by a set of 40 to 100 radial and
angular symmetry functions, and for each atom i there is one symmetry function vector Gi.
As shown in Fig. 7 this vector is then used as input for an atomic NN yielding the atomic
energy contribution Ei. The grey arrows in Fig. 7 indicate that the symmetry functions
are many-body functions depending explicitly on the positions of all atoms in the chemical
environment. Finally, all Ei are added to provide the total energy E.

The scheme presented in Fig. 7 fulfills all requirements for a high-dimensional NN
potential. The total energy is independent of the order of atoms, because the exchange of
any two atoms of the same element changes just the order of summation. Further, once
the NN parameters, which are constrained to be the same for all atomic NNs referring the
to same chemical species, have been determined, the potential is applicable to any system
size. If an atom is added, another line is included in the scheme of Fig. 7. If an atom
is removed, its atomic NN is deleted. High-dimensional NN potentials of this type have
been constructed for a number of systems, like silicon53, 55, 56, carbon57, 58, sodium59, and
copper52.

In case of multicomponent systems an extension is required. Because in systems of
arbitrary chemical composition charge transfer occurs, there can be long-range electro-
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static interactions, which are not included in the high-dimensional NN scheme discussed
above. It has been proposed by Popelier and coworkers to express atom-centered elec-
trostatic multipoles by NNs to improve the description of electrostatics in classical force
fields60, 61. In a similar way also the approach of Behler and Parrinello has been extended
by an electrostatic energy term62,

Etot = Es + Eelec . (18)

Here, the short range energy contribution Es corresponds to the original scheme pro-
posed by Behler and Parrinello. The electrostatic interactions are based on environment-
dependent atomic charges, which are constructed by a second set of atomic NNs. These
charges can then be used to calculate the electrostatic energy and forces employing estab-
lished standard algorithms like an Ewald summation63.

Apart from this high-dimensional NN scheme, there is also another approach with simi-
lar capabilities. Already in 1999 Smith and coworkers proposed to improve the accuracy of
empirical potentials by expressing some parts in the functional form by NNs. Specifically,
for each pair of atoms they replaced the many-body bond order term in the attractive part of
the Tersoff potential10 by neural networks64, 65. The variable number of neighbors of both
atoms in the bond has been taken into account by constructing a chain of atoms including
the pair and one neighbor for each atom in the environment. Several numbers are used to
characterize the structure of these chains yielding one vector of input coordinates for each
neighbor. Since the number of neighbors can be different in each structure, a NN with
variable size has been proposed to process these vectors. Modified Tersoff potentials of
this type have been reported for the binary systems “CH”64, 65, and “CN”65. Surprisingly,
this promising approach has not been further developed for almost a decade. In 2007,
however, Smith and coworkers have extended this approach to a true NN PES by aban-
doning the Tersoff functional form66. Instead, like in case of the Behler Parrinello scheme,
which was proposed independently in the same year, the energy is constructed as a sum of
atomic energy contributions. Similar to the original scheme, the atomic environments are
described by a variable number of atomic chains, although chains of increased length are
used to provide a better description of the structures. Again, the vectors describing these
chains are used as input for NNs, whose architectures can be adjusted to the actual number
of neighbors. The method has first been applied to reproduce tight-binding energies for
silicon66, and later also DFT energies have been used as reference for the same system67.

4 Discussion

To date, neural network potentials have been constructed for a wide range of systems. Still,
most applications have been reported for small molecules and molecule-surface interac-
tions employing the frozen-surface approximation. A list of currently available potentials
for such systems is compiled in Tables 1 and 2, respectively. These potentials are com-
parably easy to construct, because they are low-dimensional and in most cases a single
feed-forward NN is sufficient to represent the full PES. Still, there is also an increasing
number of high-dimensional NN PESs, with encouraging applications in the field of mate-
rials science. They are summarized in Tab. 3.

It is now time to return to the list of criteria for the “perfect potential” given in the
introduction and to discuss, which points are fulfilled to which extent by current NN po-
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Year Ref. System Reference Architecture
Method

1996 Tafeit et al.68 tetrahydrobiopterin Hartree Fock 2-3-1
1996 Tafeit et al.68 tetrahydrobiopterin Hartree Fock 2-3-3-1
1996 Brown et al.69 (HF)2 analytic PES 4-32-1
1996 Brown et al.69 HF-HCl complex Hartree Fock 4-32-1
1997 No et al.70 (H2O)2 MP2 6-12-12-1
1998 Gassner et al.40 H2O-Al3+-H2O Hartree Fock 11-5-5-1
1998 Prudente et al.71 HCl+ CI 1-3-4-1
1998 Prudente et al.43 H+

3 — 3-15-1
2002 Cho et al.72 (H2O)2 in TIP4P MP2 9-18-18-1
2003 Rocha Filho et al.73 H+

3 — 3-12-3-1
2004 Bittencourt et al.74 OH MRCI 1-3-1
2005 Raff et al.51 vinyl bromide MP4 12-20-1
2005 Raff et al.51 Si5 clusters DFT (B3LYP) 9-45-1
2006 Agrawal et al.75 SiO2 molecule DFT (B3LYP) 3-40-1
2006 Manzhos et al.76 H2O molecule analytic PES 3-23-1
2006 Manzhos et al.76 HOOH analytic PES 2 NNs
2006 Manzhos et al.76 H2CO analytic PES 2 NNs
2006 Manzhos et al.77 HOOH analytic PES 6-90-1
2006 Manzhos et al.77 NOCl analytic PES 3-10-1
2007 Houlding et al.60 (HF)2 DFT (B3LYP) 4-3-1
2008 Darley et al.61 glycine DFT (B3LYP) several
2008 Darley et al.61 N-methylacetamide DFT (B3LYP) several
2008 Malshe et al.78 Si5 clusters DFT (B3LYP) —
2008 Lee et al.79 HONO MP4 6-41-1
2009 Malshe et al.80 vinyl bromide MP4 15-140-1
2009 Le et al.39 BeH + H2 MP2 6-60-1
2009 Pukrittayakamee et al.81 H+HBr analytic PES 3-150-1
2009 Hung et al.82 HOOH MP2 6-34-1

Table 1. List of neural network potentials for molecular systems reported in the literature.

tentials. Neural network potentials can be extremely accurate, and typically RMSEs of a
few meV can be achieved for small molecules. For high-dimensional systems, the RMSEs
need to be normalized per atom in order to make systems of different size comparable, and
also for these NN PESs errors of a few meV per atom are usually obtained. Therefore, NN
PESs are certainly among the most accurate potentials, if the criterion is the reproduction
of reference ab initio energies. Still, of course, NN PESs cannot be more accurate than the
underlying reference electronic structure method.

Another significant advantage of NN potentials is that they can be improved systemat-
ically and without the need to adjust the functional form. Whenever a situation is detected
in which the potential is not sufficiently accurate, additional training points can be added
to refine the potential without much effort.

Due to their “non-physical” functional form, NNs are equally apt to construct PESs
for very different systems such as covalently bonded molecules, bulk metals and semicon-
ductors, as well as for molecular complexes bound via weak van der Waals interactions.

97



Year Ref. System Reference NN
Method architecture

1995 Blank et al.83 CO @ Ni(111) empirical PES 3-15-1
1995 Blank et al.83 H2 @ Si(100)-(2×1) DFT (LDA) 12-8-1
2004 Lorenz et al.41 H2 @ K(2×2)/Pd(100) DFT (PW91) 8-24-18-1
2005 Behler et al.84, 85 adiabatic O2 @ Al(111) DFT (RPBE) 11-40-40-1
2005 Behler et al.84, 42, 85 triplet O2 @ Al(111) DFT (RPBE) 11-40-40-1
2006 Lorenz et al.86 H2 @ Pd(100) empirical PES —
2006 Lorenz et al.86 H2 @ Pd(100) empirical PES 8-50-50-1
2006 Lorenz et al.86 H2 @ Pd(100) empirical PES 8-50-50-1
2006 Lorenz et al.86 H2 @ (2×2)S/Pd(100) empirical PES 9-50-50-1
2006 Lorenz et al.86 H2 @ (2×2)S/Pd(100) empirical PES 9-20-20-1
2006 Lorenz et al.86 H2 @ (2×2)S/Pd(100) empirical PES 9-20-20-1
2007 Ludwig and Vlachos87 H2 @ Pt(111) empirical PES 7-25-25-1
2007 Ludwig and Vlachos87 H2 @ Pt(111) DFT (PW91) 7-50-50-1
2008 Behler et al.85 adiabatic O2 @ Al(111) DFT (PBE) 11-38-38-1
2008 Behler et al.85 triplet O2 @ Al(111) DFT (PBE) 11-40-10-1
2008 Latino et al.88 ethanol @ Au(111) DFT (B3LYP) 6-8-1

Table 2. List of neural network potentials reported in the literature to describe molecule-surface interactions.

Year Ref. System Reference NN
Method architecture

1999 Hobday et al.64 CH and carbon experiment 5N -6-1
1999 Hobday et al.65 CN experiment 5N -6-1
2006 Bholoa et al.66 silicon tight binding 9N -11-11-1
2007 Behler and Parrinello53 silicon DFT (LDA) 48-40-40-1
2008 Sanville et al.67 silicon DFT (LDA) 13N -13-13-1
2010 Khaliullin et al.57 carbon DFT (PBE) 48-25-25-1
2010 Eshet et al.59 sodium DFT (PBE) 48-25-25-1
2011 Artrith et al.62 ZnO DFT (PBE) 48-20-20-1

Table 3. List of high-dimensional neural network potentials reported in the literature.

Further, NN PESs provide the energy and forces as a function of the atomic positions and
the nuclear charges, i.e., the chemical elements. Therefore, no bonds need to be specified
and like electronic structure methods NN potentials are reactive, i.e., they allow to describe
the making and breaking of bonds.

In Sec. 3 two schemes have been discussed, which are suitable to deal with high-
dimensional systems. In principle, NNs can be applied to systems containing thousands
of atoms, but a current limitation is the restriction to only a few chemical elements in these
systems. The problems arising for systems containing more than three or four different
elements are related to the symmetry functions, which are needed to describe the local
chemical environments of the atoms. The complexity of the configuration space increases
rapidly with the number of chemical species, and better approaches still need to be found
for systems of arbitrary chemical composition. An advantage of NN PESs is that they can
be constructed without much human work. Most parts of the optimization process includ-
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Figure 9. As a consequence of the high flexibility of neural networks, the shape of the potential energy surface
can strongly vary outside the fitting range. In this example of a dimer potential, all fits are very similar in the
interval spanned by the training points (black diamonds), but outside this interval the potentials can have an
unphysical shape.

ing the search for relevant structures missing in the training set can in principle be carried
out in a fully automatic way. Still, in terms of computer time some human intervention
may reduce the effort significantly.

One of the major drawbacks of NN potentials is their limited extrapolation capability.
If a NN has been trained, for instance, to reproduce the PES of a bulk metal, it is not directly
applicable to metal surfaces unless surface structures have been included in the training set.
Still, it is always possible to extend the range of validity of a NN potential by adding more
training structures. In Fig. 9 the potential for some arbitrary diatomic molecule is shown,
which has been trained using structures in the range 0.8 < R < 4.0 employing several NN
architectures. While in the range spanned by the training points all potentials reproduce
the PES very accurately, it can be seen that the shape of the PESs outside this range shows
physically wrong features. Such structures outside the training interval must not be visited
in applications of the potential, otherwise wrong results will be obtained. Fortunately,
such problematic cases are very easy to detect automatically. For each symmetry function
(in the present example R would be a suitable symmetry function) the minimum and the
maximum value present in the training set can be calculated and stored. Whenever the
energy is requested for a structure with a symmetry function value outside this range, the
NN program can issue a warning and stop the simulation. This procedure can also be
applied to search systematically for structures missing in the training set to extend the
range of validity of the potential.

Concerning the efficiency, NN PESs can be evaluated significantly faster than any elec-
tronic structure method, but due to their rather complicated functional form they are com-
putationally more demanding than very basic potentials like e.g. classical force fields. To
give an example, current high-dimensional NN codes can provide the energy and forces
for about 100 to 200 atoms per second per compute core.

Due to their unbiased and very flexible functional form, the construction of a NN PES
requires a large number of first-principles training points to ensure that the final PES has
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the correct shape. This makes the construction of NN PESs computationally more de-
manding than the development of “physical potentials”. Still, this effort pays off quickly,
if extended applications like large-scale MD simulations are carried out using the NN po-
tential. Assuming that about 20,000 reference calculations are needed, this corresponds to
an ab initio MD simulation of about 20 ps, if a time step of 1 fs is used. Further, since
the atomic energy contributions in high-dimensional NN schemes depend only on the local
chemical environments of the atoms, NN PESs can be applied to much larger systems than
have been used in the training set. Finally, analytic derivatives are easily accessible, since
the NN has a well-defined functional form.

5 Conclusions

In this lecture, the current state of neural network potentials has been reviewed. NNs
enable to construct numerically very accurate potentials for a wide range of systems with
results very close to first principles methods. Still, due to their flexibility, they have to
be constructed and validated with care, and a large number of reference calculations is
required, which makes the construction of NN PESs rather costly compared to conventional
empirical potentials. Still, NN PESs offer many advantages for systems, which are difficult
do describe by other types of potentials, for instance if very different physical interactions
or complicated bonding situations are present. Promising examples for future applications
are the study of phase diagrams in materials science, but also complex chemical processes
at interfaces or in solution.
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Materials science faces a big challenge due to the different length and time scales that need to
be considered. Materials are typically used within dimensions of micrometers to meters and for
periods in time ranging from minutes to years. Yet, on a fundamental scale, material behavior is
dominated by the electronic structure that is responsible for the interatomic bonding. Processes
on the electronic or atomic level occur on length scales of Angstroms and on time scales of
femtoseconds or below. Hence, models are needed that bridge the scales from the fundamental
physical scales to the engineering scales on which materials are applied. In this contribution
illustrative examples are given how such scale-bridging can be accomplished by either large-
scale molecular dynamics methods that yield important information on critical deformation and
failure mechanisms or by quantifying material specific parameters that can be directly used in
macroscopic models.

1 Introduction

From a physics point-of-view mechanical behavior of materials is determined by inter-
atomic bonds that decide for example whether a crack in a material will grow in a brittle
manner or whether it will blunt by plastic deformation under a given loading situation.
However, materials science teaches us that such local models are not appropriate to predict
material behavior in a reliable way, because a crack moving in a brittle manner can be
stopped by a grain boundary or a ductile phase in the material, such that the global, i.e. ob-
servable behavior might be quite different from the local behavior. Hence, it is important to
understand the interplay of microstructure and material properties across different length
scales to identify and understand the critical deformation and failure mechanisms that are
taking place during testing and application of materials. Developing such microstructure-
property relationships is an important task in material science and the classical models are
described in many textbooks, see for example Ref. 1, 2.

Another important aspect of mechanical material behavior that must be kept in mind in
particular when applying atomistic methods is that the mechanical energy stored in a ma-
terial is directly proportional to its volume. Since the stored mechanical energy represents
the driving force for all deformation and failure mechanisms this implies that in the small
volumes typically investigated with atomistic methods not necessarily all mechanisms can
take place in the same way they would occur in larger volumes, where more mechanical
energy is available. This underlines the necessity of large-scale atomistic simulations when
two or more competing mechanisms are studied. However, in cases when only one mecha-
nisms is studied, simulations with only a small number of atoms can already provide useful
information.
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Applying large-scale atomistic simulations to understand and predict material behavior
has its own challenges, because the number of degrees of freedom easily approaches hun-
dreds of millions or even billions. Such large amounts of data cannot be stored in every
time step of the simulation in order to enable a classical post-processing of the data. This
means that during such large-scale simulation the analysis of the atomistic system has to be
conducted on-the-fly, i.e. during the simulation such that only the derived quantities need
to be stored. Only in this way the data management can be handled in an efficient way.

In the first part of this contribution we will describe how large-scale molecular dynam-
ics simulation can be used to study plastic deformation of materials on a very fundamental
level. Examples will illustrate how such simulations help us to understand the interplay be-
tween dislocation nucleation, dislocation propagation and work hardening during nanoin-
dentation and which methods can be employed in such studies. In the second part, we will
illustrate how fundamental data from smaller atomistic calculations provides the basis for
scale-bridging models in material science that help us to understand material behavior and
thus to make it predictable. It is noted here that this text does not attempt to give an ex-
haustive overview on the existing literature, but it rather selects some references that deem
to be illustrative.

2 Large-Scale Molecular Dynamics Simulations

Plastic deformation of a crystal is caused by the motion of dislocations. In metals there is
typically a high density of dislocations that will move at a certain level of applied stress,
called the yield strength (for initial yielding) or flow stress (during plastic deformation).
However, when deforming brittle materials or very small volumes there can be a lack of
mobile dislocations such that dislocations need to be nucleated within the crystal before
plastic deformation can occur. Nanoindentation is an example where such dislocation nu-
cleation is experienced and it expresses itself in form of a so-called pop-in behavior3–5.
While it is now widely accepted that the nucleation of the first dislocations occurs at the
start of the pop-in event frequently observed in nanoindentation experiments, it is unclear
how these initial dislocations multiply during the early stages of plastic deformation and
produce pop-in displacements that are typically much larger than the magnitude of the
Burgers vector. This uncertainty about the complex interplay between dislocation multi-
plication and strain hardening during nanoindentation makes a direct correlation between
force-displacement curves and macroscopic material properties difficult. Recent nanoin-
dentation experiments in single crystals of copper or aluminum revealed large deviations
in the lattice rotation and an inhomogeneous distribution of the dislocation density in the
plastic zone under the indenter tip6, 7.

Molecular dynamics (MD) simulations offer the possibility to study the origin of these
phenomena on an atomistic scale. The only assumption that needs to be made is the inter-
atomic potential that defines the stable lattice structure and how this lattice deforms. From
this potential the forces acting on all atoms are calculated and consequently Newton’s
equation of motion is solved yielding the trajectories for all atoms. A detailed description
of the MD method can be found for example in textbooks8. As discussed above such MD
simulations provide fundamental insight into critical deformation and failure mechanisms
if the studied volumes are sufficiently large. However, such large-scale MD simulations
require sophisticated analysis routines in order to deal with the massive amount of gen-
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erated data. As an example for an on-the-fly analysis of atomistic data, a skeletonization
method to simplify defect structures in atomistic simulations enables the direct observation
and quantitative analysis of dislocation nucleation and multiplication processes occurring
in the bulk as well as at the surface9. An example for the application of this method is
given in Fig. 1, where it is seen how the atomic structure of dislocation cores is simpli-
fied to a network of geometric lines. Building up on this work, an efficient approach is
introduced to characterize the dislocation networks by quantifying Burgers vectors of dis-
location segments, local plastic strains and lattice rotations on the timescale of picoseconds
and below10. This data does not only reveal the evolution of dislocation structures, but it
offers the possibility to quantify local dislocation density tensors calculated on an atomic
level. By this analysis, the numerical results can be directly compared with experimental
data despite of the huge differences in the length scales. This comparison provides use-
ful insights into the active deformation mechanisms during plastic deformation. Currently
models are being developed that build a bridge between the atomic scale and continuum
descriptions11.

Figure 1. Atomistic defects and the derived dislocation skeleton resulting from a large-scale molecular dynamics
simulation of nanoindentation simulation into a copper single crystal.

A further example that illustrates what kind of information on critical deformation and
failure mechanisms can be gained from molecular dynamics simulations refers to glassy
polymers12. Using a united atom model of amorphous polyethylene as generic model sys-
tem for understanding failure mechanisms in bulk glassy polymers a detailed microscopic
understanding of the mechanism of craze initiation has been obtained. To accomplish this
molecular dynamics simulations of glassy polymer samples have been performed under
different loading conditions. It was found that depending on the loading mode the samples
failed by shearing or crazing. The standard models describing the global conditions for
shearing or crazing are fulfilled by the numerical samples. A detailed microscopic analysis
of internal stresses and non affine deformations within the material allow us to shed some
light on the mechanism of craze initiation in the glassy polymer. Under the loading con-
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ditions leading to shear failure the internal stresses in the material increase monotonously
during the loading. This leads to a stable and homogeneous deformation, because parts
that underwent large plastic deformations will only deform further at higher stress levels.
However, during failure by crazing, the material’s ability to strain harden is compromised,
i.e. the internal stress level remains constant during the deformation. Such a constant flow
stress causes instabilities and localization of the deformation, which is clearly observed in
the numerical simulations, see Fig. 2.

Figure 2. left: Initial atomistic configuration of glassy polymer; right: Configuration after applying tensile strain:
The polymer fails by crazing.

3 Scale-Bridging Models

In this second part of the present contribution we assume that the critical deformation and
failure mechanisms are known a priori. This is for example the case in plastic deformation
of metals with a body-centered cubic (bcc) crystal structure, where the mobility of dislo-
cations with parallel Burgers vector and line direction, i.e. so-called screw dislocations, is
the lowest of all types of dislocations and hence limits plastic deformation of these metals.
In a second example we will study the mechanical properties of grain boundaries in a poly-
crystal. Such interfaces are known to be weak links, because of the improper atomic bonds,
and consequently they are prone to cause deformation and failure. In both examples the
critical mechanisms, i.e. mobility of screw dislocations and strength of grain boundaries
are quantified by atomistic methods and then this information is used as input for models
operating on larger scales.

To develop atomistically informed crystal plasticity models for bcc metals MD studies
are used to assess the mobility of screw dislocations, see for example Ref. 13–15 for bcc
molybdenum and bcc tungsten or Ref. 16,17 for bcc iron. It is known that the complicated
core structure of screw dislocations in the bcc crystal is the origin of the complex flow
behavior in such metals, summarized as non-Schmid behavior, where the mobility of the
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dislocations is strongly affected by all components of the stress tensor (see Fig. 3 top).
With the help of MD simulations the critical value of the shear stress that is necessary to
move a screw dislocation can be calculated as a function of the total stress tensor acting on
that dislocation. This quantity is then used as an ingredient for a crystal plasticity models
that can be used to reliably describe the deformation of iron and steel on the macro scale
with the help of the finite element method (see Fig. 3 bottom).

Figure 3. top: Complex atomic structure of a screw dislocation core under a) tensile and b) compressive stresses
calculated by the MD method. bottom: Stress-strain curves for iron single crystals in different orientations
resulting from a crystal plasticity model partly parameterized by atomistic simulations and fitted to experimental
data taken from the literature18.

As described above the atomic order is disturbed in crystal defects, like grain bound-
aries. Since the ratio of atoms sitting in the vicinity of grain boundaries to atoms sitting
in undisturbed crystal regions gets larger for finer microstructures, the properties of nanos-
tructured materials are widely considered to be controlled by the properties of their inter-
faces. Hence, internationally a huge amount of scientific and technological effort is devoted
towards the investigation and description of the mechanical strength of grain boundaries.
The bulk part of these activities has been directed towards modeling and understanding
the role of grain boundaries during deformation and fracture of polycrystalline metals. To
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accomplish this, electronic structure calculations in the density functional theory (DFT)
framework were conducted to calculate grain boundary energies as a function of the grain
boundary separation, i.e. a simplified model of grain boundary fracture, for different types
of grain boundaries in pure aluminum as a model material19. It was found that the energy-
separation curves for different types of grain boundaries are characterized very well by
the so-called universal binding energy relation (UBER) that was hitherto only applied for
interatomic bonds in the bulk20 (see Fig. 4). This finding resulted in a general formula-
tion for the work of separation of grain boundaries that will simplify further calculations
of this quantity that serves as an important input parameter for continuum simulations of
fracture processes. Currently we apply this method to quantify the shear strength of grain
boundaries.
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Figure 4. Energy displacement relationships of different types of grain boundaries in aluminum re-scaled accord-
ing to the UBER relation.

4 Concluding Remarks

In this contribution examples are given that illustrate the role of atomistic methods in ma-
terials science. On the one hand, large scale atomistic simulations can be used to study
deformation and failure of materials and to understand the critical mechanisms that de-
termine material behavior on larger scales. On the other hand, if the critical mechanisms
are known and can be described by physical models, atomistic methods can be used to
quantify material specific parameters for these models that can then be used to describe
macroscopic material behavior.
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17. A. Köster, A. Ma, and A. Hartmaier. Atomistically informed crystal plasticity model
for body centered cubic iron. submitted for publication, 2012.

113



18. A.S. Keh. Work hardening and deformation sub-structure in Iron single crystal de-
formed in tension at 298 ◦C. Philosophical Magazine, 12:9–30, 1964.

19. Rebecca Janisch, Naveed Ahmed, and Alexander Hartmaier. Ab initio tensile tests of
Al bulk crystals and grain boundaries: universality of mechanical behavior. Physical
Review B, 81:184108–1–6, 2010.

20. J. H. Rose, John Ferrante, and John R. Smith. Universal binding energy curves for
metals and bimetallic interfaces. Physical Review Letters, 47(9):9, 1981.

114



Exploration of Multi-Dimensional Free Energy
Landscapes in Molecular Dynamics

Mark E. Tuckerman1,2

1 Department of Chemistry
New York University, New York, NY 10003, USA

2 Courant Institute of Mathematical Sciences
New York University, New York, NY 10003, USA

E-mail: mark.tuckerman@nyu.edu

One of the computational grand challenge problems is the development of methodology capa-
ble of sampling conformational equilibria in systems with rough energy landscapes. If met,
many important problems, most notably biomolecular structure prediction and the discovery of
the polymorphs of organic molecular crystals could be significantly impacted. In this lecture,
several new approaches for enhancing sampling and mapping the potential of mean force or free
energy of systems with rough potential energy surfaces in terms of a small set of collective vari-
ables will be discussed. These include adiabatic dynamics, dynamical spatial warping, and large
time-step, resonant-free molecular dynamics. First, we will show how temperature acceleration
techniques combined with mass tensor dynamics can be used to predict multi-dimensional free
energy surfaces in a small set of collective variables, and the approach will be shown to enhance
sampling in a variety of simple biomolecular systems. A related approach will also be shown
to enhance the sampling of the space of polymorphs of molecular crystals using the cell matrix
as a set of collective variables. Finally, we will discuss the problem of resonance in multiple
time-step molecular dynamics and how this problem limits the large time step. A resonant-free
approach will then be introduced that permits outer time steps as large as 100 fs in all-atom
simulations.

1 Introduction

The free energy difference associated with changes in conformation or thermodynamic
state of a complex system is a key quantity in thermodynamics. Free energy differences
are important for determining equilibrium constants, rates of processes, reversible work,
and a variety of other thermodynamic variables. Molecular dynamics (MD) is a useful tool
for calculating such free energy differences in systems of relevance to biology and material
science. Generally MD simulation times are short compared with typical biological pro-
cesses like protein folding, although several recent studies have been able to achieve such
time scales1–3. Consequently, it is crucial to enhance sampling of configuration space over
the course of a simulation. Many enhanced sampling algorithms require as input a set of
collective variables (CVs), which are functions of the primitive atomic Cartesian coordi-
nates of the system. These functions describe slow motions that are particularly important
during a particular conformational change. These variables can also be used as the basis
for coarse-graining a problem. Suppose there are n such variables, where n is small com-
pared to the total number of degrees of freedom in a system. Let us denote the collective
variables as q1(r), ..., qn(r), where r represents the full set of Cartesian coordinates with
conjugate momenta p. The free energy surface, which is also the rigorous basis for coarse
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graining, is given by

A(s1, ..., sn) = −kT ln

(∫
dre−βU(r)

n∏
α=1

δ(qα(r)− sα)

)
(1)

where U(r) is the interaction potential in the system, β = 1/kT , and the δ-functions
restrict the configurational integrations to the intersection of the hypersurfaces defined by
the n conditions qα(r) = sα. This, then, yields the potential of mean forceA(s1, ..., sn) as
a function of the coarse-grained variables s1, ..., sn. Note that the full canonical partition
function Q(N,V, T ) of the system is given by

Q(N,V, T ) ∝
∫
ds1 · · · dsne−βA(s1,...,sn) (2)

Free Energy Perturbation4, umbrella sampling5, 6 and thermodynamic integration7–9 are
two popular methods to map a free energy profile along one collective variable. For gen-
eration of multi-dimensional free energy surfaces (FESs) with respect to several collective
variables, methods such as Adiabatic Free Energy Dynamics (AFED)10–12, adaptive biasing
force(ABF)13, 14, and metadynamics15–17 (Conformational Flooding18, Local Elevation19)
have proved highly successful.

The AFED method, developed by Rosso et al.10–12, is a specially designed dynamical
scheme for the CVs that imposes an adiabatic decoupling between CVs and the remain-
der of the system. In addition, the CVs are maintained at a temperature sufficiently high
that any barriers along the CV directions on the free energy surface can be easily crossed.
This method performs well for simple geometrical collective variables such as distance
and dihedral angles. However, as AFED requires a transformation to a coordinate system
in which the CVs are explicit variables, the applicability of AFED is limited to simple
geometrical CVs. An improved version of this approach was developed by Maragliano
and Vanden-Eijnden (called Temperature-accelerate Molecular Dynamics or TAMD)20

and Abrams and Tuckerman (called driven AFED or d-AFED)21. In the TAMD/d-AFED
scheme, the CVs are harmonically coupled to a set of extended phase-space variables, and
the adiabatic and high-temperature conditions are applied to these extended variables. In
this way, variable transformations are completely avoided, thus allowing free energy sur-
faces in CVs of any mathematical form to be generated straightforwardly. In the first part
of the lecture, these approaches and their applications will be discussed.

In the second part of the lecture, the problem of increasing the time step in molecular
dynamics calculations will be discussed. Although molecular dynamics is a powerful tool
in biomolecular simulations, the technique provides insufficient sampling to impact studies
of the 200-300 residue proteins of greatest interest. One severe limitation of molecular
dynamics is that the integrators, particularly multiple time-step integrators, are restricted
by resonance phenomena to small time steps (∆t < 8 fs) much slower than the time scales
of important structural and solvent rearrangements. The term “resonance” here describes
the coupling between different time scales that causes the time step required for fast motion
to limit that which can be used for slow motions. Thus, in this part of the lecture, a novel
set of equations of motion and a reversible, resonance-free, integrator will be introduced
that permit step sizes on the order of 100 fs to be used.

Finally, the last part of the lecture will describe a much more aggressive sampling ap-
proach will be discussed. This method is known as the reference potential spatial warping
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algorithm or (REPSWA). REPSWA works by introducing a variable transformation in the
classical partition function that reduces the volume of phase space associated with a priori
known barrier regions while increasing that associated with attractive basins. In this way,
the partition function is preserved so that enhanced sampling is achieved without the need
for reweighting phase-space averages. Here, a new class of transformations, designed to
overcome the barriers induced by intermolecular/nonbonded interactions, whose locations
are not known a priori, is introduced. The new transformations are designed to work in
synergy with transformations originally introduced for overcoming intramolecular barriers.
The new transformation adapts to the fluctuating local environment and is able to handle
barriers that arise “on the fly.” Thus, the new method is referred to as dynamic contact
REPSWA (DC-REPSWA). In addition, combining hybrid Monte Carlo (HMC) with DC-
REPSWA allows more aggressive sampling to take place. The combined DC-REPSWA-
HMC method and its variants are shown to substantially enhance conformational sampling
in long molecular chains composed of interacting single beads and beads with branches.
The latter topologies characterize the united residue and united side chain representation
of protein structures.

2 Adiabatic Free Energy Molecular Dynamics and
Temperature-Accelerated Molecular Dynamics

Consider a classical system of N particles with positions r1, ..., rN ≡ r, momenta
p1, ...,pN ≡ p, and masses m1, ...,mN . The Hamiltonian is taken to be of the usual
form.

H(r1, · · · , rN ,p1, · · · ,pn) =

N∑
i=1

p2
i

2mi
+ U(r1, · · · , rN ), (3)

where U(r1, · · · , rN ) ≡ U(r) is the potential energy. Suppose we are able to identify a set
of n collective variables qα(r), α = 1, 2, · · · , n that characterize some process of interest.
As noted in the Introduction, the potential of mean force surface is given by Eq. 1:

e−βA(s) =

∫
dpdr exp

{
−β

[
N∑
i=1

p2
i

2mi
+ U(r)

]}
n∏
α=1

δ (qα(r)− sα) , (4)

where s = (s1, s2, · · · , sn) A(s) is the free energy surface (FES) of the physical system
when qα(r) = sα. The constant k is the Boltzmann constant, T is the temperature of the
physical system, and β = 1/kT .

The product of δ-functions imposes a condition on the configuration space that we
sample only the intersection of the hypersurfaces represented by qα(r) = sα. In principle,
this would be handled via a set of constraints8, 9 with an appropriate unbiasing factor for
corresponding constraints on the momentum space obtained by the additional condition
q̇α(r) = 0, however, such a scheme is practical only for n = 1 (or, at great computational
overhead, n = 2) because of the exponential dependence on n of the number of constraint
values needed to generate the FES. Thus, in order to avoid this problem, consider replacing
the δ-functions by the limit of a product of Gaussians:

n∏
α=1

δ (qα(r)− sα) =

[
n∏
α=1

lim
κα→∞

√
βκα
2π

]
exp

{
−

n∑
α=1

β

2
κα (qα(r)− sα)

2

}
, (5)
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Substituting this into Eq. 4, we obtain

e−βA(s) =

[
n∏
α=1

lim
κα→∞

√
βκα
2π

]

×
∫

dpdr exp

{
−β

[
N∑
i=1

p2
i

2mi
+ U(r) +

1

2

n∑
α=1

κα (qα(r)− sα)
2

]}
, (6)

The form of Eq. 6 suggests that we can map out the free energy surface by sampling the
centers of the Gaussian functions s1, ..., sn directly by introducing them as extended phase-
space variables with conjugate momenta ps1 , ..., psn . In this way, we set up an extended
dynamical system that can be simulated using molecular dynamics. The contribution from
the Gaussians can be viewed as an additional harmonic potential that couples the physical
system to the extended system. This approximation becomes accurate when the parameters
κα become infinite. In general, due to the harmonic coupling, the CVs will follow the
coordinates of extended variables. The whole system, including the real and extended
components, is described by a new Hamiltonian:

Hex(r; s) =

n∑
α=1

p2
sα

2mα
+

N∑
i=1

p2
i

2mi
+ U(r) +

n∑
α=1

1

2
κα (qα(r)− sα)

2
.

≡
n∑
α=1

p2
sα

2mα
+

N∑
i=1

p2
i

2mi
+ Ṽ (r; s), (7)

where

Ṽ (r; s) = U(r) +

n∑
α=1

1

2
κ (qα(r)− sα)

2
. (8)

Assuming we have a good choice of CVs that characterize the slow motions of the physical
system, we can choose the masses of the extended variables mα to be large enough such
that other degrees of freedom have time to equilibrate while the values of CVs have only
slightly changed. That is, we create an adiabatic decoupling between the physical and
extended subsystems. Based on this assumption, it is straightforward to show that the
extended system evolves under the potential of mean force:

Vmf(s) = − 1

β
lnZ1(s), (9)

where

Z1(s) =

∫
dpdr exp

{
−β

[
N∑
i=1

p2
i

2mi
+ Ṽ (r; s)

]}
. (10)

Thus, we have an effective Hamiltonian Heff for the extended system, which is given by

Heff(s, ps) =

n∑
α=1

p2
sα

2mα
+ Veff(s). (11)
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In order to sample rare transitions among the CVs, the extended variables are coupled to a
thermostat set to a high temperature Ts > T . This results in a set of equations of motion
for the physical+extended system of the form

mir̈i = −∂U
∂ri
−

n∑
α=1

κα (qα(r)− sα)
∂qα
∂si

+ heat bath(T )

mαs̈α = (qα(r)− sα) + heat bath(Ts) (12)

where two heat bath couplings, which could be any correct canonical thermostat, e.g.,
Langevin, Nosé-Hoover chains22, GGMTs23,..., at temperatures T and Ts have been in-
cluded. If mα is large enough, the extended variables are adiabatically decoupled from
the physical system, and we maintain different temperatures on the real and extended sys-
tems, then it can be rigorously proved (see Appendix) that the probability distribution of
extended variables directly gives the free energy surface according to

Padb(s) ∝
∫
dnps e

−βsHeff(s,ps) ∝ Z
βs
β

1 (s),

A(s, T ) ' − 1

β
lnZ1(s) + C = − 1

βs
lnPadb(s). (13)

Here, βs = 1/kTs, and C is a an irrelevant constant. In fact, Z can be viewed as the
true probability distribution of the extended variables at temperature T . This method is
known as driven adiabatic free energy dynamics (d-AFED), also referred to as temperature-
accelerated molecular dynamics (TAMD). As Ts

T increases, Padb will become more uni-
form, which means the probability of sampling rare events increases.

For certain applications, it might be possible to perform a variable transformation to
a coordinate system in which the CVs qα(r) are explicit variables. In this case, Eq. 4
becomes

e−βA(s) =

∫
dpd3Nq exp

{
−β

[
N∑
i=1

p2
i

2mi
+ Ũ(q)

]}
n∏
α=1

δ (qα(r)− sα) , (14)

where

Ũ(q) = U(r(q))− kT ln J(q) (15)

with J(q) being the Jacobian of the transformation. If we regard the 3N Cartesian mo-
mentum components as “conjugate” to q1, ..., q3N , then we can sample the free energy
surface in much the same way as is done in the extended phase-space formulation. That
is, we introduce a high temperature Ts associated with the first n coordinates q1, ..., qn
and let the associated masses m1, ....,mn be large compared to the remaining 3N − n
masses, and using these parameters, we perform a molecular dynamics calculation using
the Hamiltonian

H̃(p, q) =

N∑
i=1

p2
i

2mi
+ Ũ(q) (16)
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The adiabatic decoupling ensures the first n coordinates evolve slowly while the high tem-
perature ensures that they are able to cross any barriers creating rare events. Under the
high-temperature adiabatic conditions, the probability distribution generated takes the form

Padb(s1, · · · , sn) = N

∫
dnp exp

[
− βs

n∑
α=1

p2
α

2mα

]
[Z(s1, · · · , sn, β)]T/Ts (17)

where

Z(s1, · · · , sn, β) =

∫
d3N−npd3Nq

× exp

{
− β

[ 3N∑
α=n+1

p2
α

2mα
+ Ũ(q1, · · · , q3N )

]} n∏
α=1

δ(qα − sα) (18)

and N is an overall normalization factor. This direct formulation of adiabatic dynamics,
although not as straightforward to implement, exhibits better convergence properties than
the extended phase-space version due to its elimination of the harmonic coupling and the
additional “noise” this approximation introduces into the phase-space sampling.

2.1 Predicting Polymorphism in Molecular Crystals

Structural diversity abounds in nature. Researchers in many disciplines are often faced
with the considerable challenge of understanding this phenomenon in specific applications
and its associated consequences. In chemistry, an area where structural diversity has pro-
found implications is molecular crystals. Small organic molecules can crystallize into a
variety of different forms, which gives rise to the phenomenon of polymorphism. While
polymorphism is important in numerous problems involving molecular crystals, there are
few in which the stakes are as high as they are in pharmaceutical applications24. Consider,
for example, the case of the anti-AIDS drug Ritonavir (a protease inhibitor). When the
drug was first launched in 1996, only one crystalline form was known, which was shown
to be sufficiently water soluble for therapeutic applications. Subsequent to the launch,
however, a second crystalline form, hitherto unknown, began to show up in the manufac-
turing process, and this new form, being much less water soluble, caused many lots to fail
the dissolution test, thereby compromising their bioavailability. Unfortunately, this second
form had already infiltrated market supplies, and hence, a massive and costly recall and
reformulation was necessary before its rerelease in 2002. Polymorphism in the common
heartburn medication Ranitidine hydrochloride lead to an expensive and protracted dispute
over separate patents for two different crystalline forms when a generic drug manufacturer
claimed that the synthetic procedure of the earlier of the two patents (which had expired)
actually yielded the crystal form of the later patent, thereby rendering it invalid. From this
and other examples24, it is clear that a priori prediction and thermodynamic ranking of
the different crystalline polymorphs of a given compound are important problems in which
suitable computational techniques can play an important role.

Numerous theoretical methods have been developed for the crystal structure predic-
tion25. However, very few of these are based on free energy sampling26–28. The theoretical
challenge of exploring polymorphism in molecular crystals stems from the requirement of
sampling a complex and rough energy landscape in order to obtain free energy differences
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between the different polymorphs. Because of this, polymorphism prediction has been
compared to the problem of exploring the conformational space of proteins29. Recently,
we introduced an adaptation of the AFED30 methodology for the exploration of crystalline
polymorphism27. We call the approach Crystal-AFED.

Crystal-AFED is an adaptation for the isothermal-isobaric (NPT) ensemble of the adi-
abatic free energy dynamics approach. It employs the h matrix as a set of collective vari-
ables and seeks to map out the Gibbs free energy as a function of h. Crystal-AFED can
be applied with any NPT(flex) scheme provided that it correctly generates the isothermal-
isobaric ensemble. In our case, the MTK equations are used31. As in the AFED scheme,
the collective variables h are assigned a large mass W and a temperature Th that is higher
than the physical temperature T . This is tantamount to writing the MTK equations of
motion as

ṙi =
pi
mi

+
pg

W ′
ri

ṗi = Fi −
pg

W ′
pi −

1

Nf

Tr[pg]

W′
pi + heat bath(T )

ḣ =
pgh

W ′

ṗg = det(h)
[
P(int) − P I

]
+

1

Nf

N∑
i=1

p2
i

mi
I + heat bath(Th) (19)

where W ′ is a large mass and Th >> T , and we have generically denoted the thermostat
coupling in the equations for pi and pg. Within the Crystal-AFED approach, the Gibbs
free energy G(hs, T ) is obtained from

G(hs, T ) = −kTh lnPadb(hs, T, Th) (20)

where Padb(hs, T, Th) the adiabatic probability distribution for the cell matrix h to have
the value hs accumulated during a Crystal-AFED simulation and is given by

Padb(hs, T, Th) =
1

V0

∫
dh [det(h)]

1−d
e−βsPdet(h) [Q(N,h, T )]

T/Th δ(h−hs) (21)

Thermostatting of the cell matrix within Crystal-AFED requires some care. In contrast
to a standard NPT(flex) MD simulation, in which the matrix pg is coupled to a single NHC
thermostat, Crystal-AFED benefits from a more robust temperature control mechanism.
Since h is the key collective variable in Crystal-AFED, separate control of the temperature
of the diagonal and off-diagonal elements of the pg matrix enhances the fluctuations in the
collective variable space and increases the efficiency of the approach. Thus, we employ a
version of massive thermostatting to the cell matrix. In this case, each diagonal element
of pg is coupled to a separate thermostat, and additional separate thermostats are cou-
pled to each of the three pairs of off-diagonal elements, (pg,12, pg,21), (pg,13, pg,31), and
(pg,23, pg,32). To ensure efficient equipartitioning of the elements of the matrix pg at the
temperature Th, each of the diagonal elements has a target average kinetic energy kTh/2,
and each of the three off-diagonal pairs has a target average kinetic energy of kTh/2 (that
is, each off-diagonal element individually has an average kinetic energy of kTh/4 as ex-
plained in the Appendix). Fig. 1 shows the kinetic energy convergence behavior of pg and
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Figure 1. The convergence of the average kinetic energy (KE) of each element of pg in a Crystal-AFED simu-
lation. (a), (c): Global thermostat for the barostat. (b), (d): Massive thermostatting the barostat. Black: KE11;
Blue: KE22; Red: KE33; Green: KE12,21; Brown: KE13,31; Magenta: KE23,32. The convergence of the
average kinetic energy of pg in a Crystal-AFED simulation. The system temperature is maintained at 300 K. The
atoms are thermostatted massively, and the barostat time scale is 20 ps.

its individual elements under the action of a single global thermostat on pg as a whole
and under the action of a “massive” thermostat. Under massive thermostatting, the kinetic
energy of the elements of pg quickly converges (b) while the global thermostat is unable to
properly equipartition the kinetic energy among the elements of pg, although, as expected,
the total average kinetic energy of the box reaches the desired target value (c). Therefore,
the massive thermostatting strategy is highly recommended for Crystal-AFED simulations.
Because of the two temperature scales, we find that the optimal thermostatting scheme for
Crystal-AFED is the GGMT thermostat23, which has been found to be particularly effective
for AFED simulations. With the above protocol, Crystal-AFED appears to be an efficient
algorithm for the exploration of crystalline polymorphism and for providing a thermody-
namic ranking of the polymorphs based on the free energy hypersurface in h, as has been
demonstrated for the case of solid benzene27.

In order to illustrate the performance of Crystal-AFED, we use the same benzene model
as in Ref. 27 and carry out a Crystal-AFED simulation using Th = 31000 K and a barostat
time scale τ = 8.5 ps. The value of τ is used to determine the barostat mass parameter
W ′ via W ′ = (Nf/3 + 1)kTτ2. In Crystal-AFED simulations, the real space summation
requires some special attention. Because the cell matrix can occasionally undergo strong
distortions, it is necessary to extend the real-space sum beyond the primary simulation cell
and include interactions with the first few image cells. However, as this also increases
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Figure 2. Polymorphic transition induced in Crystal-AFED. 192 molecules are simulated at 300 K with
Th = 31000 K.

the cost of the real-space sum, we employed a dynamic replication scheme wherein if the
face-to-face distances of the supercell becomes smaller than twice the real-space cutoff,
extra replicas are added to the real-space sum. Fig. 2 shows a smooth phase transition gen-
erated using Crystal-AFED, in which an initial benzene I structure passes through several
amorphous states and transforms into the benzene III structure. In Fig. 3, we show a longer
trajectory segment of the cell lengths, angles, and molar volume under Crystal-AFED at
T = 100 K in which the system visits four of the crystal structures accessible within the
Gromos 96 force field32. At T = 100K, using six randomly initialized trajectories, we
are able to visit all of the benzene polymorphs in a minimal time of just 470 ps. Longer
trajectories such as that shown in Fig. 3 might become disordered, in which case, they are
terminated, or remain in one structure for an extended period of time, which provides use-
ful data for subsequent determination of relative free energies of the polymorphs. When a
particular crystal form persists for a significant period of time in the trajectory, we attribute
that form with a greater stability. If good sampling of different structures is achieved, then
the amount of time spent in each structure can be used to obtain the relative probability
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Figure 3. Crystal-AFED trajectories for benzene at 100 K showing a smooth transition from benzene I to benzene
III.

of that structure and, therefore, the probability distribution of the different polymorphs.
The relative Gibbs free energies of the polymorphs are obtained from this distribution. In
Ref. 27, we reported these relative free energies as well as their space groups and unit-cell
structures. Note that, as Fig. 3 suggests, there can be some variation in the cell lengths and
angles associated with a given polymorph. From the trajectory, we were able to determine
the free energy difference between different polymorphs of benzene, which is shown in
Fig. 4. From Fig. 4, we see that the free energy and lattice energy measures are compara-
ble and result in a consistent stability ordering except for phase II98. II98 is often found in
a mixed stacking structure (see SI), which is essentially a phase III with line defects. The
free energy analysis shows that mixed stacking structures have a considerable thermody-
namic stability while the stability of pure benzene II (denoted II98) is low despite its low
lattice energy. This result addresses a long-standing controversy: Crystal-AFED predicts
that mixed stacking structures are thermodynamically more stable at the simulated condi-
tions, and therefore, what is observed in experiment for phase II is actually such a mixed
structure (II01 or III with a defect) rather than II9833. Indeed, a phase III with a stacking
defect has the closest powder diffraction pattern compared to experiment33.

Benzene IV is found to be stable (or metastable) only at pressures above 5 GPa, and
in our simulations, IV was observed to change to I quickly under an ordinary anisotropic
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Figure 4. Probability distribution, unit cell structures, and corresponding free energies (with Th = 31000K) and
lattice energies of the stable polymorphs of benzene at 100 K and 2 GPa obtained via Crystal-AFED. The unit
cell for the mixed stacking structure (III with defect) is one representative structure among all those generated in
the simulation. The lattice energy is the sum of the intermolecular energy and the PV contribution at 0 K and 2
GPa, which, for III with a defect, is averaged over several different mixed forms.

NPT simulation. Crystal-AFED trajectories visit the IV structure but remain there for times
sufficiently short as to give them negligible contribution to the distribution (∆G > 0). A
typical pathway observed in Crystal-AFED is from benzene I to V with IV appearing as an
intermediate state.

Although the Gromos force field is not designed for condensed-phase systems, it gives
a reasonably good prediction of benzene polymorphism at pressures in the range 0 ∼ 4
GPa26. Our overall conclusion is that at 2 GPa benzene III is the most stable form at 100
K while mixed stacking structures have a comparable stability with III. The latter could be
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Figure 5. Ramachandran plot of the alanine dipeptide in solution comparing d-AFED (left) with metadynamics
(right).

due to the fact that 2 GPa is near the phase transition region under this force field model.
Phase I is the third most stable structure at 2 GPa, which is consistent with the phase digram
proposed previously26.

2.2 Other Examples

Fig. 5 shows the Ramachandran plot of the alanine dipeptide in aqueous solution (216
waters) using the CHARMM22 force field obtained using d-AFED with Ts = 1000 K.
The simulation length is 5 ns, and a comparison with metadynamics15 (also of length 5 ns)
is presented. We see that the comparison is very good between the two method, however,
d-AFED does somewhat better in the high free energy regions.

Fig. 6) shows a simulation of met-enkephalin in aqueous solution using d-AFED with
Ts = 600 K. A run of length 200 ns is carried and compared to metadynamics15 using 400
ns. The collective variables are the radius of gyration of the heavy atoms and the alpha-
helical similarity. We see that the agreement is good between the methods, however, even
with 200 ns, d-AFED yields a smoother surface than metadynamics with 400 ns.

3 Long Time-Step Molecular Dynamics

Hamiltonian’s such as that in Eq. 7 contains many time scales including one created by
the additional harmonic coupling term between the extended phase-space variables and the
CVs. In principle, the equations could be integrated using multi time-step techniques34, 35,
however, a system of this type will exhibit so-called resonance phenomena36, which limits
the largest time step that can be used.
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Figure 6. Free energy surface of meta-enkephalin in solution using d-AFED (left) and metadynamics (right).

In order to illustrate resonances, consider a single particle in one spatial dimension
with unit mass subject to a harmonic potential of frequency ω2 + Ω2, where Ω << ω. The
Hamiltonian takes the form

H =
p2

2
+

1

2
ω2x2 +

1

2
Ω2x2 (22)

An integrator for Hamilton’s equations of motion can be derived from the Liouville opera-
tor

iL = p
∂

∂x
− ω2x

∂

∂p
− Ω2x

∂

∂p
(23)

Consider separating this operator into two contributions:

iL = iLfast + iLslow (24)

where

iLfast = p
∂

∂x
− ω2x

∂

∂p

iLslow = −Ω2x
∂

∂p
(25)

The propagator exp(iL∆t) for a discrete time step ∆t, where ∆t is chosen to be appropri-
ate for the slow oscillatory motion, can be factorized using the Trotter theorem according
to

eiL∆t = eiLslow∆t/2eiLfast∆teiLslow∆t/2 (26)

Applying this propagator on an initial condition (x(0), p(0)) to yield numerical solutions
(x(∆t), p(∆t)), we can express the solution in the form of a matrix equation(

x(∆t)
p(∆t)

)
= A(ω,Ω,∆t)

(
x(0)
p(0)

)
(27)
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where A(ω,Ω,∆t) is a 2×2 matrix of the form

A(ω,Ω,∆t) =

(
cos(ω∆t)− ∆tΩ2

2ω sin(ω∆t) 1
ω sin(ω∆t)(

∆t2Ω4

4ω − ω
)

sin(ω∆t)−∆tΩ2 cos(ω∆t) cos(ω∆t)− ∆tΩ2

2ω sin(ω∆t)

)
(28)

Depending on how large ∆t is, we find that−2 < Tr(A) < 2 or |Tr(A)| ≥ 2. In the former
case, the eigenvalues of A are complex conjugate pairs while in the latter, the eigenvalues
of A are both real, which would lead to hyperbolic rather than oscillatory motion. The
transition occurs at |Tr(A)| = 2, in which case ∆t = nπ/ω, where n is a positive integer.
This fact tells us that the large time step cannot be chosen greater than π/ω, suggesting
that the fast frequency places a fundamental limit on the time step we can choose for the
slow motion!

Physical resonances are tantamount to the building up of energy in a particlar mode of
motion. We can circumvent this problem by employing an approach in which we constrain
the kinetic energy of the system to be a fixed constant. Such an approach is known as
isokinetic molecular dynamics37. The kinetic energy constraint can be imposed using a
Lagrange multiplier α. We begin with the equations of motion:

ṙi =
pi
mi

ṗi = Fi − αpi. (29)

We now obtain a closed-form expression for the multiplier α. In order to do this, we first
differentiate the constraint

∑N
i=1 p2

i /2mi = K once with respect to time, which yields

N∑
i=1

pi
mi
· ṗi = 0. (30)

Thus, substituting the second of Eqs. 29 into Eq. 30 gives

N∑
i=1

pi
mi
· [Fi − αpi] , (31)

which can be solved for α giving

α =

∑N
i=1 Fi · pi/mi∑N
i=1 p2

i /mi

. (32)

When Eq. 32 is substituted into Eq. 29, the equations of motion for the isokinetic ensemble
become

ṙi =
pi
mi

ṗi = Fi −

[∑N
j=1 Fj · pj/mj∑N
j=1 p2

j/mj

]
pi. (33)
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Because Eqs. 33 were constructed to preserve the constraint, they manifestly conserve the
kinetic energy; however, that the constraint is also a conservation law of the isokinetic
equations of motion can also be verified by direct substitution. The isokinetic equations
generate the following partition function:

Q(N,V, T,K) =
K0

N !h3N

∫
dNp

∫
D(V )

dNr δ

(
N∑
i=1

p2
i

2mi
−K

)
e−βU(r1,...,rN ), (34)

where K is preset value of the kinetic energy, and K0 is an arbitrary constant having units
of energy. This partition function clearly shows that the configurational part of the partition
function is the canonical factor exp(−βU(r)), which is usually all we are interested in.

The isokinetic equations of motion are resonance free. However, they are not suffi-
ciently ergodic to be used on their own as a molecular dynamics sampling algorithm. If,
however, we couple them to a standard Nosé-Hoover chain algorithm22, we obtain an er-
godic scheme that can be integrated using multiple time-step techniques34, 35. We apply the
coupling between isokinetic and Nosé-Hoover algorithms on each individual Cartesian
degree of freedom in a scheme known as massive thermostatting so that the equations of
motion become

ẋ = v ; v̇ =
F

m
− λv

˙̄η = −
L∑
j=1

[
Qvη2,jv

2
η1,j

kBT
−

M∑
i=2

vηi,j

]
v̇η1,j = −vη1,jvη2,j − λvη1,j j = 1, L

v̇ηi,j =
Gi,j
Q
− vηi,jvηi+1,j

j = 1, L; i = 2,M − 1

v̇ηM,j =
GM,j

Q
j = 1, L

where

F = −dU
dx

; Gi,j = Qv2
ηi−1,j

− kBT. (35)

and Q = kBTτ
2, kB is Boltzmann’s constant, T is the temperature and τ is the time scale

associated with the bath. The Lagrange multiplier, λ, is selected so that the equations of
motion satisfy the constraint,

2K(v, vη) =

mv2 +

(
L

L+ 1

) L∑
j=1

Qv2
η1,j

 = LkBT, (36)

which yields

λ =
vF −

(
L
L+1

)∑L
j=1Qv2

η1,jvη1,j

2K(v, vη)
. (37)

Thus, the maximum kinetic energy that can be sustained by any one mode is LkBT which
eliminate resonant artifacts in numerical solvers38.
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The equations of motion, Eqs. 35, can be integrated fairly straightforwardly using oper-
ator splitting techniques. Briefly, the equations of motion and the dynamics can be written
in the Liouville operator formalism

iL = ẋ
∂

∂x
+ v̇

∂

∂v
+
∑
ij

v̇ηij
∂

∂vηij
(38)

Γ(t) = exp(iLt)Γ(0) =

P∏
k=1

exp(iL∆t)Γ(0)

with ∆t = t/P defining a single time step of evolution, Γ(∆t) = exp(iL∆t)Γ(0). Next,
the Liouville operator is decomposed

iL = iLx +

Nd∑
p=1

iLv,p + iLNHC (39)

iLx = v
∂

∂x
; iLv,p = (Fp − λpv)

∂

∂v
−
∑
j

λpvη1,j
∂

∂vη1,j

iLNHC =

M∑
i=2

L∑
j=1

Gi,j
Q

∂

∂vηi,j
−
M−1∑
i=1

L∑
j=1

vηi,jvηi+1,j

∂

∂vηi,j

−
L∑
j=1

λNHCvη1,j
∂

∂vη1,j

and the force has been split into Nd parts,
∑Nd
p=1 Fp = F , whose strength is assumed to

decrease with p. Using the decomposition and the multiple time step (MTS) parameters,
δt = ∆t/NMTS , NMTS =

∏Nd
p=1 np, nNd = 1, wp =

∏p−1
k=1 nk, w1 = 1, an accurate

approximation to the true evolution can be written

Γ(∆t) ≈

{
e
iL̃

(t)
Nd
δt
. . .

{
eiL̃

(t)
2 δt

[
eiL̃1)δt

]n1−2

eiL̃2δt

}n2−2

. . . eiL̃Ndδt

}
Γ(0) (40)

where

eiL̃kδt = eiLNHC
δt
2 eiLv,1

δt
2 eiLxδte

∑k
p=1 iLv,pwp

δt
2 eiLNHC

δt
2 (41)

and exp(iL̃
(t)
k δt) is the transpose of exp(iL̃kδt). In this way, the weaker forces which are

assigned larger p, are evaluated/applied less frequently but with larger weight, wp, which
equalizes them to the strong forces (e.g. wp+1/wp = np is the ratio of the strength of the
pth and the (p+1)st force). The number of evaluations of the pth force isNMTS/wp where,
again, NMTS is the total number of small steps in the multiple time step procedure. The
error in the scheme is O(∆t3) for one full step and O(t∆t2) for the trajectory. Analyti-
cal solutions for each of the factorized parts of the operators, exp(iL̃k), can be obtained
easily given iLNHC is further decomposed following Ref. 35. The decomposed multipli-
ers, {λp, λNHC} are chosen to enforce Eq. 36 and appropriately sum to Eq. 37. Judicious
choices of the force decomposition into strong intramolecular vibrations and weak short
range forces and weaker long-range forces are discussed in detail elsewhere39. The mul-
tiple time step approach improves efficiency because for chemical systems the strongest
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Figure 7. (a) Distribution function of the quartic oscillator (9/2)x2 + 0.025x4 for standard RESPA (NR) and
the INR methods using ∆t = π/ω, which is the resonant time step, and δt = π/(100ω). (b) The error in
the distribution function as a function of time as measured by ζ(t) = (1/N)

∑N
i=1 |P (xi; t) − Pexact(xi)|,

whereN is the number of bins in the histogram, P (xi; t) is the distribution at time t, and Pexact is the analytical
distribution.

forces are least computational intensive to calculate. In total, the method will be referred
to as the multiple time step, isokinetic, Nosé-Hoover chain (MTS-ISO-NHC) technique.

In order to demonstrate the efficacy of the new multiple time step technique, MTS-ISO-
NHC, four problems with very different separations of time scale were selected for study.
The quartic oscillator was chosen to demonstrate unequivocally that most basic resonance
phenomena has been eliminated, the Lennard Jones fluid to show that the method enhances
the sampling of simple solvent modes when long-range forces are rate limiting, water with
flexible bonds and bends to show that a complex fluid with long-range forces and very high
frequency vibrations can be tackled and finally a protein in vacuo to demonstrate that the
method can handle large molecules with separations of time scales.

In Fig. 7, the converge of the probability distribution function of the quartic oscillator
as a function of time step is given under the new equations of motion and multiple time
step integrator, MTS-ISO-NHC, in comparison to standard methods, NHC. While standard
methods become unstable, MTS-ISO-NHC yields the correct answer with extremely long
time steps compared to the period of oscillation.

Third, a very challenging problem with extremely large separations of time scales is
flexible water at room temperature and pressure. Due to resonance, standard methodology
could not be employed for time steps larger than 1fs. However, the MTS-ISO-NHC gen-
erates the correct radial distribution function using a 100fs time step (see Fig. 8) without
the degradation of mass diffusion (see Fig. 9) that would be caused by the introduction of
an overdamped bath. Here, bonds and bends are treated using a 0.5 fs time step, and short-
range forces within 5 Å are treated using a 3 fs time step. Long-range forces are assigned
a cutoff of 12 Å and also include reciprocal space sums in an Ewald summation.

Last, a protein (HIV-protease) is studied in vacuo in order to demonstrate that the tech-
nique can handle large molecules without masking inefficiencies by including solvent.
Again, a 100fs time step was capable of providing excellent results for both short and
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Figure 8. (a) The radial distribution functions of a flexible liquid water model (flex-TIP3P) using standard RESPA
(NR) and the INR methods. (b) Error in the converged radial distribution functions. Time steps in the legend is
the outer time step.

Figure 9. Diffusion constants of the flexible water model computed using the different methods. Although the
methods are not designed to give the correct diffusion constant, the figure shows that diffusion is not arrested due
to the use of INR.
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Figure 10. (a) The C-H radial distribution of the HIV protease in vacuo computed using standard RESPA (NR)
and the INR methods. (b) The intramolecular part of the C-H distribution. Time steps in the legend are the outer
time steps.

long-range distributions as shown in Fig. 10. Here, bonds and bends are treated using a 0.5
fs time step, and short-range forces within 5 Å are treated using a 3 fs time step.

Appendix

In this appendix, we prove that the AFED/d-AFED schemes generate the correct free en-
ergy surface. We consider The time evolution of the AFED system is generated by the
Liouville operator. In order to keep the discussion general, we write this operator as

iL =

3N∑
α=1

[
pα
m′α

∂

∂qα
+ Fα(q)

∂

∂pα

]
+ iLtherm,1(Tq) + iLtherm,2(T ), (42)

where Fα(q) = −∂Ṽ /∂qα and iLtherm,1(Tq) and iLtherm,2(T ) are the Liouville operators
for the two thermostats. If xt denotes the full phase space vector, including all variables
related to the thermostats, then the time evolution of the system is formally given by

xt = eiLtx0. (43)

The key to analyzing this unusual dynamics is to factorize the propagator exp(iLt) in a way
consistent with the adiabatic decoupling. To this end, we define the following combinations
of terms in Eq. 42:

iLref,1 =

n∑
α=1

pα
m′α

∂

∂qα
+ iLtherm,1(Tq)

iLref,2 =

3N∑
α=n+1

pα
m′α

∂

∂qα
+ iLtherm,2(T )

iL2 = iLref,2 +

3N∑
α=1

Fα(q)
∂

∂pα
. (44)
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We next express the total Liouville operator as

iL = iLref,1 + iL2. (45)

Let ∆t be a time interval characteristic of the motion of the hot, heavy, and slow-moving
reaction coordinates q1, ..., qn. Then, a Trotter decomposition of the propagator appropri-
ate for the adiabatically decoupled motion is

eiL∆t = eiL2∆t/2eiLref,1∆teiL2∆t/2 +O
(
∆t3

)
. (46)

Note that the operator exp(iL2∆t/2) has terms that vary on a time scale much faster
than ∆t and must be further decomposed. Using the ideas underlying multiple time-scale
integration, we write this operator using the Trotter theorem as

exp

(
iL2

∆t

2

)
= lim

M→∞

[
exp

(
∆t

4M

3N∑
α=1

Fα
∂

∂qα

)

× exp

(
iLref,2

∆t

2M

)
exp

(
∆t

4M

3N∑
α=1

Fα
∂

∂qα

)]M
. (47)

It proves useful to decompose the phase space vector as x = (X,Y, PX , PY ,ΓX ,ΓY ),
whereX denotes the full set of reaction coordinates, PX , their momenta, Y , the remaining
3N − n coordinates, PY , their momenta, and ΓX and ΓY , the thermostat variables asso-
ciated with the temperatures Tq and T , respectively. Thus, when Eq. 47 is substituted into
Eq. 46 and the resulting operator is taken to act on the initial phase space vector x0, the
result for heavy, slow reaction coordinates is

Xα(∆t) = Xα,ref [X(0), Ẋ(∆t/2),ΓX(0); ∆t]

Ẋα(∆t) = Ẋα,ref [X(0), Ẋ(∆t/2),ΓX(0); ∆t]

+

(
∆t

2m′α

)
2

∆t

∫ ∆t

∆t/2

dt Fα[X(∆t), Yadb(Y (∆t/2), Ẏ (∆t/2),ΓY (∆t/2), X(∆t); t)]

Ẋα(∆t/2) = Ẋα(0)

+

(
∆t

2m′α

)
2

∆t

∫ ∆t/2

0

dt Fα[X(0), Yadb(Y (0), Ẏ (0),ΓY (0), X(0); t)]

Yγ(∆t/2) = Yγ,adb[Y (0), Ẏ (0),ΓY (0), X(0); ∆t/2]

Ẏγ(∆t/2) = Ẏγ,adb[Y (0), Ẏ (0),ΓY (0), X(0); ∆t/2]

Yγ(∆t) = Yγ,adb[Y (∆t/2), Ẏ (∆t/2),ΓY (∆t/2), X(∆t); ∆t]

Ẏγ(∆t) = Ẏγ,adb[Y (∆t/2), Ẏ (∆t/2),ΓY (∆t/2), X(∆t); ∆t]. (48)

In Eq. 48, Xα,ref [X(0), Ẋ(0),ΓX(0); ∆t] represents the evolution of Xα (α = 1, ..., n)
up to time ∆t under the action of the reference-system operator exp(iLref,1∆t) start-
ing from the initial conditions X(0), Ẋ(0), ΓX(0), with an analogous meaning for
Ẋα[X(0), Ẋ(0),ΓX(0); ∆t]. Yγ,adb[Y (0), Ẏ (0),ΓY (0), X(0); ∆t/2] denotes the exact
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evolution of Yγ (γ = 1, ..., 3N − n) up to time ∆t/2 under the first action of the opera-
tor exp(iL2∆t/2) given in the form of Eq. 47 starting from initial conditions Y (0), Ẏ (0),
ΓY (0),X(0) with an analogous meaning for Ẏγ,adb[Y (0), Ẏ (0),ΓY (0), X(0); ∆t/2]. The
functions in the last two lines of Eq. 48 are similarly defined for the second action of
exp(iL2∆t/2). Although we do not have closed-form expressions for these functions in
general, we do not need them for the present analysis. The important terms in Eq. 48 are
the time integrals of the forces on the slow reaction coordinates. These time integrals result
from the action of the operator exp(iL2∆t/2) on the reaction coordinates which, for finite
M , leads to a sum of force terms at different times ∆t/M . This sum is in the form of
a trapezoidal rule for a numerical integration in time. Thus, when the limit M → ∞ is
taken, these sums become continuous time integrals.

Physically, Eq. 48 tells us that the force driving the slow reaction coordinates is a
time average over the motion of the 3N − n adiabatically decoupled fast variables. If
the n masses assigned to the reaction coordinates are very large, the remaining variables
will follow the slow reaction coordinates approximately instantaneously and sample large
regions of their phase space at roughly fixed values of the reaction coordinates. In this limit,
the time integrals in Eq. 48 can be replaced by configuration-space integrals, assuming that
the motion of the fast variables is ergodic:

2

∆t

∫ τ+∆t/2

τ

dt Fα[X,Yadb(Y (τ), Ẏ (τ),ΓY (τ), X; t)]

=

∫
dY Fα(X,Y )e−βṼ (X,Y )∫

dY e−βṼ (X,Y )

=
∂

∂qα

1

β
lnZY (q1, ..., qn;β). (49)

Here

ZY (q1, ..., qn;β) = ZY (X;β) =

∫
dY e−βṼ (X,Y ) (50)

is the configurational partition function at fixed values of the reaction coordinates
X = (q1, ..., qn). Eq. 49 defines an effective potential, the potential of mean force, on
which the reaction coordinates move. Thus, we can define an effective Hamiltonian for the
reaction coordinates as

Heff(X,PX) =

n∑
α=1

p2
α

2m′α
− 1

β
lnZY (q1, ..., qn;β). (51)

Since we assume the dynamics to be adiabatically decoupled, thermostats applied to this
Hamiltonian yield the canonical distribution of Heff(X,PX) at temperature Tq:

Padb(X) = Cn

[∫
dnp exp

{
−βq

n∑
α=1

p2
α

2m′α

}]

× exp

{
−βq

(
− 1

β
lnZY (q1, ..., qn)

)}
. (52)
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From Eq. 52, we see that

Padb(X) ∝ [ZY (q1, ..., qn)]
βq/β . (53)

Since ZY (q1, ..., qn) is the potential of mean force for the reaction coordinates, the free
energy hypersurface A(q1, ..., qn) is, by definition,

A(q1, ..., qn) = − 1

β
lnZY (q1, ..., qn), (54)

but from Eq. 53, it follows that

A(q1, ..., qn) = − 1

βq
lnPadb(q1, ..., qn) + const, (55)

which is the true free energy profile. The constant in the second term comes from factors
dropped in Eq. 52 and is irrelevant to the overall free energy hypersurface.
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1 Introduction

Ab initio molecular dynamics has led to a large number of theoretical predictions for
molecules and solids. In the well-established mixed quantum-classical formulation, and
thanks to highly efficient electronic structure methods like Kohn-Sham Density Functional
Theory (DFT)1, simulations on molecular systems with up to thousands of atoms are nowa-
days feasible. Initially restricted to a single adiabatic state (Born-Oppenheimer dynamics),
molecular dynamics was recently extended to the nonadiabatic regime2–4 becoming an im-
portant tool for the study of photophysical and photochemical processes.

Among the most commonly used nonadiabatic molecular dynamics schemes are Ehren-
fest dynamics and Tully’s trajectory surface hopping5 (TSH). In the first case, the nuclear
dynamics is replaced by a single point-like trajectory evolving in the mean-field potential
derived from the time-evolution of the electronic wavefunction. Differently, in TSH the
nuclear wavepacket is represented by a swarm of independent classical trajectories while
the nonadiabatic couplings (NACs) induce hops between different electronic states that oc-
cur according to a stochastic algorithm. The classical approximation for the nuclei breaks
down when interferences6, wavepacket bifurcation7, (de)coherence or tunneling effects
occur during the dynamics. A trajectory-based solution of the quantum dynamics able to
describe theses phenomena was introduced by Wyatt and co-workers. The so-called quan-
tum trajectory method (QTM) describes the time evolution of the nuclear wavefunction by
means of the quantum hydrodynamics (Bohmian) equations of motion8. Trajectory-based
Bohmian dynamics differs from the classical TSH approach for the action of an additional
potential, called the quantum potential, which is responsible for all quantum nuclear effects
neglected in TSH.

As an alternative to trajectory-based approaches, quantum dynamics methods use an
exact treatment of both electronic and nuclear wavefunctions (see for example Ref. 9).
However, the applicability of these methods is hampered by their high computational costs,
which limit the number of accessible nuclear degrees of freedom. This usually requires
fitting of the relevant electronic potential energy surfaces (PESs) prior to propagation.

In the effort to extend the applicability of nonadiabatic MD to larger systems of phys-
ical, chemical and biological interest and relevance, we will also discuss the possibility
of bridging different time and length scales, while keeping a valid description of the pho-
toactive components. This is done through a hierarchical scheme, which combines the
ultrafast dynamics of photoexcited electrons (purely QM tier) with the nuclear dynamics
of the excited molecule (mixed-quantum classical tier) and with the reorganization of the
environment (fully classical, MM, level).
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After a short description of the most relevant approaches used to describe the nonadi-
abatic dynamics of molecular systems in the unconstrained phase space (Ehrenfest and
TSH dynamics), I will discuss their implementation within the framework of DFT/T-
DDFT, which allow for an efficient on-the-fly calculation of all required electronic structure
properties such as potential energy surfaces (PESs), nuclear forces, and nonadiabatic cou-
plings. The coupling of the dynamics with the photochemical “inert” environment within
the QM/MM scheme is also discussed together with a number of applications in different
scientific domains.

For space reasons, in this lecture notes I will skip the derivation of the main mixed
quantum-classical solutions. The interested reader can find more information in literature.

2 Mixed Quantum-Classical Nonadiabatic Molecular Dynamics: A
TDDFT-Based Prospective

The starting point of our derivation is the time-dependent Schrödinger equation

ĤmolΨ(r,R, t) = i~
∂

∂t
Ψ(r,R, t) (1)

where R = (R1,R2, . . . ,RNn) is the collective vector of the nuclear positions in R3Nn

and r = (r1, r2, . . . , rNel) the one for the electrons. In Eq. 1, Ĥmol is the molecular
Hamiltonian

Ĥmol(r,R) =−
∑
γ

~2

2Mγ
∇2
γ −

∑
i

~2

2me
∇2
i +

∑
i<j

e2

|ri − rj |
−
∑
γ,i

e2Zγ
|Rγ − ri|

+
∑
γ<ζ

e2ZγZζ
|Rγ −Rζ |

=−
∑
γ

~2

2Mγ
∇2
γ +

∑
γ<ζ

e2ZγZζ
|Rγ −Rζ |

+ Ĥel(r,R) (2)

and Ψ(r,R, t) the total wavefunction for electrons and nuclei.
In this lecture, I will derive the equation of motion for the nuclear and electronic de-

grees of freedom using a trajectory-based approach. In this framework, the electrons are
described at a quantum mechanical level, while the nuclear wavepacket is discretized into
an ensemble of points in the phase space and then propagated along classical (or quantum
Bohmian) trajectories that, as we will see, will keep some flavor of the underlying quantum
dynamics (in particular nonadiabatic effects).

The first step in the derivation of the equation of motions for the combined electron-
nuclear dynamics is the definition of a suited representation of the total system wavefunc-
tion. Depending on the particular choice of this Ansatz we can obtain different (approxi-
mated) solutions of the initial molecular Schrödinger equation (Eq. 1). In the following we
will restrict to two main representations of the total molecular wavefunction that will give
rise to two main trajectory-based nonadiabatic molecular dynamics solutions: mean field
Ehrenfest dynamics and surface hopping dynamics.

Φ(r, t)Ω(R, t)e

[
i
~
∫ t
t0
Eel(t

′)dt′
]

Ehrenfest←−−−−− Ψ(r,R, t)
Born-Huang−−−−−−→

∞∑
j

Φj(r;R)Ωj(R, t)
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In both approaches the nuclei are described as classical trajectories (a single one in the
mean field, Ehrenfest solution) and therefore these methods belong to the class of the
mixed quantum-classical solutions of Eq. 1.

2.1 Ehrenfest Dynamics

In Ehrenfest dynamics we make use of a single-configuration Ansatz for the total wave-
function

Ψ(r,R, t) = Φ(r, t)Ω(R, t) exp

[
i

~

∫ t

t0

Eel(t
′)dt′

]
(3)

where Φ(r, t) describes the (time-dependent) electronic wavefunction and Ω(R, t) the
(time-dependent) nuclear wavefunction.

The exponential part of Eq. 3 is called the “phase term”

Eel(t) =

∫ ∫
dr dRΦ∗(r, t)Ω∗(R, t)Ĥel(r,R)Φ(r, t)Ω(R, t) (4)

and represents the average value of the electronic Hamiltonian, 〈Ĥel(r,R)〉, at time t.

The TDDFT-based Ehrenfest MD scheme. As mention in the introduction, I will not go
through the derivation of the equation of motions but I will limit myself to the presentation
of the working equations and the discussion of their meaning, as well as their advantages,
and disadvantages. For a derivation see for instance10, 11.

The Ehrenfest MD scheme requires the simultaneous solution of the coupled differen-
tial equations for the electronic and nuclear dynamics

i~
∂Φ(r;R, t)

∂t
= Ĥel(r;R)Φ(r;R, t) (5)

MγR̈γ = −∇γ〈Ĥel(r;R)〉 , (6)

where γ is a label for the nuclei and ‘;R’ denotes the parametric dependence of the elec-
tronic Schrödinger equation from the atomic positions. This is accomplished by means of
a two-step Runge-Kutta algorithm as described in Refs. 12, 13. All quantities required in
Eqs. 5 and 6 are therefore computed on-the-fly at the instantaneous potential generated by
the nuclear positions (Rγ(t)) and electronic wavefunctions Φ(r;R, t).

Until this point, the formulation was kept as general as possible and did not de-
pend from a particular choice of the electronic structural method used to solve the time-
dependent Schrödinger equation for the electrons (Eq. 5). In many cases, it is however
convenient to map the set of Eqs. 5 and 6 into a DFT/TDDFT-based formulation, which
allows for an efficient calculation of the molecular electronic structure and properties for
systems composed by several hundreds of atoms at a moderate computational cost.

Using the Runge-Gross theorem14, we can derive the equation of motion for the elec-
tron density from the variational principle applied to the action functionala

aThis form of the action functional violates causality because a potential of the form

vxc(r, t) =
δAxc[ρ]

δρ(r, t)
(7)

has a functional derivative δvxc(r,t)
δρ(r′,t′) which is symmetric in time, and therefore does not guarantee that informa-

tion only travels forward in time. Different solutions to the causality problem exists15, 16, however they do not
affect our derivations.
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A[ρ] = 〈Ψ[ρ]|i~ ∂
∂t
− T̂ − Ĥee|Ψ[ρ]〉 , (8)

where Ĥee is the exact electron-electron interaction and Ψ[ρ](t) is the time-dependent
wavefunction associated to the time-dependent density ρ(r, t). In the Kohn-Sham formu-
lation of DFT, the action becomes a functional of the one-electron KS orbitals,

A[ρ] =
∑
i

∫ t1

t0

dt〈φi(t)|i~
∂

∂t
+

1

2
∇2|φi(t)〉 −H[ρ(r, t)]−Axc[ρ(r, t)]

−
∫
dr

∫ t1

t0

dt vext(r, t)ρ(r, t) (9)

where H[ρ(r, t)] is the Hartree energy functional. In the DFT and TDDFT context, the
variable r refers to a position in the Euclidean space (r ∈ R3) and should not be confused
with the collective electron coordinate used for the many-electron wavefunctions.

Applying the variational principle to Eq. 9 subject to the constraint
ρ(r, t) =

∑
k |φk(r, t)|2 results in the time-dependent Kohn-Sham equations (TDKS)

i~
∂

∂t
φk(r, t) = − 1

2me
∇2φk(r, t) + veff[ρ,Φ0](r, t)φk(r, t) , k = 1, . . . , Nel . (10)

where

veff[ρ,Φ0](r, t) = vext(R, t) + vH(r, t) +
δAxc[ρ,Φ0](r, t)

δρ(r, t)
, (11)

vext(R, t) is the external potential, and vH(r, t) is the Hartree potential. The effective po-
tential veff[ρ,Φ0] also depends on the initial wavefunction at time t0 (Φ0(r, t)) or, equiv-
alently, the corresponding density ρ(r, t0). However, to simplify the notation, in the fol-
lowing I will remove the dependence from the the initial value conditions.

The simplest approximation to the time-dependent exchange-correlation action func-
tional Axc[ρ(r, t)] is the so-called adiabatic approximation, AA,

Axc[ρ] =

∫
dr

∫ t1

t0

dt ρ(r, t)εxc[ρ(r)]|ρ(r)←ρ(r,t) (12)

where εxc is the DFT (ground state) exchange and correlation energy density functional.
This approximation is sufficient for most of the applications. However, examples of
Ehrenfest-type MD simulations beyond the AA are already present in the literature17, 18.

An alternative solution to the propagation of the electronic wavefunction within DFT/T-
DDFT is to introduce the representation of the time-dependent KS orbitals in a linear com-
bination of static KS orbitals, {φoptk (r)}, obtained from the diagonalization of the KS
Hamiltonian at time t with effective potential veff[ρ]|ρ(r)←ρ(r,t)

φk(r, t) =

∞∑
k

ck(t)φoptk (r) . (13)

Inserting this expansion into Eq. 10 produces a set of differential equations for the coeffi-
cients ck(t) that, when squared, can be interpreted as KS orbital occupations. While this
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Figure 1. TDDFT spectra of a Ruthenium-based dye in Dimethylformamide (DMF) solution computed using
the propagation of the time-dependent KS orbitals according to Eq. 10. The solvent is treated at classical level
within a QM/MM setup. After an initial equilibration at 300K, a perturbation is applied to the KS orbitals and the
time-evolution of the dipole moment is recorded. The Fourier transform of this signal provides the full absorption
spectra, whose energy resolution depends on the total length of the propagation. Left panel: QM/MM setup:
atoms in the QM part are represented with colored vdW spheres (gray: carbon, white: hydrogen, blue: nitrogen,
red: oxygen, green: fluorine), whereas the MM atoms are shown in light blue color. Right panel: Computed
TDDFT/MM spectra. The solar irradiation spectra at the Earth surface (AM 1.5) is shown in gray color.

offers some additional information about the nature of the propagated state, the diagonal-
ization of the KS Hamiltonian requires additional computational costs that can be avoided
using the straightforward propagation of the KS orbitals in Eq. 10.

The mapping of the nuclear dynamics (Eq. 6) into the DFT formalism is more straight-
forward and only requires the calculation of the forces −∇γ〈Ĥel(r;R)〉 as a functional
of the time-dependent density ρ(r, t). Replacing the expectation value of the electronic
Hamiltonian with the DFT energy evaluated with the exchange-correlation potential vxc[ρ]
the gradient with respect to the nuclear coordinates can be performed analytically as in the
case of the Born-Oppenheimer10 and Car-Parrinello10, 19 MD schemes.

Limitations and use of Ehrenfest MD. In Ehrenfest MD the nuclei evolve in time accord-
ing to forces computed as the gradient of average energy, 〈Ĥel(r,R)〉, using the instanta-
neous many-electron wavefunction Φ(r;R, t). Both quantum Hamiltonian and electronic
wavefunction depend parametrically on R. The mean-field character of this dynamics is
evident if we use the following expansion of the wavefunction Φ(r;R, t) in the adiabatic
(static) base, {φk(r;R)}, obtained from the solutions of the electronic time-independent
Schrödinger equation

Φ(r;R, t) =

∞∑
k=0

c̃k(t)φk(r;R) (14)

(do not confuse this equation with Eq. 13, which deals with one-electron KS orbitals). The
square of the time-dependent coefficients c̃k(t) describes the ”occupation probability” of
the different states that contribute to the nuclear forces. The validity of the “mean-field”
approximation is restricted to the case in which the classical trajectories corresponding
to the different states do not differ too much20. In fact, after leaving a region of strong
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Figure 2. Double ionization dynamics of the uracyl molecule. After removal of two electrons from an occupied
KS orbitals the excess positive charge of the system induced a so-called Coulomb explosion with the formation
of different dissociation fragments depending from the nature of the ionized orbital (upper panel). This process
is mimicking the effect of the collision of ultrafast and highly charged ions used in radiotherapy with biological
molecules. The lower panel shows a frame obtained during the dynamics of Uracil2+ in water. All calculations
are performed using the TDDFT-based Ehrenfest dynamics using a very small time step (less than 0.5 as) due to
the ultrafast electron-nuclear dynamics.

nonadiabatic coupling (mixing), the system keeps evolving on an average potential without
collapsing to one of the adiabatic states. In the case trajectories on different states will have
different evolutions in the configuration space, the average Ehrenfest trajectory could lose
its physical meaning (even though it could still provide acceptable expectation values for
quantum observables).

For this reason, the use of Ehrenfest dynamics in molecular computational physics and
chemistry should be restricted to the cases in which the atomic rearrangements along the
different reaction channels associated to the electronic states involved in the mean-field
dynamics are not too different. Examples are the calculation of absorption spectra and
dielectric functions of systems in gas phase and solution21, 22, for which the electron dy-
namics of the perturbed electronic structure relaxes on a time scale that is much shorter
than the one of the nuclei (in many cases one can use frozen atomic positions). Other ap-
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plications include the investigation of ultrafast processes triggered by intense laser fields
that produces ionized states followed by fast electronic rearrangement of the electronic
structure like photoionization and Coulomb explosion23–26 (when only dissociation chan-
nels are populated).

Another severe deficiency of Ehrenfest MD is the violation of the detailed balance
(microscopic reversibility), which is an essential property of the kinetics of physical and
chemical processes.

2.2 Born-Oppenheimer MD and its Nonadiabatic Extensions

The Born-Oppenheimer MD equations can be derived starting from the Born-Huang rep-
resentation of the molecular wavefunction

Ψ(r,R, t) =

∞∑
j=0

Ωj(R, t)Φj(r;R) . (15)

In this equation, {Φj(r;R)} describes a complete set of orthonormal electronic wavefunc-
tions solution of the time-independent Schrödinger equation

Ĥel(r;R)Φj(r;R) = Eelj (R)Φj(r;R) (16)

with 〈Φj |Φi〉 = δij . Note that only the nuclear wavefunctions depend explicitly on time,
while Ĥel(r;R) and Φj(r;R) only depend on t through the implicit time-dependence of
R(t).

Inserting Eq. 15 into the time-dependent Schrödinger equation (Eq. 1) we obtain (after
multiplying by Φ∗k(r;R) from the left-hand-side and integrating over dr)

i~
∂

∂t
Ωk(R, t) =

[
−
∑
γ

~2

2Mγ
∇2
γ + Eel,k(R)

]
Ωk(R, t) +

∑
j

FkjΩj(R, t) (17)

The quantities Fkj(R)

Fkj(R) =

∫
dr Φ∗k(r;R)

[∑
γ

~2

2Mγ
∇2
γ

]
Φj(r;R)

+
∑
γ

1

Mγ

{∫
dr Φ∗k(r;R) [−i~∇γ ] Φj(r;R)

}
[−i~∇γ ] (18)

are the nonadiabatic couplings, where the first contribution originates from the nuclear
kinetic operator and a second from the momentum operator. In the most general case,
the non-diagonal elements Fkj(R) are non-zero and induce a coupling between different
electronic states due to the motion of the nuclei. In fact, the last term in Eq. 17 brings
amplitude (FkjΩj(R, t)) from the “electronic state” with energy Eelj (R), to the actual
state k, with energy Eelk (R). This interpretation of the nuclear wavefunction dynamics
(Eq. 17) is at the basis of the surface hopping description of nonadiabatic dynamics.
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The adiabatic solution. In the adiabatic approximation only the diagonal terms, Fkk, are
retained

Fkk =

∫
Φ∗k(r;R)

[∑
γ

~2

2Mγ
∇2
γ

]
Φk(r;R)dr , (19)

which only induce a shift of the electronic potential energy surfaces Eelk (R) felt by the
nuclear wavefunctions (the second term of Eq. 18 is zero for k = j, when Φ·(r;R) are
real).

In this approximation, the nuclei move in the potential of a single electronic state, the
potential energy surface (PES) Eelk (R), and the electronic (Eq. 11) and nuclear (Eq. 17)
Schrödinger equations become completely decoupled. The term Fkk is called Born-
Oppenheimer diagonal correction and, depending on the nuclear mass, induces an isotope-
dependence of the total energy, Eelk + Fkk. However, this term is usually small and is
neglected in the so-called Born-Oppenheimer approximation.

At this point, I introduce the polar representation of the nuclear wavefunction Ωk(R, t)

Ωk(R, t) = Ak(R, t) exp

[
i

~
Sk(R, t)

]
(20)

with real amplitudes,Ak(R, t), and phases, Sk(R, t)/~. Inserting this equation into Eq. 17
(with Fkj = 0) and separating the real and the imaginary parts, we obtain

∂Sk
∂t

=
~2

2

∑
γ

M−1
γ

∇2
γAk

Ak
− 1

2

∑
γ

M−1
γ

(
∇γSk

)2 − Eelk (R) (21)

∂Ak
∂t

= −
∑
γ

M−1
γ ∇γAk∇γSk −

1

2

∑
γ

M−1
γ Ak∇2

γSk (22)

where the dependences of the fields S and A are omitted for clarity.
Taking the classical limit ~→ 0 b in both Eqs. 21 and 22, we obtain a Hamilton-Jacobi

equation for the action function S(R, t)

∂Sk
∂t

= −1

2

∑
γ

M−1
γ

(
∇γSk

)2 − Ek(R) , (23)

which correspond to a classical point-particle time evolution of the nuclei, and a con-
tinuity equation for the propagation of the amplitude on the adiabatic state of interest,
d/dt(

∫
dR|Ωk(R, t)|2) = 0. Comparing this result with the one obtained for the Ehrenfest

dynamics, we observe that in this case the potential acting on the nuclei is derived from a
static expectation value of the electronic Hamiltonian computed for the time-independent
state Φk(r;R), solution of the Schrödinger equation (Eq. 11).

Using the relation, ∇γSk = Pk,γ , we obtain a Newton-like equation of motion for the
‘classical’ nuclei

MγR̈γ = −∇γEelk (R) . (24)

bThe classical limit proposed in this derivation is sometimes called the “canonical condition” for enforcing clas-
sical behavior. It is mainly a mathematical procedure with limited physical content. Alternative formulations
with their physical implications can be found in different Refs. 27, 28.
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In summary, the BO MD can be described by the following system of coupled equations

Ĥel(r;R)Φk(r;R) = Eelk (R)Φk(r;R) (25)

MγR̈γ = −∇γEelk (R) = − ∇γ
minΦk

〈Φk|Ĥel|Φk〉 (26)

where only the second one describes an explicit time evolution. The electronic energies
and the forces acting on the nuclei are computed statically solving Eq. 25 on-the-fly at
each new set of nuclear positions sampled along the trajectory R(t). Contrary to what
obtained in Ehrenfest dynamics, in BO MD there is no explicit time-dependence of the
electronic degrees of freedom. It is important to further stress that, due to the assumption
that Fkj = 0, the BO MD always evolves on a single electronic PES, even in the case
where the system approaches regions of strong coupling between electronic and nuclear
degrees of freedoms. In practice, the state of interest is mostly the ground state for which
the adiabatic separation from all other states (excited states) holds in most (nonmetallic)
cases.

The combination of BO MD with DFT for the on-the-fly calculation of the electronic
structure properties (energies and forces) at each MD step is straightforward and can be
found in many textbooks (see for instance10). Using the Hohenberg-Kohn theorem one
first maps the electronic structure problem from the wavefunction space into the density
space and then, within the Kohn-Sham formulation of DFT, the electronic ground state
energy functional, E0[ρ(r;R)] and its gradients are computed.

2.3 Trajectory-Based Nonadiabatic Dynamics

The adiabatic approximation breaks down when electronic states approach in energy,
which especially occurs when the dynamics is initiated in one of the excited states of
the system. This is the usual situation encountered in pump-probe experiments, where an
initial pulse is exciting the system while a second one its monitoring is time-dependent
relaxation towards the ground state (or a stable excited state).

The starting point is the time-dependent Schrödinger equation for the molecular system
(Eq. 17) that we rewrite as

i~
∂Ωj(R, t)

∂t
=−

∑
γ

~2

2Mγ
∇2
γΩj(R, t) + Eelj (R)Ωj(R, t)

+
∑
γi

~2

2Mγ
Dγ
ji(R)Ωi(R, t)−

∑
γ,i 6=j

~2

Mγ
dγji(R)∇γΩi(R, t) (27)

where

dγji(R) =

∫ {
Φ∗j (r;R) [∇γΦi(r;R)]

}
dr (28)

are the first order coupling elements, and

Dγ
ji(R) =

∫ {
Φ∗j (r;R)

[
∇2
γΦi(r;R)

]}
dr (29)

are the second order coupling elements.
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J. C. Tully proposed an approximate solution of the coupled electron-nuclear
Schrödinger equation, which is known as Trajectory Surface Hopping (TSH) dynamics29.
Within this approach, the nuclear wavepacket propagation is described by the time evolu-
tion of an ensemble of classical trajectories evolving independently on adiabatic potential
energy surfaces, Eelk . This independent trajectory approximation (ITA) implies that all
nuclear quantum correlation effects are neglected. The transfer of amplitude (or better, tra-
jectories) between different PESs is taken in charge by a stochastic surface hopping proce-
dure, which requires the evaluation of the first order coupling elements, dγji(R) in Eq. 28.
In practice, the nuclear wavepacket Ωj(R, t) in the expansion in Eq. 15 is replaced by the
complex-valued time-dependent amplitude Cαj (t), which apportions trajectories (labelled
by α) among electronic states according to the correct quantum probability, so that

|Ωj(R, t)|2 ∼
1

M

∑
{α}

∫ ∞
t=0

dt′ |Cαj (t′)|2δ(R−Rα(t′))δ(t− t′) , (30)

once a sufficient number of trajectories has been sampled. This relation holds due to the
ITA assumption, while the R dependence of the Cαj (t) coefficients is determined by the
initial conditions, R(t = 0), and Tully’s equations of motion for the nuclei. The time-
dependent differential equation for the amplitudes Cαj (t) is obtained by replacing

Ψα(r,R, t) =

∞∑
j

Cαj (t)Φj(r;R) (31)

in the time-dependent Schrödinger equation and reads (in the Schrödinger representation)

i~Ċαj (t) =
∑
i

Cαi (t)(Hji − i~Ṙα · dαji) (32)

where the label α indicates that the corresponding quantities are evaluated for a specific
trajectory that contributes to the final ensemble. Because of the adiabatic representation
of the electronic wavefunctions, the matrix elements Hji are diagonal Hji = δjiE

el
j (R),

where Eelj (R) are the eigenvalues of Eq. 11. All matrix elements in Eq. 32 are computed
using an ab initio electronic structure calculation or, as in the present case, DFT for the
ground state and TDDFT for the excited states.

In Tully’s dynamics, the classical trajectories evolve adiabatically according to Born-
Oppenheimer dynamics until a hop between two potential energy surfaces (Hii and Hjj)
occurs with a probability given by a Monte Carlo-type procedure. In the “fewest switches”
algorithm, the transition probability from state i to state j in the time interval [t, t+ dt] is

gαij(t, t+ dt) ≈ 2

∫ t+dt

t

dτ
Im[Cαj (τ)Cα∗i Hji(τ)]− Re[Cαj (τ)Cα∗i (τ)Ξαji(τ)]

Cαi (τ)Cα∗i (τ)
, (33)

where Ξαji(τ) = Ṙα · dαji(τ), and a hop occurs if and only if∑
k≤j−1

gαik < ζ <
∑
k≤j

gαik , (34)

where ζ is generated randomly in the interval [0, 1]. In practice, a swarm of trajectories is
propagated independently starting from different initial conditions, and the final statistical
distribution of all these trajectories is assumed to reproduce the correct time evolution of
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the nuclear wavepacket. It is important to stress that, at present, no formal justification of
Tully’s algorithm has been formulated.

Figure 3. TDDFT-based TSH dynamics of photoexcited protonated formaldimine (CH2NH
+
2 ), a model for

the isomerization of the visual pigment retinal30. Left upper panel: Time series for the first eight excited state
energies computed for a single trajectory initiated on S2. The energy profiles are labeled (with different line
styles) according to their increasing energy values and therefore they do not necessary follow the electronic
character of the states. The state that drives the dynamics is marked with circles. Left lower panel: Time series
for the different bond lengths, pyramidization angles and dihedral angle computed along the same trajectory.
Right upper panel: Time series of the potential energy corresponding to the first 8 singlet states plotted together
with the coupling strengths σ01 and σ12. Lower panel: corresponding state populations, |Ci|2, computed using
the amplitudes defined in Eq. 31. The color code refers to the different energy curves in the upper panel.

The TSH algorithm: advantages and pitfalls. In TSH dynamics a series of independent
trajectories are computed starting from a previously equilibrated population of initial con-
figurations sampled at a given temperature, T , on a chosen PES, j (better would be the
sampling of the corresponding Wigner distribution, which, in general, is however more
difficult to compute31). All trajectories are classical in the sense that only classical forces
are computed from as gradient of the selected PES. Together with the nuclear coordinates
propagated with Eq. 24, the quantum amplitudes are also evolved in time using Eq. 32. In
a region of coupling between two PES j and i the classical trajectories can eventually hop
from one surface to another according to the probability gij . After a surface hop, the ex-
cess (deficient) energy due to the transition is redistributed into (extracted from) the motion
along the direction of the nonadiabatic coupling vectors32, 33. In this way, energy conser-
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vation is guarantee along the entire trajectory. Frustrated hops occur when the quantum
particles have insufficient kinetic energy to compensate the potential energy loss in upward
transitions.

This method has the advantage to be simple to implement in any existing DFT/TDDFT
code that offers the possibility to efficiently compute PESs, classical forces, and nonadia-
batic couplings. These quantities can either be precomputed or can be evaluated on-the-fly
along the growing trajectory. However, the first approach is only suited in the case of rel-
atively small systems made of only few atoms for which the multidimensional 3Nn − 6
potential energy hypersurfaces (or a restricted portion of them) can be computed for all
relevant states. The on-the-fly approach reduces dramatically the number on electronic
structure calculations to the number of integration steps of the classical nuclear dynamics
and can therefore be used for the simulation of larger systems (made of up to thousands of
atoms).

Due to the classical nature of the dynamics, TSH cannot describe nuclear tunneling
and nuclear dephasing processes. The only nuclear quantum effects reproducible with
TSH dynamics are those related to wavepacket splittings induced by avoided crossings and
conical intersections (regions of strong nonadiabatic couplings). Due to the ITA and the
local nature of the transitions (in space and time), quantum coherence and decoherence
effects between states are difficult to capture in TSH dynamics. However, variations of
TSH algorithm to circumvent these limitations are available34.

Compared to Ehrenfest MD, the trajectories in TSH evolve on adiabatic PESs (except
for the instantaneous transitions), which simplifies the physical interpretation of the results
and the comparison with the experiments. In addition, TSH MD in the FSSH implementa-
tion obeys detailed balance approximately, with deviations that tend to vanish in the limits
of small adiabatic splitting and the limit of large nonadiabatic couplings35. The use of
the ITA together with the representation of the nuclear wavepacket amplitude by the den-
sity of trajectories offers a simple (even though approximated) solution to the problem of
computing the high-dimensional derivatives∇γΩi(R, t) in Eq. 27.

DFT/TDDFT-based TSH. Several implementations of on-the-fly TSH MD are nowadays
available in different software packages and they mainly differ in the way the electronic
structure calculations are preformed. Among the DFT-based TSH MD implementations,
the method by Doltsinis and Marx2 is based on the restricted open-shell formulation of
the first singlet DFT excited state and is available in the software package CPMD36. More
recently, Prezhdo et al. have developed a TSH MD scheme based on the time-dependent
propagation of the KS orbitals, which are also used to approximate the many-electron
Slater-type wavefunctions for the calculation of the nonadiabatic couplings3. This method
is simple and efficient, but the description of excited states by means of excited KS Slater
determinants is not rigorous and therefore the approximation done in the representation of
the PESs and their couplings cannot be controlled and systematically improved. Finally,
Tavernelli and coworkers have derived a TDDFT-based TSH MD scheme in which all
ingredients required for the propagation of the trajectories (Eq. 24) and of the amplitudes
(Eq. 32) are rigorously derived from TDDFT in the linear response formulation4, 37, 30, 38, 39.
These also include the nonadiabatic coupling vectors computed for a pair of excited states
and the coupling with external (time-dependent) fields40–42. For more information see the
Sec. 3.
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2.4 External Fields

The coupling of nonadiabatic MD with an external time-dependent electric field is given
by the interaction Hamiltonian (with no spin-magnetic field contributions)

Ĥint =

Nel∑
i=1

[
− e

2mec
(p̂i · Â(ri, t) + Â(ri, t) · p̂i) +

e2

2mec2
Â(ri, t)Â(ri, t)

]
, (35)

where the vector potential A(ri, t) is related to the actual electric field by E = − 1
c
∂A
∂t .

The summation in Eq. 35 is over all electrons, while the interaction with the nuclei is
treated at the fully classical level and is therefore not included in the following derivations.
Ĥint can be directly added to the Hamiltonian that governs the Ehrenfest dynamics (Eqs. 5
and 6)21, 22.

In TSH nonadiabatic MD40, 41, one needs to evaluate the radiation field coupling matrix
elements

〈Ĥint〉ji = iωji
A0

c
· µjie−iωt (36)

whereA0 = A0ε
λ and

µji = −e〈Φj |
Nel∑
i=1

r̂i|Φi〉 (37)

is the the transition dipole vector, and ωji = (Ej − Ei)/~.

Figure 4. TDDFT-based TSH dynamics of Ruthenium tris-2,2’-bipyridine in water (left panel). The dynamics
is initiated in the 5th excited singlet state (right panel), which has a metal-to-ligand charge transfer (MLCT)
character (all singlet states are shown with gray lines). Within the first 50fs we observe several intersystem
crossings with triplet states (in red). The intensity of the spin orbit couplings (SOCs) is indicated with a color
code: small (white circles), intermediate (gray circles), and strong (black circles). As observed experimentally,
the system can undergo an ultrafast singlet to triple transition mediated by the solvent dynamics43, 44, 42. This
example emphasizes the importance of including the calculation of SOC within TDDFT-based TSH. The inset in
the right panel shows the splitting between a singlet and a triplet state computed with ZORA.
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In particular, in the presence of an external radiation field, the differential equations for
the TSH coefficients (Eq. 32) become

i~
dCαj (t)

dt
=
∑
i

Ci(t)(Hji − i~Ṙα · dαji(R) + iωji
A0

c
ελ · µαjie−iωt) . (38)

In addition, a classical electrostatic interaction term of the form

Enucl(Rα) = −
∑
γ

ZγR
α
γ ·E(t) (39)

is used to couple the external field to the nuclear dynamics.
When the system of interest is coupled to its environment by means of a QM/MM setup,

the electrostatic interaction between the QM subsystem (treated at TDDFT level) and the
MM subsystem (classically described through an empirical Hamiltonian) is described by42

EelQM/MM =
∑
γ

∫
vγsC(|Rγ − r|)(ρ0(r) + δρi(r, t))dr (40)

where δρi(r, t) is the electron density perturbation induced by the transition into the ith

excited state. In Eq. 40, the potential vsC(|Rγ − r|) is a screened Coulomb potential
generated by the atom at Rγ and modified at short range in order to avoid spurious over-
polarization effects46

vγsC(|Rγ − r|) = qγ
r4
C − (|Rγ − r|)4

r5
C − (|Rγ − r|)5

, (41)

where qγ are the classical force-field charges of atom γ and rC its covalent radius. In a
QM/MM setup we therefore need, in addition to the calculation of the TDDFT energies,
forces, and nonadiabatic couplings, an explicit evaluation of the TDDFT perturbed densi-
ties42 (see Appendix).

3 TDDFT Quantities for Nonadiabatic Dynamics

In this chapter I will give a brief description of main electronic structure quantities used in
nonadiabatic dynamics and their formulation within linear response TDDFT (LR-TDDFT).

3.1 Excited State Energies and Nuclear Forces from LR-TDDFT

The linear response formulation of TDDFT (LR-TDDFT) has become the method of choice
for the calculation of excited state PESs in different nonadiabatic MD schemes.

In LR-TDDFT, excited state energies are computed from the poles of the many-body
density response function. In matrix form, these energies are solution of the so-called
Casida’s equation (note that since the indices i and j are used to label the KS orbitals,
in the following I will use n and m – instead of i and j as previously done – to index
electronic states) [

A B
B∗ A∗

] [
Xn

Yn

]
= ωn

[
I 0
0 −I

] [
Xn

Yn

]
(42)
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Figure 5. TDDFT/MM study of the absorption spectra of Azurin45. Upper panel: Distribution of the unpaired
spin density at the binding site of azurin computed with DFT (PBE functional). Left: The electron spin density
is drawn in mauve; MM atoms are not drawn for clarity. Right: Structure of azurin. The atoms of the copper
binding site are drawn in spheres. The cartoon representation of the protein indicates the secondary structure
elements. The black arrow specifies the direction of the electrostatic dipole produced by the β-helix. Middle
panel: Absorption spectrum of Cu(II) azurin. The black line is the computed LR-TDDFT spectrum. A Gaussian
decomposition of the spectrum, corresponding to tentative band assignments, is given as dashed lines. Red
line: LR-TDDFT spectrum neglecting the electrostatic coupling to the MM part of the system. Right inset:
Experimental spectrum. Bottom panels: Kohn-Sham wave functions for the α-spin states dominantly involved in
the electronic excitations (HOMO-4 to LUMO: lower energy band; HOMO-5 to LUMO: central bands; HOMO-8
to LUMO: higher energy band).
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where

Aijσ,klτ = δσ,τδi,kδj,l
εkτ − εlτ
fkτ − flτ

−Kijσ,klτ (ω) , (43)

Bijσ,klτ = −Kijσ,lkτ (ω) , (44)

Kijσ,klτ (ω) =

∫
drdr′

φ∗iσ(r)φjσ(r)φkτ (r′)φ∗lτ (r′)

|r − r′|
+

∫
d(t− t′) eiω(t−t′)

∫
drdr′ φ∗iσ(r)φjσ(r)

δ2Axc[ρ]

δρσ(r, t) δρτ (r′, t′)
φkτ (r′)φ∗lτ (r′) . (45)

In Eq. 42 we assume that the matrices A and B are frequency independent (adiabatic ap-
proximation for the TDDFT kernel, fxc).

Other forms of the LR-TDDFT equations exist like, for instance, the one proposed by
Gross47 and the one based on Sternheimer’s time-dependent perturbation theory48–50.

The calculation of analytic nuclear gradients (forces) within the LR-TDDFT formalism
is essential to all mixed quantum-classical MD schemes. Among the different approaches
developed for the calculation of analytical derivatives, the Lagrangian method51 is of par-
ticular interest because of its compact form. However, the derivation of LR-TDDFT is
technically involved and since it does not bring any new physical insights, I simply refer
the reader to the reach literature on the subject10, 50, 52, 53.

3.2 The Auxiliary Many-Electron Wavefunction

It may be useful at this point to investigate the possibility to further simplify the calculation
of matrix elements within LR-TDDFT by means of the definition of a set of “auxiliary”
multideterminantal many electron wavefunctions based on Kohn-Sham (KS) orbitals. This
route was first explored by Casida54 to solve the assignment problem of the LR-TDDFT
excited state transitions and then further developed by Tavernelli et al.4, 37, 30, 38 in relation
to the calculation of matrix elements in the linear and second order response regimes39.

In Ref. 38, we showed that defining the ground state many electron wavefunction as a
Slater determinant of all occupied Kohn-Sham orbitals {φi}Ni=1

〈r1, r2, r3, . . . , rN |Ψ̃0〉 =
1√
N
det|φi(r1)φ1(r2)φ2(r3), . . . , φN (rN )| (46)

and the excited state wavefunction corresponding to the excitation energy ωn as

〈r1, r2, r3, . . . , rN |Ψ̃n〉 =
∑
iaσ

√
εa − εi
ωn

(Zn)iaσ〈r1, r2, r3, . . . , rN |Ψ̃0〉 (47)

we obtain for any one-body operator of the form Ô =
∑
ijσ oijσâ

†
jσâiσ the correct linear

response expression for the matrix element 〈Ψ0|Ô|Ψn〉. In Eq. 47 the index i runs over all
occupied and a over the unoccupied (virtual) KS orbitals, Zn = (A− B)−1/2(Xn + Yn),
and â†iσ and âiσ are the creation and the annihilation operators for the KS orbital φiσ(r),
respectively. This theory was then successfully extended to the case of the calculation of
matrix elements between two excited state wavefunctions, 〈Ψn|Ô|Ψm〉 as will be shown
in the next chapter on the calculation of nonadiabatic coupling vectors.
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It is important to stress the fact that both auxiliary functions introduced in Eqs. 46
and 47 have only a physical meaning when used within LR-TDDFT for the calculation
of matrix elements of the type 〈Ψ̃0|Ô|Ψ̃n〉 and eventually 〈Ψ̃n|Ô|Ψ̃m〉 (see Ref. 39). The
use of these representations for the many-electron ground and excited states wavefunctions
in other contexts is not justified. In particular, |Ψ̃0〉 has little to do with the ground state
wavefunction of the system (and as an approximation, it is even worse that the Hartree-
Fock Slater determinant).

3.3 The Nonadiabatic Coupling Vectors in LR-TDDFT

Traditionally, the computation of the nonadiabatic coupling vectors (NACVs) is carried
out using wavefunction-based ab initio quantum chemistry approaches (MRCISD, CCSD),
which, however, are not well suited for applications in the condensed phase and become
computationally unaffordable when large molecular systems are considered.

3.3.1 The Couplings with the Ground State

We start from the definition of the NACV between the ground state and the nth excited
state for a molecular system characterized by nuclear coordinates R in the configuration
space (R3Nn )

d0n,µ = −〈Ψ0(R)|∇µĤel|Ψn(R)〉
ε0(R)− εn(R)

(48)

where µ is an atomic label, Ĥel is the molecular Hamiltonian, and∇µĤel = ∂Ĥel/∂Rµ.
Applying the results of Sec. 3.2 on the evaluation of matrix elements of the form

〈Ψ0|Ô|Ψn〉 in LR-TDDFT to the NACV gives directly the desired expression

d0n,µ =

(fiσ−fjσ)>0∑
ijσ

1
√
ωI
hµijσ(S−1/2Zn)ijσ (49)

where hµijσ =
∫
dr ∂µĤel(R)φ∗iσ(r)φjσ(r), S−1/2 = −C(A − B)−1C, and

Cijσ,klτ = (δσ,τδi,kδj,l)/(fkτ − flτ ).
This formula for the NACVs within LR-TDDFT was derived several times in the lit-

erature using slightly different formalisms. The first derivation was by Chernyak and
Mukamel55 using a classical Liouville dynamics for the single-electron density matrix.
Later, Tavernelli et al.4, 37 and Hu et al. 56 arrived to the same result (Eq. 49) using the
most widely used formulation based on Casida’s LR-TDDFT equations54.

Concerning the numerical implementation of Eq. 48 several approaches have also been
proposed that differ mainly in the choice of the basis set and in the way the implicit de-
pendence of the pseudopotentials on the nuclear positions is treated. Due to the technical
nature of this subject, we will not go through the numerical details but better refer to the
literature4, 37, 56, 57.
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3.3.2 The Finite Difference Formulation of the Nonadiabatic Couplings

In the TSH dynamics, the nonadiabatic coupling terms appears as a scalar product of the
NACVs with the particle velocities, σ0n = d0n · Ṙ, in the time evolution of the amplitudes
associated to the different states. Starting from an equivalent definition of the NACV,

〈Ψ0(r;R(t))|∇µ|Ψn(r;R(t))〉 (50)

we therefore obtain4, 38

σ0n|t+δt/2 =
∑
µ

〈Ψ0(r;R(t))|∇µ|Ψn(r;R(t))〉Ṙµ = 〈Ψ0(r;R(t))| ∂
∂t
|Ψn(r;R(t))〉

' 1

2δt
[〈Ψ0(r;R(t))|Ψn(r;R(t+ δt))〉 − 〈Ψ0(r;R(t+ δt))|Ψn(r;R(t))〉] ,

(51)

where |Ψ0〉 and |Ψn〉 are evaluated at subsequent time t and t + δt using the auxiliary
wavefunctions defined in Eqs. 46 and 46, respectively. Since σ0n|t+δt/2 is the only quantity
needed in the evaluation of the surface hopping probability in the time interval [t, t + δt]
between the electronic states |Ψ̃0〉 and |Ψ̃n〉, it is numerically more efficient to use Eq. 51
instead of the cumbersome evaluation of d0n,µ followed by the multiplication with the
particle velocities, d0n,µ · Ṙµ. However, at a “surface hop”, the calculation of the full
NACVs is required for the redistribution of the potential energy difference in order to
guarantee energy conservation.

3.3.3 Nonadiabatic Couplings between Excited States

In the excited state nonadiabatic dynamics of molecular systems we also need to compute
NACVs between pairs of excited states. These are beyond the reach of linear response
theory and therefore cannot be evaluated using Eq. 49. A second order response theory for
the evaluation of matrix elements of the form 〈Ψn|Ô|Ψm〉within TDDFT was first derived
by Mukamel and co-workers58–60 using an approximate mapping of the original electronic
problem into a boson system sharing the same response properties.

The use of the “auxiliary” electronic wavefunctions introduced in Sec. 3.2 offers a
valid alternative to this approach and produces second order matrix elements that include
contributions from the de-excitation of the correlated ground state39, which are neglected
in the derivation given in Ref. 61. In fact, the two approaches coincide in the TDA up to
terms of third order in Zm39.

For the calculation of the NACVs between a pair of excited states (PESs), Eeln and Eelm
within the TDDFT based TSH dynamics of Sec. 2.3, we therefore use the expression

〈Ψn|Ô|Ψm〉 =
∑
ia

∑
jb

cn†ia c
m
jb〈Ψ̃n

ia|Ô|Ψ̃m
jb〉

=
∑
iab

cn†ia c
m
ib 〈ψa|Ô|ψb〉 −

∑
aij

cn†ia c
m
ja〈φi|Ô|φj〉 , (52)

with Ô replaced by ∇µĤmol and cnia =
√

(εa − εi)/ωn(Zn)ia. The quality of these
matrix elements was assessed in Ref. 39.
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Appendix

The LR-TDDFT Response Density

Within Casida’s formulation, the density response δρn(r, t) can be expanded in the auxil-
iary many-electron wavefunctions of Eq. 47

ρn(r, t) = 〈Ψ̃n|
N∑
κ=1

δ(r − rκ)|Ψ̃n〉 = ρ0(r) + δρn(r, t) (53)

which in first order becomes

δρn(r, t) =
∑
ia

cnia〈Ψ̃0|
N∑
κ=1

δ(r − rκ)|â†aâiΨ̃0〉 e−iΩIt + c.c.

=
∑
ia

cniaρ
′(r)e−iωnt + c.c.

=
∑
pq

fpf̃qc
n
pqρ
′(r)e−iωnt + c.c. (54)

where N is the number of electrons and f̃p = (1− fp).
Using the LR-TDDFT equation for the transition density ρ′(r) =

∑
pq fpf̃q(Xn +

Yn)pqφp(r)ψq(r) and the definition of the coefficients cnpq
4, 37, 62 we finally get, in agree-

ment with Ref. 63, 62,

δρn(r) =
∑
pq

∆Pnpqξ
∗
p(r)ξq(r) (55)

where

∆Pnpq =− fpfq

(∑
a

Xn†
paX

n
qa +

∑
a

Y n†qa Y
n
pa

)

+ f̃pf̃q

(∑
i

Xn†
iq X

n
ip +

∑
i

Y n†ip Y
n
iq

)
. (56)

Within the Sternheimer framework, the response density matrix elements in TDA are
given by50

∆Pnpq =
∑
i

xnqi(x
n)∗pi +

∑
rij

xnrjc
{0}
pj (c

{0}
qi )∗(xnri)

∗ . (57)

For a detailed account of the implementation see Refs. 50, 37.
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Hybrid Car-Parrinello molecular dynamics/molecular mechanics (CPMD/MM) simulations are
now extensively used to investigate biological systems. Here, after introducing some basics
general aspects of hybrid quantum mechanics/molecular mechanics methods, we provide an in-
depth discussion of the CPMD/MM method. We mention possible pitfalls and main limitations
of the approach. We close these lecture notes with a couple of recent applications to systems of
biological and pharmacological relevance.

1 Introduction

Density functional theory (DFT) is a widely applied quantum chemical method for the in-
vestigation of biological systems. It scales favorably with the number of electrons and the
accuracy of the employed exchange-correlation functionals, which contains all the intrica-
cies of the many-body problem, is constantly improving1–5. Its scope was further enlarged
in 1985, when Car and Parrinello (CP) proposed a unified scheme for DFT and molecular
dynamics (MD)6. By treating the electronic degrees of freedom as dynamical variables they
managed to describe the time evolution of molecular systems (presently up to almost 2000
atoms)7 without resorting to a force field8, 9. The method enabled new types of realistic
simulations for many different kinds of systems.a

Most systems of biological relevance are large: for instance, a system containing a pro-
tein in aqueous solution may consist of 104 to 105 atoms. To deal with these systems, hy-
brid Car-Parrinello molecular dynamics/molecular mechanics (CPMD/MM) schemes have
been introduced. These follow the original quantum mechanical/molecular mechanicalb

(QM/MM) approach proposed by Warshel and Levitt11: a region of interest (e.g. an enzy-
matic active site) is described at the DFT level, mechanically and electrostatically coupled

§Joint venture of RWTH Aachen University and Forschungszentrum Jülich, Germany.
*These authors contributed equally to this work.
aCurrently, Born–Oppenheimer approaches to first principles MD8 are also widely and efficiently used10.
bSeveral current QM/MM schemes, as the CPMD/MM one, are actually performing molecular dynamics at finite
temperatures and not just geometry optimizations as the term “molecular mechanics” could suggest.
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with the rest of the system treated using biomolecular force fields like AMBER12, GRO-
MOS13 or CHARMM14. Most current CPMD/MM applications in biophysics employ the
approach developed by Rothlisberger and co-workers16, in which the CPMD program17

is used for the QM part and the classical part, calculated with routines from Gromos96
code13, is described either by GROMOS or AMBER force field.c The next section opens
with a discussion of the general features of QM/MM methods. It is followed by a detailed
description of the CPMD/MM approach. The paper closes with a very brief discussion
of a couple of applications to biomolecular systems. A significant portion of the material
presented in these lecture notes has been already reported by some of us (PC and UR) in
Ref. 15.

2 Methods

2.1 General Features of QM/MM Methods

There are two fundamentally different ways to carry out calculations on a system that has
been partitioned into a QM and a MM region.

In the subtractive scheme, the QM calculation is performed on an isolated QM system
and the environment effects (i.e. the influence of the MM system on the QM system) are
estimated at the lower level of theory by the difference between two MM calculations, one
treating the entire system (QM+MM) and one the QM region only. In this approach, the
total energy of the embedded system is written as

E = EQM (QM) + EMM (QM +MM)− EMM (QM). (1)

The force FI acting on atom I at position RI reads:

FI = − ∂E

∂RI
= −∂E

QM (QM)

∂RI
− EMM (QM +MM)

∂RI
+
EMM (QM)

∂RI
(2)

for the force FI acting on atom I at position RI . A QM/MM implementation that uses
a subtractive scheme is the integrated molecular orbital molecular mechanics (IMOMM)
scheme developed by Maseras and Morokuma18 available in the Gaussian program19. Note
that in a subtractive scheme, all calculations are performed with “pure” (either fully QM
or fully MM) Hamiltonians. The advantage of such an approach lies in the fact that there
is no QM/MM interface that has to be dealt with. The disadvantage is that the environment
influence is often described at a very simple level: The electrostatic interactions between
the QM and the MM parts is described entirely at the force field level, i.e. by Coulomb
interactions between effective point charges. Such an electrostatic coupling between QM
and MM part is called “mechanical coupling”. This indicates that, in such an approach,
the electrons do not feel anything of the classical electrostatic field of the environment and
all the electrostatic interactions between QM and MM part act solely on the level of the
atoms. The influence of the environment as described by the lower level method is only
a reasonable estimate for the environment effect at the higher level if the two descriptions
are not too different.

cA similar hybrid approach has been also implemented in the CP2K code41.
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To minimize the difference in the treatment of the two regions, the original IMOMM
scheme has been extended to three (respectively multiple) layers (ONIOM)20. A typical
ONIOM calculation consists for example of a first-principles (DFT or wavefunction-based
method) region, adjacent to a layer treated with a semi-empirical method followed by a
third layer treated at the molecular mechanics level.

In the additive scheme, more often used than the subtractive scheme, the system is
described by a single hybrid Hamiltonian

H = HQM +HMM +HQM/MM , (3)

where HQM is the quantum Hamiltonian, HMM is the molecular mechanics Hamiltonian,
and HQM/MM is the interaction Hamiltonian between QM and MM system. The low-
est eigenvalue of the Hamiltonian in Eq. 3 determines the total energy E of the mixed
quantum/classical system

E = EQM + EMM + EQM/MM . (4)

The advantage of an additive scheme is that the QM calculation can be directly executed
in the presence of the classical environment in such a way that the electron density of
the QM system is optimized in (and polarized by) the external electrostatic field of the
surroundings. The prize for this is that the real system is replaced by a somewhat artificial,
heterogeneous construct, in which different parts of the system are described at largely
disparate levels, i.e. one part of the system is represented in electronic detail, whereas all
the surroundings is reduced to a purely classical (mechanical and electrostatic) description.
In this way, an abrupt QM/MM border is created. One of the drastic consequences of
this approach is the fact that when passing from the QM to the MM zone of the system
the electrons suddenly cease to exist. Such a simplified description can necessarily only
constitute a somewhat crude representation of the true uniform system. The rest of these
notes deals only with this scheme.

2.2 Comparison between Full QM and QM/MM Calculations

To identify where the main approximations enter and see how severe they are, let us con-
sider the case when the entire system (QM+MM) is described uniformly at the DFT level.
The total (electronic plus core-core interactiond) energy of such a system is given by the
density functional22

E = T [ρ]+

∫
Ω

V ex(r)ρ(r)+
1

2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1dr2+Exc[ρ]+

1

2

∑
I

∑
J

ZIZJ
RIJ

(5)

where T and Exc are the kinetic and the exchange-correlation energy density functionals,
respectively; V ex is the external electrostatic potential created by the positively charged
nuclei; r represents the electronic coordinates, while r12 refers to interelectronic and RIJ

dHere, we are implicitly assuming that the Born-Oppenheimer approximation21 is applied and that only the elec-
trons are dealt with at quantum level while the nuclei are still described as point-like charges moving according
to the classical Newtonian laws. This level of approximation turns out to be adequate for most biophysical appli-
cations.
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to internuclear distances; ZI and ZJ represent the nuclear (or coree) charge of atom I and
J , respectively.

Now, we partition the system into two parts, A and B, with respective densities ρA and
ρB . The total density ρ can be expressed (see also Ref. 23) as

ρ(r) = ρA(r) + ρB(r). (6)

Analogous to Eq. 4 the total energy is given by

E = EA + EB + EA−B (7)

with

E = T [ρA] + T [ρB ] + TNL +

∫
Ω

V ex(r)ρA(r) +

∫
Ω

V ex(r)ρB(r) +

+
1

2

∫ ∫
ρA(r1)ρA(r2)

r12
dr1dr2 +

1

2

∫ ∫
ρB(r1)ρB(r2)

r12
dr1dr2 + (8)

+
1

2

∫ ∫
ρA(r1)ρB(r2)

r12
dr1dr2 + Exc[ρA] + Exc[ρB ] + ENLxc +

1

2

∑
I

∑
J

ZIZJ
RIJ

.

The terms TNL and ENLxc are:

TNL = T [ρA + ρB ]− T [ρA]− T [ρB ] (9)

ENLxc = Exc[ρA + ρB ]− Exc[ρA]− Exc[ρB ]. (10)

These terms account for the nonlinearity of the kinetic energy and the exchange-correlation
density functionals, respectively.f They are only zero if ρA and ρB are spatially well
separated.

For the particular case that we describe part A of the system with another approach
than part B, it is useful to separate also the external potential V ex into contributions from
the nuclear cores of A and those of B:

V ex(r) = V exA (r) + V exB (r). (11)

EA and EB in Eq. 7 are given by the terms

EY = T [ρY ] +

∫
Ω

V ex(r)ρY (r) +
1

2

∫ ∫
ρY (r1)ρY (r2)

r12
dr1dr2 +

+ Exc[ρY ] +
1

2

∑
I∈Y

∑
J∈Y

ZIZJ
RIJ

(12)

where Y = A or B, respectively. Often the nuclear charges ZI and ZJ are expanded into
Gaussian shaped charge distributions with width Rc of the form

ZI =

∫
Ω

ρnuclI (r−RI)dr =

∫
Ω

ZI
R3
c

π−2/3 exp

[
−|r−RI |2

R2
c

]
(13)

eIn some schemes only the outermost electrons of each atom (usually the valence electrons) are described by a
wave function. All the other electrons are described implicitly by introducing pseudopotentials (see later) and the
nuclear charge is replaced by the core charge, i.e. the difference between the atomic number and the number of
explicit valence electron. Often this modified nucleus is refer to as “core”.
fThe term ENLxc in Eq. 10 arises also in the construction of ab initio atomic pseudopotentials when the system
has to be partitioned into valence and core densities. In this case ENLxc is called nonlinear core correction24.
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and the three Coulomb terms can be summarized into one expression, which depends on
the combined nuclear and electronic charge density ρel+nucl = ρel + ρnucl∫

Ω

V exY (r)ρY (r)dr +
1

2

∫ ∫
ρY (r1)ρY (r2)

r12
dr1dr2 +

1

2

∑
I∈Y

∑
J∈Y

ZIZJ
RIJ

=

=
1

2

∫ ∫
ρel+nuclY (r1)ρel+nuclY (r2)

r12
dr1dr2. (14)

The interface termEA−B describes the interaction betweenA andB and therefore contains
all the remaining terms

EA−B = TNL +

∫
Ω

V exB (r)ρA(r) +

∫
Ω

V exA (r)ρB(r) +

+
1

2

∫ ∫
ρA(r1)ρB(r2)

r12
dr1dr2 + ENLxc +

1

2

∑
I∈A

∑
J∈B

ZIZJ
RIJ

. (15)

For the special case where part A is treated with a QM and part B with an MM method,
the first two energy terms in Eq. 4 correspond to

EQM = T [ρQM ] +
1

2

∫ ∫
ρel+nuclQM (r1)ρel+nuclQM (r2)

r12
dr1dr2 + Exc[ρQM ] (16)

EMM = T [ρMM ] +
1

2

∫ ∫
ρel+nuclMM (r1)ρel+nuclMM (r2)

r12
dr1dr2 + Exc[ρMM ]. (17)

EMM is delegated to the classical force field. Clearly, none of the current force fields for
biomolecular simulations can provide an exact match of the terms in Eq. 17. However, we
will try to point out which typical analytical expressions are currently in use to mimic the
physical effects described by EMM .

As electrons are not considered explicitly, force fields are parameterized to single (or to
the average of several) configurations with fixed electron density distributions. Therefore,
the kinetic energy term in Eq. 17 can be considered as an additive constant that is not taken
explicitly into account. The effect of the exchange-correlation energy functional is often
replaced by a pair-additive van der Waals term:

Exc ≈ EvdW =
∑
I′

∑
J′

4εI′J′

((
σI′J′

RI′J′

)12

−
(
σI′J′

RI′J′

)6
)
. (18)

The electrostatic potential due to the combined electronic and ionic charge distribution is
approximated via effective point charges, usually located at atomic positions:

1

2

∫ ∫
ρel+nuclMM (r1)ρel+nuclMM (r2)

r12
dr1dr2 ≈

1

2

∑
I′

∑
J′

qI′qJ′

RI′J′
. (19)

The set of effective (often empirical) point charges commonly used in biomolecular force
fields cannot be expected to faithfully reproduce the left hand side of Eq. 19, i.e. to be
fully consistent with the electronic structure method used for the QM part. However, due
to the extremely cumbersome work involved in the development of a general and transfer-
able force field for complex biological systems, people usually prefer to employ existing
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parameterizations instead of constructing a fully ab initio derived force field. In addition,
it turns out that although the magnitude of effective point charges used in different force
fields can vary largely, the average electrostatic potentials seem to be in surprisingly good
agreement with each other as well as with DFT descriptions25.

In spite of this somewhat reassuring caveat, the fact remains that real electronic charge
distributions are far from mere assemblies of point charges. The point charge approx-
imation breaks completely down in the description of covalent chemical bonds that are
characterized by highly inhomogeneous and highly directional distributions of the electron
density. Clearly, simple electrostatic/van der Waals descriptions such as those in Eqs. 18
and 19 cannot reproduce the intricacies of chemical bonding. In most force fields, the
interaction between nearest, second nearest and third nearest neighbor atoms linked by
chemical bonding are therefore mimicked by mechanical bond, angle and torsional angle
terms of the following typical form:

EbondedMM =
∑
b

1

2
kb(RI′J′ − b0)2 +

∑
θ

1

2
kθ(θI′J′K′ − θ0)2 +

+
∑
φ

∑
n

kn[1 + cos (nφI′J′K′L′)− φ0] (20)

where the first term runs over all bonds b with harmonic force constant kb and equilibrium
bond length b0, the second term runs over all bonding angles θ with harmonic force con-
stant kθ and equilibrium bonding angle θ0, whereas the last term is a sum over all dihedral
angle interactions φ with multiplicity n and corresponding force constants kn and phases
φ0. For the atoms connected via bonded terms, the nonbonded (electrostatic and van der
Waals) interactions are either omitted or scaled down (so called exclusion rules).

Using Eqs. 18–20 the interaction energy in Eq. 15 becomes

EQM/MM =
∑
I′

∫
Ω

qI′

RI′ − r
ρel+nuclQM (r)dr +

+
∑
I′

∑
I

4εI′I

((
σI′I
RI′I

)12

−
(
σI′I
RI′I

)6
)

+

+
∑
b

1

2
kb(RI′I − b0)2 +

∑
θ

1

2
kθ(θI′′J′′K′′ − θ0)2 +

+
∑
φ

∑
n

kn[1 + cos (nφI′′J′′K′′L′′)− φ0] (21)

where I runs over QM and I ′ over MM atoms and at least one atom of the triple (I ′′J ′′K ′′)
and quadruples (I ′′J ′′K ′′L′′) of bonded atoms is a QM atom. In this formulation, the
effective classical point charges act as an external field to the QM calculation, i.e. the
electron density of the QM part is polarized by the classical environment (in contrast to the
subtractive approach described earlier).

Both the van der Waals term and the bonded terms are acting on atomic positions only,
i.e. are not part of the total electronic potential and thus are not directly felt by the electrons.
If we want to achieve a closer model of a full QM description, the deviations caused by
the actual MM representation have to be compensated by a correction term ∆V in the total
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potential that the electrons of the QM part experience

Vtot = VQM + VQM/MM + ∆V (22)

∆V = ∆V NL + ∆V el (23)

where ∆V el accounts for the error in the electrostatic terms (deviation of the classical
electrostatic potential from the QM reference and reduction of the electronic density dis-
tribution to a point charge representation) whereas the nonlinear correction term ∆V NL

results from the nonlinearity corrections in Eqs. 9 and 10. Thus this term is a mere artifact
of the density partitioning and is not present in a system treated at the uniform level. To
keep this term minimal, the somewhat trivial but important condition has to be fulfilled:
the QM part has to be chosen in such a way that the electronic wave functions are localized
to this region. If this condition cannot be fulfilled, the correction term ∆V NL gains in
importance (see paragraph about pitfalls and limitations).

How can we assess the importance of the correction term ∆V in practice? Ideally, one
would like that the electron density in the QM region, ρQM , matches as closely as possible
the electron density in the same region produced by a full QM representation of the system
(ρtrue). According to the Hohenberg-Kohn theorem22, if the two densities are identical,
all the properties we calculate for the QM region are identical to those of the real system.
In other words, if we determine the correction potential ∆V in such a way that the total
electronic potential in a QM/MM simulation Vtot minimizes the density difference∫

Ω′
(ρtrue(r)− ρQM (r))2 (24)

where Ω′ is a suitably chosen volume of the QM region, our QM/MM simulation ap-
proaches the full QM reference results in an optimal way (see also paragraph about pitfalls
and limitations).

2.3 CPMD/MM Method: Basics

The Car-Parrinello method6 can be extended into a QM/MM scheme using a mixed La-
grangian of the form16:

L =
1

2
µ
∑
i

∫
dr ψ̇∗i (r)ψ̇i(r) +

1

2

∑
I

MIṘ
2
I − EMM − EQM/MM − EQM +

+
∑
i,j

Λi,j

(∫
drψ∗i (r)ψj(r)− δi,j

)
(25)

where µ is the fictitious mass associated with the electronic degrees of freedom, ψi are
the Kohn-Sham one particle orbitals, MI is the mass of atom I and Λi,j are Lagrange
multipliers that enforce orthonormality of the Kohn-Sham orbitals. The energy of the QM
system EQM is given by the Kohn-Sham energy density functional26

EQM = EKS [ψi,RI ] = −1

2

∫
drψ∗i (r)∇2ψi(r) +

∫
drV ex(r)ρQM (r) +

+
1

2

∫
dr dr′ρQM (r)

1

|r− r′|
ρQM (r′) + Exc[ρQM (r)] (26)
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where for the spin unpolarized case, the electron density ρQM (r) is given by the sum of
the densities of the doubly occupied one-particle states:

ρQM = 2
∑
i

ψ∗i (r)ψi(r). (27)

The purely classical part EMM is described by a standard biomolecular force field:

EMM = EbondedMM + Enon−bondedMM (28)

as given by Eqs. 18–20. The interaction between the QM and MM parts, EQM/MM , is
included in the form of Eq. 21 with the only exception of the harmonic bond interactions
between QM and MM atoms which are omitted from the classical description and treated
at the QM level.

Standard implementations of Car-Parrinello MD simulations use plane wave basis sets.
In this case, due to the high intrinsic flexibility of a plane wave basis set (in contrast to e.g.
the minimal basis sets used in semi-empirical QM/MM calculations), special care has to be
taken that the CPMD/MM interface is described in an accurate and consistent way. In our
case, the quantum/classical correction term ∆V consists of specifically designed monova-
lent pseudopotentials to represent bonds between QM and MM parts of the system27 and of
modified screened Coulomb potentials for the interaction of the quantum electron density
with close by classical point charges28.

In the context of a plane wave based Car-Parrinello scheme, a direct evaluation of the
first term of Eq. 21 is prohibitive as it involves of the order of Nr × NMM operations,
where Nr is the number of real space grid points (typically∼ 1003) and NMM is the num-
ber of classical atoms (usually of the order of 10,000 or more in systems of biochemical
relevance). Therefore, the interaction between the QM system and the more distant MM
atoms is included via a Hamiltonian term explicitly coupling the multipole moments of the
quantum charge distribution with the classical point charges. This two level electrostatic
coupling scheme can also be refined to an intermediate third layer that makes efficient use
of variational D-RESP charges28, 29. Highly efficient schemes based on a dual grid ap-
proach30 or a multigrid approach with Gaussian expansion31 have also been proposed in
this context.

The hybrid CPMD/MM implementation of Ref. 17 establishes an interface between
the Car-Parrinello code CPMD and the classical force fields GROMOS96 and AMBER
in combination with a particle-particle-particle mesh (P3M) treatment of the long-range
electrostatic interactions32. With this implementation, efficient and consistent simulations
of complex systems (of the order of 105 atoms) can be performed. In these calculations,
the steric and electrostatic effects of the surroundings are taken into account explicitly.

2.4 CPMD/MM Method: Limitations

The most stringent current limitation is the short time scale accessible via CPMD/MM
simulations of the order of tens to hundreds of picoseconds which severely restricts the
accuracy of time-averaged properties, such as binding free energies. Possible remedies
for this problem are: (i) resorting to semi-empirical methods that allow sampling for hun-
dreds of picoseconds33, (ii) employing multiple time step sampling for the QM and MM
parts34, (iii) using enhanced sampling approaches such as metadynamics35, introducing
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either a classical36, 69 or electronic27, 37 bias potential, (iv) or exploiting a linear response
approximation with respect to a reference potential11.

The issue of the accuracy of DFT is also very important. A particular problem is the
adequate description of London dispersion forces. Several methods have been developed
to cure this problem, e.g. the addition of an effective atom-centered non-local term to the
exchange-correlation potential may cure this significant drawback without additional com-
putational cost38. The dispersion correction most commonly used with the CPMD/MM
scheme are dispersion corrected atom-centered potentials (DCACPs) that are directly in-
cluded in the electronic Hamiltonian39, 40. Another well-known issue of most DFT cal-
culations is the underestimation of energy barriers associated with proton transfer events
and other chemical reactions. The implementation of mixed localized basis sets other
than plane-waves might enable the use of hybrid exchange-correlation functionals, such as
B3LYP41 or meta-hybrid functionals such as e.g. the MXX suite42–45, which might help
improve the accuracy of the results.

2.5 Pitfalls

The main intrinsic approximations of a QM/MM approach lie in the reduction of the real
electron density distribution of the MM part to a mere point charge representation and the
neglect of the kinetic energy and exchange-correlation corrections Eqs. 9 and 10 on the
electronic level. All three of these terms are particularly severe in the neighborhood of a
covalent chemical bond, where the electron density distribution is far from isotropic and
the densities of the QM and MM part are strongly overlapping. In force field descriptions,
these deficiencies in the description of chemical bonding are remedied by including the
special bonding terms given in Eq. 20. However, these terms are a function of atomic
coordinates only and do not influence the electronic potential in a direct way. One of the
most current problems in QM/MM simulations thus occurs when the border between QM
and MM parts has to run across a chemical bond: this is called the link atom problem.
For QM/MM simulations of biological systems this is essentially always the case. In fact,
a typical QM/MM partitioning for such systems includes only a portion of a biological
macromolecule. The latter must then be cut into a QM and a MM region. As electrons
cease to exist when passing from the QM to the MM region, the QM system contains
unsaturated valencies and has to be made chemically inert.

This can be done in the spirit of Eq. 22 by introducing an explicit correction term in
the total electronic potential felt by the QM electrons. For the case of a QM/MM bond cut,
the simplest way is to use a monovalent pseudopotential situated at the position of the first
MM atom to represent the correction potential in Eq. 23. This pseudopotential is usually
constructed in such a way that the electrons of the QM region are scattered correctly by
the classical environment. It is a common choice in CPMD/MM simulations to employ
analytic, nonlocal pseudopotentials of e.g. the Gödecker type46

V eff (r, r′) = V loc(r)δ(r− r′) +
∑
l

V nlocl (r, r′)

V loc(r) = −ZI
r

erf

[
r

rloc
√

2

]
+ exp

[
− r2

2r2
loc

]
Θ
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Θ =

(
C1 + C2

(
r

rloc

)2

+ C3

(
r

rloc

)4

+ C4

(
r

rloc

)6
)

V nlocl (r, r′) =

+l∑
m=−l

Yl,m(r)

3∑
i,j=1

pli(r)hli,jp
l
j(r
′)Y ∗l,m(r′)

plh ∝ rl+2(h−1) exp [−r2/2r2
l ]

to represent the MM atoms involved in QM/MM bond cuts. The adjustable parameters
rloc, rl, hli,j and C1 to C4 are determined in analogy to Eq. 24 by minimizing the density
penalty

F [ρQM (r), {σi}] =

∫
Ω′

d(r)|ρref (r)− ρQM (r, {σi})|2 (29)

where the σi’s are the set of adjustable parameters and ρref is a reference density that
approximates ρtrue in Eq. 24. ρref is usually determined from a QM/MM calculation of
the system with extended QM part47.

There are many other ad hoc procedures in use to cure the link atom problem. Com-
monly used strategies are to add capping atoms (hydrogen or fluorine) or to represent the
last QM atom with frozen frontier orbitals48. However, hydrogen capping introduces new
atoms into the QM system that are not present in the real system. As a consequence, the
QM portion is chemically not identical with the real system (e.g. the true system may con-
tain C-C bonds at the boundary that are now described with C-H bonds that clearly have
different electronic and chemical properties). Furthermore, additional degrees of freedom
have been introduced and interactions of these nonexistent ghost atoms with the classical
environment have to be carefully removed. Some of these drawbacks are remedied by the
use of frozen frontier orbitals for the boundary atoms. In this way, no additional physical
interactions and degrees of freedom are introduced and the QM part retains its original
composition. However, frozen orbitals have to be determined via calculations on small
model systems and, as the name says, they remain frozen when transferred into the real
environment. Specially parameterized pseudopotentials such as the ones described above,
on the other hand, have the additional flexibility to adjust to changes in the environment.

Another possible artifact in QM/MM simulations, in particular in combination with
extended and highly flexible basis sets (such as e.g. plane waves) is the electron spill-out
problem. As shown in Eq. 21, the exchange interactions between QM and MM part are
taken into account on the level of atomic pair interactions only. Once again, these terms do
not directly affect the electrons of the QM part. For a proper description of the electronic
structure of the QM region an electronic correction term ∆V NLxc has to be included. As
we have seen, this term is especially important for regions with overlapping or nearly
overlapping densities between QM and MM parts, which is particularly the case for the
nearby atoms surroundings the QM region. Due to the fact that the MM part contains no
explicit electrons, the electrons of the QM part are no longer repelled by the closed-shell
cores of the MM region. As a result of this missing Pauli repulsion, the electrons of the
QM part can artificially localize on nearby positively charged classical point charges. This
phenomenon is called electron spill-out. This effect can be avoided by using Gaussian
smeared (screened) classical chargesg or by replacing the classical point charge potential

gAttention: drastic artifacts are possible by choosing too large widths for the Gaussian broadening.

172



by suitably constructed ionic pseudopotentials with screened electrostatic interactions16.
The latter solution is the one implemented in CPMD and the one used in the applications
mentioned in this article. In particular

EelQM/MM =
∑

I∈MM

qI

∫
dr ρ(r)νI(|r−RI |) (30)

where qI is the classical point charge located at RI and

νI(|r−RI |) =
r4
c − r4

r5
c − r5

(31)

(with rc chosen as the covalent radius of atom I) is a Coulomb interaction potential mod-
ified at short-range in such a way as to avoid spill-out of the electron density to nearby
positively charged classical point charges.

Other potential sources of problems are possible incompatibilities between the QM and
MM descriptions, such as imbalances in the electrostatic interactions that can lead to arti-
ficial preferences of e.g. substrate-QM, respectively substrate-MM interactions. Another
problem is the consistent application of the classical exclusion rules for nonbonded inter-
actions. In most force field definitions, nonbonded interactions (such as van der Waals
and electrostatics) are not taken into account for nearby bonded neighbors. Such a selec-
tive neglect of particular pair interactions is not easily transferable to a many-body QM
description. A consistent approach is however possible via mapping of the many-body
electronic Hamiltonian to a pair additive point charge representation29.

3 Applications to Biological Systems

3.1 Bioinorganic Chemistry of Parkinson’s Disease: Copper Binding to
α-Synuclein

Parkinson’s disease (PD) is the second most common neurodegenerative disease in adults,
affecting about 5 million people worldwide49. It is characterized by a loss of dopamin-
ergic neurons and the presence of proteinaceous fibrillar aggregates (Lewy bodies) in the
surviving motor neurons50. The most abundant components of the Lewy bodies are amy-
loid fibrils consisting of the protein α-synuclein (AS)51–54. It has been demonstrated that
metal ions such as copper or iron bind to AS and accelerate its fibrillation in vitro55, 56.
We performed CPMD/MM simulations on AS/Cu(II) adducts - along with experimental
spectroscopic investigations by our experimental collaborators - to elucidate the structural
determinants of the adducts57. We performed 4ps-long CPMD/MM simulations on 18 rep-
resentative conformers identified previously58 using DFT for the QM part and the AMBER
force field12 for the MM part. The Cu(II) ion binds to the N-terminal Met-1 and Asp-
2 backbone nitrogens, the Asp-2 carboxylate side-chain, and a water molecule (Fig. 1).
The QM part shown in Fig. 1 contained 27 atoms, including Cu(II), the N-terminal Met-1
backbone unit and its side-chain up to the Cβ atom, the Asp-2, and the water molecule
coordinating the copper ion. Valences of terminal carbon atoms were capped by adding
hydrogen atoms to the QM region.

The calculated average structural parameters point to a distorted tetragonal preferential
coordination geometry for Cu(II). Specific Cu(II) binding in the N-terminus region, which
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Figure 1. Representative structure of one of the AS/CU(II) conformers, as obtained by CP/MM simulations. The
Cu(II) coordination geometry is distorted tetragonal.

is the highest affinity binding site, was shown to be crucial for the metal-mediated AS
fibrillation process. The calculated absorption spectrum in accord with experimental data
shows a characteristic band around 620 nm.

Thus, from the combined theoretical and experimental study new insight into the struc-
tural binding specificity and aggregation enhancement mediated by Cu(II) was obtained.

3.2 Optical Properties of Indole in Water Solution

Optical properties of chromophores play a central role for a precise and non-destructive
interrogation of a variety of biochemical events. These include fundamental and important
processes such as transient interactions between biomolecules (proteins or nucleic acids),
protein dynamics, fibrillation and plaque formation associated with the development of
neurodegenerative diseases, or high-throughput screening in drug discovery. Understand-
ing how optical properties of chromophores are tuned by the biomolecular and/or solvent
environment is therefore of fundamental importance, yet this information is so far mostly
lacking.

Many proteins contain naturally fluorescent amino acid residues such as phenylalanine,
tyrosine or tryptophan. In particular, the fluorescence of tryptophan residues has been
shown to be particularly well-suited to monitor protein dynamics59. Tryptophan emission
usually dominates protein emission as it absorbs at the longest wavelength and exhibits the
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Figure 2. Indole in water solution. The solute is treated at the QM level, whilst the solvent is described by the
AMBER force field12.

largest extinction coefficient. Indole, the chromophore of tryptophan, absorbs at about 280
nm and emits near 340 nm. Changes of the emission spectrum occur in response to struc-
tural or polarity environmental changes, e.g. the emission may be blueshifted if tryptophan
is buried in the proteins interior, whereas a redshift may occur if the chromophore is at an
exposed surface accessible to water solvent molecules, e.g. upon protein unfolding.

Here, we investigate the physical origin of the redshift observed in the optical absorp-
tion spectrum of indole in going from the gas phase to aqueous solution60, 61. We use
CPMD/MM simulations interfaced with time-dependent DFT (TDDFT)63 methods62, 64, 65

as well as many-body (GW-BSE)66 approaches60, 61.
Our calculations demonstrate that the experimentally observed and computationally

confirmed solvatochromic redshift of the optical absorption spectrum in water is a conse-
quence of the combination of two effects: the geometrical distortion of the indole molecule
in the solvent as well as the electrostatic interaction with the water molecules’ electric
dipoles. Both effects, and their sum, depend on the particular configuration of the sys-
tem; this emphasizes the need of including both altogether and of averaging over several
snapshots.

These studies open the way to further applications on other biorelevant molecules, such
as fluorescent probes in their target proteins, for which the evaluation of the optical shift
enables the understanding of the nature of their environment.

4 Concluding Remarks

Nowadays, CPMD/MM simulations are a rather established tool for the investigation of
adiabatic ground state reactions in biological environments, such as, for instance, the sol-
vation of biologically relevant molecules67. One of the main benefits of the CPMD/MM
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approach is its ability to simulate complex reactions from first principles. This approach,
which includes temperature effects, can benefit from the use of statistical mechanics
methods68–71 to investigate rare events, such as enzymatic reaction mechanisms. Recent
reviews report examples of enzymatic reactions investigated with this method72–74. CP-
MD/MM applications are also of importance to study drug action. Indeed, the interaction
between a ligand and its target might at times depend on the electronic structure in such a
subtle way that is difficult to capture with force field based MD. A recent review reports
CPMD/MM applications that address this issue75. The method has also recently provided
valuable insights on DNA damage76–78.

The CPMD/MM approach has also been extended to the description of electronically
excited states79–81, 62, 60, and nonadiabatic dynamics82 which enables the investigation of
photochemical reactions, e.g. in photoactive proteins and photochemically linked sub-
strate target interactions. In excited state QM/MM schemes, the excited states are either
described via multiconfigurational wave function-based quantum chemical methods, or by
many-body perturbation theory or through excited state extensions of density functional
theory83–85, as, for instance, the study described in Sec. 3.2. Whereas the former two types
of approaches are still limited to fairly small systems and relatively small basis sets, which
can compromise accuracy, the latter one is also extendable to fairly large systems.

Further CPMD/MM developments also allow access to many other molecular proper-
ties beyond optical spectra such as, e.g. NMR chemical shifts25, that are useful to make
direct contact with experimental data and facilitate verification of the simulation results for
complex systems.

The interested reader is referred to the book of Marx and Hutter8 for a comprehensive
survey of recent developments in the field.
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1 Introduction: How Force Affects Chemical Bonds

Mechanochemistry, less well-known than thermochemistry, electrochemistry and photo-
chemistry, studies the impact of mechanical force on chemical reactions. Mechanical force
is recently recognized as a catalyst of chemical reactions, as an increasing number of stud-
ies suggest force to accelerate bimolecular reactions. How does a stretching force acting on
a chemical bond alters the molecule’s reactivity or reaction mechanism? How does a force
weaken (or in contrast stabilize) a reactive molecular entity and thereby steers a reaction
along tilted free energy landscapes and different pathways?

Thiol-disulfide exchange has been recently studied intensively under mechanical force.
At first, the reduction of a disulfide bond, which was engineered into an immunoglobulin
domain of titin (I27), by dithiothreitol (DTT) was investigated by AFM1. The reduction
rate was found to exponentially increase with the applied stretching force in the range of
100 to 600 pN. This tendency that a bond opens more readily when it is pulled, is intuitively
expected. Recently, we have performed computational studies of the same redox system
in a force range up to 2000 pN, and revealed a shift of the transition state structure at high
forces19. ∆xr, the distance along the pulling coordinate between the reactant and the tran-
sition state, is an important quantity to characterize the force-dependence of a chemical
reaction. When different reducing agents were used in the experiments, the measured ∆xr

varied from 0.23 Å to 0.46 Å4. This is an indicator of structural differences among the tran-
sition states of disulfide reduction catalysed by different agents. Surprisingly, the disulfide
reduction rate shows a more complex force dependency when an enzyme (thioredoxin) is
used as catalyst. It is found to decrease at first upon application of small forces, and then
to increase at larger forces when an enzyme (thioredoxin) is used as catalyst2, 3. As another
example of a mechanochemical reaction, Brantley et al.14 recently reported that mechani-
cal force selectively transformed triazoles into their azide and alkyne precursors with high
fidelity, a potential step forward to develop mechanoresponsive materials.

Interestingly, mechanical force can change the pathways of chemical reactions. Path-
ways, which are thermochemically difficult or impossible, can take place under external
force. 1,2-disubstituted benzocyclobutene can occur as a trans- and cis-isomer. Under ther-
mal activation, the Woodward-Hoffman rules7 predict that both trans- and cis- isomer un-
dergo conrotatory ring opening and yield the intermediates of E,E-isomer and E,Z-isomer,
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respectively. However, mechanical force is reported to induce a disrotatory ring opening in
the cis-isomer and a conrotatory ring opening in the trans-isomer. Thus, both isomer yield
the same intermediate of E,E-isomer5. A later computational work in Martinez’s group
again supports a mechanical-activated disrotatory ring opening under cis-pulling6.

Mechanophores, mechanically sensitive chemical groups, are of importance in the de-
sign of new materials. Mechanical force can induce the ring-opening of the colourless
spiropyran into the coloured merocyanine, which will be reversed if exposed to visible
light12. Davis et al. have synthesized a spiropyran-linked polymer, which changes its color
under tensile loading13. In this way, one can visualize the damages of materials under
stress.

How have such force-dependent reactivities been interpreted? Bell’s model assumes
that the structure of a transition state is force-independent, which seems not always true in
at least, e.g., the disulfide reduction by DTT19. Bell’s model is also found to be inadequate
to describe the relationship between the rate and the external force in a forced unfolding
study of I27 by AFM and a forced unzipping of DNA hairpin in a nanopore8, 10, 11. Recently,
a new model has been proposed in Hummer’s group8

r(F ) = r0(1− vF∆xr/∆G
‡)1/v−1exp{β∆G‡[1− (1− vF∆xr/∆G

‡)1/v]}. (1)

Here, v characterizes the shape of the potential energy landscape and equals 1/2 or 2/3,
∆G‡ donates the apparent free energy of activation, and β corresponds to 1/kT , where
k is the Boltzmann constant and T is the temperature. The rate at zero force is r0. This
model takes the effect of the application of force on the structure of transition state into
account.

However, this is a phenomenological model that assumes a the force to alter the free
energy landscape along exactly a single degree of freedom, x. However, the molecular
detailed impact of force onto the reacting molecule into various degrees of freedom, which
even might be orthogonal to the direction of force application, can not be excluded. To
understand the effect of force on the reactivity, quantum chemical calculations are needed,
in which the interplay of a stretching force and the electronic structure can be monitored.
Recently, much progress has been made in this direction. Among others, Marx et al. have
developed a framework to assess the tilting of energy landscapes by force and applied it to
the ring opening of cyclobutene into a trans isomer discussed above and to the opening of
cyclopropane15, 16.

In these lecture notes, we are focusing on our approach of using transition path sam-
pling and rate calculations to quantify force-induced reactivity, and on our application to
thiol/disulfide exchange19. We note that we have recently extended our approach of hybrid
quantum/classical mechanical simulations (QM/MM) to the direct calculation of redox po-
tentials of disulfide bonds under force18.

2 Methods

2.1 Combined Quantum Mechanical/Molecular Mechanical Simulations

Molecular mechanical (MM) force fields are built on empirical potentials, and thus are not
capable to describe systems that involve, for example, covalent bond formation or break-
ing. Such systems require quantum mechanics (QM) for a precise treatment. However, QM
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can treat only relatively small systems, which consist of tens or several hundreds of atoms.
If one requires to simulate chemical reactions that occur in a large system, e.g., enzymatic
reactions, combined quantum mechanical/molecular mechanical (QM/MM) simulation is
a method of choice. In QM/MM simulations, the chemical reaction center and its sur-
rounding atoms are treated by QM, while the remainder is described by MM. Therefore,
QM/MM combines the accuracy of QM with the low computational cost of MM. For more
details on QM/MM, we recommend two recent reviews: one by Lin and Truhlar17, and the
other by Senn and Thiel20.

2.2 Transition Path Sampling

Many processes like chemical reactions or protein folding can be simplified to processes
with two stable states that are separated by a single high energy barrier. As depicted in
Fig. 1a, region A and B are the two stable states, and the energy barrier is highlighted in
the middle. For chemical reactions, region A and B represent the reactant and product
states, respectively. In this example, the multi-dimensional space of the system is pro-
jected onto two order parameters, R1 and R2, both of which change during the reactions.
Examples for order parameters are given further below. A reactive trajectory (shown as
a black solid line) leads to the rare but crucial transition between A and B. The system
spends considerably longer times in the two free energy wells of the reactant and product
than in the high free energy states between the two. Thus, while the transition of inter-
est might only take a few 100 fs, the dwell time of the system in A or B might be in the
microsecond to second time scale. Transition path sampling (TPS) has been developed to
enhance the sampling of the rare reactive trajectories, which are otherwise hardly harvested
by conventional simulations21–25.

2.2.1 Sampling the Transition Path Ensemble

The idea of transition path sampling is to sample a new transition path based on an existing
(old) one (a transition path refers to a reactive trajectory) with a Monte Carlo procedure,
and the new pathway is made sure to be equally weighted with the old one in the transition
path ensemble. In principle, there are many strategies to do it. Here, we take the shooting
move in deterministic simulation as an example to give readers a concrete concept of what
TPS does.

a) Defining the probability of a reactive path. In molecular simulations, the
time evolution of a system is represented by an ordered sequence of states,
X(T ) ≡ {X0, X∆t, X2∆t, ...XT} (see Fig. 1a, black solid line). Here, ∆t is the time
increment. X(T ) consists of L = T/∆t + 1 states, and its starting point is X0. For de-
terministic dynamics, the probability of a trajectory equals to the probability of the initial
state in a given ensemble, ρ(X0). Therefore, the probability of trajectory X(T ) to be a
reactive trajectory is given below:

PAB(X(T )) = hA(X0)ρ(X0)hB(XT)/ZAB(T ) (2)
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Figure 1. Schematical description of the free energy landscape of a system and the shooting move in TPS.
a) A typical free energy landscape of a process is shown with two stable states (labelled with A and B) and a
barrier in the middle. R1 and R2 are two arbitrary coordinates. A transition pathway (black solid line) con-
necting states A and B is given as well. The transition path is represented by an ordered sequence of states
{X0, X∆t, X2∆t, ...XT}. b) An example of shooting moves. The two filled grey areas represents the states A
and B mentioned above. A state {qo

i∆t, p
o
i∆t} is randomly chosen from an old transition path (solid line). The

momentum po
i∆t is perturbed to be pn

i∆t, where pn
i∆t = po

i∆t + δp, while the coordinate is unchanged with
qo
i∆t = qn

i∆t. From the newly generated state {qn
i∆t, p

n
i∆t}, a new transition path (dashed line) is obtained by

evolving the system backward in time to zero and forward in time to T .

Here, hA(X) (hB(X)) is the characteristic functions of region A (B). hA(X) equals 1
if state X lies in A, and it equals zero otherwise. ZAB(T ) is the normalizing factor, the
sum of all the possible reactive trajectories with length T in a given ensemble.

ZAB(T ) ≡
∫
dX0hA(X0)ρ(X0)hB(XT) (3)
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b) Sampling the transition path ensemble by shooting. In a transition path ensemble, the
distribution of transition paths is given in Eq. 2. To make sure that the correctly weighted
transition paths are sampled, the following two probabilities should equal: the probability
to generate a new transition path from a old one Pgen(Xo(T ) → Xn(T )), and the prob-
ability to generate the old transition path from the new one Pgen(Xn(T ) → Xo(T )). In
a shooting move, a state Xo

i∆t, i ∈ [0, L], is randomly chosen. Then, a new state Xn
i∆t

is generated by adding a small perturbation to Xo
i∆t. Here, the superscript o and n refer

to the old path and the new path, respectively. Note that a state X consists of the coordi-
nate q and the momentum p, X = {q, p}, the perturbation can be added to q or/and p. In
practice, it’s convenient to keep q untouched and change p by δp. As illustrated in Fig. 1b,
the selected state Xo

i∆t = {qo
i∆t, p

o
i∆t} in a old transition path (the solid line in Fig. 1b)

is changed to Xn
i∆t = {qn

i∆t, p
n
i∆t}, where pn

i∆t = po
i∆t + δp. Starting with Xn

i∆t, one
can evolve the system backward in time to 0 and forward in time to T , then a new transi-
tion path is generated if it initials from region A and ends in region B (the dashed line in
Fig. 1b). The probability to generate a new transition path from a old one is the product of
four parts, the probability of the old path in the given ensemble, the probability to generate
Xn

i∆t from Xo
i∆t (Pgen(Xo

i∆t → Xn
i∆t)), the probability of that the new path is reactive,

and the probability to accept the new transition path Pacc(Xo(T )→ Xn(T )).

Pgen(Xo(T )→ Xn(T )) = PAB(Xo(T ))Pgen(Xo
i∆t → Xn

i∆t)hA(Xn
0 )hB(Xn

T)

× Pacc(Xo(T )→ Xn(T )) (4)

Similarly, for generating the old path from the new one, we have

Pgen(Xn(T )→ Xo(T )) = PAB(Xn(T ))Pgen(Xn
i∆t → Xo

i∆t)hA(Xo
0 )hB(Xo

T)

× Pacc(Xn(T )→ Xo(T )) (5)

The detailed balance of moves in trajectory space requires Pgen(Xo(T ) → Xn(T )) =
Pgen(Xn(T )→ Xo(T )), which gives

Pacc(Xo(T )→ Xn(T ))

Pacc(Xn(T )→ Xo(T ))
=
PAB(Xn(T ))Pgen(Xn

i∆t → Xo
i∆t)hA(Xo

0 )hB(Xo
T)

PAB(Xo(T ))Pgen(Xo
i∆t → Xn

i∆t)hA(Xn
0 )hB(Xn

T)
(6)

This condition can be satisfied using a Metropolis criterion26

Pacc(Xo(T )→ Xn(T )) = min[1,
PAB(Xn(T ))Pgen(Xn

i∆t → Xo
i∆t)hA(Xo

0 )hB(Xo
T)

PAB(Xo(T ))Pgen(Xo
i∆t → Xn

i∆t)hA(Xn
0 )hB(Xn

T)
]

(7)
Note that the old path is reactive, i.e., hA(Xo

0 ) = 1 and hB(Xo
T) = 1. Eq. 7 can be

simplified as

Pacc(Xo(T )→ Xn(T )) = hA(Xn
0 )hB(Xn

T)×min[1,
ρ(Xn

i∆t)Pgen(Xn
i∆t → Xo

i∆t)

ρ(Xo
i∆t)Pgen(Xo

i∆t → Xn
i∆t)

]

(8)
Here, we apply Eq. 2 and the fact that the probability of the states on the same path in
deterministic dynamics are the same. Although Eq. 8 is obtained base on the determin-
istic dynamics, it can be inferred base on a general dynamics25. In the implementation
of shooting moves, normally a symmetric generation probability is ensured, and thus
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Pgen(Xo
i∆t → Xn

i∆t) = Pgen(Xn
i∆t → Xo

i∆t). Specific strategies are always applied
to ensure that states Xo

i∆t and Xn
i∆t are within the same microcanonical ensemble, i.e.,

ρ(Xo
i∆t) = ρ(Xn

i∆t). Thus, the acceptance probability becomes

Pacc(Xo(T )→ Xn(T )) = hA(Xn
0 )hB(Xn

T) (9)

This equation states that any new trajectory will be accepted if it initials from region A and
ends in region B.

2.2.2 Computing Rate Constants

In this section, we explain how to obtain rate constants from the transition path ensemble24.
Given a system with two stable states A and B, which is separated by a single high energy
barrier, molecules transit from one state to the other at equilibrium, while the populations
of states remain unchanged. Since such transitions are rare, the time correlation function,
C(t), relates to the reaction time of the system (τrxn ≡ (kAB + kBA)−1) via the following
formula27

C(t) ≈ 〈hB〉(1− exp{−t/τrxn}) (10)

If the time required for a system to cross the energy barrier and commit to the other
stable state (τmol) is far smaller than the reaction time of the system (i.e., τmol << τrxn),
C(t) scales linearly in the intermediate time region, and we have

C(t) ≈ kABt, τmol < t << τrxn (11)

For a system at equilibrium, C(t) characterizes the conditional probability to find the
system in state B at time t if it was in state A at time zero, and is defined as follows

C(t) ≡ 〈hA(X0)hB(Xt)〉
〈hA(X0)〉

(12)

Here, 〈...〉 is the ensemble average of all initial states. In deterministic dynamics, C(t) can
be written in terms of the probability of all initial states ρ(X0):

C(t) =

∫
dX0ρ(X0)hA(X0)hB(Xt)∫

dX0ρ(X0)hA(X0)
(13)

Eq. 11 and Eq. 13 together provide a way to calculate the forward reaction rate constant
kAB by molecular simulations. One can simply run a large set of simulations that start with
states in region A and are with the same time length of t, and then counts the probability of
the end state in region B, which gives the value of C(t). The derivative of C(t) over time
gives the rate constant. However, this apparently involves numerous computational efforts.

If region B can be defined by an order parameter λ(X), and the distribution of the end
states, i.e., X(t), along the order parameter P (λ, t) is known, C(t) is simply the integral
of P (λ, t) along λ over the region B.
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C(t) =

∫ λmax

λmin

dλP (λ, t). (14)

Here, λmin and λmax are the lower and upper bound of region B along λ. P (λ, t) is given
by

P (λ, t) =

∫
dX0ρ(X0)hA(X0)δ[λ− λ(X(t))]∫

dX0ρ(X0)hA(X0)
, (15)

where δ(X) is Dirac’s delta function. P (λ, t) can be divided into several overlapped win-
dows, and its distribution in each window can be estimated separately. The distribution
of P (λ, t) over the whole range of λ is then obtained by connecting all windows. In each
window, transition path sampling can be applied to enhance the sampling of paths that con-
nect region A and the window region. Therefore, computational efforts to compute C(t)
are dramatically reduced.

The above-mentioned method can only compute C(t) in time t at a time, and the eval-
uation of KAB requires C(t) at different times to be evaluated. Therefore, it is laborious.
Fortunately, C(t) can be factorized to be written as

C(t) =
〈hB(t)〉AB

〈hB(t′)〉AB
× C(t′), 0 < t < T (16)

where 〈...〉AB denotes an average on the ensemble of the reactive paths, which start in
region A and visit region B within the time length of T . T is the time length of the
transition path. 〈hB(t)〉AB is then the proportion of reactive paths whose configuration at
time t belonged to region B, and can be estimated by a single transition path sampling run.
Only C(t′), the C(t) at time t′ (t′ < T ), is needed to be evaluated.

2.2.3 Committor Probability

Starting with a structure, the system will visit first either region A or region B depending on
its initial momenta. If the initial momenta are drawn from an appropriate distribution, e.g.,
Boltzmann distribution, the committor probability of the structure defines the probability
of the system to visit first region B, PB. Importantly, transition states are configurations
that have equal probability to visit regions A and B, that is to say, transition states are
the structures with a committor probability of 1/2. Therefore, the estimation of PB of
structures provides a way to identify transition states. Computing PB of a given structure
can be performed as follows. Initiate a finite number N of fleeting trajectories from the
structure with a momentum drawn from Boltzmann distribution, count the number x of
trajectories which reach region B first, and then PB is given by x/N in a standard deviation
δ = [PB(1− PB)/N ]1/2.

3 Application: Disulphide Bond Reduction

The reduction of a protein disulfide bond to two thiol groups by a small reducing molecule
such as dithiothreitol (DTT) showed an increase in reaction rate with mechanical force1.
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Figure 2. Disulfide bond reduction under force. (A) The system comprises the protein disulfide bond and DTT,
which attacks one of the sulfur atoms of the protein. Atoms treated by QM are shown as spheres. Other atoms
including the surrounding water molecules (not shown) are treated by MM. The way of force application is
indicated by arrows. More specifically, a constant force was applied to the terminal Cα-atoms of the protein.
(B) Three representative dynamic transitions obtained from TPS are projected onto d1 and d2. As can be seen,
the DTT sulfur first approaches the disulfide bond, which is followed by (not preceded by or in parallel with) the
lengthening of the cleaving bond. Adopted from Ref. 19.

The exponential increase was in line with the Bell model and interpreted in the light of this
one-dimensional model. To elucidate the underlying mechanism and its potential force-
dependency we set out to simulate with high-performance computing methods this reac-
tion. We chose the methods outlined above, namely a QMMM description of the system
and TPS including reaction rate and committor probability calculations.

For the transition path sampling, a choice must be made for the definition of reactants
and products. During the reaction, as shown in Fig. 2, the sulfur-sulfur bond length of the
disulfide group in the protein, d1, extends, while a new disulfide bond between DTT and
protein, described by the distance d2 shortens. We chose these two order parameters to
define the reactant and product states. More specifically, λ < −0.12 nm and λ > 0.12 nm
were specifying the regions of reactant and product state, respectively, where λ = d1−d2.

The obtained reaction rates are shown in Fig. 3. In agreement with experiments, rates
increase with force. In fact, when using the Bell model, as in the experiments, within
the force range of 0-500 pN, we obtained a distance between reactant and transition state,
which is quantitatively in accordance with experiments. Interestingly, however, the linear
dependency between the logarithm of rates and the forces is violated at larger forces, and
can be readily fitted with the Dudko-Hummer model instead (see Eq. 4). This non-linearity
of the rates can be interpreted by a shift in the transition state by the mechanical force. In
other words, force tilts the free energy landscape such that the transition state moves along
the reaction coordinate. What, if so, are the order parameters to describe this shift?

To answer this question, we next set out to determine the transition state ensemble
from committor probabilities. As described in more detail in the Methods section, we were
initiating trajectories with random velocities from our reactive trajectories, and counted the
arrivals in either state A or B. Structures on the d1 and d2 surface that committed nearly
equally to the reactants and products, i.e. with PB and PA lying between 0.4 and 0.6, were
considered as conformations belonging to the transition state. For comparably low forces,
we find transition states to be symmetric, with d1 ∼ d2, force renders transition states
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Figure 3. Reaction rates increase with force according to our simulations (diamonds). The increase observed
between 0 and 500 pN is quantitatively in line with the experiments. However, at larger forces, the rates diverge
from a linear dependence between the logarithm of rates and the forces, as suggested by Bell’s model (dashed
line), but instead follow the Dudko-Hummer model described above (solid line). Adopted from Ref. 19.

Figure 4. Transition states change upon force application. In contrast to what is commonly assumed and the basis
of the Bell model, we find a shift in transition state along the two order parameters with force. Transition states
have been obtained from committor probability calculations. Adopted from Ref. 19.

increasingly asymmetric. More specifically, the attacking sulfur does not have to approach
the disulfide bond as much anymore (measured by d2) to reach the free energy barrier, and
induces the bond cleavage (d1 increase) already at larger distances. In other words, the
transition states moves towards the reactant states under force application.

Importantly, our results suggest more than a single order parameter to play an impor-
tant role in describing the process of the reaction. While experiments measure end-to-end
distance, thereby largely probing changes in d1, also the distance between the two reacting
molecules, a length that experiments are blind for, contributes to the reaction coordinate.
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4 Outlook

The combination of TPS and QMMM has proven very useful in the context of
mechanochemistry. The advantage of TPS over other methods that yield free energy pro-
files is the direct calculation of rates, without the need of assuming a certain attempt fre-
quency or alike. This renders TPS and rate calculations an optimal choice for simulations
that aim at explaining experimentally measured force-dependent rates as they are obtained
from force spectroscopy experiments. An ultimate aim of such and similar simulations is
to quantitatively link the externally applied force of AFM or optical tweezer experiments
or the internally produced force of a strained ring mechanophore to the internal stress at the
reaction center of the molecule. Internal stress here refers to the distortion of the reactive
bonds, angles and electronic orbitals away from their equilibrium states. Such an internal
force distribution analysis has been recently developed in our group for classical mechani-
cal force fields28. It makes use of the inter-atomic forces in the structure, comprising both
bonded and non-bonded forces, to reveal the internal stress in the molecular scaffold. It
is reminiscent of finite element methods used in engineering to detect the stress distribu-
tion in macroscopic objects such as cars or wheels. The concepts will be given during the
lecture, and details are given in the relevant publications28. The force distribution analysis
might prove useful for studying mechanochemical effects as an approach complementary
to studying the free energies or rates of transitions.
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By systematically connecting simulation models on different levels of resolution multiscale
simulation seeks to go beyond the time- and length-scale limits of high resolution models while
at the same time retaining microscopic information. Development of multiscale simulation
models involves systematic scale bridging where interaction functions in the lower resolution
model are derived based on structural and dynamic properties of the high resolution simulation.
In the present review I will focus on the systematic development of coarse grained (CG) mod-
els that are consistent with an underlying classical atomistic forcefield description. Systematic
coarse graining needs to address questions such as: What is meant by consistency? What are
suitable targets in such a parametrization process? Can one achieve both structural and ther-
modynamic agreement between atomistic and CG level? To which extent are the CG models
developed at a certain thermodynamic state point / in a given chemical environment transfer-
able to different situations? In discussing these questions I will particularly focus on problems
arising in the context of biomolecular systems.

1 Introduction

Many problems and questions in biological and other soft matter systems are governed by
phenomena and interactions on a wide range of length and timescales. For example, study-
ing the folding and aggregation of biomacromolecules such as proteins or nucleic acids,
the formation of virus shells, the self-assembly of lipid bilayers or structure formation in
biomaterials requires length and time scales that are clearly beyond simulations with an
all-atom (or even higher) resolution. To investigate these systems, so-called coarse grained
(CG) models have been developed, where several atoms are grouped into superatoms –
coarse grained particles1. Often, this reduction of degrees of freedom is accompanied by
leaving out solvent degrees of freedom, resulting in a drastic decrease of the number of
particles that are treated explicitly in molecular dynamics (MD) or Monte Carlo (MC)
simulations. CG models give access to longer time and length scales for several reasons:
(i) there is a smaller number of particles in the system, reducing the computational cost;
(ii) typically, CG potentials are softer than atomistic ones, which allows to use a larger
simulation timestep; (iii) due to the smoother energy landscape, the dynamics in CG sys-
tems is faster. This last aspect implies that one typically has to determine a timescaling
factor between the simulation timescale (in Lennard Jones units) and the corresponding
real world time (or the corresponding timescale in a higher resolution system). A detailed
discussion of these dynamic aspects with further references can be found in Ref. 2.

Many CG models are generic, i.e. they were not developed to model a specific chem-
ical system but rather with the aim to study a physical phenomenon such as folding or
aggregation in general. One example are generic CG lipid models which have been suc-
cessfully employed to study the self assembly of micelles, bilayers and other structures3–7.
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Generic CG models have also been employed to study folding and aggregation of peptides
and proteins8–20.

In the present review, I will focus on a different group of models: CG models for mul-
tiscale simulation purposes21–30. Multiscale simulations employ models at different levels
of resolution (in the present case classical atomistic and CG models) sequentially or si-
multaneously. In the first case, the resolution of the entire system is changed in the course
of the simulation. In the second case parts of the system coexist at different resolution
levels in a hybrid fashion. In adaptive resolution approaches individual particles (groups
of particles) can change their resolution during the course of the simulation31, 32. Typically,
in multiscale approaches, the various levels are systematically linked, to allow for a seam-
less change of resolution. In this framework, CG models are often systematically built up
in relation to an atomistic description with the aim to keep the models on the two levels
consistent. I will introduce methods to generate such CG models which are based on atom-
istic reference sampling, and I will discuss several of the typical questions and challenges
one faces in such a coarse graining endeavor: What is meant by consistency? What are
suitable targets in such a parametrization process? Can one achieve both structural and
thermodynamic agreement between atomistic and CG level? To which extent are the CG
models developed at a certain thermodynamic state point / in a given chemical environment
transferable to different situations?

2 Deriving CG Interaction Potentials

A wide range of approaches have been developed that aim at consistency between a CG
model and either experimental data or simulations of accurate high resolution models.
Typically, these approaches are divided into thermodynamics-based and so called structure-
based ones. In thermodynamic coarse graining approaches, individual elements of the
CG interaction function are separately parameterized based on thermodynamic reference
data such as solvation free energies and partitioning data, liquid densities, surface tension,
etc33–44. (These are usually experimental reference data, but in a multiscale simulation
approach, the reference data can of course also be obtained from an atomistic simulation,
to keep the CG and atomistic level thermodynamically consistent.)

In another group of approaches one numerically generates CG interaction functions
with the aim to reproduce the configurational phase space sampled in an atomistic reference
simulation. These approaches may rely on different types of reference properties such as
structure functions21, 45, 46, 22, 47–49, 29, 50–54, mean forces55, 23, 56–59, or relative entropies60–62.

In a multiscale approach, one first needs to define the relationship between the two
levels of resolution. This is typically done via mapping functions which determine the
CG Cartesian coordinates of each site as a linear combination of coordinates for the atoms
that are “involved” in the site (that could be via a center-of-mass or a center-of-geometry
mapping or some other geometric construction). This means the CG coordinates R are
constructed from the atomistic coordinates r via

R = Mr (1)

where M is an n×N matrix (n and N being the number of particles in the atomistic and
CG system, respectively). In the (canonical) sampling of the atomistic and CG systems
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with respective interaction potentialsUat(r) andUCG(R) the corresponding configuration
functions P at(r) and PCG(R) are given by

P at(r) = Z−1
at exp[−βUat(r)] (2)

and

PCG(R) = Z−1
CG exp[−βUCG(R)] (3)

with Zat =
∫

exp[−βUat(r)]dr and ZCG =
∫

exp[−βUCG(R)]dR being the respective
partition functions and β = 1/kBBT .

If one analyses the atomistically sampled system in CG coordinates one can determine
the probability distribution of sampling atomistic coordinates that map to a given CG co-
ordinate r)

P at(R) = 〈δ(Mr−R)〉 (4)

(Here, I follow the notation used by Noid and collaborators, e.g. in Refs. 63, 64). The
angular brackets indicate canonical sampling of the atomistic system (i.e. according to
P at(r))

One can formulate the aim of many systematic coarse graining approaches in the fol-
lowing way: to reproduce the part of phase space which is sampled by the atomistic system.
Following this, one possible definition of consistency between atomistic and CG level of
resolution is that the two models are consistent if the canonical configurational distribu-
tion sampled by the CG model PCG(R) is equal to the probability distribution P at(R)
obtained after mapping the atomistic system to CG coordinates.

In a canonical ensemble, independent degrees of freedom q are Boltzmann distributed
and the Boltzmann inverse of P (q)

U(q) = −kBT lnP (q) (5)

is a many-dimensional potential of mean force (PMF), which – used as a potential in a (for
example CG) simulation – reproduces the distribution P (q) . This means that Boltzmann
inversion of P at(R) defines (uniquely up to an additive constant) a (high-dimensional) CG
potential

UCGPMF (R) = −kBT lnP at(R) + const (6)

which will result in a sampling of CG configurations which is consistent with the atomistic
reference simulation. This high-dimensional, many-body CG potential is not a conven-
tional potential energy function but a configuration-dependent free energy (PMF). This
means it contains both energetic and entropic contributions from the configurational sam-
pling in the high-resolution model and the mapping between high-resolution and CG model
(Eq. 4). Therefore, the resulting CG model is state point dependent and not necessarily
readily transferable. While it is conceptually easy to formulate the PMF as a solution of
the systematic coarse graining task, it is practically unfeasible. In most cases the PMF
cannot be easily determined, and even if it were possible, the resulting high-dimensional
potentials are computationally prohibitive. In addition, UCGPMF (R) is a function of R, i.e.
this PMF as is can only be applied to a system which is identical in size to the atomistic ref-
erence system, a limitation, that defeats the purpose of coarse graining. Therefore, one has
to decompose the PMF into simpler independent terms, approximate it by simpler interac-
tion functions (ideally ones that resemble interaction functions typically used in molecular
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mechanics forcefields, i.e. short range bonded contributions and pair potentials or simi-
lar). Conceptually, one can decompose the PMF into a series of many-body terms (up to
an N -body term, where N is the number of particles on the system). However, this itself
does not solve the problem since these multi-body interactions are again computationally
unfeasible.

UCGPMF (R) =
∑
i,j

U2(rij) +
∑
i,j,k

U3(rij , rjk, rik) + · · ·+ const (7)

≈
∑
i,j

Veff(rij) + const (8)

In Eq. 8 one approximates the series by an effective pair interaction which also contains
contributions from the higher order terms in Eq. 7 (some approaches also include three
body terms for systems where this is necessary65). There are many approaches to this
task of determining effective CG interactions, and all the resulting CG models are (only)
approximations to UCGPMF (R).

I will describe some of these methods in more details below, but before that I would
like to introduce a separation that is frequently made, namely a separation into nonbonded
and bonded degrees of freedom. This separation is based on the assumption that the total
potential energy can be separated into bonded and nonbonded contributions:

UCG = UCGB + UCGNB (9)

Practically, this separation is usually always realized, in the sense that the bonded interac-
tion functions typically comprise of two, three, and four-body terms representing bonds,
angles, and dihedrals in the same molecule (i.e. shorter ranged, no pair list construction,
etc) , while the nonbonded interaction functions usually consist of long-range pair poten-
tials (and in some cases three-body terms).

Some approaches try to – as cleanly as possible – separate bonded and nonbonded terms
during the parametrization process, while others determine parameters for all types of in-
teractions simultaneously22. In polymeric systems, a clean separation can be achieved by
obtaining bond, angle and torsion distributions from sampling an isolated polymer chain
with exclusions of long-range nonbonded interactions21, 66, 48, 67. This ensures that non-
bonded interactions that will be explicitly present in the final CG model are excluded dur-
ing the conformational sampling from which the bonded interactions are derived, which
strictly avoids double counting. This approach is problematic for cases where the envi-
ronment has a large influence on the conformations of the molecule since it assumes that
the CG environment in the final model ”manages” to exert precisely the same influence
as the original atomistic environment (which is of course the aim of the coarse graining
of nonbonded interaction but may be practically difficult, see below). One example where
this is problematic are biomolecules in water where the solvent has a particularly important
influence on the conformational equilibrium sampled by the molecule68, 69. Nevertheless
one often tries to keep bonded and nonbonded interactions as separate as possible, even if
the above mentioned clean separation (without any double counting) is impossible, aim-
ing at a certain modularity and transferability30. Transferability in the context of bonded
interactions refers to the possibility to reuse potentials which have been determined for
shorter fragments in longer chains (or in chains with a different overall sequence in the
case of polypeptides30). Modularity refers to the possibility to (re)use bonded interaction
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functions with different types of nonbonded CG models (from different coarse graining
methodologies) with no or very little reparametrization. Bond, angle, and torsion potentials
obtained via Boltzmann inversion (see below) can for example also be used in combination
with nonbonded interaction functions determined via force matching70, 71. One advantage
of keeping bonded and nonbonded interactions as separate as possible is particularly em-
inent for biological macromolecules where correlations along the polymer chain (in the
case of proteins most obviously demonstrated in the Ramachandran plot) play a decisive
role. Capturing them in the CG model often requires special intramolecular interaction
functions. With a separation into bonded and nonbonded interactions, studies regarding
these aspects of conformational sampling are are not limited to one type of nonbonded
interactions (e.g. structure-based coarse-graining) approaches but also hold for approaches
where nonbonded interactions are parameterized differently, e.g. based on force matching
or thermodynamic data.

In the following, I will first introduce one possibility to determine bonded interaction
potentials and illustrate several aspects of conformational sampling with the help of an ex-
ample, a short peptide in aqueous solution. After that I will introduce different approaches
to determine nonbonded interactions.

2.1 Bonded Interactions, Conformational Sampling

In coarse graining methods where the parameterization is based on atomistic reference
simulations, one first maps the atomistically sampled conformations to CG coordinates.
From the latter, one obtains reference distributions (in CG degrees of freedom), for
intramolecular interactions these are typically bond, angle and dihedral distributions. In
structure-based approaches these distributions are Boltzmann inverted to obtain the corre-
sponding potentials of mean force:

UCG(r, T ) = −kBT ln(P (r, T )/r2) + constr
UCG(θ, T ) = −kBT ln(P (θ, T )/ sin θ) + constθ
UCG(ϕ, T ) = −kBT ln(P (ϕ, T )) + constϕ

(10)

Whether these potentials of mean force can be directly used as (tabulated) CG interaction
potentials depends on several conditions. One condition is that the degrees of freedom are
uncorrelated, i.e. the probability distribution describing the conformations factorizes into
the corresponding contributions:

P (r, θ, ϕ, T ) = P (r, T )P (θ, T )P (ϕ, T ) (11)

How well this assumption holds may (for a given molecule) depend on the choice of the
CG mapping scheme, as was for example nicely shown for the case of two CG polystyrene
models72, 73. The assumption of uncorrelated DOFs is particularly problematic for bi-
ological systems with distinct secondary structures. Here, certain correlations between
intramolecular degrees of freedom are characteristic for the conformations adopted by the
molecule and need to be accounted for in the CG model74–77, 51, 78, 19. A second condition
is that bonded and nonbonded interactions can be separated according to Eq. 9. If there
is a coupling of bonded and nonbonded interactions that cannot be prevented by simple
avoiding of double counting of interactions, then it is very likely that the PMFs in Eq. 10
cannot be directly used as interaction potentials.
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For the above reasons, potentials obtained from Boltzmann inversion according to
Eqs. 10 may not succeed at producing the correct conformational equilibrium of the peptide
in the CG model (i.e. after combining all covalent potentials and nonbonded interactions
including the solvent). In that case one can introduce an additional refining step, which
is completely analogous to the iterative procedure commonly used for nonbonded interac-
tions which will be in details discussed below. For example for an angular DOF, θ, the
iterative refinement is done as follows:

Ui+1(θ) = Ui(θ) + kBT ln

[
Pi(θ, T )

Ptarget(θ, T )

]
(12)

Here Ptarget(θ, T ) is the reference angular distribution from atomistic simulation and
Pi(θ, T ) is the current distribution after the ith iteration.

Peptides in aqueous solution (in the present case short oligoalanine fragments) can
serve as a good example for which one can illustrate both the effect of coupling between
bonded and nonbonded interactions in CG models and the influence of correlated degrees
of freedom. The inset of Fig. 1 shows the investigated system, a capped ALA3 peptide
which has in the CG description the form of a linear chain of seven beads of two types,
one for the peptide group (PEP, brown transparent beads in Fig. 1) and one representing
the α and β carbon atoms (CAB, blue transparent beads in Fig. 1)69. For this system
we developed two CG models, one with an implicit and one with an explicit CG solvent
description, where each solvent particle was represented by a single CG particle. For both
models, bond, angle and torsion potentials were at first obtained directly from Boltzmann
inversion (Eq. 10).

In the case of the implicit solvent description, the CG peptide with these potentials re-
produced all atomistic reference bond, angle and torsion distributions. In contrast, this was
not the case in presence of explicit CG solvent. Here, the angles centered at the three CAB
beads were severely distorted compared to the reference. The observed discrepancy could
be corrected by an iterative refinement of the corresponding CG angle potential (Eq. 12).
It was observed that the iterative correction to the angle potential did not have any negative
effect on the sampling of other CG degrees of freedom such as bonds or other torsions.
The so obtained explicit solvent CG model for ALA3 was now also capable of reproducing
all local conformational properties, i.e. all bond, angle and torsion distributions, just as
the implicit solvent CG model. However, other (a little less local) properties not used for
parametrization such as the distance distribution between two peptide groups separated by
five CG bonds or the angle distribution between three consecutive peptide groups were not
reproduced anymore. The distribution of this 1,3,5 PEP-PEP-PEP angle potential is shown
in the left panel of Fig. 1. For longer chains this results in a non negligible discrepancy
in the end to end distance distribution of the peptide, making the initial models rather un-
satisfactory. This can be seen in the right panel of Fig 1: compare the atomistic reference
(black solid line) to the end to end distances sampled by the implicit solvent CG model
(blue dotted line) and the explicit solvent CG model with iteratively corrected CAB angle
potentials (blue crosses).

To overcome this problem, additional CG potentials (1,5 PEP-PEP distance or 1,3,5
PEP-PEP-PEP angle potentials) along the peptide backbone were needed. This can be ex-
plained by the fact that the different regions in the 1,3,5 PEP-PEP-PEP angle distribution
can be linked to typical secondary structure elements sampled by the polypeptide chain,
namely to α-helical and β-strand chain segments. α-helical chain segments correspond
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Figure 1. Conformational properties in a CG model of Ala3 (Inset: molecular structure and CG mapping. Small
beads: atomistic united atom representation; large transparent beads: CG model with PEP (brown) and CAB
(blue) bead types).
Left panel: Angle distributions between three consecutive peptide groups (1,3,5 PEP-PEP-PEP angle) with dif-
ferent CG models. Atomistic reference: black solid line; explicit-solvent CG model with iterated PEP-CAB-PEP
potential: blue crosses; explicit-solvent CG model with additional 1,3,5 PEP-PEP-PEP angle potential (iterative
Boltzmann inversion): red squares.
Right panel: End-to-end distance distributions sampled with different CG models. Atomistic reference: black
solid line; explicit-solvent CG model with bond, angle, torsion potentials from Boltzmann inversion without
iterative refinement: green dashed line; implicit-solvent CG model with bond, angle, torsion potentials from
Boltzmann inversion: blue dotted line; explicit-solvent CG model with iterated PEP-CAB-PEP potential: blue
crosses; implicit-solvent CG model with additional 1,3,5 PEP-PEP-PEP angle potential (Boltzmann inversion, no
iterative refinement): red dot dashed line; explicit-solvent CG model with additional 1,3,5 PEP-PEP-PEP angle
potential (iterative Boltzmann inversion): red squares. The colors indicate the effect of the different refinement
steps. Green: model with chain conformations where coupling between bonded and nonbonded (solvent) inter-
actions causes deviations in local properties (PEP-CAB-PEP angle). Blue: models with correct bond, angle, and
torsion distributions, but where conformations involving a 1,3,5 PEP-PEP-PEP segment deviate. Red: models
where local chain conformations up to 1,3,5 PEP-PEP-PEP segments are correct.

to a 1,3,5 PEP-PEP-PEP angle around 100 degrees (i.e. corresponding to the shoulder
in the distribution in Fig. 1) while β-strand chain segments correspond to the main peak
around 170 degrees. This is not unexpected since the 1,3,5 PEP-PEP-PEP angle covers two
CAB groups, i.e. adjacent sets of Ramachandran angles which should be correlated in sec-
ondary structure elements. Since secondary structure formation is intimately linked with
intrachain correlations, most importantly between different backbone dihedral angles, the
factorization into independent bond angles and torsions (Eq. 11) which is assumed in the
Boltzmann inversion procedure (Eq. 10) does not hold for these biomolecular systems. For
the chosen mapping scheme, correct backbone conformational sampling could be achieved
by imposing a 1,3,5 PEP-PEP-PEP angle potential between consecutive peptide units along
the backbone, and the resulting CG model was well capable to distinguish α-helical and
β-structural chain segments and reproduce these conformations69 (red squares in Fig 1). It
should be noted that similar potential terms that account for correlations along the back-
bone and propensities for the formation of secondary structure elements have been dis-
cussed for other CG models, an excellent review of different approaches can be found in
Ref. 19.

The right panel of Fig 1 shows the end-to-end distance distribution for all the explicit
solvent and the implicit solvent CG models in comparison with the atomistic reference
(black solid line) and summarizes the effects of the different refinement steps on the con-
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formations of the Ala3 chain: in the case of the CG model with explicit solvent and bond,
angle and torsion potentials from direct Boltzmann inversion we had observed coupling
between bonded and nonbonded (solvent) interactions which causes deviations in local
properties, in this case the PEP-CAB-PEP angle. This leads to a large shift of the end-
to-end distribution towards more compact structures (green dashed line). This artifact can
be overcome by iterative refinement of the PEP-CAB-PEP angle. The resulting explicit-
solvent model shows an end-to-end distance distribution which is very similar to the im-
plicit solvent CG model obtained from Boltzmann inversion without iteration (where by
construction coupling between solvent and angle cannot occur). These are distributions
(blue dotted line and blue crosses) characteristic for models with correct individual bond,
angle, and torsion distributions, but distortions in conformations involving 1,3,5 PEP-PEP-
PEP segments causing the observed shift towards shorter end-to-end distances compared
to the atomistic reference. Finally, the line and red symbols belong to end-to-end dis-
tance distributions characteristic for models where local chain conformations up to 1,3,5
PEP-PEP-PEP segments are correct (both for the explicit and the implicit solvent case, for
implicit solvent, a 1,3,5 PEP-PEP-PEP has been determined based on Boltzmann inversion
of the corresponding angle distribution from the atomistic reference, for the explicit sol-
vent case, again an additional iterative refinement of this potential was needed according
to Eq. 12). These distributions agree very well with the atomistic reference, which points
out that the local properties of 1,3,5 PEP-PEP-PEP segments are crucial for a CG model
to be able to describe and distinguish secondary structure propensities of a peptide chain.
(Note that these are still very local properties which are not related to hydrogen bonding
effects that drive for example the formation of an α-helix.)

This oligoalanine example shows that it is advantageous to keep the parametrization
of bonded and nonbonded interactions separate, since in an ”all-in-one iteration” proce-
dure such a physically very important effect might have been overlooked. Secondly, the
principal need for these potentials (or something analogous to account for conformational
correlations) is independent form the methodology with which nonbonded interactions are
determined. This means a bonded-interactions study provides the insight, which poten-
tials are absolutely required to ensure correct sampling of chain conformations (especially
the ”special” potentials such as the1,3,5 angle), which ones are coupled to the nonbonded
interactions, and which ones are coupled to each other. (This knowledge also suggests a
certain sequence in the parametrization procedure.) Note, that while clearly not all CG
procedures use (iterative) Boltzmann inversion for the bonded interactions, many of them
do, even if they use other parametrization strategies for the nonbonded ones70, 71.

2.2 Parameterizing Nonbonded Interactions

As already mentioned, there are different approaches towards nonbonded interactions in
systematic coarse graining, mostly divided into parametrizations based on thermodynamic
targets and structure-motivated approaches that aim at reproducing the atomistic configura-
tion space sampling (Eq. 4). As shown above, in these (in the widest sense) structure-based
approaches CG interaction functions are parameterized so that they approximate the many-
body PMF (Eq. 6) from the atomistic sampling (Eq. 8). The various structural approaches
differ in the type of target functions they derive from the atomistic system. I will review
two of them here: one, where one parameterizes against simpler structure functions (for
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example pair correlation functions, i.e. pair potentials of mean force) instead of the many-
body PMF and a second one, where the CG model is parameterized so that it reproduces
(approximates) the mean forces on the CG sites (i.e. it uses derivatives of Eq. 6).

2.2.1 Structure-Based Coarse Graining: Iterative Boltzmann Inversion

”Traditional” structure-based methods provide CG interactions that reproduce pre-
defined target structure properties – often a set of radial distribution func-
tions21, 45, 46, 22, 47–49, 29, 50–54. This means that the many-body PMF (Eq. 6 and 7) is replaced
as a target by a set of simpler structural correlation functions. If the interactions in the CG
model are statistically independent or only weakly coupled then direct Boltzmann inver-
sion determines each term in the potential immediately from the corresponding distribution
function79, 80, 21, 81 (as we have seen already above for bonded interaction terms). For non-
bonded interactions in dense systems this is typically not the case. This means that the
individual distribution functions and their corresponding potentials of mean force (e.g. a
radial distribution function of a simple liquid gtarget(r) and is Boltzmann inverse, the pair
PMF, V CG0 (r) = −kBT ln gtarget(r)) cannot be directly used as interaction function since
they correspond not only to the interaction potential but also the correlated contributions
from the surroundings. These (multibody) effects of the environment need to be removed
from the PMF to generate an effective pair potential that reproduces the target structure
(for example the pair correlation function in the liquid) in an analogous manner as in Eq. 8.
It can be shown that such a pair potential is unique (up to an arbitrary constant)82 and ex-
ists83, 84, 60, 85. There are several numerical methods to generate this pair potential (tabulated
interaction function).

Iterative Boltzmann inversion (IBI)86, 87, 47 is a natural extension of the Boltzmann in-
version method. Here, a numerical CG potential is iteratively refined until the target struc-
ture is reproduced within a predefined error. Each step in the iteration procedure is a CG
simulation with potential V CGi (r) which yields an RDF gi(r) that differs from the target
gtarget(r). The potential is then modified by a correction term ∆V (r) according to

V CGi+1 (r) = V CGi (r) + ∆V (r) = V CGi (r) + kBT ln
gi(r)

gtarget(r)
(13)

Sometimes the potential correction ∆V (r) is multiplied with a prefactor 0 < λ ≤ 1 to
avoid overshooting in the numerical procedure. The iterative procedure is initiated often
with the (pair) potential of mean force V CG0 (r) = −kBT ln gtarget(r), but that is not
mandatory, different starting potentials might be useful, in particular for more complex
mixed systems, where the iterative procedure may be unstable, because intermediate CG
models for example lead to phase separation. An illustration of the IBI method and the
typical types of potentials that are obtained can be found in Fig. 2 (left and middle panel).

IBI is by no means the only numerical method that solves the above task. Another
numerical scheme is the so called inverse Monte Carlo (or more recently renamed Newton
inversion) method45, 46, 49, 29 which should according to Henderson’s theorem lead to the
same numerical solution for the pair potential corresponding to a given pair correlation
function. While in IBI the potential update ∆V is ad hoc, it is computed in IMC using
rigorous statistical mechanical arguments. For details see Ref. 45. In the case of multi-
component systems, where several pair potentials need to be updated, IMC accounts for
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Figure 2. Illustration of structure-based coarse graining that aim at reproducing pair PMFs from atomistic target.
Example system: methane (denoted as C) in water (denoted as W), both mapped to a single site.
left panel: RDFs of atomistic and CG system
middle panel: Tabulated potentials obtained from IBI
right panel: Illustration of the subtraction procedure to determine CG solute-solute (here C-C) potentials. Black
line: atomistic target potential of mean force between two methane molecules in aqueous solution. Red dashed
line: CG potential of mean force with excluded direct interactions between the two solute particles (note that
the solute-solute exclusion leads to the missing short range repulsion in the PMF). Red solid line: resulting
solute-solute potential according to Eq. 16.

correlations between observables, i.e. the updates for the different potentials are interde-
pendent. In contrast, for IBI, each potential is updated independently, which might lead
to oscillations and convergence problems in the iteration procedure. The disadvantage of
IMC on the other hand is a high computational cost and problems with numerical stability,
for a detailed comparison see Ref. 88. Related to IMC there are several other recent devel-
opments, e.g. a molecular renormalization group approach50–52 or an approach that relies
on relative entropies60–62.

While the above structure-based methods by construction exactly (within the error of
the numerical procedure) reproduce the local pair structures and thus are well-suited to
reinsert atomistic coordinates, it is not a priori clear whether they are equally well suited
to reproduce thermodynamic properties (pressure, phase behavior, etc.) of the reference
system. Note also that CG models based on pair correlation functions do not necessarily
reproduce higher-order (e.g. three-body) structural correlations88 since the pair correla-
tion functions as structural targets are just an approximation to the total conformational
distribution function obtained from the atomistic sampling, P at(R) (Eq. 4). This means
that if higher order correlations are a crucial part of the many-body PMF, models based on
pair structures may fail to represent these, and it may even be possible that models which
are limited to pair potentials may fail to reproduce these correlations irrespective of the
parametrization methodology. One example where this is studied in details is the example
of liquid water89, 88, 65. Recently Noid and coworkers have analyzed these aspects in details
using concepts from liquid state theory64.

One more note concerning Henderson’s theorem: even though there is in principle
one exact solution for the effective pair potential that reproduces a given pair correlation
function, different potentials might give a reasonably close representation of the structure,
i.e. the above inverse problem is mathematically ill-posed88, 90. This effect becomes even
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more pronounced in complex systems where several interaction functions corresponding
to several RDFs need to be numerically determined. This ill-posedness can to some extent
be turned into an advantage since it allows to impose thermodynamic constraints in the
parametrization procedure. This will result in interaction functions which do not exactly
reproduce the target structure but give a very close representation while at the same time
produce a desired thermodynamic behavior. One example for this are pressure correction
terms47, 89. Here, an additional linear pressure correction is applied during the iterative
Boltzmann inversion procedure with

∆V CGi,P (r) = Ai

(
1− r

rcut

)
(14)

where rcut is the radial cutoff distance of the nonbonded interaction and the constant A is
determined via the virial expression for the pressure to

−
[

2πNρ

3rcut

∫ rcut

0

r3gi(r)dr
]
Ai ≈ (Pi − Ptarget)V (15)

V is the volume of the system, Pi the pressure of the CG model in the i-th iteration, and
Ptarget the target pressure. Details can be found in Ref. 89.

It is to be expected that there will be more development in this direction (using other
types of thermodynamic constraints) since in particular for complex soft matter system the
balancing of structural and thermodynamic behavior in CG models is an ongoing field of
research53, 54.

2.2.2 Extension to Dilute Solute/Solvent Systems

In mixed systems where one component is very dilute (from now on termed solute), e.g.
biomolecules in aqueous solution, iterative Boltzmann inversion and similar methods are
problematic. While one can easily compute the solvent-solvent and the solute-solvent ra-
dial distribution functions, and therefore determine the corresponding CG potentials with
for example IBI, this is not so straightforward for the interactions between the low concen-
tration component (solutes). (Note that for simplicity I will here only discuss solutes that
are represented by a single CG bead.) Here, obtaining the PMF through brute force sam-
pling of a radial distribution function is not advisable. In that case one should compute the
solute-solute pair PMF (between two solute particles) with an advanced sampling method
such as umbrella sampling or thermodynamic integration (using distance constraints)91, 92.

When solvent degrees of freedom are not explicitly present in the CG system, this
solute-solute PMF can be used directly as effective solute-solute nonbonded interaction
since the environmental (solvent) effects within the PMF are not explicitly represented
through solvent degrees of freedom in the CG model.This direct use of the PMF has for
example been employed for an implicit solvent model of aqueous electrolyte solution, i.e.
implicit solvent ion models46, 93, 94, 50, 95. Also for other other types of solutes the solute-
solute PMF has been used as interaction potential in implicit solvent models68, 96.

However, if solvent, for example water, explicitly exists in the CG system, new effec-
tive solute-solute nonbonded pair interactions are needed from which the solvent contribu-
tions are removed in the same way they are removed by IBI in other systems. However, due
to the sampling problem of the PMF between the solute (dilute) component, an iterative

205



procedure is prohibitive for the solute-solute interactions. To solve this problem, an ap-
proximate method has been developed by Villa et al97, 98. Here, the CG solvent-solvent and
solute-solvent interactions are first determined, for example through normal IBI. Now the
pair PMF between the solutes V atPMF (r) is computed (from atomistic umbrella sampling
or thermodynamic integration) and used as a target, in other words the resulting CG model
is parameterized to reproduce the solute-solute association strength observed in the atom-
istic system. In order to remove the solvent contribution from V atPMF (r), a subtraction
procedure is employed. One conducts a separate PMF calculation (again with umbrella
sampling or thermodynamic integration), this time in a CG system, where the (previously
determined) CG solvent-solvent and solute-solvent interactions are present but no direct
interaction between the solute particles is turned on. The resulting PMF V CGPMF,excl(r)
only consists of the environmental contributions (in the CG environment). By subtracting
V CGPMF,excl(r) from the target PMF one obtains the missing direct pair interaction

V CG(r) = V atPMF (r)− V CGPMF,excl(r) (16)

which by construction reproduces the target PMF. The method is illustrated in Fig. 2. The
left and middle panels show parametrization of the solvent-solvent interactions by IBI,
and the right panel shows the different contributions in Eq. 16. Properties of the resulting
solute/solvent systems will be discussed below in the context of transferability98.

Note, that this subtraction procedure is not necessarily limited to CG solvent-solvent or
solute-solvent interactions determined by IBI. In principle also other types of CG solvent-
solvent or solute-solvent interactions could be used to determine V CGPMF,excl(r). If one
then applies Eq. 16, one obtains an effective solute-solute interaction V CG(r) which re-
produces the atomistically observed solute-solute association strength (i.e. V atPMF (r)) in
the particular CG solvent that was chosen.

2.2.3 Force Matching and Related Methods

An alternative method to construct CG potentials from an atomistic reference sampling
is force matching (also termed MS-CG/multiscale coarse graining). This method has been
successfully applied to a multitude of biomolecular and other soft matter systems55, 23, 56–59.
Here, the CG forcefield is determined such that the difference between the (instantaneous)
CG forces and the forces in the underlying atomistic system is minimized. Thus, force
matching uses a variational (i.e. non-iterative) approach for constructing the CG poten-
tial based on the atomistic reference simulation (in this case the recorded forces from the
atomistic simulation). The numerical implementation of this variational principle works
in such a way that the exact many-body PMF (Eq. 6) is represented by a linear combina-
tion of basis functions that are functions of the CG site coordinates. This means the CG
force field depends on M parameters g1, · · · , gM . These parameters can be prefactors of
analytical functions, tabulated values of the interaction potentials, or coefficients of splines
used to describe these potentials. These M parameters are optimized so that the CG model
reproduces the forces in the atomistic system (after mapping) as closely as possible. To
this end, the (CG) reference forces on the N CG sites obtained from the atomistic system
are computed by properly reweighting the forces on the atoms (i.e. applying the mapping
scheme on the level of forces). By doing this on L snapshots from the atomistic simula-
tion one gets N × L reference forces. Now, one optimizes the M parameters of the CG
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force field in such a way that the deviation of the CG forces from these reference forces is
minimized. This means one optimizes the parameters g1, · · · , gM in the following N × L
equations:

fCGil (g1, · · · gM ) = frefil (17)

Noid et. al have shown that the coarse-grained CG potentials obtained from force matching
are an approximate variational solution for the exact many-body potential of mean force
for the coarse-grained sites (Eq. 6) and have thus established the link between force match-
ing and various structure-based methods99, 63, 100. It should be noted though, that also in the
case of force matching the CG force field is an approximation to the high dimensional PMF
within the limitations of the types of CG forces chosen (for example pair forces that can
be either derived from analytical or from numerical tabulated potentials). This also implies
that a CG model obtained from force matching does not by construction reproduce the
pair correlation functions in the system, and the reproduction of local structural properties
such as pair distributions may (or may not) be rather weak. An exact reproduction of the
underlying atomistic problem by force matching potentially requires the introduction of
higher order (e.g. three-body) interactions. Recently, Noid and coworkers have extended
the force matching method and demonstrated that the CG force field can be directly de-
termined from structural correlation functions obtained from the atomistic system instead
of the forces63. Their theoretical approach also allows an assessment of the correlations
between different interactions that are neglected by straightforward Boltzmann inversion
and allows to quantify the importance of many-body correlations in CG models.

3 Systematic Coarse Graining: Challenges

From the preceding sections we have seen that there are different approaches to system-
atically parameterize CG models which by construction will not be equally well suited to
reproduce thermodynamic and structural properties of the system. It is not a priori clear
whether structure-based potentials reproduce macroscopic thermodynamic properties and,
vice versa, if thermodynamics-based potentials reproduce microscopic structural proper-
ties. Yet, the interplay of structure and thermodynamics is crucial for the investigation of
structure formation processes, in particular for biomolecular aggregation in aqueous solu-
tion where partitioning and phase separation play a decisive role. All CG models (in fact
also all classical atomistic forcefields) are state-point dependent and cannot necessarily be
– without reparametrization – transferred to different thermodynamic conditions or a dif-
ferent chemical environment compared to the one where they had been derived. This means
’transferability’ can refer to a change in temperature, density, concentration, system com-
position, phase, etc., but also a change in chemical environment, e.g. the change of length
or sequence of an aminoacid chain. Structure-motivated CG models which approximate the
high dimensional PMF obtained from an atomistic reference are by construction heavily
state point dependent, and several studies have addressed questions regarding their ability
to reproduce thermodynamic properties. One system that has been of particular interest in
this context is liquid water84, 89, 101. The reason is on the one hand of course its immense
importance in all questions regarding biomolecular systems. In addition, it is of particular
methodological interest because for single bead models of water it is known that three-
body correlations play a decisive role and the potential compromise between reproducing
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pair- or higher order structural correlations is particularly relevant for the properties of the
model89, 88, 65. Different studies have been carried out that compare structure-motivated and
thermodynamics-based CG models102, 103, 90. While CG models where the parametrization
targets had been solvation and partitioning properties are particularly well suited to repro-
duce processes where for example hydrophilicity/hydrophobicity arguments play a deci-
sive role, they do not per se reproduce the structure of the system102, 90. Related to their
ability to reproduce the thermodynamic properties of certain chemical units, these models
exhibit considerable transferability and can often be applied to a variety of molecular sys-
tems and a range of thermodynamic conditions. Motivated by these observations, intensive
research is currently carried out to derive CG potentials that are both thermodynamically as
well as structurally consistent with the underlying higher-resolution description, thus en-
suring for example state point transferability104, 98, 58, 53, 54. Another current line of research
is related to the approach to determine CG potentials for dilute components in solute/sol-
vent systems (see above), where pair potentials of mean force on atomistic and CG level
are subtracted in order to reproduce the solute-solute association behavior68, 98. Here, new
coarse graining approaches are developed which rely on a thermodynamic cycle to obtain
effective CG pair potentials105, 90.

3.1 Transferability of CG Models

As discussed in the previous section, the balance between thermodynamics and structure
is intimately related to the question of transferability. In particular, binary mixtures have
been widely used as model systems to explore various aspects of the transferability of CG
models for biomolecular systems106–108, 93–95, 39, 104, 98. The transferability to different con-
centrations of liquid mixtures or solutions is of vital importance for simulation of processes
such as (bio)molecular aggregation which are characterized by spatially varying structure
and fluctuating concentrations.

It has been mentioned before that effective pair potentials account for multibody ef-
fects, for example, three body interactions. For this reason, they are only to a limited
extent additive, which limits the transferability of the potentials106, 98. Understanding the
physical nature of non-additivity in the system of interest can help to make a CG model
transferable. In principle, there are various possibilities to approach the question of trans-
ferability of effective pair potentials: (i) One applies a model derived at/optimized for a
given state point unaltered to a range of state points “nearby”; in that case, one has to care-
fully investigate the range in which this is permitted109, 67. (ii) One creates a new set of
potentials for each state point one wants to investigate109. (iii) One specifically designs a
single CG model with the aim to be transferable (for example specific density dependent
potentials107, 108, 58, CG models that are designed to be applicable for a range of mixture
compositions39, 104, or CG models that are capable of capturing a liquid crystalline phase
transition53, 54). (iv) One uses a model derived at one state point and (analytically) modifies
it to be applicable to different conditions (one example being the rescaling of potentials in
order to apply them to a different temperature110).

In the following, I will – in a little more detail – discuss examples for two above scenar-
ios. These examples illustrate that understanding the physical basis behind the limitations
in transferability can help to design transferable models.

Recently, Villa et al. proposed a CG model for mixed systems of benzene in water98.
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The CG benzene-benzene potential had been parameterized on the basis of the benzene-
benzene PMF of two benzene molecules in aqueous solution, i.e., at “infinite” dilution (as
described above). Benzene-water mixtures of different composition have been studied with
this CG model and analyzed using Kirkwood-Buff theory of solutions111. Kirkwood-Buff
theory provides a link between local structural information and thermodynamic proper-
ties of the solution. The CG model, parametrized at infinite dilution of benzene, repro-
duces the Kirkwood-Buff integrals of mixtures at various concentrations obtained with the
detailed-atomistic model. It was found that this CG model can reproduce the changes in
the benzene chemical potential and the activity coefficients of the mixtures over a range of
mixture compositions (up to concentrations where benzene and water demix in the atom-
istic reference simulation). This is shown in the left panel of Fig. 3. A possible expla-
nation is that hydrophobic interactions between benzene solutes are short-ranged, and the
multibody correlations involved in hydrophobic association can be described by pairwise
additive effective potentials (category (i) of the above list). The observed transferability of
the potential supports the idea that hydrophobic interactions between small molecules are
pairwise additive. Villa et al. also found that a different CG model for benzene-benzene
interactions that had been derived for pure benzene (via IBI) is neither suited to describe
benzene-benzene interactions in aqueous solution at different concentrations nor a phase-
separated benzene/water system with a bulk benzene layer98 (see also Fig. 3). This example
illustrates the necessity of a careful choice of reference state points.

In the second example, the situation is different. Here, the transferability of CG (in
this case implicit-solvent) ion models in aqueous solution has been investigated. Due
to long-range electrostatic interactions, the ions affect the behavior of water increasingly
with increasing ion concentration. More specifically, the presence of many ions reduces
the orientational fluctuations of the water molecules and thus the dielectric permittivity
of the solvent. Therefore, effective ion-ion potentials parametrized at infinite dilution are
not directly transferable to higher salt concentrations. Hess et al. developed a reduced-
resolution (in this case implicit-solvent) potential for aqueous electrolyte solutions where
an ion-concentration-dependent Coulomb term was added to the (ion-specific) pair inter-
action. Thus, by using a concentration-dependent dielectric permittivity of water, part of
the multibody effects in the system were accounted for in the ion-ion pairwise interaction
in the implicit solvent model93, 94. This approach reproduced the NaCl solution osmotic
properties and the ion coordination up to a concentration of 2.8 M (mol/L). While in the
case of the CG model of benzene/water mixtures98 the short-range hydrophobic interac-
tions parameterized at infinite dilution were directly transferable to higher benzene con-
centrations, the ion-ion interactions determined at infinite dilution had to be split into a
short ranged ion-specific and a long-range electrostatic part. The interactions were then
made transferable by keeping the short-ranged part constant and analytically modifying
the long-ranged electrostatic part (category (iv) of the above list). Shen et al. have further
investigated the structure and osmotic properties of electrolyte solutions over a wide range
of concentrations95. Using a concentration-dependent dielectric constant one obtains also
very good structural properties of the electrolyte solution at low and intermediate salt con-
centrations while for larger salt concentrations multibody ion-ion correlations put a limit to
straightforward transferability (see right panel of Fig. 3). Guided by this structural analysis
the transferability of the implicit-solvent model could be improved also for high ion con-
centrations. One obtains transferable implicit-solvent effective pair potentials which are
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both structurally and thermodynamically well consistent with an explicit solvent reference
model.

Figure 3. Transferability of coarse grained (CG) nonbonded interaction potentials
Left panels: Hydrophobic molecules in aqueous solution98: Derivative of chemical potential (upper panel) and
activity coefficient (lower panel) as a function of the benzene mole fraction in benzene/water mixtures from
atomistic simulations (black symbols) and two types of CG models, one derived from a benzene/water system at
infinite dilution (green) and one from bulk benzene (red).
Right panel: Electrolyte solutions95: Radial distribution function (RDF) of Na-Cl (5m concentration) in atom-
istic/explicit solvent (black line), and CG/implicit solvent simulations. CG simulation without concentration
dependent dielectric constant: pink dashed line; CG simulation made transferable with concentration dependent
dielectric constant: red line. The snapshots indicate typical structures in explicit solvent corresponding to the first
two peaks in the RDF (first peak: contact ion pair; second peak: solvent shared ion pair).
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40. C. A. López, A. J. Rzepiela, A. H. de Vries, L. Dijkhuizen, P. H. Hünenberger, and
S. J. Marrink, Martini Coarse-Grained Force Field: Extension to Carbohydrates, J.
Chem. Theory Comput., 5, 3195–3210, 2009.

41. R. DeVane, W. Shinoda, P. B. Moore, and M. L. Klein, Transferable Coarse Grain
Nonbonded Interaction Model for Amino Acids, J. Chem. Theory Comput., 5,
2115–2124, 2009.

42. R. DeVane, M. L. Klein, C.-C. Chiu, S. O. Nielsen, W. Shinoda, and P. B. Moore,
Coarse-Grained Potential Models for Phenyl-Based Molecules: I. Parametrization
Using Experimental Data, J. Phys. Chem. B, 114, 6386–6393, 2010.

43. X. He, W. Shinoda, R. DeVane, and M. L. Klein, Exploring the utility of coarse-
grained water models for computational studies of interfacial systems, Mol. Phys.,
108, 2007–2020, 2010.

44. S. O. Yesylevskyy, L. V. Schafer, D. Sengupta, and S. J. Marrink, Polarizable Wa-
ter Model for the Coarse-Grained MARTINI Force Field, PLoS Comput. Biol., 6,
e1000810, 2010.

45. A. P. Lyubartsev and A. Laaksonen, Calculation of effective interaction potentials
from radial-distribution functions - a reverse Monte-Carlo approach, Phys. Rev. E,
52, 3730 – 3737, 1995.

46. A. P. Lyubartsev and A. Laaksonen, Osmotic and activity coefficients from effective
potentials for hydrated ions, Phys. Rev. E, 55, 5689–5696, 1997.

47. D. Reith, M. Putz, and F. Müller-Plathe, Deriving effective mesoscale potentials from
atomistic simulations, J. Comp. Chem., 24, 1624 – 1636, 2003.

48. C. Peter, L. Delle Site, and K. Kremer, Classical simulations from the atomistic to the
mesoscale: coarse graining an azobenzene liquid crystal, Soft Matter, 4, 859–869,
2008.

49. T. Murtola, M. Karttunen, and I. Vattulainen, Systematic coarse graining from struc-
ture using internal states: Application to phospholipid/cholesterol bilayer, J. Chem.
Phys., 131, 055101, 2009.

50. A. Savelyev and G. A. Papoian, Molecular renormalization group coarse-graining of
electrolyte solutions: application to aqueous NaCl and KCl, J. Phys. Chem. B, 113,
7785–7793, 2009.

51. A. Savelyev and G. A. Papoian, Molecular Renormalization Group Coarse-Graining
of Polymer Chains: Application to Double-Stranded DNA, Biophys. J., 96,
4044–4052, 2009.

52. A. Savelyev and G. A. Papoian, Chemically accurate coarse graining of double-
stranded DNA, P. Natl. Acad. Sci., 107, 20340–20345, 2010.

53. G. Megariotis, An Vyrkou, A. Leygue, and D. N. Theodorou, Systematic Coarse
Graining of 4-Cyano-4 ’-pentylbiphenyl, Ind. Eng. Chem. Res., 50, 546–556, 2011.

213



54. B. Mukherje, Delle Site L., Kremer K., and C. Peter, Derivation of a Coarse Grained
model for Multiscale Simulation of Liquid Crystalline Phase Transitions, J. Phys.
Chem B submitted, 2012.

55. S. Izvekov and G. A. Voth, A multiscale coarse-graining method for biomolecular
systems, J. Phys. Chem. B, 109, 2469 – 2473, 2005.

56. J. Zhou, I. F. Thorpe, S. Izvekov, and G. A. Voth, Coarse-grained peptide modeling
using a systematic multiscale approach, Biophys. J., 92, 4289 – 4303, 2007.

57. R. D. Hills, L. Lu, and G. A. Voth, Multiscale Coarse-Graining of the Protein Energy
Landscape, PLoS Comput. Biol., 6, e1000827, 2010.

58. S. Izvekov, P. W. Chung, and B. M. Rice, The multiscale coarse-graining method:
Assessing its accuracy and introducing density dependent coarse-grain potentials, J.
Chem. Phys., 133, 064109, 2010.

59. J. W. Mullinax and W. G. Noid, Recovering physical potentials from a model protein
databank, P. Natl. Acad. Sci. Usa, 107, 19867–19872, 2010.

60. M. S. Shell, The relative entropy is fundamental to multiscale and inverse thermody-
namic problems, J. Chem. Phys., 129, 144108, 2008.

61. A. Chaimovich and M. S. Shell, Relative entropy as a universal metric for multiscale
errors, Phys. Rev. E, 81, 060104, 2010.

62. A. Chaimovich and M. S. Shell, Coarse-graining errors and numerical optimization
using a relative entropy framework, J .Chem. Phys., 134, 094112, 2011.

63. J. W. Mullinax and W. G. Noid, A Generalized-Yvon-Born-Green Theory for Deter-
mining Coarse-Grained Interaction Potentials, J. Phys. Chem. C, 114, 5661–5674,
2010.

64. C. R. Ellis, J. F. Rudzinski, and W. G. Noid, Generalized-Yvon-Born-Green Model of
Toluene, Macromol. Theory Simul., 20, 478–495, 2011.

65. L. Larini, L. Lu, and G. A. Voth, The multiscale coarse-graining method. VI. Im-
plementation of three-body coarse-grained potentials, J. Chem. Phys., 132, 164107,
2010.

66. C. F. Abrams and K. Kremer, Combined coarse-grained and atomistic simulation
of liquid bisphenol A-polycarbonate: Liquid packing and intramolecular structure,
Macromolecules, 36, no. 1, 260 – 267, 2003.

67. D. Fritz, V. A. Harmandaris, K. Kremer, and N. F. A. van der Vegt, Coarse-Grained
Polymer Melts Based on Isolated Atomistic Chains: Simulation of Polystyrene of Dif-
ferent Tacticities, Macromolecules, 42, 7579–7588, 2009.

68. A. Villa, C. Peter, and N. F. A. van der Vegt, Self-assembling dipeptides: confor-
mational sampling in solvent-free coarse-grained simulation, Phys. Chem. Chem.
Phys., 11, 2077–2086, 2009.

69. O. Bezkorovaynaya, A. Lukyanov, K. Kremer, and C. Peter, Multiscale simulation of
small peptides: Consistent conformational sampling in atomistic and coarse-grained
models, J. Comp. Chem, 2012, in press, DOI: 10.1002/jcc.22915.

70. Y. Wang, S. Izvekov, T. Yan, and G. A. Voth, Multiscale coarse-graining of ionic
liquids, J. Phys. Chem. B, 110, 3564–3575, 2006.

71. V. Rühle and C. Junghans, Hybrid Approaches to Coarse Graining using the VOTCA
Package: Liquid Hexane, Macromol. Theory Simul., 20, 472–477, 2011.

72. V. A. Harmandaris, N. P. Adhikari, N. F. A. van der Vegt, and K. Kremer, Hierarchi-
cal modeling of polystyrene: From atomistic to coarse-grained simulations, Macro-
molecules, 39, no. 19, 6708 – 6719, 2006.

214



73. V. A. Harmandaris, D. Reith, N. F. A. van der Vegt, and K. Kremer, Comparison
between Coarse-Graining Models for Polymer Systems: Two Mapping Schemes for
Polystyrene, Macromol. Chem. Phys., 208, 2109 – 2120, 2007.

74. A. Mukherjee and B. Bagchi, Correlation between rate of folding, energy landscape,
and topology in the folding of a model protein HP-36, J. Chem. Phys., 118, 4733–
4747, 2003.

75. M. R. Betancourt and J. Skolnick, Local propensities and statistical potentials of
backbone dihedral angles in proteins, J. Mol. Biol., 342, 635–649, 2004.

76. V. Tozzini, W. Rocchia, and J. A. McCammon, Mapping all-atom models onto one-
bead coarse-grained models: General properties and applications to a minimal
polypeptide model, J. Chem. Theor. Comput., 2, 667 – 673, 2006.

77. M. R. Betancourt, Knowledge-based potential for the polypeptide backbone, J. Phys.
Chem. B, 112, 5058–5069, 2008.

78. D. Alemani, F. Collu, M. Cascella, and M. Dal Peraro, A Nonradial Coarse-Grained
Potential for Proteins Produces Naturally Stable Secondary Structure Elements, J.
Chem. Theory Comput., 6, 315–324, 2010.

79. R. L. Jernigan and I. Bahar, Structure-derived potentials and protein simulations,
Curr. Opin. Struct. Biol., 6, 195 – 209, 1996.

80. I. Bahar and R. L. Jernigan, Inter-residue potentials in globular proteins and the dom-
inance of highly specific hydrophilic interactions at close separation, J. Mol. Biol.,
266, 195 – 214, 1997.

81. R. L. C. Akkermans and W. J. Briels, A structure-based coarse-grained model for
polymer melts, J. Chem. Phys., 114, 1020–1031, 2001.

82. R. L. Henderson, Uniqueness Theorem for Fluid Pair Correlation-Functions, Phys.
Lett. A, A 49, 197–198, 1974.

83. J. T. Chayes, L. Chayes, and E. H. Lieb, The Inverse Problem in Classical Statistical-
Mechanics, Commun. Math. Phys., 93, 57–121, 1984.

84. M. E. Johnson, T. Head-Gordon, and A. A. Louis, Representability problems for
coarse-grained water potentials, J. Chem. Phys., 126, no. 14, 144509, 2007.

85. M. D’Alessandro and F. Cilloco, Information-theory-based solution of the inverse
problem in classical statistical mechanics, Phys. Rev. E, 82, 021128, 2010.

86. W. Schommers, A pair potential for liquid rubidium from the pair correlation func-
tion, Phys. Lett., 43, 157–158, 1973.

87. A. K. Soper, Empirical potential Monte Carlo simulation of fluid structure, Chem.
Phys., 202, 295–306, 1996.

88. V. Rühle, C. Junghans, A. Lukyanov, K. Kremer, and D. Andrienko, Versatile Object-
Oriented Toolkit for Coarse-Graining Applications, J. Chem. Theory Comput., 5,
3211–3223, 2009.

89. H. Wang, C. Junghans, and K. Kremer, Comparative atomistic and coarse-grained
study of water: What do we lose by coarse-graining?, Eur. Phys. J. E, 28, 221–229,
2009.

90. A. J. Rzepiela, M. Louhivuori, C. Peter, and S. J. Marrink, Hybrid simulations: com-
bining atomistic and coarse-grained force fields using virtual sites, Phys. Chem.
Chem. Phys., 13, 10437–10448, 2011.

91. G. M. Torrie and J. P. Valleau, Non-Physical Sampling Distributions in Monte-Carlo
Free-Energy Estimation - Umbrella Sampling, J. of Comp. Phys., 23, 187–199, 1977.

215



92. W. K. Den Otter and W. J. Briels, The calculation of free-energy differences by con-
strained molecular-dynamics simulations, J. Chem. Phys., 109, 4139, 1998.

93. B. Hess, C. Holm, and N. F. A. van der Vegt, Osmotic coefficients of atomistic NaCl
(aq) force fields, J. Chem. Phys., 124, 164509, 2006.

94. B. Hess, C. Holm, and N. F. A. van der Vegt, Modeling multibody effects in ionic
solutions with a concentration dependent dielectric permittivity, Phys. Rev. Lett., 96,
no. 14, 147801, 2006.

95. J.-W. Shen, C. Li, N. F. A. van der Vegt, and C. Peter, Transferability of Coarse
Grained Potentials: Implicit Solvent Models for Hydrated Ions, J. Chem. Theory
Comput., 7, 1916–1927, 2011.

96. R. Carr, J. Comer, M. D. Ginsberg, and A. Aksimentiev, Atoms-to-microns model for
small solute transport through sticky nanochannels, Lab. Chip, 11, 3766–3773, 2011.

97. A. Villa, N. F. A. van der Vegt, and C. Peter, Self-assembling dipeptides: including
solvent degrees of freedom in a coarse-grained model, Phys. Chem. Chem. Phys.,
11, 2068–2076, 2009.

98. A. Villa, C. Peter, and N. F. A. van der Vegt, Transferability of Nonbonded Interac-
tion Potentials for Coarse-Grained Simulations: Benzene in Water, J. Chem. Theory
Comput., 6, 2434–2444, 2010.

99. W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das, and
H. C. Andersen, The multiscale coarse-graining method. I. A rigorous bridge between
atomistic and coarse-grained models, J. Chem. Phys., 128, 244114, 2008.

100. J. F. Rudzinski and W. G. Noid, Coarse-graining entropy, forces, and structures, J.
Chem. Phys., 135, 214101, 2011.

101. A. Chaimovich and M. S. Shell, Anomalous waterlike behavior in spherically-
symmetric water models optimized with the relative entropy, Phys. Chem. Chem.
Phys., 11, 1901–1915, 2009.

102. R. Baron, D. Trzesniak, A. H. De Vries, A. Elsener, S. J. Marrink, and W. F. van
Gunsteren, Comparison of thermodynamic properties of coarse-grained and atomic-
level simulation models, ChemPhysChem, 8, 452–461, 2007.

103. M. R. Betancourt and S. J. Omovie, Pairwise energies for polypeptide coarse-grained
models derived from atomic force fields, J. Chem. Phys., 130, 195103, 2009.

104. J. W. Mullinax and W. G. Noid, Extended ensemble approach for deriving transfer-
able coarse-grained potentials, J. Chem. Phys., 131, 104110, 2009.

105. E. Brini, V. Marcon, and N. F. A. van der Vegt, Conditional reversible work method
for molecular coarse graining applications, Phys. Chem. Chem. Phys., 13, 10468–
10474, 2011.

106. J. R. Silbermann, S. H. L. Klapp, M. Schoen, N. Chennamsetty, H. Bock, and K. E.
Gubbins, Mesoscale modeling of complex binary fluid mixtures: Towards an atomistic
foundation of effective potentials, J. Chem. Phys., 124, 074105, 2006.

107. E. C. Allen and G. C. Rutledge, A novel algorithm for creating coarse-grained, den-
sity dependent implicit solvent models, J. Chem. Phys., 128, 154115, 2008.

108. E. C. Allen and G. C. Rutledge, Evaluating the transferability of coarse-grained,
density-dependent implicit solvent models to mixtures and chains, J. Chem. Phys.,
130, 034904, 2009.

109. J. Ghosh and R. Faller, State point dependence of systematically coarse–grained po-
tentials, Mol. Simulat., 33, 759–767, 2007.

216



110. V. Krishna, W. G. Noid, and G. A. Voth, The multiscale coarse-graining method. IV.
Transferring coarse-grained potentials between temperatures, J. Chem. Phys., 131,
024103, 2009.

111. A. Ben-Naim, Solvation Thermodynamics, Plenum Press, New York, 1987.

217





Particle-Based Dynamics Simulations of Multi-Protein
Systems and Cellular Compartments

Volkhard Helms, Po-Hsien Lee, Tihamér Geyer

Center for Bioinformatics
Saarland University, D-66123 Saarbrücken, Germany

E-mail: {Volkhard.Helms, Tihamer.Geyer}@bioinformatik.uni-saarland.de

Coarse-grained representations allow sampling folding/unfolding transitions of proteins in dy-
namics simulations as well as formation of molecular complexes. We briefly introduce different
types of interaction potentials used in the coarse-graining field as well as typical simulation al-
gorithms used to propagate the particle dynamics. Then, two types of applications are described.
First, we will discuss the permeation of bead-particles through nanopores. Secondly, we will
discuss the formation of molecular assemblies. For this, we will introduce network measures
that allow for an efficient description of a large number of association processes that occur in
parallel.

1 Introduction

Proteins are biopolymers and consist of one or several chains of amino acids ranging from
about 50 amino acids in length (ca. 500 non-hydrogen atoms) to many thousands of amino
acids. Around 80% of all cellular proteins — on which we will focus here — adopt a
stable, folded conformation of several nanometers in diameter that is encoded by their spe-
cific amino acid sequence. Tightly linked to this three-dimensional structure is typically
the molecular and cellular function of each protein. One could assume that the complexity
of an organism is a function of the number of different proteins encoded in its genome.
However, this is only partly true: the simple bacterium Escherichia coli has about 4.200
genes, the already much more complex yeast Saccharomyces cerevisiae has around 6.000
genes, mammals have 20.000 to 25.000 genes, and the plant model organism Arabidopsis
thaliana has even 30.000 genes coding for proteins. Thus, the complexity of an organism
cannot simply be equated with the number of genes contained in their genome sequences.
Rather it is related to the complicated architecture of the cellular circuits, so-called gene
regulatory networks, that control the transcription machinery of genes. Moreover, com-
plexity also arises from a myriad of biomolecular interactions occurring in biological cells
since about half of all cellular proteins form multi-protein complexes. On average, every
protein interacts permanently or transiently with six to eight other proteins as well as with
nucleic acids and cell membranes.

Biological cells have typical dimensions of several micrometers. Taking into account
that about 30% of the cellular volume is taken up by proteins, one cell roughly contains
about 1 billion protein copies. In fact, a recent mass-spectroscopy study quantified the
protein copy numbers in mouse fibroblast cells and found a total number of 1.15 billion
proteins1. Obviously, studying the interactions of so many proteins by atomistic modelling
approaches poses enormous problems because the number of interactions between atom
pairs to be computed at every simulation time step is immense, and also because the time
step required to sample the protein dynamics at atomistic details is in the order of a few
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femtoseconds only. However, a vibrant new research area deals with describing proteins at
coarser detail in order to reduce the number of interactions to be computed so that longer
simulation times can be reached. As an example of cutting-edge research in this field of
coarse-grained many-particle simulations we mention the work of McGuffee and Elcock
who studied a model of the bacterial cytoplasm using multi-particle Brownian Dynamics
simulations2. More precisely, they simulated the dynamic trajectories of 1000 cellular pro-
teins whose shapes were modelled in atomistic detail in an implicit solvent environment
over six microseconds. Comparison with experimental observables was made by following
the trajectories of eight “reporter” green-fluorescent proteins. When suitably equilibrated,
such simulations are nowadays able to study biomolecular processes in subcellular com-
partments that take place on microsecond time scales.

As an introduction to this field of modelling we will first introduce the simulation
methodology and then illustrate it with three applications to protein systems.

2 Coarse-Grained Simulations of Proteins

Comprehensive introductions into the field of coarse-grained (CG) protein models are pro-
vided in Refs. 3-5. Some methods employ prior knowledge about the folded conformation
of a protein. For example, elastic network models are bead-spring models that have been
successfully employed to model harmonic geometric deformations of proteins about a ref-
erence structure6. Typically, this is the folded structure of a protein determined by X-ray
crystallography. Each amino acid (residue) is represented by a single bead and spatially
neighboring residues are connected by elastic springs. Another type of models requiring
information about a reference configuration are Go-models7. These are often used for
studying protein folding mechanisms, where during the simulation the protein chain is bi-
ased towards the native, folded conformation by means of simple attractive or repulsive
non-bonded interactions between the beads. Go-type lattice simulations have allowed to
derive fundamental principles governing the protein folding process8.

2.1 Coarse-Grained Force Fields

In the following, we will focus on unbiased force fields that can be applied to model tran-
sitions between folded and unfolded conformations of proteins and to model association
and dissociation processes. Force fields that refer to physical interactions express the total
energy of the system, U , as a sum of various contributions.

U =
∑
i

ulocali +
∑
i

∑
j>i

uij +
∑
ijk

uijk + ... (1)

Here, ulocali denotes a local interaction term dependent on a single site, uij models the
effective interaction between sites i and j, and uijk (and potentially higher order terms)
denote multibody interactions between sites i, j, k etc. The term “site” stands here for the
center of a bead that may represent either a part of an amino acid, an entire amino acid, or
even larger structural units. Three methods are frequently employed for constructing such
coarse grained potentials4: Boltzmann inversion of distribution functions, inverse Monte
Carlo sampling, and force matching.
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The force-matching method presented by Voth and coworkers9 determines the coarse-
grained potential function such that the derived mean forces acting on the CG sites show the
least quadratic deviations from the average forces computed from an all-atom molecular
dynamics (MD) simulation of the same system.

Boltzmann inversion of distribution functions can be either applied to distributions
sampled by higher resolution models or to distributions characterized by experiments. One
example of the latter category are knowledge based protein force fields that exploit the
accumulating amount of data on the structures of folded proteins5. Here, one constructs an
effective energy function based on the distributions of inter-residue distances, virtual-bond
lengths, bond angles, dihedral angles, and other geometric parameters derived from struc-
tures deposited in the Protein Data Bank10. The basic equation used in deriving statistical
potentials by Boltzmann inversion5 is

W (x; s) = −RT ln
Nobs(x; s)

Nref (x; s)
, (2)

where W (x; s) is the estimated potential of mean force of a fragment with geometry x
and amino acid sequence or secondary-structure content s, R is the universal gas constant,
and T the absolute temperature. Nobs(x; s) is the number of occurrences of fragments of
this sequence and close to this geometry in the reference data set, and Nref (x; s) is the
respective count in the absence of any interactions.

2.2 Integration Algorithms

When the atomistic details of the protein(s) are known, for example from crystal structures,
molecular dynamics (MD) simulations can be performed to study the conformational dy-
namics of the protein(s). Given a many-particle interaction potential U , the MD method
propagates the atomistic coordinates by a finite-difference propagation algorithm using
time-scales on the order of the fastest degrees of freedom that are modelled explicitly. In
atomistic simulations these are the vibrations of chemical bonds. For this, Newton’s equa-
tions of motion are solved to obtain the changes of the coordinates and momenta of all N
particles from the derivatives of U with respect to the coordinates of each of the particles:

mi
d2ri
dt2

= −∇riU with i = 1, 2, . . . , N (3)

Here, ri is the three dimensional vector of the Cartesian coordinates of particle i, and mi

is its mass. The derivative−∇riU(ri) yields the force acting on particle i. MD is the most
popular, but also most expensive method for studying the dynamics of complete proteins.

As long as the dynamics of individual proteins is investigated, the simulation box can
be made relatively small so that only a part of the overall computational effort is spent
on the explicitly modelled but otherwise uninteresting water molecules around the protein.
For the diffusional association of two or more proteins, however, the simulation box has
to be made much larger and most of the computational cost is spent just to propagate the
water molecules. Thus, an efficient way to speed up the simulations is to replace the large
number of explicitly modelled waters by an implicit solvent. Then, all the resources can
be used to actually propagate the proteins.
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If the solvent is removed from the simulation, its effects on the dynamics of the
proteins, however, have to be added back explicitly via effective interactions. The two
most import effects of the solvent are the friction due to the displacement of the solvent
molecules when the proteins are moved, and the random kicks on the proteins resulting
from the thermal motion of the solvent molecules. Furthermore, the interactions between
the proteins have to be adapted to include, e.g., screening by counter ions, and so-called
hydrodynamic interactions (HI) describe how the solvent displaced due to the motion of
one protein pushes onto the neighboring proteins.

The friction, i.e., the conversion of the directed kinetic energy of a protein into undi-
rected thermal motion of the surrounding solvent is modelled by a Stokes model, where
the friction force F (r)

i is proportional to the velocity of the protein:

F
(r)
i = −γivi (4)

The friction coefficient for a sphere scales with its radius a as γ = 6πηa, where η is
the solvent viscosity. Thus, friction increases slower than the cross sectional area of a
moving particle or its mass, so that that friction is only a minor effect for large, macroscopic
particles, while it dominates the dynamics of small proteins or molecules.

In an atomistic simulation the collisions between the solvent molecules and the larger
proteins can all be observed individually. However, for an implicit-solvent model that is
meant to mimick effects on long time-scales these details do actually not matter. It is
enough to know that, on average, the kicks do not lead to a directed displacement when
the solvent near to the protein is isotropic. The next statistical moment is the variance,
i.e., the strength of the kicks. It is related to the solvent temperature. When the mobility
of the protein is expressed via its diffusion coefficient D = kBT/γ, the displacements
Ri resulting from the random kicks of the solvent molecules over a time interval ∆t are
conveniently expressed as

〈Ri〉 = 0 and 〈RiRk〉 = 2Dik∆t. (5)

These findings, which relate the thermal energy kBT transferred from the solvent onto
the protein to the dissipation of the protein’s kinetic energy via friction are the core of
Einstein’s seminal explanation of Brownian motion11. They are enough to describe the
diffusive motion of a single particle without any external fields.

For more interesting scenarios, however, multiple particles and the forces between them
have to be considered, too. For a short derivation of a suitable implicit solvent propagation
scheme we go back to the many-particle Newton equation (Eq. 3) of the protein(s) and the
many solvent molecules, which can also be written as

mi
dvi
dt

= Fi =
∑
k 6=i

F (rik), (6)

where the changes of the particle velocities vi are due to the sums of all external forces Fi.
In the atomistic description, these are pairwise, distance-dependent, conservative forces
F (rik). This many-particle system of Newton equations can be simplified into an implicit-
solvent Langevin equation with the above explained friction term and the random kicks by
the solvent fi :

dvi
dt

=
1

mi
(Fi + fi − γvi) (7)
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The random forces fi can be calculated from the random displacements (Eq. 5) as12

〈fi〉 = 0 and 〈fifk〉 =
2(kBT )2

Dii∆t
δik. (8)

Assuming that the total force Fi acting on particle i is constant for a short time interval
∆t, the above Langevin equation (Eq. 7) can be integrated analytically. For convenience
we will drop the particle index i in the following and use F for the sum of the direct
interactions between the proteins Fi plus the random kicks fi. Then, the velocity v(∆t) at
the end of the timestep and the displacement ∆x(∆t) during ∆t are given by

v(∆t) =
F

γ
+

(
v0 −

F

γ

)
exp

[
−γ∆t

m

]
(9)

and

∆x(∆t) =
F

γ
∆t− m

γ

(
F

γ
− v0

)(
1− exp

[
−γ∆t

m

])
, (10)

where v0 is the velocity of the particle at the beginning of the timestep. These two Eqs. 9
and 10 can now be used directly to propagate the particles in an implicit solvent Langevin
Dynamics (LD) scheme12. It assumes that all solvent molecules can be replaced by a
velocity dependent Stokesian friction term and random kicks, and that the timestep is small
enough so that the (configuration dependent) forces do not really change during ∆t.

As can be seen from the LD equations (Eqs. 9 and 10), the contribution of the initial
velocity v0 decreases with a time constant τ = m/γ, which is correspondingly called
the velocity relaxation time. As mentioned above, τ becomes shorter than the relevant
timescale ∆t of the particle motion for larger particles. For colloidal particles or the pollen
grains for which the stochastic motion had originally been observed by Robert Brown in
1827, τ is much smaller than a typical observation interval ∆t and then the LD equations
can be simplified to the well-known equations of Brownian dynamics (BD):

v(∆t) =
F

γ
and ∆x(∆t) =

F

γ
∆t. (11)

In this so-called overdamped regime the velocity instantaneously follows the force and
can consequently be ignored during the simulation. This also means that in the Brownian
regime no ballistic motion occurs, i.e., the particles grind to a halt as soon as the forces
vanish. Remember, that in Eqs. 9, 10, and 11 the force F consists of external, inter-particle,
and random contributions.

The most famous implementation of the BD equations is the algorithm by Ermak and
McCammon13. In their algorithm the random forces are evaluated independently from the
external forces and the displacements according to Eq. 5 are used directly. They were also
the first ones who showed how hydrodynamic interactions (HI) that lead to correlations in
the velocities of the particles via the displaced solvent can be considered, too. For more
details and an efficient approximation to the many-body correlations see14.

Other BD algorithms also exist in which the simple first-order integrator of Eq. 11 is
replaced by more efficient schemes15–17. These, however, do not include HI — which have
been shown recently to be important for protein-protein association processes18 or flexible
coarse-grained protein models19, 20.
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3 Applications

3.1 Protein-Protein Association

When applied to a system of two proteins, the BD method just introduced describes the
relative motion of the two proteins as a diffusive motion of two rigid bodies subject to ex-
ternal forces. The McCammon and Wade groups developed a computational scheme where
one protein is kept fixed and the electrostatic potential around this protein is computed on a
cubic grid by numerically solving the Poisson-Boltzmann equation21, 22. This computation
is done only once during initialization. In BD simulations, the second, moving protein may
then be approximated by about 20 to 30 suitably placed electrostatic point charges23. At
each BD step, the Coulombic interactions are computed from these effective charges and
the electrostatic potential interpolated from the nearest grid points. The spatial shapes of
the proteins are mapped onto grids, too, and a rejection algorithm prevents the spatial over-
lap of the proteins. Compared to atomistic MD simulations of the same system, the BD
method is orders of magnitude (106 to 109 times) more efficient. By statistical averaging
over a large number of BD trajectories, BD simulations have been shown to successfully
reproduce experimental kon rates for the association of electrostatically complementary
protein-protein pairs24. Here, a successful binding event is counted as soon as two to four
out of a given set of characteristic inter-protein contacts are established24.
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Figure 1. (Top) For visualizing the preferred association pathways, the relative position of the second protein
during a BD trajectory with respect to the first protein kept fixed at the origin is projected onto the plane slicing
through the center of mass of the fixed protein. In this particular orientation at a separation distance d1−2, the
second protein is located off-center at an angle θ from the line connecting the two proteins in the bound complex.
(Bottom) Color-coded heat map showing the accumulated occupancies in the plane.

Dr. Alexander Spaar from our group has introduced the characterization of the free en-
ergy landscape for protein-protein interactions by on-the-fly-analysis of BD trajectories25.
For this, he made use of the fact that BD trajectories mostly sample the low-energy val-
leys of the underlying free energy landscape. By storing the configurations visited during
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the simulations in two occupancy maps for translations and rotations, one can deduce the
shape of this unknown free energy surface. For this, the contributions of electrostatic and
desolvation energies, as well as the translational and rotational entropy losses, are stored
in matrices that represent the three-plus-three-dimensional configuration space. These ma-
trices have the same grid sizes as the occupancy maps and they are computed separately
for the positional and orientational coordinates. Fig. 1 illustrates the mapping of visited
positions onto a two-dimensional hemisphere at a particular protein-protein distance d1−2.
To compute the local entropy loss at a given position and orientation with respect to the
unbound state, the occupancy landscape is interpreted as a probability distribution. Boltz-
mann’s definition of the entropy S then leads to

S = −kB
∑

PnlnPn (12)

where the Pn are the probabilities for each state n.
With the energy and entropy contributions as functions of the translational and rota-

tional coordinates, the free-energy landscape of the encounter process is given by the sum
of the electrostatic energy ∆Eel computed during the BD step, the desolvation energy
∆Eds estimated using an approximative formula, and the change of the translational/rota-
tional entropy with respect to that of bulk solution:

∆G = ∆Eel + ∆Eds − T∆Str

∆Str = ∆Strans + ∆Srot
(13)

We applied this procedure to the association of the proteins barnase and barstar26, see
Fig. 2. The obtained ∆G profile along the lowest free energy pathway agrees well with
that obtained by atomistic MD simulations in explicit solvent for the same protein:protein
complex using an umbrella potential restraint27 except for very close distances. There,
the atomistic PMF continues to proceed downhill towards the bound complex due to an
enhanced electrostatic attraction caused by a strongly ordered solvent28 whereas the BD
potential shows an upward swing. The MD simulation could, of course, only sample the
approach along a particular one-dimensional pathway, whereas with BD the complete as-
sociation funnel could be characterized. This example illustrates both the numerical effi-
ciency of the BD method in sampling relative protein positions at medium to large distances
and its limitations at very short separation distances.

In the same way, we have studied the interaction of cytochrome c with membrane-
embedded cytochrome c oxidase29. Recent applications by other research groups that uti-
lized the implementation of this sampling scheme in the SDA package of Rebecca Wade’s
group22 include studying the association of TEM1-beta-lactamase and its inhibitor, beta-
lactamase-inhibitor protein30 and the assembly of icosahedral virus shells31.

3.2 Diffusion of Bead Particles through Nanopores

A crucial process in biological cells is the translocation of newly synthesized proteins
across cell membranes via integral membrane protein pores termed translocons. With re-
cent techniques artificial porous membranes can be built with similar pore dimensions as
the translocon system, i.e., with radii of a few nanometers. These artificial membranes
then allow studying the behavior of the bare proteins without the inherent complications
involved in modelling the translocon as well. To study the permeation of proteins through
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Figure 2. Energy profiles for the association of barnase and barstar as a function of the separation distance of the
two protein centers: The electrostatic energy ∆Eel (upper left), the desolvation energy ∆Eds (lower left), the
translational/rotational entropy loss (upper right), and, as the sum of all, the free energy ∆G (lower right).

such porous membranes, we used coarse-grained BD simulations where proteins were
modeled as spherical beads with a radius of 1.67 nm. This equals the hydrodynamic radius
of the protein cytochrome c, i.e., its radius plus the thickness of its hydration layer. The
free diffusion coefficient of the protein particles was set to D = 1.48×105nm2/ps. Urea-
unfolded cytochrome c was represented by bead-spring polymers with 2 to 10 beads such
that the experimentally determined radius of gyration and diffusion coefficient were repro-
duced. The pores were represented by cylindrical openings in the membrane with varying
radius rpore and length Lpore. To reduce the complexity of the system, a simple repulsive
Lennard-Jones potential was used between the different proteins and between the proteins
and the membrane. Diffusion was driven by a concentration gradient created across the
porous membrane. For this, a particle insertion/removal algorithm32 allowed us to keep the
particle concentrations at the walls of the simulation box above and below the membrane
at fixed values ρcis and ρtrans. This setup is sketched in Fig. 3.

In the simulations, pore radii of 4 to 16 nm and pore lengths between 5 and 40 nm were
used to investigate how the pore geometry affects the diffusive flux Φ across the membrane.

An analytical continuum model of Brunn et al.33 predicts that the diffusive flux Φ
across a membrane with pores of length Lpore and radius rpore is determined by the pore
size and its aspect ratio rpore/Lpore as

Φ = C
ρcis − ρtrans

απrpore + Lpore
∝ 1

Lpore(1 + α′rpore/Lpore)
(14)
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Figure 3. Sketch of the setup of the nanopore system: the cis and trans reservoirs of the experiment are modelled
by constant density boundary conditions32 that fix the protein densities to ρcis and ρtrans, respectively. Unlike
depicted in this sketch, in the simulations only one representation of the cytochrome c was used at a time. The
models ranged from a single sphere for the folded variant up to bead-spring models with N ≤ 10 subunits for
the denatured, unfolded proteins. The resulting diffusive particle current Φ across the membrane was determined
for various pore lengths Lpore and radii rpore.

In this equation, C is a normalization constant that contains the number of pores, their
cross sections, and the diffusion coefficient of the particles. In the analytical continuum
model α is a constant close to unity.

This equation was compared to the simulation results via the parameters C and α.
Fig. 4 shows for one example how the predicted decrease of Φ with increasing Lpore for
a constant rpore = 8 nm is reproduced by the simulations. Obviously, reproducing this

15 

 

 

Figure 3. The flow rate decreases with the pore length. Dash line is the fitting curve. 

 

(9) 

 

Table 1. Fitting coefficients of the formula ! = C1/(C2+ Lpore) 

Particle size C1 C2 R2 

Normal 11.22 31.67 0.99 

Tiny 9.51 23.73 0.99 

Triple 10.75 34.54 0.99 

    

Theoretical value 8.67 26.29  

Theoretical value was obtained by substituting the variables of Eq. 3 with the values of our 

system setup. 

Figure 4. Decrease of the diffusive flux Φ of folded cytochrome c across a membrane with pores of length Lpore
and radius rpore = 8 nm. The triangles are simulation results, the dashed line is a fit using Eq. 14.
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idealized case was only done as a control. The simulation model now allows to investigate
the effects of varying interaction potentials between the membrane and the particles as
well as to compare how unfolded proteins translocate through narrow pores. Also, the pore
dimensions can be further decreased and the pore geometry can be made more complicated
so that the pore may finally resemble a coarse-grained model of the cellular translocon.

3.3 Using Dynamic Interaction Graphs to Analyze Multi-Protein Association

Whereas simulations with only two or three particles can be easily analyzed by short
scripts, it can become a tedious and computationally demanding task to monitor whether
and when complexes with tens to hundreds of constituents are formed correctly. This prob-
lem becomes even more pronounced when more realistic simulations of large numbers of
different proteins are considered, where more than one complete complex can be formed
or where the complete complex is in a dynamic equilibrium with its components. In such
a simulation, partial complexes of various sizes may be found together with complete ones
and even with complexes which are assembled incorrectly. For situations such as the one
described above, where one wants to identify a few target complexes in a sea of monomers
and partially assembled intermediates, this task can be conveniently performed by map-
ping the spatial simulation onto a protein interaction graph, which can then be analyzed
conveniently with efficient, well-known graph measures and algorithms34. This protein
interaction network built from the simulation differs from the well-known protein-protein
interaction networks because, here, each of its nodes denotes an individual copy of a pro-
tein. Additionally, the graph is generated dynamically. This means that links appear and
disappear over time, as the proteins bind and unbind from each other during the spatial
simulation.

r
ik
 ! "

Figure 5. Mapping of a snapshot of a spatial simulation (left) onto a protein association graph (right) via a
distance criterion. The red sides of the particles in the left panel are meant to attract each other. Correspondingly,
a link is added between the corresponding nodes of the network when two of the red ends are closer together than
the specified distance δ as indicated by the circles. To facilitate the comparison of the two plots, the network is
arranged analogously to the spatial snapshot, even though the actual layout contains no information.

For converting the spatial snapshot into a network representation, each particle is as-
sociated with a node of the graph and their contacts or proximity are used to add links
between the respective nodes. The most simple criterion for a link is a distance criterion as
sketched in Fig. 5. The left-hand side depicts a spatial snapshot of simple dipolar particles
with a “sticky” red half and a non-binding grey end. Whenever the red ends of two particles
are closer than a specified minimal distance δ as indicated by the green circles, a link is
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established between the respective nodes. The network resulting from this example snap-
shot is depicted on the right-hand side, here with a graph layout that resembles the spatial
configuration. Note, however, that the information about the binding or association of the
proteins is contained in the connectivity of the graph and not in its layout (which could
have been drawn completely differently, too). The main advantage of doing the analysis
on the graph is that any spatial configuration is represented as a set of binary connections,
whereas in real-space also higher order terms as in Eq. 1 have to be considered. Whereas
the number of possible binary distances grows quadratically with the particle number N ,
the number of angles, defined via three particle positions, already increases as O(N3).
Thus, when regular structures have to be identified in many-particle simulations, a lot of
time is required to loop over all possible three- and maybe even four-body configurations.
One of the examples below will show how icosahedral complexes of twelve particles can
unambiguously be identified from their signatures in the connectivity of the graph which
is based solely on binary interactions.

The most basic measure of a network is its size, i.e., the numbers of nodes, N , and
links, L. Most often, the total number of particles in a simulation is constant. Thus, the
number of links already gives an indication about how many contacts are formed in the
spatial simulation. A connected component is a set of nodes that are all reachable from
each other. Such a connected component of the graph representation corresponds to a
cluster of particles in real space. Once the graph is set up (in O(N2) time), checking for
connected components is straightforward and their size distribution directly yields the sizes
of the clusters in the simulation. Whereas the network and connected component sizes are
rather global measures, a basic local quantifier is the so-called degree k of a node. It gives
the number of links attached to this node. The degree distribution

P (k) =
nk
N

(15)

represents the normalized counts of how many nodes have a degree of k. A well-peaked
P (k) indicates a rather regular network structure, whereas a broad distribution of degrees
shows that the underlying spatial configuration is inhomogeneous (also see the second ex-
ample of Ref. 34). Further simple network measures are the clustering coefficient Ci(k)
that counts which fraction of the k neighbors of particle (node) i are themselves connected,
or the distribution of shortest path lengths D(l) which can be used to quantify the com-
pactness of the connected components. For further graph measures see, e.g., the reviews
by Albert and Barabási35 or by Costa et al.36.

As a first application of this graph analysis we review simulations that were inspired by
the formation of icosahedral virus capsids. In these simple Monte-Carlo simulations par-
ticles with suitably arranged binding patches could form icosahedral complexes of twelve
particles34. The simulations with up to 200 monomers were then mapped onto graphs and
tested for the well-defined network signatures of the highly symmetric icosahedral com-
plexes. Fig. 6 shows a few examples of observed complexes, both of the correctly formed
icosahedron (second row) and of incorrectly assembled complexes of various sizes. Once
the graph is set up, it is numerically much faster to identify the connected components and
determine the degree distributions, the clustering coefficients, and the path length distribu-
tions for each of these typically small subgraphs than to perform a similar analysis in real
space. And even setting up the graph was not expensive, as only two-body distances were
required.
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Figure 6. Network signatures are used to identify correctly assembled icosahedral complexes: the first column
shows the spatial configurations of some example complexes, for which the next four columns give the corre-
sponding association graphs, the degree distributions P (k), the degree-dependent clustering coefficients C(k),
and the distribution of shortest all-neighbor path-lengths, D(l). A correctly folded icosahedral complex is shown
in the second row. Its high symmetry leads to well-defined signatures in its network measures. Any deviation
from either the correct size or configuration, as observed in the three imperfectly assembled complexes, leads to
a smearing out of the signature profile of contacts. This figure was adapted from Ref. 34.

Essentially, Fig. 6 shows details derived from single snapshots. It is straightforward
to count the number of icosahedra per snapshot and thus to observe how fast these model
virus capsids form during the course of the simulation. Similarly, the evolution of the
connected component size distribution vs. time can be used to visualize and to quantify
the dynamics of transient cluster formation and break-up as shown in the next example20

(see Fig. 7). The upper row shows two snapshots from a simulation of 27 dipolar particles
(see Fig. 5). The attraction was weak so that complexes could only form transiently. The
lower panel shows the evolution of the observed cluster sizes over time with the two arrows
indicating the two snapshots.

Especially for many-particle simulations the network analysis is an efficient and pow-
erful tool to visualize the dynamics quantitatively, to identify specific (small) target com-
plexes via their signatures, or to characterize the degree of ordering in large many-particle
agglomerates. In principle, all these analyses could be done in real space, too, but a graph
is the natural, and thus most appropriate data structure to store and to handle connectivity
even for very many particles.
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Figure 7. Visualization of the dynamics of contact formation and break-ups during a BD simulation of 27 dipolar
particles with periodic boundary conditions. The top row illustrates two snapshots. The left one contains one of
the largest complexes observed, the right one was taken from an interval where only small complexes with up to
five particles existed. The lower panel shows the distribution of occurring cluster sizes vs. simulation time. Each
dot denotes a cluster of a given size found in the snapshot. The large fluctuations in this plot indicate the highly
dynamic nature of the simulation in which the particles had only a weak attraction with each other. The locations
of the two snapshots shown on top are indicated by arrows. This figure was adapted from Ref. 20.

4 Summary and Outlook

On the example of several case studies, we showed how coarse-grained implicit solvent
Brownian Dynamics (BD) simulations can be used efficiently to investigate the diffusional
dynamics of protein association ranging from a pair of proteins up to many-particle sys-
tems. Compared to atomistic simulations in an explicit solvent, such BD schemes are
many orders of magnitude faster because the number of particles is dramatically reduced.
The basic idea is that for long-time trajectories it is not necessary to follow the path of
each single water molecule. All what is needed from the internal structure of the solvent
is the effective friction that is felt by the large proteins when they push away the solvent
molecules and the random thermal kicks from the solvent onto the proteins. Plugging
these effective interactions into the many-particle Newton equation leads to a few-body
Langevin equation for the proteins alone, which can be used to propagate small proteins
and peptides12. For larger proteins the observation (simulation) timesteps can be made
longer and then the well-known BD propagator is recovered in the limit of a vanishing
velocity relaxation time. This simple simulation method has become a workhorse tech-
nique since about three decades, and interest in such coarse-grained methods is increasing
as larger and larger biological systems are being simulated.

One of the main applications of BD has been the estimation of association rates. Our
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first example showed that beyond the mere rate constants the complete free energy land-
scape can be recovered25, 26 when the configurations visited during the trajectories are in-
terpreted as occupation probabilities in the two-particle configuration space.

Our second example demonstrated how a non-equilibrium scenario can be used to in-
vestigate the translocation of folded and unfolded proteins through narrow nanopores with
biologically relevant diameters. A most simple model with only repulsive interactions con-
verges to the analytically derived dependency of the diffusive flux on the pore geometry.
Based on this scaffold we can now investigate how the types and strengths of the interac-
tions and the folding state of the protein affect the translocation process. Further, we can
add details to the now still cylindrical pores to closer mimick real biological translocons.

Our third example demonstrated that association dynamics and complex formation
in many-particle simulations can conveniently and efficiently be monitored and analyzed
quantitatively with the help of dynamic association graphs. In these graphs, which can be
set up with distance or energy criteria, the information about the sizes and the ordering
of the complexes is encoded only using binary interactions. In contrast, spatial snapshots
require already three particle positions for the definition of contact angles.

Other recent methodological developments in our group that further widen the appli-
cability of coarse-grained implicit-solvent methods like BD are a fast approximation to
evaluate the hydrodynamic many-body correlations14 and the actual use of the Langevin
dynamics (LD) propagation scheme which here only served to derive the BD equations of
motion. In fact, the LD propagation allows to use coarse-grained techniques even for small
particles such as parts of an amino acid for which the approximation of long observation
times used for BD breaks down due to the small timesteps required for the fast dynamics12.
HI, on the other hand, are crucial for flexible multi-bead models of proteins20 that then al-
low to investigate the folding even of larger proteins. These recent developments aid in
closing the resolution gap between the atomistic and united atom approaches for individ-
ual proteins, on one hand, and the simplifying many-body techniques like BD and LD, on
the other hand. Now, for each combination of system size, resolution, and numerical costs
there is an appropriate description at hand.
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29. A. Spaar, D. Flöck, and V. Helms, Association of cytochrome c with membrane-bound
cytochrome c oxidase proceeds parallel to the membrane rather than in bulk solution,
Biophys. J. 96, 1721-1732, 2009.

30. M. Harel, A. Spaar, and G. Schreiber, Fruitful and Futile Encounters along the Asso-
ciation Reaction between Proteins, Biophys. J. 96, 4237-4248, 2009.

31. K. M. ElSawy, L. S. Caves, and R. Twarock, The impact of viral RNA on the associ-
ation rates of capsid protein assembly: bacteriophage MS2 as a case study, J. Mol.
Biol. 400, 935-947, 2010.

32. T. Geyer, C. Gorba, and V. Helms, Interfacing Brownian Dynamics Simulations, J.
Chem. Phys. 120, 4573-4580, 2004.

33. P. O. Brunn, V. I. Fabrikant, and T. S. Sankar, Diffusion through Membranes — Effect
of a Nonzero Membrane Thickness, Q. J. Mech. Appl. Math. 37, 311-324, 1984.

34. F. Lauck, V. Helms, and T. Geyer, Graph measures reveal fine structure of complexes
forming in multiparticle simulations, J. Chem. Theor. Comput. 5, 641-648, 2009.

35. R. Albert, and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod.
Phys. 74, 47-97, 2002.

36. L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas, Characterization
of complex networks: A survey of measurements, Adv. Phys. 56, 167-242, 2007.

234



Algorithmic Rethinking and Code Reengineering
for Truly Massively Parallel ab initio

Molecular Dynamics Simulations

Costas Bekas and Alessandro Curioni

IBM Research - Zurich
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Ab initio molecular dynamics simulations are indispensable tools in the hands of researchers and
practitioners, that have pushed the frontiers of knowledge to a large extend. They have been
very successful in diverse fields ranging from solid-state physics, to amorphous materials and
liquids to biophysics and biochemistry. This power though comes at a staggering computational
cost, thus ab initio molecular dynamics codes were always at the forefront of High Performance
Computing. Indeed, simulations of this kind have benefitted tremendously from the advent of
massively parallel machines. In this work we provide concrete examples of the systematic work
in algorithmic rethinking and code re-engineering that is required to bring these codes to the
next level and render them ready to use machines with millions of threads. We believe the
lessons learned to serve as examples for future significant improvements.

1 Introduction

Ab initio molecular dynamics is the combination of first-principles electronic structure
methods with molecular dynamics based on Newton’s equation of motion. The use of elec-
tronic structure methods to calculate the interaction potential between atoms overcomes the
main shortcomings of the otherwise highly successful pair potential approach. In partic-
ular, with ab initio methods many-body effects are included, they are parameter-free, and
are able to adjust to new chemical situations that may be encountered during a simulation,
for example when chemical reactions or structural phase transitions occur. In their seminal
paper1, Car and Parrinello introduced a new method that allows the efficient propagation of
the electronic wave function together with the atomic cores. Although the method is very
general, it is primarily used together with the Kohn-Sham approach to density-functional
theory. The method has proved to be valuable in many fields. Recent applications include
topics in traditional solid-state physics, surface science, interfaces, glasses and amorphous
systems, liquids and solutions, catalysis and other chemical reactions, as well as prob-
lems from biophysics and biochemistry. For overviews of applications, see recent review
papers2–4

The combination of a computationally demanding electronic structure method with
molecular dynamics requiring thousands of force evaluations render ab initio molecular
dynamics simulations highly dependent on high-performance computing resources. Many
parallel implementations, following various strategies, have been reported in the litera-
ture2, 6–12 over the past decade. To be able to push the applications from originally a few
atoms to now routinely several hundreds of atoms, it was instrumental to adapt algorithms
and implementations to modern massively parallel architectures2.
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Achieving extreme scaleout to massively parallel architectures requires a systematic
approach and work. The goal is to eliminate all bottlenecks that appear when we require
to scale to millions of threads. It is crucial to say that often, for even moderate number
of processors, these parts of the code may account for only a small fraction of the over-
all runtime. However, as Amdahl’s law predicts, they tend to dominate the overall run
time at massively parallel runs. On the other hand, it is equally important to design new
methods that push the frontiers of scalability for the key kernels of the code as well. We
describe perfect examples of this systematic approach in this lecture. In Sec. 2 we ana-
lyze a hierarchical parallelization approach for 3D Fast Fourier Transforms that is able to
push scalability almost two orders of magnitude further than traditional parallel 3D FFT
approaches. Sec. 3 illustrates how it is possible to completely rethink and re-engineer
well known but not high performance, algorithms for wavefunction orthogonalization and
render them into massively scalable and high performance kernels. In particular, we de-
scribe block Gram-Schmidt schemes that BLAS3 based and are particularly suited for the
interconnects of modern supercomputers. Finally, in Sec. 4 we show how we can render
fully scalable initialization from atomic wavefunctions. This is an example of non-scaling
original kernel, to which little (if any) attention was paid to, which however becomes the
bottleneck for large scale simulations with thousands of atoms.

A word about the computational platforms. Clearly, large scale simulations require
massively parallel machines. We focused on the IBM BlueGene supercomputer series, that
with its fast and multimodal interconnects and the overall balanced (and thus scalable) de-
sign allows for very fast large scale simulations to become possible. However, we stress
that the lessons learned are not limited to this architecture only, but we claim them to be
widely applicable. The main reason stems from the strong trends in modern supercomput-
ers for localized networks of higher dimensions (i.e. toruses), multicore nodes and limited
memory/network bandwidth per core.

2 Task Groups Strategy for 3D Parallel FFTs

A significant number of popular and highly successful electronic structure codes use a
plane wave basis to discretize the Schrödinger equation and thus rely on heavy use of 3D
Fast Fourier transforms. Thus, it is natural to spent a lot of efforts in developing highly
efficient parallelization strategies for 3D FFTs. We describe here a scheme that exploits
opportunities for hierarchical parallelism. In particular, the scheme is based on a Task
Groups parallelization strategy that concurrently performs several parallel 3D FFTs, one
per each group of processors. The approach was first implemented in CPMDa,5 and was
later incorporated in Quantum-Espresso (starting from the CPV subtree13) (several recent
similar implementations in other codes exist as well).

In plane wave codes, wavefunctions Ψρ = [ψ1, . . . , ψocc] are expanded in Fourier
space, where occ is the total number of valence electrons, which in turn depends on the
type and number of the involved atoms. In medium size simulations occ is in the order
of several hundreds, while large simulations will push occ to thousands or even tens of

ahttp://www.cpmd.org
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Figure 1. Structure of the standard parallel 3D FFT.

thousands. The charge density ρ(r) at position r in real space is given as

ρ(r) =

occ∑
i=1

|ψi(r)|2. (1)

Observe that since the wavefunctions are expanded in Fourier space, computation of charge
density in Fourier space would entail doubly nested summations. Instead, it is performed
in real space. To this end, the wavefunctions are transformed back to real space by means
of inverse 3D FFTs. In the case of P available processors, all of them can be devoted to
a single parallel 3D FFT. On the other hand, we can do G, (G � occ) parallel 3D FFTs
concurrently. We define G groups of processors, each of which works on a single parallel
3D FFT. Thus, the number of loops in computing the charge density is docc/Ge (special
handling of the last loop takes care of the case that occ is not divided exactly by G).

Performing one parallel 3D FFT at a time, thus using all available processors, limits
scalability. Here is why: The Fourier coefficients of the wavefunctions are organized in a
x − y − z 3D mesh in Fourier space. For all wavefunctions, each processor is assigned a
number of pencils across the z (vertical) direction. Fig. 1 (left cube) illustrates the case for
two processors and one wavefunction. The 3D inverse FFT is performed as follows:

1. 1D inverse FFTs across the z (vertical) direction are computed independently.

2. An all-to-all global communication distributes the results to all processors, so that
each processor ends up with a number of complete x − y planes (see right cube of
Fig. 1).

237



3. Then, 2D inverse FFTs are performed independently by each processor without the
need for further communication.

It is clear that if the number P of available processors is larger than the number of x − y
planes, which is the mesh dimension across the z direction, some processors will get no
planes at all. In general, the scalability of this scheme is limited by the largest dimension of
the FFT mesh. For parallel architectures with a moderate number of available processors
this limitation is not severe as practical runs of ab initio codes use hundreds of x−y planes.
However, on massively parallel architectures we need to utilize thousands of processors and
thus we need a different parallel 3D FFT scheme. Our solution is to exploit opportunities
for hierarchical parallelism.

Observe that in order to calculate the charge density ρ(r) by means of (1) we need to
iterate through a loop of 3D FFTs, equal to the number occ of valence electrons. The Task
Groups (TG) strategy will assign different groups of processors to different wavefunctions.
Suppose that a processor pe is empty, in the sense that no x− y planes would be assigned
to it if all P processors were to participate in an inverse 3D FFT. Then, since the number
of its peers in the group will be P/G we can choose the number of groups G so that a
processor will be never empty. We outline the TG scheme in Tab. 1.

The concurrent implementation of G 3D FFTs is organized on a 2D mesh of proces-
sors. Each processor belongs to its row group as well as to its column group. Global
communications are restrained within these groups. Iteration k performs the 3D FFTs
needed for wavefunctions (k-1)*G+i, i=1,...,G. Remember that each processor
holds only part of the Fourier coefficients for each wavefunction. Thus, the all-to-all
within the row group (line 2) brings to each column group all the Fourier coefficients for
the wavefunction assigned to it. For example, at iteration k the j − th processor of the
first column group will send its parts of the (k-1)*G+i, i=2,...G wavefunctions, to
its row group peers i = 2, . . . , G, respectively, while it will receive from them all needed
parts for the (k− 1) ∗ G + 1 wavefunction. Then, all processors in each column group can
perform a parallel 3D FFT (line 3). Finally, the charge density ρ can be accumulated by
means of a global reduction across processors in each row group (line 4).

The Task Groups scheme requires additional memory. Remember that each proces-
sor holds a part of the wavefunctions coefficients for all eigenvalues. Thus, in order for a
column group to work exclusively on a single eigenvalue each processor needs to receive
additional wavefunction coefficients from its row group peers. The amount of the extra
memory depends upon the number G of Task Groups. There is a tradeoff between the
number of available processors P and the number of Task Groups. In order to exploit a
large number of available processors we need many Task Groups. On the other hand, this
will increase the amount of additional local memory as well as the traffic on the intercon-
nect for the initial all-to-all. However, the 3D FFTs within each column group will
also require less communication, since only P/G processors are involved in each column
group.

Similar to the calculation of charge density, forces contribution to the orthogonality
constraints for the wavefunctions requires a loop of forward 3D FFTs across the occu-
pied states. A parallel 3D FFT is implemented following the same steps as in the inverse
transformation in exactly the opposite order: i) Each processor holds a number of com-
plete x − y planes on which it performs 2D FFTs, ii) a global all-to-all assigns to
each processor a number of z sticks on which independent 1D FFTs are performed. The
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Define a 2D processor array
The number of columns is equal to the number G of Task Groups
The number of rows is equal to the number of processors in each Task Group

1. DO k = 1, occ/G
2. all-to-all communication in row group: brings all needed Fourier
coefficients for 3D FFT
3. parallel 3D FFT within column group
4. allreduce to accumulate charge density within row group

5. ENDDO

Table 1. The TG parallel 3D FFT scheme for the calculation of charge density ρ(r).

Task Groups strategy is analogously adopted, so that each column group works on different
wavefunctions.

We note that very good scaling for parallel 3D FFTs has been achieved by means of
the Volumetric FFT algorithm14, which employs distribution of the FFT mesh across all
three x − y − z directions. However, employing this scheme in out testbed codes would
require a major redesigning of the data organization and the corresponding data structures.
The Task Groups scheme allows for very good scalability while requiring only minimal
changes to the underlying electronic structures code.

Customizing for machines with localized interconnects (i.e. toruses) The decisive pa-
rameters in order to select the optimal G involve i) the amount of memory available to
each processor core ii) the latency and bandwidth of the dedicated collective communica-
tion tree interconnect. For example, on the BlueGene /L machine (which was the first to
test the Task Groups strategy), latency of tree traversal was 2.5 µswith 2.5 GB/s bandwidth
per link, thus leading to a 23TB/s total binary tree bandwidth (64k machine). It is typical
in our practical applications to use 8-32 Task Groups.

2.1 Scalability Experiments

We experimented with a molecular system comprised of 80 water molecules, that repre-
sents a problem of intermediate size (240 atoms). The size of the FFT mesh used was 1283.
The number of occupied electrons of the system is occ = 320.

The left plot of Fig. 2 illustrates scalability results (total run time) for the calculation
of the charge density and the forces contribution to the orthogonality constraints with and
without the TG strategy. There are 128 x − y planes across the z direction. Thus, the
standard parallel 3D FFT implementation scales only up to 128 computing nodes. On the
other hand, the TG implementation continues to scale, where we have used 2 Task Groups
in the case of 256 computing nodes and 4 Task Groups in the case of 512 computing nodes.

The right plot of Fig. 2 illustrates the percentage, in terms of run time, of the FFT
related computation (with TG) compared with the percentage of the orthogonalization re-
lated computations. We stress that the latter is dominated by the diagonalization of a dense
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Figure 2. Left: Scalability experiments for charge density and force contribution to the orthogonality constraints.
Right: Comparison of total percentages for charge density and force contribution against orthogonalization. The
test case is a system of 80 water molecules.

matrix of occ× occ at each Molecular dynamics step. These constitute the main computa-
tional kernels of the application. What remains involves input-output operations and other
tasks whose relative load reduces drastically as the size of the simulation increases. It is
evident that the improved scaling of the 3D FFTs causes the diagonalization to become

240



dominant in terms of cost: 40% for the orthogonalization while 25% for the 3D FFTs in
the case of 512 computing nodes. It is important to note that diagonalization is based on
a BLAS 3 implementation that uses a high performance DGEMM library available for the
compute nodes.

3 Large Scale Wavefunction Orthogonalization

In large scale electronic structure calculations, that involve thousands of valence electrons,
keeping an orthogonal set of wavefunctions starts to dominate the overall cost. In this
section we describe recent developments in high performance orthogonalization methods,
that allow extreme scalability.

3.1 Orthogonalization by Means of the Cholesky Factorization

Consider the matrix Q = [q1, q2, . . . , qk] ∈ Rn×k the columns qj of which we wish to
orthonormalize. Thus, consider matrix X ∈ Rk×k such that:

Y = QX, and (2)
Y >Y = Ik, (3)

where Ik is the identity matrix of dimension k×k. From now on we will omit the subscript
k and simply use I when the dimensions are clear from the context. Observe that the
columns of matrix Y will span the same linear subspace as the columns of X , since the
latter are linear combinations of the columns of matrix X . Substituting Eq. 2 into Eq. 3
leads to

X>Q>QX = I.

Thus, if we set S = Q>Q to be the “overlap” matrix it is straightforward to see that

S = X−>X−1. (4)

Since the overlap matrix S is symmetric positive definite (SPD) we can choose matrix X
to be the inverse of the Cholesky factor of S. In other words, let the upper triangular matrix
R ∈ Rk×k be the Cholesky factor of matrix S

S = R>R and set (5)
X = R−1. (6)

Then, we have

X−>X−1 = (R−1)−T (R−1)−1 = R>R = S. (7)

The overall cost of the scheme is straightforward to analyze. The computation of the
overlap matrix S induces a cost of O(nk2), since symmetry allows us to calculate only
the upper (or lower) triangular part and every entry requires a dot product calculation that
costs O(2n). The Cholesky factorization of matrix S induces a cost O(k3/3). In order to
calculate the final orthonormal matrix Y we need to perform the computation Y ≡ XR−1.
Inverting matrix R will induce a cubic cost O(k3) and the final matrix-matrix multiplica-
tion XR−1 will require O(2nk2). The total computational cost sums to O(3nk2 + k3).
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3.1.1 Practical Implementation

In the practical situation of Density Functional Theory (DFT) electronic structure calcu-
lations, the columns of matrix Q = [q1, q2, . . . , qk] hold the coefficients of the expansion
of the k occupied wavefunctions on a suitable basis. In typical parallel implementations
of DFT codes, such as CPMD which is our target code platform, matrix Q is distributed
row-wise to the available processors. We denote this by writing

Q =


Q0

Q1

...
QP−1

 , (8)

where P is the number of the available processors and Qi are dn/P e × k blocks. That is,
every processor holds a number of consecutive rows of matrix Q. Thus, the computation
of the overlap matrix S = Q>Q is accomplished as

S =

P−1∑
i=0

Q>i Qi. (9)

Observe that the matrix-matrix Q>i Qi is local to each processor, and that the summa-
tion of the overlap matrix S requires a global reduction operation (MPI ALLREDUCE).
Furthermore, the local matrix-matrix multiplications (in particular Rank-k updates) are of
BLAS 3 type (routine xSYRK), which insures close to peak processor performance.

In the case that the number of occupied wavefunctions k is small, then the Cholesky
factorization S = R>R of the overlap matrix S can be performed on each processor in-
dependently. In the sequel, the calculation of the orthonormalized wavefunctions Y by
means of solving the linear system R>Y > = Q> can also be performed completely inde-
pendently,

R>[Y >1 , Y >2 , . . . , Y >P−1] = [Q>1 , Q
>
2 , . . . , Q

>
P−1], (10)

where each processor solves its local linear system R>Y >i = Q>i . The result is the or-
thonormal wavefunction matrix Y which is distributed row-wise to the available proces-
sors.

However, in the case of large systems that involve thousands of electrons, the number
of occupied states k becomes so large that the Cholesky factorization S = R>R has to
be done in parallel. In fact, the overlap matrix S = Q>Q cannot be replicated to all
processors, but rather matrix S has to be distributed as well. This is especially crucial
in massively parallel platforms, that are equipped with tens of thousands of processing
elements, each of which has limited physical memory available. For example, for a system
with k = 10000, the overlap matrix S alone will easily consume at least 800 MBytes
of main memory. Furthermore, the computational cost of independently calculating the
Cholesky factorization will rise to a staggering 0.33 TFlopb at each processor.

The choice of distribution of the overlap matrix S to the available processors will be
affected by a number of software design and parallel platform parameters.

bTFlop = 1012 floating point operations.
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Massively parallel deployment. In the present work we are interested in massively parallel
computational platforms, such as the IBM Blue Gene supercomputer seriesc. In this case,
the number of available processors P is directly comparable to the number k of occupied
states or even significantly larger. Let us proceed with an example from planewave codes
such as our target software platform CPMD. The number of planewaves n will typically
reach several tens of millions for large systems, while the number of occupied states k
will be in the order of some thousands. Thus, while the planewave matrices Q and Y can
be efficiently distributed to tens of thousands of processors, the same is not meaningful
for the overlap matrix S, since we will end up with a distribution where each processor
will hold a rather small number of elements of the matrix, or none whatsoever. It is well
known that dense linear algebra kernels, such as the Cholesky factorization, are practically
impossible to efficiently scale to thousands of processors without the involved matrices
becoming adequately large. Thus, one is led to choose a distribution scheme where only a
subset of processors will actually hold a part of the overlap matrix S. The parallel Cholesky
factorization will have to be computed on this subset of processors.

Software design In implementing a parallel Cholesky factorization one may utilize several
different approaches. In the popular SCALAPACK library15, a 2D cyclic block distribution
is used. In particular, the active subset of processors is organized into a two dimensional
grid and the overlap matrix S is mapped on this grid. This means that each processor in the
grid will take a number of consecutive rows and columns. The block size has to be carefully
selected so as to maximize both processor performance as well as maximum utilization of
the interconnection network of the parallel machine. In all our implementation decisions
we have to keep in mind the existing data distribution on all processors. Remember that the
wavefunctions (columns of matrixQ) are distributed row-wise. This directly implies that a
block column distribution of the overlap matrix S is natural and can be easily implemented.
Indeed, the summation (9) can be implemented by blocks. Consider the block partitions

S = [S1, S2, . . . , Sp] (11)
Qi = [Qi,1, Qi,2, . . . , Qi,p], (12)

where each of the blocks Sj , Qi,j has dk/pe columns and p < P is the number of active
processors in the subset that will take part in the Cholesky factorization. Then, each of the
blocks Sj is calculated as

Sj =

P−1∑
i=0

Q>i,jQi,j , j = 1, . . . , p

and stored only by the j−th processor of the active set of p processors. Typically the
number of messages required in parallel Cholesky implementations grows asO(p2), which
is one of the main problems in achieving high scalability. Once the Cholesky factorization
is computed we then need to solve the linear systemR>Y > = X> and since the Cholesky
factor R is distributed as well, this will require additional communication.

We have shown that the simple and effective scheme of orthonormalization by means
of the Cholesky factorization needs special attention when we consider the study of very

chttp://www.research.ibm.com/bluegene
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Figure 3. Graphical (geometric) illustration of (standard) Gram-Schmidt.

large systems, with thousands of occupied states, on massively parallel computing plat-
forms. In the sections that follow we describe a method that is based on the well known
Gram-Schmidt orthonormalization method that aims to combine the appealing BLAS 3
characteristics of the Cholesky approach with the simplicity and scalability of the Gram-
Schmidt algorithm.

3.2 The Scalar Gram-Schmidt Algorithm

The Gram-Schmidt method is one of the oldest and most popular methods to orthonormal-
ize a set of vectors16. The principle behind the method is simply explained in geometrical
terms. Consider the vectors q1, q2 in R2 (standard Euclidean 2 dimensional space, see
Fig. 3). Let us assume that q1 is normalized such that ‖q1‖2 = 1. Then, we calculate the
projection of vector q2 on vector q1. It is clear that the vector (q>2 q1)q1 is the coefficient
of vector q2 towards the direction (or span) of vector q1. Thus, if we subtract this contri-
bution from vector q2 we will get a new vector that is clear of any directions towards the
direction of vector q1, i.e. it will be orthogonal to it. The argument readily generalizes
for more vectors in higher dimensions. It is also not difficult to see that the new set of
vectors spans the same linear subspace, as these new vectors are just linear combinations
of the original vectors, with the first one (q1) being the same. The upper part of Tab. 2
illustrates an algorithmic description of the standard Gram-Schmidt algorithm. Note that
the orthonormalization is performed in place, meaning that no additional memory space is
required to store the resulting orthonormal vectors.
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The Scalar Gram-Schmidt Algorithm

(* Input *) Matrix Q = [q1, q2, . . . qk] ∈ Rn×k the columns qj
of which we would like to orthonormalize

(* Output *) Matrix Q ∈ Rn×k such that Q>Q = I

Standard Gram-Schmidt
1. Set r11 = ‖q1‖2, q1 = q1

r11
2. for j=2, . . . , k
3. Calculate rij =< qj , qi > for i = 1, 2, . . . j − 1

4. q̂j = qj −
∑j−1
i=1 rijqi

5. rjj = ‖q̂j‖2
6. if rjj == 0 then stop, else qj = q̂j/rij
7. end

Modified Gram-Schmidt
1. Set r11 = ‖q1‖2, q1 = q1

r11
2. for j=2, . . . , k
3. Set q̂ = qj
4. for i=1 . . . j-1
5. rij =< q̂, qi >
6. q̂ = q̂ − rijqi
7. end
8. rjj = ‖q̂‖2
9. if rjj == 0 then stop, else qj = q̂j/rij
10. end

Table 2. The Gram-Schmidt orthogonalization algorithm. Top: the standard version. Bottom: the modified
version. With <,> we denote the vector scalar product.

The Modified Gram-Schmidt algorithm Note that in the standard Gram-Schmidt algorithm,
the order of calculations in lines 3-4 (Tab. 2) can be interchanged. In particular, line 3 cal-
culates the projection coefficients of the current vector to be orthogonalized against all
previous (already orthogonal vectors) and line 4 performs the subtractions of these projec-
tions. In the modified Gram-Schmidt algorithm (bottom of Tab. 2) the order of operations
just described is changed. In particular, when one projection coefficient has been calculated
(i.e. rij =< q̂, qi >), then the corresponding projected vector is immediately subtracted
from the current approximation q̂ = q̂ − rijqi. It is not difficult to see that this is mathe-
matically completely equivalent to what is done in standard Gram-Schmidt. However, it is
well known than in the environment of floating point calculations modified Gram-Schmidt
can yield better numerical accuracy, especially in the situation that two vectors are almost
parallel with each other (see for example Ref. 16).

Observe that the computational cost of both variants of Gram-Schmidt is in the order
of O(2nk2) since,
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• The cost of computing the projection coefficients is
k∑
j=2

2n(j − 1) = O(nk2) (13)

• the cost of subtracting the projections is
k∑
j=2

(n(j − 1) + n) = O(nk2) (14)

A careful look in the algorithmic description of Gram-Schmidt (see Tab. 2) shows that
if we denote by R = {ri,j} the matrix projection coefficients, then matrix R is upper
triangular. Furthermore, the matrix product QR, where Q is the orthonormalized set of
the original vectors, yields the original set of non-orthonormal columns. This is the well
known QR factorization and Gram-Schmidt is one of the several possible ways to obtain it
(see Ref. 16).

3.2.1 Practical Implementation Issues

In standard Gram-Schmidt the calculation of the projection coefficients rij (line 3 of Stan-
dard Gram-Schmidt in Tab. 2) can be organized as a BLAS 2 matrix-vector product. In-
deed, we can write

Calculate rij =< qj , qi >, i = 1, . . . , j − 1

equivalently as

r1:j−1,j = Q>:,1:j−1qj , (15)

where we have adopted MATLAB notation in which, : denotes either a complete row or
column (depending on its position at the subscript). On the other hand, observe that for
modified Gram-Schmidt we are not able to organize calculations as matrix-vector prod-
ucts, since the projection coefficient ri,j depends on the value of the immediately previous
projection coefficient r(i−1),j . As we will see in the sequel, this property has more per-
plexed implications when we consider the parallel implementation of the Gram-Schmidt
algorithm.

3.2.2 Parallel Implementation and Scalability

Remember that the wavefunction matrixQ = [q1, q2, . . . , qk] is distributed row-wise to the
P available processors. This has an immediate implication on the parallelization scheme
of choice. In particular, for standard Gram-Schmidt observe that the matrix-vector product
for the calculation of the projection coefficients ri,j can be performed by means of a global
reduction. In particular, letQi,j , i = 0, . . . , P −1 be the part of the j−th column of matrix
Q that resides on processor i. Then, the calculation of the projection coefficients according
to (8) is

r1:j−1,j =

P−1∑
i=0

Q>i Qi,j . (16)
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Method Comp. per Proc. Messages max. size of message
St. G-S O(2nk2/P ) O(2k) k − 1
Mod. G-S O(2nk2/P ) O(k2) 1
Bl. St. G-S O(2nk2/P ) O(2k/b) O(b(k − b))
Bl. Mod. G-S O(2nk2/P ) O((k/b)2) O(b2)

Table 3. Computation/communication characteristics of standard, modified and block Gram-Schmidt.

Observe that the matrix vector product Q>i Qi,j is local to each processor. Thus a global
reduction (i.e. MPI ALLREDUCE) will ensure that all processors have the final projection
coefficients. Then, the subtraction of the projection vectors (line 4 of standard Gram-
Schmidt, Tab. 2) can proceed without any communication. The remaining required com-
munication is needed for the calculation of the normalization factor rj,j (line 5), for which
a global reduction can be utilized again. Thus, the total number of global reductions re-
quired to orthonormalize the k columns of matrix Q is 2k − 1 and the largest size of the
message required will be k − 1 floating point numbers, which corresponds to the vector
r:,k of projection coefficients at the last step of the algorithm. Line 2 of Tab. 3 summarizes
the computation and communication requirements of parallel standard Gram-Schmidt.

The case of modified Gram-Schmidt is quite different in terms of the communication
pattern. The projection coefficient ri,j requires again a global summation since vectors
q̂, qj are distributed row-wise. However, since the current vector q̂ is updated at each
step of the inner loop (lines 4-7, bottom of Tab. 2), the total number of global reductions
is quadratic (O(k2)) in terms of the number of vectors to orthonormalize. On the other
hand, the size of the messages is minimal, namely 1 floating point number. The third line
in Tab. 3 summarizes the computation/communication characteristics of parallel modified
Gram-Schmidt.

In contrast to the parallel implementation of the Cholesky based orthogonalization,
both variants of parallel Gram-Schmidt, are able to utilize all of the available processors
at all stages of the algorithms. On the other hand, in contrast to Gram-Schmidt, as we saw
in Sec. 3.1, the Cholesky approach in orthogonalization, can be implemented entirely in
highly optimized BLAS 3 matrix operations. This has a profound effect in overall proces-
sor performance in favor of the Cholesky approach against the Gram-Schmidt algorithm
(see Sec. 3.6.

3.3 Block Gram-Schmidt

A natural question arises whether a BLAS 3 variant of Gram-Schmidt is possible. Con-
sider again the matrix Q = [q1, q2, . . . , qk] that we wish to orthonormalize. Now, let us
partition this matrix column-wise defining a set of block submatrices Bl ∈ Rn×b, where
l = 1, . . . , k/b and b is the block size, such that

Q = [B1, B2, . . . , Bk/b]. (17)

For simplicity of the discussion we have asserted that the block size b exactly divides the
number k of columns of matrix Q. Let us temporarily assume that the columns of the first
block B1 are mutually orthonormal, i.e. B>1 B1 = Ib. Then, we seek to orthogonalize all
vectors of the next block B2 against the columns of the block B1.
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The Block Gram-Schmidt Algorithm

(* Input *) Matrix Q = [B1, B2, . . . Bk/b] ∈ Rn×k that
we would like to orthonormalize, block size b

(* Output *) Matrix Q ∈ Rn×k such that Q>Q = I

Standard Gram-Schmidt
1. Compute Cholesky factorization B>1 B1 = R>R

if R is singular then stop, else orthonormalize
B1 ≡ B1R

−1

2. for j=2, . . . , k/b
3. Calculate Ri,j = B>i Bj for i = 1, 2, . . . j − 1

4. B̂j = Bj −
∑j−1
i=1 BiRi,j

5. Compute Cholesky factorization B̂>j B̂j = R>R
if R is singular then stop, else orthonormalize
Bj ≡ B̂jR−1

6. end

Modified Gram-Schmidt
1. Compute Cholesky factorization B>1 B1 = R>R

if R is singular then stop, else orthonormalize
B1 ≡ B1R

−1

2. for j=2, . . . , k/b
3. Set B̂ = Bj
4. for i=1 . . . j-1
5. Ri,j = B>i B̂

6. B̂ = B̂ −BiRij
7. end
8. Compute Cholesky factorization B̂>B̂ = R>R

if R is singular then stop, else orthonormalize
Bj ≡ B̂R−1

9. end

Table 4. The Block Gram-Schmidt orthogonalization algorithm. Top: the standard version. Bottom: the modified
version.

Consider the following block generalization of the scalar Gram-Schmidt projection
process

B̂2 = B2 −B1(B>1 B2), (18)

where the projection matrixB>1 B2 is of dimension b×b. Then, it is not difficult to see that
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the columns of matrix B̂2 are all orthogonal to the columns of the first block B1. Indeed,

B>1 B̂2 = B>1 (B2 −B1(B>1 B2))

= B>1 B2 − (B>1 B1)(B>1 B2)

= B>1 B2 −B>1 B2

= 0, (19)

where we have exploited the assumption that the fist block B1 is orthonormal.
In order to orthonormalize this first block we can either use the scalar Gram-Schmidt

algorithm, or we can exploit the Cholesky approach as we saw in Sec. 3.1. The same
applies for matrix B̂2 that will yield a new orthonormal block B2. Note that after the or-
thonormalization of block B̂2 against itself, the block remains orthonormal to the previous
blockB1, since the new blockB2 spans the same subspace B̂2 which is by construction or-
thogonal to the subspace B1 spanned by the columns of block B1. The process is repeated
until the last block Bk/b is orthonormalized against all previous blocks B1, B2, . . ..

In order to obtain a fully BLAS 3 Gram-Schmidt variant we opt to use the Cholesky
approach in orthogonalizing the blocks B̂l, l = 1, . . . , k/b. Tab. 4 contains an algorith-
mic description of the new block Gram-Schmidt algorithm. The last two rows of Tab. 3
summarize the computation and communication characteristics of block Gram-Schmidt.

The cost of the block Gram-Schmidt scheme is summarized as follows.

• The cost of calculating the projection coefficients and subtracting the projections
(lines 3-4, upper part of Tab. 4) runs in the order O(2nk2 − 2nkb).

• The cost of orthogonalizing the latest block using the Cholesky approach isO(3nkb−
7
3kb

2).

Thus the total cost is O(2nk2 + nkb). It is interesting to note that this cost approaches the
cost of the scalar Gram-Schmidt algorithms for small and medium block sizes b, while is
converges to the cost of the Cholesky approach at the extreme case that b = k. A similar
cost analysis holds for the modified block Gram-Schmidt algorithm.

3.3.1 Practical Implementation Issues

It is clear that we designed both block Gram-Schmidt variants in order to allow their effi-
cient implementation using BLAS 3 matrix-matrix operations. In particular, following the
practice for the scalar standard Gram-Schmidt, the computation of the projection matrices
Ri,j (see line 3, upper part of Tab. 4), is more efficiently implemented by grouping them
in a coarser matrix-matrix multiplication

R = B>1:j−1Bj . (20)

In this case the resulting projection matrix R is of size (j − 1)b× b, attaining a maximum
size of (k − b) × b when j = k/b. Thus, the significant factors in selecting a proper
blocksize b are the following two

• BLAS 3 performance. The complexity of the matrix-matrix multiplication for the
calculation of the projection matrix R (see 20) ranges from the minimum O(nb2) to
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the maximum O(nkb). The respective volume of data traffic to main memory would
be O(nb) and O(kn), which leads to a constant O(1/b) ratio of memory traffic over
computation. Thus, it is clear that as the block size b increases we are getting a better
ratio which translates into increased processor performance. Observe that the same
analysis holds in the parallel implementation of block standard Gram-Schmidt, since
as we will see both the totality of computations and data traffic/storage is equally
distributed among all available processors.

• Message size. We analyzed that increasing the block size b benefits processor perfor-
mance. On the other hand, in a parallel implementation the calculation of the projec-
tion matrix R will require a global summation of O(kb) floating point numbers in the
worst case. Thus, increasing the block size b too much can potentially over-stress the
interconnection network of the machine and thus potentially cause a significant loss
of the maximum communication performance. Notice however, that the dependence
on the block size b is linear. A well designed balance is required.

For the case of block modified Gram-Schmidt the same line of analysis holds. The
main difference is that the projection blocks Ri,j (see line 5, bottom of Tab. 4) computed
and communicated are of size b × b. Although the dependence of communication load
depends quadratically on the block size b, this load is still smaller than the respective on
the block standard Gram-Schmidt (O(kb) and typically k � b). On the other hand, as
we will see in the following section, introducing a block in modified Gram-Schmidt is
beneficial in terms of number of required messages.

3.4 Parallel Implementation

The parallelization strategy follows the same design lines of the scalar case (see Sec. 3.2.1).
Tab. 5 provides an algorithmic description for the parallel block standard Gram-Schmidt
algorithm. In particular, the columns of matrix Q are distributed row-wise to the available
processors. Thus, the computation of the projection matrices local projection matrices
Ri,j (line 5) can be performed local to each processor, using a high performance xGEMM
matrix-matrix multiplication routine, followed by a global reduction (MPI ALLREDUCE)
to accumulate the projection coefficients to all processors (line 6). Note that we use a single
reduction operation (one call to MPI ALLREDUCE) in order to minimize the number of
messages and thus the latency. Then, the subtraction of the projected vectors (line 7, Tab. 5)
is performed completely locally, requiring no communication whatsoever. We perform this
by using a single call to highly optimized matrix-matrix multiplication routine (xGEMM) in
order to maximize performance.

Concerning the number of messages (global reductions in this case), it is not difficult
to see that since the outer loop does not have k but rather k/b iterations, the total number
of messages is reduced accordingly. Tab. 3 depicts the computation/communication profile
of all proposed variants.

For the orthonormalization of the current block Bj we opt to employ the BLAS 3
scheme that is based on the Cholesky factorization (see Sec. 3.1). First the overlap matrix
Sj = B̂>B̂ is computed in parallel (lines 9-10) Observe that in contrast with the original
Cholesky based scheme, the size of the overlap matrix Sj is b× b and does not grow with
the number k of the columns to be orthogonalized. Thus, since b will be typically much
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The Parallel Block Gram-Schmidt Algorithm

(* Input *) Matrix Q = [B1, B2, . . . Bk/b] ∈ Rn/P×k that
we would like to orthonormalize (distributed to
P processors), block size b

(* Output *) Matrix Q ∈ Rn/P×k such that Q>Q = I
(distributed to P processors)

1. Compute local overlap matrix Sl = B>1 B1

2. Compute global overlap matrix S1 be means of
MPI ALLREDUCE on local matrices Sl

3. Compute Cholesky factorization S1 = R>R (local comp.)
if R is singular then stop, else orthonormalize
B1 ≡ B1R

−1 (local comp.)
4. for j=2, . . . , k/b
5. Calculate local projections Rli,j = B>i Bj for i = 1, 2, . . . j − 1

as [B1, . . . , Bj−1]>Bj by means of xGEMM
6. Calculate global projection matrix R(g) = [R>1,j , . . . , R

>
j−1,j ]

> by
means of a global reduction MPI ALLREDUCE on [Rl

>

1,j , . . . , R
l>

j−1,j ]
>

7. Compute B̂j = Bj − [B1, . . . , Bj−1]Ri,j by means of xGEMM
8. Compute local overlap matrix Slj = B̂>j B̂j
9. Compute global overlap matrix Sj be means of

MPI ALLREDUCE on local matrices Slj
10. Compute Cholesky factorization Sj = R>R (local comp.)
11. if R is singular then stop, else orthonormalize

Bj ≡ B̂jR−1 (local comp.)
12. end

Table 5. Parallel Block Gram-Schmidt orthogonalization algorithm.

smaller than k (i.e. a few hundreds at most) there is no need to distribute it to the processors,
but rather the global overlap matrix Sj is replicated. Then, the Cholesky factorization is
computed locally inducing a negligible cost O(b3/3). Finally, the local part of the final
orthonormal block Bj is again performed completely locally at each processor, without
any required communication (line 11).

We note at this point that the check for the overlap matrix Sj being singular (i.e. lines
3 and 11) is essentially performed by means of the Cholesky factorization. In particular,
the Cholesky factorization (for example routine xPOTRF from LAPACK) will return with
an error message, since the Cholesky factor R will have a zero (or very small) entry on its
main diagonal.

The parallelization of the block modified Gram-Schmidt method follows the same lines
as described above, and we omit its detailed description here for the economy of the paper.

It is interesting to point that unlike the scalar versions of the Gram-Schmidt methods
which can be performed almost entirely in place, the block variants require a modest ad-
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ditional memory space. Indeed, observe that scalar standard Gram-Schmidt requires O(k)
memory to store the projection coefficients ri,j (see Tab. 2) while the modified version
requires O(1) additional memory. On the other hand, the block versions of Gram-Schmidt
requireO(kb) additional memory space (O(b2) for the modified version) for the projection
coefficients, and an additionalO(nb) for the solution of the linear systems B̂jR−1 (and the
B̂jR

−1 for the modified version). Observe that the space for the projection matrices can be
reused to store the local Cholesky factors of the overlap matrix B̂>j B̂j (respectively B̂>B̂
for the block modified Gram-Schmidt).

It is obvious that the parallelization of the new block Gram-Schmidt schemes relies
heavily on the use of collective communication primitives. This is a crucially favorable
property that can take great advantage of the high bandwidth, low latency TREE network
that is available on the Blue Gene/P Supercomputer.

Finally, it is important to stress that, unlike the parallel Cholesky based approach, in
the parallel block Gram-Schmidt algorithm we utilize all of the P available processors. In
fact, the the serial part of the new algorithm has complexity in the order of 1/3b3. Thus,
its percentage over the total cost of the algorithm per processor is:

Cs =
1

6

Pb3

nk2
. (21)

Since the block size b is kept constant and small (O(100)), this ratio is small and tends
to be even smaller as the size of the problem (n, k) increases, even when we utilize many
thousands of processors. For example, setting P = 105, b = 150 and k = 60 × 106, k =
4× 103 will give a ratio Cs < 10−5. Thus, we can expect the algorithm to scale very well
to massively parallel platforms.

3.5 Numerical Experiments

In this section we provide several numerical experiments that illustrate the performance
of all pre-existing schemes as well as the new block schemes. We measured performance
profiles both in serial as well as in massively parallel mode. The computational platform
was a Blue Gene/P Supercomputer. Each compute node of this architecture is equipped
with a quad core PPC 450 processor at 850 MHz, with 4 GBytes of main memory. The
theoretical peak performance of each core reaches 3.4 GFLOPS. The largest configuration
at our disposal consisted of 8 Blue Gene/P racks, with a total of 32768 compute coresd. The
top performance we achieved on this system using our new block Gram-Schmidt schemes
was 73 TFLOPS which corresponds to 67% of peak performance on 8 Blue Gene/P racks.

3.6 Comparison of Cholesky Orthogonalization with Scalar Gram-Schmidt

We start with a comparison of the scalar Gram-Schmidt schemes against the BLAS 3
Cholesky based orthogonalization method. Fig. 4 clearly illustrates the superiority of the
Cholesky based scheme in terms of performance. We describe two experimental settings.
The length of the vectors to be orthonormalized was set to n = 10000 and 20000, while

dWatsonShaheen system at IBM T. J. Watson Research Center.
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Figure 4. Run time comparison of serial (1 thread) scalar standard and modified Gram-Schmidt with Cholesky
orthogonalization for increasing number of vectors k = 400 : 100 : 1500. Left: n = 10000, Right: n = 20000.
All times are in seconds.

the number of vectors to be orthonormalized covered the range k = 400 : 100 : 1500. The
best performance achieved by the scalar Gram-Schmidt schemes was 0.4 GFLOPS while
the Cholesky based scheme exceeded 2.2 GFLOPS. In Fig. 5 we analyze the run-time
breakdown of the various stages of the Cholesky based method. In particular, we tested
with n = 20000 and n = 40000 while k = 500 : 100 : 4000. The left column in Fig. 5
illustrates performance (GLOPFS) while the right column illustrates percentage of total
run-time. It is evident that the Cholesky factorization part achieves the lowest performance,
while it also is responsible for a small part of the overall run-time. It is exactly this behavior
that significantly limits the massively parallel scalability of the Cholesky based scheme.

3.6.1 Serial Block Gram-Schmidt

We now compare the scalar (not parallel) performance of the new block Gram-Schmidt al-
gorithms. In particular, we analyze in detail the performance profile of their various stages
and we compare them with the original orthogonalization scheme based on the Cholesky
factorization.

Since the block size b is a parameter of crucial importance, we first illustrate its effect
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Figure 5. Left column: Performance break up (in GFLOPS) for the various stages of Cholesky orthogonalization
(top: n = 20000, bottom: n = 40000). Right column: respective break up of run time fractions of the
corresponding stages.

on the performance of the new scheme. Fig. 6 holds a performance breakup (in GLFOPS)
for the various stages of standard block Gram-Schmidt, for n = 20000 (top 4) and n =
40000 (bottom 4), k = 400, 1000, 2000 and 4000, with varying block sizes b. Our first
observation is that the matrix-matrix multiplication (xGEMM) dominates, as expected, the
overall performance of the scheme. Furthermore, the performance profile (its saw like
nature being typical in BLAS 3 performance studies), shows that a selection of block
size between 110-160 brings the best performance. It is important to note that best block
size b does not depend upon the length n of vectors or the number k of vectors to be
orthogonalized. Indeed, the optimal block size b depends upon the underlying processor
architecture as well as on the memory hierarchy characteristics, and it can safely be pre-
computed before any useful computations take place.

The second important observation that we can draw out of these runs is that the best
performance achieved by the block Gram-Schmidt scheme is directly comparable and even
better than the performance achieved by the Cholesky based scheme. This is an important
finding, that clearly indicates that the new scheme should achieve smaller run times than
the Cholesky based scheme in order to orthonormalize the same set of vectors. This is
so since the computational complexity of the latter is O(3nk2) while the complexity of
the new scheme is O(2nk2). Indeed, Fig. 7 illustrates a direct comparison of the standard
block Gram-Schmidt scheme against the Cholesky based scheme for n = 20000 (top-left)
and n = 40000 (top-right), using two different block sizes b = 120 and b = 160. The
bottom part illustrates a percentage of run times breakup for the same sizes n and block
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Figure 6. Performance breakup (in GFLOPS) for the various stages of standard block Gram-Schmidt,
k = 400, 1000, 2000, 4000 and varying block sizes. Top 4: n = 20000. Bottom 4: n = 40000.

size b = 120. It is important to stress the marked difference on the size of the Cholesky
part for the cases. In the block Gram-Schmidt scheme, the relevant matrix is always kept
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Figure 7. Top: Comparison in run times between Cholesky orthogonalization and standard block Gram-Schmidt
(left n = 20000, right n = 40000) for varying number of vectors to orthogonalize and block sizes b = 120, 160.
Bottom: Respective breakup of run time fractions for block Gram-Schmidt (b = 120) for n = 20000 (left) and
n = 40000 (right).

small b× b, while in the Cholesky based approach it increases with the number of vectors
k as k × k.

3.6.2 Symmetric Multiprocessor Scaling on Each Node

The 4 cores of the PPC 450 microprocessor can be used in a symmetric multiprocessor
mode. In fact, the Blue Gene/P supercomputer allows for three different modes of parallel
execution. The SMP mode, where each compute node hosts an MPI process and each such
process can spawn 4 threads of execution. The DUAL mode, where we have 2 MPI pro-
cesses per node and each process can spawn 2 threads. The Virtual Node (VN) mode where
each one of the 4 cores of the PPC 450 chip hosts one MPI process. The top of Fig. 8 illus-
trates the performance of the block Gram-Schmidt scheme, using the multithreaded version
of the ESSL library for the Blue Gene/P. We give both the total performance as well as the
performance of the DGEMM part. We note that the peak performance of each compute node
is 13.6 GFLOPS. It is evident that the block Gram-Schmidt scheme exhibits excellent mul-
tithreaded parallel scaling on each node. On the other hand that Cholesky based approach
does not achieve such a good scaling, mainly because the Cholesky decomposition is hard
to parallelize. In particular, the bottom part of Fig. 8 shows the achieved speedup. Observe
that while the scaling of the block Gram-Schmidt scheme is very good, the scaling of the
Cholesky approach is poor.
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Figure 8. Top: Performance breakdown of SMP block standard Gram-Schmidt using 1,2 and 4 threads (left
n = 20000, right n = 40000) block size b = 120. Bottom: Respective speedup comparison for SMP block
standard Gram-Schmidt and SMP Cholesky orthogonalization.

3.6.3 Massively Parallel Runs

We now turn our attention to very large parallel runs with the new block Gram-Schmidt
schemes. We have chosen to illustrate results representing a smaller (n = 4 × 106), an
intermediate (n = 10 × 106) and a large (n = 60 × 106) example. In all cases we exper-
imented with k = 2000 and k = 4000 number of vectors that we wish to orthonormalize.
We utilized up to 8 Blue Gene/P racks which correspond to 111 TFLOPS of theoretical
peak performance. All of our runs were performed in SMP mode, where we utilized the
multithreaded version of the ESSL library for the Blue Gene/ P compute nodes. Fig. 9
illustrates the run times, using logarithmic scales in both axes. Note that the horizontal
axis corresponds to the total number of compute cores used. Thus 32768 cores correspond
to 8 BG/P racks. We provide scaling results for both the projection phase of the block
Gram-Schmidt algorithm as well as for the orthonormalization of the current block and the
overall scaling.

Our first observation concerns the run-time break down of the various phases of the
algorithm. As expected we verify in practice the minimal impact of the orthonormalization
of the current block (lines 8-11, Tab. 5). It’s overall share is in general one order of mag-
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Figure 9. Massively parallel runs with block standard Gram-Schmidt (b = 150). Top-left: n = 4M,k = 2000,
top-right: n = 4M,k = 4000. Middle-left n = 10M,k = 2000, middle-right: n = 10M,k = 4000.
Bottom-left: n = 10M,k = 2000, bottom-right: n = 60M,k = 4000.

nitude less than the projection phase. Observe however, that as the problem size increases
even the former exhibits excellent scaling.

Our main observation is that it is clear that the method exhibits very good scaling and
performance even for the smaller case (n = 4× 106), which improves with the size of the
problem and becomes excellent for the largest case. Indeed, for the case of n = 60× 106,
k = 4000 and using all 8 Blue Gene/P racks we achieved a performance of 73 TFLOPS
which corresponds to 67% of peak performance.
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4 Initialization from Atomic Orbitals

Consider a molecular system with N atoms and M valence electrons. Obviously, it is far
easier to solve the Kohn-Sham equations for each atom separately, i.e. to define a separate
Hamiltonian for each atom of the system and thus producing a set of “atomic” wavefunc-
tions for each atom. Then, we can approximate the solution to the complete problem by
superimposing these single atom wavefunctions. Indeed, electronic structure codes make
use of precalculated “atomic” wavefunctions for different types of atoms. Thus, from
a linear algebra point of view, atomic wavefunctions initialization consists of restricting
the full system Hamiltonian operator on a large enough basis of atomic wavefunctions
of dimension k > M and then solving for the M smallest eigenvectors of the restricted
Hamiltonian.

Formally put, let matrix Wk ∈ Cn×k be the expansion of the atomic wave functions
on the basis of n plane-waves, where each column of Wk corresponds to a single atom
wavefunction. The standard methodology for initialization from atomic wavefunctions
proceeds as follows:

1. Compute the restricted Hamiltonian: H̃k = W ∗kHWk and the overlap matrix Ok =

W ∗kWk. Matrices H̃k ∈ Ck×k and Ok ∈ Ck×k are both Hermitian.

2. Calculate the eigendecomposition of the restricted generalized Hermitian eigenprob-
lem

H̃kx = λOkx. (22)

3. Approximate the M < k desired initial wavefunctions as Um = WkXm, where the
columns of Xm hold eigenvectors that correspond to the m smallest eigenvalues of
the restricted generalized eigenproblem (22).

The calculation of the restricted Hamiltonian H̃k and of the overlap matrix Ok is per-
formed in parallel since plane-waves are distributed among processors:

1. Each processor: Calculate the application of the Hamiltonian H to its set of plane-
waves: HWk.

2. Each processor: Calculate the overlap W ∗k (HWk).

3. All processors: Calculate matrix H̃k using global summation of W ∗(HWk) among
all processors.

In CPMD the solution of the generalized eigenproblem (22) was initially not distributed
across available processors, but rather solved exclusively on a single processor. We next
illustrate that this practice, although perfectly adequate for conventional simulations, is
absolutely impractical for next generation target simulations that involve tens of thousands
of atoms. Instead, we propose a fully parallel initialization from atomic wavefunctions that
is based on the parallel Lanczos algorithm.
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4.1 Parallel Initialization Using Lanczos

The dimension k of the restricted Hamiltonian H̃k is immediately linked to the number of
valence electrons M , and thus with the total number of atoms N . Thus, in the context of
large simulations that involve several thousands of atoms, the dimension of the restricted
Hamiltonian H̃k, which is a dense matrix, will be in the order of tens of thousands. Clearly,
i) storage requirements, in the order of O(k2) ii) as well as computational complexity of
the generalized eigenproblem (22), in the order ofO(k3), render the calculation intractable
on a single processor. The following observations are key in the design characteristics of a
fully parallel approach:

• Matrices H̃k, Ok are dense. Solution of the eigenproblem (22) will require the trans-
formation of these matrices to simpler form. Namely, since this is a Hermitian gen-
eralized eigenproblem, it can be transformed to a simple eigenproblem, by means of
a Cholesky factorization of the overlap matrix Ok, and then a reduction to tridiago-
nal form of matrix O†kH̃k is needed, where O†k is the pseudoinverse of Ok, using the
Cholesky factors.

• The calculation of the eigendecomposition of the resulting tridiagonal matrix will
require O(k2) storage. Thus, it must be done in parallel.

• The new approach should exploit the current distribution of all involved matrices in
terms of the distribution of plane-waves across processors.

In light of the above we propose to use the Lanczos algorithm for iterative partial
tridiagonalization of a modified restricted Hamiltonian.

4.2 The Lanczos Algorithm

Consider a symmetric matrix A and a starting vector v1 such that ‖v1‖2 = 1, where ‖.‖2
denotes the standard Euclidian norm. The Lanczos algorithm computes an orthonormal
basis for the Krylov subspace

Kl(A, v1) = span{v1, Av1, A
2v1, . . . , A

l−1v1}. (23)

In particular, after l steps of the Lanczos algorithm for matrix A and starting vector v1, the
following Lanczos factorization holds:

AVl = VlTl + βl+1vl+1e
∗
l , (24)

where Vl is the orthonormal basis for Kl(A, v1) and Tl is a symmetric tridiagonal matrix
with structure

Tl =


α1 β2

β2 α2 β3

. . . . . . . . .
βl−1 αl−1 βl

βl αl

 . (25)

When l is taken to be equal to the dimension n of matrix A, then matrix Tn will have the
same eigenvalues as A. Thus, for l < n, the Lanczos algorithm can be viewed as a means
for partial reduction to tridiagonal form for matrix A.
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4.3 A Preprocessing Step

A preprocessing step that will significantly simplify the whole process is orthogo-
nalization of matrix Wk. Then, the overlap matrix Ok reduces to the identity ma-
trix Ok = W ∗kWk = Ik and the new restricted eigenproblem becomes a standard one:
Hkx = λx.

The cost of orthogonalizing Wk is in the order of O(nk2). We have adopted the new
approach used in CPMD (see previous section). For what follows we consider Wk to have
orthonormal columns.

4.4 The Distributed Initialization

The working matrix is the new restricted HamiltonianW ∗k H̃kWk (see the previous section).
Then, the proposed fully distributed initialization method proceeds as follows:

1. Calculate a Lanczos factorization for matrix Hk = W ∗k H̃kWk (see Fig. 6)

(W ∗k H̃kWk)Vl = VlTl + βl+1vl+1e
∗
l , (26)

where M < l ≤ k, matrix Tl ∈ Rl×l is symmetric tridiagonal and matrix
Vl ∈ Ck×l has orthonormal columns. The eigenvalues of the restricted Hamiltonian
Hk = W ∗k H̃Wk are approximated by the eigenvalues of matrix Tl. Factorization (26)
is calculated by means of the Lanczos algorithm (see Fig. 6), which requires only a
matrix-vector product with matrix (W ∗kHWk). It it clear that this matrix need not
be formed, but rather the product (W ∗kHWk)y with a vector y can be calculated as
a series of matrix-vector products (with matrices that are already distributed across
processors).

2. Notice however, that if we let the length l of the Lanczos basis Vl approach the size
k of the restricted Hamiltonian Hk, then it is preferable to form the restricted Hamil-
tonian Hk explicitly and distribute it row-wise across the involved processors. This
choice greatly simplifies the implementation of the parallel Lanczos algorithm, since
the formation of Hk can already be done in parallel in CPMD. Furthermore, note that
in CPMD the application of the Hamiltonian on a vector is fully distributed among
all available processors. In this case, the restricted Hamiltonian Hk is distributed
row-wise.

3. The basis Vl can be easily distributed row-wise across the available processors, as is
the standard approach followed in parallel implementations of the Lanczos algorithm.
Note then that, the xAXPY operations at lines 3 and 5 of the Lanczos algorithm (see
Fig. 6) can be accomplished with no communication whatsoever. The only synchro-
nization points are in line 4 and in line 6, which require global reduction operations.

4. Monitoring the convergence of eigenvalues can be cheaply calculated at every step
of Lanczos. The Lanczos iteration is a variational process: approximations to eigen-
values at step i + 1 will always be better than those of the previous step. Extremal
eigenvalues tend to converge first: thus, one can monitor convergence of the smallest
eigenvalue of the tridiagonal matrix Tl (at every step l) and when this has converged
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move to monitoring convergence of the next one. Cheap algorithms for the calcula-
tion of a few selected eigenvalues of symmetric tridiagonal matrices are available in
LAPACK. The cost of computing only the eigenvalues (not the eigenvectors) will be
at most a modestO(l2) with storage requirementsO(l), since Tl is tridiagonal. Thus,
it can be easily achieved on a single processor.

5. When convergence of all M desired (leftmost) eigenvalues has been achieved, these
are distributed to the available processors. Then, each processor will do a small num-
ber of inverse iteration steps with the exact eigenvalue as shift: (Tl − λiI)−1qi on a
random starting vector q(0)

i . Two to three iterations should be enough to achieve very
good convergence to targeted eigenvectors qi of Tl. Observe that qi ∈ Rl, l� n, thus
storage requirements per processor are kept very small. However, a potential problem
with this approach can arise when the converged eigenvalues are closely clustered.
Alternatively, we can utilize “divide and conquer” techniques also available through
LAPACK expert drivers such as xSYEVX, in which the user can choose to compute
particular consecutive eigenvalues/eigenvectors. Thus, we can easily distribute the
calculation of wanted eigenpairs on the involved processors. Each processor calcu-
lates only a number of consecutive eigenpairs by suitably calling routine xSYEVX.
We adopted this latter approach in our current implementation the method in CPMD.

6. The approximate eigenvectors for the modified restricted Hamiltonian are computed
as: q̃i = Vlqi. Since the basis Vl is distributed row-wise this calculation is performed
in parallel. Note that, because a processor holds complete eigenvectors qi, the calcu-
lation of q̃i will require a loop of broadcast collectives. Each processor will again end
up with complete (consecutive) eigenvectors q̃i.

7. Finally, approximations to wave functions are similarly (see above) computed in par-
allel as xi = Wkq̃i. Note that matrix Wk is distributed row-wise while processors
hold complete consecutive eigenvectors q̃i.

In Tab. 6 we give an algorithmic outline of the Lanczos method.

4.5 Practical Application of the Parallel Lanczos Algorithm
The plane-wave code CPMD, with single processor initialization, has been demonstrated
to achieve excellent scalability on massively parallel systems, consisting of hundreds of
thousands of cores5. However, it is straightforward to see that in order for the new par-
allel initialization to scale analogously, a huge number atomic wavefunctions k would be
required (i.e. 1 million), which is far beyond our target. Thus, the implementation has to
able to utilize only a subset of the available processors. For instance, while all processors
contribute in the calculation of the restricted Hamiltonian Hk, only a subset of them will
actually be employed in the Lanczos iteration. To this end, matrix Hk is distributed row-
wise to these processors. This is facilitated by means of a new MPI communicator for these
processors. An additional benefit is that the collective communications will be restricted
to only a subset of the machine, thus reducing the overall communication latency.

The matrix-vector operation (line 3) as well as the DAXPY operations (line 3, 5) require
no communication. On the other hand, the calculation of scalars αi, βi require global
reductions (MPI ALLREDUCE), for which very efficient implementations are available on
modern supercomputer interconnection networks.
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Lanczos

(*Input*) Hamiltonian H̃ , orthonormal matrix Wk,
starting vector v1, ‖v1‖2 = 1, scalar l ≤ k

(*Output*) Orthogonal basis Vl ∈ Rk×l
unit norm vector vl+1 such that V >l vl+1 = 0

1. Set β1 = 0, v0 = 0
2. for i = 1, . . . , l

3. ri = W ∗k (H̃(Wkvi))− βivi−1

4. αi =< ri, vi >
5. ri = ri − αivi
6. βi+1 = ‖ri‖2
7. if (βi+1 == 0) then stop
8. vi+1 = ri/βi+1

9. end

Table 6. The Lanczos algorithm for matrix W ∗k H̃Wk . The inner product for vectors is denoted by < ., . >.

Reorthogonalization of Lanczos vectors It is well known that although the Lanczos itera-
tion theoretically ensures orthogonality among the basis vectors, in practice the basis vec-
tors quickly loose orthogonality due to roundoff. To remedy this we employ reorthogonal-
ization at each step. We stress though that future versions of CPMD will utilize techniques
for partial reorthogonalization17–19, that perform orthogonalization only when it is deemed
necessary. Reorthogonalization is performed by means of standard Gram-Schmidt16. At
each step i, and before calculation of scalar βi+1 (see also previous section):

• Compute the local projection coefficient wli = V ∗i−1ri. No communication required.

• Compute the global projection coefficients wgi by global reduction on the local pro-
jection coefficients wli (MPI ALLREDUCE).

• Compute the reorthogonalized rri = ri −
∑i−1
j=1 w

g
jVj . No communication required.

Observe that standard Gram-Schmidt (GS) reorthogonalization induces only an additional
collective operation per Lanczos step. We note that although modified GS is known to
be more stable than standard GS (see Ref. 16), it requires i − 1 additional collectives at
each step i, which includes O(l2) additional collectives for a total of l Lanczos steps.
Since we are only interested in initial guesses for the wavefunctions we opt to use standard
GS. In practical applications so far we have not encountered a problem of unrecoverable
severe loss of orthogonality. However, if this happens, we can always temporarily switch
to modified GS.

4.6 Numerical Examples

We now illustrate the scalability performance of the parallel Lanczos algorithm for dis-
tributed atomic wavefunctions initialization. We experimented with a family of super
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Figure 10. Silicon clusters with N=512, 1024 and 2048 atoms. The last two clusters were generated by replication
of the smallest cluster along the X axis.

cells of silicon bulk, ranging N = 512, 1024 and 2048 atoms (see Fig. 10). For the
first case (N=512) we used a cutoff energy of 20 Rydbergs while for the larger cases of
N = 1024, 2048 atoms the cutoff energy was set to 12 and 8 Rydbergs respectively. The
cutoff energy controls the dimension of the plane-wave basis on which the Hamiltonian
and the wavefunctions are expanded (a larger value for the cutoff energy results into more
plane-waves).

The smallest case (N=512) is a cubic mesh (with cube edge equal to 41.0449) and
the larger two cells were generated by replication of the smallest cell along the X axis.
The sizes of the restricted Hamiltonians were 4 × N = 2048, 4096, 8192. CPMD utilized
in all runs 128 compute nodes of a BG/L system, while for the atomic wavefunctions
initialization we utilized a subset of 2k, k = 1, . . . , 7 nodes. We stress that the ability to
utilize only a subset of the available compute nodes is crucial in achieving good scaling for
the initialization, while other parts of CPMD can take advantage of the full set of available
processors.
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N=512 N=1024 N=2048
#CPUs time (secs) time (secs) time (secs)

2 90 - -
4 46 381 -
8 23 191 -
16 13 99 738
32 9 54 382
64 8.6 36 211

128 8.7 30 114

Table 7. Run times for distributed initialization using the parallel Lanczos algorithm.

Tab. 7 illustrates run times for the distributed initialization. The dashes in the columns
of Tab. 7 indicate that no run was possible for the corresponding number of CPUs because
of node memory was not enough to hold the data. Remember that we have implemented
the parallel Lanczos algorithm in CPMD in such a way that only a subset of the available
processors are actually employed for the initialization. This versatility is crucial when we
utilize thousands of processors with CPMD. It is clear that as the dimension of the restricted
Hamiltonian increases, the distributed Lanczos algorithm scales better. For example, while
for N = 512 scaling stops at 32 processors, for N = 1024 it stops at 64 and for N = 2048
scaling continues up to 128 processors.

In Tab. 8 we provide detailed run times (in seconds) for the various computational
stages of the distributed initialization. MATVEC is the time spent multiplying the restricted
Hamiltonian by the current Lanczos vector (line 3). REORTH is the time spent for re-
orthogonalizing the new Lanczos vector. COLL is the time for collective communications
in the Lanczos loop (excluding the REORT). DAXPY is the time spent in BLAS daxpy
operations within the Lanczos loop. L. EIGS is the time spent to calculate the Lanczos
eigenvectors and eigenvectors (immediately after the Lanczos loop has run). VECS is the
time spent to multiply the Lanczos eigenvalues with the atomic wavefunctions Wk to get
the final estimation of the initial wavefunctions. Remember that matrix Wk is row-wise
distributed across all available processors, while the eigenvectors of the restricted Hamil-
tonian are distributed column-wise across the group of processors that participate in the
Lanczos run.

Clearly, the matrix-vector operation (MATVEC) scales very well in all cases and the
DAXPY operations contribute only minimally to the overall cost. The computation of the
eigenvalues and eigenvectors of the Lanczos matrix (L. EIGS) also scales every well,
especially for the larger problems. Reorthogonalization exhibits satisfactory scaling which
is attributed to the modest additional communication cost of standard GS and to the very
fast collective communication available on the BlueGene machines. Finally, we see that
the part that does not scale is the final calculation of the approximate initial wavefunctions.
This is expected, since the total number of messages in this part increases as we increase
the number of processors in the Lanczos group. To see this, remember that the Lanczos
eigenvectors are distributed column-wise to the group of processors that takes part in the
Lanczos loop, i.e. each processor in this group holds a number of consecutive Lanczos
eigenvectors. On the other hand, remember that matrix Wk is distributed row-wise across
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N=512
#CPUs MATVEC REORT COLL DAXPY L. EIGS VECS

2 36 49.2 1.2 0.07 4.9 1.0
4 18 24.3 1.4 0.05 2.6 1.1
8 7.2 11.9 1.3 0.03 1.4 1.3

16 3 6.2 1.6 0.03 0.87 1.7
32 1.5 3.5 1.8 0.02 0.51 2.2
64 0.8 2.2 1.7 0.02 0.41 3.7
128 0.4 1.3 0.3 0.03 0.5 6.3

N=1024
#CPUs MATVEC REORT COLL DAXPY L. EIGS VECS

4 141 201 20 0.12 15.1 4
8 7.0 97 9 0.09 9.7 4.4

16 35 48 6.5 0.07 4.8 5.1
32 14 24 5 0.06 2.7 6.9
64 6.5 13 4.8 0.06 1.7 9.6
128 3.2 7.7 1 0.05 1.2 16.8

N=2048
#CPUs MATVEC REORT COLL DAXPY L. EIGS VECS

16 277 384 33 0.16 35 11.1
32 137 191 25 0.15 16 12.3
64 69 97 19 0.12 9 17.4
128 29 53 5 0.12 5 21.6

Table 8. Detailed run times, in seconds, for the various stages of distributed initialization using the parallel
Lanczos algorithm.

all of the available processors. Thus, this part of the calculation involves collectives that
span the full breadth of the machine. Indeed, the number of these broadcast collective
operations increases as the number of processors in the Lanczos group increases. However,
we also note that for the larger case (N=2048) the VECS part is only a fraction of the total
cost (roughly %20), which explains the very good scaling of the scheme for this case.

4.7 Discussion

Initialization from atomic wavefunctions in ab initio molecular dynamics codes is cru-
cial in order to facilitate large scale next generation simulations with thousands of atoms.
This initialization leads to very large dense eigenproblems that are impossible to solve
on a single processor, both in terms of computational complexity as well as of memory
requirements. In this paper we are reporting a new scheme for distributed initialization
that is based on a distributed version of the Lanczos algorithm. Our decision to use Lanc-
zos instead of parallel dense methods such as the ones in SCALAPACK20 is based on the
following key observations:
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• We needed to respect as much as possible the existing data structures in CPMD, which
is the host molecular dynamics code. The distribution of the matrices involved, in
terms of plane-waves, significantly favors matrix vector operations, rather than matrix
transformations-factorizations that are inherit in parallel dense linear algebra.

• We can safely use in practice standard Gram-Schmidt reorthogonalization, instead of
modified Gram-Schmidt, which induces only one additional collective operation at
each step of the parallel Lanczos algorithm.

• Our target computational platform is the BlueGene supercomputer series which is
equipped with an excellent separate network for collective communications.

We point out that although good scalability of the new scheme is of course a desired prop-
erty it is not of crucial importance. This is due to the fact that the total run time of large
simulations is by far dominated by the minimization of the Kohn-Sham equations (after
atomic wavefunction initialization has run) and the subsequent molecular dynamics sim-
ulation thereafter. For example, for the case of 1024 Silicon atoms (see previous section)
the new distributed initialization scheme on 8 BlueGene /L nodes required 193 seconds
while the total run time for minimization was 2400 seconds. Then, each step, out of the
thousands, of the molecular dynamics run costs itself roughly the same as the distributed
initialization. However, if it was not for this successful initialization from atomic wave-
functions, the first minimization would require an enormous number of iterations in order
to converge.

5 Discussion

We have described our efforts towards massively parallel electronic structure calculations.
We have focused in efficient parallel 3D FFTs, wavefunction orthogonalization and ini-
tialization from atomic wavefunctions. We demonstrate that extreme scaleout is indeed
possible, allowing for routine simulations with tens of thousands of atoms in very reason-
able time frames. We followed an approach of algorithmic redesign and extensive soft-
ware reengineering. This means that we adopted algorithms that, although at first looked
unsuitable, in fact allowed extreme scaleout. This is proof that we have much to gain by re-
thinking and adopting basic computational kernels, especially in view of many core nodes,
with lower memory and bandwidth per core, that Exascale machines are projected to be
composed of.
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Many important molecular processes occur on time scales too long to be sampled efficiently
with conventional molecular simulations, or even within the finite time windows accessible to
single-molecule experiments. Non-equilibrium methods provide powerful tools to overcome
this time scale problem. Remarkably, on the basis of recent advances in non-equilibrium statis-
tical mechanics, many of the important equilibrium properties can be recovered rigorously. In
particular, one can obtain accurate estimates of the free energy of states and of molecular free
energy surfaces. The physical foundation for these non-equilibrium methods and their practical
implementation in computer simulations will be discussed.

1 Introduction

Among the many challenges faced in simulations of complex molecular systems, in partic-
ular those encountered in biology, is the problem that the slowest relaxation times are often
on the seconds scale and beyond, yet the longest times that one can simulate barely exceed
the microsecond range. As a result, many important processes, such as the folding of all
but the smallest proteins or the dissociation of a tightly bound ligand, are not accessible
to direct molecular simulations. It should not surprise that many single-molecule spectro-
scopies suffer from related problems. In experiments, the observation time is limited, for
instance, by drifts in the mechanical stage or by bleaching of fluorescent dyes.

Just as mechanical force can induce rare transitions at the macroscale, for instance the
fracture of a material probe, one can use mechanical perturbations to accelerate transitions
at the molecular scale. With the development of atomic force microscopes or laser opti-
cal tweezers, it has become possible to manipulate individual molecules while performing
precision force and distance measurements on them1–4. The mechanical tension caused
by the pulling has been used not only to induce molecular transitions such as protein un-
folding or the dissociation of a molecular complex, but also to manipulate molecular ma-
chines such as molecular motors moving directionally along a track. Initially developed as
mimics of these experiment, but immediately recognized as powerful probes of molecular
systems in their own right, analogous computer simulation techniques have been used to
study molecular processes5, 6. Both experiments and simulations provide an atomistically
detailed picture of the molecular dynamics under force.

The quantitative use of these methods requires careful analyses techniques to recover
results that are meaningful and relevant for the dynamics and energetics at equilibrium
conditions. By applying external time-dependent perturbations, the speed of conforma-
tional changes in a molecular system can be greatly accelerated. However, these external
perturbations evidently create non-equilibrium conditions. In the following, I will describe
how one can extract free energies of states and molecular free energy surfaces in a for-
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mally rigorous manner despite the non-equilibrium sampling. These procedures exploit
the Jarzynski identity7 and its extensions8 and generalizations, in particular the Crooks
fluctuation theorem9. After reviewing the underlying theory I will briefly discuss issues
of implementation in practical applications, and highlight connections to other simulation
methods.

2 Equilibrium Thermodynamics from Non-Equilibrium Simulations
and Experiments

2.1 Background: Free Energy Perturbation

A classic problem in molecular free energy calculations, dating back to the seminal work
of Born10, is the charging of an ion in solution. Following Ref. 11, we consider a molec-
ular system of a neutral solute in a solvent, described by a (classical) Hamiltonian energy
function H0(x) with x a point in phase space. For a charge λe on the solute particle,
the Hamiltonian is H0(x) + λV (x). The difference in the Helmholtz free energies of the
system with charged and uncharged solutes is

G(λ)−G(0) = −β−1 ln

∫
e−β(H0+λV )dx∫
e−βH0dx

. (1)

where β−1 = kBT , with kB Boltzmann’s constant and T the absolute temperature. The nu-
merator and denominator on the right are the canonical partition functions for the charged
and uncharged solute-solvent systems, respectively.

In molecular simulations such free energy differences can be determined in multiple
ways. As the basis of the thermodynamic integration formalism, we use Eq. 1 to write the
derivative of the free energy difference as ∂G/∂λ = 〈V 〉λ, where the angular brackets
indicate a Boltzmann average of the potential V for a system with Hamiltonian H0 + λV .
We can then integrate this derivative from λ = 0 to λ = 1 to obtain the free energy
difference as

G(1)−G(0) = ∆G =

∫ 1

0

〈V 〉λdλ . (2)

This relation is the basis for the famous Born formula10 for ion solvation. Alternatively,
we can rewrite Eq. 1 as a Boltzmann average over the ensemble of the uncharged solute,

G(λ)−G(0) = −β−1 ln
〈
e−βλV

〉
0
, (3)

which is Zwanzig’s famous free-energy perturbation formula12.
We can think of Eqs. 2 and 3 as two extreme ways of performing the perturbation. In

thermodynamic integration, the perturbation is introduced infinitely slowly, exploiting the
relation between the change in free energy and the reversible work, and requiring that a
full ensemble average of 〈V 〉λ is performed at each λ. In free-energy perturbation, the
perturbation is applied infinitely rapidly, such that the system has no time to relax and the
phase-space average over x can be performed in place, albeit with an exponential weight
factor.
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2.2 Free Energies from Non-Equilibrium Dynamics

What happens if we turn on the perturbation at a finite rate? This is the question answered
by Jarzynski7. He considered perturbations that follow a given path λ(t). Systems evolving
under the influence of the resulting time-dependent energy functionH0(x)+λ(t)V (x) will
be driven out of equilibrium, even if they started out perfectly equilibrated at time t = 0.
Nevertheless, it turns out that there is a rigorous way to determine the free energies from
such nonequilibrium trajectories through the Jarzynski identity7,

e−β[G(λ(t))−G(0)] =
〈
e−βW (t)

〉
, (4)

where W (t) =
∫ t

0
λ′(τ)V [x(τ)]dτ is the work performed in the charging process and

λ′(τ) = dλ/dτ . Here, the average 〈· · · 〉 is over trajectories starting from a Boltzmann
equilibrium distribution corresponding to H0 and evolving in time according to the time-
dependent HamiltonianH(t) = H0+λ(t)V . The free energy calculation (or measurement)
thus requires an average over paths, i.e., the evaluation of a path integral.

Initially, Jarzynski’s identity was greeted with skepticism by many scientists, even ex-
pert statistical mechanicians. How could one possibly be able to recover equilibrium ther-
modynamic properties from non-equilibrium trajectories? In effect, the Second Law of
Thermodynamics, which in the present context states that

〈W (t)〉 ≥ 0 , (5)

has been turned into an equality. But the preceding discussion should have raised some
hopes that in Born’s and Zwanzig’s methods, we have free energy calculation methods at
the two extremes of the the kind of process underlying Jarzynski’s identity, infinitely slow
and infinitely fast. Moreover, we should keep in mind that Jarzynski’s identity does not
inform us about the nature of nonequilibrium states. Instead, we can use it to recover the
equilibrium ensemble from infinitely many fast transformations, instead of one infinitely
slow one.

In the following, I will sketch two proofs, one establishing a connection to quantum
mechanics and the other leading to an important generalization, the Crooks fluctuation
theorem.

2.3 Relation of Jarzynski’s Identity to the Feynman-Kac Theorem for Path
Integrals

The average in Eq. 4 involves a path integral. One of the most famous relations for path
integrals is the Feynman-Kac theorem, providing a foundation for the path-integral formu-
lation of quantum mechanics. It turns out that Jarzynski’s identity is closely related to, and
in some sense a direct consequence of, the Feynman-Kac theorem for path integrals.

To motivate the Feynman-Kac theorem, we use the case of chemical kinetics. Consider
a system with two states, say “folded” and “unfolded,” that interconvert according to first-
order chemical kinetics,

U
kf


ku
F (6)

such that the relative populations evolve in time according to

Ḟ (t) = −kuF (t) + kfU(t) (7)
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U̇(t) = kuF (t)− kfU(t) (8)

with F (t)+U(t) = 1. Now consider further that a probe is attached to our molecules. This
probe can be excited by a laser pulse at time zero, and the excitation quenches at a rate kq
in the folded state, but not in the unfolded state. Such experiments are indeed performed,
for instance, to measure the rate of contact formation in protein folding. We then have the
modified rate scheme

U
kf


ku
F
kq
→ Q . (9)

In this trivial example, we could of course simply solve the modified kinetic equations,
with Eq. 7 changed to

Ḟ (t) = −kuF (t) + kfU(t)− kqF (t) , (10)

to account for the irreversible quenching and the growth of the quenched population,
Q̇(t) = kqF (t).

However, we could also simulate this kinetic system to estimate the population
S(t) = F (t) + U(t) = 1−Q(t) that have not yet quenched. There are two extreme forms
of such simulations. In the direct non-equilibrium simulation, we would start out by choos-
ing initial states F or U according to the prescribed initial condition, evolve them in time
according to the rules of chemical kinetics by making transitions between the connected
states F , U , and Q, and then stop individual trajectories as soon as state Q is reached for
the first time. From the statistics of the times of repeated simulations of quenching events,
we would extract S(t) and Q(t).

Alternatively, we can also perform an equilibrium simulation of our original system,
Eq. 9, without any irreversible quenching. That is, starting from an initial state F or
U , the trajectory would simply hop back and forth between the two states, with wait-
ing times drawn from the appropriate exponential distributions. In this equilibrium sam-
pling, we can incorporate the quenching simply by reweighting. We ask ourselves: given
that we had excited our molecule at time zero, what is the probability that the excitation
has not been quenched up to time τ? For an individual trajectory, this weight is simply
exp

[
−
∫ τ

0
k(t)dt

]
, where k(t) = 0 if the system is in state U at time t and k(t) = kq if it

is in state F . The quantity in the exponent is the product of the time spent in state F up to
time t, multiplied by kq . We now need to average over many such equilibrium trajectories,
reweighted to describe the required non-equilibrium quenching kinetics,

S(t) =

〈
exp

[
−
∫ t

0

k(τ)dτ

]〉
, (11)

where the average is over trajectories evolving according to Eqs. 7 and 8. This reweighting
of a set of trajectories evolving under one evolution operator to account for the dynamics
under a different evolution operator is one application of the Feynman-Kac theorem for
path integrals. This procedure is the basis not only of path integrals in quantum mechanics,
but also many other important relations, including the theory of spectral line shapes in
condensed phase.

To return to free energy calculation, we assume that the dynamics of our system is
described by a time-dependent Liouville-type operator Lt that preserves the Boltzmann
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distribution at equal time,

Lte−βH(x,t) = 0 , (12)

where H is a Hamiltonian that depends explicitly on time because of an external perturba-
tion, such as the application of a time-varying mechanical force. Examples of Lt include
the Liouville operator of classical mechanics or the the Fokker-Planck operator for diffu-
sion. We now define a phase-space density normalized at time 0 but not at later times,

f(x, t) =
e−βH(x,t)∫
e−βH(x′,0)dx′

. (13)

If we differentiate f with respect to time, we obtain

∂f(x, t)

∂t
= Ltf(x, t)− β ∂H(x, t)

∂t
f(x, t) (14)

which has a form similar to Eq. 10. Here we used Eq. 12. We now apply the Feynman-Kac
theorem in this more general case to express f in terms of a trajectory average8,

f(x, t) =
e−βH(x,t)∫
e−βH(x′,0)dx′

=
〈
δ(x− x(t))e−β

∫ t
0
∂H
∂τ [x(τ),τ ]dτ

〉
(15)

where the δ(x) is Dirac’s delta function, and the expectation value is over trajectories
starting from an equilibrium Boltzmann distribution at time 0 and evolving according to
Lt. By integration over phase space x, the left hand side becomes the ratio of partition
functions, and the right hand side becomes an expectation value of the Boltzmann-weighted
work. We thus recover Jarzynski’s identity7

e−β∆G(t) =
〈
e−β

∫ t
0
∂H
∂τ [x(τ),τ ]dτ

〉
=
〈
e−βW (t)

〉
, (16)

where ∆G(t) = G(t) − G(0) is the difference in free energy between the states corre-
sponding to the Hamiltonians at times t and 0. This celebrated theorem relates the differ-
ence between the free energies corresponding to the Hamiltonians at two different times to
the average of the Boltzmann factor e−βW (t) of the external work done on the system.

2.4 Crooks Fluctuation Theorem

It should not surprise that by combining both forward and reverse perturbations, one ob-
tains better estimates of the free energy. In our example of charging an ion in solution,
we could also perform the reverse processes of uncharging. Even before the development
of fluctuation theorems, the work values W (t) and W (t) accumulated on the forward and
reverse processes provided us with upper and lower bounds on the free energy through the
Second Law,

−〈W (t)〉 ≤ ∆G ≤ 〈W (t)〉 , (17)

where the reverse protocol samples trajectories according to λ(τ) = λ(t− τ).
The Crooks fluctuation theorem13, 9 provides us with a remarkable and powerful exact

result going beyond these bounds. Crooks showed that the normalized probability densities
of work values from forward and reverse paths are related to each other

pf [W = W (t)]

pr[W = −W (t)]
= eβ[W−∆G(t)] . (18)
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Jarzynski’s identity follows from the Crooks fluctuation theorem by integration over W ,
noting that the probability densities are normalized. As it turns out, this relation is useful
for both simulations and experiment14. In particular, it allows us to use Bennett’s optimal
estimator15, 16 for the free energy.

In the following, a derivation of the Crooks fluctuation theorem is sketched17 that is
based on the path-sampling approach used originally13. We consider a discrete trajectory
x0

H1
→ x1

H2
→ . . .

HN
→ xN in phase space. At each step xi−1

Hi
→ xi, the new phase point is

chosen according to the new HamiltonianHi = H(x, ti), for instance by using Metropolis
Monte Carlo sampling (but good Newtonian or Langevin dynamics integrators in discrete
time steps would follow the same rules). Each of the steps is Markovian in full phase space
(i.e., it does not depend explicitly on the preceding path). As a result, the probability Pf of
the entire trajectory can be factorized:

Pf (x0

H1

→ x1

H2

→ . . .
HN
→ xN ) = p0(x0)

N∏
i=1

pi(xi|xi−1) . (19)

The initial probability p0(x0) = exp[−β[H(x0, t0)−G(t0)] is the normalized equilibrium
Boltzmann distribution at time t0. The pi(xi|xi−1) are transition probabilities from xi−1

to xi under the influence of the Hamiltonian Hi. If the transition probabilities satisfy
detailed balance (as they do, say, in Metropolis Monte Carlo dynamics),

pi(xi|xi−1)

pi(xi−1|xi)
= e−β[Hi(xi)−Hi(xi−1)] (20)

then we end up with a relation between the the probabilities Pf and Pr of the forward and
time-reversed paths,

Pf
Pr

=
P (x0

H1
→ x1

H2
→ . . .

HN
→ xN )

P (xN
HN
→ xN−1

HN−1
→ . . .

H1
→ x0)

=
p0(x0)

∏N
i=1 pi(xi|xi−1)

pN (xN )
∏N
i=1 pi(xi−1|xi)

= exp

(
β

N−1∑
i=0

[Hi+1(xi)−Hi(xi)]− β[G(tN )−G(0)]

)
= eβ[W (tN )−∆G] .(21)

Here ∆G = G(tN )−G(t0) and the workW (t) is the accumulated change in the energy. In
essence, Eq. 21 generalizes detailed balance to non-equilibrium trajectories by establishing
an exact relation of the path probabilities (or the action) of forward path and reverse paths.
The Crooks fluctuation theorem follows from Eq. 21 by averaging over the ensembles
of forward and reverse paths, and collecting histograms of the work values from these
averages.

2.5 Free Energy Surfaces

In molecular simulations, and also in single-molecule experiments, one is often interested
less in the free energy of the system as a whole, and more in the free energy as function of
a particular coordinate, say, q = q(x). These free energy surfaces G(q) are often referred
to as potentials of mean force (PMFs) because their negative gradient is the mean force,
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−∂G/∂q = −〈∂H/∂q〉. Many efficient techniques have been developed to determine the
PMF defined as

e−βG0(q) = 〈δ[q − q(x)]〉0 =

∫
δ[q − q(x)]e−βH0(x)dx∫

e−βH0(x)dx
(22)

up to a constant. In particular, umbrella sampling employs harmonic biasing functions
to enhance the local sampling along q and combines the results to obtain a global sur-
face. Umbrella sampling can be generalized to the kinds of non-equilibrium protocols
employed in experiments and simulations8. If a harmonic spring acts on q, with a potential
V (q, t) = ks(q − z(t))2/2 whose center is moved according to a prescribed protocol z(t),
we can use Eq. 15 above, integrate out all the degrees of freedom except q, and obtain8

e−βG0(q) =
〈
δ [q − q (x(t))] e−β(

∫ t
0
∂V
∂τ [q(x(τ)),τ ]dτ−V (q[x(t)],t))

〉
(23)

where 〈· · · 〉 is again an average over all trajectories started from a Boltzmann distribution
corresponding to the initial Hamiltonian H(x, 0) = H0(x) + V [q(x), 0] and evolving
according to H(x, t).

2.6 Use and Implementation

Force-probe molecular dynamics5 and steered molecular dynamics6 are powerful simu-
lation analogs of single-molecule pulling experiments. In these and related approaches,
forces are applied to one or several atoms to induce a molecular transition. To implement
the above procedures for the determination of system free energies and free energy sur-
faces, it is important that these forces arise from a well-defined potential function, which
may be time dependent. Many simulation packages already contain code to perform simu-
lations in the presence of such time-dependent perturbations.

In planning the simulations, one should, whenever possible, attempt to sample both
the forward and the reverse processes. Indeed, the more challenging of these processes
(vaguely speaking, the one with the wider work distribution) tends to be more informative
with respect to the free energy18. In combination, more accurate results can be obtained.
In addition, the problem of large systematic biases in the exponential estimator in Eq. 4
can be avoided.

Whereas the construction of free energies is more or less straightforward for states
defined by a control parameter, such as the location of the pulling spring z(t), it is more
challenging to obtain free energy surfaces. As in the equilibrium analogs, one can use
histogram reweighting techniques both for one-sided perturbations8 and for forward-and-
reverse perturbations19.

Critical for the success is the choice of the coordinate q. Whereas in an experiment,
one is limited by the ways one can attach the molecules of interest to the pulling apparatus,
one has considerable choice in simulations. For instance, if one is interested in the release
of a ligand from a buried binding site, the distance between the centers of mass of the two
binding partners may be far from an optimal pulling coordinate. With the apparatus built up
above we can understand why: the amount of dissipated work, 〈W (t)〉 −∆G(t), depends
on the pulling protocol and on the pulling coordinate. We would like to find protocols
and coordinates that minimize the amount of dissipation, such that the dynamics remains
as close as possible to the equilibrium dynamics. In our example of ligand dissociation,
we may thus want to include the motion of a lid occluding the binding site or any other
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obstacles explicitly in a generalized pulling coordinate. In general, we can adopt methods
of assessing and optimizing reaction coordinates (see, e.g., Ref. 20) for this process.

As a final word of caution, it is important to realize that the one-sided exponential
estimators of the free energies are biased (e.g., Eq. 4). In situations where the distribution
of work values is broad as compared to the thermal energy kBT , this bias can significantly
distort the results. In essence, a few trajectories with low work values dominate the sample.
These problems can be minimized by using two-sided estimators that combine results from
forward and reverse pulling, in particular Bennett’s acceptance ratio15, 16 in combination
with the Crooks fluctuation theorem9 and its extension to free energy surfaces19.

Additional practical issues and implementation questions are discussed, for instance,
in Ref. 17. Theoretical questions are discussed in Ref. 11, and in particular in Ref. 21. A
broader perspective on fluctuation theorems can be found, for instance, in Refs. 22,23. The
connection to experiment is explored in Ref. 24. An overview of applications can be found,
for instance, in Ref. 25. Recent experimental applications can be found in Refs. 14,26,27.

3 Concluding Remarks

Jarzynski’s identity7, the Crooks fluctuation theorem9, and their extensions to free energy
surfaces8, 19 provide powerful tools to determine free energies from non-equilibrium simu-
lations and experiments alike.

Additional non-equilibrium methods have been developed and used with considerable
success. In the construction of diffusion, master-equation, or Markov state models28–30

it is possible to restrict the non-equilibrium to the choice of initial condition, but use an
otherwise unbiased time evolution. With detailed balance and time-reversal symmetry of
the time propagation, one can in this way build up a coarse-grained representation of the
dynamics that retains the exact equilibrium populations as a steady state. In addition,
adaptive free energy sampling methods fall into the broader category of non-equilibrium
methods, such as Wang-Landau sampling31, metadynamics32, and adaptive biasing force33.

An important question is: are non-equilibrium pulling methods more efficient than fully
optimized equilibrium sampling methods? Based on theoretical analyses34, 35, the answer is
likely no. But, going back to the opening argument, that may not be entirely discouraging,
not only because non-equilibrium methods have already proved particularly powerful in
an initial search for possible reaction mechanisms. On the one hand, the non-equilibrium
methods allow us to induce reactions over the time scales accessible to a simulation or
an experiment. On the other hand, they have opened up a window into non-equilibrium
ensembles and their poorly understood properties.
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E-mail: teo@zurich.ibm.com

In this manuscript I will review the problem of optimizing the algorithm for the construction
of the QM/MM electrostatic potential. In fact, while the cost of solving the Schrödinger equa-
tion in the QM part is the bottleneck of these calculations, evaluating the Coulomb interaction
between the QM and the MM part can be surprisingly expensive: in some cases, it can be just
as time-consuming as solving the QM part. The result of this investigation, performed during
my PhD thesis, is a new real space multi-grid approach which handles Coulomb interactions
very effectively. This algorithm has been implemented in the CP2K code1. This novel scheme
cuts the cost of this part of the calculation by two orders of magnitude with respect to other
schemes2, at similar accuracies. The method does not need fine tuning or adjustable parameters
and it is quite accurate, leading to a dynamics with very good energy conservation. Moreover
it provides a natural extension to QM/MM periodic boundary conditions, treating properly the
long-range electrostatic interactions in hybrid QM/MM simulations. In the last part of this
manuscript, I will show the importance of a correct treatment of the long–range interactions in
QM/MM calculations with periodic boundary conditions (PBC), when studying highly ordered
crystal structures.

In summary, the present multigrid method allows for fast, accurate and both periodic and non-
periodic simulations in molecular simulations of biological and material science systems.

1 Introduction

The study of chemical reactions in condensed phases is computationally demanding, ow-
ing not only to the size of the simulating system but also to the large degree of configura-
tional sampling necessary to characterize a chemical reaction. This places severe demands
on the efficiency of the implementation of any QM/MM scheme. Two main bottlenecks
can be identified in such calculations: one concerns the evaluation of the QM energy and
derivatives while the other is associated with the evaluation of the electrostatic interaction
between the QM and the MM part. In this respect we can identify two classes of codes,
those based on Gaussian-type orbitals (GTOs) to represent both the wave-function and the
charge density3, 4 and those using grids in real space to represent the charge density5, 1, 6.
The latter encompasses both codes fully based on plane waves (PWs) and the more recent
mixed approaches based on Gaussian plane waves (GPWs).

For localized basis sets (GTOs), the use of an efficient pre-screening technique is im-
perative in order to avoid the quadratic construction of the one-electron QM/MM Hamil-
tonian matrix. For non-local basis sets (PWs), if the interaction is evaluated analytically,
the computational price is proportional to the number of grid points times the number of
MM atoms. Surprisingly the evaluation of the QM/MM electrostatic interaction, for the
latter scheme, requires between 20% and 100% of the time needed by the QM calculation,
this in spite of the use of sophisticated hierarchical multipole (HMP) methods7 or of clever
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implementations based on electrostatic cutoffs2. Furthermore these techniques require a
fine tuning of parameters to yield optimal performance, and lead to a loss of accuracy that
makes error control difficult.

I will describe in the next sections a recent implementation of the QM/MM coupling
term that avoids the use of any hierarchical method or multipole technique, based on the
use of multi-grid techniques in conjunction with the representation of the Coulomb po-
tential through a sum of functions with different cutoffs, derived from the new Gaussian
expansion of the electrostatic potential (GEEP for short). The overall speedup is of 1-2
orders of magnitude with respect to other PW-based implementations of the QM/MM cou-
pling Hamiltonian8, 2. The lack of tuning parameters and electrostatic cutoffs makes this
implementation a totally free parameter scheme, without any significant loss of accuracy.
Consequently, very stable simulations can be obtained with optimal energy conservation
properties.

Another important issue is the treatment of long–range Coulomb interactions, much
less well established for hybrid quantum mechanics/molecular mechanics (QM/MM) than
for classical simulations. So far, most of the QM/MM implementations have relied on a
spherical truncation scheme, in which the solute(QM)-solvent(MM) electrostatic interac-
tions are neglected beyond a certain cutoff distance Rc. There are only a few exceptions.
A very popular and inexpensive approach is the reaction field method, which couples the
spherical truncation scheme with a polarizable continuum medium that extends beyond a
cutoff distance Rc9–14 . Ewald’s lattice summation technique were also investigated to treat
the long-range QM/MM electrostatic interactions. Within a semi-empirical framework, the
first implementation is due to Gao and Alhambra15. In their scheme only the long-range
QM/MM interactions are evaluated, while the QM/QM ones are omitted. For the particular
set of applications tested by these authors, namely solvation phenomena, the solute-solvent
(QM/MM) interactions were considered as the determining ones. Recent implementations
of Ewald techniques extended to the full QM/MM long-range interactions16, 17 show indeed
that even for solvation cases long-range QM/QM electrostatic interactions play a signifi-
cant role. Within a self-consistent DFT scheme, to the best of my knowledge there is only
one QM/MM scheme that allows PBC18 to be used. This approach is conceptually similar
to the one we present here and it relies on the use of splines in reciprocal space (k-space),
optimally designed for use within plane wave (PW) codes. The present multigrid approach
is on the other hand, based on real space techniques, and is designed to be used with Gaus-
sian basis codes, as is CP2K1.

Afterwards, I will propose an extension of the QM/MM algorithm to applications
where the use of PBC is mandatory. It relies on the most efficient methods for calcu-
lating long-range electrostatic interactions of point charges within PBC and scales linearly
with respect to the number of MM atoms. Moreover the evaluation of the MM electrostatic
potential using PBC is independent of the number of QM atoms, depending only on the
dimension of the coarsest grid used in the multi-grid approach. Both schemes (periodic
and non–periodic) will be shown on a realistic system: the modeling of silica.

Nonetheless, before explaining in details the multi-grid framework, it is necessary a
little digression about the renormalization of the QM/MM Hamiltonian. In fact, the de-
velopment of an appropriate coupling Hamiltonian between the two subsystems is the
biggest challenge in such hybrid methods2, 19, 20. The point-like description of the MM-
atom charges and their interactions with the QM electrons at short ranges can cause an
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artificial and non physical polarization of the QM electron density2, 19, 21. Such an artificial
polarization can influence the outcome of a chemical reaction study, the dipole moment,
and other properties based on electronic charge density2, 19, 21.

In fact, the point-charge description for the MM atom cannot provide a compatible
picture for the QM/MM Coulomb interaction at distances close to zero and this can be
a source of non physical polarization of QM electrons and divergent forces on the MM
atoms. To remove this divergence, arising from a point-like charge description of the MM
atom, an empirical description of a renormalized Coulomb potential was introduced2, 21.
Recently22 a theoretical derivation based on a localized partial-wave expansion of the MM
charge was proposed, adjusting the extension of the charge distribution in order to normal-
ize the Coulomb potential near interatomic separations of the order of twice the covalent
radius.

In the following sections, I will first review the renormalization of the QM/MM in-
teraction potential22. Then, I will present the multigrid approach both for periodic42 and
non–periodic41 systems. Finally, I will report on the modeling of Silica with a QM/MM
Hamiltonian72. Latin letters a, b will be used to index the MM atoms, while Greek letters
α, β will be used for QM atoms.

2 Renormalization of the QM/MM Hamiltonian

The central issue of a QM/MM hybridization scheme is the definition of the QM/MM
coupling part HQM/MM

19, 23, 24, 20. HQM/MM accounts for the interaction between the
quantum system and the MM atoms. In general, HQM/MM contains Coulomb (long-
range) and short-range interactions (non–bonded) and is taken as19, 23, 24, 20

HQM/MM =
∑

a∈MM

∫
dr
ρe(r, rα)qa

r− ra
+

∑
a∈MM

∑
α∈QM

Zαqa
|rα − ra|

+

∑
a∈MM

∑
α∈QM

V aαNB (rα, ra) (1)

where r, rα and ra represent the position vector for electrons, QM nuclei with charge Zα
and MM nuclei with atom partial charge qa, respectively. ρe represents the electron den-
sity. The short-range repulsion and attractive mutual average polarization is modeled by a
general non-bonded term (V aαNB (rα, ra)), like for instance a Lennard-Jones (LJ) potential25

or a BKS interaction26.
If an interaction Hamiltonian like Eq. 1 is used, artifacts may arise due to the presence

of unscreened Coulomb charges of the MM atoms. This effect is ultimately due to the
absence of Pauli exclusion repulsion for the QM electrons by the MM atoms. The atom
included in the MM subsystem should exert Pauli repulsion due to its own electrons (which
are replaced together with the nuclear charge by an effective point charge) and would deter
the QM electrons to penetrate the atom valence shell. In a purely classical force field calcu-
lation, the 1

|rα−ra| term of the Lennard-Jones potential25 takes into account this effect and
provides sufficient repulsion between atoms at short range, thus keeping the attractively
interacting MM atoms at appropriate separations. For QM theories, the Pauli exclusion re-
pulsion is incorporated either properly antisymmetrizing the electronic wave function or by
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employing an exclusion hole concept (for methods with DFT origin). Nevertheless, incor-
porating the Pauli exclusion repulsion between the QM electronic charge distribution and
the MM point charges in a hybrid QM/MM calculation remains a formidable challenge.
One idea is to seek a comprehensive description of the QM/MM Coulomb interaction con-
sidering a localized expansion of the charges which regularizes the potential at short range
while reduces to the Coulomb potential for larger distances (r >> 2rc). As the charge
reflects the overall electrostatic potential acting at a point in the configuration space, it ac-
counts for the Pauli exclusion effect too. However, this conjecture is valid only beyond a
certain radius and not at short distances where the notion of point charge looses its validity.
Thus it is customary to regularize the potential at these short distances without affecting its
value for distances grater than rc.

Earlier Eichinger et al.27 and recently Das et al.21 proposed to replace the MM point
charge with a Gaussian delocalized charge density to remedy the short-range artifact. They
used a multistep approach to evaluate the Coulomb interaction between an MM atom and
the quantum system. The Coulomb part of their hybrid QM/MM Hamiltonian is given by

Hρe,qa =

∫
d3rρe(r, rα)qa

Erf(|r− ra|/σ)

|r− ra|
(2)

Here ρe(r, rα) is the electronic charge density, Erf is the error function, ra is the position
of the ath MM atom and the value of σ is the same for all atoms (0.8Å). As the error
function (which integrates the Gaussian distribution over a certain radius) asymptotically
reaches the value of unity, the above function has the correct asymptotic behavior of the
Coulomb interaction at large distance. At short distances, the error function is less than
unity and it tends to zero as distance goes to zero, thus removing the discontinuity in the
QM/MM interaction potential. We compare the functional behavior of this form of the
potential vis-a-vis the pure Coulomb interaction in Fig. 1. It appears that the potential does
not saturate near twice the covalent radius of the atom, which is supposed to be a key issue
in the modeling of the Coulomb QM/MM interaction. Afterwards, Laio et al.2 introduced
another functional form that takes into account the short range effect with the Coulomb
potential saturating near the covalent radius of the MM atom. The Coulomb part of their
hybrid QM/MM Hamiltonian is given by

Hρe,qa =

∫
d3rρe(r, rα)qa

rnc,a − r̃n

rn+1
c,a − r̃n+1

(3)

where r̃ ≡ |r− ra|. In the above prescription, the usual Coulomb interaction of 1
r̃ is being

replaced by v(r̃) =
rnc,a−r̃

n

r
(
c,an+1)−r̃(n+1)

. This functional form also has the correct asymptotic

behavior of 1
r̃ and as r̃→ 0, it smoothly converges to 1

rc,a
. In Fig. 1 we show the behavior

of the potential v(r̃) for rc,a = 0.699a.u. ( 0.37 Å). This corresponds to the electrostatic
potential of a QM electron with a unit positive charge. The functional form, although ap-
pears very useful for QM/MM electrostatic interactions, has not been derived theoretically
and thus may be considered as empirical. The functional forms of Eichinger et al.27 and
Laio et al.2 mentioned above reduce both the attractive and repulsive Coulomb interactions
at short distances while having the correct asymptotic behavior. Another crucial aspect of
these prescriptions is that they lead to zero forces ( finite potential ) at very short ranges,
thus avoiding the artificial localization of the electronic charge density on a positive MM
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Figure 1. Electrostatic interaction potential between an electron (a.u.) and a unite positive charge. The rc value
is equal to 0.699 a.u..

point charge. Laio et al.2 also remarked that they were not successful in finding a func-
tional form that provides repulsion at short distances and could mimic the Pauli exclusion
between electronic charge density and the MM point charge.

The problem has been finally solved by Biswas et al.22 who obtained a regularized and
renormalized description for the QM/MM electrostatic interaction by arguing that the point
like description of the charge must be valid at interatomic separation but at short distance
the Coulomb potential must be given by a localized charge distribution. The derivation
below is a summary of the work of Biswas et al.22, to account for the short-range effect.

Let us consider a localized wave function φ(r− ra) for the charge present at ra so that
the normalization of the wave function provides the charge qa,∫

|φ(r− ra)|2d3r = qa (4)

where r is an arbitrary point in space. For φ, a good representation is a partial-wave
expansion in terms of an orthonormal basis set φlm = Rl(u)Ylm(û) of a hydrogen-like
wave function and take

φ(u) =

(
qa∑
l |Cl|2

)1/2

·
∑

lm

ClRl(u)Ylm(û) (5)

where Rl(u) is similar to the radial part of the hydrogen-like wave function and Ylm(û),
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the spherical harmonics, represent the angular part; Cl is the expansion coefficient. Similar
partial-wave expansion to construct a wave function is frequently used in atomic molecular
physics28. The next approximation is to adopt a first-order approximation (l=0) to the
expansion scheme which would allow to account for the delocalized effect of the charge in
the s-wave approximation

φ(r− ra) =

(
qaξ

3

π

)1/2

exp−ξ|r−ra| (6)

The Slater function (see Eq. 6) provides a consistent picture with the localized description
of a charge and also enables us to arrive at analytical forms for the potential and force as
shown below for the s wave. A similar expansion scheme, but using Gaussian orbitals,
has been employed earlier by Das et al.21 to study QM/MM systems. Although both the
Gaussian and Slater orbitals are known to provide competitive results, the Slater orbitals
have the proper behavior (cusp) at the origin while the Gaussian orbitals are generally eas-
ier to deal with computationally. However, the analytical form for the Coulomb potential
using Slater orbitals provides the same computational advantage as Gaussian orbitals. The
parameter ξ of the Slater orbital has the dimension of an inverse length and it is natu-
ral associate it to the reciprocal of the covalent radius rc,a: ξ ≈ 1

rc,a
. More generally the

parameter ξ can be represented as ξ = λ/rc,a, where the λ parameter will be used to renor-
malize the Coulomb energy at 2rc,a (the interatomic separation). λ controls the spread of
the wave function, and for λ >> 1 the charge distribution collapses to a point like charge.

With the above wave-function description for the charge, the Coulomb interaction po-
tential (static potential) between the ath MM atom and the QM system can be written as

Hρe,qa =

∫
d3r

∫
d3r′

ρe(r, rα)|φ(r′ − ra)|2

|r′ − r|
(7)

HρN ,qa =

∫
d3r

∫
d3r′

ρN (rα)|φ(r′ − ra)|2

|r′ − r|
(8)

where HCoulQM/MM = Hρe,qa + HρN ,qa ; ρN is the charge distribution of the ionic core of
the αth QM atom (i.e. sum of the nuclear and inner electron charges). In CP2K the ionic
cores are distributed over the grid used also for the electronic charge density. This manner
of distributing ionic core charges would not lead to any appreciable modification to the
Coulomb energy as the separation between the QM nuclei and the MM atoms becomes
of the order of interatomic separation in a molecule and thus would be quite compatible
with the point-charge description. Thus, focusing on the effect of the spatial distribution
of the MM charges over the QM electron density will not lead to any loss of accuracy.
After performing the integrals (as shown in App. A) the following analytical expressions
are obtained:

Hρe,qa =

∫
d3rqaρe(r, rα) ·

[
1

|r− ra|
− exp−2ξ|r−ra|

|r− ra|
− ξ ∗ exp−2ξ|r−ra|

]
(9)

HρN ,qa =

∫
d3rqaρN (rα) ·

[
1

|r− ra|
− exp−2ξ|r−ra|

|r− ra|
− ξ ∗ exp−2ξ|r−ra|

]
(10)

From the above, we see that asymptotically (i.e. for |r−ra| → ∞),Hρe,qa converges to the
coulomb potential 1

|r−ra| . Also for ξ → ∞ (which recovers the point-charge description
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of the MM charge), the expression reduces to the usual Coulomb potential, as expected.
At short distance the effect of the localized distribution of the MM charge introduces large
cancellation to the Coulomb interaction and leads to a finite potential given by ξ (ξ has the
dimension of 1/r). Thus this potential leads to zero forces as the distance approaches zero.

It is interesting and worthwhile to mention that the empirical form of the Coulomb
potential proposed by Laio et al.2 provides a very similar behavior; the two expressions
differ marginally only at low and intermediate ranges, since both potentials converge to the
value of 1

rc,a
at zero distance. As the value of the parameter λ is increased, one gradually

approaches towards a point-charge description for the MM atom. At 0.97 Å (typical H-O
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Figure 2. Relative % difference between different electrostatic interaction potential and the bare Coulomb inter-
action.

separation in water) the value of the electrostatic potential of Eichinger et al.27, Laio et
al.2 and the one derived by Biswas et al.22 differ from the Coulomb potential arising from
the point-charge description by about 9.5%, 1.3% and 1.9%, respectively (see Fig. 2); all
are smaller than the Coulomb potential of a point charge. It is worthwhile to emphasize
that for λ = 1.3, the Coulomb potential approaches the point-charge potential faster and
normalizes near 0.74 Å (interatomic separation in hydrogen molecule). The results of22

show that a value of λ = 1.3 reduces the above difference of 1.9% (obtained with λ = 1.0)
to 0.5% and the corresponding expansion of the point charge provides the best results22.
Surprisingly, the empirical form of Laio et al.2 describes the localized distribution of
the MM point charge quite effectively and provides an understanding of the importance
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of accounting the smearing effect of the MM charge. As compared with the functional
form of Laio et al.2 and with the Biswas et al. potential22 obtained with Slater orbital,
the potential arising from a Gaussian distribution of the point charge27 overestimates this
effect by about 46%.

Since the modification in the Coulomb potential reflects a delocalization effect of the
MM charge, both the QM electron density and the QM ionic cores should experience the
same modified Coulomb potential. However, this is not strictly necessary as far as the full
Hamiltonian treatment stays consistent in the definition of energy and derivatives. In fact
in Laio et al.2 they do not consider the smearing effect of the MM charge when computing
the interaction with the ionic cores (see Sec. IV of Ref. 2), thus replacing the modified
Coulomb potential with a pure Coulomb interaction 1

rα−ra . Though the formalism pre-
sented in the next sections (see Sec. 4.1 and Sec. 5) relies on a Gaussian distribution for
the point charge, both charge distribution densities (Gaussian and s-wave) are available in
the QM/MM driver. Moreover, in the present implementation in CP2K I ensure that both
the QM electrons and the ionic cores experience the same external potential.

3 Wave-Function Optimization

The multi-grid implementation is based on the use of an additive29, 24, 23 QM/MM scheme.
The total energy of the molecular system can be partitioned into three disjointed terms:

ETOT (rα, ra) = EQM (rα) + EMM (ra) + EQM/MM (rα, ra) (11)

where EQM is the pure quantum energy, EMM is the classical energy and EQM/MM

represents the mutual interaction energy of the two subsystems. These energy terms depend
parametrically on the coordinates of the quantum nuclei (rα) and classical atoms (ra).

The quantum subsystem is described at the density functional theory (DFT) level, ex-
ploiting the QUICKSTEP30 algorithm.

The classical subsystem is described through the use of the MM driver called FIST,
also included in the CP2K package. This driver allows the use of the most common force
fields employed in molecular mechanics simulations31, 32.

The interaction energy term EQM/MM contains all non-bonded contributions between
the QM and the MM subsystem, and in a DFT framework we express it as:

EQM/MM (rα, ra) =
∑

a∈MM

qa

∫
ρ(r, rα)va(|r− ra|)dr +

∑
a∈MM,α∈QM

vNB(rα, ra)

(12)
where ra is the position of the MM atom a with charge qa, ρ(r, rα) is the total (electronic
plus nuclear) charge density of the quantum system, and vNB(rα, ra) is the non–bonded
interaction between classical atom a and quantum atom α, and finally:

va(|r− ra|) =
Erf(|r− ra|/rc,a)

|r− ra|
(13)

where rc,a is an atomic parameter, generally close to the covalent radius of the atom a. This
function is the exact potential energy function originated by a Gaussian charge distribution

ρ(|r−ra|) =
(

1√
π∗rc,a

)3

exp(−(|r−ra|/rc,a)2). Moreover, the expression in Eq. 13 has
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the desired property of tending to 1/r at large distances and going smoothly to a constant
for small r (see Sec. 2).

Due to the Coulomb long-range behavior, the computational cost of the integral in
Eq. 12 can be very large. When using a localized basis set like GTOs, the most natural
way to handle this term is to modify the one-electron Hamiltonian by adding to it the
contribution of the MM classical field:

Hµν
QM/MM = −

∫
φ∗µ(r, rα)

[ ∑
a∈MM

qa
|ra − r|

]
φν(r, rα)dr (14)

φµ and φν being Gaussian basis functions, depending parametrically on the QM nuclei
positions rα, and qa the atomic charge of classical atom a with coordinates ra. In this case
a suitable pre-screening procedure can be applied for the integral evaluation, in order to
effectively compute only the non-zero terms and thus avoiding the quadratically scaling
construction of the core Hamiltonian with respect to the number of elements of the basis
set. When using a fully delocalized basis set like PWs, on the other hand, the QM/MM
interaction term is evaluated by modifying the external potential and collocating on the
grid nodes the contribution coming from the MM potential. Unfortunately the number of
operations that a direct evaluation of Eq. 12 requires is of the order ofNuNMM , whereNu
is the number of grid points, usually of the order of 106 points, and NMM is the number
of classical atoms, usually of the order of 104 or more in systems of biochemical interest.
It is evident that in a real system a brute force computation of the integral in Eq. 12 is
impracticala.

3.1 GEEP: Gaussian Expansion of the Electrostatic Potential

The key to solve this issue is a decomposition of the electrostatic potential in terms of
Gaussian functions with different cutoffs:

va(r, ra) =
Erf(|r− ra|/rc,a)

|r− ra|
=
∑
Ng

Ag exp−(|r−ra|/Gg)2 +Rlow(|r− ra|) (15)

The smoothed Coulomb potential is expressed as a sum of Ng Gaussian functions and of
a residual function Rlow. The Ag are the amplitudes of the Gaussian functions, Gg are
their width. If the parameters Ag and Gg are properly chosen, the residual function Rlow
will be smooth, i.e. its Fourier transform will have a compact domain for very small g
vectors, and will be approximately zero for g >> Gcut. The Gcut parameter is related to
the spacing of the grid on which the Rlow function will be mapped. We performed the fit
of Eq. 15 by a least square approach in Fourier space, using the analytical expression of
the g-representation of the modified electrostatic potential33:

ṽa(g) =

[
4π

g2

]
exp

(
−
g2r2

c,a

4

)
(16)

In Fig. 3 we show the result of the fitting procedure in g–space with rc,a = 1.1 Å, compar-
ing the Fourier components of the modified Coulomb potential with the Fourier compo-
nents of the residual function Rlow. In this case the compact support of Rlow is truncated

aIn order to overcome this computational bottleneck, most of these methods employ a multipolar expansion for
reducing the computational complexity.
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at Gcut ≈ 1.0 which should be compared with the value of Gcut ≈ 3.0 needed to achieve
the same accuracy when using va(r, ra). This implies that the residual function can be
mapped on a grid with a spacing one order of magnitude bigger than the one required to
map the va function.

In Fig. 3 we show the same result of the fit in real space and in Tab. 1 we provide
coefficients for selected values of rc,a.

Radius rc,a = 1.1 Å Radius rc,a = 0.44 Å
Number of Gaussians Ag (a.u.) Gg (bohr) Ag (a.u.) Gg (bohr)

1 0.103103 4.243060 0.230734 1.454390
2 0.125023 2.966300 0.270339 1.094850
3 0.098613 2.254250 0.075855 4.906710
4 - - 0.190667 0.883485
5 - - 0.173730 1.965640
6 - - 0.127689 2.658160
7 - - 0.095104 3.591640

Table 1. Amplitudes and coefficients of the optimal Gaussians as derived by the fit.

The advantage of this decomposition scheme is that grids of different spacing can be
used to represent the different contributions to va(r, ra). In fact, the evaluation of a func-
tion on a grid relies on the assumption that the grid spacing is optimally chosen on the
basis of its Fourier transform spectrum. Writing a function as a sum of terms with compact
support and with different cutoffs, the mapping of the function is achieved using different
grid levels, in principle as many levels as contribution terms, each optimal to describe the
corresponding function. In our case, sharp Gaussians require fine grids while coarser grids
are necessary for the smoothest components. In addition the Gaussians can be truncated
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beyond a certain threshold value, which makes the collocation of the Gaussians on the grid
a very efficient process (see App. B).

The problem of mapping a non-compact function on a fine grid is then converted into
the mapping of Ng compact functions on grids with cutoffs lower or at least equal to the
fine grid, plus a non-compact very smooth function Rlow mapped on the coarsest available
grid. The sum of the contributions of all the grids, suitably interpolated, will be approxi-
mately equal to the function mapped analytically on the fine grid within errors due to the
interpolation procedure.

3.2 GEEP library

A library with optimized parameters for the GEEP expansion is available into the CP2K
code both for Gaussian and for s-wave (see App. A) charge distribution densities. In partic-
ular exploiting the scaling properties of both functional form it is possible to have a proper
expansion for whatever value of the rc,a parameter.

3.3 Multi-Grid Framework

Multi-grid methods are well established tools in the solution of partial differential equa-
tions34, 35. In the present implementation multi-grid techniques are employed to combine
functions with different cutoffs, i.e. represented on different grid levels.

Let us start by considering two grids, a coarse grid C with Nc points and a fine grid F
with Nf points, respectively at grid-level k-1 and k. The interpolation operator

Ikk−1 : C → F (17)

is by definition a transfer operator of a low cutoff function to a grid with an higher cutoff.
The extension of the function to more points requires some regularity assumptions on its
behavior. Two limiting cases can be identified: C1 and C∞, which can be handled with a
simple linear interpolation scheme and with a G–space interpolation, respectively. If the
function is C∞, as in the case of a Gaussian, it is normally better to use an interpolator that
assumes a high regularity. This ceases to be true once a collocation threshold is defined
for the mapping of the Gaussians. In fact, the function on the grid becomes less regular,
and an interpolation of a lower order might perform better. Another reason to avoid G–
space interpolation comes from the fact that periodic boundary conditions with respect to
the QM grid cannot be applied to the QM/MM potential. This makes the normal G–space
interpolation unsuitable for our purpose. Thus we preferred to use an interpolation that
works entirely in real space. For simplicity we use a set of commensurate grids, in which
all the points of the coarse grid are points of the fine grid. Moreover, the number of points
in each direction doubles going from the coarse to the fine grid level immediately above
(Nf = 8Nc in 3D). In the case of 1D space, the interpolation operator can be defined as:

Ikk−1(i, j) =
∑
n

T (i, n)S−1(n, j) (18)

where for the points away from the border T (i, n) = N3(n−i/2) and S(i, j) = N3(j−i);
N3 being the characteristic B-spline function of order 336 (see App. C). The border was
treated as a non-uniform B-Spline. Higher dimensional spaces can be treated using the
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direct product of the transformation along the single dimensions. The opposite operation,
the restriction Jk−1

k is defined through the condition that the integral of the product of
a function defined on the coarse grid with a function defined on a fine grid should give
the same result both on the fine and on the coarse grid. Thus the restriction is simply the
transpose of the interpolation

Jk−1
k (i, j) =

[
Ikk−1(i, j)

]T
=
∑
n

S−1(i, n)T (n, j) (19)

Using Ngrid grid levels and choosing the finer and coarser grid levels in order to treat
correctly the sharpest and smoothest Gaussian components respectively, we can achieve
good accuracy and performance.

4 QM/MM Coupling for Isolated Systems

4.1 QM/MM Energy

The QM/MM electrostatic energy within DFT can be expressed with the following equa-
tion:

EQM/MM (rα, ra) =

∫
drρ(r, rα)V QM/MM (r, ra) (20)

where V QM/MM is the electrostatic QM/MM potential evaluated on the finest grid, the
same on which the final QM total density is evaluated. The overall description of the
algorithm used to evaluate the QM/MM electrostatic potential on the finest grid can be
outlined as follows:

• Each MM atom is represented as a continuous Gaussian charge distribution. The elec-
trostatic potential generating from this charge is fitted through a Gaussian expansion
using functions with different cutoffs, Sec. 3.1.

• Every Gaussian function is mapped on one of the available grid levels, chosen to be
the first grid whose cutoff is equal to or bigger than the cutoff of that particular Gaus-
sian function. Using this collocation criterion, every Gaussian will be represented on
the same number of grid points irrespective of its width. In practice a submesh of size
≈ 25x25x25 is sufficient for an optimal Gaussian representation. Moreover, once a
collocation threshold is defined, the Gaussian can be considered a compact domain
function, i.e. it is zero beyond a certain distance, usually called Gaussian radius. Thus
only MM atoms embedded into the QM box, or close to it, will contribute to the finest
grid levels, as shown in Fig. 4.

The result of this collocation procedure is a multi-grid representation of the QM/MM
electrostatic potential V QM/MM

i (r, ra), where i labels the grid level, represented by
a sum of single atomic contributions V QM/MM

i (r, ra) =
∑
a∈MM via(r, ra), on that

particular grid level. In a realistic system the collocation represents most of the com-
putational time spent in the evaluation of the QM/MM electrostatic potential, that is
around 60− 80%.

290



MM

MM

I
k−1

k

J
k

k−1

MM

MM

I
k−1

k

J
k

k−1

MM

MM

Figure 4. Schematic representation of the collocation procedure. Two MM atoms and three grid levels have been
depicted. The circles (in the first and second grid levels) are the collocation region of the Gaussian centered on
the two MM atoms. Atoms whose distance from the QM box is greater than the Gaussian collocation radius do
not contribute to the potential on that grid level. However, all atoms contribute to the coarsest grid level through
the long-range Rlow part.

• Afterwards, the multi-grid expansion V
QM/MM
i (r, ra) is sequentially interpolated

starting from the coarsest grid level up to the finest level. The QM/MM electrostatic
potential on the finest grid level can then be expressed as:

V QM/MM (r, ra) =

fine∑
i=coarse

fine−1∏
k=i

Ikk−1V
QM/MM
i (r, ra) (21)

where V QM/MM
i (r, ra) is the electrostatic potential mapped on grid level i and Ikk−1

is the interpolation operator in real space. This operation does not depend on the
number of MM atoms but only on the number of grid points, i.e. on the cutoff used
in the calculation and on the dimensions of the QM box. For realistic systems the
computational cost is around 20 − 40% of the overall cost of the evaluation of the
QM/MM electrostatic potential.

Using the real space multi-grid technique together with the GEEP expansion, the
prefactor in the evaluation of the QM/MM electrostatic potential has been lowered from
Nf ∗Nf ∗Nf toNc ∗Nc ∗Nc, whereNf is the number of grid points on the finest grid and
Nc is the number of grid points on the coarsest grid. The computational cost of the other
operations for evaluating the electrostatic potential, such as the mapping of the Gaussians
and the interpolations, becomes negligible in the limit of a large MM system, usually more
than 600-800 MM atoms.

Using the fact that grids are commensurate (Nf/Nc = 23(Ngrid−1)), and employing
for every calculation 4 grid levels, the speed-up factor is around 512 (29); this means
that the present implementation is 2 orders of magnitude faster than the direct analytical
evaluation of the potential on the grid. The number of grid levels that can be used is
limited by two technical factors. The first is that the coarsest grid needs to have at least as

291



many points per dimension as the ones corresponding to the cutoff of the residual function
Rlow in order to perform the interpolation/restriction in an efficient manner. The second
limitation is due to the constraint of using commensurate grid levels. The more grid levels
are required in the calculation, the more the finest grid level cutoff will increase. This leads
to an increment in memory requirements and to an unnecessary precision when handling
the higher cutoff grids. Usually it is a combination of cutoff and grid levels that provides
maximum efficiency. The two parameters can be chosen by checking that the coarsest grid
level has no more than 5-10 grid points per dimension within the specified cutoff for the
finest grid. Following the previous rule, the number of operations required for the direct
evaluation of Eq. 12 is of the order of N*100*NMM , where N is an integer between 1 and
10 and NMM is the number of classical atoms.

4.2 QM/MM Forces

The forces on classical atoms due to the interaction Hamiltonian Eq. 20 are obtained by
taking the derivative of Eq. 20 with respect to the classical atomic positions ra:

−∂E
QM/MM

∂ra
= −

∫
ρ(r, rα)

∂V QM/MM (r, ra)

∂ra
dr (22)

The integral evaluation can be divided into terms deriving from the different grid levels:

−∂E
QM/MM

∂ra
= −

fine∑
i=coarse

∫
ρ(r, rα)

∂V
i,QM/MM
fine (r, ra)

∂ra
dr (23)

where the V i,QM/MM
fine labels the potential term on the finest grid level coming from the

corresponding grid level i. Using the multi-grid expression for terms V i,QM/MM
fine =∏fine−1

k=i Ikk−1V
QM/MM
i , the derivatives can be written as:

−∂E
QM/MM

∂ra
= −

fine∑
i=coarse

∫
ρ(r, rα)

fine−1∏
k=i

Ikk−1

∂V
QM/MM
i (r, ra)

∂ra
dr (24)

= −
fine∑

i=coarse

∫ [ fine∏
k=i+1

Jk−1
k

]
ρ(r, rα)

∂V
QM/MM
i (r, ra)

∂ra
dr (25)

In the previous equation the property that the interpolation operator is equal to the trans-
pose of the restriction operator (and vice-versa) was used. The MM derivatives are then
evaluated applying the restriction operator to the converged QM ρ(r, rα). This leads to a
multi-grid expansion of the density and each integral is evaluated on the appropriate grid
level. The overall derivative is the sum of the contributions of the different grid levels.

We now consider the forces on the QM atoms. If nαc (r) is the Gaussian density used to
represent the core charge distribution of the αth quantum ions and labeling with Pµν the
µν element of the density matrix in the Gaussian basis set { φµ }, the forces on quantum
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ions30 due to the QM/MM interaction potential are

−∂E
QM/MM

∂rα
= −

∑
µν

(
∂Pµν

∂rα
)V QM/MM
µν − (26)

2
∑
µν

Pµν
∫

(
∂φµ(r, rα)

∂rα
)V QM/MM (r, ra)φν(r, rα)dr− (27)∫

(
∂nαc (r, rα)

∂rα
)V QM/MM (r, ra)dr (28)

where V QM/MM
µν =

∫
φµ(r, rα)V QM/MM (r, rα)φν(r, rα)dr is the QM/MM Hamilto-

nian interaction term in the Gaussian basis set { φµ }. The first term is the so-called Pulay
term37 and is present because the basis set depends explicitly on the atomic position30. It
vanishes if Gaussians form a complete basis set. The evaluation of the gradients on QM
atoms is relatively inexpensive compared to a full quantum calculation. All considerations
raised in Sec. 4.1, concerning the scaling of the present scheme in the evaluation of the
QM/MM potential, remain valid in the evaluation of the forces on classical atoms.

The calculation of the forces within the present implementation has been compared
with the calculation of the forces using the method described in Ref. 2, which is an imple-
mentation of QMMM in the CPMD code5. Comparison with the CPMD-QMMM code is
complicated by the fact that in Ref. 2 a multipolar expansion is used for the long-range part
of the QM/MM electrostatic coupling. For this reason we compare only forces on atoms
of the first MM solvation shell, which are treated exactly also in CPMD-QMMM code.
We consider a system of 215 classical SPC38 water molecules and 1 QM water molecule.
Although the system size is relatively small, the number of molecules present is compa-
rable to the number of molecules normally treated exactly in CPMD-QMMM. In Fig. 6
we show the relative error between the previous and the present implementations. The
highest relative errors (less than 1.0 %) correspond to forces which have small modules
(≤ 10−3a.u.). The average relative error is ≈ 0.01% with a speed-up in the energy and
derivative evaluation of a factor of 40 with respect to CPMD.

An important figure of merit for QM/MM codes that are aimed at molecular dynamics
(MD) simulation is their ability to conserve the energy. In order to address this issue we
studied a system composed of 3 water molecules, 2 MM and 1 QM, equilibrated at 400K.
We simulate this system for 1 picosecond. The results are shown in Fig. 5. For comparison
the energy of the pure classical and the quantum run are shown in the same picture. No
drift is observed during 1 picosecond of simulation. We also show the potential energy
during the simulation, whose oscillation is ≈ 3 orders of magnitude bigger than the total
energy oscillation.

5 Extension to Periodic Boundary Conditions

Assuming the overall charge neutrality condition, the electrostatic interaction energy of a
QM/MM simulation within PBC can be easily evaluated:

ETOT =
1

2

∫
R3

∫
R3

drdr′
ρ(r)ρ(r′)

|r − r′|
(29)
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Figure 6. On the left: energy conservation of a system composed of 3 water molecules equilibrated at 400K
during 1 ps of simulation. The red line shows the total energy for the QM/MM run, the green line represents a
pure classical run and the blue line shows a pure quantum run. The total energies have been shifted for better
visualization. No drift is observed and all energy conservation is consistent. On the right: potential energy during
the same run. Its variation is 3 orders of magnitude larger than the total energy variation.

ρ = ρQM + ρMM being the total charge density of the system (see Fig. 7-a). Volumes
integrals cover the full space R3 and will be omitted in the following to make notation
lighter.

Once the total density is split into a QM and a MM part both sub-systems could in prin-
ciple possess an overall net charge different from zero. Therefore the use of a neutralizing
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Figure 7. These frames show the decomposition of the total QM/MM energy. In each frame two of the many
periodic replica have been shown. Frame Fig. 7-a shows the total system. Frame Fig. 7-b shows the energy of the
MM sub-system embedded in the neutralizing background charge (deriving from the division of the QM and MM
sub-systems). Frame Fig. 7-c shows the energy of the QM sub-system with the neutralizing background charge
of the QM cell and that relating to the MM cell. The last frame Fig. 7-d depicts the QM/MM pure electrostatic
mutual interaction term.

background charge (ρB) is necessary to avoid divergence in treating electrostatic within
PBC. The total energy (see Fig. 7-a) term can be split into three separate terms:

EMM =
1

2

∫ ∫
drdr′

(ρMM (r) + ρB,MM )(ρMM (r′) + ρB,MM )

|r − r′|
(30)

EQM =
1

2

∫ ∫
drdr′

(ρQM (r) + ρB,QM )(ρQM (r′) + ρB,QM )

|r − r′|
(31)

EQM/MM =

∫ ∫
drdr′

(ρQM (r) + ρB,QM )(ρMM (r′) + ρB,MM )

|r − r′|
(32)

The physical nature of these terms is illustrated pictorially in Fig. 7. Assuming the total
charge of the system is zero (although this assumption can be relaxed with no modifica-
tions to the formalism) the mixed terms involving the neutralizing background charge of
the EQM/MM cancel the interaction terms of the QM and MM density with their own
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background charges. The expression for the three terms is:

EMM =
1

2

∫ ∫
drdr′

(ρMM (r))(ρMM (r′))

|r − r′|
(33)

EQM =
1

2

∫ ∫
drdr′

(ρQM (r))(ρQM (r′))

|r − r′|
(34)

EQM/MM =

∫ ∫
drdr′

(ρQM (r))(ρMM (r′))

|r − r′|
(35)

The first term (Eq. 33 and Fig. 7-b) is evaluated using standard techniques such as particle-
particle or particle-mesh schemes39, 40. The second term (Eq. 34 and Fig. 7-c) is the Hartree
energy of the QM sub-system. Since the total energy of the QM sub-system is usually
evaluated exploiting a smaller cell, care needs to be taken to include the correct electrostatic
interactions of the periodic QM replicas, i.e. restore the correct periodicity (MM cell). The
last term (Eq. 35 and Fig. 7-d) is the evaluation of the periodic MM electrostatic potential,
partitioned into a real space contribution and a periodic correction. The real space term
contains the interaction due to the short-range part of the electrostatic potential of the MM
charges with the total quantum charge distribution (electrons plus nuclei). Only MM atoms
close to the QM region will contribute to this term. The periodic term contains instead the
long-range effects of the MM sub-system.

In the next subsection, the standard Ewald method is briefly reviewed for a N-point
charge particle system interacting in an orthorhombic box of edge Lx, Ly , Lz . We then
introduce the Ewald lattice summation with the GEEP scheme41. Finally we discuss the
algorithm to decouple/recouple multiple QM images.

5.1 Ewald Lattice Summation for Electrostatic Interactions

Given an N-point charge particle system, the electrostatic potential Φtot(r) at position r is
evaluated using the Ewald lattice sum technique43. In this approach, Φtot(r) is split into
the sum of two potentials, using a Gaussian screening charge of width κ:

Φtot(r) = Φrec(r) + Φreal(r) (36)

The reciprocal space potential term Φrec(r) is determined using the Fourier series:

Φrec(r) =
4π

V

∑
k 6=0

e−
k2

4κ

k2

MM∑
a

qae
−ık·|r−ra| (37)

where k = [2πnx/L
2
x, 2πny/L

2
y, 2πnz/L

2
z] and V is the volume (V=Lx·Ly·Lz) of the

primary unit cell. The real space part of the Ewald potential is given by:

Φreal(r) =

MM∑
a

∑
|L|≤Lcut

qa
Erfc(κ|r− ra + L|)
|r− ra + L|

(38)

where L = [nxLx, nyLy, nzLz] counts the periodic images and nx, ny and nz are integers.
As the Erfc has a real space short-range property, only the |L| ≤ Lcut periodic images will
contribute to the real space term of the electrostatic potential.
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5.2 QM/MM Periodic Potential

The QM/MM periodic potential (see Eq. 35 and Fig. 7-d) on a generic point i of the finest
grid level can be computed using the real space lattice sum:

V fine(ra)i =

MM∑
a

∞ ′∑
L

qava(ri, ra + L) (39)

where ri is the coordinate of the point i of the finest grid level and ra indexes the func-
tional dependence from the set of MM atomic coordinates and v is given by Eq. 13.
The summation over L involves all integer translations of the real space lattice vectors
L = [nxLx, nyLy, nzLz] for integers nk and the prime symbol indicates that when L = 0
the term |ri − ra| = 0 is neglected. The summation in Eq. 39 has the same convergence
properties as the standard Ewald summation schemes43.

The total QM/MM electrostatic energy can be split into two rapidly convergent
terms44, 43, one over real space and the other over reciprocal space lattice vectors:

EQM/MM (rα, ra) = E
QM/MM
real (rα, ra) + E

QM/MM
recip (rα, ra) (40)

where:

E
QM/MM
real (rα, ra) =

∫
drρ(r, rα)V

QM/MM
real (r, ra) (41)

and

E
QM/MM
recip (rα, ra) =

∫
drρ(r, rα)V

QM/MM
recip (r, ra) (42)

The definition of the two terms is strictly connected to the type of functional form used to
describe the Coulomb interactions. For Gaussian charge distributions (but similar expres-
sions are available as well for the s–wave charge expansion, i.e. App. A), the electrostatic
potential function has the analytical form:

va(r, ra) =
Erf(|r− ra|/rc,a)

|r− ra|
(43)

easily represented as a sum of two terms41:

va(r, ra) =
Erf(|r− ra|/rc,a)

|r− ra|
=
∑
Ng

Ag exp(−|r− ra|2

G2
g

) +Rlow(|r− ra|) (44)

The best choice is to use the mathematical properties of the two functional forms (short-
range term and long-range term) to define the division into real and reciprocal space con-
tributions:

va(r, ra) =
Erf(|r− ra|/rc,a)

|r− ra|
=
∑
Ng

Ag exp(−|r− ra|2

G2
g

) +Rlow(|r− ra|)

=vrsa (r, ra) + vrecipa (r, ra) (45)

297



All short-range interactions will be evaluated in the real space while all long-range inter-
actions will be taken into account in the reciprocal space formalism. The real space term
V
QM/MM
real (r, ra) is defined as:

V
QM/MM
real (r, ra) =

∑
|L|≤Lcut

∑
a

qav
rs
a (r, ra + L)

=
∑

|L|≤Lcut

∑
a

qa

∑
Ng

Ag exp(−|r− ra + L|2

G2
g

)

 (46)

where a labels the MM atoms. The radii of the Gaussians are such that only a few periodic
images (|L| ≤ Lcut, ideally only one) are needed to achieve convergence of the real space
term, while others give zero contribution. As in41, each Gaussian of Eq. 46 is mapped on
the appropriate grid level. The same approach outlined here for Gaussian charge distribu-
tion holds for the s-wave charge expansion.

The effect of the periodic replicas of the MM sub-system is only in the long-range term,
and it comes entirely from the residual function Rlow(r, ra) of Eq. 45:

V
QM/MM
recip (r, ra) =

∞ ′∑
L

∑
a

qav
recip
a =

∞ ′∑
L

∑
a

qaRlow(|r− ra + L|) (47)

Performing the same manipulation used in Ewald summation43 (see App. B) the previous
equation can be computed more efficiently in the reciprocal space:

V
QM/MM
recip (ri, ra) = L−3

kcut ′∑
k

∑
a

R̃low(k)qa cos [2πk · (ri − ra)] (48)

The term R̃low(k), representing the Fourier transform of the smooth electrostatic po-
tential, can be evaluated analytically:

R̃low(k) =

[
4π

|k|2

]
exp

(
−
|k|2r2

c,a

4

)
−
∑
Ng

Ag(π)
3
2G3

g exp(−
G2
g|k|2

4
) (49)

The potential in Eq. 48 can be mapped on the coarsest grid. In fact, the long-range contri-
bution is physically very smooth and a good representation can be achieved with large grid
spacings. Furthermore, since the Rlow function is a low cutoff function, R̃low(k) is zero
for all k-vectors larger than a well defined kcut. The kcut parameter depends strongly on
the number of Gaussian functions used in the GEEP scheme (as described in Sec. 3.1).

Once the electrostatic potential of a single MM charge within periodic boundary con-
ditions is derived, the evaluation of the electrostatic potential due to the MM sub-system
is easily computed employing the same multi-grid operators (interpolation and restriction)
described in Sec. 3.3 and in App. C.

5.3 Periodic Coupling with QM Images

In the present section we complete the description of the electrostatic coupling, discussing
the interaction between the periodic images of the QM replicas (see Fig. 7-c). The Quick-
step30, 45 algorithm uses a mixed plane wave / Gaussian basis set to solve the DFT equations
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for the quantum sub-system. The plane waves are used to compute efficiently the Hartree
potential. Therefore, unless the quantum box and the MM box have the same dimensions,
the QM images, interacting by PBC implicit in the evaluation of the Hartree potential, have
the wrong periodicity.

In order to avoid this error, the QM problem is usually solved using standard decoupling
techniques46, 47. This approximation is legitimate when the evaluation of the QM/MM
potential is performed using spherical truncation schemes for Coulomb interactions.

Since we want to describe the long-range QM/MM interaction with periodic boundary
conditions, we may not neglect the QM/QM periodic interactions, which play a signifi-
cant role if the QM sub-system has a net charge different from zero or a significant dipole
moment. Therefore we exploit a technique proposed few years ago by Blöchl47, for de-
coupling the periodic images and restoring the correct periodicity also for the QM part.
A full and comprehensive description of the methods to evaluate energy corrections and
derivatives is given in Ref. 47. Here we summarize Blöchl’s decoupling scheme. Given a
QM total density charge ρ(r, rα), the electrostatic energy of this isolated density is:

E =
1

2

∫
V

dr

∫
dr′

ρ(r, rα)ρ(r′, rα)

|r− r′|
(50)

Let us introduce a new model charge density ρ̂(r, rα), which is localized within the same
volume V as ρ(r, rα) and which reproduces the multipole moments of the correct charge
distribution. The representation adopted in Ref. 47 is given by the sum:

ρ̂(r, rα) =
∑
α

qαgα(r, rα) (51)

of atom-centered spherical Gaussians, which are normalized such that they posses a charge
of one:

gi(r, rα) =
1

(
√
πrc,α)3

exp(−|r− rα|2

r2
c,α

) (52)

where rα denotes a particular atomic site. Every atomic site may be the center of various
Gaussians with different decay lengths rc,α. By construction, the multipole moments of
the model charge density agree with those of the original charge distribution. Since the
electrostatic interaction of separated charge distribution (the array of periodic QM charge
densities) depends only on its multipole moments, the model charge density is used to mod-
ify the Hartree potential and to cancel the electrostatic interactions between the periodic
images. In App. D, we briefly summarize with a matrix formalism the charge fit scheme
as derived in Ref. 47. In the same way as the Blöchl scheme cancels the electrostatic
interactions between periodic images, it is possible to use it to include the electrostatic
interactions between periodic images with the periodicity of the MM box.

5.4 QM/MM Forces

The derivatives on MM atoms can be easily evaluated taking the derivative of both terms
in real space and in reciprocal space, and summing the contribution of the different grid
levels. The derivatives of the real space term are the same as the one presented in Sec. 4.2.
The derivatives of the reciprocal space term need to be evaluated by deriving the MM
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nuclei potential energy contribution and integrating this derivative with the quantum charge
distribution:

∂E
QM/MM
recip (rα, ra)

∂ra
=

∫
drρ(r, rα)

∂V
QM/MM
recip (r, ra, rα)

∂ra
= (53)

∆ω
∑
ri

ρ(ri, rα)L−3

kcut ′∑
k

MM∑
a

R̃low(k)qa
∂ cos [2πk · (ri − ra)]

∂ra

(54)

where ∆ω is the volume element of the coarsest grid level. This contribution is summed
with the terms in real space to obtain the total derivatives on MM atoms. The derivatives
on QM atoms are computed in the same way as we described in Sec. 4.2, the only differ-
ence being that the QM derivatives are modified by the coupling/decoupling terms. These
corrections have been derived and extensively discussed in Ref. 47.

6 Tests and Applications

Three systems were selected to test the new method. The first one, an infinite array of
Gaussian alternating opposite charges, can be solved analytically and therefore provides a
clear and unambiguous test of the accuracy of our new approach.

The second system is a periodic model of α-quartz (α-SiO2) where a bulk fragment,
described at the DFT level, is embedded in the environment of classical atoms described
with MM force fields. The third system analyzes a charged oxygen vacancy defect in
α-quartz, in the same periodic model. These two systems do not possess an analytical
solution but both have been extensively studied experimentally48–55 and theoretically56–64.

6.1 Analytical Test

In order to validate this new algorithm, we consider the electrostatic interaction of an array
of Gaussian charge distributions:

ρ(rα) = (κ/π)3/2 exp(−κ2|rα|2) (55)

κ being the width of the Gaussian charge density.
The charges (32 positively charged (+1) and 32 negatively charged (-1)) are arranged

on a cubic array of points forming a NaCl lattice. Neighboring charges have opposite sign.
The potential generated by such a set of charges can be calculated exactly by noting that the
electrostatic potential of a single charge density (Eq. 55) at an arbitrary distance r can be
determined analytically, Vext(r) = Erf(κr)/r. We now construct a test QM/MM model,
selecting two neighboring charges (see Fig. 8) and calculating the Hartree potential in a
smaller orthorhombic cell centered around the two chosen charges. This calculation would
have been a necessary step had we treated the two selected centers quantum mechanically
instead of with a fixed nuclear charge distribution. The calculation was performed using a
plane wave cutoff of 25 Ry and 3 Gaussians were used for each selected atom to build the
model density used to decouple/recouple the periodic images.
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Figure 8. Orthorhombic cell of face centered cubic lattice of Gaussian charges. The two big spheres represent
the QM atoms. Lattice parameter 17.2 Å. The Gaussian charges have a width of 0.5

√
2 Å.

QM Cell (x,y,z) (Å) Num. Gauss. kcut (bohr−1) Etot (Hartree) ∆E (mHartree)
34.4 34.4 34.4 Analytical Calculation 3.441010

34.4 34.4 34.4 6 0.5 3.440520 0.49
34.4 34.4 34.4 6 0.7 3.441176 -0.17
34.4 34.4 34.4 6 1.0 3.441119 -0.11
34.4 34.4 34.4 6 2.0 3.441070 -0.06

34.4 34.4 34.4 6 0.5 3.440520 0.49
34.4 34.4 34.4 9 0.5 3.440687 0.33
34.4 34.4 34.4 12 0.5 3.440885 0.12
34.4 34.4 34.4 15 0.5 3.440895 0.11

34.4 34.4 34.4 15 0.5 3.440895 0.11
27.0 27.0 27.0 15 0.5 3.440978 0.03
34.4 27.0 27.0 15 0.5 3.440951 0.06
22.0 22.0 12.0 15 0.5 3.440865 0.14
12.0 12.0 12.0 15 0.5 3.441356 -0.35

34.4 34.4 34.4 QM/MM non-periodic∗ 3.443106 2.10

Table 2. The interaction of a Gaussian charge distribution in a 3-dimensional lattice as shown in Fig. 8 as a
function of the number of Gaussians used in GEEP and as a function of the QM cell. ∗ The QM/MM non-
periodic calculation was performed with 64000 MM atoms arranged in a cube cell of 344.0 Å.

In Tab. 2 we show how this pseudo QM/MM calculation depends on parameters like
the QM cell dimension (affecting the coupling/decoupling between QM periodic images),
the kcut parameter of Eq. 48 and the number of Gaussians used in the GEEP scheme. In
particular we note that the number of Gaussians is strictly correlated to the kcut value. In
fact, the more Gaussians that are used in the GEEP scheme, the more the Rlow will be a
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low cutoff function. This permits a smaller kcut parameter to be used in order to reach the
same accuracy (see Tab. 2).

The choice of the dimension of the QM box is almost irrelevant for the accuracy of
the results (see Tab. 2). In fact even using a box of 12.0 Å, which is the smallest possible
box size usable with this QM sub-system, we find accurate results. We remark that other
decoupling techniques46, 18 require boxes twice the size of the minimum box, leading to a
substantial computational overhead.

Moreover we computed the pseudo QM/MM interaction energy for the non-periodic
pseudo QM/MM calculation, using an MM environment of 64000 atoms (MM cell side of
344.0 Å). The result shows that for ordered structures surface effects are very important
and the only way to include correctly the electrostatic interactions is by using PBC. Overall
this test indicates that the new proposed scheme is both valid and efficient. In terms of
computational time no additional overhead was noted when performing pseudo QM/MM
calculation with or without PBC.

6.2 SiO2

Let us now consider a realistic problem, a crystal of α-SiO2 (α-quartz) in an orthorhom-
bic cell, subject to periodic boundary conditions. Several QM/MM schemes have been
proposed in the literature for silica-based systems65–72, differing in the description of the
quantum-classical interface and of the classical region. All of them treat the QM/MM
long-range interaction with a truncation scheme, properly optimizing the charges of the
H-atoms terminating the MM cluster or its shape in order to recover the correct long-range
effects.

The MM crystal we used for this test is made up of 15552 atoms (5184 SiO2 units) in
an orthorhombic cell of 49.94, 57.66 and 63.49 Å. The system was optimized using the
empirical pair potential of van Beest26 which is known to provide a reliable description of
bulk α-SiO2

73. A fragment of 160 atoms was treated at the QM level Fig. 9, describing the
oxygen boundary atoms with a core charge increased by 0.4 in order to maintain the neu-
trality of the overall system. This boundary scheme will be described in details in Sec. 7.1.
DFT calculations with Gödecker-Tetter-Hutter (GTH) pseudo-potentials74 using local den-
sity approximation to describe the exchange-correlation functional were performed on the
QM site using a cutoff of 200 Ry. We optimized the wave-function with and without the
use of periodic boundary conditions. The results show that the use of periodicity is essen-
tial to treat highly ordered crystal structures. Without periodic boundary conditions we find
the Kohn-Sham gap to be 0.12 eV which is much lower than the experimental band gap of
about 9 eV75, 76 and than the computed Kohn-Sham gap of 5.8 eV57. Also the population
analysis gives an indication that the lack of PBC leads to an incorrect description of the
system. In fact by population analysis47 we find that many oxygen atoms have a positive
charge while some silicon atoms have a negative charge. If we use periodic boundary con-
ditions, on the other hand, we find results that agree with those previously published. In
particular, using PBC, we find for the Kohn-Sham band gap a value of 6.23 eV using the
same computational parameters as in the case of non-PBC. The population analysis shows
the proper charge distribution with charges close to +2.0 and -1.0 for silicon and oxygen
respectively.

After removing the atom depicted in Fig. 9 from the same crystal structure, we studied
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Figure 9. The picture shows the QM cluster. Silicon atoms in yellow, oxygen in red, boundary oxygen atoms
(treated increasing the core charge by 0.4) in purple and in blue the oxygen atom (OX) removed to create the
oxygen vacancy defect.

the charged oxygen vacancy defect in SiO2 with the same computational setup used for
stoichiometric SiO2.

As for quartz the lack of PBC leads to an incorrect description for both the electronic
structure and the population analysis. The use of the present scheme gives a Kohn-Sham
band gap of 3.18 eV, as against the theoretical result57 of 3.30 eV. The value obtained
without PBC is 0.0089 eV. Unlike the other QM/MM schemes used for silica we do not
use any additional charge to terminate the MM cluster and no particular attention was paid
to the choice of its shape. The computational cost for the evaluation of the QM/MM-PBC
electrostatic potential on this system accounts for 5% of the total CPU time of a single MD
step.

7 QM/MM Study on Silica: Motivation

Silica is pervasive in present technologies, its applications ranging from optical fibers to
metal-oxide-semiconductor devices and even to car tires. Ab initio studies have provided
important insight on the properties of bulk phases, defects and surfaces of silica77–80. The
usual approach in the ab initio modeling of condensed matter systems makes use of su-
percells with periodic boundary conditions containing at most few hundreds of atoms.
However, if one is interested in the study of point defects as an impurity atom or a va-
cancy, the use of a full quantum periodic model implies an extremely high concentration
of defects with a consequently strong defect-defect interaction due to the limited supercell
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size. On the other hand, the use of a full quantum cluster model, popular in the chemistry
community, suffers from other limitations, since also in this case the size of the system
can not exceed, typically, one hundred atoms. Long-range electrostatic interactions are not
kept into account and local relaxation associated, e.g. with defect formation, is partially
hindered by the boundary atoms that have to be held fixed in order to prevent a global rear-
rangement of the cluster. However the properties to be addressed are often local in nature,
such as the structure and spectroscopic properties of point defects or the chemical reactiv-
ity of specific sites. In these cases, a quantum mechanical description is necessary only for
a small number of atoms around the site of interest, the rest of the system affects the local
properties only via long-range electrostatic interactions and geometrical constraints. For
this class of problems the QM/MM approach offers a satisfactory compromise between
accuracy and computational efficiency29. By embedding a quantum mechanics calcula-
tion in a classical molecular mechanics model of the environment, the hybrid QM/MM
schemes attempt to incorporate environmental effects at an atomistic level, including such
influences as mechanical constraints, electrostatic perturbations and dielectric screening.

Several QM/MM schemes have been proposed in literature for silica-based sys-
tems65–69, 81, 82, 70, 71, differing in the description of the quantum-classical interface and of
the classical region.

Our specialization of the general QM/MM scheme to silica has been validated by com-
puting the structural and dynamical properties of an oxygen vacancy in α-quartz, a proto-
typical defect in silica. For this benchmark case, we consider the effect on the accuracy of
the description of several factors: i) the total size of the system (MM+QM); ii) the size of
the QM subsystem; iii) the manner in which the valence at the boundary of the QM system
is saturated; iv) the basis set. In this manner we provide an optimized setup for performing
molecular dynamics QM/MM simulations in silicon dioxide. The quality of the description
is demonstrated by performing a long molecular dynamics at finite temperature on the oxy-
gen vacancy described with a minimal QM/MM model. We have found that convergence
in the properties of the defect is already achieved with a very small quantum subsystem
composed of eight atoms only. The combination of the QM/MM approach with the use of
a localized basis set for the quantum cluster calculations makes long molecular dynamics
simulations affordable at a low computational cost.

7.1 Modeling and Computational Details

The validity of a QM/MM scheme relies on few ingredients: the way in which bonded
interactions between atoms in the classical and quantum region are described; the way in
which electrostatic interaction between the two subsystem is treated; the quality of the
classical force field. Finally, if the QM/MM scheme is aimed at performing molecular
dynamics, a variational formulation of the total energy with respect to the atomic positions
is also required.

For what concerns the classical force field, the most sophisticated QM/MM scheme
presently available in literature is probably that proposed by Sulimov et al. in Ref. 66
where they use a classical region which includes up to several hundred polarizable atoms
within a shell model , surrounded by a first region with non-polarizable point charges ions
and by an outer region treated as a polarizable continuum. Here, we use the van Beest,
Kramer, van Santen (BKS) potential26. Even this simplified description of the classical
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subsystem does not affect significantly the accuracy of the description as we will show in
Sec. 7.2 for the test case we considered. The condition of neutrality of the system imposes
that qO = − 1

2qSi. The charge of silicon ion is +2.4 e. The parameters for the short range
interaction A,b,C are given in Ref. 26. This potential has been successfully applied to the
study of the phase diagram of crystalline silica83 and also provides a useful model of the
amorphous phase73.

Performing a QM/MM calculation on silica requires the description of a ”pseudobond”
between an MM Si and a QM O, or, vice versa, between an MM O and a QM Si. If, for
example, the QM system is a six member ring, each Si atom will have two dangling bonds,
whose valence has to be saturated in some way. Several strategies have been explored in the
literature, for silica or similar systems, involving e.g. the introduction of extra ”dummy”
hydrogen atoms84–86, or the ad hoc parameterization of a pseudo potential for the boundary
atoms20, 87–90. This latter approach has been adopted, for instance,in the QM/MM scheme
for silica of Ref. 66. We here propose a manner for capping the QM region that does
not require the introduction of extra atoms, and makes use of the ordinary pseudo potential
also for the boundary atoms. We choose the QM region in such a manner that the boundary
QM atoms are always oxygen atoms. The pseudo potential of these atoms (that from now
we indicate with O∗) is the ordinary one. To saturate the valence of the boundary oxygen
atoms we add one electron for each O∗, which would ideally come from the neighboring
MM Si. In order to enforce global charge neutrality, we change the ionic charge of the
boundary oxygen pseudo potential from 6 to 6.4. Hence, the total charge of the QM system
is (0.4− 1)nO∗ = −0.6nO∗ which is equal to the total charge of the classical atoms that
have been replaced by the QM atoms. In fact, in a system in which all the silicon atoms
are four-fold coordinated while all the O-atoms are two-fold coordinated the number of
boundary oxygens is given by nO∗ = 4nSi − 2nO, where nSi, nO are the number of QM
Si and QM O respectively. Therefore, since the charge of classical Si and O are 2.4 and -1.2
respectively, the total classical charge of the QM subsystem is indeed 2.4nSi − 1.2nO =
−0.6 (+4nSi − 2nO) = −0.6nO∗ , equal to the QM charge.

We perform DFT calculation in the local density approximation (LDA), by using Gaus-
sian based pseudo potentials74 with a DZVP atomic basis set and expanding the electron
density in plane-waves with an energy cutoff of 240 Ry.

The interaction energy term, EQM/MM is expressed as:

EQM/MM (rQM , rMM ) =
∑
i∈MM

qi

∫
dr

erf(
|r−rMMi |
rc,i

)ρQM (r)

|r− rMM
i |

+
∑
i∈MM
j∈QM

VNB(rMM
i , rQMj )

(56)
where ρQM (r) is the total (electronic plus nuclear) charge density of the quantum system.
VNB(rMM

i , rQMj ) is the non–bonded interaction.
All the classical steric and electrostatic interactions between QM atoms are set to

zero. Instead, a non–bonded26 term is introduced between O∗ and the first classical sil-
icon atoms. The parameters of the interaction are obtained by performing a series of full
QM calculations on a H3Si-O-Si-O-Si-H3 cluster by varying the distance between the cen-
tral Si and one of the two oxygen atoms while keeping other angles and distances fixed
(see Fig. 10). This distance dependence has then been fitted with the functional form of
the BKS potential26. The parameters obtained with this procedure are A=603935406. K,
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QMMM

O*
Si

Figure 10. Structure of the small cluster used for the fitting of the short range potential between the boundary
O∗and the first classical silicon. The arrows indicate the Si-O bond elongated. Si, O and H atoms are depicted in
yellow, red, and grey, respectively.

b=5.6077 Å−1, C=2244282. K/Å6. These values are only slightly different from those of
the van Beest, Kramer, van Santen potential.

In order to test the quality of our QM/MM model, we consider a big cluster of α-quartz
made by an integer number of SiO2 units saturated with hydrogens. The system is divided
in two regions, one treated within the ab initio framework (QM region), the second treated
by a classical force field (MM region). In real applications, the QM subregion should
ideally be as small as possible for reasons of computational efficiency. With this goal
in mind, we benchmark our QM/MM model by considering the structural properties of a
6-member ring embedded in MM SiO2 and the formation energy of the neutral oxygen
vacancy with QM subsystems of various size.

7.2 Validation of the QM/MM Approach

7.2.1 Geometry of the 6-Member Ring in α-Quartz.

We first consider a rather small SiO2 cluster composed of 164 atoms saturated with H
atoms. This system is chosen because it can be optimized at the full QM level. The QM
region is a ring made by six member ring approximately at the center of this cluster (see
Fig. 11). In order to reduce possible long-range electrostatic effects we optimized the
charges of the classical H-atoms terminating the cluster in order to reproduce the full QM
dipole moment. The position of the H-atoms and of the Si and O atoms connected to them
are held fixed in the geometry optimization using both the QM/MM or MM Hamiltonian.

The difference between the QM/MM and the full QM geometry is used as a measure
of the quality of the capping and of the QM/MM Hamiltonian.

By using the capping scheme described in Sec. 7.1, we perform a geometry optimiza-
tion of the system using the QM/MM Hamiltonian (Eq. 56). The results are shown in
Fig. 12, in which the full QM, MM and QM/MM structures are superimposed. The differ-
ences between these structures are small, especially for what concerns the QM subsystem.

306



Figure 11. Structure of the cluster with a QM six-membered ring (depicted with spheres). The color code is the
same as in Fig. 10.

The value of the root mean square deviation (RMSD) between the QM/MM and full QM
geometries is computed for the QM subsystem, the full cluster and the boundary atoms.
The results are reported in Tab. 3.

For a comparison, we also considered capping schemes in which the valence of the
QM system is saturated by dummy hydrogen atoms. If the last QM atom is an oxygen,
the H is placed in the direction of the first MM Si. Hence, the QM subsystem will be

Figure 12. Superposition of the geometries obtained from a full quantum (blue line), a full classical (red line)
and a QM/MM optimization (green line).
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RMSD RING [Å] INTERFACE [Å] FULL [Å]
MM 0.248 0.254 0.199

QM/MM O* 0.183 0.221 0.196
QM/MM O-H 0.275 0.403 0.254
QM/MM Si-H 0.191 0.276 0.206

Table 3. RMSD of the MM structure and the QM/MM O∗, O-H, Si-H terminated with respect to the QM
structure in three different case: in case RMSDRING we compare only the 6SiO atoms of the ring; in case
RMSDINTERFACE we compare the positions of all the QM atoms and the MM boundary atoms (for MM case
we chose the same atoms of O* and O-H cases); in case RMSDFULL we compare the positions of all the atoms.

terminated by -OH moieties (Model ”OH”). If the last QM atom is a Si, the H is placed
in the direction of the first MM oxygen (Model ”H”). The RMSD for these two models
are also reported in Tab. 3. The ratio of the SiO/SiH bond lengths for ”H” capping or the
ratio OH/SiO for ”OH” capping have been fixed at the values determined in a preliminary
full quantum optimization. The model ”OH” shows a large RMSD for both the ring and
interface regions. This is due to a large difference in the SiOH angle (115o) of the silanol
with respect to the SiOSi angle (145o) in α-quartz, as already pointed out by by Sauer et al
in Ref. 65. However the ”OH” capping might perform better for small silica clusters with
smaller SiOSi angles81, 82. The model ”SiH” performs better than the ”OH” model, but
still show large deviation in the interface region. However, since we have not attempted to
reparameterize the short range potential at the interface as we did for the O∗ capping, we
must say that there is still room for improvement for the ”H” capping.

7.2.2 Formation Energy of an Oxygen Vacancy in α-Quartz.

We now consider the formation energy and the structure of the neutral oxygen vacancy de-
fect in α-quartz. We use the experimental structural parameters: a=4.913 Å, c/a=1.10091, 48.
Removal of an oxygen atom produces a relaxation of the lattice with a formation of a Si-Si
covalent bond, whose length is much shorter than the equilibrium Si-Si distance in a per-
fect lattice (3.08 Å). Theoretical studies report that the equilibrium distance of the Si-Si
bond is in the range 2.3-2.6 Å66, 92, 59, 93, 94, 64. The predicted value is strongly affected by
the size of quantum system in cluster and periodic calculations. Also for the formation
energy, the values reported in literature depend significantly on the model (full QM cluster,
full QM periodic or QM/MM) and on the basis set. Boureau and Carniato95 found that the
formation energy of the neutral oxygen vacancy must be larger than 7.3 eV from purely
thermodynamic arguments. Density-functional-theory calculations in periodic models give
6.97 eV92, 7.85 eV59, 9.6 eV93 at the LDA level and 8.64 eV at the GGA level93. Hartree-
Fock calculations on an isolated cluster give 6.7 eV and 5.5 eV with and without the d
functions in the basis set and 8.5 eV including correlation energy at the MP2 level94, 64.
Sulimov et al.66, using a QM/MM approach with the QM region treated at the unrestricted
Hartree-Fock level (UHF), have obtained a formation energy of 6.08 eV with the 6-31G*
basis set used, which corresponds to ours.

They have also found that the formation of a Si-Si bond induces a strong anisotropic
relaxation of the lattice that extends up to 13 Å from the defect. They also find a Si-
Si distance of 2.32-2.40 Å depending from the basis set used (2.37 Å with a basis set
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equivalent to ours).
We compute the formation energy using the QM/MM Hamiltonian described in

Sec. 7.1, considering the effect of several factors that could influence the accuracy of the
calculation.

We first consider the effect of the size of QM subsystem, computing the formation
energy for the three QM subsystems shown in Fig. 13. The smaller system (9 atoms) is the

Figure 13. Structure of three different QM clusters used for the study of the oxygen vacancy. (a) Si2OO∗6 , (b)
Si8O7O∗18, (c) Si14O16O∗24. Si, O and O∗ are depicted in yellow, red, and green, respectively.

O (SiO∗3)2 moiety. The oxygen atoms in the SiO∗3 groups are boundary atoms, while the
central O is removed to generate the vacancy. The average and large QM subsystems are
composed of all the SiO2 units within three and five bond separation from the oxygen that
is removed, i.e. 33 or 54 atoms, respectively. For all the three cases, the QM subsystem is
embedded in a classical cluster composed of 508 SiO2 units. The Si and the O atoms at the
boundary of the classical cluster are saturated by hydrogen ions of charges -0.6 and +0.6,
respectively.

The vacancy formation energy is given by

∆Eform = E(O) + E(vacancy)− E(quartz). (57)

The energy of the isolated oxygenE (O) is obtained asE (O) = 1
2

(
E (O2) + Ediss (O2)

)
where E (O2) is the ab initio total energy of the O2 molecule in the triplet state and
Ediss (O2) = 5.16 eV is the experimental dissociation energy of O2

96. The correction
due to the basis set superposition error (BSSE) is about 0.1 eV. The results are shown in
Tab. 4. We estimated the BSSE with the counterpoise correction97 separately for the three
energy terms in Eq. 57 as follows: i) the correction to perfect quartz is the difference in
total energy due to the addition to the basis set of a ghost oxygen atom which forms a O2

molecule with the oxygen removed in the vacancy formation; ii) E(O) is calculated with a
full basis set of i); iii) the correction to the E(vacancy) is obtained by using the full basis
set of i) in the unrelaxed vacancy configuration.

We have also checked the dependence of the geometry and formation energy on the
basis set by performing additional calculations on the smaller cluster (Si2OO∗6) with the
TZVP and TZV2P basis sets. The results are reported in Tab. 5 and show that the DZVP
basis set is accurate enough for structural properties, but formation energies change sizably
with the basis set as already found in Hartree-Fock calculation with smaller basis sets in
Ref. 66.
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dist Si-Si [Å] ∆E [eV] ∆ECP [eV]
QM+MM regions: 1764 atoms

(A) Si2OO∗6 2.35 7.34 -0.11
(B) Si8O7O∗18 2.36 7.31 -0.12
(C) Si14O16O∗24 2.40 7.36 -0.13

QM+MM regions: 773 atoms
(B) Si8O7O∗18 2.35 7.36 -0.12

Table 4. Si-Si bond length, vacancy formation energy (∆E) and the counterpoise correction ∆ECP (included in
∆E) for different size of the QM and MM regions. The DZVP basis set has been used.

dist. Si-Si [Å] ∆E [eV] ∆ECP [eV]
DZVP 2.35 7.34 -0.11
TZVP 2.34 7.44 -0.08
TZV2P 2.34 7.91 -0.07

Table 5. Si-Si bond length, vacancy formation energy (∆E) and the counterpoise correction ∆ECP (included in
∆E) for different basis sets.

As a final remark, we note that for a crystalline system the Madelung field in the quan-
tum region would strongly depend on the value of the classical charges in the MM region.
Different MM models with different charges might provide similar bulk properties, e.g.
bulk structure of the glass, along with different local Madelung fields. Therefore, par-
ticular care must be paid in using QM/MM when the properties of charged defects are
addressed, e.g. the heterolytic breaking of a siloxane bond. The QM/MM scheme we pro-
pose is expected to correctly describe the elastic response of the system surrounding the
quantum region. Its applicability to study of any other local properties of the quantum re-
gion which would depend on the details of the Madelung field must be carefully checked.
In this respect, the BKS potentials we have used is probably better than others available in
literature also in describing the local Madelung field since the classical charges are fitted
on ab initio data. In our benchmark application the vacancy is a neutral defect and the
problems outlined above are probably less severe. To check further this point, we have
computed the formation energy of the unrelaxed oxygen vacancy in model B (Cfr. Tab. 4)
by changing the charge of classical silicon from 2.4 (BKS) to several values in the range
1.6-3.6. The charges of the hydrogen atoms capping the MM cluster and of the boundary
quantum oxygen atoms have been scaled accordingly. It turns out that the change in the
formation energy of the unrelaxed oxygen vacancy is always smaller than 20 meV.

7.2.3 Molecular Dynamics

In order to check the validity of our setup we have performed molecular dynamics sim-
ulations of the QM/MM system of size 8/1764 starting from the structure of the defect
(Si2O∗6) optimized with the DZVP basis set. We have first equilibrated the system at high
temperature (1000 K) by velocity rescaling for 0.3 ps. Observables are measured by aver-
aging over a run 10 ps long. The time step used in the velocity Verlet algorithm is 0.5 fs.

310



In Fig. 14a, we report the fluctuation in the potential energy and the total energy, constant
of motion, of our microcanonical simulation. The fluctuation in the constant of motion is
two order of magnitude smaller than the thermal fluctuations in the potential energy which
prove the robustness of our scheme. The Si-Si bond is stable and undergoes stretching de-
formation with a characteristic frequency that we have identified by Fourier transforming
the autocorrelation function < Ṙ(t)Ṙ(0) > where Ṙ(t) is the instantaneous Si-Si bond
vector. The correlation function is computed up to 2.5 ps by averaging over three inde-
pendent sections of a run 10 ps long. The results are well converged up to 0.3 ps. For
longer times, a longer simulation run would be needed. The autocorrelation function is
therefore windowed with a Fermi-Dirac function which smoothly brings < Ṙ(t)Ṙ(0) >
to zero above 0.25 ps. The resulting power spectrum is shown in Fig. 14b. The peak at
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Figure 14. Potential energy (Epot) and total energy (Etot) as a function of time in the molecular dynamics
simulation. b) The power spectrum of the velocity-velocity autocorrelation function for the Si-Si bond length
only (see text).
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∼20.5 THz corresponds to the main stretching mode of The Si-Si bond. Its position in
frequency (20.5 THz) compares well with that of the Si-Si stretching mode of the disilane
molecule H5C2OSi-SiOC2H5 we have identified at 21.3 THz from a molecular dynamics
simulation 2.2 ps long at 300 K or at 22.4 THz from the diagonalization of the dynamical
matrix computed within linear response theory98 with the code CPMD5, 99. The peak at
20.5 THz is also in good agreement with a prominent structure in the vibrational spectra
of the Si-Si bond which emerges from the difference in the vibrational density of states,
computed fully ab initio (LDA) in Ref. 100, for two periodic models (36 atoms large) of
α-quartz with and without the oxygen vacancy (see Fig.1 of Ref. 100). The computational
load for the molecular dynamics simulation on a single Opteron processor (2.2 GHz) is
28 hours/ps for the small quantum cluster (Si2O∗6) and 72 hours/ps for the larger cluster
(Si8O6O∗24) both with a classical cluster of 1764 atoms.

8 Conclusion

In these pages, I reviewed an algorithm for evaluating the QM/MM coupling term with a
fast linear scaling implementation both for periodic and non–periodic systems. The main
result is the dropping of the prefactor in the linear scaling, with a gain in the number of
floating point operations proportional to 23(Ngrid−1), where Ngrid is the number of grid
levels used in the multi-grid framework. The evaluation of the electrostatic potential on
a grid is proportional to the number of MM atoms times the number of grid points. In
real systems the linear scaling evaluation of the potential is therefore characterized by a
prefactor ≈ 106. In this scheme the prefactor is instead ≈ 103. The number of floating
point operations is reduced several orders of magnitude and the computational time is 10-
100 times smaller.

The algorithm is presently implemented in the package CP2K, released under GPL
license and freely available on the internet1.

The performance analysis confirms the present algorithm as the state of the art for the
evaluation of QM/MM interaction coupling within a GPW scheme. Moreover, at variance
with the majority of present-day QM/MM methods, our scheme does not rely on electro-
static cutoffs and so avoids all related problems. Consequently, the present method offers a
fast, easy-to-use code for QM/MM calculations of large biological and inorganic systems.

Finally, I have shown how to employ the QM/MM scheme to model Silica. In this
framework, the capping of the QM region consist of boundary oxygen atoms with a modi-
fied charge to enforce total charge neutrality. This scheme makes long molecular dynamics
simulations, needed for instance to simulate local chemical reactivity, easily affordable.
The method has been tested calculating structural and dynamical properties of an oxygen
vacancy in α-quartz. We have found that good convergence in the Si-Si bond length and
formation energy is achieved by using a quantum cluster as small as eight atoms in size.
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Appendix A: Derivation of Coulomb Potential for Delocalized
Point-Like Charges

To perform the integration in Eq. 7, we consider the integral:

I(r) =

∫
d3r′
|φ(r′ − ra)|2

|r′ − r|
(58)

Using Eq. 6 for φ and taking the Fourier transformations for exp−2ξ|r′−ra| and 1
|r′−ra| , we

obtain

I =
qaξ

3

π

∫
d3r′

(
2ξ

π2

∫
d3p

expıp·(r
′−ra)

(p2 + 4ξ2)2

)
·

(
1

2π2

∫
d3q

expıq·(r
′−r)

q2

)
(59)

Rearranging and performing the integration over d3r′, we get

I =
qaξ

3

π

2ξ

π2

1

2π2
(2π)3

∫
d3p

∫
d3qδ(p− q) ∗ exp−ıp·ra

(p2 + 4ξ2)2

expıq·r

q2
(60)

Performing the integration over d3q using δ-function integration one obtains

I =
qaξ

3

π

8ξ

π

∫
d3p

expıp·(r−ra)

p2 ∗ (p2 + 4ξ2)2
(61)

Decomposing 1
p2∗(p2+4ξ2)2 we rewrite the above integral as

I =
qaξ

3

π

8ξ

π

∫
d3p

[
1

ζ4p2
− 1

ζ4 ∗ (p2 + ζ2)
− 1

ζ2 ∗ (p2 + ζ2)2

]
· expıp·(r−ra) (62)

where ζ = 2ξ. Taking the inverse Fourier transforms for all the three integrals and simpli-
fying for the constants, we finally obtain

I = qa

[
1

|r− ra|
− exp−2ξ|r−ra|

|r− ra|
− ξ exp−2ξ|r−ra|

]
(63)

Appendix B: Derivation of the Long-Range QM/MM Potential

The effect of the periodic copies of the MM sub-system is only in the long-range term, and
it comes entirely from the residual function Rlow(r, ra) of Eq. 45:

V
QM/MM
recip (r, ra) =

∞ ′∑
L

∑
a

vrecipa =

∞ ′∑
L

∑
a

Rlow(|r− ra + L|) (64)

This summation has the same convergence properties as the Ewald series, and can be effi-
ciently computed in the reciprocal space. To derive the expression of this modified Ewald
sum, let us assume we know the analytical expression of the density σ(r, ra) originating
from the atomic potential Rlow. The potential at point ri due to the charge distribution
σ(r, ra) is:

V
QM/MM
recip (ri, ra) =

∫
dr
σ(r + ri, ra)

r

= L−3

∫
dr

kcut ′∑
k

σ̃(k) exp[−ı2πk(r + ri − ra)]

r

(65)
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The use of the identity101∫
dr

exp[−ı2πk(r + ri − ra)]

r

=

∫ ∞
0

rdr

∫ 2π

0

dφ

∫ π

0

sin θdθ exp[−ı2π|k||r + ri − ra| cos θ]

=
4π

k2
cos [2πk · (ri − ra)]

(66)

in Eq. 65 leads to

V
QM/MM
recip (ri, ra) = 4πL−3

kcut ′∑
k

σ̃(k)

k2
cos [2πk · (ri − ra)] (67)

Using the Maxwell equation ∇2V = 4πρ and its representation in Fourier space, the term
in Eq. 67

4π
σ̃(k)

k2
= R̃low(k) (68)

is the Fourier transform of the potential originated by the density of charge σ(r, ra). Then
the previous equation can be written

V
QM/MM
recip (ri, ra) = L−3

kcut ′∑
k

∑
a

R̃low(k)qa cos [2πk · (ri − ra)] (69)

Appendix C: Splines

C.1 Multi Grid

Multi grid methods instead of just a fine grid Gf use other coarser grids. These grid levels
are ordered from the most coarse Gc = G1 to the finest Gf (1 = c ≤ f ). In 3D all the
coarser grids do not cost much in term of memory (typically 0.14-0.4 times the memory
of the fine grid). Adding these extra grids is useful because each one can represent a
given wavelength in an optimal way (i.e. with a minimal number of points), and perform
operations on this wavelength efficiently. Typically operations on each grid level are local
and work on patches of neighboring points, and after a series of them one collects the result
on the fine grid.

Multi grids methods can be used to solve linear equations on a grid, for example partial
differential equations, but they aren’t yet used for this purpose in CP2K . We use multi
grids to transfer the density from the Gaussian basis set to the grid trying to use a constant
number of points per Gaussian, as described in Ref. 45, and in QM/MM to transfer the
MM potential on the grid.

Multi grid is interesting only if there is an efficient way to transfer the operations done
on one grid level to the others. For i < j the transfer functions

P ij : Gi → Gj (70)

Rji : Gj → Gi (71)
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are called prolongation and restriction respectively.
If one wants that the integration of a function h defined on a finer grid Gj with a function

g defined on a coarser grid Gi give the same result both transferring g to the fine grid and
summing there or (more efficiently) transferring h to the coarse grid and then summing
there one has

〈P ijg, h〉 = 〈g,Rjih〉 (72)

i.e. the projection is the dual of the restriction.
The prolongation can be seen as an interpolation: given the values on a coarse grid try

to find the values on a finer grid. In general one can also imagine a continuous function that
underlies the prolongation operation. A very good method for grids with periodic boundary
condition is the G-space interpolation. With a fast Fourier transform (FFT) one can find
theG-space representation n̂ijk of the points on the grid. Then a continuous representation
of them would be

n(r) =
∑
ijk

n̂ijkexp(G(i, j, k) · r), (73)

where G(i, j, k) = 2πh−1[i, j, k], h−1 is the inverse of the cell vectors matrix, and i, j, k
are evenly distributed between the positive and negative values. The G-space interpolation
can be performed directly in the G-space, without going in the direct space. Indeed the
G(i, j, k) of the coarser grid are a subset of the ones of the finer grid, and the mapping is
trivial, taking care that for an even number of grid points you assign half the value to N/2
and half to −N/2.

The continuous function underlying the G-space interpolation is C∞ (i.e. smooth,
infinitely often differentiable), and is the best interpolation scheme (with respect to L2

norm) for points that come from a periodic C∞ function. Unfortunately if the points come
from a function which is not smooth or for a non periodic function this is no longer true.

In CP2K non smoothness is present because at the core there is a jump in the derivative
(cusp condition), and the exchange-correlation functionals, especially the gradient cor-
rected ones, exacerbate the problem. This is due also to the pseudo potential we use in
CP2K30. Also introducing a cutoff for the Gaussian loses their smoothness. It was in this
setting that we initially introduced the spline approach. This turned out to be more useful
that we thought and an extension of it was used to cope with the non periodicity (with
respect to the QM cell) of the potential in a QM/MM setting.

C.2 Periodic Uniform Splines

A uniform cardinal B-Spline of order 3 in 3d is a functionR3 → R

f(x, y, z) =
∑
ijk

cijkN
3(x− i)N3(y − j)N3(z − k), (74)

that is controlled by the coefficients cijk.
N3 is a piecewise polynomial function in C2 with compact support that can be seen as

the convolution of the characteristic function of [−1/2, 1/2] (χ[−1/2,1/2]) with itself three
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times.

N3(t) =


1
6 (t+ 2)3 −2 ≤ t < −1

− 1
2 t

3 − t2 + 2
3 −1 ≤ t < 0

1
2 t

3 − t2 + 2
3 0 ≤ t < 1

− 1
6 (t− 2)3 1 ≤ t < 2

0 otherwise

(75)
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Figure 15. The N3 function.

C.3 Periodic Prolongation/Restriction

With this the prolongation operation can be defined as follow:

1. find the coefficients cijk that interpolate the values vijk on the coarse grid

2. evaluate the spline Eq. 74 on the fine grid to obtain the final values wijk

We define the function

Si : Gi → Gi (Si)klm,nop = N3(||k − n||)N3(||l − o||)N3(||m− p||) (76)

where ||x|| is introduced because of periodic boundary conditions, and means the smallest
distance, for example for the dimension x

||x|| = ((x+Nx/2) mod Nx)−Nx/2, (77)
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where Nx is the number of grid points in the dimension of x. Si maps the coefficients cijk
to the values vijk. This matrix is very sparse because the N3 is different from 0 only for
the nearest neighbor, i.e. for an integer value i

N3(i) =


1
6 if i = −1
2
3 if i = 0
1
6 if i = 1
0 otherwise

(78)

The application Sic can be seen as the convolution of the grid with the 3x3x3 stencil
(indexed from -1 to 1) with values

S4 =
2

3

3−|i|−|j|−|k| 1

6

|i|+|j|+|k|
(79)

which has values

[[
8

27
,

2

27
,

1

54
,

1

216
]] (80)

for center, face centers,edges, and vertices of the 3x3x3 cube.
Then the first step of the prolongation is

c = (Si)−1v (81)

which we calculate iteratively with a conjugated gradient solver, using

[[2− 8

27
,− 2

27
,− 1

54
,− 1

216
]] (82)

as approximate inverse for the first guess, and

[[4.096,−1.28, 0.4,−0.125]] (83)

as pre-conditioner. The pre-conditioner is generated by the 1d-values
[−1.6/4, 1.6,−1.6/4] in each direction. It was found by minimizing the condition
number of Si multiplied by operators generated from 1d-values, and then (slightly) further
optimized in the program. With this in 10-15 iterations, independently of the size of the
grid, a convergence to less than 10−10 for both argument and residual can be achieved.

To evaluate the spline on the fine grid we use commensurate grids for efficiency rea-
sons, which means that each grid has exactly the double of the number of points in every
direction than the previous grid level. In this case it is useful to introduce the (rectangular)
matrix.

(T ii+1)klm,nop = N3(
k

2
− n)N3(

l

2
− o)N3(

m

2
− p) (84)

which is very sparse as for half integer the only nonzero values are

N3(
i

2
)i=−4..4 = [0,

1

48
,

1

6
,

23

48
,

2

3
,

23

48
,

1

6
,

1

48
, 0] (85)

Thus we have

P ii+1 = T ii+1(Si)−1, (86)

and

Ri+1
i = (P ii+1)T = (Si)−1(T ii+1)T . (87)
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The interpolation between the other grid levels can be defined as the product of the cascade
prolongation/restrictions from grid i to grid j

P ij =

i∏
k=j−1

P kk+1 = P j−1
j ...P i+1

i+2P
i
i+1, (88)

and

Rji =

j−1∏
k=i

Rk+1
k = Ri+1

i Ri+2
i+1...R

j
j−1. (89)

This approach works very well with periodic boundary conditions. The coefficients
of the spline can be seen as the G-space coefficients of a Fourier transform. Like them
they depend in a unique and global way from the values on the grid (direct space): any
coefficient depends on the values of all the grid, but with the splines the weight of far away
points decreases faster than with G-space interpolation, splines are more localized.

The coefficients define a continuous function that on the grid has exactly the values of
the direct space, but that is defined everywhere, not just on the grid, and thus they can be
used to interpolate the values, or transfer the function between grid levels. The continuous
function defined by the cubic splines is C2 (twice continuously differentiable). This is not
optimal to interpolate smooth functions, but if the function to interpolate is not so regular
(due for example to cutoff effects, or numerical instabilities) then the spline interpolation
becomes better.

C.4 Non-Periodic Uniform Splines

If one wants to go beyond the periodic boundary conditions the function N3 cannot be
used for the coefficients close to the border. Indeed using the N3 function would force the
function to go at 0 and with derivative 0 two units after the border, and what is worse (one
can argue that what happens beyond the border is not relevant and is an artifact) a simple
linear function cannot be interpolated exactly. This gives rise to border effects that cannot
be neglected. This problem is important for QM/MM where the potential generated by the
MM atoms is not periodic with respect to the QM cell. As already stated the solution is to
modify the form of the N3 functions for the coefficients close to the border.

To find out how to modify the functions we will look at a generalization of the uniform
cardinal splines. To simplify the discussion we will first look at a non-uniform B-Spline of
order 3 in just 1 dimension. This is a parametric 1d line in a 2d dimensional space, i.e. a
R→ R2 function

g(u) =
∑
i

PiN
3(u− i), (90)

where Pi is an array (indexed by the integer i) of 2-dimensional vectors.
This looks complicated, but if one sets

Pi = [i, vi] (91)

then if we call the first component of g, x and the second h

[x(u), h(u)] := g(u), (92)
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Figure 16. The left panel shows the weights of the splines for i = −2..2. The dotted red splines (with i = −2..0)
have the same coefficient, so they have been summed up into the continuous black line. The right panel shows
the value of x as function of u.

we see that the mapping x(u) is the identity and

h(u) = h(x) =
∑
i

viN(x− i) (93)

and so h is just a uniform cardinal spline.
Assuming that the lower boundary is at 0, we want to look at

Pi = [max(0, i), vmax(0,i)]. (94)

As we can see for u ≥ 1 u = x, but for smaller values the correspondence breaks and
the function gets really parametric. x begins to change more and more slowly, and finally
freezes at 0 when u reaches−1. Now the correct way to redefine theN3(x−i) to functions
Mi(x) for i close to the border (i.e. to 0) is

M0(x(u)) = N3(u+ 2) +N3(u+ 1) +N3(u)

M1(x(u)) = N3(u− 1)

M2(x(u)) = N3(u− 2)

(95)

and for i > 2 Mi(x) = N3(x− i).
To be able to directly represent M0..2(x) one has to invert x(u)

x−1(t) =


undefined t < 0
3
√

6u− 1 t < 1
6

2
√

2 cos
(

1
3 (π + arccos( 3

√
2(t−1)
4 )

)
+ 1 t < 1

t t ≥ 1

(96)

With an explicit inverse one obtains a direct representation of the functions M0..2

shown in Fig. 17 We see that for the evaluation on a grid with spacing 1 only the weight
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Figure 17. The border functions M0..2 as function of x.

exactly at the border has to be changed (to 1), whereas for an uniform refinement, i.e. to
prolongate to a grid with spacing 1/2, the border and the points just before it have to be
changed. Approximately M0...2 have the following values at the important points:

M0(0) = 1 M0( 1
2 ) = 0.517977703393314356529532

M1(0) = 0 M1( 1
2 ) = 0.464044593213371286940937 (97)

M2(0) = 0 M2( 1
2 ) = 0.017977703393314356529531.

Thus using the weights given by M0,M1,M2 instead of the ones given by N3 at the
border the simplicity of the uniform spline schema can be kept and linear functions can be
correctly interpolated. The upper border is just symmetric.

In 3d we have to look at non-uniform B-Spline of order 3 in 3 dimensions, which are
parametric 3d surfaces in a 4d dimensional space, i.e. aR3 → R4 function

g(u, v, t) =
∑
ijk

PijkN
3(u− i)N3(v − j)N3(t− k), (98)

where Pijk is a 3d grid (indexed by the integer i, j, k) of 4-dimensional vectors.
Looking at it one can see that the fact that the weight functions are just a direct product

of the 1d weighting functions is preserved with boundaries along the border of a box.
Assuming that the lower left corner of the box is for (i, j, k) = (0, 0, 0)

f(x, y, z) =
∑
ijk

vijkMi(x)Mj(y)Mk(z), (99)

with Mi as defined in the 1d case.
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C.5 Non-Periodic Prolongation/Restriction

The prolongation and restriction operation can be calculated just as before

P ij = T̃ ij (S̃
i)−1 (100)

Rji = (P ij )
T = ((S̃i)T )−1(T̃ ij )

T (101)

where S̃i and T̃ ij are different from Si and T ij because they use Mi(x) instead of the
N3(x− i). This means that S̃i differs from Si only at the border where in each dimension
1 is used instead of 2/3 as weight and the 1/6 contribution from the neighboring point is
ignored. This breaks the symmetry of Si and makes the sum of the contributions of the
weights c close to the border differ from 1. Likewise T̃ ij differs from T ijonly at the border
using the values of Eq. 97.

The inversion of S̃i is performed using the same approximate inverse as in the non-
periodic case, but setting the weight to 1 instead of 2/3 at the border, and removing the
1/6 contribution from the point next to the border, as with S̃. For the pre-conditioner the
contribution from the weight c at the border are scaled in such a way that at the value at the
border is 1 (i.e. not just setting the border to one, but also changing the contribution to the
close-by v. With this method the same performance as in the periodic case can be achieved
on big grids: ≈ 12 iterations for 10−10 accuracy, ≈ 20 for machine accuracy (10−14). For
small grids other approximate inverse and pre-conditioners (not based on the the periodic
solution) would be better, but ≈ 1/3 more iterations on the small grids is not costly, and
not worth extra optimization.

Such a function can describe exactly hyper planes, is efficient to evaluate and has
worked very well for the QM/MM implementation in CP2K .

Appendix D: Construction of the Model Charge Density

The model density ρ̂(r, rα), introduce in Sec. 5.3, can be derived by minimizing the multi-
pole moments and the net charge of the system:

∆QL =

∣∣∣∣∫ drrlYL(r)(ρ(r, rα)− ρ̂(r, rα))

∣∣∣∣ (102)

∆W =

∣∣∣∣∫ drr2(ρ(r, rα)− ρ̂(r, rα))

∣∣∣∣ (103)

The parameters of the model density are obtained from a fit to the original charge density,
which is biased by a weight function. In the reciprocal space, both requirements Eq. 102
and Eq. 103 can be translated into expressions that are sensitive only to the intermediate
neighborhood of the origin. Thus the fit uses a weighting function of the form:

w(k) = 4π
(|k|2 − |kcut|2)2

|k|2|kcut|2
(104)

for |k| < |kcut| and zero elsewhere. The weight function enhances the importance of the
low k-vectors while ignoring the high k-vectors of the density.
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Using the method of Lagrange multipliers, the parameters of the model density qα are
obtained from the extremal condition of

L(qα, λ) =
V

2

∑
k6=0

w(k)

∣∣∣∣∣ρ(k)−
∑
α

qαgα(k)

∣∣∣∣∣
2

− λV

[
ρ(k = 0)−

∑
α

qαgα(k = 0)

]
(105)

In matrix form the equation can be written in

Aq + λC = BCq = N (106)

where the matrix element of A, C and B are given by:

Ai,j = V
∑
k6=0

w(k)[g†i (k)gj(k)] (107)

Ci = V gi(k = 0) = 1 (108)

Bi = V
∑
k6=0

w(k)Re[ρ†(k)gi(k)] (109)

and q is the array of parameters of the model charge density. The solution to this linear
equation system is given by:

q = A−1

[
B−C

CA−1B−N
CA−1C

]
(110)
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2. A. Laio, J. VandeVondele, and U. Röthlisberger, A Hamiltonian electrostatic coupling
scheme for hybrid Car-Parrinello molecular dynamics simulations, J. Chem. Phys. B,
106, no. 16, 7300–7307, 2002.

3. G. Karlström, R. Lindh, P.-A. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P.-O.
Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, and L. Seijo, MOLCAS: a
program package for computational chemistry, Computational Material Science, 28,
no. 2, 222, 2003.

4. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen,
S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A.
Montgomery, General atomic and molecular electronic-structure system, J. Comput.
Chem., 14, no. 11, 1347–1363, 1993.

5. CPMD, Version 3.9.1, copyright IBM Corp. 1990-2005, copyright MPI für
Festkörperforschung Stuttgart 1997-2005; http://www.cpmd.org/.

6. L. Fusti-Molnar and P. Pulay, Accurate molecular integrals and energies using com-
bined plane wave and Gaussian basis sets in molecular electronic structure theory, J.
Chem. Phys., 116, no. 18, 7795–7805, 2002.

7. M. Eichinger, P. Tavan, J. Hutter, and M. Parrinello, A hybrid method for solutes in
complex solvents: Density functional theory combined with empirical force fields, J.
Chem. Phys., 110, no. 21, 10452–10467, 1999.

322



8. A. Crespo, D. A. Scherlis, M. A. Martı́, P. Ordejon, A. E. Roitberg, and D. A. Estrin, A
DFT-based QM-MM approach designed for the treatment of large molecular systems:
Application to chorismate mutase, J. Phys. Chem. B, 107, no. 49, 13728–13736,
2003.

9. A. Tongraar, K. R. Liedl, and B. M. Rode, Born-Oppenheimer ab initio QM/MM
dynamics simulations of Na+ and K+ in water: From structure making to structure
breaking effects, J. Phys. Chem. A, 102, no. 50, 10340–10347, 1998.

10. A. Tongraar and B. M. Rode, A Born-Oppenheimer ab initio quantum mechanical/-
molecular mechanical molecular dynamics simulation on preferential solvation of
Na+ in aqueous ammonia solution, J. Phys. Chem. A, 105, no. 2, 506–510, 2001.

11. C. F. Schwenk, H. H. Loeffler, and B. M. Rode, Structure and dynamics of metal
ions in solution: QM/MM molecular dynamics simulations of Mn2+ and V2+, J. Am.
Chem. Soc., 125, no. 6, 1618–1624, 2003.

12. S. Chalmet and M. F. Ruiz-Lopez, The reaction field of a water molecule in liquid
water: Comparison of different quantum/classical models, J. Chem. Phys., 115, no.
11, 5220–5227, 2001.

13. S. Chalmet, D. Rinaldi, and M. F. Ruiz-Lopez, A QM/MM/continuum model for com-
putations in solution: Comparison with QM/MM molecular dynamics simulations,
Int. J. Quant. Chem., 84, no. 5, 559–564, 2001.

14. P. Bandyopadhyay and M. S. Gordon, A combined discrete/continuum solvation
model: Application to glycine, J. Chem. Phys., 113, no. 3, 1104–1109, 2000.

15. J. Gao and C. Alhambra, A hybrid semiempirical quantum mechanical and lattice-
sum method for electrostatic interactions in fluid simulations, J. Chem. Phys., 107,
no. 4, 1212–1217, 1997.

16. K. Nam, J. Gao, and D. M. York, An efficient linear-scaling Ewald method for long-
range electrostatic interactions in combined QM/MM calculations, J. Chem. Theory
Comp., 1, no. 1, 2–13, 2005.

17. F. Dehez, M. T. C. Martins-Costa, D. Rinaldi, and C. Millot, Long-range electrostatic
interactions in hybrid quantum and molecular mechanical dynamics using a lattice
summation approach, J. Chem. Phys., 122, no. 23, No. 234503, 2005.

18. D. A. Yarne, M. E. Tuckerman, and G. J. Martyna, A dual length scale method for
plane-wave-based, simulation studies of chemical systems modeled using mixed ab
initio/empirical force field descriptions, J. Chem. Phys., 115, no. 8, 3531–3539,
2001.

19. Y.Q. Tu and A. Laaksonen, On the effect of Lennard-Jones parameters on the quan-
tum mechanical and molecular mechanical coupling in a hybrid molecular dynamics
simulation of liquid water, J. Comput. Chem., 111, no. 16, 7519–7525, 1999.

20. J. Gao, P. Amara, C. Alhambra, and M.J. Field, A Generalized Hybrid Orbital (GHO)
Method for treatment of boundary atoms in QM/MM calculations, J. Phys. Chem.,
102, no. 24, 4714–4721, 1998.

21. D. Das, K. P. Eurenius, E. M. Billings, P. Sherwood, D. C. Chatfield, M. Hodoscek,
and B. R. Brooks, Optimization of quantum mechanical molecular mechanical parti-
tioning schemes: Gaussian delocalization of molecular mechanical charges and the
double link atom method, J. Chem. Phys., 117, no. 23, 10534–10547, 2002.

22. P.K. Biswas and V. Gogonea, A regularized and renormalized electrostatic coupling
Hamiltonain for hybrid quantum mechanical - molecular mechanical calculations., J.
Chem. Phys., 123, no. 16, No. 164114, 2005.

323



23. U.C. Singh and P.A. Kollman, A combined ab initio quantum mechanical and molec-
ular mechanical method for carrying out simulations on complex molecular systems:
Applications to the CH3Cl + Cl− exchange reaction and gas-phase protonation of
polyethers, J. Comput. Chem., 7, no. 6, 718–730, 1986.

24. M. J. Field, P. A. Bash, and M. Karplus, A combined quantum-mechanical and molec-
ular mechanical potential for molecular-dynamics simulations, J. Comput. Chem.,
11, no. 6, 700–733, 1990.

25. D. A. McQuarrie, Statistical Mechanics, University Science Books, Sausalito, CA,
2000, p. 234.

26. B. W. H. van Beest, G. J. Kramer, and R. A. van Santen, Force fields for silicas and
aluminophosphates based on ab initio calculations, Phys. Rev. Lett., 64, no. 16,
1955–1958, 1990.

27. M. Eichinger, P. Tavan, J. Hutter, and M. Parrinello, A hybrid method for solutes in
complex solvents: Density functional theory combined with empirical forcefields, J.
Chem. Phys., 110, no. 21, 10452–10467, 1999.

28. P. K. Biswas, A new ab initio method of calculating Zeff and hence the positron an-
nihilation rates using T-matrix scattering amplitudes, Eur. Phys. J. D, 29, no. 1,
321–327, 2004.

29. P. Sherwood, Modern Methods and Algorithms of Quantum Chemistry, vol. 1 of
NIC Series, chapter Hybrid quantum mechanics/molecular mechanics approaches, pp.
257–277, John von Neumann Institute for Computing, 2000.

30. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hut-
ter, QUICKSTEP: Fast and accurate density functional calculations using a mixed
Gaussian and plane waves approach, Comp. Phys. Comm., 167, no. 2, 103–128,
2005.

31. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, and S. Swaminathan,
CHARMM - A program for macromolecular energy, minimization and dynamics cal-
culations, J. Comput. Chem., 4, no. 2, 187–217, 1983.

32. D. Case, D. Pearlman, J. Caldwell, T.E. Cheatham III, W. Ross, C. Simmerling,
T. Darden, K. Merz, R. Stanton, A. Cheng, J. Vincent, M. Crowley, V. Tsui, R. Rad-
mer, Y. Duan, J. Pitera, I. Massova, G. Seibel, U. Singh, P. Weiner, and P.A. Kollman,
AMBER v.9.0, Tech. Rep., University of California, San Francisco, 2002.

33. T. Laino, The Mathematica Notebook used to develop the GEEP technology is part of
the CP2K distribution and can be freely downloaded. Released under GPL license.

34. W. Hackbusch, Multi-Grid Methods and Applications, vol. 4 of Series in Computa-
tional Mathematics, Springer Verlag, Berlin, 1985.

35. W.L. Briggs, A Multigrid Tutorial, SIAM Books, Philadelphia, 1987.
36. G. Feng, Data smoothing by cubic spline filters, IEEE Trans.on Signal Process., 46,

no. 10, 2790–2796, 1998.
37. P. Pulay, Ab initio calculation of force constants and equilibrium geometries in poly-

atomic molecules .I. Theory, Mol. Phys., 17, no. 2, 197–204, 1969.
38. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, Intermolec-

ular Forces, chapter Interaction models for water in relation to protein hydration, pp.
331–342, Reidel, Dordrecht, The Netherlands, 1981.

39. M. Deserno and C. Holm, How to mesh up Ewald sums. I. A theoretical and nu-
merical comparison of various particle mesh routines, J. Chem. Phys., 109, no. 18,
7678–7693, 1998.

324



40. T. Darden, D. York, and L. Pedersen, Particle mesh ewald - an N log(N) method for
ewald sums in large systems, J. Chem. Phys., 98, no. 12, 10089–10092, 1993.

41. T. Laino, F. Mohamed, A. Laio, and M. Parrinello, An efficient real space multigrid
QM/MM electrostatic coupling, J. Chem. Theory Comp., 1, no. 6, 1176–1184, 2005.

42. T. Laino, F. Mohamed, A. Laio, and M. Parrinello, An Efficient Linear-Scaling Elec-
trostatic Coupling for treating periodic boundary conditions in QM/MM Simulations,
J. Chem. Theory Comp., 2, no. 5, 1370–1378, 2005.

43. P. P. Ewald, The calculation of optical and electrostatic grid potential, Ann. Phys.,
64, no. 3, 253–287, 1921.

44. M. Allen and D. Tildesley, Computer Simulation of Liquids, Oxford University Press,
Oxford, 1987.

45. G. Lippert, J.E. Hutter, and M. Parrinello, The Gaussian and augmented-plane-
wave density functional method for ab initio molecular dynamics simulations, Theor.
Chem. Acc., 103, no. 2, 124–140, 1999.

46. G. J. Martyna and M. E. Tuckerman, A reciprocal space based method for treating
long range interactions in ab initio and force-field-based calculations in clusters, J.
Chem. Phys, 110, no. 6, 2810–2821, 1999.
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A long-standing limitation in the use of molecular dynamics (MD) simulation is that it can
only be applied directly to processes that take place on very short timescales: nanoseconds
if empirical potentials are employed, or picoseconds if we rely on electronic structure
methods. Many processes of interest in chemistry, biochemistry, and materials science
require study over microseconds and beyond, due either to the natural timescale for the
evolution or to the duration of the experiment of interest. Ignoring the case of liquids, the
dynamics on these time scales is typically characterized by infrequent-event transitions,
from state to state, usually involving an energy barrier. There is a long and venerable
tradition of using transition state theory (TST)1–3 to directly compute rate constants for
these kinds of activated processes. If needed, dynamical corrections to the TST rate, and
even quantum corrections, can be computed to achieve an accuracy suitable for the problem
at hand. These rate constants then allow us to understand the system behavior on longer
time scales than we can directly reach with MD. For complex systems with many reaction
paths, the TST rates can be fed into a stochastic simulation procedure such as kinetic Monte
Carlo, and a direct simulation of the advance of the system through its possible states can
be obtained in a probabilistically exact way.

A problem that has become more evident in recent years, however, is that for many
systems of interest, there is a complexity that makes it difficult, if not impossible, to de-
termine all the relevant reaction paths to which TST should be applied. This is a serious
issue, as omitted transition pathways can have uncontrollable consequences on the simu-
lated long-time kinetics.

Over the last 15 years or so, we have been developing a new class of methods for
treating the long-time dynamics in these complex, infrequent-event systems. Rather than
trying to guess in advance what reaction pathways may be important, we return instead
to a molecular dynamics treatment, in which the trajectory itself finds an appropriate way
to escape from each state of the system. Since a direct integration of the trajectory would
be limited to nanoseconds, while we are seeking to follow the system for much longer
times, we modify the dynamics in some way to cause the first escape to happen much more
quickly, thereby accelerating the dynamics. The key is to design the modified dynamics in
a way that does as little damage as possible to the probability for escaping along a given
pathway – i.e., we try to preserve the relative rate constants for the different possible escape
paths out of the state. We can then use this modified dynamics to follow the system from
state to state, reaching much longer times than we could reach with direct MD. The dy-
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namics within any one state may no longer be meaningful, but the state-to-state dynamics,
in the best case (as we discuss below), can be exact. We have developed three methods in
this ”accelerated molecular dynamics” (AMD) class, in each case appealing to TST, either
implicitly or explicitly, to design the modified dynamics. Each of the methods has its own
advantages, and we and others have applied these methods to a wide range of problems.
The purpose of this article is to give the reader a brief introduction to how these methods
work. Note that this brief review does not claim to be exhaustive: various other methods
aiming at similar goals have been proposed in the literature. For the sake of brevity, our
focus will exclusively be on the methods developed by our group.

These lecture notes are organized as follow: Section 1 introduces the basic concepts
(infrequent event systems, TST, etc.) that are later called upon. Sections 2,3, and 4 in-
troduce the AMD methods – Parallel-Replica Dynamics, Hyperdynamics and Temperature
Accelerated Dynamics – and provide examples of their use. Finally, Section 5 provides
guidelines to assist in the choice of the right AMD method for a given problem.

1 Background

1.1 Infrequent Event Systems

We begin by defining an “infrequent-event” system, as this is the type of system for which
the accelerated dynamics methods are ideal. The dynamical evolution of such a system is
characterized by the occasional activated event that takes the system from basin to basin,
events that are separated by possibly millions of thermal vibrations within one basin. A
simple example of an infrequent-event system is an adatom on a metal surface at a temper-
ature that is low relative to the diffusive jump barrier. We will exclusively consider thermal
systems, characterized by a temperature T , a fixed number of atomsN , and a fixed volume
V ; i.e., the canonical ensemble. Typically, there is a large number of possible paths for
escape from any given basin. As a trajectory in the 3N -dimensional coordinate space in
which the system resides passes from one basin to another, it crosses a (3N -1)-dimensional
“dividing surface” at the ridgetop separating the two basins. While on average these cross-
ings are infrequent, successive crossings can sometimes occur within just a few vibrational
periods; these are termed “correlated dynamical events” (e.g., see Ref. 4–6). An example
would be a double jump of the adatom on the surface. For this discussion it is sufficient, but
important, to realize that such events can occur. In most of the methods presented below,
we will assume that these correlated events do not occur – this is the primary assumption of
transition state theory – which is actually a very good approximation for many solid-state
diffusive processes. We define the “correlation time” (τcorr) of the system as the duration
of the system memory. A trajectory that has resided in a particular basin for longer than
τcorr is assumed to have no memory of its history and, consequently, how it got to that
basin, in the sense that when it later escapes from the basin, the probability for escape
along a given path is independent of how it entered the state. The relative probability for
escape to a given adjacent state is proportional to the rate constant for that escape path,
which we will define below.

An infrequent event system, then, is one in which the residence time in a state (τrxn)
is much longer than the correlation time (τcorr). We will focus here on systems with ener-
getic barriers to escape, but the infrequent-event concept applies equally well to entropic
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bottlenecks.a The key to the accelerated dynamics methods described here is recognizing
that to obtain the right sequence of state-to-state transitions, we need not evolve the vibra-
tional dynamics perfectly, as long as the relative probability of finding each of the possible
escape paths is preserved.

1.2 Transition State Theory

Transition state theory (TST)8, 9, 1–3 is the formalism underpinning all of the accelerated
dynamics methods, directly or indirectly. In the TST approximation, the classical rate
constant for escape from state A to some adjacent state B is taken to be the equilibrium
flux through the dividing surface between A and B (Fig. 1). If there are no correlated
dynamical events, the TST rate is the exact rate constant for the system to move from state
A to state B.

A

BEa

Figure 1. A two-state system illustrating the definition of the transition state theory rate constant as the outgoing
flux through the dividing surface bounding state A.

The power of TST comes from the fact that this flux is an equilibrium property of the
system. Thus, we can compute the TST rate without ever propagating a trajectory. The
appropriate ensemble average for the rate constant for escape from A, kTST

A→ , is

kTST
A→ = 〈|dx/dt| δ(x− q)〉A , (1)

where x ∈ r is the reaction coordinate and x = q the dividing surface bounding state
A. The angular brackets indicate the ratio of Boltzmann-weighted integrals over 6N -
dimensional phase space (configuration space r and momentum space p). That is, for
some property P (r,p),

〈P 〉 =

∫ ∫
P (r,p)exp[−H(r,p)/kBT ]drdp∫ ∫

exp[−H(r,p)/kBT ]drdp
, (2)

where kB is the Boltzmann constant and H(r,p) is the total energy of the system, kinetic
plus potential. The subscript A in Eq. 1 indicates the configuration space integrals are

aFor systems with entropic bottlenecks, the parallel-replica dynamics method can be applied very effectively7.
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restricted to the space belonging to state A. If the effective mass (m) of the reaction coor-
dinate is constant over the dividing surface, Eq. 1 reduces to a simpler ensemble average
over configuration space only10,

kTST
A→ =

√
2kBT/πm 〈δ(x− q)〉A . (3)

The essence of this expression, and of TST, is that the Dirac delta function picks out the
probability of the system being at the dividing surface, relative to everywhere else it can
be in state A. Note that there is no dependence on the nature of the final state B.

In a system with correlated events, not every dividing surface crossing corresponds to
a reactive event, so that, in general, the TST rate is an upper bound on the exact rate. For
diffusive events in materials at moderate temperatures, these correlated dynamical events
typically do not cause a large change in the rate constants, so TST is often an excellent
approximation. This is a key point; this behavior is markedly different than in some chem-
ical systems, such as molecular reactions in solution or the gas phase, where TST is just a
starting point and dynamical corrections can lower the rate significantly (e.g., Ref. 11).

While in the traditional use of TST, rate constants are computed after the dividing
surface is specified, in the accelerated dynamics methods we exploit the TST formalism to
design approaches that do not require knowing in advance where the dividing surfaces will
be, or even what product states might exist.

1.3 Harmonic Transition State Theory

If we have identified a saddle point on the potential energy surface for the reaction pathway
betweenA andB, we can use a further approximation to TST. We assume that the potential
energy near the basin minimum is well described, out to displacements sampled thermally,
with a second-order energy expansion – i.e., that the vibrational modes are harmonic – and
that the same is true for the modes perpendicular to the reaction coordinate at the saddle
point. Under these conditions, the TST rate constant becomes simply

kHTSTA→B = ν0e
−Ea/kBT , (4)

where

ν0 =

3N∏
i

νmini

3N−1∏
i

νsadi

. (5)

Here Ea is the static barrier height, or activation energy [the difference in energy between
the saddle point and the minimum of state A (c.f., Fig. 1)], {νmini } are the strictly positive
normal mode frequencies at the minimum of A, and {νsadi } are the strictly positive, non-
imaginary, normal mode frequencies at the saddle separating A from B. This is often
referred to as the Vineyard12 equation. The analytic integration of Eq. 1 over the whole
phase space thus leaves a very simple Arrhenius temperature dependence.b To the extent
that there are no recrossings and the modes are truly harmonic, this is an exact expression
for the rate. This harmonic TST expression is employed in the temperature accelerated
dynamics method (without requiring calculation of the prefactor ν0).

bNote that although the exponent in Eq. 4 depends only on the static barrier height Ea, in this HTST approxima-
tion there is no assumption that the trajectory passes exactly through the saddle point.
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1.4 Complex Infrequent Event Systems

The motivation for developing accelerated molecular dynamics methods becomes partic-
ularly clear when we try to understand the dynamical evolution of what we will term
complex infrequent event systems. In these systems, we simply cannot guess where the
state-to-state evolution might lead. The underlying mechanisms may be too numerous,
too complicated, and/or have an interplay whose consequences cannot be predicted by
considering them individually. In very simple systems we can raise the temperature to
make diffusive transitions occur on an MD-accessible time scale. However, as systems
become more complex, changing the temperature causes corresponding changes in the rel-
ative probability of competing mechanisms. Thus, this strategy will cause the system to
select a different sequence of state-to-state dynamics, ultimately leading to a completely
different evolution of the system, and making it impossible to address the questions that
the simulation was attempting to answer.

Many, if not most, materials problems are characterized by such complex infrequent
events. We may want to know what happens on the time scale of milliseconds, seconds
or longer, while with MD we can barely reach one microsecond. Running at higher T
or trying to guess what the underlying atomic processes are can mislead us about how
the system really behaves. Often for these systems, if we could get a glimpse of what
happens at these longer times, even if we could only afford to run a single trajectory for
that long, our understanding of the system would improve substantially. This, in essence, is
the originally motivation for the development of the methods described here. Coupled with
the constant increase in computing power, AMD methods have demonstrated the capability
to go beyond this initial mission and can now be used to parameterize higher-scales model
or to compute long time averages of relevant quantities.

1.5 Dividing Surfaces and Transition Detection

We have implied that the ridge tops between basins are the appropriate dividing surfaces
in these systems. For a system that obeys TST, these ridgetops are the optimal dividing
surfaces; recrossings will occur for any other choice of dividing surface. A ridgetop can be
defined in terms of steepest-descent paths – it is the 3N -1-dimensional boundary surface
that separates those points connected by steepest descent paths to the minimum of one
basin from those that are connected to the minimum of an adjacent basin. This definition
also leads to a simple way to detect transitions as a simulation proceeds, a requirement
of parallel replica dynamics and temperature accelerated dynamics. Intermittently, the
trajectory is interrupted and minimized via steepest descent. If this minimization leads
to a basin minimum that is distinguishable from the minimum of the previous basin, a
transition has occurred. An appealing feature of this approach is that it requires virtually
no knowledge of the type of transition that might occur. Often only a few steepest descent
steps are required to determine that no transition has occurred. While this is a fairly robust
detection algorithm, more efficient approaches can be tailored to the system being studied,
for example, defining transitions as changes in atomic coordination.

In what follows, we describe the accelerated dynamics methods. There are currently
three accelerated dynamics that have been developed: parallel replica dynamics, hyperdy-
namics, and temperature accelerated dynamics.
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2 Parallel-Replica Dynamics

The parallel replica method13 is the simplest and most accurate of the accelerated dynamics
techniques, with the only assumption being that the infrequent events obey first-order ki-
netics (exponential decay); i.e., for any time t > τcorr after entering a state, the probability
distribution function for the time of the next escape is given by

p(t) = ktote
−ktott (6)

where ktot is the rate constant for escape from the state. For example, Eq. 6 arises naturally
for ergodic, chaotic exploration of an energy basin. Parallel replica allows for the paral-
lelization of the state-to-state dynamics of such a system on M processors. We sketch the
derivation here for equal-speed processors. For a state in which the rate to escape is ktot,
on M processors the effective escape rate will be Mktot, as the state is being explored M
times faster. Also, if the time accumulated on one processor is t1, on the M processors a
total time of tsum = Mt1 will be accumulated. Thus, we find that

p(t1)dt1 = Mktote
−Mktott1dt1 (7)

= ktote
−ktottsumdtsum (8)

= p(tsum)dtsum (9)

and the probability to leave the state per unit time, expressed in tsum units, is the same
whether it is run on one or M processors. A variation on this derivation shows that the M
processors need not run at the same speed, allowing the method to be used on a heteroge-
neous or distributed computer; see Ref. 13.

The algorithm is schematically shown in Fig. 2. Starting with an N -atom system in
a particular state (basin), the entire system is replicated on each of M available paral-
lel or distributed processors. After a short dephasing stage during which each replica is
evolved forward with independent noise for a time ∆tdeph ≥ τcorr to eliminate corre-
lations between replicas, each processor carries out an independent constant-temperature
MD trajectory for the entire N -atom system, thus exploring phase space within the partic-
ular basin M times faster than a single trajectory would. Whenever a transition is detected

A B C D A

Figure 2. Schematic illustration of the parallel replica method (after Ref. 7). The four steps, described in the text,
are (A) replication of the system into M copies, (B) dephasing of the replicas, (C) independent trajectories until
a transition is detected in any of the replicas, and (D) brief continuation of the transitioning trajectory to allow for
correlated events such as recrossings or follow-on transitions to other states. The resulting configuration is then
replicated, beginning the process again.
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on any processor, all processors are alerted to stop. The simulation clock is advanced by
the accumulated trajectory time summed over all replicas, i.e., the total time τrxn spent
exploring phase space within the basin until the transition occurred.

The parallel replica method also correctly accounts for correlated dynamical events
(i.e., there is no requirement that the system obeys TST), unlike the other accelerated dy-
namics methods. This is accomplished by allowing the trajectory that made the transition
to continue on its processor for a further amount of time ∆tcorr ≥ τcorr, during which
recrossings or follow-on events may occur. The simulation clock is then advanced by
∆tcorr, the final state is replicated on all processors, and the whole process is repeated.
Parallel replica dynamics then gives an arbitrarily accurate state-to-state dynamical evolu-
tion, because the escape times obey the correct probability distribution, nothing about the
procedure corrupts the relative probabilities of the possible escape paths, and the correlated
dynamical events are properly accounted for.

The efficiency of the method is limited by both the dephasing stage, which does not
advance the system clock, and the correlated event stage, during which only one processor
accumulates time. (This is illustrated schematically in Fig. 2, where dashed line trajec-
tories advance the simulation clock but dotted line trajectories do not.) Thus, the overall
efficiency will be high when

τrxn/M � ∆tdeph + ∆tcorr. (10)

Some tricks can further reduce this requirement. For example, whenever the system revisits
a state, on all but one processor the interrupted trajectory from the previous visit can be
immediately restarted, eliminating the dephasing stage. Also, the correlation stage (which
only involves one processor) can be overlapped with the subsequent dephasing stage for
the new state on the other processors, in the hope that there are no correlated crossings that
lead to a different state.

While the derivation of the parallel-replica presented above does not impose a specific
definition of a “state” of the system, the operational definition used in practice often corre-
sponds to a single basin of the potential energy surface (c.f. Section 1.5). An exponential
distribution of escape times is then obtained if the typical timescale for a transition out
of the state is long compared to the characteristic vibrational period of the system around
that fixed point, i.e., if there is a separation of timescale between vibrations and transitions
between basins. While this definition has the virtue of being conceptually and computa-
tionally simple, it limits the range of possible applications to systems where the basins are
deep enough (relative to kBT) and well separated from each other and leaves many other,
more complex, systems out of reach. There is thus a clear need to develop strategies to
capitalize on more general definitions of states and hence higher-level gaps in the charac-
teristic timescales spectrum. For example, in the case of pyrolysis of hexadecane, it was
shown that a state could be defined as the ensemble of all configuration space points that
share the same network of covalent bonds14. In that case, these “superstates” contain a
large number of simple energy basins of the potential energy surface, each corresponding
to different global conformations of the molecular backbone. There, the method exploited
the separation of timescale between the rapid changes of dihedral angles of the backbone
(intrasuperstate transitions) and the slow covalent bond breaking process (intersuperstates
transitions) rather than between the vibrational timescale and that of sampling of the differ-
ent dihedral angles. This enables one to ignore the “irrelevant” fast transitions that would
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demand incessant dephasing and decorrelation and concentrate directly on the real kinetic
bottlenecks. This has allowed for simulations over timescales of microseconds and to the
observation of various non-trivial reactions, such as the isomerization process shown in
Fig. 3.

Note that parallel replica dynamics can also be extended to more general classes of
problems, such as systems with some externally applied strain rate. The requirement here
is that the drive rate is slow enough that at any given time the rates for the processes in the
system depend only on the instantaneous configuration of the system15. Note that in this
case, different processors must run at the same speed (or synchronization must be enforce
by some other mean).

Parallel replica dynamics has the advantage of being fairly simple to program, with
very few “knobs” to adjust – ∆tdeph and ∆tcorr, which can be conservatively set at a few
ps for most systems. As multiprocessing environments are now ubiquitous, parallel replica
dynamics provides a very powerful simulation tool.

Figure 3. Isomerization of C11H22 from a cyclopropyl structure (left) to a branched diradical (right) as obtained
through parallel replica dynamics simulations at 2500K. Taken from Ref. 14.

3 Hyperdynamics

Hyperdynamics7, 16 builds on the basic concept of importance sampling17, 18, extending it
into the time domain. In the hyperdynamics approach16, the potential surface V (r) of the
system is modified by adding to it a nonnegative bias potential ∆Vb(r). The dynamics of
the system is then evolved on this biased potential surface, V (r) + ∆Vb(r). A schematic
illustration is shown in Fig. 4. The derivation of the method requires that the system obeys
TST – that there are no correlated events. There are also important requirements on the
form of the bias potential. It must be zero at all the dividing surfaces, and the system must
still obey TST for dynamics on the modified potential surface. If such a bias potential
can be constructed, a challenging task in itself, we can substitute the modified potential
V (r) + ∆Vb(r) into Eq. 1 to find

kTST
A→ =

〈|vA| δ(r)〉Ab〈
eβ∆Vb(r)

〉
Ab

, (11)
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A

C

Figure 4. Schematic illustration of the hyperdynamics method. A bias potential (∆V (r)), is added to the original
potential (V (r), solid line). Provided that ∆V (r) meets certain conditions, primarily that it be zero at the dividing
surfaces between states, a trajectory on the biased potential surface (V (r) + ∆V (r), dashed line) escapes more
rapidly from each state without corrupting the relative escape probabilities. The accelerated time is estimated as
the simulation proceeds.

where β = 1/kBT and the state Ab is the same as state A but with the bias potential ∆Vb
applied. This leads to a very appealing result: a trajectory on this modified surface, while
relatively meaningless on vibrational time scales, evolves correctly from state to state at an
accelerated pace. That is, the relative rates of events leaving A are preserved:

kTST
Ab→B

kTST
Ab→C

=
kTST
A→B
kTST
A→C

. (12)

This is because these relative probabilities depend only on the numerator of Eq. 11 which
is unchanged by the introduction of ∆Vb since, by construction, ∆Vb = 0 at the dividing
surface.

Moreover, the accelerated time is easily estimated as the simulation proceeds. For
a regular MD trajectory, the time advances at each integration step by ∆tMD, the MD
time step (often on the order of 1 fs). In hyperdynamics, the time advance at each step is
∆tMD multiplied by an instantaneous boost factor, the inverse Boltzmann factor for the
bias potential at that point, so that the total time after n integration steps is

thyper =

n∑
j=1

∆tMD e∆V (r(tj))/kBT . (13)

Time thus takes on a statistical nature, advancing monotonically but nonlinearly. In the
long-time limit, it converges on the correct value for the accelerated time with vanishing
relative error. The overall computational speedup is then given by the average boost factor,

boost(hyperdynamics) = thyper/tMD = 〈e∆V (r)/kBT 〉Ab , (14)
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divided by the extra computational cost of calculating the bias potential and its forces. If all
the visited states are equivalent (e.g., this is common in calculations to test or demonstrate
a particular bias potential), Eq. 14 takes on the meaning of a true ensemble average.

The rate at which the trajectory escapes from a state is enhanced because the positive
bias potential within the well lowers the effective barrier. Note, however, that the shape of
the bottom of the well after biasing is irrelevant; no assumption of harmonicity is made.

The ideal bias potential should give a large boost factor, have low computational over-
head (though more overhead is acceptable if the boost factor is very high), and, to a good
approximation, meet the requirements stated above. This is very challenging, since we
want, as much as possible, to avoid utilizing any prior knowledge of the dividing surfaces
or the available escape paths. Most bias potentials typically are either computationally
intensive, tailored to very specific systems, assume localized transitions, or are limited to
low-dimensional systems. An important step in that the design of generic and efficient bias
potentials has however been recently taken by Miron and Fichthorn, with the introduction
of their “bond-boost” bias potential19. As the name suggests, the bond-boost potential is
composed of pairwise terms that tend to soften the bonds between atoms. The key as-
sumption here is that transitions between states will involve the formation or breaking of
some bond so that the proximity to a transition state will be signaled by an unusually large
distortion of a bond. If the overall bias potential is then designed to vanish when any bond
in the system distorts by more than some critical amount (say by more than 20% of its
equilibrium length), then it should be possible to safely turn off the bias before a dividing
surface is reached. This approach is not without difficulty (mostly because of the problem
of choosing a suitable critical distortion amount), but opens the door to a new generation
of bias potentials.

The reader interested in experimenting with hyperdynamics can find relevant examples,
both of model and realistic systems, in Ref. 16. c

4 Temperature Accelerated Dynamics

In the temperature accelerated dynamics (TAD) method20, the idea is to speed up the tran-
sitions by increasing the temperature, while filtering out the transitions that should not have
occurred at the original temperature. This filtering is critical, since without it the state-to-
state dynamics will be inappropriately guided by entropically favored higher-barrier transi-
tions. The TAD method is more approximate than the previous two methods, as it relies on
harmonic TST, but for many applications this additional approximation is acceptable, and
the TAD method often gives substantial boost, with no need for designing bias potential
or harnessing parallel computers. Consistent with the accelerated dynamics concept, the
trajectory in TAD is allowed to wander on its own to find each escape path, so that no prior
information is required about the nature of the reaction mechanisms.

In each basin, the system is evolved at a high temperature Thigh (while the tempera-
ture of interest is some lower temperature Tlow). Whenever a transition out of the basin is
detected, the saddle point for the transition is found. The trajectory is then reflected back
into the basin and continued. This “basin constrained molecular dynamics” (BCMD) pro-
cedure generates a list of escape paths and attempted escape times for the high-temperature

cNote that Eq. 20 in that paper has an error in the d2 term, which should have a (2π)2 factor rather than a (2π)
factor.

338



system. Assuming that TST holds and that the system is chaotic and ergodic, the proba-
bility distribution for the first-escape time for each mechanism is an exponential (Eq. 6).
Because harmonic TST gives an Arrhenius dependence of the rate on temperature (Eq. 4),
depending only on the static barrier height, we can then extrapolate each escape time ob-
served at Thigh to obtain a corresponding escape time at Tlow that is drawn correctly from
the exponential distribution at Tlow. This extrapolation, which requires knowledge of the
saddle point energy, but not the preexponential factor, can be illustrated graphically in an
Arrhenius-style plot (ln(1/t) vs. 1/T ), as shown in Fig. 5. The time for each event seen at
Thigh extrapolated to Tlow is then

tlow = thighe
Ea(βlow−βhigh), (15)

where, again, β = 1/kBT and Ea is the energy of the saddle point. The event with the
shortest time at low temperature is the correct transition for escape from this basin.
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Figure 5. Schematic illustration of the temperature accelerated dynamics method. Progress of the high-
temperature trajectory can be thought of as moving down the vertical time line at 1/Thigh. For each transition
detected during the run, the trajectory is reflected back into the basin, the saddle point is found, and the time
of the transition (solid dot on left time line) is transformed (arrow) into a time on the low-temperature time
line. Plotted in this Arrhenius-like form, this transformation is a simple extrapolation along a line whose slope
is the negative of the barrier height for the event. The dashed termination line connects the shortest-time tran-
sition recorded so far on the low temperature time line with the confidence-modified minimum preexponential
(ν?min = νmin/ln(1/δ)) on the y axis. The intersection of this line with the high-T time line gives the time
(tstop, open circle) at which the trajectory can be terminated. With confidence 1-δ, we can say that any transition
observed after tstop could only extrapolate to a shorter time on the low-T time line if it had a preexponential
lower than νmin.
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Because the extrapolation can in general cause a reordering of the escape times, a new
shorter-time event may be discovered as the BCMD is continued at Thigh. If we make the
additional assumption that there is a minimum preexponential factor, νmin, which bounds
from below all the preexponential factors in the system, we can define a time at which the
BCMD trajectory can be stopped, knowing that the probability that any transition observed
after that time would replace the first transition at Tlow is less than δ. This “stop” time is
given by

thigh,stop ≡
ln(1/δ)

νmin

(
νmintlow,short

ln (1/δ)

)Tlow/Thigh
, (16)

where tlow,short is the shortest transition time at Tlow. Once this stop time is reached,
the system clock is advanced by tlow,short, the transition corresponding to tlow,short is
accepted, and the TAD procedure is started again in the new basin. Thus, in TAD, two
parameters govern the accuracy of the simulation: δ and νmin.

The average boost in TAD can be dramatic when barriers are high and Thigh/Tlow is
large. However, any anharmonicity error at Thigh transfers to Tlow; a rate that is twice the
Vineyard harmonic rate due to anharmonicity at Thigh will cause the transition times at
Thigh for that pathway to be 50% shorter, which in turn extrapolate to transition times that
are 50% shorter at Tlow. If the Vineyard approximation is perfect at Tlow, these events will
occur at twice the rate they should. This anharmonicity error can be controlled by choosing
a Thigh that is not too high.

As in the other methods, the boost is limited by the lowest barrier, although this effect
can be mitigated somewhat by treating repeated transitions in a “synthetic” mode20. This
is in essence a kinetic Monte Carlo treatment of the low-barrier transitions, in which the
rate is estimated accurately from the observed transitions at Thigh, and the subsequent
low-barrier escapes observed during BCMD are excluded from the extrapolation analysis.

Recently, enhancements to TAD, beyond the “synthetic mode” mentioned above, have
been developed that can increase the efficiency of the simulation. For systems that re-
visit states, the time required to accept an event can be reduced for each revisit by taking
advantage of the time accumulated in previous visits21. This procedure is exact; no as-
sumptions beyond the ones required by the original TAD method are needed. After many
visits, the procedure converges. The minimum barrier for escape from that state (Emin)
is then known to within uncertainty δ. In this converged mode (ETAD), the average time
at Thigh required to accept an event no longer depends on δ, and the average boost factor
becomes simply

boost(ETAD) =
tlow,short
thigh,stop

= exp

[
Emin(

1

kBTlow
− 1

kBThigh
)

]
(17)

for that state. The additional boost (when converged) compared to the original TAD can be
an order of magnitude or more.

For systems that seldom (or never) revisit the same state, it is still possible to exploit
this extra boost by running in ETAD mode with Emin supplied externally. One way of
doing this is to combine TAD with the dimer method22. In this combined dimer-TAD
approach, first proposed by Montalenti and Voter21, upon entering a new state, a number
of dimer searches are used to find the minimum barrier for escape, after which ETAD is
employed to quickly find a dynamically appropriate escape path. This exploits the power
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Figure 6. Interstitial emission process at a grain boundary loaded with interstitials in copper: interstitials emitted
from the boundary annihilate nearby vacancies.

of the dimer method to quickly find low-barrier pathways, while eliminating the danger
associated with the possibility that it might miss important escape paths. Although the
dimer method might fail to find the lowest barrier correctly, this is a much weaker demand
on the dimer method than trying to find all relevant barriers. In addition, the ETAD phase
has some chance of correcting the simulation during the BCMD if the dimer searches did
not find Emin.

TAD has been used to study a wide variety of systems, and in many cases, it revealed
unexpected pathways by which materials evolve. For example, during an investigation
of the interaction mechanisms between defects and grain boundaries in copper23, it was
found that during a collision cascade, in which both vacancies and interstitials are created,
interstitials are quickly loaded into the boundary. In fact, so many interstitials are trapped
at the boundary that the number of vacancies left in the material is typically much greater
than if the boundary were not present. On longer timescales, TAD simulations revealed that
the boundary acts as a source, emitting those trapped interstitials back into the material to
annihilate the vacancies. This unexpected recombination mechanism, illustrated in Fig. 6
has a much lower energy barrier than conventional vacancy diffusion, resulting in enhanced
self-healing of the radiation-induced damage and hence to an enhanced radiation tolerance
of the material.

TAD has also proved to be particularly useful for studying the long-time behavior of
defects produced in collision cascades. In a study using pairwise Coulombic potentials
for MgO, the room-temperature annealing of defects generated by MD simulations of cas-
cade collisions was investigated using TAD24. In this system, surprisingly high mobilities
have been observed for a metastable form of interstitial clusters. In particular, the fastest
diffusing species found was a long-lived metastable hexamer that formed during dimer-
tetramer encounters. These clusters would not be present at equilibrium because of their
high energy, but they form naturally from the aggregation of radiation-induced defects. A
reaction-diffusion equation based upon these atomistic results showed that the presence of
these metastable clusters would have a significant impact on the size and density of inter-
stitial dislocation loops in the material. This is a good example of complex kinetics that
can reveal themselves when long time dynamics are directly simulated. Because the bar-
riers in this system were typically high (relative to T = 300 K), TAD yielded substantial
boost factors, allowing simulations on very long time scales. This was also made possi-
ble through the use of the dimer-TAD approach, which allowed for faster acceptance of
processes that had a high barrier but were still the lowest barrier to leave the state.
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Figure 7. TAD simulation of the formation of I6 at 300 K. Only defects in the lattice (spheres represent intersti-
tials and cubes represent vacancies) are shown. (a) An I2 and I4 begin about 1.2 nm apart. (b) By t = 1.2 s, the
I2 approaches the immobile I4. (c) By t = 4.1 s, the combined cluster anneals to form the metastable I6, (d)
which diffuses on the ns time scale with a barrier of 0.24 eV (after Ref. 24).

5 Choosing the Right AMD Method

As these accelerated dynamics methods become more widely used and further developed
(including the possible emergence of new methods), their application to important prob-
lems in materials science will continue to grow. We conclude this article by comparing
and contrasting the three methods presented here, with some guidelines for deciding which
method may be most appropriate for a given problem. We point out some important limi-
tations of the methods, areas in which further development may significantly increase their
usefulness. Finally, we discuss the prospects for these methods in the immediate future.

The key feature of all of the accelerated dynamics methods is that they collapse the
waiting time between successive transitions from its natural time (τrxn) to (at best) a small
number of vibrational periods. Each method accomplishes this in a different way. TAD
exploits the enhanced rate at higher temperature, hyperdynamics effectively lowers the
barriers to escape by filling in the basin, and parallel-replica dynamics spreads the work
across many processors.

The choice of which accelerated dynamics method to apply to a problem will typically
depend on three factors. The first is the desired level of accuracy in following the exact
dynamics of the system. As described previously, parallel replica is the most accurate of
the three methods; the only assumption is that the kinetics are first order. Not even TST
is assumed, as correlated dynamical events are treated correctly in the method. This is
not true with hyperdynamics, which does rely upon the assumptions of TST, in particular
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the absence of correlated events. Finally, temperature accelerated dynamics makes the
further assumptions inherent in the harmonic approximation to TST, and is thus the most
approximate of the three methods. If complete accuracy is the main goal of the simulation,
parallel replica is the superior choice.

The second consideration is the potential gain in accessible time scales that the accel-
erated dynamics method can achieve for the system. Traditionally, TAD was the method
of choice when considering this factor. While in all three methods the boost for escaping
from each state will be limited by the smallest barrier, if the barriers are high relative to
the temperature of interest, TAD typically achieves large boost factors. In principle, hyper-
dynamics can also achieve very significant boosts, but, in practice, the design of suitable
bias potentials can be difficult. However, coupled with a good bias potential, hyperdy-
namics can also provide substantial boosts. Finally, if parallel computing resources are
available, parallel replica dynamics can provide significant speedups; up to the number
of replicas used. With the continued increase in parallel computing power, the future of
parallel replica dynamics is bright, and it should take an increasingly important role in the
modern computational toolbox.

The last main factor determining which method is best suited to a problem is the shape
of the potential energy surface (PES). Both TAD and hyperdynamics require that the PES
be relatively smooth. In the case of TAD, this is because saddle points must be found and
standard techniques for finding them often perform poorly for rough landscapes. The same
is true for the hyperdynamics bias potentials that require information about the shape of
the PES. Parallel replica, however, only requires a method for detecting transitions. No
further analysis of the potential energy surface is needed. Thus, if the PES describing the
system of interest is relatively rough, parallel replica dynamics may be the only method
that can be applied effectively.

6 Conclusion

Since their introduction about 15 years ago, the AMD methods have proven useful in a va-
riety of situations where the timescales of interest are out of reach of direct MD and where
the kinetics are too rich to be adequately described with a limited list of predetermined
pathways. When the activation barriers between the different states are high relative to
the thermal energy, any of the AMD methods can yield colossal accelerations, providing
a view of atomistic dynamics over unprecedented timescales. Further, by leveraging the
particular strength of each of the methods a wide variety of situations can be efficiently
simulated. If the methods have enjoyed considerable successes, they have also sometimes
failed to provide significant acceleration. In most, if not all, of the problematic cases, this
failure is related to the presence of large numbers of states connected by very low barriers
where there is no separation of timescale between vibration and escape out of single po-
tential energy basins. While some strategies have been put forward to mitigate this issue
(e.g., superstate parallel-replica dynamics14, synthetic TAD20, state-bridging hyperdynam-
ics25), more work is required before victory can be claimed. For example, an on-the-fly
state definition algorithm that automatically identifies an exploitably large separation of
timescales would tremendously extend the reach of parallel-replica dynamics, enabling it
to address notoriously difficult problems like protein folding, where the energy landscape
is extremely rough. Statistical analysis tools could also be used to identify dynamically
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“irrelevant” states that could be ignored or lumped with others without affecting the long-
time dynamics. Many of these ideas are now being explored and will hopefully lead to
more general and robust AMD methods in the next few years.
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Many physicochemical, materials, and biological systems whose dynamics is too slow to be
addressed via conventional molecular dynamics (MD) simulations can be considered as evolv-
ing in time through infrequent transitions in a network of discrete states, each state providing
a coarse-grained description of a domain in multidimensional configuration space. We briefly
discuss how states can be defined starting from the detailed potential energy hypersurface of
such a system and how rate constants for transitions between states can be estimated based
on the theory of infrequent events. We then concentrate on tracking the evolution of a system
as a succession of transitions between states. Two general approaches are introduced for this:
Kinetic Monte Carlo simulation, and analytical solution of the master equation for the time-
dependent probabilities of occupancy of the states. For the latter approach we outline how time
autocorrelation functions can be computed under equilibrium and nonequilibrium conditions.
We present examples from the computation of diffusivities of gases in zeolites and in glassy
amorphous polymers. We then introduce the method of Dynamic Integration of a Markovian
Web (DIMW), designed to track relaxation towards equilibrium from a narrow initial distribu-
tion among states by solving the master equation in a network of explored states that is pro-
gressively augmented on the fly. We present an application of the DIMW method to physical
ageing in a glassy polymer. Finally, we outline how computation of the long-time evolution in
a network of states can be simplified by “lumping” states into clusters of states.

1 Introduction

The dynamics of many physical, chemical, materials, and biological systems is slow be-
cause it proceeds as a succession of infrequent transitions between domains in their config-
uration space, which we shall call “states”. The states constitute “basins” of low potential
energy with respect to the generalized coordinates spanning configuration space, or of low
free energy with respect to a set of order parameters providing a coarse-grained descrip-
tion of the system. Each state contains one or more local minima of the the free energy.
Transitions between states are infrequent events, in the sense that the mean waiting time
for transition out of a state is long in comparison to the time required for the system to
establish a restricted equilibrium distribution among configurations in the state. The entire
configuration space can be tessellated into states. Representing each state in a coarse-
grained sense by a point in configuration or in order parameter space and connecting all
pairs of states between which a transition is possible, one obtains a graph, or network of
states. Examples of phenomena that can be modelled as occurring through a succession
of transitions in a network of states include diffusion of defects and impurities in metals
and semiconductors1; of gas molecules in amorphous polymers2; of bulky hydrocarbons
in microporous solids, such as zeolites3; structural relaxation and plastic deformation in
glasses4; phase transitions in molecular and atomic clusters5; surface diffusion6; protein
folding7; and chemical reactions8.
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The possibility of coarse-graining dynamics into a sequence of transitions in a network
of states is of strategic importance for understanding and predicting macroscopic time-
dependent properties from atomic-level structure and interactions. The longest times that
can be simulated with atomistic MD on conventional computational means are microsec-
onds. (Note, however, that millisecond-long MD runs on specialized hardware have been
reported recently9). This is too short by many orders of magnitude in comparison with the
experimental time scales of most phenomena of interest. A more efficient strategy than
“brute-force” MD is to construct a network of states i and compute the rate constants ki→j
between them from atomic-level information. By definition, the rate constant ki→j is a
conditional probability per unit time that a transition to state j will occur, provided the
system is in state i.

Once states and interstate rate constants are known, the system evolution at the state
level can be tracked by solving the master equation:

∂Pi(t)

∂t
=
∑
j 6=i

Pj(t)kj→i − Pi(t)
∑
j 6=i

ki→j , or
∂P(t)

∂t
= KP(t) (1)

The transition rate constant ki→j is independent of time, thanks to the time scale sepa-
ration which makes the transition an infrequent event10, 11. The evolution of the system in
state space is a Poisson process12. Pi(t) is the probability of occupancy of state i at time
t. According to Eq. 1 this changes as a result of influx of probability from other states and
efflux of probability to other states. State occupancy probabilities are normalized over all
n states of the system. The time-dependent vector P in the matrix representation of Eq. 1
has all the Pi(t) as elements. The n × n rate constant matrix is defined by Kij = kj→i,
Kii = −

∑
j 6=i ki→j . At very long times, the system will adopt its equilibrium probabil-

ity distribution among states, P(∞). This is a stationary solution of the master equation,
Eq. 1, by virtue of the condition of microscopic reversibility satisfied by the rate constants:

ki→jPi(∞) = kj→iPj(∞) (2)

These notes address the problem of how to solve the master equation, Eq. 1, and learn
about the long-time dynamics of a system evolving through a succession of infrequent tran-
sitions between discrete states. Sections 2 and 3 briefly discuss how states can be identified
and rate constants for transitions between states can be computed, given the potential en-
ergy as a function of atomic coordinates and the masses of all atoms in the system. Sec. 4
reviews the basics of Kinetic Monte Carlo (KMC) simulation for generating stochastic tra-
jectories consisting of long successions of jumps between states. Sec. 5 outlines a method
for analytical solution of the master equation and computation of time autocorrelation func-
tions therefrom. Example applications of the KMC and master equation solution strategies
to diffusion problems are presented in Sections 6 (for xenon in the zeolite silicalite) and 7
(for CO2 in a glassy poly(amide imide)). Sec. 8 addresses the more complex problem of
nonequilibrium relaxation of a system that is initially confined to a small subset of states.
States are not known a priori, but have to be charted out as the system relaxes. We in-
troduce the “Dynamic Integration of a Markovian Web” (DIMW) method for solving the
master equation in a network of states that is progressively augmented “on the fly”. We
apply DIMW to the very challenging problem of tracking structural relaxation in a polymer
glass. Finally, in Sec. 9 we discuss a systematic approach for “lumping” groups of states
that communicate with each other through relatively fast transitions into single “metas-
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tates” and thereby reducing the number of states needed for the description of dynamics at
long times.

2 Identifying States

States are regions of configuration space where the system is trapped for long periods
of time. Let f be the number of degrees of freedom needed to specify the microscopic
configuration of a system. For a classical system of N particles with periodic boundary
conditions described in full detail, f = 3N − 3. We will use the f -dimensional vector r to
denote the configuration of a system. We will also use x to denote the f -dimensional vector
of mass-weighted coordinates, with elements m1/2

l rαl with ml being the mass of particle
l (l = 1, 2, . . . , N ) and rαl being the position coordinate of particle l along direction α
(α = 1, 2, 3). Let V(x) be the potential energy of the system as a function of the mass-
weighted coordinates. A state is a domain in x-space surrounding a local minimum of
V(x).

For small f , an exhaustive determination of all minima and consequent identification
of all states and dividing surfaces between them is possible. For example, in the case
of low-occupancy diffusion of a monatomic sorbate in a zeolite represented as a rigid
framework13, f = 3 (the three translational degrees of freedom of the sorbate within the
rigid zeolite). The volume of the asymmetric unit of the zeolite unit cell was discretized
into voxels of edge length approximately 0.2 Å. A steepest descent trajectory was initiated
at the center of each voxel, terminating in a local minimum of V(x). The minimization was
refined using a quasi-Newton algorithm. In this way, a “drainage pattern” was constructed
in three-dimensional space, leading to the local minima. The set of all voxels from which
the steepest descent construction terminated at a certain minimum was assigned to the
state of that minimum. Similarly, the dividing surface between two states i and j was
defined as the set of all faces (squares) shared by two voxels such that the steepest descent
construction from one of the voxels leads to minimum i, while that from the other voxel
leads to minimum j. An exhaustive identification of all states was similarly undertaken in
the work of Snurr et al.14 on the diffusion of benzene in the zeolite silicalite, where both the
zeolite framework and the sorbate molecule were represented as rigid. In this case, f = 6
degrees of freedom (three translational and three orientational of the benzene relative to the
framework) come into play. A very large number of insertions of the benzene at random
positions and orientations within the asymmetric unit was used as a first step. From each
configuration resulting from insertion that did not exceed a certain energy threshold, a
quasi-Newton minimization was initiated, leading to an energy minimum in V(x) in six-
dimensional configuration space, representing a sorption state. Increasing the number of
random insertions for the initial guess configuration did not lead to any other minima; this,
and the symmetry of determined minima, indicated that the calculation was exhaustive.

In more complex situations, where f is larger, the identification of states can be greatly
facilitated by geometric analysis. An example is provided by Greenfield’s study of methane
diffusion in glassy atactic polypropylene15. Static configurations of the amorphous poly-
mer, constituting local minima of its potential energy, were used as a starting point. Within
each static configuration, the volume accessible to spherical probes of various radii smaller
than the van der Waals radius of the penetrant of interest (methane) was analyzed using a
Delaunay tessellation and clustering algorithm16. For large probe radius the accessible vol-
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Figure 1. Geometric analysis of accessible volume in an amorphous poly(amide imide) configuration aimed at the
identification of states and transition paths for diffusion of CO2 at infinite dilution within the polymer. Analysis
with a spherical probe of radius rP = 1.28 Å reveals disjoint. elongated clusters of accessible volume. Analysis
with a smaller probe radius rP = 1.1 Å reveals “necks” of accessible volume connecting the original clusters.
The positions of the necks (encircled in the figure) are used as initial guesses for the center of mass position of
the penetrant at the saddle point along an elementary transition path.

ume consists of relatively small disjoint clusters. As the probe radius decreases, accessible
volume clusters grow in size and some clusters merge at narrow “necks” of accessible vol-
ume. The position of each of these necks between a pair of clusters is used as an initial
guess for the position of the penetrant at the saddle point of the energy along the transi-
tion from a (meta)state of occupancy of one cluster to a (meta)state of occupancy of the
other. A saddle point of V(x) is computed from the geometrically obtained neck position
as follows: The center of the penetrant is placed at the neck position and a saddle point is
first calculated with respect to the three translational degrees of freedom of the penetrant,
keeping the configuration of the polymer fixed. Using this three-dimensional saddle point
as an initial guess, the number of system degrees of freedom with respect to which the
saddle point is calculated is progressively increased, by including more and more atoms of
the polymer in concentric spheres around the penetrant. This calculation goes on until the
saddle point energy becomes asymptotic with respect to inclusion of additional polymer
degrees of freedom15. The saddle point searches can be performed using the Cerjan-Miller
type algorithm of Baker17. Having obtained a multidimensional saddle point in both pene-
trant and matrix degrees of freedom, an entire transition path is constructed using Fukui’s
intrinsic reaction coordinate approach18: Starting at the saddle point, the system is dis-
placed by a small step along the eigenvector corresponding to the negative eigenvalue of
the Hessian matrix of second derivatives ∂V/(∂x∂xT). Subsequently, a steepest descent
construction in V(x) is undertaken using small steps in x, until a local minimum of V(x) is
reached. Completing this construction on either side of the saddle point, i.e. with the initial
displacement first along the positive and then along the negative direction of the eigenvec-
tor, yields an entire reaction path between two (meta)states, in which different adjacent
clusters of accessible volume are occupied by the penetrant. This calculation has been ex-
tended by Vergadou to more complex multiatom penetrants, such as CO2 in a poly(amide
imide) (see Fig. 1)19.
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When no guidance is provided by geometry or crystal symmetry, the identification of
states is considerably more involved. Kopsias20 and Boulougouris21 addressed the problem
of finding connected minima in the full configuration space (f = 3N − 3) in order to
track structural relaxation in a glass. Given a minimum of V(x), they strove to find as
many as possible other minima connected to it via transition paths passing through a single
first-order saddle point of V(x). For this purpose, they undertook saddle point searches in
f -dimensional space, starting off along the lowest-curvature eigendirections of the Hessian
at the original minimum. Beyond a certain number of searches, no new saddle points were
located (the algorithm returned saddle points that had already been found); this was taken
as an indication that all relevant transitions out of the initial minimum (i.e., transitions
taking the system over reasonably low energy barriers), had been found. In Ref. 20 the
saddle point searches were conducted using the Baker algorithm, while Ref. 21 employed
the dimer method of Henkelman and Jónsson, which does not require second derivatives22.
From each saddle point located in this way, a pair of steepest descent constructions was
undertaken in full configuration space using Fukui’s intrinsic reaction coordinate approach,
as described above. On one side the original minimum was recovered, while on the other
side the steepest descent construction led to a new minimum adjacent to the original one.
The procedure was repeated from each new minimum, in order to map out a network of
minima, or “states”.

In many problems it is a good approximation to assume that the reaction coordinate
taking the system from a state to another state is shaped by a relatively small subset of
“primary” degrees of freedom, the remaining degrees of freedom fluctuating rapidly and
achieving a constrained equilibrium distribution subject to the values of the primary set.
Then, system “states” can be defined as local minima of the potential of mean force with
respect to the primary subset of degrees of freedom. Although calculating the potential
of mean force is generally a challenge for molecular simulations, the reduction of dimen-
sionality in passing from the full configuration space to the subspace of primary degrees
of freedom greatly facilitates the definition of states and transitions between them. An
example of such an approach based on the potential of mean force is provided by Forester
and Smith’s23 calculations on the diffusion of benzene in silicalite. These authors used a
unidimensional reaction coordinate, corresponding to the projection of the center of mass
position of the sorbed benzene on the axes of straight or sinusoidal channel segments in the
zeolite. The latter axes were taken as rectilinear, for simplicity. All other degrees of free-
dom (translational of the benzene in directions transverse to the channel axis, orientational
of the benzene, and vibrational of the surrounding zeolite framework) were integrated over
at each position along an axis. The potential of mean force was computed by dragging the
benzene along the channels, through the “blue moon ensemble” MD method. States were
readily identified as local minima of the potential of mean force (see also Sec. 3).

3 Calculating Rate Constants

Once states have been defined, the transition rate constants ki→j can be computed by a
variety of methods. We briefly outline some of these methods here. For a more thorough
treatment, the reader is referred to standard texts on molecular simulation24.

If transitions are subject to relatively low barriers (say, up to 7 kBT ), such that rate
constants ki→j are relatively high (say, up to ns−1), then rate constants can be estimated
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by MD simulation. All one needs is a technique to map every configuration recorded in
the course of a MD trajectory onto a state. Very often, when states are defined as regions
around local minima in configuration space, this mapping is accomplished by direct energy
minimization leading to the closest energy minimum or “inherent structure”25. A reduced
trajectory of states visited is thus accumulated in parallel with the MD trajectory. Switches
between states can readily be identified along this reduced trajectory. Rate constants can
be computed by statistical analysis of the reduced trajectory, capitalizing on the exponen-
tial distribution of waiting times that characterizes Poisson processes. A simple method
that can be used for this purpose is “hazard plot analysis”, outlined in the following para-
graphs26.

We first introduce some definitions that are generally applicable to any stochastic pro-
cess involving infrequent transitions. The particular example of stochastic process we will
have in mind is that of exiting a specific state i in the network of states we have intro-
duced in Sec. 1, once the system has entered that state. The rate constant for this process
is ki→ =

∑
j 6=i ki→j . For the stochastic process considered, let P̂ (t) be the probability of

having undergone a transition at time t. In our particular example, P̂ (t) can be interpreted
as the cumulative distribution function of residence (or “waiting”) times within state i.
The hazard rate, ĥ(t), is defined such that ĥ(t)dt equals the (conditional) probability that
a system (in an ensemble of systems governed by the stochastic process) which has not
undergone a transition until time t, will undergo a transition at time t. From the definitions
of P̂ (t) and ĥ(t), the following differential equation is satisfied:

P̂ (t+ dt) = P̂ (t) +
[
1− P̂ (t)

]
ĥ(t)dt (3)

or

dP̂ /dt =
[
1− P̂ (t)

]
ĥ(t) (4)

Eq. 4 must be solved with initial condition P̂ (0) = 0. The solution is

P̂ (t) = 1− exp

− t∫
0

ĥ(t′)dt′ =

 = 1− exp
[
−Ĥ(t)

]
(5)

where we have defined the cumulative hazard Ĥ(t) as

Ĥ(t) =

t∫
0

ĥ(t′)dt′. (6)

For a Poisson process, the hazard rate ĥ(t) is a constant, independent of time. In our ex-
ample of exiting state i, ĥ(t) = ki→, a constant at sufficiently long times. This is because,
once the system enters state i which is in a region surrounded by high energy barriers, it
will quickly thermalize (distribute itself according to the requirements of a restricted equi-
librium) within state i and forget how it came there. Exit from state i is an infrequent
event because of the time scale separation between the correlation time for thermalizing
within state i and the mean waiting time for escaping state i. Note the Markovian charac-
ter imparted to the process by this time scale separation. For a Poisson process, then, the
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cumulative distribution function of waiting times has the form:

P̂ (t) = 1− exp (−ki→t) (7)

and the probability density of waiting times is exponential:

ρ̂(t) = ki→ exp (−ki→t) . (8)

The mean waiting time in state i is readily computed from Eq. 8 as k−1
i→.

In view of these definitions and properties of Poisson processes, the following compu-
tational procedure emerges for computing the rate constant ki→ from the reduced trajectory
(sequence of visited states) onto which a MD run has been mapped. The MD run must be
long enough to sample a large number of transitions out of state i. One goes through the
reduced trajectory and measures all time intervals tl between an entry into state i and the
immediately following exit from i to any other state. One orders these residence times as
t1 ≤ t2 ≤ . . . ≤ tn, where n is the total number of visits to state i observed in the reduced
trajectory. Clearly, based on the reduced trajectory, the quantity P̂ (tl) = l/n, 1 ≤ l ≤ n,
provides an estimate of the probability that the residence time in state i will not exceed tl,
i.e. an estimate of the cumulative probability distribution of waiting times at tl. One forms
an estimate of the cumulative hazard at tl, Ĥ(tl), as

Ĥ(tl) =
1

n
+

1

n− 1
+ . . .+

1

n− l + 1
(9)

One then plots Ĥ(tl) as a function of tl for l = 1, 2, . . . n. At short times the result-
ing hazard plot may display some curvature, associated with fast recrossing events of the
dividing surfaces between state i and its surrounding states. At long times, however, if
time scale separation holds, the hazard plot becomes linear. The slope at long times is the
sought rate constant ki→. Individual rate constants ki→j can readily be obtained from ki→
as

ki→j = ki→
Number of times exit from i occurred to j

n
(10)

The rationale behind Eq. 9 is that, for a Poisson process, the cumulative hazard Ĥ(t)
is related to the cumulative probability distribution of residence times P̂i(t) via Eqs. 5 and
6, hence Ĥ(t) = − ln

[
1− P̂ (t)

]
. The reader can readily verify that the right-hand side of

Eq. 9 is an estimate of − ln(1− l/n) '
∫ l/n

0
1

1−xdx.
It is advisable to make sure that rate constants extracted from hazard plot analysis are

invariant to the frequency of conducting minimizations along the MD trajectory to form the
reduced trajectory; to ensure that no transitions are missed, the latter frequency, as well as
the frequency of recording configurations along the MD trajectory, should be considerably
higher than the rate constant of the fastest transition taking place in the system.

Fig. 2 displays an example of a hazard plot for transition out of a state (basin of the
potential energy) of a glassy binary Lennard-Jones mixture at low temperature27.

When energy barriers between states are high in relation to kBT and rate constants are
correspondingly low, transitions between states cannot be sampled adequately by straight-
forward MD. One way to get around this problem is to resort to temperature-accelerated
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Figure 2. Hazard plot for transitions out of a given state (basin of the potential energy) for a glassy binary
Lennard-Jones mixture at reduced density 1.1908 and temperature 9 K, as computed from a canonical MD sim-
ulation. Two sets of calculations are presented, one using a 0.8 ps interval between minimizations (squares) and
another one using a 2 ps interval between minimizations (crosses) in forming the reduced trajectory (sequence of
states visited as a function of time).

dynamics (TAD) simulations, as originally proposed by Voter and collaborators28. MD
simulation at a higher temperature is used to access transition pathways. Waiting times ob-
tained at the higher temperature are extrapolated down to the temperature of interest using
the Arrhenius dependence of rate constants on temperature. The method has been used to
great advantage in surface diffusion problems28. Tsalikis et al.29 have combined micro-
canonical simulations at various energy levels with the histogram reweighting method to
obtain rate constants in the spirit of TAD for transitions between basins in configuration
space in the course of structural relaxation of a glassy binary Lennard-Jones mixture.

Infrequent event analyses based on dynamically corrected transition-state theory have
found widespread use in the computation of rate constants from simulations. These analy-
ses are based on the theory of Bennett30 and Chandler10, which was extended to multistate
systems by Voter and Doll6. Let us assume that the boundary of state i in configuration
space is described by an equation Ci(x) = 0, where Ci is a continuous, differentiable
function of the mass-weighted coordinates x. Ci(x) < 0 for all points in state i, while
Ci(x) > 0 for all points outside state i. Then, ni = ∇Ci(x)/ |∇Ci(x)| is a unit vector
normal to the boundary surface of state i at point x pointing towards the outside of the
state. Furthermore, the function hi(x) = 1 −H (Ci(x)), with H(x) being the Heaviside
step function, equals 1 if x belongs to state i and zero otherwise. The rate constant for
transitions from i to any other state j can be expressed as

ki→j(t) =
〈ni (x(0)) · ẋ(0)δ (Ci (x(0))) |∇Ci (x(0))|hj (x(t))〉

Pi(∞)
(11)
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In Eq. 11 the average is taken over all equilibrium dynamical trajectories of the system.
The numerator has nonzero contributions from those trajectories which cross the boundary
(hyper)surface of state i at time 0 and find themselves in state j after time t. The averaged
quantity in the numerator is the component of the mass-weighted velocity ẋ at time 0
normal to the boundary surface of state i times a delta function along the component of x
normal to the boundary surface which requires that the system be on that surface at time
0. The denominator is the equilibrium probability of occupancy of state i (compare Eq. 2).
Clearly, the right-hand side of Eq. 11 has dimensions of inverse time, as expected of a
rate constant. As discussed by Chandler10 and Voter and Doll6, thanks to the time scale
separation making exit from state i an infrequent event, ki→j will practically reach a time-
independent plateau value at times sufficiently longer than the time required for internal
equilibration within state i.

It is useful to consider the rate constant ki→j given by Eq. 11 as a product of a
transition-state theory estimate of the rate constant for exiting state i times a dynamical
correction factor:

ki→j(t) = kTST
i→ fd,i→j (12)

Transition state theory rests on an approximation: It assumes that, whenever the system
finds itself on the boundary surface of state i with momentum directed towards the out-
side of state i, then a successful transition out of state i will occur. In reality, this is not
necessarily the case because of fast recrossings of the boundary surface at short times.
Mathematically, kTST

i→ is obtained by replacing hj (x(t)) in the numerator of Eq. 11 with
1 − hi(x(0+)) = H (ni(x(0)) · ẋ(0)). The averaging over configuration and momentum
space can be separated, the momentum-space average reducing to a Boltzmann-weighted
mean of the component of the mass-weighted velocity vector normal to the boundary sur-
face over the positive semiaxis. The result is:

kTST
i→ =

1

(2βπ)1/2

∫
bound. surf. of state i

df−1x exp [−βV(x)]

∫
state i

dfx exp [−βV(x)]

(13)

The reader is reminded that x is the vector of mass-weighted coordinates of the system.
The dynamical correction factor fd,i→j , on the other hand, emerges as the ratio:

fd,i→j =
〈ni(x(0)) · ẋ(0)δ [Ci(x(0))] |∇Ci(x(0))|hj(x(t))〉

〈ni(x(0)) · ẋ(0)δ [Ci(x(0))] |∇Ci(x(0))| [1− hi(x(0+))]〉
(14)

which can be simplified to

fd,i→j =
〈ni(x(0)) · ẋ(0)δ [Ci(x(0))] |∇Ci(x(0))|hj(x(t))〉

1
2 〈|ni(x(0)) · ẋ(0)| δ [Ci(x(0))] |∇Ci(x(0))|〉

(15)

The numerator in Eqs. 14 and 15 for fd,i→j is an average over all dynamical trajectories
crossing the boundary of state i which ultimately thermalize in state j. The denominator
in Eq. 14 is an average over all dynamical trajectories crossing the boundary surface of
state i in an outward direction. The factor 1/2 and the absolute value of the component
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of velocity along the normal to the boundary surface in Eq. 15 stem from the fact that the
latter component is symmetrically distributed around zero. Trajectories initiated on the
boundary surface thermalize in a destination state within a correlation time that is much
smaller than (kTST

i→ )−1 and therefore their sampling entails modest computational cost. A
simple sampling scheme for implementing Eq. 15 is discussed in Ref. 6.

Interestingly, in this multistate formulation for the calculation of rate constants, due
to Voter and Doll6, transition state theory is applied to the total efflux from origin state i
(see Eq. 13). The destination state j enters only through the dynamical correction factor
fd,i→j , computed from short dynamical trajectories initiated on the dividing surface, via
Eqs. 14 or 15. For adjacent states i and j that share parts of their boundary surfaces,
fd,i→j starts off high (equal to the Boltzmann-weighted fraction of the boundary surface
of i that is shared with j) and quickly decays with time to an asymptotic value due to
dynamical recrossing and fast correlated multistate jumps. For nonadjacent states i, j the
dynamical correction factor fd,i→j starts off at 0 and quickly rises to an asymptotic value.
This describes transitions where the system crosses the boundary surface of i, spends a
short time in one or more intermediate states without thermalizing in them, then enters j,
which is nonadjacent to i, and ultimately thermalizes there. Such events are referred to as
fast correlated multistate jumps.

The transition-state theory expression for the rate constant for exiting state i, kTST
i→ ,

Eq. 13, emerges as the product of half the mean absolute value of a component of the
(mass-weighted) velocity along one direction in configuration space times a ratio of two
configurational integrals: one taken over the boundary surface of the origin state i, and
another one taken over the entire state i. Clearly, the ratio of configurational integrals has
the physical meaning of a conditional probability that the system will find itself on the
boundary surface, provided it is allowed to sample state i according to its equilibrium dis-
tribution. Instead of configurational integrals, one may consider the partition function Qi
of the system confined in the origin state i, as an integral over f -dimensional configuration
space within state i and over f -dimensional momentum space; and the partition function
Q†i of the system confined to the boundary surface of state i, as an integral over the f − 1
dimensions of that surface in configuration space and over the f − 1 dimensions of mo-
mentum space corresponding to moving within the surface, but not normal to it. Then, the
expression for ki→ can be rewritten as

kTST
i→ =

kBT

h

Q†i
Qi

(16)

where the factor h takes care of the different dimensionalities of the phase spaces to which
the two partition functions refer. Eq. 16 is applicable beyond the classical analysis adopted
here, in systems where quantum mechanical effects are important. For a system under
constant pressure, where volume fluctuations are important in effecting transitions out of
state i, Qi and Q†i must be interpreted as isothermal-isobaric partition functions. Recalling
the connection between Gibbs energy and isothermal-isobaric partition function, Eq. 16
can be recast in the form

kTST
i→ =

kBT

h
exp

[
−

(
G†i −Gi
kBT

)]
(17)

An example application of Eqs. 13 and 15 to the calculation of dynamically corrected
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rate constants can be found in Ref. 13. There, elementary transitions of Xe and SF6

in the pores of the zeolite Silicalite-1 were analyzed with the purpose of computing the
self-diffusivity of these molecules at low occupancy. An inflexible model was invoked
for the zeolite, allowing all calculations to be carried out in three dimensions (f = 3).
States and boundary surfaces were mapped out explicitly as sets of voxels and pixels,
respectively, after discretization of the intracrystalline space in the zeolite (see Sec. 2).
The configurational integrals in Eq. 13 were computed by Monte Carlo integration in these
voxels and pixels.

When state i is surrounded by high potential energy ridges relative to kBT all along
its boundary surface, transitions between nonadjacent states are improbable. A transition
state estimate between adjacent states i and j can be obtained by analogy to Eqs. 13 and
17 as

kTST
i→j =

1

(2βπ)1/2

∫
sep. surf. between states i and j

df−1x exp [−βV(x)]

∫
state i

dfx exp [−βV(x)]

(18)

kTST
i→j =

kBT

h
exp

[
−

(
G†ij −Gi
kBT

)]
(19)

In Eq. 18, the configurational integral in the numerator is taken over the part of the
boundary surface of i that is common with the boundary surface of j, which we will call
the separating surface between i and j. In Eq. 19, G†ij symbolizes the Gibbs energy of the
system confined to that separating surface.

In many solid-state problems, transition between i and j is possible only through a
narrow passage in the dividing surface, surrounding the first-order saddle point (x†ij , ε

†
ij)

between the configurations (xi, εi) and (xj , εj) of the two local energy minima, the en-
ergy being too high outside this narrow passage. Here ε symbolizes the strain tensor with
respect to a reference spatial extent of the system, usually taken as that characterizing the
origin state i. Under given applied stress tensor σ, this strain tensor may well be different
between the origin state, the destination state, and the saddle point. When all the proba-
bility flux of the transition is directed through such a narrow, high-energy passage, for the
purpose of computing the configurational integrals appearing in Eq. 18 one can invoke a
quasiharmonic approximation, i.e. replace the potential energy with its Taylor expansion
to second order with respect to x around a stationary point (saddle point for the numer-
ator, minimum for the denominator) under the current volume of the system. The Gibbs
energies in Eq. 19 are then estimated as

Gi ' Vi +Avib
i − Viσ:εi (20)

G†ij = V†ij +A†vib
ij − Viσ:ε†ij (21)

Here Vi is the potential energy at the minimum corresponding to state i and V†ij is the
potential energy at the saddle point corresponding to the transition state. Vi is the volume
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at the reference configuration used for measuring strain, usually taken as that of the origin
state i, εi is the strain tensor at the origin state and ε†ij is the strain tensor at the saddle

point. Avib
i is a vibrational Helmholtz energy calculated from the angular frequencies ω(l)

i

of the normal modes of the system at the energy minimum of the origin state, while A†vib
ij

is a vibrational Helmholtz energy calculated from the angular frequencies of the normal
modes ω†(l)ij at the saddle point:

Avib
i = −kBT ln

[
f∏
l=1

exp(−~ω(l)
i /(kBT ))

1− exp(−~ω(l)
i /(kBT ))

]
(22)

A†vib
ij = −kBT ln

[
f−1∏
l=1

exp(−~ω†(l)ij /(kBT ))

1− exp(−~ω†(l)ij /(kBT ))

]
(23)

The spatial extent of the system at the minimum corresponding to the origin state is
set based on the condition that Gi, as defined in Eq. 20, have a minimum with respect
to the system dimensions under the applied stress σ. Similarly, the spatial extent of the
system at the saddle point is set based on the condition that G†ij , as defined in Eq. 21, have
a minimum with respect to the system dimensions under the applied stress σ20. Kopsias20

and Boulougouris21 have invoked the quasiharmonic approximation approach to compute
rate constants for elementary transitions in configuration space corresponding to structural
relaxation of a Lennard-Jones and of an atactic polystyrene glass.

When all normal mode angular frequencies are very low relative to kBT/~ and volume
changes are negligible between the origin state and the transition state, the expression for
the rate constant obtained from Eqs. 19 - 23 reduces to

kTST
i→j =

1

2π

f∏
l=1

ω
(l)
i

f−1∏
l=1

ω
†(l)
ij

exp

[
−
V†ij − Vi
kBT

]
(24)

Eq. 24 has been proposed originally by Vineyard1 in connection with the elementary
jumps executed by an isotopic atom in the course of its self-diffusion in a solid lattice.

As pointed out in Sec. 2, in many problems it suffices to define states, transition paths,
and dividing surfaces in the space of a few, slowly evolving degrees of freedom (coarse-
grained variables or “order parameters”), rather than in the full 3N−3-dimensional config-
uration space of the model system (assumed here to be characterized by periodic boundary
conditions). In these cases, the transition-state theory estimate of the rate constant kTST

i→j is
obtainable from Eq. 18 with f being a small number, x being the vector of (mass-weighted)
coarse-grained variables and V being a potential of mean force with respect to these vari-
ables. For f ≤ 3 it is feasible to map out this potential of mean force as a function of the
coarse-grained variables. This provides a free energy profile (for f = 1) or landscape (for
f > 1) that is useful for visualizing the transition.

In such lower-dimensional formulations, the configurational part of the Gibbs (or
Helmholtz, in cases where volume changes are not important for the transition) energy
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Figure 3. Gibbs energy profile for nucleation in a three-dimensional Ising model system consisting of L× L×
L sites arranged on a cubic lattice, as computed from umbrella sampling Monte Carlo simulations using spin
inversions as the only moves. (a) A system containing only one nucleus. (b) A system containing multiple nuclei,
the largest of which has size nmax. (c) Gibbs energies ∆G(n) and ∆G(nmax) as functions of n and nmax,
respectively. The barrier heights encountered in these functions are indicated by an asterisk. See text for details.

differenceG†ij−Gi appearing in Eq. 19 can be obtained through any statistical mechanics-
based method designed for the computation of free energy differences. Free energy per-
turbation methods31, 24, 32 offer themselves for this purpose. As the free energy barriers
involved are typically large relative to kBT (otherwise the phenomenon studied would
not be an infrequent event), biased sampling techniques have to be invoked. A general
strategy is umbrella sampling, wherein histograms of the relative free energy are accumu-
lated through Boltzmann inversion of the probability density of coarse-grained variables
within small overlapping windows in the space of coarse-grained variables, and different
histograms are patched together to obtain the entire free energy landscape.

An example calculation of a Gibbs energy profile via umbrella sampling Monte Carlo
simulation, based on work by K. Binder et al., is shown in Fig. 3. The model system is an
Ising model with coupling constant J between neighboring spins, consisting of L×L×L
spins arranged on a simple cubic lattice in three dimensions. Initially, the system is in
a phase with all spins “down” at a temperature of T = 0.6Tc, lower than the critical
temperature Tc ' 4.51J/kB for order- disorder transition. Then, a magnetic field B =
0.55J is applied, rendering the initial phase metastable with respect to its counterpart with
all spins “up”. A first order phase transition ensues, which takes place via a nucleation
and growth mechanism. Nuclei appear in the initial phase, each nucleus consisting of a
cluster of “up” spins connected through nearest neighbor interactions. The Gibbs energy
∆G(n) for the formation of a nucleus of size (number of spins) n was accumulated by
Boltzmann inversion of the size distribution of the nuclei. In addition, the Gibbs energy
∆G(nmax) for the largest nucleus in the system to be of size nmax was accumulated.
The two functions are shown in Fig. 3. ∆G(n) is system-size independent, while the
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Figure 4. Configurational Helmholtz energy (potential of mean force) profile for a sorbed benzene molecule along
the straight channel of the zeolite Silicalite-1, as computed by blue moon ensemble MD simulations, shown as a
broken line23. The potential energy is measured in kJ mol−1. The horizontal axis (reaction coordinate) measures
the position of the center of mass of the benzene molecule projected along the axis of the channel, in Å, at room
temperature. This calculation is based on a flexible model, incorporating the vibrational degrees of freedom of
the zeolite. The global minimum near the center of the graph corresponds to the molecule residing within an
intersection of the straight channel with a zigzag channel. Shallower minima are observed in the interior of the
straight channel segments. Note that barriers in the potential of mean force are on the order of tens of kJ/mol,
indicating that translational motion along the channel will proceed as a sequence of infrequent jump events. The
continuous line with the points displays the derivative of the potential of mean force with respect to the reaction
coordinate. This is the force needed to hold the system at a specific value of the reaction coordinate, computed
via the blue moon ensemble method. The Helmholtz energy profile was obtained via numerical integration of this
force.

barrier in ∆G(nmax) is reduced with increasing system size and would be expected to
become very small for very large systems. This means that the new phase would nucleate
very fast in a very large system. The barriers ∆G∗(n) and ∆G∗(nmax) are related via
∆G∗(nmax) = ∆G∗(n)− kBT ln(L3)33.

A related strategy is blue moon ensemble simulation, invoked by Forester and Smith23

in their calculations of diffusion of benzene in the zeolite silicalite-1, as mentioned in Sec. 2
(see Fig. 4).

In recent years, a variety of advanced methods have been proposed for calculating free
energy profiles along a coarse-grained variable or reaction coordinate. One such method
is flux-tempered metadynamics34, based on the metadynamics method introduced by Laio
and Parrinello35. Metadynamics entails molecular dynamics simulation in which a repul-
sive Gaussian potential in a few selected coarse-grained variables is periodically added to
the potential energy function of a system, to encourage its escape from the vicinity of local
free energy minima with respect to these coarse-grained variables. If uniform sampling of
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the space of coarse-grained variables is achieved, the free energy can be estimated from
the sum of added Gaussian potentials.

A general, essentially exact, but computationally intensive method for computing tran-
sition rate constants between two known states in configuration space is transition path
sampling, developed by Chandler and collaborators. This method is particularly useful in
complex fluid systems, where the variables participating in the reaction coordinate are dif-
ficult to anticipate. The method samples dynamical trajectories connecting the two states.
These trajectories are generated and manipulated using importance sampling techniques.
We will not dwell on this method here, as detailed information can be found in a number
of excellent reviews36, 37.

4 Kinetic Monte Carlo Simulation

We now turn to the question of how to track the temporal evolution of a system evolving
through a sequence of infrequent events, once we know the states i, the transitions between
them, and the interstate rate constants ki→j .

A widely used strategy is to generate a large number of stochastic trajectories of the
system, conforming to the master Eq. 1. Each trajectory consists of a sequence of transi-
tions between states. The transitions take place at times which are chosen by generation
of pseudorandom numbers. The method is known as Kinetic Monte Carlo (KMC) simula-
tion. The earliest application of KMC is thought to be Beeler’s 1966 simulation of radiation
damage annealing, although the term “kinetic Monte Carlo” was not widely adopted before
199038.

The usual implementation of KMC relies on the following properties of Poisson pro-
cesses:

• If a number of Poisson processes occur in parallel in the same system with rate con-
stants ki, they comprise a Poisson process with rate constant k =

∑
i ki.

• The waiting time of a Poisson process with rate constant k is exponentially distributed,
with mean k−1 (see Eq. 8 and associated discussion).

• If ξ is a continuous random variable that is uniformly distributed in [0,1), then the
random variable ∆t = − ln(1− ξ)/k follows the exponential distribution with prob-
ability density ρ̂(∆t) = k exp(−k∆t).

To begin the KMC simulation, a large number N >> n of independent walkers are
deployed among the states of the system, according to a prescribed initial probability distri-
bution among states, Pi(0), i = 1, 2, . . . , n. For a system in equilibrium, Pi(0) = Pi(∞).
(An easy way to generate a sample of a discrete or continuous random variable with pre-
scribed probability distribution is to sample uniformly distributed pseudorandom values
∈ [0, 1) for the cumulative distribution function and then find the inverse of this function
at each of the sampled values. The prescription given above for sampling an exponentially
distributed variable relies on the same principle.) We will use the symbol Ni(t) to denote
the number of walkers that find themselves in state i at time t. Initially,Ni(0)/N ' Pi(0).
After initialization (t = 0), the KMC simulation proceeds according to the following steps:
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(i) For each state i that is occupied at the current time t, calculate the expected fluxes
Ri→j(t) = Ni(t)ki→j to all states j to which state i is connected. Also, compute the
overall flux R(t) =

∑
i

∑
j Ri→j(t) and the probabilities qi→j(t) = Ri→j(t)/R(t).

(ii) Generate a uniformly distributed pseudorandom number39 ξ ∈ [0, 1). Choose
the time for occurrence of the next transition in the network of states as
∆t = − ln(1− ξ)/R(t). Choose the type of the next transition by picking one of
the possible transitions i→ j according to the probabilities qi→j(t).

(iii) Of the Ni(t) walkers present in state i, pick one with probability 1/Ni(t) and move
it to state j.

(iv) Advance the simulation time by ∆t. Update the array, keeping track of the current
positions of all walkers to reflect the implemented transition. Update the occupancy
numbers Ni(t+ ∆t) = Ni(t)− 1 and Nj(t+ ∆t) = Nj(t) + 1.

(v) Return to step (i) to implement the next transition.

The outcome from performing this stochastic simulation over a large number of steps is
a set of trajectories for all N walkers. Each trajectory consists of a long sequence of tran-
sitions between states of the network. Time-dependent system properties are estimated as
ensemble averages over all trajectories at specific times. For example, if states correspond
to sites in a three-dimensional network where a molecule can reside, one can calculate the
mean square displacement along each one of the three coordinate directions as a function
of time by averaging over the trajectories, and hence obtain the self-diffusivity tensor via
the Einstein relation13, 14.

When all rate constants ki→j are small, KMC will take large strides ∆t on the time
axis. Thus, times on the order of milliseconds, seconds, or even hours can be accessed,
which are prohibitive for “brute force” MD.

5 Analytical Solution of the Master Equation

When the rate constants ki→j are very broadly distributed, KMC simulation may become
inefficient. This is because time steps ∆t must be short enough to track the fastest pro-
cesses occurring in the system. With such a short ∆t, processes whose rate constants are
several orders of magnitude lower than those of the fastest processes can hardly be sam-
pled. Thus, one is faced with the same long-time problem as in MD.

In such cases of great dynamical heterogeneity, it may be better to resort to a direct
solution of the master equation, Eq. 1, for the time-dependent state probabilities {Pi(t)},
under prescribed initial conditions {Pi(0)}. Remarkably, this solution can be developed
analytically, as discussed in Wei and Prater’s classic work on the kinetics of a network of
reversible chemical reactions8, and as detailed in recent work by Buchete and Hummer40

and by Boulougouris41. We briefly outline this mathematical development here.
We start from the master equation in its matrix form, as written in Eq. 1. We transform

the state probability vector P(t) into a reduced state probability vector P̃(t) with elements

P̃i(t) = Pi(t)/
√
Pi(∞) (25)
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P̃(t) satisfies the reduced master equation

∂P̃(t)

∂t
= K̃P̃(t) (26)

with K̃ij = Kij

√
Pj(∞)/

√
Pi(∞). The matrix K̃ is symmetric by virtue of the micro-

scopic reversibility condition, Eq. 2. One can readily show that K̃ has the same eigenvalues
as K. These eigenvalues are real, since K̃ is symmetric. Of these eigenvalues, one (cor-
responding to the establishment of the equilibrium distribution among states) is zero, and
the remaining are negative. This is because K̃ is a negative semidefinite matrix. The latter
statement can be proved as follows: Let y be an arbitrary n− dimensional vector of real
elements. Then,

yT · K̃ · y =

n∑
i=1

n∑
j=1

K̃ijyiyj =

n∑
i=1

K̃iiy
2
i +

n∑
i=1

n∑
j=1
j 6=i

K̃ijyiyj

=

n∑
i=1

− n∑
j=1
j 6=i

ki→j

 y2
i +

n∑
i=1

n∑
j=1
j 6=i

kj→i

(
P eq
j

P eq
i

)1/2

yiyj

= −
n∑
i=1

n∑
j=1
j 6=i

ki→jy
2
i +

n∑
i=1

n∑
j=1
j 6=i

ki→j

(
P eq
i

P eq
j

)1/2

yiyj

= −1

2

n∑
i=1

n∑
j=1
j 6=i

ki→jP
eq
i

[
yi

(P eq
j )1/2

− yj
(P eq
i )1/2

]2

≤ 0 (27)

Eq. 27 establishes K̃ as a negative semidefinite matrix. The proof seems to have been
given for the first time by Shuler42. Now, if λ is one of the real eigenvalues of K̃ with
corresponding real eigenvector ũ, then K̃ · ũ = λũ and therefore ũT · K̃ · ũ = λ|ũ|2.
Because K̃ is negative semidefinite, the left-hand side of the latter equation is negative or
zero, hence λ ≤ 0.

Let us denote the eigenvalues of K̃ by λ0 = 0 ≥ λ1 ≥ . . . ≥ λn−1. We symbolize by
ũm = (ũ1,m, ũ2,m, . . . , ũi,m, . . . ũn,m) the eigenvector of K̃ corresponding to eigenvalue
λm, 0 ≤ m ≤ n − 1. The eigenvector ũ0 has elements ũi,0 = P̃i(∞) =

√
Pi(∞),

corresponding to the equilibrium distribution among states. The Euclidean norm of ũ0 is
unity by the normalization of Pi(∞).

The solution to the reduced master equation can be written as:

P̃(t) =

n−1∑
m=0

[
ũm · P̃(0)

]
exp(λmt)ũm = P̃(∞)+

n−1∑
m=1

[
ũm · P̃(0)

]
exp(λmt)ũm (28)

where the normalization condition
n∑
j=1

Pj(0) = 1 has been used in separating out the

equilibrium contribution (λ0 = 0). The eigenvectors ũm form an orthonormal basis set:

ũm · ũl = δml, 0 ≤ m, l ≤ n− 1 (29)
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They also satisfy
n−1∑
m=0

ũi,mũj,m = δij . Once P̃(t) has been determined, the state probabil-

ities P(t) can be calculated via Pi(t) = P̃i(t)
√
Pi(∞).

Eq. 28 has an interesting geometric interpretation, which is discussed at length by
Boulougouris in the context of a general formulation for analytical solution of the master
equation and calculation of time-dependent averages and autocorrelation functions which
was dubbed “EROPHILE,” for “Eigenvalue Representation of Observables and Probabil-
ities in a HIgh-Dimensional Euclidean space”41. In the n-dimensional Euclidean space
spanned by the reduced state probabilities P̃i, the point P̃(t) moves in a hyperplane that is
normal to the eigenvector ũ0 =

(√
P1(∞),

√
P2(∞), . . . ,

√
Pn(∞)

)
and contains point

P̃(0). This plane is, of course, spanned by the remaining eigenvectors ũ1, ũ2, . . . , ũn−1.
It intersects each of the P̃i axes at 1/

√
Pi(∞). As time goes by, P̃(t) traces a curved

trajectory on this hyperplane from P̃(0) to the equilibrium distribution P̃(∞).
Let us consider any observable, A, which has well-defined values Ai within each of

the states i. The (nonequilibrium) ensemble average 〈A(t)〉 at any time t is

〈A(t)〉 =

n∑
i=1

Pi(t)Ai = 〈A(∞)〉+

n−1∑
m=1

amβm exp (λmt) (30)

where

am = ũm · P̃(0) (31)

and

βm = ũm · Ã (32)

In Eq. 32, Ã is an n-dimensional vector with elements Ãi = Ai
√
Pi(∞), formed from

the values Ai of the observable in each state and the equilibrium probabilities Pi(∞) of
the states.

Eq. 30 expresses the time-dependent ensemble average of the observable, 〈A(t)〉, as a
sum of its value 〈A(∞)〉 when equilibrium among all n states has been established, plus a
sum of exponentially decaying functions. The sum is taken over all relaxation modes, with
characteristic time constants −1/λ1 ≥ −1/λ2 ≥ . . . ≥ −1/λn−1.

In the space spanned by P̃i, considered above, one can draw the vector Ã with com-
ponents Ãi = Ai

√
Pi(∞) along each P̃i axis. The equilibrium average 〈A(∞)〉 is in-

terpreted geometrically as the projection of this vector on the eigenvector ũ0 = P̃(∞).
The time-dependent average 〈A(t)〉, on the other hand, is interpreted as a projection of
the same vector on the reduced probability vector P̃(t). As the tip of P̃(t) moves from
P̃(0) toward the equilibrium point P̃(∞), 〈A(t)〉 moves to 〈A(∞)〉. The exponentially
decaying components of 〈A〉 along the modes are proportional to the projections βm of Ã
on the eigenvectors41.

One can readily express time autocorrelation functions for observables using the ana-
lytical solution to the reduced master equation. For any observable A defined in the states,

〈A(0)A(t)〉− 〈A(0)〉 〈A(∞)〉 =
n−1∑
m=1

β2
m exp (λmt) + 〈A(∞)〉

n−1∑
m=1

amβm exp (λmt) +

n−1∑
m=1

βm exp (λmt)
n−1∑
l=1

βl
n−1∑
k=1

n∑
i=1

[
akũi,lũi,mũi,k

P̃i(∞)

]
(33)
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In the special case where the system is initially distributed among states according
to equilibrium, P̃(0) = P̃(∞), by virtue of the orthonormality of eigenvectors we have
am = 0,m = 1, 2, . . . , n− 1 and Eq. 33 simplifies to

〈A(0)A(t)〉 − 〈A(∞)〉2 =

n−1∑
m=1

β2
m exp (λmt) (34)

In this special case,
〈

(δA)
2
〉1/2

=
[
〈A(0)A(t)〉 − 〈A(∞)〉2

]1/2
can be interpreted ge-

ometrically as the length of the projection of vector Ã on the on the n − 1-dimensional
hyperplane on which P̃(t) moves41.

Implementation of this analytical solution scheme requires that the equilibrium state
probabilities Pi(∞) be found at the beginning of the calculation. An easy strategy for
accomplishing this without diagonalizing matrix K is to use the iterative successive sub-
stitution scheme43:

P
(l+1)
i (t) =

∑
j 6=i

P
(l)
j (t)kj→i∑

j 6=i
ki→j

(35)

Implementation of Eq. 28 requires diagonalization of the singular symmetric n × n
matrix K̃.

For spatially periodic systems, in which the set of states is obtainable by replication of a
“unit cell” of states in one, two, or three dimensions, Kolokathis44 has developed a method
for calculating the eigenvalues and eigenvectors of the reduced rate constant matrix of the
whole system by diagonalizing matrices of dimension corresponding to a single unit cell.
This Master Equation Solution by Recursive Reduction of Dimensionality (MESoRReD)
in diagonalizing the rate constant matrix method greatly reduces the computational effort
required for diagonalization and is valuable in addressing problems of diffusion in crys-
talline solids.

6 Example: Diffusion of Xenon in Silicalite

Zeolites are crystalline aluminosilicates whose crystal structure is characterized by the
presence of regular cavities and pores of diameter commensurate with the sizes of common
gas or solvent molecules. This structure imparts to zeolites a unique ability to distinguish
among molecules sorbed in their pores in terms of their size, shape, and charge distribution
and forms the basis for a large number of technological applications of zeolites as industrial
separation media, catalysts, and ion exchange agents.

Diffusivities in zeolites are commonly computed via MD simulations. In many systems
of practical relevance, however, diffusion is too slow to be computed reliably by MD. For
example, as can be seen in Fig. 4, benzene experiences a tight fit in the pores of silicalite-1,
such that moving from an intersection region to the interior of a straight channel requires
overcoming a free energy barrier of approximately 27 kJ/mol. A MD simulation of benzene
sorbed at low occupancy in silicalite at room temperature would exhaust itself tracking
local motions of the benzene within a sorption site and would hardly sample any jumps into
other sorption sites, which contribute to translational diffusion. A reasonable prediction of
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Figure 5. Schematic outline of the pore structure of a unit cell of silicalite. Spheres represent the three types of
sorption states (Z = sinusoidal channel state, S = straight channel state, and I = intersection state) on the zeolite-
sorbate potential hypersurface. The thick lines provide a rough depiction of the axes of straight and sinusoidal
(zig-zag) channels.

the diffusivity can only be obtained through computation of rate constants for jumping
from site to site via infrequent event analysis and solution of the master equation in the
network of sorption sites (states)14, 23.

A simple sorbate/zeolite system on which infrequent event-based calculations appear to
have been conducted for the first time is xenon (Xe) in silicalite-1 at low temperatures and
occupancies. Here we review briefly some calculations on this system at 150 K, coming
from the early work of June et al.13 and the very recent work of Kolokathis44. The unit cell
of silicalite has the chemical constitution Si96O192. Calculations were conducted with its
orthorhombic form, which has lattice parameters a = 20.07 Å, b = 19.92 Å, c = 13.42
Å along the x, y, and z directions, respectively. The zeolite possesses two intersecting
systems of channels, both of diameter around 5.5 Å: Straight channels, which run along
the b crystallographic axis, and sinusoidal, or zig-zag, channels, which run along the a
crystallographic axis. The channel systems come together at intersections, which are more
spacious (diameter around 9 Å).

In the modeling work of June et al.45, 13, silicalite was considered as rigid and its inter-
action with Xe was described as a sum of Lennard-Jones potentials between each oxygen
in its framework and the Xe molecule. An efficient potential pretabulation and interpola-
tion scheme in three dimensions was developed for this potential in simulations45. June et
al.13 conducted a thorough analysis of the potential energy hypersurface experienced by
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Figure 6. Transitions of Xe in silicalite-1, depicted as straight lines in three-dimensional space. Red color shows
S (straight-channel) states, yellow color shows Z (zig-zag channel) states and pink color shows I (intersection)
states. Green box defines the borders of one unit cell. Orange color shows the borders of cells along the x axis.

Xe in silicalite as a function of its three translational degrees of freedom, identified states
and transitions between them, and computed rate constants ki→j using Transition State
Theory (TST) with or without dynamical corrections. This analysis led to the identifica-
tion of 12 states per unit cell for Xe in silicalite at very low loadings. There are four states
per unit cell in the interior of straight channel segments (S), four states per unit cell in the
interior of zig-zag channel segments (Z) and four states per unit cell in intersections (I).
Of these, Z and S states are more favorable, while I, where the dispersive attraction of Xe
with the surrounding zeolite lattice is weaker, is less favorable. At 150 K the equilibrium
probabilities of occupancy of these states, normalized within one fourth of the unit cell, are
P eq
Z = 0.572, P eq

S = 0.414, P eq
I = 0.014. The spatial arrangement of these states within

one unit cell of silicalite is shown in Fig. 5.
There is a rich connectivity among the states for Xe in silicalite. Apart from I to S and

I to Z transitions, June et al.13 identified direct transitions between S and Z states which
circumvent the intersection regions. There are eleven distinct types of transitions. These
types and their associated rate constants, as calculated by Transition State Theory without
dynamical corrections [Eq. 18], are shown in Tab. 1.

Fig. 6 provides a pictorial depiction of the spatial arrangement of sorption states 1-12
in a central unit cell (outlined with green borders) and of the periodic images of these states
located to the right (R) and left (L) of the central unit cell. States 1-4 are I states; states
5-8 are S states; and states 9-12 are Z states. Fig. 6 also shows the network of transitions
as a set of straight line segments connecting the states. Each I, S, and Z state is connected
to another 4, 6, and 8 states, respectively. There are 72 transition pathways lying within
or crossing the boundaries of a unit cell, where forward and reverse pathways are counted
separately. These transitions are summarized in the third column of Tab. 1; to each of these
transitions a rate and a type are assigned in the first two columns of the same table.

Tab. 2 shows estimates of the diffusivitiesDxx,Dyy ,Dzz , as well as of the orientation-
ally averaged diffusivity D = (Dxx + Dyy + Dzz)/3 at 150 K, obtained from the states,
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Type of Rate constant ki→j Transitions
Transition (s−1)

I→ S 1.309× 1011 1→ 5, 1→ 6, 2→ 5, 2→ 6,
3→ 7, 3→ 8, 4→ 7, 4→ 8

S→ I 4.444× 109 5→ 1, 5→ 2, 6→ 1, 6→ 2,
7→ 3, 7→ 4, 8→ 3, 8→ 4

I →
a

Z 2.958× 1010 1→ 9, 2→ 12, 3→
L

10, 4→ 11

Z →
a

I 7.241× 108 9→ 1, 10→
R

3, 11→ 4, 12→ 2

I →
b

Z 1.501× 1010 1→ 10, 2→ 11, 3→ 9, 4→
L

12

Z →
b

I 3.673× 108 9→ 3, 10→ 1, 11→ 2, 12→
R

4

S →
a

Z 3.974× 108 5→ 9, 6→ 9, 7→
L

10, 8→
L

10,

7→ 11, 8→ 11, 5→ 12, 6→ 12

Z →
a

S 2.853× 108 9→ 5, 9→ 6, 10→
R

7, 10→
R

8,

11→ 7, 11→ 8, 12→ 5, 12→ 6

S →
b

Z 8.567× 108 5→ 10, 5→ 11, 6→ 10, 6→ 11,

7→ 9, 7→
L

12, 8→ 9, 8→
L

12

Z →
b

S 6.150× 108 10→ 5, 11→ 5, 10→ 6, 11→ 6,

9→ 7, 12→
R

7, 9→ 8, 12→
R

8

Z→ Z 9.737× 108 9→ 10, 9→
L

10, 10→ 9, 10→
R

9,

11→ 12, 11→
L

12, 12→ 11, 12→
R

11

Table 1. Rate constants13 for interstate transitions of xenon in silicalite at 150 K as calculated from Transition-
State Theory in tree dimensions, without dynamical corrections. I, S, and Z represent an intersection, straight
channel state and sinusoidal channel state, respectively. The indices under the arrows distinguish between differ-
ent transitions starting at the same origin state and ending at different images of the destination state.
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connectivity, and rate constant information of Figs. 5, 6 and Tab. 1. No distinction is made
between self- and transport diffusivities, as the two are equal at the very low occupancies
considered here. Diffusivities have been calculated by three methods:

• Kinetic Monte Carlo simulation: Here one deploys a large number (e.g. 4000) of
noninteracting Xe molecules (“walkers”) among the states of a large (e.g. 10×10×10
unit cells) network with periodic boundary conditions, according to the equilibrium
occupancy probabilities of the states. One then generates a long (e.g., at least 27000
steps, corresponding to roughly 18 ns for the Xe/silicalite-1 system) KMC trajectory
by the procedure discussed in Sec. 4. The diffusivity is calculated via the Einstein
relation, e.g.

Dxx = lim
t→∞

〈
[x(t)− x(0)]

2
〉

2t
(36)

and similarly for y and z. Tab. 2 presents KMC results from both the original work of
June et al.13 and the very recent calculations of Kolokathis44. The two sets of KMC
are indistinguishable, within simulation error.

• Numerical solution of the master equation. Here, the master equation, Eq. 1, was
solved numerically as an initial value problem with the Euler method to determine the
state occupancy probabilities as functions of time. The calculation was performed on
a system of 50 × 50 × 50 unit cells with periodic boundary conditions. Initially, a
probability of 1 was assigned to an S state at the center of the system, all other states
being empty. The integration time step in the Euler method was 10−12 s. State proba-
bilities from the numerical solution were summed at the level of unit cells and divided
by the unit cell volume to obtain the probability density ρcell(x, y, z, t). The marginal
probability densities along the three directions, ρcell,x(x, t), ρcell,y(y, t), ρcell,z(z, t)
were then calculated. The diffusivities Dxx, Dyy , Dzz were obtained by matching
these time-dependent probability densities to the solution of the corresponding con-
tinuum diffusion problem. For the maximum time used in the Euler integration, 10
ns, this is indistinguishable from the Gaussian

ρcell,x(x, t) =
1√

4πDxxt
exp

[
− (x− x0)2

4Dxxt

]
(37)

and similarly for y and z.

• Analytical solution of the master equation. Model systems consisting of 27 = 128
adjacent unit cells arranged in a linear array along the x, y, or z directions, with
periodic boundary conditions at the ends, were considered. The symmetrized rate
constant matrix K̃27 for each of these systems was formed and diagonalized. Ini-
tially, all probability was distributed in the central two unit cells of the array. The
time-dependent probability of occupancy of all states in the system was calculated as
a sum of exponentially decaying functions of time using the eigenvectors and eigen-
values of matrix K̃27 , according to Eqs. 25 and 28. To avoid the time- consuming
diagonalization of the 1536 × 1536-dimensional matrix K̃27 , a recursive reduction
scheme was devised44, which ultimately expresses the eigenvalues and eigenvectors
of K̃27 in terms of the eigenvalues and eigenvectors of the symmetrized rate constant
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matrix for a single unit cell, K̃1 and other 12×12 matrices that can be formed readily
from the set of rate constants. This MESoRReD scheme44 affords great savings in
CPU time. The calculation of diffusivities from the time-dependent state probability
profiles is again accomplished by fitting the solution to the corresponding continuum
diffusion equation to the master equation results.

Method Dxx (m2s−1) Dyy (m2s−1) Dzz (m2s−1) D (m2s−1)

June et al.
MD13 4.3× 10−10 1.0× 10−9 0.99× 10−10 5.1× 10−10

June et al.
KMC-DC TST13 5.1× 10−10 7.3× 10−10 0.83× 10−10 4.41× 10−10

June et al.
KMC-TST13 1× 10−9 1.2× 10−9 1.7× 10−10 7.9× 10−10

KMC-TST44 9.75× 10−10 1.21× 10−9 1.71× 10−10 7.85× 10−10

Euler Method
TST44 9.70× 10−10 1.25× 10−9 1.83× 10−10 8.01× 10−10

Master Eq. Soln. by
Recursive Reduction 9.71× 10−10 1.17× 10−9 1.75× 10−10 7.71× 10−10

of Dimensionality44

PFG-NMR53, 54 - - - 1.633× 10−10

Table 2. Diffusion coefficients for xenon in silicalite-1 at 150 K as computed by different methods and as mea-
sured experimentally

As seen in Tab. 2, estimates of Dxx, Dyy , Dzz and D obtained by different TST-based
methods are within 3% of each other. Estimates based on rate constants computed via
dynamically corrected TST, i.e., using Eqs. 12, 13 and 15, obtained by June et al.13 are
also included in the table, for comparison. Consideration of dynamical corrections gives
lower rate constants for interstate transitions (mainly due to recrossings of the dividing
surfaces) and therefore lower diffusivities. Estimates from the dynamically corrected TST
are very close to those obtained by direct MD simulation, which can be considered as the
“exact results” for the force field employed. In Tab. 2 is also shown the single experimen-
tal value of the orientationally averaged self-diffusivity D available for Xe in silicalite-1
at 150 K via pulsed field gradient nuclear magnetic resonance (PFG-NMR) experiments
using 129Xe. The experimental value is of the same order as, but considerably lower than,
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Method CPU time (s) Memory (MB)

June et al. MD13 309173.00

Euler method44 23760.00 401

KMC44 6183.46 6

Master Eq. Soln. by
Recursive Reduction 2.96 42

of dimensionality44

Table 3. CPU time and memory (RAM) requirements for calculating the diffusivity of Xe in silicalite-1 at 150
K with a relative error of 3% by various methods. All times except that for MD were measured44 on an Intel
Celeron CPU E200 system with 1.99 GB RAM, running at 2.40 GHz. The time for MD is an estimate, based
on the work of June et al.13 The CPU time required for the method of analytical solution of the master equation
by recursive reduction of dimensionality of the rate constant matrix is partitioned as follows: (a) Determination
of the time-dependent state probabilities 0.27 s; (b) Determination of diffusivity by fitting the profile of state
probabilities with the solution to the continuum diffusion equation 2.69 s.

the best simulation estimates from MD and DC-TST. This is partly due to the fact that the
intracrystalline occupancy was finite in the experiments, rather than tending to zero, as con-
sidered in the simulations. Imperfections in the zeolite crystals employed in the experiment
and in the force field employed in the simulations and the fact that the high-temperature,
orthorhombic form of the crystal was used in the simulations at 150 K no doubt contribute
to the difference between experimental and predicted values.

The computational requirements of MD and of the TST-based methods for computing
the diffusivity of Xe in silicalite-1 to the same level of accuracy are compared in Tab. 3.
Clearly, analytical solution of the master equation for a periodic model system, based on
recursive reduction of the rate constant matrix, is the most efficient among the methods
examined; its CPU time requirement is smaller than that of MD, numerical solution of
the master equation by the Euler method, and Kinetic Monte Carlo by factors of 100000,
8000, and 2100, respectively. The widely practiced KMC comes next. For penetrants
experiencing a close fit in zeolite pores, such as benzene in silicalite, MD is incapable of
tracking diffusional progress and infrequent event-based methods remain as the only viable
alternative14, 23.

7 Example: Diffusion of CO2 in Poly(amide imide)

Knowing the diffusion coefficient of small (gas, solvent) molecules in glassy polymers is
of great importance to the design of packaging materials with controlled barrier properties,
as well as of separation membranes with tailored permeability and selectivity19. While the

371



problem of diffusion in molten and rubbery polymer matrices at temperatures sufficiently
above the glass temperature Tg can be addressed successfully via MD simulation, diffusion
in polymer glasses is too slow to be predictable by direct MD. The self-diffusivities of gases
dissolved at low concentration in glassy polymers are typically on the order of 10−12m2/s
and would require simulation times longer than µs in order to be predicted by MD from
the mean square displacement

〈
[r(t)− r(0)]

2
〉

via the Einstein relation:

Ds = lim
t→∞

〈
[r(t)− r(0)]

2
〉

6t
(38)

The presence of an “anomalous diffusion” regime at short times, where
〈

[r(t)− r(0)]
2
〉

rises sublinearly with time (see below) makes the reliable calculation of Ds even more
demanding.

MD simulations have established that the diffusion of a small molecule in a glassy
polymer takes place as a sequence of infrequent jumps between accessible volume clusters
within the polymer. Thus, the problem of calculating the self-diffusivity in an amorphous
glassy polymer is similar to that in a zeolite, with the following important differences:
(a) Simulating the structure of the amorphous polymer is a challenge in itself, which has
stimulated significant methodological development. Currently, a satisfactory strategy for
generating glassy polymer configurations is to coarse-grain an atomistic model into one
involving fewer degrees of freedom, equilibrate the coarse-grained model at all length
scales using connectivity-altering Monte Carlo algorithms, reverse-map back to the atom-
istic level to obtain well-equilibrated melt configurations, and finally quench to the glassy
state55. (b) Infrequent-event analyses of elementary jumps only in the penetrant degrees of
freedom, assuming an inflexible polymer matrix, are of very limited utility; the motion of
polymer degrees of freedom in the course of a diffusive jump must be taken into account in
calculating rate constants for the elementary diffusive jumps in order to obtain a realistic
estimate of Ds.

The first serious calculation of diffusivities in an amorphous polymer matrix based on
TST concepts was performed by Gusev and Suter56. This calculation is based on the idea
that atoms of the polymer matrix execute harmonic vibrations around their equilibrium
positions in the minimum energy configuration of the penetrant-free polymer. For a spher-
ical penetrant, this leads to a three-dimensional free energy field that can be expressed in
terms of additive contributions depending on the distances of the center of the penetrant
from the equilibrium positions of the polymer atoms. All (three-dimensional) states and
(two-dimensional) dividing surfaces for translational motion of the penetrant in the poly-
mer matrix are determined via steepest descent constructions in this free energy function,
in a similar way as in rigid zeolite models (compare Sections 2 and 6) and transition rate
constants for all elementary jumps were determined via Eq. 18 with f = 3 and the free
energy field including vibrational contributions from polymer atoms playing the role of
V(x). The amplitude of polymer atom vibrations, ∆, is usually treated as an adjustable pa-
rameter. A self-consistent method has been proposed for its determination from short-time
MD simulations of the polymer matrix57. This is a useful and computationally efficient
approach if the penetrant is small enough to justify the assumption of harmonic (“elastic”)
motion of matrix atoms.

Greenfield15, 58, 59 developed a multidimensional TST approach for diffusion in a glassy
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polymer, where polymer degrees of freedom are taken into account explicitly in the reac-
tion coordinate of the infrequent events whereby diffusion takes place. For the identifica-
tion of states and dividing surfaces, Greenfield introduced a method based on geometric
analysis of accessible volume within penetrant-free minimum energy configurations of the
glassy polymer, which has been outlined briefly in Sec. 2. This calculation goes from
geometrically identified “necks” between accessible volume clusters to saddle points in
the multidimensional configuration space of the penetrant plus polymer system, to transi-
tion paths in that configuration space. Each transition path connects two basins (regions
around local minima) i and j in multidimensional configuration space, with the center of
mass of the penetrant residing in one cluster of accessible volume in basin i and in another
cluster of accessible volume in basin j. The rate constant ki→j for the jump between i
and j is calculated in the harmonic approximation via Eqs. 19 - 23 with the stress set to
zero and volume changes neglected. In general, there are many basins corresponding to
the penetrant residing in the same cluster of accessible volume as in basin i; these basins
communicate with each other via facile transitions and are envisioned as constituting a
“macrostate” or “metabasin” I . Similarly, basin j belongs to a larger “metabasin” J . The
rate constant for transition between metabasins I and J is estimated as

kI→J =
∑
i∈I

∑
j∈J

ki→j
Pi(∞)

PI(∞)
(39)

The ratio Pi(∞)/PI(∞) is estimated from a short MD simulation of the polymer plus
penetrant system with the penetrant confined in the accessible volume of metabasin I; it is
the ratio of time spent in basin i to that spent in the entire metabasin I . The rate constants
kI→J constitute a rate constant matrix K providing a stochastic description of the motion
of the penetrant at the level of metabasins, or clusters of accessible volume. They may
have to be adjusted to ensure that microscopic reversibility, Eq. 2, is satisfied.

Vergadou60 extended and applied Greenfield’s method to study permeation of CO2

in a glassy poly(amide imide) of complex repeat unit constitution [-NH-C6H4-C(CF3)2-
C6H4-NH-CO-C6H4(CH3)-N(CO)2C6H3-CO-]n. All multidimensional TST calculations
were performed in atomic Cartesian coordinates. The distribution of rate constants for
elementary jumps ki→j was found to be very broad, covering the range 10−14 to 10−1

s−1, and skewed towards low values, the most probable value being around 10−6 s−1. The
distribution of elementary jump lengths of the penetrant, on the other hand, was found to
be relatively narrow, covering the range 2 to 10 Å, with a most probable value around 4
Å. Fig. 7 displays three characteristic snapshots in the course of an elementary jump of a
CO2 molecule. The initial and final configurations constitute local minima of the potential
energy of the polymer plus penetrant system, while the middle configuration (transition
state) is a saddle point of the potential energy function. Molecular configurations are shown
in part a of the figure, while part b displays the accessible volume distribution at these three
characteristic points along the transition path of the elementary jump. Clearly, in the initial
and final states the CO2 molecule lies in the interior of accessible volume clusters formed
among the atoms of the glassy polymer. In the transition state a “neck” of accessible
volume has developed which momentarily connects the origin and destination clusters,
letting the penetrant go through. At the transition state the penetrant is oriented roughly
parallel to this neck. Evidently, the degrees of freedom of the polymer and the orientational
degrees of freedom of the penetrant play a significant role in shaping the transition path
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Figure 7. (a) Snapshots along the transition path of an elementary jump of a CO2 molecule within an amorphous
poly(amide imide) (PAI) matrix. The configurations on the left and right correspond to local minima of the
potential energy of the CO2 + PAI with respect to all atomic coordinates. The configuration in the middle
corresponds to a saddle point of the potential energy. (b) Visualization of the accessible volume of the polymer,
as determined using a spherical probe of radius 1.3 Å in the same three snapshots along the transition path. The
CO2 penetrant is also shown. In the saddle point configuration, polymer degrees of freedom have moved in such
a way as to form a “neck” connecting the accessible volume clusters in the initial and final states. The orientation
of the CO2 at the saddle point is more or less parallel to this neck of accessible volume.

and hence the rate constant of the elementary jump.
After calculating all relevant rate constants kI→J by multidimensional TST, the diffu-

sive progress of CO2 in the PAI matrix was tracked via Kinetic Monte Carlo simulation,
applying periodic boundary conditions at the simulation cell boundaries (see Sec. 4). Fig. 8
displays the mean square displacement

〈
[r(t)− r(0)]

2
〉

from KMC trajectories as a func-
tion of elapsed time in log-log (left) and linear (right) coordinates. A strongly anomalous
regime (

〈
[r(t)− r(0)]

2
〉
∝ tn with n < 1) is observed at short times. Beyond 1 µs, how-

ever, where the root mean square displacement exceeds the dimension L of the periodic
simulation box, the dependence becomes linear, allowing one to extract the self-diffusion
coefficient as one sixth the slope of the right-hand side plot, in linear coordinates [compare
Eq. 38].

The presence of an anomalous regime at short times has by now been well established
from simulations of transport in amorphous polymers. Anomalous diffusion is due to long-
lived structural correlations in the polymer, which cause the diffusant to encounter a locally
heterogeneous environment. From a practical point of view, anomalous diffusion increases
the computational cost of simulations required for the prediction of Ds, since such simu-
lations must be long enough for the Einstein (exponent n = 1) regime to be adequately
sampled. In glassy polymer matrices, the crossover from anomalous to normal diffusion
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Figure 8. Mean square displacement of CO2 penetrant in a glassy poly(amide imide) matrix as a function of
time from kinetic Monte Carlo simulations of Vergadou60 based on atomistically calculated sorption states and
jump rate constants between them. (a, left): log-log coordinates; (b, right): Linear coordinates. The straight line
marked n = 1 on the left-hand side plot indicates the expected slope for diffusion [Einstein equation, Eq. 38].
The dotted lines labelled L2 mark the edge length of the primary simulation cell, on which periodic boundary
conditions are applied. The self- diffusivity Ds is computed from the slope of the right-hand side plot.

is often observed at root mean squared penetrant displacements roughly equal to the sim-
ulation box size. This is a system size effect. At length scales larger than the simulation
box size, the model matrix looks like a regular lattice to the penetrant; structural hetero-
geneities leading to anomalous diffusion are suppressed, precipitating a premature onset of
the Einstein regime. Based on the work of Karayiannis61, despite this premature onset, the
estimate of Ds extracted from the linear part of the mean square displacement versus time
curves is not significantly affected by system size, provided the model structures employed
in the simulation are large enough and numerous enough. Karayiannis61 has conducted
a systematic KMC study and Effective Medium Theory analysis of the relation between
the duration of the anomalous diffusion regime and the heterogeneity in the distribution of
elementary jump rate constants.

Based on Fig. 8, the duration of the anomalous regime for diffusion of CO2 in PAI
is at least 1 µs. State-of-the-art measurements of CO2 diffusion in glassy polymers with
carbon-13 Pulsed Field Gradient NMR indicate that it may take 10 ms for motion of the
penetrant to become fully isotropic and the Einstein regime to be reached62.

From the slope of the Einstein regime of Fig. 8 we extract a diffusivity value for the
diffusion of CO2 in PAI at low concentration equal to Ds = 0.25 × 10−12m2s−1. An ex-
perimental estimate is63 Ds = 0.81×10−12m2s−1. The solubility coefficient of CO2 in the
PAI, estimated by the Widom test particle insertion method31 based on the same atomistic
model, is S = 0.42 cm3(STP)/(cm3 polymer cmHg). The permeability P = D.S of
CO2 through the PAI is thus estimated as P = 10.5 cm3(STP) cm/(cm2 s cmHg) ×10−10,
or 10.5 barrer. This compares with experimental estimates of P = 9.54 barrer63 and
P = 15.01 barrer64 from the literature. The comparison between predicted and experi-
mental values is quite favorable, given the uncertainties in the force field employed, in the
structure of the model polymer, but also in the measured permeabilities.
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Figure 9. Disconnectivity graph for a liquid mixture of 48 A and 12 B type Lennard-Jones particles with
ε AB = 1.5εAA, εBB = 0.5εAA, σAB = 0.8σAA, σBB = 0.88σAA at a particle number density
ρ = 1.3σ−3

AA, as computed from MD simulations at a temperature of 0.71 εAA/kB. The glass temperature
for this system is approximately Tg = 0.32εAA/kB. The length of the scale bar on the left corresponds to a
total system energy change of 10 εAA

49.

8 Dynamic Integration of a Markovian Web and its Application to
Structural Relaxation in Glasses

Glassy materials play an important role in our life and have therefore constituted an ob-
ject of extensive research, both at basic and applied levels. Glasses are nonequilibrium
materials, their properties depending on their formation history. Furthermore, their proper-
ties change very slowly with time in the course of “physical ageing,” whose characteristic
times exceed common macroscopic observation times below the glass temperature Tg. The
study of glassy materials by means of molecular simulation faces serious challenges, be-
cause one needs to bridge time scales spanning some 20 orders of magnitude, from the
period of fast atomic vibrations (10−14 s) up to the longest time for structural, volume, and
enthalpy relaxation (on the order of years 20◦ C or so below Tg).

State-of-the-art theories of the supercooled liquid state include mode coupling theory46

and theories for enumerating stationary points47 on the multidimensional energy hypersur-
face of the system. Analyses of the potential energy landscape have been reviewed48.

“Fragile” glass-forming liquids, whose viscosity exhibits a strongly non-Arrhenius de-
pendence on temperature, are characterized by very rugged potential energy landscapes.
This is seen characteristically in the “disconnectivity graphs” computed by D. Wales and
collaborators49 (see Fig. 9). All branches of the inverted tree in a disconnectivity graph
terminate at a local minimum of the energy (inherent structure). Relative energies can be
read off on the vertical axis. The node (branch point) through which two inherent struc-
tures communicate corresponds to the lowest lying first-order saddle point between these
structures. From the “willow tree” appearance of the graph, it is clear that there are sets of
basins (“metabasins”) communicating through relatively fast transitions, sets of metabasins
communicating through slower transitions etc., i.e., the potential energy landscape exhibits
a hierarchical structure.

The complexity of the energy landscape of a binary Lennard-Jones glass of the same
composition as that studied in Ref. 49 is also seen in Fig. 10, taken from the work of Tsa-
likis et al.29. Here a system consisting of N = 641 particles is considered, at a constant
number density ρ = 1.1908σ−3

AA. To analyze the dynamics in real time units, the prop-
erties of Argon have been attributed to component A (mA = mB = 6.634 × 10−26kg,
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εAA = 1.65678 × 10−21J, σAA = 3.4 × 10−10m). With these assignments, the glass
temperature of the system is Tg = 38.4K. Fig. 10 refers to a set of 290 basins that were
identified as belonging to a metabasin through MD simulation at 37K. By “belonging to a
metabasin” here we mean that the time required for the system to escape from this partic-
ular set of basins is significantly longer than the time needed for the system to establish a
restricted equilibrium among the basins in the set. In a plot of the number of distinct basins
visited versus time in the course of a MD simulation, this reflects itself as a plateau50. The
number of identified distinct transitions between pairs of these 290 basins is plotted as
a function of the rate constant of the transitions in Fig. 10. The long-dashed line shows
results from a 3 ns-long NV T MD simulation at 37 K, which was trapped within the
metabasin (trajectories were turned back as soon as they were found to exit the metabasin);
a total of 3910 distinct transitions were observed during this simulation. The short-dashed
line shows results from a swarm of NV E MD trajectories generated in parallel off of an
NV T MD trajectory at 37 K. These were able to provide a more thorough sampling of
transitions within the metabasin; a total of 24271 distinct transitions were sampled. The
solid line comes from a temperature-accelerated MD (TAD) method, which used as input
data from swarms of NV E MD trajectories generated in parallel off of NV T MD tra-
jectories conducted at temperatures from 37 K to 55 K. A histogram reweighting method
was invoked to translate all data to 37 K (see Sec. 3 and Ref. 29). This latter sampling
method, which identified a total of 51207 distinct transitions, was able to access a rich va-
riety of passages between the basins in the metabasin, including passages that go through
high-lying terrain in the rugged potential energy landscape of the system. This explains the
“wing” extending to very low rate constants on the left-hand side of Fig. 10. Clearly, the
fastest transitions sampled have a rate constant around ν0 ' 1013 s−1. The “nose” around
1010 s−1 is a consequence of the fact that the studied basins belong to a metabasin, so they
communicate through relatively low-lying passages with each other. A time of approxi-
mately 10−10 s is needed for the system to visit the entire metabasin. The wing extending
to very low rate constants (indeed, too low to be physically relevant at the reference tem-
perature of 37 K, see inset) tells us something about the topography of the landscape. The
inset of Fig. 10 suggests a power-law distribution of rate constants between basins, of the
form:

ρ(ka→b/ν0) ' B(ka→b/ν0)α, α ' 0.01 (40)

and hence an exponential distribution of barrier heights Ea→b = −kBT ln (ka→b/ν0)
Interestingly, this is similar to the form proposed for the distribution of barrier heights by
J.P. Bouchaud on theoretical grounds51.

Tsalikis et al.29 have correlated the rate constants of transitions sampled via their tem-
perature accelerated dynamics/histogram reweighting scheme with the distance traversed
in configuration space, with the cooperativity of the transitions, and with their molecular
mechanisms. Fast intrabasin transitions in the binary Lennard-Jones system tend to in-
volve single “cage-breaking” events, wherein more than half of the first neighbors of an
atom change, or multiple “cage breaking” events occurring at different points in the sys-
tem. Slower interbasin transitions tend to involve coordinated displacements of “chains” of
atoms, wherein each atom jumps to a position close to that previously occupied by another
atom in the chain. Even slower, more cooperative transitions involve extended formation
of several interlinked chains or massively coordinated displacements which look like shear
bands.
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Figure 10. Number of identified distinct transitions between the 290 basins of a metabasin of a Lennard-Jones
mixture at 37 K as a function of the rate constant of the transitions, as computed by three sampling methods (see
text for details). The inset shows the total range of rate constants sampled by the temperature-accelerated method.
The light-colored straight line through the plot in the inset corresponds to Eq. 40.

How do we track structural relaxation of a glass at temperatures below Tg over times
relevant to the applications of glasses as structural, optical, packaging, and membrane ma-
terials? These time scales (milliseconds to years) are too long to be addressed by direct
MD simulation, so reverting to an infrequent event theory-based approach seems appro-
priate. On the other hand, the rugged potential energy landscape of glass-forming systems
gives rise to a very broad distribution of characteristic times for elementary transitions and
a complex connectivity among basins. KMC simulation would have to track the fastest
of these transitions, and this would limit its ability to sample long-time evolution. An ap-
proach based on analytical solution of the master equation, equivalent to averaging over
all dynamical trajectories originating from a given initial distribution among basins, would
seem more promising. However, it is impossible to build a complete map of all basins
and transitions between them in the rugged potential energy landscape of a glassy system
even of modest size N . A way out of this difficulty is provided by the fact that, when one
studies structural relaxation, one typically starts from an initial distribution among states
that is highly localized (e.g. from a single basin in the potential energy landscape, where
the system was trapped via the glass formation history that was followed to obtain it). The
region of configuration space where the system resides is thus initially very confined, and
expands gradually as transitions between basins take place.

This idea led Boulougouris and Theodorou21 to develop a computational approach for
tracking the temporal evolution of the distribution among basins (or “states”) via infre-
quent transitions, starting off from a highly localized initial distribution, which they called
“Dynamic Integration of a Markovian Web,” or DIMW. DIMW distinguishes states that it
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samples into two categories: “explored” and “boundary” states. An “explored” state is a
state for which an exhaustive calculation of as many as possible transition pathways lead-
ing out of it to neighboring states has been undertaken and rate constants associated with
these transitions have been computed. In the application to isothermal - isochoric structural
relaxation of a polymer glass, discussed in Ref. 21, this calculation proceeds by computing
as many as possible saddle points of the potential energy in 3N−3-dimensional configura-
tion space around the state under investigation using the dimer method22 and subsequently
constructing a transition path through each of these saddle points to neighboring states via
Fukui’s intrinsic reaction coordinate approach18. Strict energy- and configuration-based
criteria for identifying states that have already been visited have been implemented in con-
nection with this exploration process21. For each transition pathway, a rate constant is com-
puted. In the application presented in Ref. 21, this computation was based on transition-
state theory in the harmonic approximation [compare Eq. 24]. “Boundary” states, on the
other hand, are states connected to explored states, which, however, have not been explored
themselves. The DIMW algorithm proceeds as follows:

(1) All states populated according to the narrow initial distribution P(0) are fully ex-
plored, as described above, and boundary states connected to these states are iden-
tified. Rate constants are computed for all identified transitions emanating from an
explored state and for their reverse transitions. Bookkeeping of the explored and
boundary states, of the connectivity among them and of associated rate constants, is
initialized. Let E and B symbolize the current set of explored and boundary states,
respectively.

(2) The evolution of the occupancy probabilities of explored and boundary states for times
short enough for the current set of explored states to be adequate is tracked by analyt-
ical solution of the master equation in the current explored and boundary states, initial
occupancy probabilities for the boundary states being zero and all rate constants not
emanating from or terminating in an explored state being taken as zero:

∂Pi
∂t

=
∑
j 6=i

Pjkj→i − Pi
∑
j 6=i

ki→j , i, j ∈ E ∪B (41)

From the solution to Eq. 41 we compute the total probability of the system residing
in the current set of explored states at time t,

PE(t) =
∑
i∈E

Pi(t). (42)

We also compute the efflux of probability from the current set of explored states to
each one of the current boundary states,

fj(t) =
∑
i∈E

Pi(t)ki→j , j ∈ B (43)

as well as the total efflux of probability from the current set of explored states to the
current boundary states,

fB(t) =
∑
j∈B

fj(t) (44)
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(3) For times commensurate with the first passage time for exit of the system from the
current set of explored states, the latter set will no longer be adequate. Clearly, for
such times the set of explored states must be augmented by including more states. We
select a time tselect for first passage of the system out of the current set of explored

states by sampling the distribution fB(t)/
∞∫
0

fB(t)dt.

(4) We pick one of the boundary states in setB, jselect, according to the discrete probabil-
ities fj(tselect)/fB(tselect). The selected state will be appended to the set of explored
states, E.

(5) We update the set E by including state jselect in it. Furthermore, we proceed to
explore state jselect and update set B by removing state jselect from it and appending
to it all states connected to jselect not already belonging to E ∪B that were identified
through the exploration of jselect. Finally, we identify a time tsafe, beyond which
the updated sets E and B have to be used. This time is calculated via the condition
PE(tsafe) = 1− δ, with PE(t) being the probability of residing in the set of explored
states before the update, computed in step 2. A value of δ = 10−3 was used in the
application presented in Ref. 21.

(6) We check whether time tsafe has exceeded the desired simulation time. If not, we
return to step 2 to solve the master equation analytically with the same initial condi-
tions, but in the augmented set of explored states with the updated set of boundary
states. For t < tsafe, the resulting solution should be practically indistinguishable
from that obtained so far. For t ≥ tsafe, the solution for the augmented set of explored
states should be used.

As described above, DIMW amounts to a series of analytical solutions of the master
equation in a set of explored and boundary states that is progressively augmented “on the
fly,” with rate constants determined from atomistic infrequent event analysis. The pro-
gressive augmentation of the set of explored states has a “self-healing” aspect; important
connections that were missed at shorter times may be discovered as the network of ex-
plored states is expanded. The outcome from performing this calculation out to long times
is a set of analytical expressions for the time-dependent probabilities Pi(t) of the explored
states.

Fig. 11 displays the result from a DIMW calculation of structural relaxation in a 641
united atom model of glassy atactic polystyrene (aPS) at 250 K, roughly 123 K below the
experimental glass temperature Tg, at a density of 0.951 g/cm3, equal to the orthobaric
density at that temperature21. The calculation was performed out to 10−5 s with modest
computational cost. 240 distinct states were explored and 2880 saddle points were identi-
fied in the course of the calculation. Shown in Fig. 11a is a “time-dependent Helmholtz
energy” for the system, calculated as

A(t) =
∑
i

Pi(t)Ai(t) + kBT
∑
i

Pi(t) lnPi(t), i ∈ E (45)

with Pi(t) being the time-dependent probability of occupancy of explored state i from the
DIMW calculation and Ai(t) being the Helmholtz energy of the system confined in state
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Figure 11. a (left): Helmholtz energy as a function of time for physical ageing of an aPS computer “specimen”
at 250 K and initial pressure 1 bar at constant volume, as determined through the DIMW approach. b (right):
Characteristic rate constants for the modes from diagonalization of the rate constant matrix at 10−5 s (filled
symbols) compared to the peak frequencies of loss modulus measurements on aPS at various temperatures (open
symbols). The quantity f on the abscissa can be identified with −λi in the text.

i, computed according to the harmonic approximation [compare Eqs. 20 22]. Note that
A(t) consists of an average of the Helmholtz energies Ai(t) of the system confined in each
individual state (basin), each state being weighted by its occupancy probability at time t,
plus a term of entropic origin that has to do with exchange of probability among the states.
At infinite time, when the system would distribute itself according to the Boltzmann dis-
tribution in its entire configuration space, A(t) would become the Helmholtz energy of
equilibrium thermodynamics. For the relaxing glass, which starts off occupying a single
state, A(t) decays with time as the system strives to approach thermodynamic equilibrium.
It is interesting that this decay is not featureless, but exhibits characteristic shoulders and
plateaux over specific time domains. These features betray the existence of specific relax-
ation processes. A plateau in A(t) suggests that the system equilibrates locally within a
“metabasin” of states that communicate easily with each other and is temporarily trapped
there before overcoming the barriers surrounding the metabasin and moving on to states of
lower free energy.

One can readily bring out the characteristic rate constants −λi of modes contributing
to relaxation by diagonalizing the rate constant matrix at the longest time accessed, 10−5

s. Results from this diagonalization are displayed in Fig. 11b (compare Sec. 5). In the
same figure are shown Arrhenius plots for subglass relaxation processes in aPS, determined
experimentally by dynamic mechanical spectroscopy21. One sees that the characteristic
frequencies determined by the DIMW calculation cluster in two frequency ranges, around
105 and around 109 s−1. These values are quite close to the characteristic frequencies of
the so-called γ and δ subglass relaxation processes determined experimentally.

Using the EROPHILE approach (Sec. 5), one can readily compute time autocorrelation
functions for specific vectors in the system and analyze the contribution of each mode to the
decay of these functions [compare Eq. 34]. Boulougouris and Theodorou41 have examined
the autocorrelation functions of unit vectors normal to the phenyl planes and of unit vectors
directed along phenyl stems. Two modes were found to contribute significantly to the
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Figure 12. a (left): Fast mode (λi = −109.5s−1) contribution to the orientational decorrelation of unit vectors
normal to the plane of each phenyl ring in aPS at 250 K. The index l measured along the axis running from left
to right enumerates different phenyl rings in the system. b (right): Slower mode (λi = −105.2s−1) contribution
to the orientational decorrelation of unit vectors along the stem of each phenyl ring in the same system.

decorrelation of these vectors: A fast mode with λi = −109.5s−1, which can be associated
with the δ subglass relaxation process, and a slower mode with λi = −105.2s−1, which
can be associated with the γ subglass relaxation process (see also Fig. 11). In Fig. 12,
the contributions of these modes to the decorrelation of the characteristic vectors of each
phenyl group l in the model glassy aPS system are displayed. The fast mode corresponds
to rotation of an isolated, mobile phenyl in the system around its stem. On the other hand,
the slower mode corresponds to a cooperative motion involving changes in orientation
of several phenyl stems. As regards this latter motion, one can discern relatively long
sequences of phenyls along the aPS chain that exhibit very little decorrelation. These
sequences tend to be syndiotactic in their stereochemical configuration.

This aPS example shows how mechanictic aspects of dynamics in a system with very
complex potential energy landscape can be explored in an unbiased way using a combina-
tion of DIMW and EROPHILE methodologies.

9 Lumping

A difficulty with DIMW-type approaches (see Sec. 8) is that the number of states to be
tracked becomes prohibitively large at long times. A way out of this problem is to group,
or “lump,” states communicating via transitions that are fast in relation to the observation
time into single clusters of states. If performed judiciously, this lumping does not result
in loss of essential information. At long observation times, the system distributes itself
among fast-communicating states according to the requirements of a restricted equilibrium
(compare plateaux in Fig. 11a), so clusters of such states behave as single “meta-states,”
for all practical purposes.

From the mathematical point of view, lumping is not a new problem. It has been exam-
ined in the context of networks of chemical reactions in the classic work of Wei and Kuo 52

and in several subsequent works. As shown there, lumping calls for the determination of a
n̂× n transformation matrix M, where n is the number of original states and n̂ < n is the
number of lumped states (or clusters of states). The transformation from the probability
distribution among the original states to that among the lumped states at any time t takes
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place according to the equation

P̂(t) = M ·P(t) (46)

The lumping matrix M has the following properties:

i. The elements of matrix M are either “0” or “1”.

ii. Every column of matrix M contains exactly one “1”. The physical meaning behind
this is that every state of the original description (assigned to a column of M) belongs
to one cluster only (assigned to a row of M).

iii. The position of “1” in every column of M (i.e., state in the original description)
describes to which cluster (row of M) the state of the initial system is being lumped.

Once M is known, the n̂ × n̂ rate constant matrix K̂ to be used at the lumped level is
calculated as

K̂ = M ·K ·A ·MT · Â−1 (47)

where A is a n×n diagonal matrix whose diagonal elements equal the elements of the
equilibrium probability vector P(∞) corresponding to the original rate constant matrix K,
the superscripts “T” and “−1” indicate matrix transpose and matrix inverse, respectively,
and

Â = M ·A ·MT (48)

Lempesis et al.43 proposed a methodology for the determination of the number of
lumped states n̂ and the lumping matrix M in such a way that the long-time dynamics of
the original description is reproduced. The strategy is to minimize an objective function of
the form

z(n̂,M) = z1E + z2W + z3n̂ (49)

with z1, z2, z3 being pre-defined real positive constants.
E is the Frobenius norm of the n̂× n error matrix E52:

E = ||E||F =

√√√√ n̂∑
i=1

n∑
j=1

|Eij |2 (50)

E = M ·K− K̂ ·M (51)

For exact lumping, the lumping error E would be zero. W , on the other hand, is the
Frobenius norm of the lumped matrix K̂:

W = ||K̂||F =

√√√√ n̂∑
i=1

n̂∑
j=1

|K̂ij |2 (52)
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Figure 13. Histogram of the negative inverse eigenvalues for (a) the initial description, (b) the lumped description
of the dynamics of a mixture of 641 Lennard-Jones particles just below Tg (see text for details). There are
n = 1502 eigenvalues in (a) and n̂ = 600 eigenvalues in (b).

Including a term proportional to W in the objective function, Eq. 49, forces the mini-
mization to focus on long times (small W ) in matching the dynamics between the original
and the lumped system. Including a term proportional to n̂ in the objective function, on the
other hand, encourages the algorithm to keep the dimensionality of the lumped system as
small as possible.

The minimization of the objective function defined in Eq. 49 is performed stochas-
tically, using Monte Carlo moves which change the dimensionality n̂ and the form of the
lumping matrix M, while respecting the constraints on the form of that matrix stated above.
To avoid trapping in local minima of the objective function, a Wang-Landau scheme is in-
voked to determine the density of M-matrix “states” in the space of variables (E,W, n̂)
and pick that M, close to the origin of (E,W, n̂) space, which minimizes the objective
function43.

Fig. 13 shows results from application of the lumping strategy of Lempesis et al.43 to
a mixture of 641 Lennard-Jones particles with the interaction parameters stated in Sec. 8
and atomic fractions 80% A, 20% B, at a temperature of 37 K, just below Tg. Shown are
histograms of the negative inverse eigenvalues ti = −1/λi of the rate constant matrices K

(original description) and K̂ (lumped description). The overall shapes of the histograms are
seen to be similar. Furthermore, the eight longest ti values are seen to agree quantitatively
between the original and lumped system, testifying to the success of the lumping method
in reproducing the long-time dynamics of the original system.

10 Summary

Addressing long-time (> 1µs) dynamics in many materials, complex fluid, and biomolec-
ular systems constitutes a great challenge for molecular simulations. In many cases, the
temporal evolution of a system is slow because the system spends a long time confined
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within regions in configuration space (“states”) and only infrequently jumps from state to
state by overcoming a (free) energy barrier separating the states. We have briefly discussed
ways of probing the time scale separation underlying these infrequent transitions and iden-
tifying states, either in terms of all the degrees of freedom or in terms of appropriately
chosen slow variables or order parameters. We have also reviewed analytical and simula-
tion techniques, based on the theory of infrequent events, for estimating the rate constants
ki→j for transitions between states.

Emphasis in these notes has been placed on how we predict the long-time dynamical
evolution once we have identified a network of states and computed the rate constants be-
tween them. We have discussed the principles of two categories of methods for doing this:
Kinetic Monte Carlo simulations, which generate long stochastic trajectories for the evolu-
tion of the system; and analytical solution of the master equation, which yields expressions
for the time-dependent probabilities of occupancy of the states as sums of exponentially
decaying functions after diagonalization of an appropriately symmetrized rate constant ma-
trix. We have seen that the analytical solution to the master equation can form the basis for
calculating useful time-dependent ensemble averages and correlation functions that quan-
tify the approach to equilibrium and enable the calculation of time-dependent properties in
the context of the Eigenvalue Representation of Observables and Probabilities in a HIgh-
dimensional Euclidean space41 (EROPHILE) approach. We have presented applications
of both Kinetic Monte Carlo and analytical solution of the master equation to problems of
diffusion in zeolites and in amorphous polymers. We have also discussed advantages of the
analytical solution in cases where the spectrum of characteristic times for evolution on the
network of states, quantified by the eigenvalues of the rate constant matrix, is very broad.
In systems characterized by spatial periodicity, such as zeolites, analytical solution of the
master equation can be made several orders of magnitude faster than Kinetic Monte Carlo,
thanks to a recursive scheme44 (MESoRReD) that reduces diagonalization of the rate con-
stant matrix for the whole system to diagonalization of much smaller matrices pertaining
to a single unit cell.

Nonequilibrium systems with rugged or fractal potential energy hypersurfaces, such
as glasses, preclude the a priori determination of all states and transitions between them.
One is often interested in the evolution of such systems starting from a narrow, localized
distribution in configuration space (e.g., tracking the structural relaxation of a glassy con-
figuration). For addressing this problem, we have introduced Dynamic Integration of a
Markovian Web21 (DIMW), which solves the master equation in a network of states that
is progressively augmented as time elapses based on an “on the fly” exploration of con-
figuration space and calculation of rate constants. Application of the DIMW approach to
a polymer glass has yielded promising results. To keep the number of states manageable
at long times, DIMW can be complemented by a “lumping” algorithm43 which groups
fast-communicating states into single “metastates.” This algorithm has been applied suc-
cessfully to a glassy binary Lennard-Jones mixture.

It is hoped that the concepts and computational tools discussed here may be useful
in addressing the long-time properties of systems enountered in the wide range of prob-
lems attacked by today’s physicists, chemists, chemical engineers, materials scientists, and
molecular biologists, starting from fundamental atomic-level information.
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Adaptive resolution Molecular Dynamics (MD) is here introduced within the AdResS (Adap-
tive Resolution Scheme) approach. This is a simulation method for MD that treats different
regions with different levels of molecular resolution (i.e. molecular representation). AdResS
was originally developed to couple (only) different classical descriptions of the system; instead,
coupling a quantum with a classical resolution implies the solution of non trivial conceptual
problems. Quantum mechanics is intrinsically a probabilistic theory while classical mechanics
is deterministic, thus passing from one description to the other implies not only a change of
the number of degrees of freedom (DOF) but also a change regarding the physical principles
governing the evolution of the system. In this lecture I will discuss how for (at least) one class
of problems the (classical) AdResS method can be extended to the quantum case in an almost
straightforward way.

1 Introduction

Bridging scales in condensed matter requires the treatment of a different number (and dif-
ferent kind) of DOF corresponding to each scale. To this aim, in the field of molecular
simulation, a large number of techniques have been developed in the last years; many are
discussed in the lectures of this school. In these notes the focus is on concurrent coupling,
that is all the scales (and their corresponding DOF) are treated at the same time within a
unified computational approach. Actually here I will discuss an approach that goes be-
yond the standard concurrent coupling, which usually consists of interfacing regions of
different resolution without free exchange of particles, and extends the coupling idea to a
truly dynamical zooming in and zooming out on the system. Fig. 1 provides an example
with a direct pictorial representation of the idea of zooming for the case of the adsorption
of a macromolecule on a surface. When the molecule is far from the surface the relevant
physical aspects are those related to the proper sampling of the conformational space of
the molecular backbone. In this case a simplified coarse-grained molecular representa-
tion that reproduces the backbone properties is sufficient for the conformational sampling.
However as the molecule goes closer to the surface the explicit chemical structure becomes
important and one needs to zoom in (put the system under a magnification glass) at the con-
tact region and have an explicit atomistic resolution. This process would then allow for the
proper description of the chemical recognition between the molecule and the surface and at
the same time will properly describe its connection to the conformational rearrangements
of the rest of the molecule (at coarser scale). The idea of zooming requires an adaptive
resolution simulation approach that allows to change, dynamically, on the fly, during the
simulation, the number and/or kind of DOF as the molecule (or part of it) passes from the
low resolution region to the high resolution region (region under magnification glass) and
vice versa. In the next paragraphs of these notes the adaptive resolution method AdResS
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will be briefly introduced and then its extension to quantum problems will be discussed in
detail.

Figure 1. The zooming idea at the contact region. The magnification glass must be intended here as a pictorial
representation of a computational tool which introduces explicit chemistry and atomistic structure where this is
needed (surface-polymer contact region) while in parallel the evolution of the large scale conformational proper-
ties of the polymer takes place.

2 The AdResS Method

A review chapter about the (classical) AdResS method has already appeared in the lecture
notes of the school of 20091, for this reason here I will report only the basic conceptual and
technical aspects to allow the reader to have a sufficient understanding of the method and to
proceed without (necessarily) consulting the previous notes (except for specific technical
details, if of interest). Moreover, in the last years further developments have been done in
the refinement of the approach and they were not reported in Ref. 1; for this reason here I
will briefly discuss these improvement to the method and provide the related references.

The essential conceptual/methodological aspect of AdResS are the following:

• It changes the molecular resolution in a subregion of the space while the rest of the
system stays at lower resolution.

• It allows for free (i.e. not externally imposed, e.g. Monte Carlo insertion or removal
of particles) exchange of molecules from the high resolution to the low resolution
region and vice versa.

• The process above occurs under conditions of thermodynamic equilibrium, which
means same (average) particle density, temperature and pressure in all regions.

• Density, temperature and pressure must be the same as that of a reference full high
resolution simulation. This preserves the true” thermodynamic state point.

The general idea is that of having an on-the-fly interchange between atomistic and coarse-
grained description with a two stage procedure. The first stage consists of developing
an effective, coarse-grained pair potential U cm from the reference all atom simulation.
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The second step consists of coupling the atomistic and coarse-grained resolution via an
interpolation formula on the forces:

Fαβ = w(Xα)w(Xβ)Fatomαβ + [1− w(Xα)w(Xβ)]Fcmαβ (1)

Here α and β indicate the two molecules, Fatomαβ is the force obtained from the atomistic
potential, Fcmαβ is the force derived from the coarse-grained potential. Xα and Xβ are
the spatial coordinates of the center of mass of respectively the molecule α and β. w(x)
is a multiplicative function with value zero in the coarse-grained region and one in the
atomistic region; it is then smooth and monotonic in an intermediate region ∆ (region of
atomistic/coarse-grained hybrid resolution). Fig. 2 provides the pictorial representation of
the idea for a test molecule (tetrahedral molecule). On the left the coarse grained region,
at the center indicated by ∆, the transition region with spatial-dependent hybrid resolution
according to w(x) and on the right the atomistic region. According to this set up, two

 

w(x)

(Coarse−Grained)
Low resolution High resolution 

(Atomisic)(Transition)

Hybrid

∆

Figure 2. Pictorial representation of the adaptive idea for a tetrahedral molecules. Figure adapted from Ref. 5.

atomistic molecules interact as atomistic, coarse-grained molecules interacts with all the
others as coarse-grained pairs (coarse-grained molecules do not have any atomistic degrees
of freedom), while for the other cases molecules interact according to their coupled value
of w(Xα)w(Xβ) with hybrid resolutions. This means that a molecule which goes from
the atomistic to the coarse-grained region, slowly looses its atomistic degrees of freedom
(rotations and vibrations) and becomes an effective sphere going through a continuous
stage of hybrid resolutions in ∆. The same process but in opposite direction (the molecule
acquires DOF) for a coarse-grained molecule moving towards the atomistic region. In ad-
dition, the use of a locally acting thermostat ensures basic thermodynamic equilibrium, so
that the reintroduced DOF are thermalized properly2–4. As anticipated before, this part of
the method with specific technical details is reported in the notes of the previous school1,
instead the part discussed below, concerning a further refinement of the way to obtain
thermodynamic equilibrium, has been developed in the last two years. Though the thermo-
dynamic equilibrium provided by the coupling to the thermostat is numerically satisfying,
however a small drop of particle density in the transition region cannot be avoided (see
e.g.5, 6, 4). A theoretical analysis of the method suggested that the chemical potential which
characterizes each resolution, µw, is not the same for all values of w and thus it is likely
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to produce the drop of density4, 7. Since the approach is clearly non Hamiltonian8, here it
must be specified what is intended for chemical potential of each resolution: it means the
chemical potential, that the system would have if the overall resolution (of the entire
box) was a specific, fixed, one w̄. According to this idea let us define: φ = µatom−µ(w̄),
and imagine to calculate µ , hypothetically, for each fixed value of w̄ between zero and one.
In this way we can actually write: φ(x) = µatom − µw(x), that is the difference between
the chemical potential of the atomistic resolution and that corresponding to the resolution
w at the position x; this quantity in good approximation (see7) should compensate the ther-
modynamic unbalance which produces the drop of density. Indeed, a term proportional to
∇xφ(x) which acts on the center of mass of the molecules, added to the force of Eq. 1,
has been shown to remove the problem of drop of density7. This addition allows also for
a generalization of AdResS as a method that can couple any two (or more) molecular rep-
resentations; for example two different atomistic force fields which have anyway the same
number of DOF. The derivation of φ(x) has been improved further in terms of compensat-
ing pressure and led to the definition of an effective Grand Canonical set up for general
open systems MD simulations. In practical terms this means that the significantly extended
coarse-grained region plays the role of reservoir of molecules for a (usually) smaller atom-
istic region9. Finally, the natural question for AdResS as a molecular dynamics scheme is
whether the force of Eq. 1 can be somehow conservative; as anticipated, the method is non
Hamiltonian and thus the answer is negative. In fact, despite a different claim10–13, it has
been shown both analytically8 and numerically14 that within this scheme there is no possi-
bility of deriving Eq. 1 from any potential. The method has been shown to be numerically
and conceptually robust in a large number of applications for classical systems (see e.g.
Refs. 15–18 and references therein), and the natural question raising at this point regards
its applicability to quantum system. This is the subject of next paragraphs.

3 Quantum-Classical Adaptive Resolution: The Conceptual Problem

As anticipated above, while changing number and kind of DOF for classical problems can
be achieved by coupling regions governed by the same physical principles and equations,
the same cannot be done in a straightforward way when the coupling involves quantum res-
olution. For the classical case one has to take care that Newton’s laws of mechanics and the
resulting thermodynamic equilibrium are consistent between the different regions and that
the transition region, with the change of resolution, does not perturb this consistency and
does not introduce artifacts. Instead, when one couples a quantum region with a classical
one, allowing for the free exchange of molecules, the situation is by far more complicated.
In fact the meaning of thermodynamic equilibrium can be interpreted differently in the
quantum and in the classical region, and, above all, one has Newton’s equations in one
region and Schrödinger equation (or similar ones, e.g. Kohn-Sham equation in Density
Functional Theory) in the quantum region. For the quantum-classical case the dynamical
coupling of Eq. 1 is obviously not straightforward anymore. In particular, in case of elec-
tronic resolution (for the quantum region), the essential problem can be summarized as:
“how to slowly switch on and off an electron in a physical consistent way”. Electrons are
not localized particles, and are characterized by complex (long-range) correlations thus the
appearance or disappearance of an electron changes the entire electronic spectrum in the
quantum region. The question then is how to slowly introduce or remove an electron so
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that the electronic spectrum (of the other electrons) is (at least approximatively) the same
as if the whole system was treated at quantum level. From the practical point of view, the
question above may be reduced to the search of an equivalent concept as that related to
φ(x) for the classical case, that is a proper statistical way to introduce and remove an elec-
tron so that the statistical properties of the electrons in the quantum region are equivalent
(or at least close enough) to those one would find in a full quantum treatment of the en-
tire system; solutions along this directions are still missing and would be highly welcome.
One must also notice that what is named in current literature a quantum-classical adaptive
coupling based on electronic structure11, 19, 20, it is actually not a proper quantum-classical
concurrent coupling. In fact in such cases the electronic calculations are employed as a
separated step to obtain, in the “quantum region”, a reasonable, on-the-fly, classical force
field which is then interfaced with a standard classical force field. In our case, instead, for
quantum-classical adaptive method is intended a method to study in detail the electronic
properties in the small quantum region. Thus it refers to problems where electronic prop-
erties are of major interest and must be properly reproduced. While for electrons there
seems to be no simple solution, for other quantum problems the scheme of AdResS may
still be used though within the correct interpretation of the results. This is the case for the
treatment via MD of the spatial delocalization of light atoms within the framework of Path
Integral (PI) of Richard Feynman21. In the next section I will illustrate the basic idea of
PIMD representation of atoms and its related principles.

4 Path Integral Molecular Dynamics

When the de Broglie wavelength, Λ = h√
2πmkBT

, with h being Planck’s constant, m the
mass of the particle (atom), kB Boltzmann constant and T the temperature, is much smaller
than the particle-particle distance, the system can be safely considered classical. Instead
when Λ is larger than the particle-particle distance then the quantum character dominates
and classical statistical mechanics no more applies; particles, are no more classical local-
ized objects and must be considered according to their symmetry as fermions or bosons.
When Λ is of the same order of the particle-particle distance, quantum effects of spatial
delocalization play a major role but their nature of fermions or bosons is not necessarily
relevant and can be ignored; here I will consider this latter case. Light atoms, as hydro-
gen, given the small mass, are characterized by sizeable quantum effects, due to the spatial
delocalization, even at room temperature. This quantum character can be described via
the PIMD approach; here I will report the basic notions and refer for a more complete
description to Refs. 22, 23.

Consider the Hamiltonian of N distinguishable particles:

H =

N∑
I=1

P 2
I

2MI
+ V (R1, . . . , RN ). (2)

The related density matrix in the representation of spacial position is:

ρ(R,R’;β) = 〈R|e−βH |R’〉, (3)

with β = 1/kBT . The quantum mechanical partition function corresponds to the trace of
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the density matrix:

Z ≡ Tr(e−βH) =

∫
dR〈R|e−βH |R〉 (4)

Next, Trotter theorem24 is used to factorize e−βH in a kinetic and a potential term:

e−β(K+V ) = lim
n→∞

[
e
−β
2n V e

−β
n Ke

−β
2n V

]n
(5)

here K is the kinetic and V is the potential operator. Substituting the expression above
into Eq. 4 and making use of the definition of the identity operator,

∫
|R〉〈R|dR, n-1

times leads to:

Z = lim
n→∞

∫
dR(1) . . . dR(n)〈R(1)|

[
e
−β
2n V e

−β
n Ke

−β
2n V

]
|R(2)〉 . . .

〈R(i)|
[
e
−β
2n V e

−β
n Ke

−β
2n V

]
|R(i+1)〉 . . . 〈R(n)|

[
e
−β
2n V e

−β
n Ke

−β
2n V

]
|R(1)〉. (6)

Since the potential is diagonal in the space representation |R〉, each matrix element be-
comes:

〈R(i)|e
−β
2n V e

−β
n Ke

−β
2n V |R(i+1)〉 = e

−β
2n V (R(i))〈R(i)|e

−β
n K |R(i+1)〉e

−β
2n V (R(i+1)). (7)

Next one employs the identity operator in momentum space,
∫
|P〉〈P|dP, the remaining

matrix elements can be written as:

〈R(i)|e
−β
n K |R(i+1)〉 =

∫
dP〈R(i)|P〉〈P|e

−β
n K |R(i+1)〉

=

∫
dP〈R(i)|P〉〈P|R(i+1)〉e−βP2/(2Mn) (8)

this can be simplified by using the projection of a momentum eigenstate on a position
eigenstate

〈R|P〉 =
1√
2π~

eiP·R/~. (9)

The introduction of Eq. 9 into Eq. 8 leads to:

〈R(i)|e
−β
n T |R(i+1)〉 = (

Mn

2πβ~2
)1/2e

− Mn
2πβ~2 (R(i)−R(i+1))2

. (10)

Introducing the results above into the Eq. 6 one obtains:

Z = lim
n→∞

[
N∏
I=1

(
Mn

2πβ~2
)n/2

∫
dR

(1)
I . . . dR

(n)
I

]
×

e−β
∑N
I=1

∑n
s=1

1
2MIω

2
n(R

(s)
I −R

(s+1)
I )2+ 1

nV ({R(s)
I }), (11)

where the effective Hamiltonian is given by

Hn =

N∑
I=1

n∑
s=1

1

2
MIω

2
n(R

(s)
I −R

(s+1)
I )2 +

1

n
V ({R(s)

I }). (12)
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The Hamiltonian of Eq. 12 is formally equivalent to the Hamiltonian of N classical ring-
polymers consisting of n beads each connected by harmonic springs and with a polymer-
polymer interaction as illustrated in Fig. 3. The bead-bead interaction between different
polymers is attenuated by a factor 1/n. ωp = m

√
P (kBT )/~ is the frequency of the ring-

polymer, n is the Trotter number, T the temperature and M is the mass of the particle
(e.g. atom). The higher the Trotter number the better is the quantum description. The

Figure 3. Classical and Path integral representation of atoms. In the quantum treatment the rigid spherical repre-
sentation (classical) is substituted by fluctuating polymer rings.

calculation of Z via the Hamiltonian of Eq. 12 requires a sampling of the configurational
space of the N ring-polymers. In order to devise a molecular dynamics scheme which
allows for the sampling, and thus for calculating Z, one has to add n-Gaussian integrals in
the momentum space to Eq. 11,

Z = lim
n→∞

[
N∏
I=1

W

∫
dR

(1)
I . . . dR

(n)
I

∫
dP

(1)
I . . . dP

(n)
I

]
×

e
−β

∑N
I=1

∑n
s=1

[P (s)
I ]

2

2M
′
I

+ 1
2MIω

2
n(R

(s)
I −R

(s+1)
I )2+ 1

nV ({R(s)
I })

, (13)

where W is a proper normalization factor, M
′

I is a fictitious mass of the beads. The mo-
menta PI are also fictitious quantities without physical meaning and allow to formally
map the static problem of the interacting ring-polymers into a dynamical sampling. The
Hamiltonian for the molecular dynamics scheme is then:

Hn(R,P) =

N∑
I=1

n∑
s=1

[
P

(s)
I

]2
2M

′
I

+
1

2
MIω

2
n(R

(s)
I −R

(s+1)
I )2 +

1

n
V ({R(s)

I }) (14)
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The procedure described above is commonly known as the path integral molecular dynam-
ics (PIMD) in the real space. Within PIMD the ring-polymer dynamics can be employed
to evaluate the expectation value of any observable A:

〈A〉 = lim
n→∞

[
N∏
I=1

W

∫
dR

(1)
I . . . dR

(n)
I

∫
dP

(1)
I . . . dP

(n)
I

]
× e−βHn(R,P)An(R) (15)

where An is calculated in a statistical sense, by averaging over the ring-polymer trajecto-
ries:

An(R) =
1

n

n∑
s=1

A(R
(s)
1 , . . . , R

(s)
N ) (16)

5 Quantum-Classical Adaptive Resolution Simulation via PIMD

According to the paragraph above, the quantum statistical properties of a system can be in
an effective way described by classical objects (beads of a classical ring-polymer) where
the proper statistical sampling can be obtained by averaging over the trajectories of these
objects which in turn are governed by Newton’s equations. In this perspective, a quantum-
classical adaptive is equivalent to couple two regions with a different number of effective
”classical” degrees of freedom and thus the AdResS method applies straightforwardly.
However, before proceeding with few more technical details it must be underlined that
conceptually the quantum-classical adaptive is different from the classical one. In fact
while in the classical case one may also consider (at least local) dynamical properties of the
molecule, for the quantum-classical case the dynamic evolution in the quantum region must
be interpreted only as a useful technical tool for sampling; it does not imply any physical
meaning about the dynamical evolution of the molecule. In practice the fictitious dynamics
of the ring-polymers makes compatible, from the technical point of view, the deterministic
character of the classical region with the probabilistic character of the quantum region in
calculating static average properties of the system.

Technically the coupling works as in Eq. 1, which in this case reads:

Fαβ = w(Xα)w(Xβ)Fquantαβ + [1− w(Xα)w(Xβ)] Fcgαβ . (17)

Fquantαβ =
∑
iα,iβ Fiα,iβ is the total force acting between two polymer rings (thus express-

ing the quantum character of the particle). This force is derived from a given (classical)
potential as illustrated in Fig. 3; the index iα (iβ) identifies the i-th bead of ring α (β).
F cgαβ is instead the force obtained from the atomistic (or even coarse grained) potential and
acts on the center of the atom (center of the molecule in case of coarse-grained representa-
tion) without being distributed among the beads of the polymer. As in the classical case, a
locally acting thermostat takes care of properly thermalizing the reinserted DOF (beads) so
that the whole system is in thermodynamic equilibrium, and a thermodynamic, force acting
on the center of mass of the polymers, based on the standard calculation of φ(x), can be
introduce to improve the conditions of equilibrium. This idea have been implemented for
the test system of a liquid of tetrahedral molecules25. In this case, as shown in Fig. 4, we
were able to couple a path integral representation of the atoms of the molecules directly
to a spherical classical coarse-grained molecular representation; the coarse-grained model
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(b)

(a)

∆

1.0

0.5

0.0

PICG w(x)

coarse−grained quantum

Figure 4. Schematic representation of the adaptive resolution for the tetrahedral molecule. In the quantum region,
(right) each atom is represented by a polymer ring with classical beads, in the ∆ region the molecule has hybrid
coarse-grained/quantum resolution and in the coarse-grained region the molecule is represented by an effective
spherical model obtained from the reference full path integral simulation. Figure adapted from Ref. 25.

was derived from a reference full quantum simulation. In Ref. 25 it has been shown that the
various radial distribution functions (RDFs) are the same as in the reference full quantum
simulation, and in particular the bead-bead RDF in the quantum region agrees reasonably
well with the RDF of the equivalent region in the full quantum simulation. This is very
important because the bead-bead RDF directly expresses the quantum (spatial) statistical
properties of the system and thus the agreement with the results of the reference full quan-
tum simulation shows that the coupling to a classical system (acting as a thermodynamic
bath) does not destroy the quantum character of the atoms in the quantum region (at least
for spatial properties). A satisfying agreement, within a difference of 5%, has been found
for the particle density and has been show that the exchange of molecules between the
different regions takes place in a proper way. Later on, a further, more critical test, was
provided by the adaptive resolution simulation study of liquid parahydrogen. Here given
the extreme thermodynamic conditions (low temperature and zero pressure), the adaptive
idea was highly challenged, not only for the coupling scheme but also regarding the tech-
nical derivation of reasonable coarse-grained potentials. Moreover, this system has been
largely studied employing the PIMD approach and thus relevant reference data for bench-
marking the adaptive method are available in literature. The results have shown that the
AdResS method works quite well in an extended range of temperature (above 14 Kelvin)
and densities26, 27. At temperatures below 14 Kelvin the bosonic character of the molecule
becomes important, the, so called, exchange interactions become relevant and these can-
not be described by the current formulation of AdResS27. Despite the positive outcome of
these studies, there is a conceptual point that still needs to be clarified. In fact as we have
seen in the paragraph dedicated to the theoretical derivation of the PIMD formalism, the
MD for these systems is a tool to sample a Canonical partition function and thus a Boltz-
mann factor, that is a quantity which involves a Hamiltonian. It seems to be a conceptual
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contradiction between the idea of AdResS, based on non conservative forces (and thus non
Hamiltonian) and the idea of PIMD, but at the same time, as a matter of fact, the various
RDF of the adaptive simulations agree reasonably well with those of the reference full
quantum system and have a form typical for a Canonical or Grand Canonical ensemble.
This apparent contradiction disappears if one interprets the quantum region as an effective
Grand Canonical ensemble as in Ref. 9, meaning that the classical region acts only as a
large (in principle infinite) reservoir of molecules in thermodynamic equilibrium with the
smaller region. In this case the Hamiltonian of the quantum region depends on its instanta-
neous number N of molecules and counts all the corresponding pair interactions between
the N molecules. In this perspective, the interaction of the molecules of the quantum re-
gion with those of the rest of the system plays, effectively, the role of coupling term to a
generic particle reservoir. Since in this case MD is only a tool for a dynamical sampling of
the N space, this interaction can be formally ignored in the Hamiltonian of the quantum
region. In any case, such a term is in part slowly switched off by the transition region and
in part disappears due to the finite (short) range of the interactions, thus it represents (at the
worst) only a small perturbation. In this context the adaptive PIMD approach, as a matter
of fact, samples the different realizations ofN and its corresponding configurational space,
thus samples an effective Grand Canonical partition function, for which the PI approach is
justified28.

6 Conclusions and Perspectives

In these notes the extension of the AdResS method to quantum mechanical problems within
the PIMD approach have been discussed. The application to the test case of a liquid of
tetrahedral molecules has given satisfying results regarding the technical and conceptual
aspects. Later on, the application to challenging real physical systems, as the molecular
liquid of parahydrogen, has provided further evidence of the robustness of the approach.
Future work is proceeding along the study of the basic quantum effects of hydrogen (pro-
ton) delocalization in liquid water and its consequences for the solvation process of large
molecules and their conformational properties. Quantum effects of proton delocalization
may be small, however could be crucial in many situations; in this context the AdResS
method provides an efficient computational tool to study large systems at reasonable com-
putational cost. At the same time, from the conceptual point of view, since it allows to
identify the essential DOF of the system, AdResS can be used to understand the delicate
interplay between different scales which usually it is not straightforward for quantum sys-
tems.

Acknowledgments

I would like to thank all the collaborators of the AdResS project, in particular my cowork-
ers M. Praprotnik, K. Kremer, C. Junghans, S. Poblete, A. Poma, S. Fritsch, R. Potestio,
D. Mukherji, C. Clementi and G. Ciccotti for the many interesting discussions. The fund-
ing of the Deutsche Forschungsgemeinschaft (DFG, German Science Foundation) within
the Heisenberg Program is also acknowledged.

400



References

1. C. Junghans, M. Praprotnik and L. Delle Site, Adaptive Resolution Schemes in Mul-
tiscale Simulation Methods in Molecular Sciences, edited by J. Grotendorst, N. Attig,
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In soft–matter systems where Brownian constituents are immersed in a solvent, both thermal
fluctuations and hydrodynamic interactions are important. The article outlines a general scheme
to simulate such systems by coupling Molecular Dynamics for the Brownian particles to a lattice
Boltzmann algorithm for the solvent. By the example of a polymer chain immersed in solvent,
it is explicitly demonstrated that this approach yields (essentially) the same results as Brownian
Dynamics.

1 Introduction

Remark: The present contribution intends to just give a very brief overview over the subject
matter. It is an updated version of a similar article1 that the author has written on occasion
of the 2009 NIC winter school. For more detailed information, the reader is referred to a
longer review article, Ref. 2. —

Many soft–matter systems are comprised of Brownian particles immersed in a solvent.
Prototypical examples are colloidal dispersions and polymer solutions, where the latter, in
contrast to the former, are characterized by non–trivial internal degrees of freedom (here:
the many possible conformations of the macromolecule). Fundamental for these systems is
the separation of length and time scales between “large and slow” Brownian particles, and
“small and fast” solvent particles. “Mesoscopic” simulations focus on the range of length
and time scales which are, on the one hand, too small to allow a description just in terms of
continuum mechanics of the overall system, but, on the other hand, large enough to allow
the replacement of the solvent by a hydrodynamic continuum. This latter approximation
is much less severe than one would assume at first glance; detailed Molecular Dynamics
simulations have shown that hydrodynamics works as soon as the length scale exceeds a
few particle diameters, and the time scale a few collision times.

To simulate such systems consistently, one has to take into account that the length and
time scales are so small that thermal fluctuations cannot be neglected. The “Boltzmann
number” Bo (a term invented by us) is a useful parameter for quantifying how important
fluctuations are. Given a certain spatial resolution b (for example, the lattice spacing of
a grid which is used to simulate the fluid dynamics), we may ask ourselves how many
solvent particles Np correspond to the scale b. On average, this is given by Np = ρb3/mp,
where ρ is the mass density and mp the mass of a solvent particle (and we assume a three–
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dimensional system). The relative importance of fluctuations is then given by

Bo = N−1/2
p =

(
mp

ρb3

)1/2

. (1)

It should be noted that for an ideal gas, where the occupation statistics is Poissonian, Bo is
just the relative statistical inaccuracy of the random variable Np. In soft–matter systems, b
is usually small enough such that Bo is no longer negligible.

Furthermore, hydrodynamic interactions must be modeled. In essence, this term refers
to dynamic correlations between the Brownian particles, mediated by fast momentum
transport through the solvent. The separation of time scales can be quantified in terms
of the so–called Schmidt number

Sc =
ηkin
D

, (2)

where ηkin = η/ρ is the kinematic viscosity (ratio of dynamic shear viscosity η and mass
density ρ) of the fluid, measuring how quickly momentum propagates diffusively through
the solvent, andD is the diffusion constant of the particles. Typically, in a dense fluid Sc ∼
102 . . . 103 for the solvent particles, while for large Brownian particles Sc is even much
larger. Finally, we may also often assume that the solvent dynamics is in the creeping–flow
regime, i. e. that the Reynolds number

Re =
ul

ηkin
, (3)

where u denotes the velocity of the flow and l its typical size, is small. This is certainly
true as long as the system is not driven strongly out of thermal equilibrium.

These considerations lead to the natural (but, in our opinion, not always correct) con-
clusion that the method of choice to simulate such systems is Brownian Dynamics (BD)3.
Here the Brownian particles are displaced under the influence of particle–particle forces,
hydrodynamic drag forces (calculated from the particle positions), and stochastic forces
representing the thermal noise. However, the technical problems to do this efficiently
for a large number N of Brownian particles are substantial. The calculation of the drag
forces involves the evaluation of the hydrodynamic Green’s function, which depends on
the boundary conditions, and has an intrinsically long–range nature (such that all particles
interact with each other). Furthermore, these drag terms also determine the correlations
in the stochastic displacements, such that the generation of the stochastic terms involves
the calculation of the matrix square root of a 3N × 3N matrix. Recently, there has been
substantial progress in the development of fast algorithms4; however, currently there are
only few groups who master these advanced and complicated techniques. Apart from this,
the applicability is somewhat limited, since the Green’s function must be re–calculated for
each new boundary condition, and its validity is questionable if the system is put under
strong nonequilibrium conditions like, e. g., a turbulent flow – it should be noted that the
Green’s function is calculated for low–Re hydrodynamics.

Therefore, many soft–matter researchers have rather chosen the alternative approach,
which is to simulate the system including the solvent degrees of freedom, with explicit
momentum transport. The advantage of this is a simple algorithm, which scales linearly
with the number of Brownian particles, and is easily parallelizable, due to its locality. The
disadvantage, however, is that one needs to simulate many more degrees of freedom than
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those in which one is genuinely interested – and to do this on the short inertial time scales
in which one is not interested either. It is clear that such an approach involves essentially
Molecular Dynamics (MD) for the Brownian particles.

Many ways are possible how to simulate the solvent degrees of freedom, and how to
couple them to the MD part. It is just the universality of hydrodynamics that allows us to
invent many models which all will produce the correct physics. The requirements are rather
weak – the solvent model has to just be compatible with Navier–Stokes hydrodynamics on
the macroscopic scale. Particle methods include Dissipative Particle Dynamics (DPD)
and Multi–Particle Collision Dynamics (MPCD)5, while lattice methods involve the direct
solution of the Navier–Stokes equation on a lattice, or lattice Boltzmann (LB). The latter
is a method with which we have made quite good experience, both in terms of efficiency
and versatility. The efficiency comes from the inherent ease of memory management for
a lattice model, combined with ease of parallelization, which comes from the high degree
of locality: Essentially an LB algorithm just shifts populations on a lattice, combined with
collisions, which however only happen locally on a single lattice site. The coupling to the
Brownian particles (simulated via MD) can either be done via boundary conditions, or via
an interpolation function that introduces a dissipative coupling between particles and fluid.
In this article, we will focus on the latter method.

2 Coupling Scheme

As long as we view LB as just a solver for the Navier–Stokes equation, we may write down
the equations of motion for the coupled system as follows:

d

dt
~ri =

1

mi
~pi, (4)

d

dt
~pi = ~F ci + ~F di + ~F fi , (5)

∂tρ+ ∂αjα = 0, (6)
∂tjα + ∂βπ

E
αβ = ∂βηαβγδ∂γuδ + fhα + ∂βσ

f
αβ . (7)

Here, ~ri, ~pi and mi are the positions, momenta, and masses of the Brownian particles,
respectively. The forces ~Fi acting on the particles are conservative (c, i. e. coming from
the interparticle potential), dissipative (d), and fluctuating (f ). The equations of motion for
the fluid have been written in tensor notation, where Greek indexes denote Cartesian com-
ponents, and the Einstein summation convention is used. The first equation describes mass
conservation; the mass flux ρ~u, where ~u is the flow velocity, is identical to the momentum
density ~j. The last equation describes the time evolution of the fluid momentum density.
In the absence of particles, the fluid momentum is conserved. This part is described via
the stress tensor, which in turn is decomposed into the conservative Euler stress πEαβ , the
dissipative stress ηαβγδ∂γuδ , and the fluctuating stress σfαβ . The influence of the particles

is described via an external force density ~fh.
The coupling to a particle i is introduced via an interpolation procedure where first the

flow velocities from the surrounding sites are averaged over to yield the flow velocity right
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at the position of i. In the continuum limit, this is written as

~ui ≡ ~u(~ri) =

∫
d3~r∆(~r, ~ri)~u(~r), (8)

where ∆(~r, ~ri) is a weight function with compact support, satisfying∫
d3~r∆(~r, ~ri) = 1. (9)

Secondly, each particle is assigned a phenomenological friction coefficient Γi, and this
allows us to calculate the friction force on particle i:

~F di = −Γi

(
~pi
mi
− ~ui

)
. (10)

A Langevin noise term ~F fi is added to the particle equation of motion, in order to com-
pensate the dissipative losses that come from ~F di . ~F fi satisfies the standard fluctuation–
dissipation relation 〈

F fiα

〉
= 0, (11)〈

F fiα (t)F fjβ (t′)
〉

= 2kBTΓiδijδαβδ (t− t′) , (12)

where T is is the absolute temperature and kB the Boltzmann constant. While the con-
servative forces ~F ci conserve the total momentum of the particle system, as a result of
Newton’s third law, the dissipative and fluctuating terms (~F di and ~F fi ) do not. The associ-
ated momentum transfer must therefore have come from the fluid. The overall momentum
must be conserved, however. This means that the force term entering the Navier–Stokes
equation must just balance these forces. One easily sees that the choice

~fh(~r) = −
∑
i

(
~F di + ~F fi

)
∆(~r, ~ri) (13)

satisfies this criterion. It should be noted that we use the same weight function to interpo-
late the forces back onto the fluid; this is necessary to satisfy the fluctuation–dissipation
theorem for the overall system, i. e. to simulate a well–defined constant–temperature en-
semble. The detailed proof of the thermodynamic consistency of the procedure can be
found in Ref. 2.

We still need to specify the remaining terms in the Navier–Stokes equation. The vis-
cosity tensor ηαβγδ describes an isotropic Newtonian fluid:

ηαβγδ = η

(
δαγδβδ + δαδδβγ −

2

3
δαβδγδ

)
+ ηbδαβδγδ, (14)

with shear and bulk viscosities η and ηb. This tensor also appears in the covariance matrix
of the fluctuating (Langevin) stress σfαβ :〈

σfαβ

〉
= 0, (15)〈

σfαβ (~r, t)σfγδ (~r′, t′)
〉

= 2kBTηαβγδδ (~r − ~r′) δ (t− t′) . (16)
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Finally, the Euler stress

πEαβ = pδαβ + ρuαuβ (17)

describes the equation of state of the fluid (p is the thermodynamic pressure), and convec-
tive momentum transport.

3 Low Mach Number Physics

At this point an important simplification can be made. The equation of state only matters
for flow velocities u that are comparable with the speed of sound cs, i. e. for which the
Mach number

Ma =
u

cs
(18)

is large. In the low Mach number regime, the flow may be considered as effectively in-
compressible (although no incompressibility constraint is imposed in the algorithm). The
Mach number should not be confused with the Reynolds number Re, which rather mea-
sures whether inertial effects are important. Now it turns out that essentially all soft–matter
applications “live” in the low–Ma regime. Furthermore, large Ma is anyway inaccessi-
ble to the LB algorithm, since it provides only a finite set of lattice velocities – and these
essentially determine the value of cs. In other words, the LB algorithm simply cannot re-
alistically represent flows whose velocity is not small compared to cs. For this reason, the
details of the equation of state do not matter, and therefore one chooses the system that is
by far the easiest – the ideal gas. Here the equation of state for a system at temperature T
may be written as

kBT = mpc
2
s. (19)

In the D3Q19 model (the most popular standard LB model in three dimensions, using
nineteen lattice velocities, see below) it turns out that the speed of sound is given by

c2s =
1

3

b2

h2
, (20)

where b is the lattice spacing and h the time step. Therefore the Boltzmann number can
also be written as

Bo =

(
mp

ρb3

)1/2

=

(
3kBTh

2

ρb5

)1/2

. (21)

4 Lattice Boltzmann 1: Statistical Mechanics

The lattice Boltzmann algorithm starts from a regular grid with sites ~r and lattice spacing
b, plus a time step h. We then introduce a small set of velocities ~ci such that ~cih connects
two nearby lattice sites on the grid. In the D3Q19 model, the lattice is simple cubic, and
the nineteen velocities correspond to the six nearest and twelve next–nearest neighbors,
plus a zero velocity. On each lattice site ~r at time t, there are nineteen populations ni(~r, t).
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Each population is interpreted as the mass density corresponding to velocity ~ci. The total
mass and momentum density are therefore given by

ρ(~r, t) =
∑
i

ni(~r, t), (22)

~j(~r, t) =
∑
i

ni(~r, t)~ci, (23)

such that the flow velocity is obtained via ~u = ~j/ρ. The number of “lattice Boltzmann
particles” which correspond to ni is given by

νi =
nib

3

mp
≡ ni

µ
, (24)

wheremp is the mass of a lattice Boltzmann particle, and µ the corresponding mass density.
It should be noted that µ is a measure of the thermal fluctuations in the system, since,
according to Eq. 21, one has Bo2 = µ/ρ.

If we now assume a “velocity bin” i to be in thermal contact with a large reservoir of
particles, the probability density for νi is Poissonian. Furthermore, if we assume that the
“velocity bins” are statistically independent, but take into account that mass and momen-
tum density are fixed (these variables are conserved quantities during an LB collision step
and should therefore be handled like conserved quantities in a microcanonical ensemble),
we find

P ({νi}) ∝

(∏
i

ν̄νii
νi!

e−ν̄i

)
δ

(
µ
∑
i

νi − ρ

)
δ

(
µ
∑
i

νi~ci −~j

)
. (25)

for the probability density of the variables νi. This must be viewed as the statistics which
describes the local (single–site) equilibrium under the condition of fixed values of the hy-
drodynamic variables ρ and ~j. The parameter ν̄i is the mean occupation imposed by the
reservoir, and we assume that it is given by

ν̄i = aci
ρ

µ
, (26)

where aci > 0 is a weight factor corresponding to the neighbor shell with speed ci.
From normalization and cubic symmetry we know that the low–order velocity moments

of the weights must have the form∑
i

aci = 1, (27)∑
i

aciciα = 0, (28)∑
i

aciciαciβ = σ2 δαβ , (29)∑
i

aciciαciβciγ = 0, (30)∑
i

aciciαciβciγciδ = κ4 δαβγδ + σ4 (δαβδγδ + δαγδβδ + δαδδβγ) , (31)
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where σ2, σ4, κ4 are yet undetermined constants, while δαβγδ is unity if all four indexes
are the same and zero otherwise.

Employing Stirling’s formula for the factorial, it is straightforward to find the set of
populations neqi which maximizes P under the constraints of given ρ and ~j. Up to second
order in u (low Mach number!) the solution is given by

neqi = ρaci

(
1 +

~u · ~ci
σ2

+
(~u · ~ci)2

2σ2
2

− u2

2σ2

)
. (32)

The low–order moments of the equilibrium populations are then given by∑
i

neqi = ρ, (33)∑
i

neqi ciα = jα, (34)∑
i

neqi ciαciβ = ρc2sδαβ + ρuαuβ . (35)

The first two equations are just the imposed constraints, while the last one (meaning that
the second moment is just the hydrodynamic Euler stress) follows from imposing two ad-
ditional conditions, which is to choose the weights aci such that they satisfy κ4 = 0 and
σ4 = σ2

2(= c4s). From the Chapman–Enskog analysis of the LB dynamics (see below) it
follows that the asymptotic behavior in the limit of large length and time scales is compat-
ible with the Navier–Stokes equation only if Eq. 35 holds, and this in turn is only possible
if the abovementioned isotropy conditions are satisfied. Together with the normalization
condition, we thus obtain a set of three equations for the aci . Therefore at least three
neighbor shells are needed to satisfy these conditions, and this is the reason for choosing
a nineteen–velocity model. For D3Q19, one thus obtains aci = 1/3 for the zero velocity,
1/18 for the nearest neighbors, and 1/36 for the next–nearest neighbors. Furthermore, one
finds c2s = σ2 = (1/3)b2/h2.

For the fluctuations around the most probable populations neqi ,

nneqi = ni − neqi , (36)

we employ a saddle–point approximation and approximate u by zero. This yields

P ({nneqi }) ∝ exp

(
−
∑
i

(nneqi )
2

2µρaci

)
δ

(∑
i

nneqi

)
δ

(∑
i

~ci n
neq
i

)
. (37)

We now introduce normalized fluctuations via

n̂neqi =
nneqi√
µρaci

(38)

and transform to normalized “modes” (symmetry–adapted linear combinations of the ni,
see Ref. 2) m̂neq

k via an orthonormal transformation êki:

m̂neq
k =

∑
i

êkin̂
neq
i , (39)
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k = 0, . . . , 18, and obtain

P ({mk}) ∝ exp

−1

2

∑
k≥4

m2
k

 . (40)

It should be noted that the modes number zero to three have been excluded; they are just
the conserved mass and momentum densities.

5 Lattice Boltzmann 2: Stochastic Collisions

A collision step consists of re-arranging the set of ni on a given lattice site such that both
mass and momentum are conserved. Since the algorithm should simulate thermal fluctu-
ations, this should be done in a way that is (i) stochastic and (ii) consistent with the de-
veloped statistical–mechanical model. This is straightforwardly imposed by requiring that
the collision is nothing but a Monte Carlo procedure, where a Monte Carlo step transforms
the pre–collisional set of populations, ni, to the post–collisional one, n?i . Consistency with
statistical mechanics can be achieved by requiring that the Monte Carlo update satisfies the
condition of detailed balance. Most easily this is done in terms of the normalized modes
m̂k, which we update according to the rule (k ≥ 4)

m̂?
k = γkm̂k +

√
1− γ2

krk. (41)

Here the γk are relaxation parameters with −1 < γk < 1, and the rk are statistically inde-
pendent Gaussian random numbers with zero mean and unit variance. Mass and momen-
tum are automatically conserved since the corresponding modes are not updated. Com-
parison with Eq. 40 shows that the procedure indeed does satisfy detailed balance. The
parameters γk can in principle be chosen at will; however, they should be compatible with
symmetry. For example, mode number four corresponds to the bulk stress, with a relax-
ation parameter γb, while modes number five to nine correspond to the five shear stresses,
which form a symmetry multiplett. Therefore one must choose γ5 = . . . = γ9 = γs. For
the remaining kinetic modes one often uses γk = 0 for simplicity, but this is not necessary.

6 Lattice Boltzmann 3: Chapman–Enskog Expansion

The actual LB algorithm now consists of alternating collision and streaming steps, as sum-
marized in the LB equation (LBE):

ni(~r + ~cih, t+ h) = n?i (~r, t) = ni(~r, t) + ∆i {ni(~r, t)} . (42)

The populations are first re–arranged on the lattice site; this is described by the so–called
“collision operator” ∆i. The resulting post–collisional populations n?i are then propagated
to the neighboring sites, as expressed by the left hand side of the equation. After that, the
next collision step is done, etc.. The collision step may include momentum transfer as a
result of external forces (for details, see Ref. 2); apart from that, it is just given by the
update procedure outlined in the previous section.
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A convenient way to find the dynamic behavior of the algorithm on large length and
time scales is a multi–time–scale analysis. One introduces a “coarse–grained ruler” by
transforming from the original coordinates ~r to new coordinates ~r1 via

~r1 = ε~r, (43)

where ε is a dimensionless parameter with 0 < ε � 1. The rationale behind this is the
fact that any “reasonable” value for the scale r1 will automatically force r to be large. In
other words: By considering the limit ε→ 0 we automatically focus our attention on large
length scales. The same is done for the time; however, here we introduce two scales via

t1 = εt (44)

and

t2 = ε2t. (45)

The reason for this is that one needs to consider both wave–like phenomena, which happen
on the t1 time scale (i. e. the real time is moderately large), and diffusive processes (where
the real time is very large). We now write the LB variables as a function of ~r1, t1, t2 instead
of ~r, t. Since changing ε at fixed ~r1 changes ~r and thus ni, we must take into account that
the LB variables depend on ε:

ni = n
(0)
i + εn

(1)
i + ε2n

(2)
i +O(ε3). (46)

The same is true for the collision operator:

∆i = ∆
(0)
i + ε∆

(1)
i + ε2∆

(2)
i +O(ε3). (47)

In terms of the new variables, the LBE is written as

ni(~r1 + ε~cih, t1 + εh, t2 + ε2h)− ni(~r1, t1, t2) = ∆i. (48)

Now, one systematically Taylor–expands the equation up to order ε2. Sorting by order
yields a hierarchy of LBEs of which one takes the zeroth, first, and second velocity mo-
ment. Systematic analysis of this set of moment equations (for details, see Ref. 2) shows
that the LB procedure, as it has been developed in the previous sections, indeed yields
the fluctuating Navier–Stokes equations in the asymptotic ε → 0 limit – however only for
low Mach numbers; in the high Mach number regime, where terms of order u3/c3s can no
longer be neglected, the dynamics definitely deviates from Navier–Stokes.

In particular, this analysis shows that the zeroth–order populations must be identified
with neqi , and that it is necessary that this “encodes” the Euler stress via suitably chosen
weights aci . Furthermore, one finds explicit expressions for the viscosities:

η =
hρc2s

2

1 + γs
1− γs

, (49)

ηb =
hρc2s

3

1 + γb
1− γb

. (50)
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7 A Polymer Chain in Solvent

In Ref. 6 we explicitly aimed at a comparison between BD and coupled LB–MD for the
same system. We chose a well–studied standard benchmark system, a single bead–spring
polymer chain of N monomers in good solvent in thermal equilibrium. The BD algorithm
is realized via

riα(t+h) = riα(t)+(kBT )
−1
DijαβFjβh+

√
2hBijαβWjβ , i = 1, 2, . . . , N. (51)

Here ~ri is the coordinate of the ith particle, h is the BD time step,
↔
Dij is the diffusion

tensor coupling particles i and j, and ~Fj denotes the deterministic force on particle j (here
spring force and excluded–volume force). We assume summation convention with respect

to both Cartesian and particle indexes. The tensor
↔
Bij is the matrix square root of

↔
Dij ,

Dijαβ = BikαγBjkβγ , (52)

while ~Wi is a discretized Wiener process, 〈Wiα〉 = 0 and 〈WiαWjβ〉 = δijδαβ . For the
diffusion tensor we used the Rotne–Prager tensor. The computationally most demanding
part is the calculation of the matrix square root. The exact numerical solution of this prob-
lem via Cholesky decomposition has a computational complexity O(N3). We therefore
rather used Fixman’s trick7, 8 to speed up the calculations. This is based on the observation
that the “square root” function, if viewed as a function acting on real numbers, needs to be
evaluated only within a finite interval, spanning from the smallest to the largest eigenvalue.
Since this interval does not contain the singularity at zero, a truncated (Chebyshev) polyno-
mial expansion approximates the function quite well. The same expansion can then also be
used to evaluate the matrix square root. The number of terms needed is empirically found
to scale as O(N0.25). Furthermore, for each term one needs to do a “matrix times vector”
operation, which scales as O(N2), such that the algorithm in total has a computational
complexity O(N2.25). We did not employ an FFT–based “superfast” BD algorithm4; this
would have been quite complicated, and also required to assume a simulation box of size
L3 with periodic bondary conditions, such that an extrapolation L→∞ would have been
necessary.

Such a finite box size, combined with an extrapolation, is however precisely what is
needed for LB–MD. We therefore ran these simulations for at least three different values
of L in order to allow for meaningful extrapolations (and used the total time for these
three systems to estimate our CPU effort). The typical box sizes that are needed are given
by the requirement that the polymer chain should fit nicely into the box, without much
back–folding. Since in a good solvent the polymer radius R scales as R ∝ Nν , where
ν ≈ 0.59 is the Flory exponent, we find L3 ∝ N3ν . Furthermore, the computational
cost is completely dominated by the operations required to run the solvent, and hence
the computational complexity is O(N3ν) = O(N1.8). We see that this is slightly better
than BD; however, the prefactor is much smaller for BD. In practice, we find that BD is
roughly two orders of magnitude faster than LB–MD, for the typical chain lengths used in
simulations, see Fig. 1.

The situation is expected to be quite different when one studies a semidilute solution,
where the monomer concentration is still quite low (such that the LB–MD CPU effort
is still dominated by the solvent), but the chains are so long that they strongly overlap.
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Figure 1. Comparison of the CPU time needed by the LB–MD and BD systems for the equivalent of 1000 LB–
MD time steps for various chain lengths N . From Ref. 6.

For example, Ref. 9 studied 50 chains of length N = 1000, being well in the semidilute
regime. While the additional chains for the LB–MD system pose essentially no computa-
tional burden at all (rather on the contrary: Flory screening makes the chains shrink, such
that one can afford to run the simulation in a somewhat smaller box), the BD effort (for
our algorithm) is expected to increase by a factor of 502.25, i. e. more than three orders of
magnitude – or even more, since one needs a more complicated scheme to evaluate the hy-
drodynamic interactions for a periodic system. In other words: For such a system, BD can
at best be competitive if the “superfast”4 version is implemented – and to our knowledge,
this has not yet been tested.

In order to allow a meaningful comparison, both systems have to be run for the same
system and the same parameters. This implies, firstly, identical interaction potentials be-
tween the beads, and the same temperature. From this one concludes (and numerically
verifies) that the static properties like gyration radius, static structure factor, etc., must all
be identical. For the dynamics, it is important that both simulations are run with the same
value for the shear viscosity η, which is easy to achieve, plus with the same value for the
monomeric friction coefficient. At this point, one has to take into account that the friction
coefficient ζ that appears in the BD algorithm (on the diagonal of the diffusion tensor) is
a long–time friction coefficient, which describes the asymptotic stationary velocity ~v of a
particle that is dragged through the fluid with a force ~F , ~F = ζ~v, while the friction coeffi-
cient Γ that appears in the LB–MD algorithm via the coupling prescription ~F = Γ(~v − ~u)
(see Eq. 10) is a corresponding short–time coefficient that does not yet take the backflow
effects into account. Indeed, for an experiment in which a particle is dragged through the
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Figure 2. The dimensionless long time diffusion constant for the center of mass at various box lengths L. From
Ref. 6

LB fluid, it is clear that the flow velocity ~u will be nonzero, and typically slightly smaller
than ~v. Hence, ~F = ζ~v = Γ(~v − ~u), i. e. ζ is smaller than Γ. Since hydrodynamics allows
us to estimate ~u up to a numerical prefactor g via a Stokes–like formula, ~F = gηa~u, where
a is the range of the interpolation scheme, one finds (see also Ref. 2)

ζ−1 = Γ−1 + (gηa)−1. (53)

For nearest–neighbor linear interpolation, one finds g ≈ 25 if a is identified with the LB
lattice spacing. One hence needs to choose the Γ value in the LB–MD simulations in such
a way that it reproduces the BD ζ value.

The diffusion constant of the LB–MD chain depends on the box size, as a result of the
hydrodynamic interaction with the periodic images. Since the latter decays like r−1, one
concludes an L−1 finite size effect, which is nicely borne out by the data of Fig. 2. From
these data one sees also that for an accurate description of the dynamics it is necessary to
not only thermalize the stress modes in the LB algorithm (only these matter in the strict
hydrodynamic limit), but also the kinetic modes, as suggested by the more microscopic
theory outlined above. Taking the finite–size effect and the proper thermalization into
account, the remaining deviation between BD and LB–MD is only a few percent.

The internal Rouse modes of the chain are defined as (p = 1, 2, . . . , N − 1)

~Xp =
1

N

N∑
n=1

~rn cos

[
pπ

N

(
n− 1

2

)]
. (54)

Fig. 3 shows the decay of the normalized mode autocorrelation function up to p = 5.
Obviously the agreement with BD is quite good, i. e. the finite size effect is quite weak.
The reason is the following: The diffusion constant corresponds to the friction of the chain
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Figure 3. Normalized autocorrelation function of the first 5 Rouse modes ~Xp for LB–MD simulations at fixed
L = 25 and BD simulations at L→∞. From Ref. 6.

Figure 4. The autocorrelation function for the first Rouse mode ~X1 at a finite time value of t̄ = 700 for LB–MD
simulations at various box lengths L and BD simulations at L→∞. From Ref. 6.

as a whole, i. e. to an experiment where the chain is being dragged through the fluid with
a constant force. This gives rise to a flow field that decays like r−1, and thus an L−1 finite
size effect. This total force may also be viewed as the monopole moment of a distribution
of forces acting on the polymer. The Rouse modes however study the internal motion of
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the chain, i. e. in the center–of–mass system. Therefore, the monopole contribution of the
forces has been subtracted, and only higher–order multipole moments remain. The dipole
contribution vanishes for symmetry reasons, i. e. the first higher–order multipole is the
quadrupole (this may be vaguely understood by recalling that the mass distribution has a
monopole and a quadrupole moment, but not a dipole moment). The quadrupolar flow
field decays like r−3, and hence one expects an L−3 finite size effect. For a more detailed
derivation, see Ref. 10. This finite size effect is indeed observed, see Fig. 4, demonstrating
that on the one hand the system is theoretically quite well understood, and that on the
other hand such simulations are nowadays so accurate that even rather subtle effects can
be analyzed unambiguously.
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1 Introduction

During the last few decades, soft matter has developed into an interdisciplinary research
field combing physics, chemistry, chemical engineering, biology, and materials science.
This is driven by the specificities of soft matter, which consists of large structural units
in the nano- to micrometer range and is sensitive to thermal fluctuations and weak exter-
nal perturbations1–3. Soft matter comprises traditional complex fluids such as amphiphilic
mixtures, colloidal suspensions, and polymer solutions, as well as a wide range of phe-
nomena including self-organization, transport in microfluidic devices and biological cap-
illaries, chemically reactive flows, the fluid dynamics of self-propelled objects, and the
visco-elastic behavior of networks in cells2.

The presence of disparate time, length, and energy scales poses particular challenges
for conventional simulation techniques. Biological systems present additional problems,
because they are often far from equilibrium and are driven by strong spatially and tem-
porally varying forces. The modeling of these systems often requires the use of coarse-
grained or mesoscopic approaches that mimic the behavior of atomistic systems on the
length scales of interest. The goal is to incorporate the essential features of the microscopic
physics in models which are computationally efficient and are easily implemented in com-
plex geometries and on parallel computers, and can be used to predict emergent properties,
test physical theories, and provide feedback for the design and analysis of experiments and
industrial applications2. In many situations, a simple continuum description, e.g., based
on the Navier-Stokes equation is not sufficient, since molecular-level details play a central
role in determining the dynamic behavior. A key issue is to resolve the interplay between
thermal fluctuations, hydrodynamic interactions (HI), and spatiotemporally varying forces.

The desire to bridge the length- and time-scale gap has stimulated the development of
mesoscale simulation methods such as Dissipative Particle Dynamics (DPD)4–6, Lattice-
Boltzmann (LB)7–9, Direct Simulation Monte Carlo (DSMC)10–12, and Multiparticle Col-
lision dynamics (MPC)13, 14. Common to these approaches is a simplified, coarse-grained
description of the solvent degrees of freedom. Embedded solute particles, such as poly-
mers or colloids, are often treated by conventional molecular dynamics simulations. All
these approaches are essentially alternative ways of solving the Navier-Stokes equation for
the fluid dynamics.

In this contribution, the MPC approach – also denoted as stochastic rotation dynamics
(SRD) – is discussed, which has been introduced by Malevanets and Kapral13, 14, and is
an extension of the DSMC method to fluids. The fluid is represented by point particles
and their dynamics proceeds in two steps: A streaming and a collision step. Collisions
occur at fixed discrete time intervals, and although space is discretized into cells to define
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the multiparticle collision environment, both the spatial coordinates and the velocities of
the particles are continuous variables. The algorithm exhibits unconditional numerical
stability and has an H-theorem13, 14. MPC defines a discrete-time dynamics which has
been shown to yield the correct longtime hydrodynamics. It also fully incorporates both
thermal fluctuations and hydrodynamic interactions. In addition, HI can be easily switched
off in MPC algorithms, making it easy to study the importance of such interactions15, 16.

It must be emphasized that all local algorithms, such as MPC, DPD, and LB, model
compressible fluids, so that it takes time for the hydrodynamic interactions to ”propa-
gate” over longer distances. As a consequence, these methods become quite inefficient
in the Stokes limit, where the Reynolds number approaches zero. MPC is particularly
well suited for studying phenomena where both thermal fluctuations and hydrodynamics
are important, for systems with Reynolds and Peclet numbers of order 0.1 − 10, if ex-
act analytical expressions for the transport coefficients and consistent thermodynamics are
needed, and for modeling complex phenomena for which the constitutive relations are not
known. Examples include chemically reacting flows, self-propelled objects, or solutions
with embedded macromolecules and aggregates. If thermal fluctuations are not essential
or undesirable, a more traditional method such as a finite-element solver or a LB approach
is recommended. If, on the other hand, inertia and fully resolved hydrodynamics are not
crucial, but fluctuations are, one might be better served using Langevin or BD simulations.

2 Multiparticle Collision Dynamics

In MPC, the solvent is represented by N point-like particles of mass m. The algorithm
consists of individual streaming and collision steps. In the streaming step, the particles
move independent of each other and experience only possibly present external forces (cf.
Sec. 7). Without such forces, they move ballistically and their positions ri are updated
according to

ri(t+ h) = ri(t) + hvi(t), (1)

where i = 1, . . . , N , vi is the velocity of particle i, and h is the time interval between
collisions, which will be denoted as collision time. In the collision step, a coarse-grained
interaction between the fluid particles is imposed by a stochastic process. For this purpose,
the system is divided in cubic collision cells of side length a. An elementary requirement
is that the stochastic process conserves momentum on the collision-cell level, only then HI
are present in the system. There are various possibilities for such a process. Originally, the
rotation of the relative velocities, with respect to the center-of-mass velocity of the cell,
around a randomly orientated axis by a fixed angle α has been suggested13, 14, i.e,

vi(t+ h) = vi(t) + (D(α)− E) (vi(t)− vcm(t)) , (2)

where D(α) is the rotation matrix, E is the unit matrix, and

vcm =
1

Nc

Nc∑
i=1

vi (3)

is the center-of-mass velocity of the Nc particles contained in the cell of particle i. The
orientation of the rotation axis is chosen randomly for every collision cell and time step. As
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is easily shown, the algorithm conserves mass, momentum, and energy in every collision
cell, which leads to long-range correlations between particles.

The rotations can be realized in different ways. On the one hand, the rotation matrix

D(α) =

 R2
x + (1−R2

x)c RxRy(1− c)−Rzs RxRz(1− c) +Rys
RxRy(1− c) +Rzs R2

y + (1−R2
y)c RyRz(1− c)−Rxs

RxRz(1− c)−Rys RyRz(1− c) +Rxs R2
z + (1−R2

z)c

 (4)

can be used, with the unit vector R = (Rx,Ry,Rz)T , c = cosα, and s = sinα. The
Cartesian components of R are defined as

Rx =
√

1− θ2 cosϕ , Ry
√

1− θ2 sinϕ , Rz = θ, (5)

where ϕ and θ are uncorrelated random numbers, which are taken from uniform distribu-
tions in the intervals [0, 2π] and [−1, 1], respectively. On the other hand, a vector rotation
can be performed17. The vector ∆vi = vi − vcm = ∆vi,‖ + ∆vi,⊥ is given by the com-
ponent ∆vi,‖ = (∆viR)R parallel to R and ∆vi,⊥ = ∆vi − ∆vi,‖ perpendicular to
R. Rotation by an angle α transforms ∆vi into ∆v′i = ∆vi,‖ + ∆v′i,⊥. ∆v′i,⊥ can be
expressed by the vector ∆vi,⊥ and the vector R×∆vi,⊥, which yields

vi(t+ h) = vcm(t) + cosα∆vi,⊥ + sinα (R×∆vi,⊥) + ∆vi,‖ (6)
= vcm(t) + cosα [∆vi − (∆viR)R]

+ sinαR× [∆vi − (∆viR)R] + (∆viR)R ,

since the vector R×∆vi,⊥ is perpendicular to R and ∆vi,⊥.
In its original form2, 13, 14, 18, the MPC algorithm violates Galilean invariance. This

is most pronounced at low temperatures or small time steps, where the mean free path
λ = h

√
kBT/m of a particle is smaller than the cell size a. Then, the same particles

repeatedly interact with each other in the same cell and thereby build up correlations. In
a collision lattice moving with a constant velocity, other particles interact with each other,
creating less correlations, which implies breakdown of Galilean invariance. In Refs. 19,20,
a random shift of the entire computational grid is introduced to restore Galilean invariance.
In practice, all particles are shifted by the same random vector with components uniformly
distributed in the interval [−a/2, a/2] before the collision step. After the collision, parti-
cles are shifted back to their original positions. As a consequence, no reference frame is
preferred.

The velocity distribution is given by the Maxwell-Boltzmann distribution in the limit
N →∞, and the probability to find Nc particles in a cell is given by the Poisson distribu-
tion

P (Nc) = e−〈Nc〉〈Nc〉Nc/Nc! , (7)

where 〈Nc〉 is the average number of the particles in a cell.
As an alternative collision rule, Maxwell-Boltzmann, i.e., Gaussian distributed rela-

tive velocities vran
i of variance

√
kBT/m can be used to create new velocities according

to17, 21, 22

vi(t+ h) = vcm(t) + vran
i − 1

Nc

Nc∑
j=1

vran
i . (8)
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Here, a canonical ensemble is simulated and no further thermalization is needed in non-
equilibrium simulations, where there is viscose heating. From a numerical point of view,
however, the calculation of the Gaussian random numbers is somewhat more time con-
suming, hence the performance is slower compared to SRD2. In Refs. 21–23 algorithms
are presented, which additionally preserve angular momentum.

3 Embedded Objects and Boundary Conditions

A very simple procedure for coupling embedded objects such as colloids or polymers to
a MPC solvent has been proposed in Refs. 24–26. In this approach, every colloid particle
or monomer in a polymer is taken to be a point-particle which participates in the MPC
collision. If monomer k has mass M and velocity Vk the center-of-mass velocity of all
particles (MPC and monomers) in a collision cell is

vcm =

Nc∑
i=1

mvi +

Ncm∑
k=1

MVk

mNc +MN c
m

, (9)

whereN c
m is the number of monomers in the collision cell. A stochastic collision of the rel-

ative velocities of both the solvent particles and embedded monomers is then performed in
the collision step, which leads to an exchange of momentum between them. The dynamics
of the monomers is typically treated by molecular dynamics simulations (MD), applying
the velocity Verlet integration scheme27, 28. Hence, the new monomer momenta are used
as initial conditions for the the subsequent streaming step (MD) of duration h. In this ap-
proach, the average mass of solvent particles per cell m 〈Nc〉, should be of the order of the
monomer or colloid mass M (assuming one embedded particle per cell). This corresponds
to a neutrally buoyant object which responds quickly to the fluid flow but is not kicked
around too violently. It is also important to note that the average number of monomers per
cell 〈Nm〉 should be smaller than unity in order to properly resolve HI between them. On
the other hand, the average bond length in a semiflexible polymer or rodlike colloid should
also not be much larger than the cell size a, in order to capture the anisotropic friction of
rodlike molecules due to HI (which leads to a twice as large perpendicular than parallel
friction coefficient for long stiff rods29, 30), and to avoid an unnecessarily large ratio of the
number of solvent to solute particles. Hence, the average bond length should be of order a.

To accurately resolve the local flow field around a colloid, methods have been pro-
posed which exclude fluid-particles from the interior of the colloid and mimic slip14, 31

or no-slip2, 32–34 boundary conditions. No-slip boundary conditions are modeled by the
bounce-back rule. Here, the velocity of a particle is inverted from vi to −vi when it in-
tersects the surface of an impenetrable particle, e.g., colloid or blood cell, or wall. Since
walls or surfaces will generally not coincide with the collision cell boundaries, in particu-
lar due to random shifts, the simple bounce-back rule fails to guarantee no-slip boundary
conditions. The following generalization of the bounce-back rule has therefore been sug-
gested32: For all cells that are intersected by walls, fill the wall part of the cell with a
sufficient number of virtual particles in order to make the total number of particles equal
to 〈Nc〉. The velocities of the wall particles are taken from a Maxwell-Boltzmann distri-
bution with zero mean and variance kBT/m. Since the sum of Gaussian random numbers

420



is also Gaussian distributed, the velocities of the individual virtual particles need not be
determined explicitly, it suffices to determine a momentum p from a Maxwell-Boltzmann
distribution with zero mean and variancemNpkBT , whereNp = 〈Nc〉−Nc is the number
of virtual particles corresponding to the partially filled cell of Nc particles. The center-of-
mass velocity of the cell is then

vcm =
1

m 〈Nc〉

(
Nc∑
i=1

mvi + p

)
. (10)

Results for a Poiseuille flow obtained by this procedure, both with and without cell shifting,
are in good agreement with the correct parabolic flow profile32 (see Sec. 7.2).

However, this does not completely prevent slip, because the average center-of-mass
position of all particles in a collision cell – including the virtual particle – does not coincide
with the wall. In order to further reduce slip, the following modification of the original
approach has been proposed35. To treat a surface cell on the same basis as a cell in the
bulk, i.e., the number of particles satisfies the Poisson distribution with the average 〈Nc〉,
we take fluctuations in the particle number into account by adding Np virtual particles to
every cell intersected by a wall such that 〈Np +Nc〉 = 〈Nc〉. There are various ways to
determine the number Np. For a system with parallel walls, we suggest to use the number
of fluid particles in the opposite surface cell, i.e., the opposing surface cell cut by the other
wall. The average of the two numbers is equal to 〈Nc〉. Alternatively, Np can be taken
from a Poisson distribution with average 〈Nc〉 accounting for the fact that there are already
Nc particles in the cell. Now, the center-of-mass velocity of the particles in a boundary
cell is

vcm =
1

m(Nc +Np)

(
Nc∑
i=1

mvi + p

)
. (11)

The momentum p of the effective virtual particle is obtained as described above.

4 Cell-Level Canonical Thermostat

In any nonequilibrium situation, the presence of external fields destroys energy conser-
vation and a control mechanism has to be implemented to maintain temperature (a brief
review on existing thermostats is presented in Ref. 36). A basic requirement of any thermo-
stat is that it does not violate local momentum conservation, smear out local flow profiles,
or distort the velocity distribution too much. A simple and efficient way to maintain a con-
stant temperature is velocity scaling. For a homogeneous system, a single global scaling
factor is sufficient. For an inhomogeneous system, such as shear flow or Poiseuille flow, a
local, profile-unbiased thermostat is required. Here, the relative velocities ∆vi = vi−vcm
(2) are scaled, before or after the rotation (velocity scaling exchanges with the rotation),
i.e., ∆v′i = κ∆vi, where κ is the scale factor.

In its simplest form, velocity scaling keeps the kinetic energy at the desired value. For
a profile-unbiased global scaling scheme, the scale factor is give by

κ =

(
3(N −Ncl)kBT

2Ek

)1/2

(12)
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Figure 1. Distribution functions of the particle velocities |∆v| in a collision cell under shear flow for the average
particle numbers 〈Nc〉 = 3 (green), 5 (red), 10 (blue), and ∞ (black). The solid lines are determined using
Eq. 17. ∆ṽ is an abbreviation for ∆ṽ = ∆v/

√
kBT/m. The inset shows the distribution function for velocity

scaling with the thermal energy Ek = 3(Nc − 1)kBT/2 for 〈Nc〉 = 10 in comparison to the correct Maxwell-
Boltzmann result (black)36.

in three-dimensional space, where Ncl is the number of collision cells and
Ek =

∑N
i=1m∆v2

i /2 the kinetic energy of all particles with respect to their cells’ center-
of-mass velocities. The corresponding expression for cell-level scaling is

κ =

(
3(Nc − 1)kBT

2Ek

)1/2

, (13)

where nowEk =
∑Nc
i=1m∆v2

i /2 is the kinetic energy of the particles within the particular
cell. Note that the scale factor is different for every cell.

This kind of temperature control corresponds to an isokinetic rather than isothermal,
i.e., canonical ensemble. As shown in Sec. 7.2, this may have sever consequences on
certain properties such as local temperature or particle number36. Such artifacts are avoided
by a cell-level canonical thermostat. Instead of using the thermal energy as reference, an
kinetic energy is determined from its distribution function in a canonical ensemble36

P (Ek) =
1

EkΓ(f/2)

(
Ek
kBT

)f/2
exp

(
− Ek
kBT

)
. (14)

Here, f = 3(Nc− 1) denotes the degrees of freedom of the considered system and Γ(x) is
the gamma function. The distribution function P (Ek) itself is denoted as gamma distribu-
tion. In the limit f → ∞, the gamma distribution turns into a Gaussian function with the
mean 〈Ek〉 = fkBT/2 and variance f(kBT )2/2.

To thermalize the velocities of the MPC fluid on the cell level, a different energy Ek is
taken from the distribution function (14) for every cell and time step and the velocities are
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scaled by the factor

κ =

(
2Ek∑Nc

i=1m∆v2
i

)1/2

. (15)

For a fixed Nc, we then obtain the following distribution function for the relative velocity
of a particle in a cell in the limit of a large number of MPC steps

P (∆v, Nc) =

(
m

2πkBT (1− 1/Nc)

)3/2

exp

(
− m

2kBT (1− 1/Nc)
∆v2

)
. (16)

However, the number of fluid particles in a cell is fluctuating in time. Thus, the actual
distribution function is obtained by averaging Eq. 16 over the Poisson distribution (7)

P (∆v) =

∞∑
Nc=2

e−〈Nc〉
〈Nc〉Nc

Nc!
P (∆v, Nc)/

(
1− (〈Nc〉+ 1)e−〈Nc〉

)
. (17)

Fig. 1 provides an example of velocity distributions of a MPC fluid under shear flow.
Evidently excellent agreement is obtained between the simulation result and the theoretical
expression.

5 Transport Coefficients

A major advantage of the MPC dynamics is that the transport properties that character-
ize the macroscopic laws may be computed and analytical expressions be derived18. In
the following, the self-diffusion coefficient and the viscosity of the MPC solvent will be
discussed. Other aspects are presented in Refs. 2, 18, 37.

5.1 Diffusion Coefficient

The diffusion coefficient D of a particle i can be obtained from the Green-Kubo rela-
tion2, 18, 20, 38

D =
h

6

〈
vi(0)2

〉
+
h

3

∞∑
n=1

〈vi(nh)vi(0)〉 (18)

for a discrete-time random system in three-dimensional space. tn = nh denotes the dis-
crete time of the nth collision. The average 〈. . .〉 comprises both, averaging over the orien-
tation of the rotation axis (R) and the distribution of velocities. The two are independent.
To evaluate the expression, the velocity auto-correlation function is required. An exact
evaluation of the correlation function is difficult or even impossible, because it would imply
that the full correlated dynamics of the particles can analytically be calculated. However,
an approximate expression can be derived.

In a first step, the average over the random orientation of the rotation axis is performed.
Since the orientation is isotropic in space, all odd moments of the Cartesian components
of R vanish and the second moments are given by 〈RβRβ′〉 = δββ′/3. Thus,

〈R∆vi〉 =
1

3
(1 + 2 cosα) ∆vi, (19)
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which yields

〈vi(t+ h)vi(t)〉 = 〈vcm(t)vi(t)〉+
1

3
(1 + 2 cosα) 〈∆vi(t)vi(t)〉 . (20)

To evaluate the correlation function with the center-of-mass velocity, we apply the
molecular chaos assumption, which assumes that different particles are independent,
i.e., 〈vj(t)vi(t′)〉 = δij 〈vi(t)vi(t′)〉 and 〈vcm(t)vi(t)〉 =

∑Nc
j=1 〈vj(t)vi(t)〉 /Nc =〈

vi(t)
2
〉
/Nc. Hence,

〈vi(t+ h)vi(t)〉 =

[
1− 2

3
(1− cosα)

(
1− 1

Nc

)] 〈
vi(t)

2
〉
. (21)

To account for particle number fluctuations, this expression has to be averaged applying
the Poisson distribution (7). Since we consider a particular particle in a cell, the probability
distribution of findingNc−1 other particles in that cell isNcP (Nc)/〈Nc〉. Averaging over
this distribution gives2, 18, 39

∞∑
Nc=1

e−〈Nc〉
〈Nc〉(Nc−1)

(Nc − 1)!

(
1− 1

Nc

)
=

1

〈Nc〉

(
e−〈Nc〉 + 〈Nc〉 − 1

)
. (22)

Thus,

〈vi(t+ h)vi(t)〉 = (1− γ)
〈
vi(t)

2
〉
, with γ =

2(1− cosα)

3 〈Nc〉

(
e−〈Nc〉 + 〈Nc〉 − 1

)
(23)

This expression reduces to Eq. 21 for 〈Nc〉 � 1. In fact, we can replace Nc by 〈Nc〉
already for Nc & 5.

More generally, iteration yields

〈vi(nh)vi(0)〉 = (1− γ)n
〈
vi(0)2

〉
. (24)

This relation suggests that the velocity correlation function decays exponentially, which is
not the case and is a result of the applied approximation, which neglects all correlations.
In contrast, HI lead to a long-time tail of the velocity correlation function

〈vi(t)vi(0)〉 =
kBT

4m〈Nc〉π3/2

1

([ν +D]t)
3/2

(25)

with an algebraic decay40–42 in the limit t → ∞. This relation can be derived from the
Navier-Stokes equation30, 40, 42–44.

With Eq. 24, the diffusion coefficient follows as37, 38

D =
h
〈
vi(0)2

〉
3

(
1

γ
− 1

2

)
=
hkBT

m

(
1

γ
− 1

2

)
(26)

within the molecular chaos assumption.
Fig. 2 shows simulation results for various collision time steps41. As ex-

pected, the molecular chaos assumption works well for large collision time steps
h/
√
ma2/(kBT ) = λ/a > 1, and hence large mean-free paths λ, where the particles are

exposed to a nearly random collision environment at every step. This is reflected in Fig. 2,
where the velocity correlation function decays exponentially for large collision time steps
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Figure 2. Fluid velocity auto-correlation functions CV (t) = 〈v(t)v(0)〉 /〈v(0)2〉 for the mean free paths
λ/a = h/

√
ma2/(kBT ) = 0.1 and 1. Left: The semi-logarithmic representation shows an exponential decay

(solid lines) of the correlation function at short times and large mean-free paths. Right: The (black) solid lines
are calculated according to Eq. 25 and show the power-law decay ∼ t−3/2.

over a certain time window. For small collision times, the same particles collide several
times with each other, which builds up correlations. Here, sound propagation plays an
important role and contributes to the decay45 at short times. For longer times, vorticity de-
termines the time dependence of the correlation function, which then decays by the power-
law (25)45. The simulations results are in close quantitative agreement with the theoretical
prediction (25).

Calculations of the diffusion coefficient reflect the same behavior18, 41. For λ/a & 0.5,
the numerical results for D agree very well with the analytical expression, whereas for
smaller λ values, a somewhat large D is obtained41.

5.2 Viscosity

The shear viscosity is one of the most important properties of complex fluids. In particular,
it characterizes their non-equilibrium behavior, e.g., in rheology. Various ways have been
suggested to obtain an analytical expression for the viscosity of a MPC fluid. In Refs. 2,
20, 38, 46, 47, linear hydrodynamic equations (Navier-Stokes equation) and Green-Kubo
relations are exploited. Alternatively, non-equilibrium simulations can be performed and
transport coefficients are obtained from the linear response to an imposed gradient. The
two approaches are related by the fluctuation-dissipation theorem.

In simple shear flow, with the velocity field vx = γ̇y, where vx is the fluid flow field
along the x-direction (flow direction), y the gradient direction, and γ̇ the shear rate, the
viscosity η is related to the stress tensor via

σxy = ηγ̇. (27)

Hence, an expression is required for the stress tensor to either derive η analytically and/or
to determine it in simulations. In Refs. 39,48, the kinetic theory moment method has been
applied to derive an analytical expression.
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5.2.1 Stress Tensor

In this lecture note, an expression for the stress tensor is obtained by the virial theorem35, 49

starting from the equation of motion of particle i

r̈iβ = Fiβ , (28)

where the force Fi will be specified later. For a system with periodic boundary conditions,
ri refers to the position of the particle in the infinite system, i.e., we do not jump to an
image, which is located in the primary box (see Fig. 6), when a particle crosses a boundary
of the periodic lattice. Hence, ri is a continuous function of time. Multiplication of Eq. 28
by riβ′ and summation over all N particles yields

d

dt

N∑
i=1

miviβriβ′ =

N∑
i=1

miviβviβ′ +

N∑
i=1

Fiβriβ′ . (29)

The average over time (or an ensemble) yields〈
N∑
i=1

miviβviβ′

〉
+

〈
N∑
i=1

Fiβriβ′

〉
= 0, (30)

because the term on the left hand side of Eq. 29 vanishes for a diffusive or confined sys-
tem50, 51. Eq. 30 is a generalization of the virial theorem49, 50.

In the presence of shear flow, the time average of the left-hand side of Eq. 29 does not
vanish anymore35. In order to arrive at a vanishing term, we subtract the derivative of the
velocity profile d(γ̇riy)/dt = γ̇viy from both sides of Eq. 28. This leads to the modified
equation

d

dt

N∑
i=1

m(vix − γ̇riy)riy =

N∑
i=1

m(vix − γ̇riy)viy +

N∑
i=1

Fixriy − γ̇
N∑
i=1

mviyriy (31)

and
N∑
i=1

〈m(vix − γ̇riy)viy〉+

N∑
i=1

〈Fixriy〉 − γ̇
N∑
i=1

〈mviyriy〉 = 0 (32)

in the flow-gradient plane.
For the MPC method, the force on a particle can be expressed as

Fi(t) ≡ F ci (t) =

∞∑
q=0

∆pi(t)δ(t− tq), (33)

where ∆pi(t) = m(vi(t) − v̂i(t)) is the change in momentum during collision [Eq. 2];
v̂i(t) denotes the velocity after streaming and before the collision. Note that the velocities
are not necessarily constant during the streaming step due to an external field. The required
time average is defined as follows〈

F ciβriβ′
〉

= lim
t→∞

1

t

∫ t

0

F ciβ(t′)riβ′(t
′) dt′ = lim

Ns→∞

1

Nsh

Ns∑
q=1

∆piβ(tq)riβ′(tq)

=
1

h
〈∆piβriβ′〉Ns . (34)
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The last line defines an average over collision steps Ns. Denoting the position (image
or real) of a particle in the primary box by r′i(t), the particle position itself is given by
ri(t) = r′i(t) + Ri(t), where Ri(t) = (nixLx, niyLy, nizLz)

T is the lattice vector at
time t. The niβ are integer numbers and Lβ denotes the box length along the Cartesian
axis β. Applying these definitions, the velocity terms of Eq. 32 become

〈(vix − γ̇riy)viy〉 = 〈v̂iy v̂′ix〉Ns +
γ̇h

2

〈
v̂2
iy

〉
Ns
,

〈viyriy〉 =
1

2
〈(viy + v̂iy)riy〉Ns (35)

in the stationary state. v′ix denotes the velocity in the primary simulation box, i.e.,
vix = v′ix + γ̇Riy . Note that the expression 〈(v̂ix − γ̇riy)v̂iy〉Ns reduces to 〈v̂′ixv̂iy〉Ns ,
because the average

〈
v̂iyr

′
iy

〉
Ns

vanishes. The particle velocities along the other spatial
directions are identical for each periodic image.

We now define instantaneous external σexy and internal σixy stress tensors according to

σexy =
1

V h

N∑
i=1

∆pixRiy −
γ̇

2V

N∑
i=1

m(viy + v̂iy)Riy, (36)

σixy = − 1

V

N∑
i=1

mv̂′ixv̂iy −
γ̇h

2V

N∑
i=1

mv2
iy −

1

V h

N∑
i=1

∆pixr
′
iy, (37)

which obey the relation 〈σixy〉Ns = 〈σexy〉Ns . Eq. 36 corresponds to the mechanical def-
inition of the stress tensor as force/area, since Riy ∼ Ly , and Eq. 37 corresponds to the
momentum flux across a surface52. Correspondingly, the external stress tensor includes
only force terms, i.e., collisional contributions, whereas the internal stress tensor comprises
kinetic and collisional contributions. The term ∼ γ̇ in σixy results from the streaming dy-
namics and vanish in the limit h → 0. Since a discrete time dynamics is fundamental for
the MPC method, the collision time will always be finite. Expressions for the stress tensors
in the presence of walls are presented in Ref. 35.

An example of the time dependence of the internal and external stress tensors, i.e.,
〈σixy〉Ns , 〈σexy〉Ns , under shear is shown in Fig. 3. Both expressions approach the same
limiting value in the asymptotic limit. Thereby, the fluctuations of the external stress tensor
component are larger.

5.2.2 Viscosity of MPC Fluid: Analytical Expressions

The derived expressions for the stress tensors are independent of any particular collision
rule. The viscosity of a system, however, depends on the applied collision procedure.
Analytical expressions for the viscosity of an MPC fluid have been derived by various
approaches2, 14, 18, 19, 22, 39, 35, 47, 48.

In simple shear flow, the viscosity η is given by Eq. 27, where the (macroscopic) stress
tensor follows from σxy = 〈σixy〉Ns = 〈σexy〉Ns . For a MPC fluid, the stress tensor is
composed of a kinetic and collisional contribution2, 14, 18, 19, 22, 39, 35, i.e, σxy = σkin

xy + σcol
xy ,

which implies that the viscosity η = ηkin + ηcol consists of a kinetic ηkin and collisional
ηcol part too. For a system with periodic boundary conditions, the two contributions are
conveniently obtained from the internal stress tensor (37).
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Figure 3. Internal 〈σixy〉Ns (blue) and external 〈σexy〉Ns (green, large fluctuations) stress tensor components as
function of the number of collision steps Ns. The collision time is h/

√
ma2/(kBT ) = 0.1. At t = 0, the

system is in a stationary state35.

The kinetic contribution ηkin is determined by streaming, i.e., the velocity dependent
terms in Eq. 37. To find the mean 〈v̂′ixv̂iy〉Ns , we consider a complete MPC dynamics
step. The correlation 〈v′ix(t)viy(t)〉Ns before streaming is related to that after streaming
〈v̂′ix(t+ h)v̂iy(t+ h)〉Ns via

〈v̂′ix(t+ h)v̂iy(t+ h)〉Ns = 〈[v̂ix(t+ h)− γ̇riy(t+ h)]v̂iy(t+ h)〉Ns (38)

= 〈[vix(t)− γ̇riy(t)]viy(t)〉Ns − γ̇h
〈
viy(t)2

〉
Ns

= 〈v′ix(t)viy(t)〉Ns − γ̇h
〈
v2
iy

〉
Ns
.

Note that the average comprises both, a time average and an ensemble average over the
orientation of the rotation axis. The velocities after streaming are changed by the subse-
quent collisions, which yields, with the corresponding momenta of the rotation operator
D(α), 〈v′ix(t)viy(t)〉Ns = f 〈v̂′ix(t)v̂iy(t)〉Ns and f = 1 + (1 − 1/Nc)(2 cos(2α) +

2 cosα − 4)/539, 22, 35. Note, velocity correlations between different particles are ne-
glected, i.e., molecular chaos is assumed. Thus, in the steady stead [〈v̂′ix(t)v′iy(t)〉Ns =
〈v̂′ix(t+ h)v′iy(t+ h)〉Ns ], we find

〈v̂′ixviy〉Ns = − γ̇h

1− f
〈
v2
iy

〉
Ns

(39)

by using Eq. 38. Hence, with the equipartition of energy
〈
v2
iy

〉
Ns

= kBT/m, the kinetic
viscosity is given by

ηkin =
NkBTh

V

[
5Nc

(Nc − 1)(4− 2 cosα− 2 cos(2α))
− 1

2

]
. (40)
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Figure 4. Viscosities determined via the internal (bullets) and external (open squares) stress tensors for a system
confined between walls as function of the collision time. The analytical results for the total (black), the kinetic
(red, ∼ h), and collisional (blue, ∼ 1/h) contributions are presented by solid lines.

The collisional viscosity ηcol is determine by the momentum change of the particles
during the collision step. Since the collisions in the various cells are independent, it is
sufficient to consider one cell only. The positions of the particles within a cell can be
expressed as r′i = rc + ∆ri, where rc is chosen as the center of the cell. Because of
momentum conservation, the term

∑Nc
i=1 ∆pixr

′
iy becomes

∑Nc
i=1 ∆pix∆riy . The averages

over thermal fluctuations and random orientations of the rotation axis yield

〈∆pix∆riy〉Ns =
2mγ̇

3
(cosα− 1)

(1− 1

Nc

)〈
∆r2

iy

〉
Ns
− 1

Nc

Nc∑
j 6=i=1

〈∆riy∆rjy〉Ns

 .
(41)

The average over the uniform distribution of the positions within an cell yields
〈∆riy∆rjy〉Ns = 0 for i 6= j and

1

a

∫ a/2

−a/2
∆r2

iydriy =
a2

12
. (42)

Hence, the collisional viscosity is given by

ηcol =
Nma2

18V h
(1− cosα)

(
1− 1

Nc

)
. (43)

Here, we assume that the number of particles in a collision cell Nc is sufficiently large
(Nc > 3) to neglect fluctuations. For a small number of particles, density fluctuations have
to be taken into account as explained in Sec. 5.1.
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Figure 5. Theoretical Schmidt numbers as function of the collision time step h for the rotation angles α = 15◦

(black), 45◦ (blue), 90◦ (green), and 130◦ (red). The mean particle number is 〈Nc〉 = 10.

Simulations for various MPC dynamics parameters exhibit very good agreement be-
tween the viscosities determined via Eqs. 36, 37 and the analytical expressions Eqs. 40
and 4339, 41. Fig. 4 displays results for the viscosity determined for an MPC fluid confined
between two walls35. As shown in Ref. 35, the same analytical expressions are obtained
for such a system. For small h, the viscosity is determined by the collisional contribution,
whereas for h� 1, the kinetic contribution dominates. Note that the analytical expression
for ηkin has been derived assuming molecular chaos, which does not apply for small col-
lision time steps. Hence, there are small deviations between the simulation and analytical
results for h/

√
ma2/(kBT ) . 1.

5.3 Schmidt Number

A convenient measure of the importance of hydrodynamics is the Schmidt number Sc =
ν/D, where ν = η/(m〈Nc〉) is the kinematic viscosity41. Thus, Sc is the ratio between
momentum transport and mass transport. As is known, this number is smaller than but on
the order of unity for gases, while in fluids, like water, it is on the order of 102 to 103.
A prediction for the Schmidt number of a MPC fluid can be obtained from the theoretical
expressions (40) and (43) for the viscosity, and the diffusion coefficient (26). In Fig. 5, the
theoretical prediction for Sc is displayed for different values of the rotation angle. This
shows that Sc becomes considerably larger than unity for h→ 0. In fact, Sc increases like
1/h2 as soon as the collisional viscosity dominates over the kinetic viscosity.
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6 MPC without Hydrodynamics

The importance of HI in complex fluids is generally accepted. A standard procedure for
determining the influence of HI is to investigate the same system with and without HI.
In order to compare results, however, the two simulations must differ as little as possible
– apart from the inclusion of HI. A well-known example of this approach is Stokesian
dynamics simulations (SD), where the original Brownian dynamics (BD) method can be
extended by including HI in the mobility matrix by employing the Oseen tensor29, 30.

A method for switching off HI in MPC has been proposed in Refs. 15, 39. The basic
idea is to randomly interchange velocities of all solvent particles after each collision step,
so that momentum (and energy) are not conserved locally. Hydrodynamic correlations are
therefore destroyed, while leaving friction coefficients and fluid self-diffusion coefficients
largely unaffected. Since this approach requires the same numerical effort as the original
MPC algorithm, a more efficient method has been suggested recently in Refs. 2, 16. If the
velocities of the solvent particles are uncorrelated, it is no longer necessary to trace their
trajectories. In a random solvent, the solvent-solute interaction in the collision step can
thus be replaced by the interaction with a heat bath. This strategy is related to the way no-
slip boundary conditions are modeled of solvent particles at a planar wall32 (see Sec. 3).
Since the particle positions within a cell are irrelevant in the collision step, no explicit
particles have to be considered. Instead, each monomer of mass M = m〈Nc〉 is coupled
to an effective solvent momentum P which is directly chosen from a Maxwell-Boltzmann
distribution of variance MkBT and a mean given by the average momentum of the fluid
field – which is zero at rest, or (Mγ̇riy, 0, 0) in the case of an imposed shear flow. The
total center-of-mass velocity, which is used in the collision step, is then given by16

vcm,i =
Mvi + P

2M
. (44)

The solute trajectory is determined by MD simulations, and the interaction with the solvent
is performed every collision time h.

The relevant parameters of MPC and random MPC are the average number of parti-
cles per cell, 〈Nc〉, the rotation angle α, and the collision time h which can be chosen to
be the same. For small values of the density (〈Nc〉 < 5), fluctuation effects have been
noticed39 and could also be included in the random MPC solvent by a Poisson-distributed
density. The velocity autocorrelation functions41 of a random MPC solvent show a simple
exponentially decay, which implies some differences in the solvent diffusion coefficients.
Other transport coefficients such as the viscosity depend on HI only weakly37 and conse-
quently are expected to be essentially identical in both solvents.

7 External Fields

7.1 Shear Flow

To impose shear flow on a periodic MPC solvent system, Lees-Edwards boundary
conditions are applied53, 27. As indicated in Fig. 6, the infinite periodic system is subject to
a uniform shear in the xy-plane29. The layer of boxes with the primary box is stationary,
whereas the layer above moves with the velocity u = γ̇Ly to the right and the layer below
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Figure 6. Lees-Edwards homogeneous shear boundary conditions. The primary box is highlighted in gray. The
opaque particles are periodic images of the particles of the primary box. The upper layer is moving with the
velocity u = γ̇Ly to the right, and the bottom layer to the left. Note that the shear velocity is zero in the center
of the primary box. See also Ref. 29.

with −u to the left. The corresponding further layers move with the respective integral
multiple of u. However, these further layers are not required in practice. Whenever a MPC
particle leaves the primary box, it is replaced by its periodic image. This avoids build-up
of a substantial difference in the x-coordinates29. In the simulation program, the boundary
crossing is efficiently handled as follows29

cory = anint(ry(i)/ly)
rx(i) = rx(i) - cory*delrx
rx(i) = rx(i) - anint(rx(i)/lx)*lx
ry(i) = ry(i) - cory*ly
rz(i) = rz(i) - anint(rz(i)/lz)*lz
vx(i) = vx(i) - cory*delvx

Here, delvx = u and delrx stores the displacement of the upper box layer. anint pro-
vides the nearest whole number, i.e., it rounds the argument. Note the change in velocity.
The results shown in Fig. 3 for the stress tensor are obtained by applying these boundary
conditions.

When walls are present, shear flow can be imposed by the opposite movement of the
confining walls with the velocities u = ±γ̇L/2 (the reference frame is fixed in the center
of the simulation box). Here, shear is imposed in two ways, by applying bounce-back
boundary conditions, i.e., the momentum of a particle changes as ∆pi = −2mvi + 2mu
(u = (u, 0, 0)T ), and by the virtual wall particles35. There momenta are determined from
a Boltzmann distribution as described in Sec. 3, only along the flow direction the extra
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momentum is added

pu = mNp

(
u+

γ̇

2
∆y

)
(45)

for a surface at +L/2. For the surface at−L/2, u→ −u and ∆y → −(a−∆y) for a given
random shift. ∆y is the fraction of the wall-truncated collision cell insight the wall and Np
denotes the number of virtual particles35. The viscosities of Fig. 4 have been determined
applying this scheme.

7.2 Poiseuille Flow

A parabolic flow profile of a fluid confined between walls is obtained by a constant pres-
sure gradient or a uniform body force, e.g., gravitational force, combined with non-slip
boundary conditions. For two planer walls parallel to the xz-plane at y = 0 and y = Ly ,
the Stokes equation yields the velocity profile

vx(y) =
4vmaxy(Ly − y)

L2
y

, with vmax =
m 〈Nc〉 gL2

y

8η
. (46)

m 〈Nc〉 g is the gravitational (volume) force density32.
In MPC simulations a parabolic flow profile is obtained in a similar manner. Here,

the same geometry is considered as in Sec. 7.1, with periodic boundary conditions par-
allel to the walls, and every fluid particle is exposed to the gravitational force Fx = mg
along the x-direction. Naturally, other channel geometries, such as square channels54 or
capillaries55–57 can be considered. Then, the particle velocities and positions are updated
according to

viβ(t+ h) = viβ(t) + ghδβx,

riβ(t+ h) = riβ(t) + viβ(t)h+
1

2
gh2δβx (47)

in the streaming step. The bounce-back rule has to be adjusted too. This is simply done
after the streaming step (47) is complete. The velocities and positions of the particles who
penetrated into a wall are corrected according to

v̂iβ(t+ h) = −viβ(t+ h) + 2g∆hiδβx,

r̂iβ(t+ h) = riβ(t+ h)− 2viβ(t+ h)∆hiδβx + 2g∆h2
i δβx. (48)

The time ∆hi, during which the particle moves insight the wall, follows from the dynamics
along the y-direction: ∆hi = [riy(t+h)−LyΘ(riy(t+h)−Ly)]/viy(t+h), where Θ(x)
is the Heaviside function.

Fig. 7 show velocity profiles for various thermalization procedures. The results are
obtained for the system parameters Lx = Ly = Lz = 20a, h/

√
ma2/(kBT ) = 0.1,

α = 130◦, 〈Nc〉 = 10, and g/(kBT/(ma)) = 0.0136. Evidently, a parabolic profile
is obtained, which however depends on the way the system is thermalized. Note that,
without explicit thermostat, the fluid is thermalized via the virtual particles in the walls. As
Fig. 8 shows, an inadequate thermostat leads to inhomogeneous energy and particle density
profiles36, 58. A constant energy and particle density is obtained for the local Maxwellian
thermostat presented in Sec. 4.
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Figure 7. Velocity profiles for a MPC fluid confined between two parallel walls. Bottom (black) line: The fluid
is thermalized by the surfaces only. Top (blue) line: The fluid is thermalized by the global thermostat Eq. 12 and
the surfaces. Middle (red) line: The fluid is thermalized by the local thermostat (15) and the surfaces. The green
dashed lines is a fit of the parabolic profile (46), which yields the viscosity η/

√
mkBT/a4 = 8.9 and a finite

slip length ls/a = 0.176.
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Figure 8. Kinetic energy of fluid particles (left) and mean particle number in a collision cell (right) perpendicular
to the confining walls for systems, which are thermalized by the surfaces (black), the global thermostat (12)
(blue), and the local thermostat (15) (red).

There is a finite slip at the walls visible in Fig. 732, 36, 58. The reason is that the av-
erage center-of-mass velocities of the cells intersected by walls are not zero but posi-
tive (see Sec. 3). A zero velocity can easily be achieved in a linear velocity profile,
i.e., in shear flow35, but would require corrections to the proposed scheme of treating
the virtual particles for non-linear flow profiles. A fit of the parabolic velocity profile
vx ∼ (y + ls)(Ly + ls − y) (46), with the slip length ls, yields ls/a = 0.176 and the vis-
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cosity η/
√
mkBT/a4 = 8.9. This value agrees with the value obtained from shear flow

simulations η/
√
mkBT/a4 = 8.8 (see Sec. 5.2), and both are close to the theoretical vale

η/
√
mkBT/a4 = 8.7. Note, the theoretical value is somewhat smaller, because the colli-

sional contribution to viscosity is only calculated within the molecular chaos assumption.
Looking at the velocity distribution of the system locally thermalized by Maxwellian dis-
tributed energies, we find excellent agreement with the Maxwell-Boltzmann distribution36.

7.3 Gravitational Field

So far, the external field is explicitly interacting with the MPC fluid. In sedimentation
or electrophoresis, the field typically interacts with the solute particles only59–62. Here,
the solute particles, which are dragged by the external field, induce a motion of the MPC
fluid. For a system confined between impenetrable walls, this leads to backflow effects62, 63,
since fluid in front of the moving solute particles is reflected from the wall and moving in
opposite direction to the solute particles. In systems with periodic boundary conditions,
there is also a backflow effect, which is obtained as follows.

The equations of motion of (point-like) solute particles exposed to a gravitational field
Fg = Mg are given by (k = 1, . . . , N t

m)

MR̈k(t) = Fk(t) + F ck (t) +Mg, (49)

where Fk denotes the forces between solute particles and F ck the forces due to MPC colli-
sions [Eq. 33]. The equations of motion of the MPC particles are given by Eq. 28 with the
forces (33). Summation over all solvent and solute particles yields the equation of motion
for the center-of-mass velocity vtot of the total system

(MN t
m +mN)v̇tot =

N∑
i=1

mr̈i +

Ntm∑
k=1

MR̈k = MN t
mg. (50)

The sum over the (pairwise) solvent-solvent forces vanishes, as well as the MPC collisional
forces due to momentum conservation. Hence,

vtot =
MN t

mg

MN t
m +mN

t, (51)

when the total momentum is zero at t = 0. I.e., the center-of-mass velocity increases
linearly in time. We want to adopt a reference frame, where the center-of-mass veloc-
ity is zero59–61. Hence, vtot is subtracted from every velocity: v′i = vi − vtot and
V ′k = Vk − vtot. The equations of motion of the primed variables are given by

mr̈′i = F ci −
mMN t

m

MN t
m +mN

g, (52)

MR̈′k = Fk(t) + F ck (t) +
mMN

MN t
m +mN

g. (53)

The total momentum in this reference frame is evidently zero. In the streaming step, the
velocities and positions of the fluid particles are then updated according to (omitting the
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prime)

vi(t+ h) = vi(t)−
MN t

m

MN t
m +mN

gh, (54)

ri(t+ h) = ri(t) + vi(t)h−
MN t

m

2(MN t
m +mN)

gh2. (55)

The dynamics of the solute particles is treated by MD27, 28. There is a flux of MPC particles
opposite to the flux of solute particles, i.e., backflow is present.

8 Hydrodynamic Simulations of Polymers in Flow Fields

As an example of a complex fluid in a flow field, I will briefly touch the nonequilibrium
properties of a linear polymer in shear flow. Shear flow is a paradigmatic case, where the
polymer dynamics can be studied in a stationary nonequilibrium state. The MPC dynamics
approach has been shown to properly account for HI in polymer systems25, 26, 64 and pro-
vides thus an excellent way to incorporate fluid properties. We adopt a hybrid simulation
approach, combining MPC for the solvent with molecular dynamics simulations for the
polymer molecule, where the two are coupled in the collision step according to Eq. 9 (see
Sec. 3).

Single molecule experiments reveal a remarkably reach structural and dynamical be-
havior of individual polymers in flow fields65, 66. In particular, fluorescence microscopy
studies on single DNA molecules in shear flow find large conformational changes due
to tumbling motion65–68. A polymer chain continuously undergoes stretching and com-
pression cycles and never reaches a steady-state extension. The detailed evolution itself
depends upon the shear rate. By the same experimental technique, valuable quantitative in-
formation has been obtained for the non-equilibrium properties of DNA molecules, such as
their deformation, orientation, and viscosity, both, for free and tethered molecules65, 67–72.

8.1 Model

The polymer is comprised of Nm beads of mass M , which are connected by linear
springs64. The bond potential is

Ul =
κl
2

Nm−1∑
k=1

(|Rk+1 −Rk| − l)2
, (56)

where l is the bond length, κl the spring constant, and Rk the position of monomer k.
Excluded-volume interactions are taken into account by the shifted and truncated Lennard-
Jones potential

ULJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6

+
1

4

]
(57)

for monomer distances r < 6
√

2σ and ULJ = 0 otherwise. The monomer dynamics is
determined by Newton’s equations of motion, which are integrated by the velocity Verlet
algorithm with time step hp28, 27.
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Figure 9. Sequence of snapshots illustrating the conformational changes of a polymer of length Nm = 50 in
shear flow during a tumbling cycle.

Three-dimensional periodic boundary conditions are considered with Lees-Edwards
boundary conditions to impose shear flow27 (see Sec. 7.1). The local Maxwellian thermo-
stat, as described in Sec. 4, is used to maintain a constant temperature. We employ the
parameters α = 130◦, h/

√
ma2/(kBT ) = 0.1, 〈Nc〉 = 10, M = m 〈Nc〉, l = σ = a,

kBT/ε = 1, h/hp = 50, the bond spring constant κl = 5 × 103kBT/a
2, the mass den-

sity % = m〈Nc〉, and the polymer length N t
m = 50. In dilute solution, the equilibrium

end-to-end vector relaxation time of this polymer is τ0/
√
ma2/(kBT ) = 6169.64

8.2 Conformations

Fig. 9 shows a sequence of snapshots illustrating the conformations and the tumbling dy-
namics. Starting from a coiled state, the flow field stretches the polymer – the angle ϕ
between the end-to-end vector and flow direction is positive (for the definition of ϕ, see
Fig. 11) – and the polymer is aligned. Thermal fluctuations cause the polymer orientation
angle to become negative, i.e., ϕ < 0, which leads to a polymer collapse. Later the angle
becomes positive again, the polymer stretches, and the cycle starts again.

The conformational properties are characterized by the radius of gyration tensor

〈Gββ′〉 =
1

Nm

Nm∑
k=1

〈∆Rk,β∆Rk,β′〉 , (58)

where ∆Rk is the monomer position in the center-of-mass reference frame. The ratios of
the diagonal components 〈Gββ〉/〈G0

ββ〉, 〈G0
ββ〉 = R2

G/3 is the equilibrium value, with
R2
G the radius of gyration, are displayed in Fig. 10 (left). A significant polymer stretching

along the flow direction appears for Wi > 1, where Wi is the Weissenberg number, defined
as Wi = γ̇τ0. At large shear rates, the stretching saturates at a maximum, which is smaller
than the value corresponding to a fully stretched chain (〈Gxx〉 ≈ l2N2

m/12) and reflects
the finite size of a polymer. This is consistent with experiments on DNA67, 70, where the
maximum extension is on the order of half of the contour length, and theoretical calcula-
tions73. It is caused by the large conformational changes of polymers in shear flow, which
yields an average extension smaller than the contour length. Nevertheless, molecules as-
sume totally stretched conformations at large Weissenberg numbers during their tumbling
cycles. In the gradient and the vorticity directions, the polymers shrink, with a smaller
shrinkage in the vorticity direction due to excluded-volume interactions64.

8.3 Alignment

The deformation is associated with a preferred alignment of a polymer. This is typically
characterized by the angle χ between the main axis of the gyration tensor and the flow
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Figure 10. Shear rate dependence of the gyration tensor components along the flow (red), gradient (blue), and
vorticity direction (green) (left). Dependence of the alignment angle on the Weissenberg number (right). The
solid line is obtained from the theoretical expression of Ref. 74.

direction64, 70, 73. It is obtained from the components of the gyration tensor via64

tan(2χ) =
2 〈Gxy〉

〈Gxx〉 − 〈Gyy〉
. (59)

The dependence of tan(2χ) on shear rate is shown in Fig. 10 (right). In the limit Wi→ 0,
theory74, 73 predicts tan(2χ) ∼ Wi−1, which seems to be in qualitative agreement with
the simulation data. However, there is a quantitative difference, which might be due to
excluded-volume interactions not taken into account in the analytical calculations. For
larger Weissenberg numbers, excluded-volume interactions seem to be of minor impor-
tance. Here, tan(2χ) decreases asymptotically as Wi−1/3.

Fig. 11 shows probability distributions of the angle ϕ. (For the definition of ϕ, see
Fig. 11.) The distribution function P (ϕ) exhibits a maximum at tan(2ϕm) ≈ tan(2χ).
Hence, ϕm is very close to the angle χ of Eq. 59. The width ∆ϕ of the distribution
function depends on the Weissenberg number and decreases with increasing Wi. In the
limit Wi → ∞, the asymptotic dependence ∆ϕ ∼ Wi−1/3 is obtained for the full width
at half maximum68, 74, 75. The polymer model of Refs.74, 73 predicts the same dependence
on the Weissenberg number, only certain numerical factors are different. Evidently, the
theoretical curves are in excellent agreement with the simulation data.

8.4 Tumbling dynamics

The distribution function P (ϕ) is strongly linked to the tumbling dynamics of a polymer.
The existence of such a cyclic motion is not a priori evident from the theoretical model.
P (ϕ) does not provide any hint on a periodic motion. Only experiments and computer
simulations reveal the presence of a cyclic dynamics. P (ϕ) reveals that the polymer is not
rigidly oriented in the flow-gradient plane, but the end-to-end vector fluctuates. The fact
that also negative ϕ values are assumed points toward a reorientation of the bond vector.
Tumbling is a consequence of the fact that shear flow is a superposition of a rotational
and an extensional flow. It is the rotational part that leads to reorientation. A polymer in
elongational flow behaves very differently, in particular its orientation is fixed along the
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flow direction aside from thermal fluctuations76, 77.
The tumbling time can be obtained from the correlation function

Cxy(t) =

〈
G′xx(t0)G′yy(t0 + t)

〉√〈
G′2xx(t0)

〉 〈
G′2yy(t0)

〉 , (60)

where G′ββ(t) = Gββ(t)− 〈Gββ〉 denotes the deviation from the average stationary value
of the gyration tensor. The correlation function captures the time dependent correlations in
the deformation along the flow and gradient direction. As shown in Fig. 12, a correlation
function exhibits a pronounced maximum at negative lag time (t−) and a deep minimum at
positive lag time (t+). In the limit t → ±∞, the correlation function vanishes. The tum-
bling time is then defined as τT = 2(t+ − t−)69. These times nicely follow the theoretical
prediction, as is evident from Fig. 12, and indicates that the tumbling time is equal to the
polymer relaxation time for a given shear rate. Alternative definitions of the tumbling time
lead to the same dependence on the Weissenberg number67, 68.
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9 Conclusions

In the short time since Malevanets and Kapral13, 14 introduced the MPC dynamics approach
as a particle-based mesoscale simulation technique, the method developed into a versatile
tool to study hydrodynamic properties of complex fluids. By now, several collision algo-
rithms have been proposed and employed, and the method has been generalized to describe
multi-phase flows and viscoelastic fluids2. A major advantage of the algorithm is that it is
very straightforward to model the dynamics of embedded particles using a hybrid MPC-
MD simulations approach. Results of such studies are in excellent quantitative agreement
with both theoretical predictions and results obtained using other simulation techniques.
In the future, we will see more applications of the method in non-equilibrium and driven
soft-matter systems. Specifically, systems where thermal fluctuations play a major role.
Here, the full advantage of the method can be exploited, because the interactions of col-
loids, polymers, and membranes with the mesoscale solvent can be treated on the same
basis.

References
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and Hartmut Löwen, Direct observation of hydrodynamic instabilities in a driven
non-uniform colloidal dispersion, Soft Matter, 5, 1340, 2009.

63. A. Wysocki, C. P. Royall, R. G. Winkler, G. Gompper, H. Tanaka, A. van Blaaderen,
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Dissipative Particle Dynamics is a particle model that allows one to simulate complex fluids and
soft matter at mesoscopic scales. Since its introduction twenty years ago it has been applied to
an enormous variety of different systems. The conceptual underpinning of the model and its
connection with the underlying molecular dynamics is now rather clear. We present a review
of the method, some of its extensions, and discuss the theoretical basis for the model. We also
present a necessarily brief account of applications.

1 Introduction

Molecular dynamics allows us to simulate realistic dynamics of millions of atoms during
nanoseconds with present day computer resources. The largest systems considered up to
now contain a trillion (1012) of particles for 40 time steps1 and the largest time scales
explored is a microsecond for a protein system of about 3600 particles2. Although these
record breaking research suggests the possibilities of MD, it is clear that this is still insuf-
ficient when trying to study the behaviour of structured soft matter as occurs in the interior
of living cells, for example. Complex fluids provide another instance of the inapplicabil-
ity of MD due to the large disparity of time scales of the mesostructure dynamics and the
atomic dynamics. When the system displays multiple characteristic time scales a brute
force MD simulation is completely unfeasible because the time step is limited by the short
range repulsive interactions and then one needs an enormous number of steps to explore
the larger time scales.

MD is CPU consuming because it provides all the microscopic detail at the shortest
time scales. There are situations, though, in which having all the molecular detail is not
necessary in order to answer relevant scientific questions. In those cases, what is required
is a model composed of a reduced number of computation units, smaller than the total
number of atoms in the system but that still capture the phenomena that we are interested
in. Those models are named coarse-grain (CG) models. There are two broad families of
coarse-grain mesoscopic models, those that use a lattice to support the CG variables (like
the finite elements/volumes/differences methods for solving elasticity or hydrodynamic
field theories or the Lattice Boltzmann Equation for hydrodynamics simulations) and those
that use off lattice particles that carry the CG information. The number of CG particles
or lattice nodes is much smaller than the number of atoms and, besides, the time scale of
evolution of the CG variables is much slower, permitting much larger time steps than in
MD. The computational gain when using CG models is manifest.

A very popular particle model for the simulation of CG dynamics is Dissipative Particle
Dynamics (DPD), which was introduced by Hoogerbrugge and Koelman3 and was formu-
lated as a proper statistical mechanics model later4. The formulation of the model was
done by resorting to very simple general principles, like having translational, rotational,
and Galilean invariance, and requesting momentum conservation. The DPD model con-
sists on a set of point particles that move off-lattice interacting with each other through a
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set of prescribed forces. The forces are of three types: a conservative force deriving from a
potential, a dissipative force that tries to reduce velocity differences between the particles,
and a further stochastic force directed along the line joining the center of the particles. The
stochastic differential equations of motion for the dissipative particles are4

ṙi = vi

miv̇i = −∂V
∂ri
−
∑
j

γωD(rij)(vij · eij)eij +
∑
j

σωR(rij)
dWij

dt
eij (1)

where rij = |ri − rj | is the relative distance between particles i, j, vij = vi − vj is the
relative velocity and eij = rij/rij is the unit vector joining particles i and j. dWij is
an independent increment of the Wiener process. In Eq. 1, γ is a friction coefficient and
ωD(rij), ω

R(rij) are bell-shaped functions with a finite support that render the dissipative
interactions local. Validity of the fluctuation-dissipation theorem requires4 σ and γ to
be linked by the relation σ2 = 2γkBT , where kB is the Boltzmann factor and T is the
system temperature, and also ωD(rij) = [ωR(rij)]

2. As a result, the stationary probability
distribution of the DPD model is given by the Gibbs canonical ensemble

ρ({r,p}) =
1

Z
exp

{
−β

N∑
i

p2
i

2mi
− βV ({r})

}
(2)

The potential energy V is a suitable function of the positions of the dissipative particles
that is transitionally invariant in order to ensure momentum conservation. No matter what
is the specific form of the potential function, a model with local momentum conservation
will exhibit a hydrodynamic behaviour at sufficiently large scales5, 6. The dissipative par-
ticles are point particles that “represent” or “capture” the behaviour of many underlying
atoms. The versatility of the model relies on the fact that very different potential functions
may be employed to model different systems. A solvent is described with soft repulsive
particles, we may join particles with springs to model polymers, set repulsion forces with
different amplitudes to model phase separation between different particles, perform rigid
body movements of groups of particles to model solid objects floating in liquids. The main
theme in a CG model, though, is that the particles are not atoms and, therefore, the potential
function is not a potential function between atoms, but rather, it is a coarse-grained poten-
tial (a free energy to be precise, see later) whose functional form is much softer than the
singular impenetrable potentials between atoms. Of course, we may still use Eqs. 1 when
the particles are actually atoms if we are interested in sampling the distribution function
(2).

2 The Meaning of a Dissipative Particle

A recurrent question when discussing about the DPD model is: What is in fact a dissipative
particle? The literature is plagued with suggestive images as “lumps of atoms”, “clusters”,
“groups of atoms moving coherently”, but it is only recently that there seems to emerge
a clear picture of the meaning of a dissipative particle. The discussion requires the dis-
tinction of two very different situations, those in which the dissipative particle represents
bounded groups of atoms, and those which represents unbounded groups of atoms as those
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constituting a simple liquid. In the former case, one can resort to the theory of coarse-
graining7, 8 and formulate the equations of motion for the center of mass of the bounded
group of atoms. The resulting equations are similar to those of the DPD model, with ex-
plicit expressions in terms of molecular averages for the CG potential and friction forces.
We may say, therefore, that we have a clear definition and meaning of what a dissipative
particle is when it represent a set of bounded atoms.

For the case of dissipative particles modelling simple fluids made of unbounded atoms
or molecules, the situation is much more difficult because there is no notion of group of
atoms that retain its entity as times proceeds. Due to the diffusing nature of the unbounded
atoms in a liquid the notion of “the center of mass of a group of atoms” is a rather fuzzy
one9. In this case, it proofs more useful to connect the DPD model directly with the con-
tinuum Navier-Stokes equations, which are eventually linked to the microscopic dynamics
through a well-know procedure7. Let us discuss these two cases separately in the following
sections.

3 DPD for Unbounded Atoms: The Simulation of Simple Fluids

Originally, the DPD model was introduced to model complex fluids made of structures
floating in a simple liquid solvent. The structures are implemented through springs and/or
repulsive potentials between certain bounded particles. The main problem is, then, how
to specify the particular form of the potential function and friction forces between the
dissipative particles that model the fluid solvent.

In the original model, the conservative potential V and force Fi were assumed to be
pair-wise and of the form

V =
1

2

∑
ij

aij(1− rij/rc)2

Fi = −∂V
∂ri

=
∑
j

FC(rij)eij (3)

withFC(rij) = aij(1−rij/rc) where aij is a particle interaction constant and rc is a cutoff
radius. This force produces a repulsion that could be thought of as representing the “pres-
sure forces” exerted between portions of a fluid. Without any other guidance, the weight
function ωD(r) in the dissipative and random forces is given the same linear functional
form. The resulting set of dissipative particles display hydrodynamic behaviour, because
momentum is conserved. In fact, DPD has been used for the study of the hydrodynamics
of simple fluids in several works10–13.

However, the fact that DPD conserves momentum does not mean that it makes a good
model for solving hydrodynamics. Indeed, molecular dynamics itself is also momentum
conserving and displays hydrodynamic behaviour, but it is not the method of choice for
solving hydrodynamic problems (although it can be used and has been used for that14). We
will argue that for the efficient simulation of hydrodynamics the original DPD model is not
well suited. Instead, the model can be improved in several directions in order to overcome
its limitations when modelling simple fluids. Let us review now these limitations.
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3.1 Limitations of DPD for Modelling Simple Fluids

• Equation of state: The pressure equation of state is an outcome of the simulation,
not an input. The linear conservative forces of the original DPD model produce an
equation of state that is quadratic in the density15. The thermodynamics of the model
cannot be changed at will. One would like to be able to specify, through the functional
form of the conservative force, the desired thermodynamic behaviour.

• Simplistic friction forces. According to the DPD friction force, if a dissipative parti-
cle is orbiting in a circumference around a reference particle, it will not exert any force
on this particle. Nevertheless, on simple physical grounds one expect that the motion
of the dissipative particle must drag in some way the reference particle. Of course,
if many DPD particles are involved simultaneously in between the two particles, this
will result in an effective drag. The same is true for a purely conservative molecular
dynamics simulation. It would be nice, though, to have this effect captured directly in
terms of modified friction forces in a way that a smaller number of particles need to
be used to reproduce large scale hydrodynamics.

• Viscosity as output, not input. Even though the macroscopic behaviour of the model
is hydrodynamic5, it is not possible to relate in a simple direct way the viscosity of the
fluid with the model parameters. Only after a recourse to the methods of kinetic theory
can one estimate what input values for the friction coefficient should be imposed to
obtain a given viscosity6, 16, 17.

• Scale of DPD. It is difficult in advance to specify the scale at which a DPD simulation
is operating. In particular, there is no parameter in the model that sets the physical
scale of the particle. The cutoff radius rc simply sets the number of neighbours, and
the distance between particles (or the total number density in the container) could be
in principle changed at will and there is no prescription about what is an appropriate
number. There are many attempts to restore a scale free property for DPD18–20. This
property refers to the ability of the simulation method to get convergent results as the
number of particles increases, this is, up to a certain number of particles, having more
particles should not change the results. This is obviously connected to the idea that
the DPD model needs to incorporate the notion of resolution and that finer resolutions
lead to converged results. To get this property, the parameters in the model need to
depend on the level of coarse-graining, but this is not specified in the original model.

• Importance of thermal fluctuations. The problem of the scale of a dissipative par-
ticle is closely related to the fact that DPD cannot switch off thermal fluctuations
according to the size of a DPD particle. On general statistical mechanics grounds,
thermal fluctuations should scale as 1/

√
N where N is the number of coarse-grained

degrees of freedom. “Larger” dissipative particles should display smaller fluctuations.
But there is no size associated to a dissipative particle. This problem is crucial, for
instance, in the case of suspended colloidal particles or in microfluidics applications
where the physical dimensions of the suspended objects or physical dimensions of the
operating device determine whether and, more importantly, to which extent thermal
fluctuations come into play.
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• Isothermal model. The DPD model is isothermal and cannot sustain realistic energy
transport.

During the years, several DPD-like models have been introduced in order to deal with these
limitation. In the following subsections we briefly review these DPD models.

3.2 Many-Body Dissipative Particle Dynamics: MDPD

Pagonabarraga and Frenkel presented a model in which the conservative forces where de-
rived from a many-body potential that derives from a free energy density21. The model has
been studied in detail by Trofimov et al.22 presenting a multicomponent version, whereas
liquid-vapor coexistence and drop dynamics has been considered by Warren23 and surface
tension of the model has been studied in Refs. 24, 25. The essential feature in MDPD is
the incorporation of a density variable associated to every particle

di =

N∑
j

W (rij) (4)

where W (r) is a suitable weight function normalized to unity
∫
drW (r) = 1 and with a

bell shape. If around particle i there are many particles j, the density di defined above will
be a large number.

The total potential energy of interaction between dissipative particles is made to depend
on this density.

V (r1, · · · , rN ) =
∑
i

ψ(di) (5)

The resulting potential is, therefore, many-body although the forces are still pair-wise in
form and easy to implement in a code, this is

Fi = −∂V
∂ri

= −
∑
i

[ψ′(di) + ψ′(dj)]W
′(rij)eij (6)

The connection between the thermodynamics of the system and a density dependent po-
tential has been worked out in detail in Ref. 26. Roughly speaking the pressure of the
homogeneous system is given by P = kBTd+ d2ψ′(d), which allows one to interpret the
function ψ(d) in Eq. 5 as the excess free energy of the system. In this way, it is possible to
introduce the global thermodynamics of the system through the particular functional form
of the many-body potential.

3.3 Fluid Particle Model

The realization that a circularly orbiting dissipative particle in the original DPD model does
not produce any friction force on a particle located at the origin lead us to introduce the
Fluid Particle Model with a general form of the friction forces that have a shear component
in addition to the usual central friction forces of DPD27. Of course the friction forces are
no longer central and angular momentum is not conserved. This is remedied in the FPM
model by introducing a spin variable that accounts for the missing angular momentum.
The spin is regarded as the angular momentum of the atoms within a fluid particle with
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respect to the center of mass of the fluid particle. The kinetic theory of the model was
presented in Ref. 18 and it was shown that on macroscopic scales the spin variable becomes
slaved by the vorticity of the fluid. Shearing forces between dissipative particles have been
introduced for the simulation of colloids28, 29. The shear friction was introduced in FPM
as a theoretically appealing feature, but it has been given further support from a top-down
approach in which the viscous term of the Navier-Stokes equation is discretized according
to the Smoothed Particle Hydrodynamics methodology30. The resulting friction forces
display shear components in a natural way. We will review this approach below.

3.4 EDPD

The original DPD model is isothermal and cannot sustain temperature gradients. For this
reason it does not give the correct transport of energy across the system. This can be
remedied by introducing an internal energy variable associated to every particle, along
with a temperature variable. The kinetic energy that is lost due to friction forces is invested
into increasing the internal energy of the particles. In addition, a thermal conduction term
ensures thermal equilibration between dissipative particles in that it drives the temperatures
of the particles towards a common value. This energy conserving model was named EDPD
and was introduced independently in Refs. 31, 32 and further studied in Refs. 33, 34, with
several recent applications in Refs. 35, 36.

3.5 A Comprehensive Model: SDPD

The three models above (MDPD, FPM, EDPD) try to solve some of the quoted problems
of DPD, but none of them solves all the problems simultaneously. In 2003 we introduced
the Smoothed Dissipative Particle Dynamics (SDPD) model, which has many features in
common with the above three models, but does not suffer from the problems and limi-
tations of DPD quoted above30. In fact, the model is just a version of the well-known
method of Smoothed Particle Hydrodynamics (SPH)37, with thermal fluctuations included
in a thermodynamically consistent way38. SPH is a Lagrangian mesh-less discretization
of the Navier-Stokes equations which was introduced by Lucy39 and Monaghan40 in the
70’s in order to solve hydrodynamic problems in astrophysical contexts. Generalizations
of SPH that include viscosity and thermal conduction and address laboratory scale situa-
tions like viscous flow and thermal convection were presented much later41–43. SPH is now
used in a number of applications, particularly because of the easy treatment of free bound-
aries44. The SDPD method of Ref. 30 has a structure very similar to both DPD and SPH
and extracts the best of both models (fluctuation from DPD, connection to Navier-Stokes
from SPH). The computational simplicity of SDPD is comparable to that of DPD.

The essential idea of SDPD is that the dissipative particles ought to be regarded as
truly thermodynamic subsystems of the whole system moving with the flow. In those
cases, we prefer to name the particle as a fluid particle. In addition to the position and
velocity a fluid particle has a volume (given as the inverse of the density (4)), an internal
energy, and entropy. The volume is a function of the positions and the internal energy is a
function of the entropy and volume of the particles. Therefore, the independent variables
characterizing the state of the fluid particles is x = {ri,pi, Si} where ri is the position
of the fluid particle, pi its momentum, and Si its entropy. We could equally select as
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independent variable the internal energy, or the temperature, instead of the entropy. The
total energy and entropy of the system are

E(x) =
∑
i

[
p2
i

2mi
+ U(Si,Vi)

]
S(x) =

∑
i

Si (7)

Here Vi is the volume of the fluid particle which is defined as the inverse of the density,
Vi = d−1

i , where the density is defined as a function of the position of the neighbouring
particles in Eq. 4. Usually the bell-shaped weight function W (r) has compact support, a
sphere of radius h. Finally, U(Si,Vi) is the equilibrium relation giving the internal energy
of particle i as a function of the mass, entropy and volume of the fluid particle. In this way,
we are assuming the principle of local equilibrium, that states that the local thermodynamic
behaviour is identical to the global thermodynamic one. The energy function E(x) may be
interpreted as a coarse-grained Hamiltonian, with a many-body potential U that depends
not-only on the position of the particles but also on the entropy (or the local temperature)
variable. Through the functional form of the internal energy of a fluid particle, the global
thermodynamic behaviour of the system is fixed, and in this way the equation of state is an
input of the model.

The idea underlying the formulation of the SDPD model is that any formulation of a
fluid particle should produce a set of interactions between fluid particles that are reminis-
cent of hydrodynamics. One can construct a model of fluid particles by discretizing the
equations of hydrodynamics on a set of nodes that follows the flow field. These nodes can
be interpreted as fluid particles with definite amounts of mass, momentum, energy, vol-
ume, and entropy. The discretization procedure establishes how the extensive quantities
between fluid particles are exchanged and how the fluid particles should eventually move.
The discretization of the second derivatives terms appearing in the Navier-Stokes equations
is done with the help of the weight function W (r). It can be shown that an approximation
to order h2 for a second space derivative is given in terms of the values of the function in
neighbour points by30

∇α∇βA(ri) =
∑
j

1

dj
F (rij)(Ai −Aj)

[
5eαije

β
ij − δ

αβ
]

+O(∇4Ah2) (8)

where eij =
(rj−ri)
rij

and A(r) is an arbitrary hydrodynamic field, and Ai = A(ri). Ex-
pression (8) allows one to estimate the value of the second derivatives at a given point in
terms of the value of the function at neighbouring points. The function F (r) is defined
through

∇W (r) = −rF (r) (9)

A common selection for W (r) is the Lucy function,

W (r) =
105

16πh3

(
1 + 3

r

h

)(
1− r

h

)3

(10)

from which the function F (r) follows

F (r) =
315

4πh5

(
1− r

h

)2

, F (r) ≥ 0 (11)
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Figure 1. The functions W (r) (solid line), F (r) (bold line), and rF (r) (dotted line).

In Fig. 1 we plot the functions W (r), F (r), and rF (r). However, one should be aware
of other kernels W (r) that may perform better37. With the use of Eq. 8 we can discretize
the second order derivatives of the hydrodynamic equations, which correspond to the irre-
versible part of the dynamics. The equations also contain first order derivatives (∇P and
∇·v), which correspond to the reversible part of the dynamics. These first order derivatives
are approximated by resorting to the definition of the density, Eq. 4, and to the conser-
vation of energy. The final discrete equations of hydrodynamics are (for simplicity we
assume zero bulk viscosity)30

ṙi = vi

mv̇i =
∑
j

[
Pi
d2
i

+
Pj
d2
j

]
Fijrij −

5η

3

∑
j

Fij
didj

(vij + eijeij ·vij)

TiṠi = −2κ
∑
j

Fij
didj

Tij +
5η

6

∑
j

Fij
didj

(
v2
ij + (eij ·vij)2

)
(12)

Here, Pi, Ti are the pressure and temperature of the fluid particle i, which are functions
of di, Si through the equilibrium equations of state (easily derived from U(Si,Vi)). In
addition, vij = vi − vj , and Tij = Ti − Tj . It is easily shown that the above model con-
serves mass, momentum and energy and that the total entropy is a non-decreasing function
of time. As the number of particles increases, the resulting flow converges towards the
solution of the Navier-Stokes equations, by construction.

The physical picture that emerges from these equations is very appealing and closely
resembles the interpretation of dissipative particles in DPD. Particles of constant mass m
move according to their velocities and exert forces of a range h to each other of different
nature. First, a repulsive force directed along the line joining the particles that has a mag-
nitude given by the pressure and densities of the particles. Roughly speaking, the larger is
the pressure in a given region, the higher the repulsion between them. The fluid particles
are also subject to friction forces that depend on the relative velocities of the particles. As
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opposed to the friction force of the DPD model, there is a component of this forces, di-
rectly proportional to vij that breaks the conservation of total angular momentum. If one
wishes to respect this conservation law, then it is necessary to introduce in the model a spin
variable associated to every particle18. For a sufficiently large number of particles, the vi-
olation of angular momentum is negligible18. The terms in the entropy equation represent
heat conduction and viscous heating. The heat conduction term tries to reduce temperature
differences between particles by suitable energy exchange43, whereas the viscous heating
term ensures that the kinetic energy dissipated by the friction forces is transformed into
internal energy of the fluid particles.

The above model can be regarded as one more version of SPH, of which there are
many41–43, 45. However, to our knowledge this is the first model that strictly respects the
Second Law. In fact, it is possible to cast the above model into the the GENERIC frame-
work30, 38, which is a thermodynamically consistent and a rather universal framework for
non-equilibrium dynamics. As it is apparent from the GENERIC framework, the Second
Law is expressed through a dissipative matrix which is positive definite. The dissipa-
tive matrix actually governs the amplitude of thermal fluctuations through the Fluctuation-
Dissipation theorem. In this sense, it is not possible to have properly defined thermal
fluctuations in a model if the Second Law is not respected exactly. Because the set of de-
terministic equations (12) can be cast in the GENERIC form30, the introduction of thermal
noise into Eqs. 12 is reasonably simple. The stochastic version of Eqs. 12 is presented
below. One introduces a stochastic term mdṽi in the momentum equation and a stochastic
term TidS̃i in the entropy equation. They are given by

mdṽi =
∑
j

AijdWij ·eij

TidS̃i = −1

2

∑
j

AijdWij : eijvij +
∑
j

CijdVij (13)

We have introduced, for each pair i, j of particles, a matrix of independent increments of
the Wiener process dWij . In Eq. 13 we have also introduced an independent increment
of the Wiener process for each pair of particles, dVij . This term will give rise to the heat
conduction terms. Finally, the functions Aij , Cij might depend on the state of the system
through the positions and entropy of the particles. We postulate the following symmetry
properties, that will ensure momentum and energy conservation

dWij = dWji

dVij = −dVji
Aij = Aji

Cij = Cji (14)

The independent increments of the Wiener processes satisfy the following Itô mnemotech-
nical rules

dWαα′

ii′ dW
ββ′

jj′ = [δijδi′j′ + δij′δi′j ]δ
αβδα

′β′dt

dVii′dVjj′ = [δijδi′j′ − δij′δi′j ]dt
dWαα′

ii′ dVii′ = 0 (15)
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which respect the symmetries (14) under particle interchange. As a convention, su-
perindices refer to tensorial components while subindices label different particles. The
noise amplitudes Aij , Cij are fixed by the Fluctuation-Dissipation theorem30

Aij =

[
8kB

TiTj
Ti + Tj

5η

3

Fij
didj

]1/2

Cij =

[
4κkBTiTj

Fij
didj

]1/2

(16)

The final stochastic equations for the fluid particle model are given by30

dri = vidt

mdvi =
∑
j

[
Pi
d2
i

+
Pj
d2
j

]
Fijrijdt−

5η

3

∑
j

Fij
didj

(vij + eijeij ·vij) dt+mdṽi

TidSi =
5η

6

∑
j

Fij
didj

(
v2
ij + (eij ·vij)2

)
dt− 2κ

∑
j

Fij
didj

Tijdt+ TidS̃i (17)

where we have neglected, for the sake of the presentation, small terms of the order of
kB/Ci, where Ci is the heat capacity at constant volume of particle i. These terms are
important if one wishes to obtain exact energy conservation30.

We understand the SDPD model in Eqs. 17 as the “proper” DPD model valid for the
simulation of Newtonian fluids at mesoscopic scales when thermal fluctuations are impor-
tant. Microfluidics, colloidal suspensions and dilute polymeric solutions, for which a clear
Newtonian solvent exists, benefit from the SDPD formulation. The model in Eqs. 17 has
a similar simplicity as the original DPD model but with a sounded physical meaning. It
should be regarded as an SPH model with thermal fluctuations included in a consistent
way. The model solves all the conceptual problems of DPD mentioned in Sec. 3.1. In
particular, the pressure and any other thermodynamic information is introduced as an input
as in the MDPD model. The conservative forces of the original model become physically
sounded pressure forces. Energy is conserved and we can study transport of energy in the
system as in EDPD. The Second Law is satisfied. The transport coefficients are input of
the model. The range functions of DPD have now very specific forms (see Fig. 1), and one
can use the large body of knowledge generated in the SPH community to improve on the
more adequate shape for the weight function W (r)37. The particles have a physical size
given by its physical volume and it is possible to specify the physical scale being simu-
lated. In addition, the deterministic model is scale free, in the sense that by increasing the
number of particles above certain number does not change the results appreciably. One
should understand the density number of particles as a way of controlling the resolution
of the simulation. The amplitude of thermal fluctuations, however, scales with the size of
the fluid particles: large fluid particles display smaller thermal fluctuations, in accordance
with the usual notions of equilibrium statistical mechanics. While the fluctuations scale
with the size of the fluid particles, the resultant stochastic forces on suspended bodies are
independent of the size of the fluid particles and only depend on the overall size of the
object46. In this way, the same stochastic model allows to simulate a colloidal particle (that
will display Brownian diffusive behaviour due to the fluctuations of the solvent) or a ball in
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a quiescent swimming pool (that does not practically diffuse). This property of automatic
switching off thermal fluctuations with the scale of the problem is completely absent in the
original DPD model.

3.6 Internal Variables

We have seen that the SDPD model is obtained from the discretization of the contin-
uum Navier-Stokes equations, recast in the thermodynamically consistent framework of
GENERIC, that provides for a straightforward introduction of thermal fluctuations in a
respectful way. Of course, nothing refrains to use more complex continuum equations
that are traditionally used for the description of complex fluids. Usually, this requires to
introduce additional structural or order parameter variables associated to each fluid parti-
cle. In general, the continuum models of the GENERIC type for complex fluids typically
involve additional structural or internal variables that are coupled with the conventional
hydrodynamic variables. The coupling renders the behaviour of the fluid non-Newtonian
and complex. For example, polymer melts are characterized by additional conformation
tensors, colloidal suspensions can be described by further concentration fields, mixtures
are characterized by several density fields (one for each chemical specie), emulsions are
described with the amount and orientation of interface, etc. All these continuum models
rely on the hypothesis of local equilibrium and, therefore, the fluid particles are regarded
as thermodynamic subsystems. The physical picture that emerges from these fluid par-
ticles is that they represent “large” portions of the fluid and therefore, the scale of these
fluid particles is supramolecular. This allows one to study larger time scales than the
less coarse models where the mesostructures are represented explicitly through additional
interactions between particles (i.e. necklaces for representing polymers, spherical solid
particles to represent colloid, different types of particles to represent mixtures) . The price,
of course, is the need for a deep understanding of the physics at this more coarse-grained
level, which appears in the form of entropy and energy functionals depending on internal
variables and kinematic and dissipative matrices describing the complex coupling of the
internal microstructure and flow.

For example, in order to describe polymer solutions, we may take a level of CG in
which every fluid particle contains already many polymer molecules. This is a more
coarse-grained model than describing viscoelasticity by joining dissipative particles with
springs47. The state of the polymer molecules within a fluid particle may be described
either with the average end-to-end vector of the molecules48, 49, or with a conformation
tensor50. In this latter case, the continuum limit of the model leads to the Olroyd-B model
of polymer rheology. Another example where the strategy of internal variables is success-
ful is in the simulation of mixtures. Instead of modelling a mixture with two types of
dissipative particles as it is usually done in DPD, one may take a thermodynamically con-
sistent view in which each fluid particle contains the concentration of one of the species,
for examples see Refs. 51,52. These two examples show how one can address viscoelastic
flow problems and mixtures with a simple methodology that involves fluid particles with
internal variables. The idea can, of course, be applied to other complex fluids where the
continuum equations are known.
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4 Two Technical Points: Integrators and Boundary Conditions

4.1 Integrators

The DPD equations are a set of stochastic differential equations that, as such, require care-
ful consideration53. Because the conservative part of the dynamics has a Hamiltonian struc-
ture, it is natural to look for generalizations of the usual MD integrators, which are sym-
plectic and, therefore, have good energy conserving properties at large simulation times.
However, the fact that the dissipative friction is velocity dependent implies that the usual
Verlet algorithm needs to be reconsidered. Groot and Warren introduced a modification of
the Verlet algorithm for DPD15 that uses an intermediate velocity predictor in order to deal
with the velocity dependent dissipative forces, and Pagonabarraga and Frenkel introduced
the so called self-consistent integrator which is an implicit method that needs to be solved
iteratively, but has the advantage of being time reversible21. These integrators and some
variants were compared in Ref. 54 with the conclusion that the self-consistent integrator
produces much reduced numerical artifacts on the observables considered (temperature,
radial distribution function, and velocity correlations). Later, Shardlow introduced a split-
ting method that treats the dissipative forces in an implicit way, but in a pair-wise fashion.
This makes the method more efficient than the self-consistent method of Ref. 55. Further
comparisons between methods56 showed that the Sharlow integrator stands among the best
integrators for DPD. The major advantage of implicit methods relies on the fact that the
method is stable even in the large friction regime were the equations become stiff. Another
method to deal with the time-step problems of naive integrators for DPD is the Lowe-
Andersen thermostat57. Any dynamics having (2) as its equilibrium distribution is named
a thermostat, and we may speak of Eqs. 1 as the DPD thermostat when we use DPD just
to sample the equilibrium ensemble (2). The Lowe-Andersen thermostat has been slightly
modified by Peters58 in order to show that these thermostats are, essentially, implicit in-
tegrators of the original DPD equations, explaining why these methods may deal with
large integration steps and still recover faithfully the equilibrium ensemble (2). A num-
ber of momentum conserving thermostats exists now57–62. Methods similar to the splitting
method of Sharlow have been considered in Ref. 63 with an splitting with an iterative pro-
cedure, while the Trotter expansion used in the design of symplectic integrators is pursued
in Refs. 64–66. The value of these latter integrators is that they may naturally generalize
towards the formulation of the SDE emerging in models that, in addition to position and
momenta, include extra variables (as is the case for SDPD that includes a thermal variable,
or FPM that includes a spin variable). These quality integrators for the extended DPD
models need yet to be fully investigated.

4.2 Boundary Conditions

The full statement of a flow problem requires the specification of boundary conditions.
When DPD is used to model fluid flow, one needs to pay attention to this issue. In DPD the
boundary conditions are expressed in terms of external forces to the DPD that try to mimic
the effect of a wall in a liquid. Usually, solid walls are represented by “frozen” dissipative
particles, an approach already used in the first application of DPD67. The consideration of
the no-slip boundary condition at a wall was considered for the first time in Ref. 68, where
an effective force was analytically computed by taking the continuum limit of a particulate
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solid wall made of frozen dissipative particles. The method is not easily generalized to non-
planar walls, though, and for this reason keeping the solid walls made of frozen particles
still is the method of choice. The particulate nature of DPD usually leads to the creation of
inhomogeneous density profiles near walls, in a similar way as a molecular fluid structures
itself near hard walls. This is regarded as an artifact because macroscopic measurements
of the fluid viscosity may be affected by this layering. Consequently, remedies have been
devised. In Ref. 69 the authors propose an iterative method for specifying the density near
the wall, by adjusting a normal force on the particles near the walls. Adhesive walls for
the study of wetting have been constructed in the MDPD model70 by freezing a liquid
structured region to form the solid wall. The inhomogeneous structure of the wall together
with the interaction forces proposed reduce the amount of layering near the wall.

The boundary conditions on the surfaces of colloidal particles has been treated with
both methods, a continuum friction force29 and through the frozen particle method46. In
this latter case, a convenient way to impose no-slip boundary conditions is through the
assignment of fictitious velocities inside the frozen wall particles that ensure the correct
interpolation at the surface of the colloid, a method introduced in Ref. 71 in the SPH
context.

5 Microscopic Foundation of DPD

5.1 DPD for Unbounded Atoms

The SDPD mode, which in our view is the appropriate DPD model for modelling New-
tonian fluid flow, has been derived from a top-down approach by discretizing the Navier-
Stokes equations and ensuring thermodynamic consistency of the resulting discrete equa-
tions. The Navier-Stokes equations are already a CG model in which the atoms are elimi-
nated in favor of mass, momentum, and energy density fields. The derivation of the equa-
tions of hydrodynamics from the underlying Hamiltonian dynamics of the atoms is a well
studied problem that dates back to Boltzmann and the origins of kinetic theory. It still
deserves attention in that discrete versions of hydrodynamics, which is what we need in
order to simulate hydrodynamics, have been only recently obtained from molecular con-
siderations72–74. These latter works show how an Eulerian description of hydrodynamics
can be derived from the Hamiltonian dynamics of the underlying atoms, by defining mass,
momentum, and energy of cells which surround certain points fixed in space. However,
Lagrangian descriptions in which the cells move, are much more tricky to deal with. From
a continuum point of view, the rate of change of an infinitesimal volume moving with the
flow field satisfies the following equation V̇ = V∇ · v. If we define the density field
as ρ = m/V , the continuity equation simply tells us that the mass of a fluid particle is
constant75 – a strong argument to use in favor of a fixed mass of the fluid particles in the
discrete SDPD model. However, any definition of a fluid particle in terms of a moving re-
gion of space should have molecules entering or leaving the moving cells, something that
seems to be against the idea of constant mass fluid particles. Work remains to be done to
define the CG variables of a model for lagrangian fluid particles that is fully satisfactory.

Perhaps the earliest attempt to derive effective forces between CG particles represent-
ing a fluid from MD simulations was given in Ref. 76 where fluid particles were constructed
from a Voronoi tessellation whose centers were moving according to the underlying MD.
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An effective excluded volume potential was obtained from the radial distribution function
of the Voronoi centers. Using a similar idea the BLOBS method has been introduced in
Ref. 77 where an initial single blob moves according to the underlying dynamics and the
information about their dynamical correlations is compiled. Subsequently a system of N
blobs is constructed in order to reproduce the above correlations. Recently, another at-
tempt to obtain DPD from the underlying MD has been undertaken in Ref. 78 by using
the rigorous approach of the theory of coarse-graining. However, in order to construct the
“fluid particles” these authors constraint a collection of Lennard-Jones to move bounded
maintaining a specified radius of gyration. The fluid no longer is a simple atomic fluid
but rather a fluid made of complex “molecules” (the atomic clusters constrained to have a
radius of gyration) whose rheology is necessarily complex.

Our impression is that we still have not solved satisfactorily the problem of deriving
from the microscopic dynamics the dynamics of CG particles that capture the behaviour of
a simple fluid made of unbounded atoms. The best model from a conceptual point of view,
up to now, is the SDPD model that discretize the Navier-Stokes equations (which do have
been derived from MD) as its starting point.

5.2 DPD for Bounded Atoms

The situation is much more satisfactory when considering the CG dynamics of clusters
of atoms that are bounded together. In that case, the theory of coarse-graining7 (this is,
the Mori-Zwanzig formalism) does allows one to derive the equations of DPD from the
underlying molecular dynamics, by just simply considering a DPD particle as the center of
mass of the bounded atoms.

The first attempt to derive the DPD equations of motion from the underlying Hamil-
tonian dynamics was given in Ref. 79 for a very simple model of harmonic 1D lattice.
While the general idea was reflected there, the equations were derived for a model of a
solid, for which a number of issues concerning the non-Markovian nature of the descrip-
tion arise80–82. Mori-Zwanzig theory for deriving the effective dynamics of clusters of
bonded atoms has been used recently in order to derive the equations of DPD83, 84. The
idea is to group several atoms of parts of a molecule (or a whole molecule itself) into M
clusters, labeled with Greek indices. The µ-th cluster is made ofNµ atoms whose positions
and momenta are riµ , piµ where the index iµ runs from 1, · · · , Nµ, while the index µ runs
from 1, · · · ,M . The Hamiltonian of the system is

H(z) =

M∑
µ=1

Nµ∑
iµ=1

p2
iµ

2miµ

+ φ (18)

where miµ is the mass of the atom iµ and φ(q) is the potential energy.
At a coarse-grained level, we represent each cluster with just the position Rµ and

momentum Pµ of its center of mass. These relevant variables are the following functions
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of the atomic variables

Rµ(z) =
1

Mµ

Nµ∑
iµ=1

miµriµ

Pµ(z) =

Nµ∑
iµ=1

piµ (19)

where Mµ =
∑Nµ
iµ=1miµ is the total mass of the molecule µ. Once the CG variables are

selected, the Mori-Zwanzig formalism allows to obtain the dynamics of the CG variables.
The resulting closed set of stochastic differential equations for the evolution of the position
and momentum of the center of mass of cluster µ is given by84

dRµ

dt
= Vµ

dPµ

dt
= 〈Fµ〉R +

∑
ν

γµν(R,P)Vµν + kBT
∑
ν

∂γµν
∂Pν

(R,P) + F̃µ (20)

Here we use the shorthand notations R = (R1, . . . ,RM ), P = (P1, . . . ,PM ) and we
denote by 〈·〉R,P the equilibrium expectation conditional to fixed (R,P). The conditional
expectation force on cluster µ can be written as

〈Fµ〉R = − ∂V

∂Rµ
(R) (21)

where V (R) is the so called potential of mean force which is defined by

V (R) ≡ −kBT ln

∫
dz

1

Q
exp{βφ(z)}

∏
µ

δ(Rµ(z)−Rµ) (22)

By definition, the potential of mean force is actually a coarse-grained free energy.
The friction tensor is given by a Green-Kubo expression as

γµν(R,P) =
1

kBT

∫ ∞
0

dt〈δFµ exp {tR}δFν〉R,P (23)

where δFµ = Fµ − 〈Fµ〉 and Fµ is the total force acting on the molecule µ:

Fµ =
∑
ν

Fµν ≡
∑
ν

∑
iµjν

Fiµjν (24)

Here Fiµjν is the force that atom jν exerts on atom iν , and Fµν is the total force that
molecule ν exerts on molecule µ. The evolution operator exp {tR} describes a Hamilto-
nian dynamics constrained to produce the specified values of R,P84.

Finally, the stochastic force F̃µ is given in terms of a linear combination of Wiener
processes as, for example, Fµ =

∑
αBµαdWα(t)/dt with∑

α

BµαBνα = 2kBTγµν (25)
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This is the Fluctuation-Dissipation theorem for this problem. For a general form of the
friction tensor, in order to obtain of Bµα one would need to perform a Cholesky decom-
position of the friction tensor that may be time consuming (although the matrix problem,
with a linked list for the particles, is sparse).

The only non-trivial assumption that is required for the validity of Eqs. 20 is that the
time scale of evolution of the CG variables is much larger than the time scale of evolution
of its derivatives. This allows for a Markovian assumption and allows to interpret the above
equations as bona fide Ito stochastic differential equations. The structure of Eq. 20 is very
similar to the structure of DPD, in that conservative, friction forces depending on relative
velocities, and stochastic forces appear. However, several differences should be noted. The
potential of mean force V (R) is given by the explicit microscopic expression (22), which
is the usual definition for this quantity as the CG free energy. The scale and shape of the CG
potential is dictated by the level of coarse-graining selected (how many atoms constitute
the CG particle). The parabolic profile typical of DPD should be regarded as a very crude
approximation for the actual CG potential. Another big difference between the usual DPD
equations and Eqs. 20 is that the friction coefficient γµν(R,P) is, in fact, a friction tensor
that depends on the positions and momenta of all the molecules in the system and not only
on the distance |Rµ −Rν | of the pair as in DPD. Obviously, several approximations are
required in order to find tractable expressions for the friction tensor. A simple one is to
assume that the correlation between the forces on molecule µ and ν will depend on the
positions of these two molecules but will not depend much on the positions and momenta
of the rest of molecules. We thus introduce the following functional ansatz that was first
used by Akkermans and Briels85, 84

γµν(R,P) ≈ −γ⊥(Rµν)(1− eµνe
T
µν)− γ||(Rµν)eµνe

T
µν . (26)

The right-hand side of this equation only depends on Rµ and Rν and it is a general form for
a tensor that is invariant by rotations along the axis joining the particles µ, ν. Compatibility
of (26) with Eq. 23 then requires that

γ||(Rµν) = − 1

kBT

∫ ∞
0

dt〈(δFµ(t) · eµν)(δFν(0) · eµν)〉Rµν

γ⊥(Rµν) = − 1

kBT

∫ ∞
0

dt〈(δFµ(t) · e⊥µν)(δFν(0) · e⊥µν)〉Rµν (27)

With this approximate model for the friction tensor, the resulting friction forces are identi-
cal to the general friction forces of the FPM and SDPD models. For the case of bounded
atoms, the explicit Green-Kubo expressions provide one route to the explicit calculation of
the friction tensor. For this simple form of the friction tensor, the stochastic forces which
satisfy the Fluctuation-Dissipation theorem are given simply by those of the FPM18.

5.3 Methods to Obtain the Potential of Mean Force

Of course, the formal expression (22) for the potential of mean force does not allow to
compute explicitly this potential. Note that the potential of mean force is defined in the
high dimensional space of R and, therefore, a brute force sampling of the probability
distribution (the logarithm of the potential) is unfeasible, a phenomenon known as the
curse of dimensionality.
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There are many different methods for the calculation of approximate versions for the
potential of mean force. Most of them try to get a pair-wise potential of mean force, be-
cause they are much simpler to simulate at the CG level. Also, most of them formulate
a parametrized model for potential of mean force and aim at obtaining the parameters ac-
cording to several criteria. For example, one can use the Ornstein-Zernike equation that
relates the direct correlation function with the radial distribution function and use a clo-
sure (Percus-Yevick or Hipernetted Chain) to obtain the potential86. Refs. 87, 88 consider
an iterative adjustment of potential parameters by running CG simulations with the target
potential and updating the parameters in a way to reduce the difference between the tar-
get and model radial distribution functions. Also iterative methods like the inverse Monte
Carlo technique89, 90 or the Newton inversion method91, by matching thermodynamic prop-
erties92 or by using directly the underlying all-atom interactions through a force matching
procedure have been considered. In the latter case, the potential of mean force is obtained
by requiring that the actual forces between CG particles and the forces which are modelled
with a parametrized model are as similar as possible93–96. Recently, a very elegant proce-
dure has been introduced by Shell to obtain parametrized models of the effective potential
by using the concept of relative entropy97. While all the above methods may be termed as
variational in that a difference between a model and a target is minimized, a non-variational
approach is given in Refs. 78, 84, 98 where the idea is to compute the conditional expecta-
tion that defines the mean force on the CG particles through a constrained MD where the
CG particles remain fixed. Another approach is to consider a many-body potential of the
embedded atom form usually considered in MDPD99.

5.4 Methods to Obtain the Friction Tensor

As compared with the vast literature on the calculation of the potential of mean force be-
tween CG particles, the calculation of the friction between CG particles has received much
less attention. While the potential of mean force gives all the static properties at the CG
level, friction is crucial to obtain the dynamic aspects of the CG procedure84. To our knowl-
edge, the first calculation of the friction coefficient between to CG particles was given by
Akkermans and Briels in their consideration of a dimer CG version of a linear polymer98.
The same method of running constrained dynamics simulations that served to obtain the
potential of mean force allows to obtain the correlations of the fluctuating forces between
the centers of mass of the two beads of the dimer. This provides, from the Green-Kubo ex-
pression (23) the corresponding friction tensor. A similar methodology has been followed
in constructing the position dependent friction tensor between star polymer molecules84

and by Karniadakis’ group when dealing with the Lennard-Jones blobs bounded through
the radius of gyration78.

One should note that the Green-Kubo expression (23) provides a route to calculate the
friction tensor through a constrained dynamics. We have recently shown that the alternative
routes through the Einstein-Helfand relation, or the Onsager regression hypothesis, are
also feasible100 to compute the transport coefficient. In fact, trying to adjust the friction
coefficient in order to recover the short time dynamics of the momentum is as good (and
“microscopic”) as computing the Green-Kubo expression100. In this way, Refs. 101, 102
construct effective potentials from the radial distribution function and adjust the friction
parameters in order to fit the CG dynamics. While this may seem at first sight as “just
fitting” and less fundamental than the calculation of the Green-Kubo expression it is, in

461



fact, not so100. Very recently, we have introduced a generalization of Shell method in
order to obtain the best diffusion process that fits a CG signal generated from MD103. This
should allow, in principle, to recover both the potential of mean force and the friction
tensors simultaneously.

A general cautionary remark needs to be formulated on the validity of a CG description
for dynamics when the grouping of atoms into a CG particle gives few atoms per CG
particle. In this case, we do not expect that the time scales of the CG velocity and the CG
forces are clearly separated and, therefore, the Markovian assumption implicit in the Mori-
Zwanzig CG method fails. In the other limit of large groupings, the velocity time scale is
large because the center of mass of a big object moves much slower than its constituent
atoms, while the force, which is basically determined by collisions, vary in a fast time scale.
In this case the Markovian approximation is valid. When dealing with small objects, one
should be aware of non-Markovian effects. Gao and Fang present104 a proper CG of water
molecules following the lines of Ref. 84 and accounting for non-Markovian behaviour
by a simple rescaling of the overall friction in order to match diffusivity. The value of
this empiricism relies on the fact that viscosity turns out to be correct with this method.
However, the treatment of non-Markovian effects is an open area for more fundamental
research.

6 Conclusion

DPD was a very appealing model for the simulation of complex fluids and soft matter in
general, because of its simplicity and versatility. However, there has been always an un-
easy feeling about what is a dissipative particle really, despite its colorful descriptions as
representing many underlying atoms. The situation seems to be settled now and can be
summarized as follows. If you want to model unbounded atoms with moving CG particles,
then the best thing to do is to understand the dissipative particles as fluid particles (i.e.
thermodynamic subsystems flowing with the flow) for which a thermodynamically consis-
tent model based on the SPH methodology of discretizing Navier-Stokes equations exists.
The resulting DPD+SPH= SDPD model does not suffer from the limitations of the original
DPD model when modelling simple fluids. Of course, this requires that the fluid particles
“contain many atoms”, not just three or four. If one insists on working with a model of dis-
sipative particles where each dissipative particle represents “three water molecules”, there
is no theory that support the picture and, therefore, one should do whatever is necessary to
make sense of the simulation results.

On the other hand, if you want to model groups of bounded atoms with a dissipa-
tive particle, then there exists a solid theory for constructing the effective potentials and
frictions from the underlying molecular dynamics. Despite of this solid basis, however,
challenging technical problems remain in order to deal with the curse of dimensionality
imposed by the dependence of the effective potential and friction with respect to all the
CG variables of the system. Therefore, we still need to recourse to our best modelling
skills in order to tackle the construction of CG models of the DPD type for bounded atoms.
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74. P. Español, J.G. Anero, and I. Zúñiga, Microscopic derivation of discrete hydrody-
namics., The Journal of chemical physics, 131, no. 24, 244117, Dec. 2009.
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When simulating blood and the non trivial rheology arising in arbitrary flow conditions, one
needs to account for red blood cells as the majority components of the suspension. I will
discuss a methods to include the particulate nature of blood by introducing diffused particles.
In case we need to account for the near-field hydrodynamics, the model can be promoted to a
solid particle model, retaining the simplicity and robustness of the diffused model.

1 Introduction

Blood is the biological fluid of reference and hemodynamics is an active field of research,
both at fundamental level and for understanding the biomechanical causes and remedies
to cardiovascular diseases. For example, atherosclerosis is the leading cause of death in
western countries and the biomechanical origins of it relate to the disturbed flow patterns1.
Computer simulation provides a crucial methodology to study flow patterns with blood
modeled as a continuum. However, blood circulation entails several physical levels and
the usage of complex geometries, spanning from large-scale arteries to microcapillaries.
Depending on the scale, blood exhibits different physical behaviors, with visco-elastic
and shear-thinning response, at shear rates encountered inside large-scale arteries. The
ultimate reason for the non-trivial rheology resides in the corpuscular nature of blood. In
fact, more than 99 % in volume of blood is composed by plasma and red blood cells, where
in physiological condition, presents a large volume fraction of red blood cells (RBC), with
hematocrit level H ranging between 35 and 50 %.

Red blood cells or erythrocytes are globules with flexible biconcave discs of diameter
6 − 8µm, and resemble vesicles, as they are made by a membrane separating an internal
fluid composed by hemoglobins from the external plasma. However, the RBC shape is
maintained by a cytoskeleton composed of several proteins and thus RBCs are more rigid
than vesicles. In presence of a shear field, red blood cells present both a solid-like tumbling
and a vesicular motion with the attendant sliding of the membrane, the so-called tank
treading.

A detailed representation of RBCs is crucial to study microcirculation, a situation
where shape, deformability and near-field hydrodynamic response need to be accurately
accounted for. Recent computational models have been put forward to represent red blood
cells at this level, where the membrane and the internal fluid are explicitly represented2–8.
On the other hand, a different class of models target large scale representations of blood
usable in situations where the far-field hydrodynamics and the global rheological response
of blood are reproduced. In this lecture, I will discuss a model that enables studying blood
flows with a computational effort being a trade-off between physical fidelity and computa-
tional feasibility. I will discuss one such class, where red blood cells are treated as rigid or
quasi-rigid entities9, 10.
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I will address the issue of designing a robust physical representation of blood to be
used in large-scale conditions from a double perspective. The first one is more focused on
far-field hydrodynamic interactions and is provided by the Diffused Particle Model (DPM),
the second one is based on a version that ameliorates the near-field hydrodynamics and I
will call it the Solid Particle Model (SPM). Both models can be used successfully to mod-
ulate the fluid rheology together with accounting for cell crowding in proximity of the
vessel walls. The local structuring of RBCs has strong consequences on the endothelial
shear stress and other hemodynamical properties near the arterial walls, due to the inho-
mogeneous distribution of red blood cells and the interplay with the plasma dynamics.
The present notes constitute a synthesis of the two papers9, 11, where the two models were
discussed in independent ways.

2 Solvent Representation

In modeling the plasma-RBC suspension, I first consider the plasma solvent, a water-like
Newtonian fluid that can be treated as a continuum. Among other computational frame-
works, I will focus on the Lattice Boltzmann (LB) method, as a robust and well-behaved
computational technique that reproduces the Navier-Stokes equations for an incompress-
ible fluid, reading

ρ (∂tu + u · ∂u) = −∂p+ η∂2u+ G (1)

where ρ and u are the plasma density and velocity, p is the pressure and η is the dynamic
viscosity. G is the body force acting on the fluid and we will use this term to include drag
forces arising from the embedded RBCs and acting on the plasma fluid element.

The reasons for choosing LB as the embedding methodology are multiple. At first, LB
is a compact and simple scheme to handle plasma both in its theoretical foundations and
implementational aspects. Second, LB does not rely on a direct solution of the Navier-
Stokes dynamics, but rather circumvents it by solving a minimal and effective micrody-
namics. Third, LB is rather tolerant in accommodating stiff hydrodynamic forces arising
from the suspended particles, an aspect that confers good robustness in a variety of flow
conditions (an issue that is much more delicate when dealing with direct Navier-Stokes
solvers). Finally, LB reproduces the quasi-incompressible Navier-Stokes dynamics at vir-
tually arbitrary Reynolds numbers and in arbitrary geometries. The physiological condi-
tions of Reynolds. 2000 and shear rates. 500 s−1 can be accessed in simulation without
posing limitations in terms of feasibility. A more in-depth discussion on the method can
be found in Ref. 12.

The LB method is based on a microdynamics as prescribed by kinetic theory. The key
idea is to evolve the single-particle distribution function f(x,v, t) encoding the probability
of having a fluid molecule at position x, moving with velocity v at time t. In discrete terms,
plasma is represented over a cartesian mesh having cubic symmetry and the distribution is
subdivided in velocity space in elements called populations, representing the probability
of moving with discrete speeds cp from a mesh point to its mesh neighbors. Therefore,
populations associated to cp are labelled with the subscript p, as f(x,v, t)→ fp(x, t). By
using a more precise formulation, the distribution function is expanded as a second-order
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Hermite polynomial in velocity space, complemented by Gauss-Hermite quadratures to
evaluate the populations moments that correspond to the hydrodynamic fields13.

The minimal form of LB is based on a relaxational dynamics of the populations towards
the local statistical equilbrium, that is, the Maxwell-Boltzmann distribution. This type of
dynamics is called the Bhatnagar-Gross-Krook (BGK) equation and reads14, 12

∂tf + v · ∂f +
G

m
· ∂vf =

1

T
(feq − f) (2)

where T is a characteristic relaxation time and m the fluid mass, that we take to be unity
from now on (and interchange the name of the body force and acceleration as G). It should
be noticed the simple derivative in velocity space to account for the body forces, that is, a
term descending from the well-known Liouvillean operator acting on the distribution.

The discrete form of the BGK dynamics over a timestep h reads

fp(x + hcp, t+ h) = f∗p (x, t) (3)

with f∗p (x, t) being called the post-collisional population,

f∗p = (1− h

T
)fp +

h

T
feqp + h∆fdragp (4)

and where the term ∆fdragp accounts for the presence of suspended RBC that act as body
forces on the plasma in a hydrokinetic way. The time evolution is given by an upwind
Euler propagation, i.e. at first sight this implies a first-order accurate discrete evolution.
But this is not completely true, since given the special nature of the streaming operator,
the evolution can be made second-order accurate with a slight modification of the basic
Euler scheme, as shown later on. Moreover, feqp is the Maxwell-Boltzmann equilibrium
expressed as a second-order low-Mach expansion in the fluid velocity u,

feqp = wpρ

[
1 +

u · cp
c2

+
(u · cp)2 − c2u2

2c4

]
(5)

Eqs. 3-4 encode the effect of streaming, that is, the motion of free particles along
straight trajectories, together with the solvent-solvent and the solvent-solute “molecu-
lar” collisions. The plasma kinematic viscosity ν relates to the relaxation time T via
ν = c2(T − h/2), where c is the plasma sound speed. A detailed theoretical analysis
based on the Chapman-Enskog multiscale analysis indicates that the LB dynamics recov-
ers Newtonian rheology in the macroscopic space/time limit.

For LB a popular choice is to employ the D3Q19 lattice scheme, where one has
c = 1/

√
3 , and wp stands for a set of normalized weights with p = 0, ..., 18, be-

ing equal to wp = 1/3 for the population corresponding to the null discrete speed
c0 = (0, 0, 0), wp = 1/18 for the ones connecting first mesh neighbors c1,...,6 =
(±1, 0, 0), (0,±1, 0), (0, 0,±1), and wp = 1/36 for second mesh neighbors, c7,...,18 =
(±1,±1, 0), (±1, 0,±1), (0,±1,±1).

Concerning the palsma-particle interactions, the drag term has the following general
expression

∆fdragp = hwpρ

[
G · cp
c2

+
(G · cp)(u · cp)− c2G · u

c4

]
(6)

being the corresponding second-order Hermite expansion of the body force G13.
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The local plasma density ρ, speed u and momentum-flux tensor P, are given by the
following Gauss-Hermite quadratures of the populations

ρ =
∑
p

fp (7)

ρu =
∑
p

fpcp (8)

P =
∑
p

fpcpcp (9)

These quadratures can be slightly modified in order to ensure second order space/time
accuracy of the LB algorithm, being equivalent to a trapezoidal temporal integration15.
The modification of Eq. 8 reads

ρu =
∑
p

fpcp +
h

2
ρG (10)

The kinetic representation of the solvent offers other important advantages. One of
them regards the off-diagonal component of the momentum-flux giving the deviatoric shear
stress σ. In the LB scheme, this is related to the non-equilibrium component of the popu-
lations and can be computed locally, that is, without using finite difference schemes. The
following expression holds

σ ≡ νρ
(
∂u + ∂uT

)
= − 3ν

c2T
∑
p

cpcp
(
fp − feqp

)
(11)

On the other hand, due to the lack of a local kinetic definition of the antisymmetric com-
ponent of the displacement tensor ∂u and the fluid vorticity, these are evaluated via finite-
differences.

The local knowledge of the stress tensor is important in hemodynamics because one im-
portant indicator of cardiovascular disease is the Endothelial Shear Stress (ESS), a quantity
related to the biomechanical disturbances occurring on the vascular endothelium due to the
shearing forces induced by the plasma. The ESS is quantified by the second invariant of

the stress tensor as ESS =
√

1
2σ : σ.

3 Diffused Particle Model (DPM)

Let us now turn to designing a workable model for red blood cells. The DPM is a simple
and effective way to include the hydrodynamic interactions mediated by the surrounding
plasma solvent. As will become apparent in the following, fluid-particle exchange mecha-
nisms can be entirely handled at kinetic level, that is, governed by appropriate collisional
terms that avoid to compute hydrodynamic forces and torques via the Green’s function
method, as employed in Stokesian dynamics16, a fundamental advantage of hydrokinetic
modeling, resulting in an order N computational cost (in sharp constract with Stokesian or
Brownian dynamics).

The key idea of DPM is to represent a single cell as an effective diffused body without
handling explicitely the globule membrane. Let us first remark that we need to mimick the
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inner fluid carried by cell since this contributes significantly to the dissipation of energy
by the suspension, with a steep raise in the apparent viscosity with the hematocrit level.
One simple way to incorporate the viscosity contrast between the inner and outer fluid is
to evolve the solvent with the LB method as a single fluid. In addition, we consider a local
enhancement of the LB fluid viscosity within the RBC shape according to the following
BGK relaxation time

T (x) = T0 + ∆h
∑
i

θ(x−Ri) (12)

where T0 corresponds to the viscosity of pure plasma and θi is the globule characteristic
function. The prefactor ∆ is a viscosity enhancement factor that can be tuned at will to
change the viscosity of the inner fluid.

A RBC is then represented as a diffused ellipsoidal particle, with massM , position Ri,
velocity Vi, angular velocity Ωi, and instantaneous orientation given by the matrix

Qi =

 n̂x,i t̂x,i ĝx,i
n̂y,i t̂y,i ĝy,i
n̂z,i t̂z,i ĝz,i

 (13)

where n̂i, t̂i, ĝi are orthogonal unit vectors, such that QT
i Qi = 1. The orthogonal ma-

trix Qi transforms between the body and the laboratory frame via v′ = Qiv, where the
primed and unprimed symbols stand for laboratory and body frames, respectively. The
tensor of inertia, Ii, is diagonal in the body frame and transforms to the laboratory frame
according to I′i = QiIiQT

i . In the sequel, we shall drop the prime symbol to ease the no-
tation and implicitly mean that the translational motion is handled in the laboratory frame,
where the rotational motion is handled in the body frame. We collectively denote the roto-
translational state by the symbol Γi ≡ (Ri,Qi,Vi,Ωi).

We introduce an auxiliary function to account for the shape and orientation of the
suspended body and choose the following expression, as borrowed from the immersed
boundary method17,

δ̃(x,Qi) ≡
∏

α=x,y,z

δ̃α[(Qix)α] (14)

with

δ̃α(yα) ≡


1
8

(
5− 4|yα/ξα| −

√
1 + 8|yα|/ξα − 16y2

α/ξ
2
α

)
|yα/ξα| ≤ 0.5

1
8

(
3− 4|yα|/ξα −

√
−7 + 24|yα|/ξα − 16y2

α/ξ
2
α

)
0.5 < |yα/ξα| ≤ 1

0 |yα|/ξα > 1
(15)

and ξα being a set of three integers, one for each cartesian component α = x, y, z, rep-
resenting the ellipsoidal radii in the three principal directions. The shape function has
compact support and for ξx = ξy = ξz = 2 generates a spherically symmetric diffused
particle with a support extending over 64 mesh points. Given that we handle one RBC via
a single shape function, the computational cost of a suspended RBC is proportional to the
size of the support in the three cartesian directions.

In this computational model, the particle shape function has two important properties,
it is normalized when summed over the cartesian mesh points x,

∑
x δ̃(x−T) = 1 for any

continuous displacement T, and obeys the property
∑

x(xα − Tα)∂β δ̃(x−T) = −δαβ .
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Figure 1. The two types of motion considered in modeling a RBC in a linear shear field, the solid-like, tumbling
or flipping coin motion (upper panel), and the vesicular, tank-treading motion (lower panel), where two material
points on the RBC membrane move at fixed body orientation.

The translational response of the suspended body is designed according to the RBC-
fluid exchange kernel

φ(x,Γi) = −γT δ̃(x−Ri,Qi) [Vi − u(x)] = −γT δ̃i (Vi − u) (16)

where γT is a translational coupling coefficient and where the short-hand notation
δ̃i ≡ δ̃(x−Ri,Qi) has been introduced.

The body rotational response has different origins and can be analyzed by considering
the general decomposition of the deformation tensor in terms of purely elongational and
rotational terms

∂u = e+ ρ

where e = 1
2 (∂u + ∂uT ) is the symmetric rate of strain tensor, related to the dissipa-

tive character of the flow, and ρ = 1
2 (∂u − ∂uT ) is the antisymmetric vorticity tensor,

which bears the conservative component of the flow and is related to the vorticity vector
ω = ∂ × u = ε : ρ, where ε is the Levi-Civita tensor18. The rotational component of the
deformation tensor gives rise to a solid-like tumbling motion, where the rotational and
elongational one give rise to the vesicular, tank treading motion, as illustrated in Fig. 1.
Consequently, at rotational level, the DPM experiences two distinct components of the
torque. The first one arises from the coupling between the body motion and the fluid vor-
ticity, that we represent by the following rotational kernel

τA(x,Γi) = −γRδ̃(x−Ri,Qi) [Ωi − ω(x)] = −γRδ̃i (Ωi − ω) (17)

where γR is a rotational coupling coefficient and the superscript A stands for antisymmet-
ric. This term depends on the body shape and orientation via the shape function and, in a
linear shear flow, generates angular motion at constant angular velocity.
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The elongational component of the flow contributes to the orientational torque for bod-
ies with ellipsoidal symmetry, being zero for spherical solutes19. By defining the stress
vector tσ = σ · n̂, where n̂ is the outward normal to the surface of the DPM, we replace
the surface normal with the vector spanning over the entire volume of the diffused particle,
n̂ = ∂δ̃/|∂δ̃|. The associated torque is represented in analogy with the torque acting on
macroscopic bodies18, by the kernel

τS(x,Γi) = αδ̃it
σ × (x−Ri) (18)

where α is a parameter to be fixed and the superscript S is mnemonic for the symmetric
contribution of the flow. As shown in the following, the elongational component of the
torque includes an independent contribution arising from tank treading that will allow us
to tune the parameter α based on known data on the tumbling to tank treading transition.

The hydrodynamic force and torque acting on the DPM are obtained via integration
over the globule spatial extension. Owing to the discrete nature of the mesh, the integrals
are written as discrete sums,

Fi =
∑
x

φ(x,Γi) = −γT (Vi − ũi) (19)

TA
i =

∑
x

τA(x,Γi) = −γR(Ωi − ω̃i) (20)

TS
i =

∑
x

τS(x,Γi) (21)

where

ũi ≡ δ̃i ? u =
∑
x

δ̃iu (22)

ω̃i ≡ δ̃i ? ω =
∑
x

δ̃iω (23)

are smeared hydrodynamic fields and the symbol ? denotes convolution over the mesh.
The action of the forces Fi and torques Ti = TS

i +TA
i are counterbalanced by opposite

reactions on the fluid side. Conservation of linear and angular momentum in the composite
fluid-particle system preserves the basic symmetries of the microdynamics and produces
the consistent hydrodynamic response20. The action of forces and torques on the fluid
populations are expressed according to the following expression

G = −
∑
i

{
Fiδ̃i +

1

2
Ti × ∂δ̃i

}
The two exchange terms arising from the translational and rotational back-reactions pro-
duce distinct modifications of the fluid velocity and vorticity. Some algebra shows that
every suspended body preserves mass and linear momentum in the composite fluid-RBC
system since

∑
x ∆u =

∑
x

∑
p ∆fpcp = −Fi. Similarly, any suspended body preserves

the total angular momentum, since∑
x

∆ω =
∑
x

∑
p

∆fpcp × (x−Ri) =
1

2

∑
x

(
Ti × ∂δ̃i

)
× (x−Ri) = −Ti (24)
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where we have used the Lagrange rule, a× (b×c) = (a ·c)b− (a ·b)c and the properties
of the shape function.

Tank Treading is the motion that arises from the sliding of the surrounding membrane
when subjected to a shearing flow. It can be visualized by considering a material point
anchored to the RBC membrane and moving in elliptical orbits while maintaining fixed
the orientation of the RBC with respect to the shearing direction (see Fig. 1). The physical
parameters controlling tank treading are the ratio of viscosity between plasma and the inner
fluid entrained within the RBC, the shape of the RBC and the shear rate γ̇21. It is essential
to include tank treading as it acts to orient cells with a privileged angle with respect to
the flow direction. In proximity of the vessel walls, the fixed orientation induces a net
lift force proportional to γ̇ that pushes the globule away from the walls22. Lift forces,
arising from either single-body or many-body effects, are thought to induce the Farhaeus-
Lindqvist phenomenon, the drop of blood viscosity in vessels of sub-millimeter diameters,
an effect with far-reaching consequences in physiology23.

In the general case, tank treading takes place in an apparently decoupled fashion from
tumbling, as vorticity and elongational contributions have different origins. However, the
motion of the rigid-body RBC is partially compensated by the movement of the surround-
ing membrane and thus effectively couples tumbling and tank treading via the instanta-
neous orientation of the globule. At small values of the viscosity ratio, orientational torques
prevail over the rotational ones and pure tank treading motion with a fixed RBC orientation
is observed.

In general, the torque acting on a RBC can be decomposed into three separate compo-
nents. The first component is due to the angular motion of RBC in a quiescent fluid and
produces a frictional torque given by −γRΩ, where γR is a phenomenological coefficient
that can be identified with the one introduced in Eq. 17. The second component is due to the
torque from the shearing fluid on the quiescent RBC and for a quiescent membrane, being
related to the vorticity component of the flow. The effect of tank treading is determined by
considering the local frame moving together with the material point at velocity VTT and
with the infinitesimal membrane element experiencing a force dFTT ∝ VTT and torque
τTT =

∮
dFTT × (x−R). Consequently, tank treading couples to both the rotational and

elongational flow components and results in a net torque with the same angular symmetry
of the mechanism associated to the rigid body response. In the DPM, the presence of the
cellular membrane is not explicitly considered but tank treading is controlled by tuning the
intensity of the elongational torque via the adimensional prefactor α of Eq. 18.

To recap, the DPM is based on the body forces and torques acting on the RBC rather
than on surface forces by a proper decomposition of the translational, tumbling and orien-
tational components of the flow. Thus, the suspended cells are active scalars with hydro-
dynamic shape that is fixed and ellipsoidal. Clearly, the eccentricity of the RBC can be
tuned at will. For example, by choosing ξx = 1 and ξy = ξz = 2, this corresponds to
volume V ' 134, surface S ' 139 and reduced volume v ≡ 3V

4π(S/4π)3/2
' 0.87, to be

compared with v = 0.65 for human RBCs. Finally, in the DPM shape fluctuations can be
also introduced by following the analysis of the Maffettone-Minale model24, by allowing
volume-preserving deformations while still maintaining the ellipsoidal symmetry;

In summary, the main assumption of the DPM, i.e. the neglect of shape fluctuations, is
largely compensated by its main strength, the possibility to handle large-scale systems of
physiological relevance with state-of-the-art computer hardware. This is a major point of
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the model that will not be addressed in detail here, but has been discussed in Refs. 25–27.
I will now discuss some numerical results that provide a bird-eye view on the properties

featured by the DPM.
The frictional response of a single RBC in plasma is analyzed by computing the Stokes

response of an oblate ellipsoidal particle having two possible orientations with respect to
the motion direction. For translational displacement, these are the frontal and side-wise
motions. For the rotational motion, these correspond to spinning around two principal di-
rections corresponding to the smallest and largest radii. As shown in Ref. 28 for a model
of suspended point-like particles, the effective mobility is given by the sum of two compo-
nents, the mobility associated to the bare frictional parameters, γT and γR, and the effect
of the hydrodynamic field induced on the surrounding solvent that sustains the motion by
increasing the particle roto-translational mobilities. In addition, the hydrodynamic compo-
nents to mobility contains a Stokes-like component that is renormalized by the presence of
the numerical finite-spacing mesh28.
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Figure 2. Translational and rotational mobilities as a function of the coupling parameters γT and γR. Circles
correspond to frontal (filled symbols) and lateral translation (open symbols). Squares are for rotations around the
smallest principal radius (filled symbols) and around the largest principal radius (open symbols). The lines are
guides for the eye.

Fig. 2 shows the computed particle mobilities as a function of the frictional parameters
γR and γT for a RBC of mass M = 10 and inertia Ix,y,z = 1000 (all data are expressed in
lattice units unless otherwise stated). At infinite friction, the intercepts correspond to the
mesh-induced spurious frictional forces. By associating a residual hydrodynamic radius
to frontal and side-wise motion, respectively, one finds that the residual radius is directly
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proportional to the size factor ξα governing the shape function. In addition, the residual
Stokes radii are ameshT =

MγmeshT

6πνρ = 0.06 and 0.03 to frontal and side-wise motion and
thus are much smaller than the mesh spacing (being ∆x = 1 in lattice units). Thus modu-
lating the hydrodynamic response to achieve a bulkier suspended body requires increasing
the coupling parameter, of the order of γT ∼ 10 to have a Stokes radius of order one. A
back-of-the-envelop stability analysis shows at most LB can handle a coupling coefficient
γT < 0.5 before breaking down, therefore with the DPM we always end up with a tiny
hydrodynamic radius. Luckily this is now dramatic, since the far-field hydrodynamics is
going to be correctly reproduced.

For angular motion, the intercepts correspond to the residual rotational radii and the
mesh-induced friction is larger than the translational counterpart (in fact, comparable to
the mesh spacing) and exhibits a weak dependence on the direction of spinning direction,
so that it can be considered independent on the latter.

The non-Newtonian behavior of the suspension is further exhibited by the velocity
profiles of RBC for different hematocrit levels and vessel diameters, as shown in Fig. 3A.
As the hematocrit level increases, the Poiseuille-like parabola modifies into flatter profiles
next to the vessel centerline and in a large extension of the channel, whereas in proximity
of the walls, the profiles have large slopes and strong dissipation, in particular for the
narrower vessels.
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Figure 3. Panel A: velocity profiles for vessel radius of 10 (upper panel), 25 (mid panel) and 50µm (lower
panel). Data correspond to hematocrit levels of 35% (solid lines) and 0% (dashed lines). Panel B: relative
viscosity in a channel of radius 50µm for different hematocrit levels as compared to the experimental data of
Pries et al.29(solid curve). Data are for the enhanced dissipation mechanism of Eq. 12 with ∆ = 2 (circles) and
without enhancement (∆ = 0) (squares).

The viscosity of the suspension for a cylindrical channel of radius 50µm is reported in
Fig. 3B, where the relative viscosity is ηrel = ηapp/η0, with ηapp being the apparent vis-
cosity measured in the channel at finite hematocrit and η0 the viscosity in the same channel
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Figure 4. Size dependence of the cell-free layer with the vessel diameter and hematocrit level of 10 % (dia-
monds), 20 % (squares) and 50 % (circles), as compared to the experimental data of Bugliarello and Sevilla30

(star symbols). The lines are guides for the eye. Inset: Radial density profiles of RBC, for R = 10µm (solid
line) and R = 20µm (dashed line), illustrating the cell-free layers in proximity of the vessel wall.

at zero hematocrit. The figure also reports the data on viscosity by setting the enhancement
factor of Eq. 12 to ∆ = 0. The latter produce a weak modulation of viscosity with hema-
tocrit, while the data with ∆ = 2 exhibit an excellent agreement with the experimental
results of Ref. 29.

A crucial feature of blood circulation is the decrease of viscosity in a cylindrical vessel,
as the vessel radius falls below 100µm, namely, the Farhaeus-Lindqvist effect23. This
effect is ascribed to the formation of a cell-free layer in proximity of the vessel walls.
The origin of such depletion is still uncertain but the lateral forces that push the RBCs
away from the vessel walls are retained to have different causes, such as tank treading
and cell deformation22, adhesive properties of RBC or shear-induced migration. In the
current version of our model, we do not probe the effects of cell deformation. However,
the simulation reveals a distinct RBC depletion in proximity of the walls, as shown in
Fig. 4. The numerical results reproduce the experimental data quite well, lending good
confidence in the numerical model at vessel diameters below the 100µm radius.

We apply the DPM to physiological conditions by considering a realistic bifurcating
vessel at 50% hematocrit level, as depicted in Fig. 5A. The bifurcation is extracted as part
of a coronary arterial system31, and is made of a parent vessel of radius ∼ 100µm and
one daughter branch having approximately the same size of the parent vessel, and a second
daughter branch of radius ∼ 80µm. As the snapshot in Fig. 5B reveals, RBCs organize
in several different ways throughout the bifurcation and also depending on the value of the
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A B1 B2 B3

Figure 5. Panel A: detail of the bifurcating vessel showing the organization of RBCs at hematocrit of 50 % and
average shear rate of 80 s−1. Panels B1, B2, B3: time-averages of shear stress for pure plasma (B1), hematocrit
level of 35 % (B2) and 50 % (B3).

shear rate (data not shown). The local organization of RBCs in rouleaux is visible, the
typical stack often observed in static or flow conditions, and mostly destroyed as the shear
rate increases.

The uneven distribution of RBCs, with the attendant stagnation and persistence of
rouleaux in specific regions, can have significant impact on the distribution of shear stress.
In particular, low levels of shear stress, as due to disturbed flow patterns and stagnation
regions, trigger the growth of plaques. Fig. 5B illustrates the distribution of shear stress
for different hematocrit levels. The plot reveals the strong effect of the RBCs throughout
the system and in particular the great fluctuations in one daughter vessel. While the overall
shear stress distribution is somehow preserved at different hematocrit levels, important lo-
cal modifications are induced by RBCs. In particular, in proximity of the vessel shoulder,
the RBC structuring induces smaller values of the shear stress, followed by larger values
next to the inner side of the bifurcation.

4 Solid Particle Model (SPM)

One limitation of the DPM is the fact that the fluid-particle body forces are unable to expell
the solvent streamlines from entering the particle extension. This is a clear consequence
of the diffused nature of the particle (in fact the DPM is a refined version of a point-like
particle) and being in line with the idea of reproducing only the far-field hydrodynamic
beviour, akint to the Rotne-Prager level of hydrodynamics20.

One possible way to imposing no-slip boundary conditions at the particle surface is to
explicitly reproduce the particle-plasma interface. A popular scheme is to adapt the model
introduced by A.J.C. Ladd used to study colloids32, where the suspended body is repre-
sented as a solid boundary moving within the solvent. An extension of this technique to
particle with ellipsoidal shape was presented in Ref. 10. This scheme reproduces hemorhe-
ology to high accuracy. One limitation of such method, however, is the fact that the particle
surface is a given by a staircased representation, following the underlying cartesian mesh.
As RBCs move and rotates in the continuum, the staircased representation changes accord-
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ingly, with a variable number of mesh points that enter and exit the particle extension. To
avoid numerical artifacts arising from such staircased representation, and in particular any
spurious forces and numerical instability, each RBC should contain generally a rather large
(∼ 100) number of mesh points, resulting in a substantial computational overhead.

We now discuss a model that is somehow a trade-off between the DPM and Ladd’s
model: i) it circuments the harsh staircased representation, ii) retains the simplicity of
DPM and iii) yet serves for taking a closer look at the hydrodynamic field. The idea is
to promote the DPM to a solid particle model (SPM). Again, we take a rigid particle for
simplicity and, in addition, we consider a spherical particle as a reference, but other shapes
can be used with minor modifications of the scheme.

When considering the finite extension of the body, one crucial property of the fluid-
body coupling is that it cannot be expressed as a direct force field. In fact, any localized
force field acting in the particle region creates a current outside the particle extension with
no physical meaning. This is exemplified by a body in a fluid at rest. If a force acts to repel
the fluid momentum out of the particle, it creates a persistent current that extends radially
away from the particle center. Instead, we actually need a reaction force being active only
in flow conditions by creating an exclusion of the streamlines from the body region.

At first, let us consider the body as a rigid body of infinite mass and with local velocity
field

~W (~x) = Θξ(~x)
[
~V + ~ω × (~x− ~R)

]
(25)

where θξ(~x) ≡ θ(|~x − ~R| − ξ) is the characteristic function of a sphere of radius ξ. In
the continuum limit, the force acting on the particle is written as the following surface
integrals over the particle spherical surface S as ~F drag =

∮
S
~t(~x)d~x and for the torque,

~T drag =
∮
S
~t(~x)× ~xd~x. Here ~t = −pn̂ +←→σ · n̂ is the vector component of the stress

tensor and n̂ is the outward normal to the spherical surface.
Let us stipulate that the drag force on the fluid has the form

~G(~x) = −θξ(~x)~λ(~x) (26)

where ~λ is a Lagrange multiplier whose value is still undetermined. The streaming step,
Eq. 3, can be decomposed as fp(~x + h~cp, t + h) = f

∗(0)
p (~x, t) + ∆fdragp (~x, t) where

f
∗(0)
p (~x, t) is the uncorrected post-collisional contribution, i.e. the fluid populations in ab-

sence of the suspended body and . Similarly, the fluid post-streaming velocity is expressed
as ~u(~x, t) = ~u(0)(~x, t) + h~G(~x, t). In the following, we shall drop the dependence on ~x to
ease the notation, unless otherwise expressed.

The reaction force has the form of a contact force whose value is derived by match-
ing the corrected fluid velocity, as obtained after the streaming phase, to the particle one.
By exploiting the identity θ2

ξ = θξ, the Lagrange multiplier is found to have the form
~λ = 1

h

(
~u(0) − ~W

)
and the fluid corrected velocity reads

~u = ~uNoSlip ≡ (1− θξ)~u(0) + θξ ~W (27)

that matches the body velocity field at the surface and inside the body domain, that is, the
no-slip boundary condition.
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We now consider a smooth suspended body of infinite mass and approximate the Heav-
iside function as a smooth shape function

θ̃
(k)
ξ (a) = 1−

[
1− δ̃ξ(a)

]k
(28)

with k being an integer parameter that controls the smoothness of the particle,
sincelimk→∞ θ̃

(k)
ξ (a) = θξ(a). The body hydrodynamic shape follows the shape function

θ̃
(k)
ξ , being 1 inside the body, 0 outside, and decaying smoothly to zero at the body-fluid

interface, that is, with a small penetration of the fluid at the interface for finite k.
The reaction force (26) can be approximated by the following iterative correction of

the fluid velocity

~u(1) = (1− δ̃ξ)(~u(0) − ~W ) + ~W

...

~u(k) = (1− δ̃ξ)(~u(k−1) − ~W ) + ~W = (1− θ̃(k)
ξ )~u(0) + θ̃

(k)
ξ

~W (29)

that converges to the sought no-slip solution (27) for a sharp body, i.e. limk→∞ ~u
(k) =

~uNoSlip. In other words, the function δ̃ξ allows to construct incremental and systematic
corrections to the fluid velocity as successive sweeping steps and the original problem of
handling the boundary contact force at sharp body-fluid interface is rewritten as a volume
reaction force within the extension of a smooth body.

On the body side, force balance is such that the body experiences a drag force

~F drag =
∑
~x

∆x3ρ(~x)~G(~x) =
∑
~x

∆x3

h
ρ(~x)θ̃

(k)
ξ (~x)

[
~uo(~x)− ~W (~x)

]
(30)

together with a torque given by

~T drag =
∑
~x

∆x3ρ(~x)~G(~x)× (~x− ~R)

=
∑
~x

∆x3

h
ρ(~x)θ̃

(k)
ξ (~x)

[
~uo(~x)− ~W (~x)

]
× (~x− ~R) (31)

The case of a body of finite mass is constructed along similar lines. In this case, how-
ever, the fluid and body velocities are corrected simultaneously. This effectively introduces
a non-local coupling between fluid elements that are solved by inversion of a linear prob-
lem. To see this, let us first consider the forces on the body and add the drag force besides
the mechanical force ~Fmech as

M
d~V

dt
= ~F tot ≡ ~Fmech +

∑
~x

∆x3ρ(~x)θ̃
(k)
ξ (~x− ~R)~Λ(~x) (32)

and the drag torque enters the rotational dynamics as

I
d~ω

dt
=
∑
~x

∆x3ρ(~x)θ̃
(k)
ξ (~x− ~R)~Λ(~x)× (~x− ~R) (33)

where the unknown ~Λ is yet to be determined.
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Let us consider as a reference the Velocity Verlet propagation of the particle position,
velocity and angular velocity. The unknown ~Λ is obtained at each update of the particle
velocity to correct for both the fluid and the body velocity. By focusing on the first half of
the velocity update, the equation to correct the fluid velocity locally is

~u(~x, t+
h

2
) = ~u(0)(~x, t)− h

2
θ̃

(k)
ξ (~x− ~R(t))~Λ(~x) (34)

and similarly for the particle velocity

~W (~x, t+
h

2
) = ~W (0)(~x, t+

h

2
) +

h

2M

∑
~x′

∆x3ρ(~x′)θ̃
(k)
ξ (~x′ − ~R(t))~Λ(~x′) (35)

so that the following expression holds

θ̃
(k)
ξ (~x− ~R)~Λ(~x) +

1

M

∑
~x′

∆x3ρ(~x′)θ̃
(k)
ξ (~x′ − ~R)~Λ(~x′) =

2

hM
(~u(0)(~x)− ~W (0)) (36)

This is a linear system for the unknown ~Λ whose solution is obtained, for example, with
few Jacobi iterations. Finally, the obtained value for ~Λ is used to correct the fluid velocity
and the particle translational and rotational velocities. By employing a simple Euler update
for the angular velocity, after each update of the particle position and once the value of ~Λ
is determined, the angular velocity is updated as

~ω(t+ h) = ~ω(t) +
h

I

∑
~x

ρ(~x)θ̃
(k)
ξ (~x− ~R(t+ h))~Λ(~x)× (~x− ~R(t+ h)) (37)

The SPM can be validated at several levels, by looking at the flow field aroung a single-
particle or looking at hydrodynamic forces exerted between pairs of particles. We look
here at the first aspect, by showing in Fig. 6 the flow pattern obtained with the SPM and
compared with the Stokes solution and demonstrating the high quality of the simulated
flow. The match improves at distance r > 2a, with a being the effective Stokes radius
obtained by an appropriate fitting procedure11, indicating the overall good quality of the
far and intermediate flow, while at short distance the flow is slightly affected by the smooth
fluid-particle interface.

The hydrodynamic radius is further used to compare the Stokes frictional force 6πηaV
with that drag force directly computed from an independent simulation of a moving parti-
cle. In a periodic cubic box of size L3, the hydrodynamic drag depends on the box size as
1
aL
≡ 6πηφz

Fdragz
= 1

a∞
− 2.84

L , where a∞ corresponds to the infinite system size (L → ∞)32

and the fluid volumetric flow rate is φz = 1
L2

∑
~x uz . The frictional force obtained by

measuring the frictional resistance and by the Stokes expression differ by less than 4 %.
The resulting hydrodynamics radius is now clearly much larger than in the DPM and is
a∞ = 1.31.

We next assess the quality of the fluid-particle coupling in transient conditions. In
Fig. 7A, we report the temporal decay of the velocity of a particle of mass M = 100,
prepared with a small initial velocity. After an initial parabolic regime, correspond-
ing to ballistic relaxation for t ≤ tball ≡ M

6πηa , the Stokesian regime sets in for time

t ≤ tvisc ≡ a2

ν . At much longer times the long-time tail develops the characteristic de-
pendence v(t)

v(0) = M
12 (πνt)−3/2. The rotational properties of the single particle is similarly
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Figure 6. Radial component of the velocity profile for the flow past a spherical particle for θ = 0 (circles), π/8
(triangles), π/4 (squares) and 3π/8 rad (diamonds), compared with the Stokes solution at corresponding polar
angle θ (solid lines) and for hydrodynamic radius a = 1.31. Inset: relative error in the drag force (Eq. 30)
computed as ε ≡ |~F drag/~F dragSt − 1| as a function of the fluid velocity u0 at (r, θ) = (40, 0), where ~F dragSt is
the drag force extrapolated at zero fluid velocity. Forces on fluid are computed according to a first-order (crosses)
and second-order (asterisks) accurate LB schemes.

analyzed by looking at the particle with moment of inertia I = 100, prepared with a small
initial spinning velocity. As shown in Fig. 7B, the ballistic regime rapidly disappears in
favor of the Stokes regime that eventually subsides into the long-time tail rotational mo-
tion. Both regimes are quantitatively reproduced, showing that the bare moment of inertia
correctly describes the rotational dynamics of an isolated body.

5 Excluded Volume Interactions

Being blood a dense suspension of particles (RBCs, white blood cells, platelets, etc.),
we need to account for the direct repulsion forces exerted between pairs of globules. By
considering the ellipsoidal shape of globules, we can account for body-body excluded
volume interactions by soft-core forces and torques represented by the Gay-Berne (GB)
potential33. The GB potential inhibits interpenetration of pairs of RBCs by introducing
an orientation-dependent repulsive interaction derived from the Lennard-Jones potential
(φLJ(Rij) = ε[(σ/Rij)

12 − (σ/Rij)
6], where ε is the energy scale and σ the “contact”

length scale). The GB potential extends the spherically symmetric Lennard-Jones potential
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A B

Figure 7. Panel A: normalized velocity of an impulsively started particle in a quiescent fluid. The red curve illus-
trates the ballistic regime V (t)

V (0)
∝ 1−At2 while the green curve the Stokes regime V (t)

V (0)
∝ exp(−6πηat/M).

The blue curve is the long-time tail curve for a no-slip sphere V (t)
V (0)

= M
12

(πνt)−3/2. Panel B: normal-
ized angular velocity of an impulsively spinning particle in a quiescent fluid. The green curve shows the
Stokes regime ω(t)

ω(0)
∝ exp(−8πηa3t/I). The blue curve is the long-time tail curve for a no-slip sphere

ω(t)
ω(0)

= πI
ρ

(4πνt)−5/2.

to ellipsoidal symmetry, where the potential depends if two RBCs have mutual orientation
as face-to-face (maximal repulsion), side-to-side (minimal repulsion) or an arbitrary orien-
tation between the two bodies (intermediate case).

The GB potential is particularly useful to simulation large-scale blood circulation as
it can handle interactions between particles of different eccentricity, such as a mixture
of ellipsoidal and spherical particles. This flexibility allows to simulate generic biofluids
composed of particles with different shapes by employing the same analytical form of the
potential. This is the case to study a complete representation of blood, being a mixtures of
red and white blood cells, platelets and so on.

The form of the GB potential is easily found in the literature in different versions, for
the sake of completeness we provide here an expression as employed for pairs of particles
with different shapes, as derived in Refs. 33, 34. Given the principal axes (ai,1, ai,2, ai,3)
of the i-th globule, the ellipsoidal shape associated to the excluded volume interactions is
constructed according to the shape matrix Si = diag(ai,1, ai,2, ai,3) and the transformed
matrix Ai = QiS

2
iQ

T
i in the laboratory frame. The pair of particles i, j at distance Rij

experiences a characteristic exclusion distance σij that depends on the globule-globule
distance, shape and mutual orientation, written as

σij =
1√
φij

(38)

φij =
1

2
R̂ij ·H−1

ij · R̂ij (39)
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where the matrix Hij = Ai + Aj has been introduced.
A purely repulsive exclusion potential is given by the pairwise form

uij =

{
4ε0(ρ−12

ij − ρ−6
ij ) + ε0 ρ6

ij ≤ 2

0 ρ6
ij > 2

(40)

with

ρij =
Rij − σij + σminij

σminij

(41)

where ε0 is the energy scale and σminij is a constant, both parameters being independent on
the ellipsoidal mutual orientation and distance. For two identical oblate ellipsoids, σminij

corresponds to a contact distance of the two particles having face-to-face orientation. In
general, by considering the minimum particle dimension amini = min(ai,1, ai,2, ai,3) then

σminij =

√
2
[(
amini

)2
+
(
aminj

)2]
. (42)

6 Conclusions

When simulating biological fluids, such as blood, one needs to take into account the cor-
puscular nature of the biological suspension, and the fact that one deals with suspended
particles of multiple species. If one is interested in the transport properties of the suspen-
sion as modulated by the structuring of the suspended bodies or by the morphology of
the containers, the employed models should be flexible enough to accommodate the basic
physical mechanisms, by keeping the numerical simplicity at a bare minimum. The Dif-
fused Particle Model and the Solid Particle Model discussed in this lecture offer ways to
emulate the colloidal or vesicular nature of suspended cells. Such simplicity offers major
advantages both in terms of numerical robustness, by minimizing the numerical overhead
and, last but not least, by implementing efficient parallel softwares to study large-scale
biofluidics on leading-edge supercomputers.
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Red blood cells (RBCs) in various flows exhibit a rich dynamics due their deformability and
govern rheological properties and flow characteristics of human blood. Using a mesoscopic
RBC model which incorporates membrane shear elasticity, bending rigidity, and viscosity, we
quantitatively predict the behavior of a single RBC in shear flow and the dependence of blood
viscosity on shear rate and hematocrit. In shear flow, single RBCs respond by tumbling at
low shear rates and tank-treading at high shear rates. In transitioning between these regimes,
the membrane exhibits substantial deformation controlled largely by flexural stiffness. In RBC
suspension (blood) under shear, not only the tumbling/tank-treading cell dynamics affects blood
flow characteristics, but also RBC collective behavior and cell-cell aggregation interactions.
RBC aggregation leads to reversible rouleaux structures and a tremendous increase of blood
viscosity at low shear rates, and results in the presence of a yield stress. The non-Newtonian
behavior of blood is analyzed and related to the suspension’s microstructure, deformation and
dynamics of single RBCs. The generality of these cell models suggests that they can easily be
adapted to tune the properties of a much wider class of complex fluids including capsule and
vesicle suspensions.

1 Introduction

Blood is circulated around the entire body performing a number of physiological functions.
Its main functions are the transport of oxygen and nutrients to cells of the body, removal
of waste products such as carbon dioxide and urea, and circulation of molecules and cells
which mediate the organism’s defense and immune response and play a fundamental role
in the tissue repair process. Abnormal blood flow is often correlated with a broad range
of disorders and diseases which include hypertension, anemia, atherosclerosis, malaria,
and thrombosis. Understanding the rheological properties and dynamics of blood cells
and blood flow is crucial for many biomedical and bioengineering applications. Examples
include the development of blood substitutes, the design of blood flow assisting devices,
and drug delivery. In addition, understanding of vital blood related processes in health and
disease may aid in the development of new effective treatments.

Blood is a physiological fluid that consists of erythrocytes or red blood cells (RBCs),
leukocytes or white blood cells (WBCs), thrombocytes or platelets, and plasma contain-
ing various molecules and ions. RBCs constitute approximately 45% of the total blood
volume, WBCs around 0.7%, and the rest is taken up by blood plasma and its substances.
One microliter of blood contains about 5 million RBCs, roughly 5 thousand WBCs, and
approximately a quarter million platelets. Due to a high volume fraction of RBCs, the
rheological properties of blood are mainly determined by their properties and interactions.

Modern rheometry techniques are able to reliably measure macroscopic properties of
cell suspensions, for instance the bulk viscosity of blood1–3. At low shear rates the RBCs
in whole blood have been observed to aggregate into structures called “rouleaux”, which
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resemble stacks of coins1, 4, 5. The aggregation process appears to be strongly correlated to
the presence of the plasma proteins4, 5. Experiments with washed RBCs re-suspended in
pure saline to which fibrinogen was added progressively4 showed a tremendous viscosity
increase at low deformation rates with respect to fibrinogen concentration. In addition,
such suspensions exhibit a yield stress1, 6, 7, i.e., a threshold stress for flow to begin.

These experimental advances have not been accompanied by theoretical developments
which can yield quantitative predictions of rheological and flow properties of blood. A
number of theoretical and numerical analyses have sought to describe cell behavior and
deformation in a variety of flows. Examples include models of ellipsoidal cells enclosed
by viscoelastic membranes8, 9, numerical models based on shell theory10–12, and discrete
descriptions at a mesoscopic level13–16. Mesoscopic modeling of viscoelastic membranes
is developing rapidly with a RBC membrane modeled as a network of viscoelastic springs
in combination with a membrane flexural stiffness, and constraints on the surface area
and volume13–16. However, recent theoretical and numerical studies focused mostly on the
behavior of a single RBC in various flows13, 8, 16. Several studies have also been performed
to simulate a suspension of multiple cells17–19 in tube flow.

In this chapter, a theoretical analysis will be presented for a membrane network
model exhibiting specified macroscopic membrane properties without parameter adjust-
ment. RBC dynamics in shear flow showing tumbling and tank-treading will be studied in
detail with a view to delineating the effect of the membrane shear moduli, bending rigid-
ity, external, internal, and membrane viscosities. Comparison with available experiments
will demonstrate that the computational model is able to accurately describe realistic RBC
dynamics in shear flow. Comparison of the numerical simulations with theoretical predic-
tions8, 9 will reveal discrepancies suggesting that the current theoretical models are only
qualitatively accurate due to strong simplifications.

Moreover, we will examine blood rheological properties of modeled RBC suspension.
In particular, we will investigate the effect of RBC aggregation on blood viscosity, re-
versible rouleaux formation, and yield stress in a RBC suspension20. In addition, we will
establish the connection between the rheology of a cell suspension and its microscopic
properties on a single-cell level, such as structure or arrangement, cell viscoelastic prop-
erties, and local dynamics. In conclusion, we will focus on the quantitative prediction of
rheological properties and dynamics of single RBCs and blood flow.

2 Red Blood Cells

A healthy human RBC has a biconcave shape with an average diameter of approximately
7.82 µm. Fig. 1 shows a schematic of a RBC membrane which consists of a lipid bilayer
with an attached cytoskeleton formed by a network of the spectrin proteins linked by short
filaments of actin. The lipid bilayer is considered to be a nearly viscous and area preserv-
ing membrane10, while RBC elasticity is attributed to the attached spectrin network, as is
the integrity of the entire RBC when subjected to severe deformations in the capillaries as
small as 3 µm. The RBC membrane encloses a viscous cytosol whose viscosity is several
times larger than that of blood plasma under physiological conditions. Mechanical and
rheological characteristics of RBCs and their dynamics are governed by: membrane elas-
tic and viscous properties, bending resistance, and the viscosities of the external/internal
fluids.
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Figure 1. A schematic of the RBC membrane structure.

3 Methods and Models

In the model, the RBC membrane is represented by a viscoelastic network. The motion
of the membrane and of the internal and external fluids is described by the method of
dissipative particle dynamics (DPD)21, a mesoscopic particle-based simulation technique,
see Appendix for details.

3.1 Red Blood Cell Membrane

The RBC membrane is represented by Nv DPD particles with coordinates {xi=1...Nv}
which are vertices of a two-dimensional triangulated network on the RBC surface22, 16, 23,
as shown in Fig. 2. The network has a fixed connectivity with the energy as follows

U({xi}) = Us + Ub + Ua+v, (1)

where Us is the spring’s potential energy, Ub is the bending energy, and Ua+v corresponds
to the area and volume conservation constraints. The Us contribution provides membrane
elasticity similar to that of a spectrin network of RBC membrane. A “dashpot” is attached
to each spring, and therefore, the spring forces are a combination of conservative elas-
tic forces and dissipative forces, which provide network viscous response similar to RBC
membrane viscosity. The bending energy mimics bending resistance of the RBC mem-
brane, while the area and volume conservation constraints mimic area-incompressibility of
the lipid bilayer and incompressibility of a cytosol, respectively. Below, these energies are
described in detail.
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Figure 2. A sketch of a RBC membrane network.

The network nodes are connected by Ns springs with the potential energy as follows

Us =
∑

j∈1...Ns

[
kBT lm(3x2

j − 2x3
j )

4p(1− xj)
+

kp

(n− 1)ln−1
j

]
, (2)

where lj is the length of the spring j, lm is the maximum spring extension, xj = lj/lm,
p is the persistence length, kBT is the energy unit, kp is the spring constant, and n is a
power. The above equation includes the attractive wormlike chain potential and a repulsive
potential for n > 0 such that a non-zero equilibrium spring length can be imposed. The
performance of different spring models for the RBC membrane was studied in Ref. 23 in
detail.

To incorporate the membrane viscosity into the RBC model a dissipative force is intro-
duced for each spring. Following the general framework of the fluid particle model24 we
can define dissipative FDij and random FRij forces for each spring, where i, j ∈ 1...Nv are
a pair of two network vertices connected by a spring. Such forces satisfy the fluctuation-
dissipation balance providing consistent temperature of the RBC membrane in equilibrium
and are given by

FDij = −γTvij − γC(vij · eij)eij , (3)

FRijdt =
√

2kBT

(√
2γT dWS

ij +
√

3γC − γT tr[dWij ]

3
1

)
· eij , (4)

where γT and γC are dissipative parameters and the superscripts T and C denote the
“translational” and “central” components, vij is the relative velocity of spring ends,
tr[dWij ] is the trace of a random matrix of independent Wiener increments dWij , and
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dWS
ij = dWS

ij − tr[dWS
ij ]1/3 is the traceless symmetric part. Note that the condition

3γC − γT ≥ 0 has to be satisfied.
The bending energy of the RBC membrane is given as follows

Ub =
∑

j∈1...Ns

kb [1− cos(θj − θ0)] , (5)

where kb is the bending constant, θj is the instantaneous angle between two adjacent trian-
gles having the common edge j, and θ0 is the spontaneous angle.

In addition, the RBC model includes the area and volume conservation constraints with
the corresponding energy given by

Ua+v =
∑

j∈1...Nt

kd(Aj −A0)2

2A0
+
ka(A−Atot0 )2

2Atot0

+
kv(V − V tot0 )2

2V tot0

, (6)

where Nt is the number of triangles in the membrane network, A0 is the triangle area, and
kd, ka and kv are the local area, global area and volume constraint coefficients, respec-
tively. The terms A and V are the total RBC area and volume, while Atot0 and V tot0 are the
specified total area and volume, respectively. More details on the RBC model can be found
in Refs. 16, 23.

3.2 Membrane Macroscopic Properties

Several parameters must be chosen in the membrane network model to ensure a desired
mechanical response. Fig. 3 depicts a network model and its continuum counterpart. To

Network Continuum

shear, areacompression,
Young’s moduli
bending rigidity

spring, bending
parameters

area, volume constraints
?

Figure 3. Illustration of a membrane network and corresponding continuum model.

circumvent ad-hoc parameter adjustment, we derive relationships between local model pa-
rameters and network macroscopic properties for an elastic hexagonal network. A similar
analysis for a two-dimensional particulate sheet of equilateral triangles was presented in
Refs. 25, 23.

Fig. 4 illustrates an element in a hexagonal network with vertex v placed at the origin
of a local Cartesian system. Using the virial theorem26, we find that the Cauchy stress
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Figure 4. Illustration of an element in a hexagonal triangulation.

tensor at v is

ταβ = − 1

S

[
f(r1)

r1
rα1 r

β
1 +

f(r2)

r2
rα2 r

β
2 +

f(|r2 − r1|)
|r2 − r1|

(rα2 − rα1 )(rβ2 − r
β
1 )

]
−
(
ka(Atot0 −NtA)

Atot0

+
kd(A0 −A)

A0

)
δαβ , (7)

where α and β stand for x or y, f(r) is the spring force, Atot0 = NtA0, S = 2A0, δαβ is
the Kronecker delta, and S is the area of the hexagonal element centered at v.

3.2.1 Shear Modulus

The shear modulus is derived from the network deformation by applying a small engineer-
ing shear strain γ to the network element shown in Fig. 4. For instance, the deformation of
a material vector r1 is then described as

r′1 = r1 · J =

[
rx1 + 1

2 r
y
1

1
2 r

x
1γ + ry1

]
, (8)

where

J =

[
1 γ/2
γ/2 1

]
+O(γ2) (9)

is the linear strain tensor and r1 = (rx1 ; ry1), as shown in Fig. 4. Because the shear de-
formation is area preserving, only spring forces in Eq. 7 contribute to the membrane shear
modulus.

Expanding τxy in a Taylor series, we find that

τ ′xy = τxy +
∂τ ′xy
∂γ

∣∣∣∣
γ=0

γ +O(γ2). (10)
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The linear shear modulus of the network is

µ0 =
∂τ ′xy
∂γ

∣∣∣∣
γ=0

. (11)

For example, differentiating the first term of τxy in Eq. 7 yields

∂

∂γ

(
f(r′1)

r′1
rx
′

1 r
y′

1

)
γ=0

=

(
∂ f(r1)

r1

∂r1

(rx1r
y
1)

2

r1
+
f(r1)r1

2

)
r1=l0

, (12)

where l0 is the equilibrium spring length. Using the vector-product definition of the area
of a triangle, we obtain

(rx1r
y
1)2 + (rx2r

y
2)2 + (rx2 − rx1 )2(ry2 − r

y
1)2 = 2A2

0. (13)

The linear shear modulus of the network model is

µ0 =

√
3kBT

4plmx0

(
x0

2(1− x0)3
− 1

4(1− x0)2
+

1

4

)
+

√
3kp(n+ 1)

4ln+1
0

, (14)

where x0 = l0/lm.

3.2.2 Area Compression and Young’s Moduli

The linear elastic area compression modulusK is found from the in-plane pressure follow-
ing a small area expansion as

p = −1

2
(τxx + τyy) =

3 l

4A
f(l) +

(ka + kd)(A0 −A)

A0
. (15)

Defining the compression modulus as

K = − ∂p

∂ logA

∣∣∣
A=A0

= −1

2

∂p

∂ log l

∣∣∣
l=l0

= −1

2

∂p

∂ log x

∣∣∣
x=x0

, (16)

and using Eqs. 15 and 16, we obtain

K = 2µ0 + ka + kd. (17)

For the nearly constant-area membrane enclosing a red blood cell, the compression modu-
lus is much larger than the shear elastic modulus µ0.

The Young’s modulus of the two-dimensional sheet is given by

Y =
4Kµ0

K + µ0
. (18)

As K →∞, we obtain Y → 4µ0. To ensure a nearly constant area, we set ka + kd � µ0.

495



3.2.3 Bending Rigidity

Helfrich27 proposed an expression for the bending energy of a lipid membrane,

Ec =
kc
2

∫∫
(C1 + C2 − 2C0)2 dA+ kg

∫∫
C1C2 dA, (19)

where C1 and C2 are the principal curvatures, C0 is the spontaneous curvature, and kc, kg
are bending rigidities. The second term on the right-hand side of Eq. 19 is constant for any
closed surface.

A relationship between the bending constant, kb, and the macroscopic membrane bend-
ing rigidity, kc, can be derived for a spherical shell. Fig. 5 shows two equilateral triangles
with edge length l0 whose vertices lie on a sphere of radius R. The angle between the tri-

R

R

l

θ

n

n

1

2

a
a

o

d

0

Figure 5. Illustration of two equilateral triangles on the surface of a sphere of radius R.

angle normals n1 and n2 is denoted by θ. In the case of a spherical shell, the total energy
in Eq. 19 is found to be

Ec = 8πkc

(
1− C0

C1

)2

+ 4πkg = 8πkc

(
1− R

R0

)2

+ 4πkg, (20)

where C1 = C2 = 1/R and C0 = 1/R0. In the network model, the bending energy of the
triangulated sphere is

Ub = Ns kb [1− cos(θ − θ0)]. (21)

Expanding cos(θ − θ0) in a Taylor series around θ − θ0 provides us with the leading term

Ub =
1

2
Nskb(θ − θ0)2 +O

(
(θ − θ0)4

)
. (22)

With reference to Fig. 5, we find that 2a ≈ θR or θ = l0/(
√

3R), and θ0 = l0/(
√

3R0).
For a sphere, A = 4πR2 ≈ NtA0 =

√
3Ntl

2
0/4 =

√
3Nsl

2
0/6, and

l20/R
2 = 8π

√
3/Ns. Finally, we obtain

Ub =
1

2
Nskb

(
l0√
3R
− l0√

3R0

)2

=
Nskbl

2
0

6R2

(
1− R

R0

)2

=
4πkb√

3

(
1− R

R0

)2

.

(23)
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Equating the macroscopic bending energy Ec to Ub for kg = −4kc/3 and C0 = 0, we
obtain kb = 2kc/

√
3 in agreement with the limit of a continuum approximation28.

The spontaneous angle θ0 is set according to the total number of vertices on the sphere,
Nv . It can be shown that cos θ = 1 − 1/[6(R2/l20 − 1/4)] and the number of sides is
Ns = 2Nv − 4. The bending coefficient, kb, and spontaneous angle, θ0, are given by

kb =
2√
3
kc, θ0 = arccos

(√
3(Nv − 2)− 5π√
3(Nv − 2)− 3π

)
. (24)

3.2.4 Membrane Viscosity

Since interparticle dissipative interaction is an intrinsic part of the DPD formulation, incor-
porating dissipative and random forces into springs fits naturally into the DPD scheme. The
general framework of the fluid-particle model24 provides us with Eqs. 3 and 4. These dis-
sipative and random forces in combination with an elastic spring constitute a mesoscopic
viscoelastic spring. To relate the membrane shear viscosity, ηm, to the model dissipative
parameters γT and γC , an element of the hexagonal network shown in Fig. 4 is subjected
to a constant shear rate, γ̇. The shear stress τxy at short times can be approximated from
the contribution of the dissipative force in Eq. 3,

τxy = − 1

2A0

[
γT γ̇

(
(r1
y)2 + (r2

y)2 + (r2
y − r1

y)2
)

+
γC γ̇

l20

(
(r1
xr

1
y)2 + (r2

xr
2
y)2

+(r2
x − r1

x)2(r2
y − r1

y)2
)]

= γ̇
√

3 (γT +
1

4
γC ). (25)

The membrane viscosity is given by

ηm =
τxy
γ̇

=
√

3

(
γT +

1

4
γC
)
. (26)

This equation indicates that γT accounts for the largest portion of the membrane dissipa-
tion. Therefore, γC is set to its minimum value, 1

3 γ
T , in the simulations.

3.3 Membrane-Solvent Interfacial Conditions

The cell membrane encloses a viscous fluid and is surrounded by a liquid solvent. Fig. 6
shows a snapshot of a simulation in equilibrium, where red particles are membrane ver-
tices, blue particles represent the external fluid, and green particles represent the internal
fluid. To prevent mixing of the internal and external fluids, we require impenetrability.
We also enforce no-slip boundary conditions at the membrane implemented by pairwise
interactions between fluid particles and membrane nodes. Bounce-back reflection of fluid
particles at the triangular plaquettes satisfies membrane impenetrability and better enforces
no-slip compared to specular reflection. However, bounce-back reflection alone does not
guarantee no-slip. In practice, it is necessary to properly set the DPD dissipative interac-
tions between fluid particles and membrane vertices.

The continuum linear shear flow over a flat plate is used to determine the dissipative
force coefficient γ for the fluid-membrane coupling. For the continuum, the total shear
force on area A of the plate is Aη0γ̇, where η0 is the fluid viscosity and γ̇ is the local
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Figure 6. A slice through a sample equilibrium simulation. Red particles are membrane vertices, blue particles
represent the external fluid, and green particles represent the internal fluid.

shear-rate. To mimic the membrane surface, wall particles are distributed over the plate to
match the configuration of the cell network model. The force on a single wall particle in
this system exerted by the surrounding fluid under shear can be expressed as

Fv =

∫∫∫
Vh

n g(r)FD dV, (27)

where FD is the DPD dissipative force between fluid and wall particles, n is the fluid
number density, g(r) is the radial distribution function of fluid particles relative to the
wall particles, and Vh is the half-sphere volume of fluid above the plate. Thus, the total
shear force on the area A is equal to NAFv , where NA is the number of plate particles
residing in the area A. When conservative interactions between fluid particles and the
membrane vertices are neglected, the radial distribution function simplifies to g(r) = 1.
Setting NAFv = Aη0γ̇ yields an expression for the dissipative force coefficient γ in terms
of the fluid density and viscosity and the wall density, NA/A. Near a wall where the
half-sphere lies within the range of the linear wall shear flow, the shear rate cancels out.
This formulation has been verified to enforce satisfactory no-slip boundary conditions for
shear flow over a flat plate, and is an excellent approximation for no-slip at the membrane
surface.

3.4 RBC Aggregation Interactions

For blood, the attractive cell-cell interactions are crucial for simulation of RBC aggregation
into rouleaux. These forces are approximated phenomenologically with a Morse potential,

UM (r) = De

[
e2β(r0−r) − 2eβ(r0−r)

]
, (28)

where r is the separation distance, r0 is the zero force distance, De is the well depth of
the potential, and β characterizes the interaction range. The Morse potential interactions
are implemented between every two vertices of separate RBCs if they are within a defined
potential cutoff radius rd. Even though the Morse potential in Eq. 28 contains a short-
range repulsive force when r < r0, such repulsive interactions cannot prevent two RBCs
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Figure 7. Simulation of whole blood under shear flow. RBCs are shown in red and in orange, where orange color
depicts the rouleaux structures formed due to aggregation interactions between RBCs. The image also displays
several cut RBCs with the inside drawn in cyan to illustrate RBC shape and deformability.

from an overlap. To guarantee no overlap among RBCs we employ a short range Lennard-
Jones potential and specular reflections of RBC vertices on membranes of other RBCs.
The specular reflections of RBC vertices on surfaces of other RBCs are necessary due to
coarseness of the triangular network which represents the RBC membrane.

4 Simulation Results and Discussion

We present simulation results for the behavior of a single RBC in shear flow and discuss
the effect of various membrane properties on RBC dynamics. We also study dense RBC
suspension (blood) under shear and examine the blood viscosity with and without RBC
aggregation, rouleaux formation, and yield stress. Finally, we establish a link between
bulk blood properties, microstructure, and the flow behavior of single RBCs.

4.1 Simulation Setup and Parameters

A single RBC or the RBC suspension were subjected to linear shear flow with periodic
Lees-Edwards boundary conditions29 as shown in Fig. 7. The computational domain had
the size of 5.6D0×4.0D0×3.4D0, whereD0 is the RBC diameter which is equal to about
7.82 µm for a healthy RBC. In case of the RBC suspension, 168 RBCs and 117599 solvent
particles were placed in the computational domain. The RBC membrane Young’s modulus
was set to Y0 = 269924 kBT/D

2
0 , which corresponds to Y0 = 18.9 µN/m at physiological

temperature of T = 37o C. The RBC bending rigidity was assumed to be kc = 3×10−19J ,
which is equal to approximately 70kBT at T = 37o C. The corresponding Föppl-von
Kármán number 0.25Y0D

2
0/kc is therefore equal to approximately 963. The membrane
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viscosity was set to be 12η0, where η0 is the suspending fluid viscosity. The coefficients
for the area and volume constraints were set large enough in order to closely approximate
membrane and cytosol incompressibility. Coupling between the solvent and RBCs was
performed through a dissipative force between fluid particles and membrane vertices.

Interactions between different RBCs included the short range repulsive Lennard-Jones
potential with parameters ε = 10.0 kBT and σLJ = 0.037 D0. These repulsive interac-
tions result in a thin layer next to a RBC membrane which cannot be accessed by other
cells. This layer can be interpreted as a slight increase of the RBC volume. Therefore, the
RBC volume was assumed to be about 10% larger than that of the triangulated network.
The concentration of RBCs is called hematocrit and denoted asHt. RBC aggregation inter-
actions were mediated by the Morse potential with parameters De = 3.0 kBT , r0 = σLJ ,
β = 0.45 σ−1

LJ , and rd = 3.7 σLJ . For more details see Ref. 20.

4.2 Single RBC in Shear Flow
Experimental observations have shown that RBCs tumble at low shear rates and exhibit
a tank-treading motion at high shear rates30–32, 8. Fischer31 attributed this behavior to a
minimum elastic energy state of the cell membrane. Cells can be made to tank-tread in the
laboratory for several hours. When the flow is stopped, the cells relax to the original bicon-
cave shape where attached microbeads recover their original relative position. It appears
that tank-treading is possible only when a certain elastic energy barrier has been surpassed.
Theoretical analyses have considered ellipsoidal cell models tank-treading along a fixed el-
lipsoidal path8, 9. Our simulations show that the dynamics depends on the membrane shear
modulus, shear rate, and viscosity ratio λ = (ηi + ηm)/ηo, where ηi, ηm, and ηo are the
interior, membrane, and outer fluid viscosities.

For viscosity ratio λ < 3, the theory predicts tumbling at low shear rates and tank-
treading motion at high shear rates9. The cells exhibit an unstable behavior in a narrow
intermittent region around the tumbling-to-tank-treading transition where tumbling can be
followed by tank-treading and vice versa. For λ > 3, stable tank-treading does not nec-
essarily arise. RBCs with viscosity ratio λ > 3 have been observed to tank-tread while
exhibiting a swinging motion with a certain frequency and amplitude about an average
tank-treading axis. The reliability of the theoretical predictions will be judged by compar-
ison with the results of our simulations.

A RBC is suspended in a linear shear flow. The viscosities of the external solvent and
internal cytosol fluid are set to ηo = ηi = 0.005 Pa ·s, while the membrane viscosity is set
to ηm = 0.022 Pa · s. Fig. 8 presents information on the cell tumbling and tank-treading
frequencies under different conditions. Experimental observations by Tran-Son-Tay et al.30

and Fischer32 are included for comparison. In the case of a purely elastic membrane with
or without inner solvent (circles and squares), the numerical results significantly overpre-
dict the tank-treading frequency compared with experimental measurements. The internal
solvent viscosity could be further increased to improve agreement with experimental data.
However, since the cytosol is a hemoglobin solution with a well-defined viscosity of about
0.005 Pa · s33, excess viscous dissipation must occur inside the membrane. The data plot-
ted with triangles in Fig. 8 show good agreement with experimental data for increased
membrane viscosity.

The tumbling frequency is nearly independent of the medium viscosities. Increas-
ing the viscosity of the internal fluid or raising the membrane viscosity slightly shifts
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Figure 8. Tumbling and tank-treading frequency of a RBC in shear flow for ηo = 0.005 Pa · s, ηi = ηm = 0
(circles); ηo = ηi = 0.005 Pa · s, ηm = 0 (squares); ηo = ηi = 0.005 Pa · s, ηm = 0.022 Pa · s (triangles).

the tumbling-to-treading threshold into higher shear rates through an intermittent regime.
We estimate that the tank-treading energy barrier of a cell is approximately Ec = 3 to
3.5 × 10−17 J . In the theoretical model9, the energy barrier was set to Ec = 10−17 J to
ensure agreement with experimental data. Membrane deformation during tank treading is
indicated by an increase in the elastic energy difference with increasing shear rate to within
about 20% of Ec.

An intermittent regime is observed with respect to the shear rate in all cases. Consistent
with the experiments, the width of the transition zone broadens as the membrane viscosity
increases. Similar results regarding intermittency were reported by Kessler et al.34 for
viscoelastic vesicles. We conclude that theoretical predictions of cell dynamics in shear
flow are qualitatively correct at best due to the assumption of ellipsoidal shape and fixed
ellipsoidal tank-treading path. Experiments8 have shown and the present simulations have
confirmed that the cell deforms along the tank-treading axis with strains of order 0.1−0.15.

We have seen that a cell oscillates or swings around tank-treading axes with a certain
frequency and amplitude. Fig. 9 presents graphs of the average tank-treading angle and
swinging amplitude. The numerical results are consistent with experimental data in Ref. 8.
The average swinging angle is larger for a purely elastic membrane without inner cytosol.
The inclination angle is independent of the internal fluid and membrane viscosities and
the swinging amplitude is insensitive to the fluid and membrane properties. The swinging
frequency is exactly twice the tank-treading frequency.

4.3 Blood Viscosity

Blood viscosity was computed, with and without aggregation, as a function of the shear
rate γ̇ over the range 0.005s−1 to 1000.0s−1 in plane Couette flow. The shear rate and
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ηo = ηi = 0.005 Pa · s and ηm = 0.022 Pa · s (triangles).

the cell density in our simulations were verified to be spatially uniform. Fig. 10 shows
the relative viscosity (RBC suspension viscosity normalized by η0) against shear rate γ̇ at
hematocrit Ht = 0.45. The blood model predictions are in excellent agreement with the
blood viscosities measured in three different laboratories1–3. The blood model, consisting
only of RBCs in suspension, clearly captures the effect of aggregation on the viscosity at
low shear rates, and suggests that cells and molecules other than RBCs have little effect
on the viscosity, at least under healthy conditions. At intermediate shear rates, where
aggregation is no longer relevant, shear thinning is due to a transition from tumbling to
tank-treading motion, accompanied by strong cell deformations20.

4.4 Reversible Rouleaux Formation

The formation of rouleaux in blood occurs in equilibrium and at sufficiently small shear
rates, while large shear rates result in immediate dispersion of gentle RBC structures. Ex-
perimentally, aggregation is observed1 to be a two-step process: the formation of short
linear stacks with few RBCs, followed by their coalescence into long linear and branched
rouleaux. As the shear rate increases the large rouleaux break up into smaller ones, and
at higher values the suspension ultimately becomes one of mono-dispersed RBCs35. This
process then reverses as the shear rate is decreased. This typical formation-destruction
behavior of rouleaux is consistent with the results of our simulations as shown in Fig. 11.
At low shear rates (left plot), the initially dispersed RBCs aggregate into large rouleaux
of up to about 20 RBCs; as the shear rate is increased to moderate values (middle plot),
these structures are reduced in size until at high rates (right plot) they are dispersed almost
completely into individual RBCs. Reversibility is demonstrated by reduction of the shear
rate to the formation value at which point individual RBCs begin to re-aggregate.
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Figure 11. Visualization of aggregation. Simulated reversible rouleaux are formed by RBCs at Ht = 0.1. The
left plot corresponds to low shear rates, middle plot to moderate share rates, and right plot to high shear rates as
indicated with the shear rate values.

4.5 Yield Stress and Aggregation

Whole blood is believed to exhibit a yield stress, i.e. a threshold stress for flow to begin1, 6, 7,
which is often estimated by the extrapolation of measured shear stress to the zero shear rate
on the basis of the Casson’s equation36,

τ1/2
xy = τ1/2

y + η1/2γ̇1/2, (29)
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where τy is a yield stress and η is the suspension viscosity at large γ̇. The assumptions
of Casson’s relation are likely to hold at least at low shear rates, which was successfully
demonstrated for pigment-oil suspensions36, Chinese ovary hamster cell suspensions37,
and blood4. Fig. 12 is a polynomial fit in Casson coordinates (γ̇1/2,τ1/2

xy ) to the simulated
data for a Ht = 0.45 suspension, which shows clearly that τy is non-zero for the aggre-
gating RBC suspension, while τy is absent without cell aggregation. The yield stress for
blood has previously been attributed to the presence of rouleaux in experiments reported
in Refs. 1, 6, 7. Merrill et al.1 found τy of healthy human blood to lie between 0.0015 and
0.005 Pa at Ht = 0.45. Our simulation results in Fig. 12 fall into this range of the yield
stress of whole blood.

4.6 Micro-to-Macro Link

The non-Newtonian nature of blood (e.g., shear thinning, yield stress) emerges from the
interactions between cells and from their properties and dynamics. Therefore, we exam-
ined the structure and dynamics of the modeled suspensions on the level of single cells. We
found null pair-correlations of RBC centers of mass for each direction (x, y, z), which indi-
cates that the cell suspensions do not self-assemble or order themselves in any direction at
H = 45%. To examine the cell suspension’s local microstructure, we calculate the radial
distribution function (RDF) of RBC centers shown in Fig. 13(a). For the no-aggregation
case, we find that no significant structures formed over the entire range of shear rates. At
the lowest shear rate (red solid line) several small peaks in RDF indicate the presence of
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Figure 13. Structural and dynamical properties of RBC suspensions with H = 45%. Snapshots show sam-
ple RBC conformations from simulations. (a) Radial distribution function showing cell suspension’s structure.
(b) Average membrane bending energy with respect to shear rate showing correlation between single cell de-
formation and dynamics. Dashed lines are the corresponding mean values plus/minus one standard deviation.
(c) RBC asphericity distributions characterizing the deviation from a spherical shape as a function of shear rate.
The asphericity is defined as [(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2]/(2R4

g), where λ1 ≤ λ2 ≤ λ3 are the
eigenvalues of the gyration tensor and R2

g = λ1 + λ2 + λ3. The asphericity for a single RBC in equilibrium is
equal to 0.154. (d) Orientational angle distributions for various shear rates which illustrate single cell dynamics.
The cell orientational angle is given by the angle between the eigenvector V1 of the gyration tensor and the flow-
gradient direction (y). Theoretical prediction showing the orientational angle distribution of a single tumbling
RBC in shear flow is calculated from the theory in Ref. 8.

infrequent intermediate structures, since RBCs may have enough time to relax locally at
very low shear rates. A larger peak of the red solid curve at r = 8µm, which is equal
to the cell diameter, indicates that neighboring RBCs are often aligned with each other in
the flow. As seen from the other solid curves (blue, green, and black), the correlations
completely disappear at higher shear rates, and therefore the shear thinning behavior of a
non-aggregating suspension is clearly not due to a change in microstructure. In contrast,
several large peaks in the RDF function for the aggregating case at the lowest shear rate
γ̇ = 0.045 s−1 (red dashed line) indicate the formation of rouleaux of 2 to 4 RBCs. In-
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crease of the shear rate leads to the dispersion of rouleaux shown by the blue dashed curve
in Fig. 13(a), where predominant RBC aggregates are formed by only two RBCs. At shear
rates above approximately 5− 10 s−1 no difference in microstructure is detected between
aggregating and non-aggregating cell suspensions. As a conclusion, the steep increase in
viscosity of the aggregating blood at low shear rates is mainly due to the cell aggregation
into rouleaux. In addition, rouleaux formation also provides a plausible explanation for the
existence of yield stress, since with decrease of shear rate larger rouleaux structures are
formed resulting in an eventual “solidification” of the suspension.

The dynamics of a single RBC in shear flow is characterized by the tumbling motion
at low shear rates and membrane tank-treading at high shear rates8, 15, 16. The tumbling-
to-tank-treading transition occurs within a certain range of intermediate shear rates, where
a RBC may experience high bending deformations16. The deformation, orientation, and
dynamics of cells within the suspension is illustrated in Figs. 13(b), (c), and (d). These
plots show that cells in the suspension mostly tumble and retain their biconcave shape at
low shear rates below 5 s−1, which is confirmed by essentially no change in RBC bending
energy and in its standard deviation (Fig. 13(b)), by the extremely narrow asphericity dis-
tribution around the equilibrium value of 0.154 (Fig. 13(c)), and by the wide orientational
angle (θ) distribution in Fig. 13(d). Cell tumbling at low shear rates is slightly hindered
in non-aggregating suspensions in comparison to tumbling of a single RBC in shear flow
due to cell crowding, which results in sliding of cells over each other; this is shown by a
higher peak in the orientational angle distribution (green curve) in Fig. 13(d) with respect
to the theoretical prediction (blue curve). In contrast, RBC tumbling in aggregating sus-
pensions appears to be nearly uniform, since RBCs tumble within multiple-cell rouleaux
structures. At high shear rates, larger than about 200 s−1, individual RBCs are subject to
tank-treading motion illustrated by a narrow θ distribution (black line) in Fig. 13(d). At yet
higher shear rates RBCs become strongly elongated as indicated by the RBC asphericity
distribution in Fig. 13(c).

The most interesting and complex cell dynamics, however, occurs in the broad in-
termediate regime of shear rates between 5 s−1 and 200 s−1, where RBC aggregation
interactions can be neglected. This range also corresponds to the main region of shear
thinning for the non-aggregating cell suspension. In this range of shear rates, RBCs within
the suspension experience severe deformations documented by a pronounced increase in
the membrane bending energy and in its variation shown in Fig. 13(b). The asphericity dis-
tribution for γ̇ = 45 s−1 in Fig. 13(c) shows that RBCs attain on average a more spherical
shape indicating transient folded conformations. This may result in a reduction of shear
stresses due to collisional constraints of cell tumbling, and therefore in shear thinning. In
addition, the transition of some cells to the tank-treading motion further reduces the shear
stresses contributing to the viscosity thinning.

5 Summary

We have presented a mesoscopic model of RBCs implemented by the dissipative particle
dynamics method. The spectrin cytoskeleton is represented by a network of interconnected
viscoelastic springs comprising a membrane with elastic and viscous properties. The sur-
face network accounts for bending resistance attributed to the lipid bilayer and incorporates
local and global area constraints to ensure constant volume and surface area. The macro-
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scopic properties of the membrane were related to the network parameters by theoretical
analysis. RBC dynamics was simulated in shear flow, where a cell exhibits tumbling at
low shear rates and tank-treading at high shear rates. A narrow intermittent region appears
where these modes interchange. The model is able to quantitatively capture cell dynamics
in shear flow. Comparison of the numerical results with existing theoretical predictions
suggest that the latter suffers from oversimplification .

Results on the rheological properties of human blood suggest that the RBC suspension
model is able to accurately predict shear-dependent viscosity of blood with and without
aggregation interactions between RBCs. The RBC aggregation model was able to properly
capture the assembly of RBCs into rouleaux structures. These simulations also confirmed
that whole blood is a fluid with a non-zero yield stress. We have shown how single RBC
characteristics and behavior contribute to the macroscopic properties of blood, which may
not be possible to elucidate in experiments. The predictive capability of the current cell/-
capsule suspension model can readily be extended to a variety of engineering and material
science applications, which may aid in the development of new soft materials. Finally,
such simulations of soft capsule suspensions are computationally demanding and are only
feasible on massively parallel computers.
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Appendix

Dissipative Particle Dynamics

Dissipative particle dynamics (DPD)21, 38 is a mesoscopic particle method, where each
particle represents a molecular cluster rather than an individual atom, and can be thought
of as a soft lump of fluid. The DPD system consists of N point particles of mass mi,
position ri and velocity vi. DPD particles interact through three forces: conservative
(FCij), dissipative (FDij ), and random (FRij) forces given by

FCij = FCij (rij)r̂ij , FDij = −γωD(rij)(vij · r̂ij)r̂ij , FRij = σωR(rij)
ξij√
dt

r̂ij , (30)

where r̂ij = rij/rij , and vij = vi − vj . The coefficients γ and σ define the strength
of dissipative and random forces, respectively. In addition, ωD and ωR are weight func-
tions, and ξij is a normally distributed random variable with zero mean, unit variance, and
ξij = ξji. All forces are truncated beyond the cutoff radius rc. The conservative force is
given by

FCij (rij) = aij(1− rij/rc) for rij ≤ rc, (31)
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where aij is the conservative force coefficient between particles i and j. The random and
dissipative forces form a thermostat and must satisfy the fluctuation-dissipation theorem in
order for the DPD system to maintain equilibrium temperature T 39. This leads to

ωD(rij) =
[
ωR(rij)

]2
, σ2 = 2γkBT, (32)

where kB is the Boltzmann constant. The choice for the weight functions is as follows

ωR(rij) = (1− rij/rc)k for rij ≤ rc, (33)

where k is an exponent. The time evolution of velocities and positions of particles is
determined by the Newton’s second law of motion

dri = vidt, dvi =
1

mi

∑
j 6=i

(
FCij + FDij + FRij

)
dt. (34)

The above equations of motion are integrated using the modified velocity-Verlet algo-
rithm38.
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The major parallel programming models for scalable parallel architectures are the message
passing model and the shared memory model. This article outlines the main concepts of these
models as well as the industry standard programming interfaces MPI and OpenMP. To exploit
the potential performance of parallel computers, programs need to be carefully designed and
tuned. We will discuss design decisions for good performance as well as programming tools
that help the programmer in program tuning.

1 Introduction

Many applications like numerical simulations in industry and research as well as com-
mercial applications such as query processing, data mining, and multi-media applications
require more compute power than provided by sequential computers. Current hardware
architectures offering high performance do not only exploit parallelism within a single
processor via multiple CPU cores but also apply a medium to large number of processors
concurrently to a single computation. High-end parallel computers currently (2012) deliver
up to 10 Petaflop/s (1015 floating point operations per second). Parallel programming is
required to fully exploit the compute power of the multiple cores.

This article concentrates on programming numerical applications on parallel computer
architectures introduced in Sec. 1.1. Parallelization of those applications centers around
selecting a decomposition of the data domain onto the processors such that the workload
is well balanced and the communication between processors is reduced (Sec. 1.2)4.

The parallel implementation is then based on either the message passing or the shared
memory model (Sec. 2). The standard programming interface for the message passing
model is MPI (Message Passing Interface)8–12, offering a complete set of communication
routines (Sec. 3). OpenMP13–15 is the standard for directive-based shared memory pro-
gramming and will be introduced in Sec. 4.

Since parallel programs exploit multiple threads of control, debugging is even more
complicated than for sequential programs. Sec. 5 outlines the main concepts of parallel
debuggers and presents TotalView21 and DDT3, the most widely available debuggers for
parallel programs.

Although the domain decomposition is key to good performance on parallel archi-
tectures, program efficiency also heavily depends on the implementation of the commu-
nication and synchronization required by the parallel algorithms and the implementation
techniques chosen for sequential kernels. Optimizing those aspects is very system depen-
dent and thus, an interactive tuning process consisting of measuring performance data and
applying optimizations follows the initial coding of the application. The tuning process
is supported by programming model specific performance analysis tools. Sec. 6 presents
basic performance analysis techniques.
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1.1 Parallel Architectures

A parallel computer or multi-processor system is a computer utilizing more than one pro-
cessor. A common way to classify parallel computers is to distinguish them by the way
how processors can access the system’s main memory because this influences heavily the
usage and programming of the system.

In a distributed memory architecture the system is composed out of single-processor
nodes with local memory. The most important characteristic of this architecture is that
access to the local memory is faster than to remote memory. It is the challenge for the
programmer to assign data to the processors such that most of the data accessed during
the computation are already in the node’s local memory. Two major classes of distributed
memory computers can be distinguished:

No Remote Memory Access (NORMA) computers do not have any special hardware
support to access another node’s local memory directly. The nodes are only con-
nected through a computer network. Processors obtain data from remote memory
only by exchanging messages over this network between processes on the requesting
and the supplying node. Computers in this class are sometimes also called Network
Of Workstations (NOW) or Clusters Of Workstations (COW).

Remote Memory Access (RMA) computers allow to access remote memory via special-
ized operations implemented by hardware, however the hardware does not provide a
global address space, i.e., a memory location is not determined via an address in a
shared linear address space but via a tuple consisting of the processor number and the
local address in the target processor’s address space.

The major advantage of distributed memory systems is their ability to scale to a very
large number of nodes. Today (2012), systems with more than 700,000 cores have been
built. The disadvantage is that such systems are very hard to program.

In contrast, a shared memory architecture provides (in hardware) a global address
space, i.e., all memory locations can be accessed via usual load and store operations. Ac-
cess to a remote location results in a copy of the appropriate cache line in the processor’s
cache. Therefore, such a system is much easier to program. However, shared memory sys-
tems can only be scaled to moderate numbers of processors, typically 64 or 128. Shared
memory systems are further classified according to the quality of the memory accesses:

Uniform Memory Access (UMA) computer systems feature one global shared memory
subsystem which is connected to the processors through a central bus or memory
switch. All of the memory is accessible to all processors in the same way. Such a
system is also often called Symmetrical Multi Processor (SMP).

Non Uniform Memory Access (NUMA) computers are more scalable by physically dis-
tributing the memory but still providing a hardware implemented global address
space. Therefore access to memory local or close to a processor is faster than to re-
mote memory. If such a system has additional hardware which also ensures that multi-
ple copies of data stored in different cache lines of the processors is kept coherent, i.e.,
the copies always do have the same value, then it is called a Cache-Coherent Non
Uniform Memory Access (ccNUMA) system. ccNUMA systems offer the abstrac-
tion of a shared linear address space resembling physically shared memory systems.
This abstraction simplifies the task of program development but does not necessarily
facilitate program tuning.
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While most of the early parallel computers were simple single processor NORMA
systems, today’s large parallel systems are typically hybrid systems, i.e., shared memory
NUMA nodes with a moderate number of multi-core processors are connected together
to form a distributed memory cluster system. To further increase their compute power,
current high-end systems also deploy additional so-called accelerators attached to their
nodes. These are often special versions of graphics processing units (GPU) with enhanced
floating-point performance and error-correcting memory which are little shared-memory
systems themselves further increasing the overall system complexity.

1.2 Data Parallel Programming
Applications that scale to a large number of processors usually perform computations on
large data domains. For example, crash simulations are based on partial differential equa-
tions that are solved on a large finite element grid and molecular dynamics applications
simulate the behavior of a large number of particles. Other parallel applications apply lin-
ear algebra operations to large vectors and matrices. The elemental operations on each
object in the data domain can be executed in parallel by the available processors.

The scheduling of operations to processors is determined by a domain decomposition5

specified by the programmer. Processors execute those operations that determine new val-
ues for elements stored in local memory (owner-computes rule). While processors execute
an operation, they may need values from other processors. The domain decomposition has
thus to be chosen so that the distribution of operations is balanced and the communication
is minimized. The third goal is to optimize single node computation, i.e., to be able to
exploit the processor’s pipelines and the processor’s caches efficiently.

A good example for the design decisions taken when selecting a domain decomposition
is Gaussian elimination1. The main structure of the matrix during the steps of the algorithm
is outlined in Fig. 1.

The goal of this algorithm is to eliminate all entries in the matrix below the main
diagonal. It starts at the top diagonal element and subtracts multiples of the first row from
the second and subsequent rows to end up with zeros in the first column. This operation
is repeated for all the rows. In later stages of the algorithm the actual computations have
to be done on rectangular sections of decreasing size. If the main diagonal element of the
current row is zero, a pivot operation has to be performed. The subsequent row with the
maximum value in this column is selected and exchanged with the current row.

A possible distribution of the matrix is to decompose its columns into blocks, one
block for each processor. The elimination of the entries in the lower triangle can then be
performed in parallel where each processor computes new values for its columns only. The
main disadvantage of this distribution is that in later computations of the algorithm only a
subgroup of the processors is actually doing any useful work since the computed rectangle
is getting smaller.

To improve load balancing, a cyclic column distribution can be applied. The computa-
tions in each step of the algorithm executed by the processors differ only in one column.

In addition to load balancing also communication needs to be minimized. Communica-
tion occurs in this algorithm for broadcasting the current column to all the processors since
it is needed to compute the multiplication factor for the row. If the domain decomposition
is a row distribution, which eliminates the need to communicate the current column, the
current row needs to be broadcast to the other processors.
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Figure 1. Structure of the matrix during Gaussian elimination.

If we consider also the pivot operation, communication is necessary to select the best
row when a row-wise distribution is applied since the computation of the global maximum
in that column requires a comparison of all values.

Selecting the best domain decomposition is further complicated due to optimizing sin-
gle node performance. In this example, it is advantageous to apply BLAS32 operations for
the local computations. These operations make use of blocks of rows to improve cache uti-
lization. Blocks of rows can only be obtained if a block-cyclic distribution is applied, i.e.,
columns are not distributed individually but blocks of columns are cyclically distributed.

This discussion makes clear, that choosing a domain decomposition is a very compli-
cated step in program development. It requires deep knowledge of the algorithm’s data
access patterns as well as the ability to predict the resulting communication.

2 Programming Models

Programming parallel computers is almost always done via the so-called Single Program
Multiple Data (SPMD) model. SPMD means that the same program (executable code) is
executed on all processors taking part in the computation, but it computes on different parts
of the data which were distributed over the processors based on a specific domain decom-
position. If computations are only allowed on specific processors, this has to be explicitly
programmed by using conditional programming constructs (e.g., with if or where state-
ments). There are two main programming models, message passing and shared memory,
offering different features for implementing applications parallelized by domain decompo-
sition.

2.1 Message Passing

The message passing model is based on a set of processes with private data structures.
Processes communicate by exchanging messages with special send and receive operations.
It is a natural fit for programming distributed memory machines but also can be used on
shared memory computers. The domain decomposition is implemented by developing a
code describing the local computations and local data structures of a single process. Thus,
global arrays have to be split up and only the local part has to be allocated in a process.
This handling of global data structures is called data distribution. Computations on the
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global arrays also have to be transformed, e.g., by adapting the loop bounds, to ensure that
only local array elements are computed. Access to remote elements has to be implemented
via explicit communication, temporary variables have to be allocated, messages have to be
constructed and transmitted to the target process. he standard programming interface for
the message passing model is MPI (Message Passing Interface)8–12, offering a complete
set of communication routines (see next Sec.).

2.2 Shared Memory

The shared memory model is based on a set of threads that is created when parallel opera-
tions are executed. This type of computation is also called fork-join parallelism. Threads
share a global address space and thus access array elements via a global index. The main
parallel operations are parallel loops and parallel sections. Parallel loops are executed by a
set of threads also called a team. The iterations are distributed among the threads according
to a predefined strategy. This scheduling strategy implements the chosen domain decom-
position. Parallel sections are also executed by a team of threads but the tasks assigned
to the threads implement different operations. This feature can for example be applied if
domain decomposition itself does not generate enough parallelism and whole operations
can be executed in parallel since they access different data structures.

In the shared memory model, the distribution of data structures onto the node memories
is not enforced by decomposing global arrays into local arrays, but the global address
space is distributed onto the memories by the operating system. For example, the pages
of the virtual address space can be distributed cyclically or can be assigned at first touch.
The chosen domain decomposition thus has to take into account the granularity of the
distribution, i.e., the size of pages, as well as the system-dependent allocation strategy.

While the domain decomposition has to be hard-coded into the message passing pro-
gram, it can easily be changed in a shared memory program by selecting a different
scheduling strategy for parallel loops.

Another advantage of the shared memory model is that automatic and incremental par-
allelization is supported. While automatic parallelization leads to a first working parallel
program, its efficiency typically needs to be improved. The reason for this is that paral-
lelization techniques work on a loop-by-loop basis and do not globally optimize the parallel
code via a domain decomposition. In addition, dependence analysis, the prerequisite for
automatic parallelization, is limited to access patterns known at compile time. The biggest
disadvantage of this model is that it can only be used on shared memory computers.

In the shared memory model, a first parallel version is relatively easy to implement
and can be incrementally tuned. In the message passing model instead, the program can
be tested only after finishing the full implementation. Subsequent tuning by adapting the
domain decomposition is usually time consuming.

OpenMP13–15 is the standard for directive-based shared memory programming and will
be introduced in Sec. 4.

2.3 Programming Accelerators

Currently, programming of accelerator devices is not supported by traditional techniques
like MPI or OpenMP, but requires yet another level of parallel programming. Most
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widespread are either low-level, non-portable techniques like Compute Unified Device
Architecture (CUDA)26, 27 or Open Computing Language (OpenCL)28 or high-level ap-
proaches based on pragmas like HMPP29 or OpenACC30. Pragmas are meta-information
added in the application source code that do not change the semantic of the original code.
They provide a portable way to specify the remote execution (RPC) of functions or regions
of code on GPUs and many-core accelerators as well as the transfer of data to and from
the target device memory. They offer an incremental way of migrating applications by first
declaring and generating kernels of critical computations, then by managing data transfers
and finally by optimizing kernel performance and data synchronization.

3 MPI

The Message Passing Interface (MPI)8–12 was mainly developed between 1993 and 1997. It
is a community standard which standardizes the calling interface for a communication and
synchronization function library. It provides Fortran 77, Fortran 90, C and C++ language
bindings. It includes routines for point-to-point communication, collective communica-
tion, one-sided communication, parallel IO, and dynamic task creation. Currently, almost
all available open-source and commercial MPI implementations support the 2.0 standard
with the exception of dynamic task creation, which is only implemented by a few. In 2008
and 2009, updates and clarifications of the standard were published as Version 2.1 and 2.2
and work has begun to define further enhancements (version 3.x). For a simple example
see the appendix.

3.1 MPI Basic Routines

MPI consists of more than 320 functions. But realistic programs can already be developed
based on no more than six functions:

MPI Init initializes the library. It has to be called at the beginning of a parallel operation
before any other MPI routines are executed.

MPI Finalize frees any resources used by the library and has to be called at the end of
the program.

MPI Comm size determines the number of processors executing the parallel program.
MPI Comm rank returns the unique process identifier.
MPI Send transfers a message to a target process. This operation is a blocking send

operation, i.e., it terminates when the message buffer can be reused either because
the message was copied to a system buffer by the library or because the message was
delivered to the target process.

MPI Recv receives a message. This routine terminates if a message was copied into the
receive buffer.

3.2 MPI Communicator

All communication routines depend on the concept of a communicator. A communicator
consists of a process group and a communication context. The processes in the process
group are numbered from zero to process count - 1. The process number returned by
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MPI Comm rank is the identification in the process group of the communicator which is
passed as a parameter to this routine.

The communication context of the communicator is important in identifying messages.
Each message has an integer number called a tag which has to match a given selector in the
corresponding receive operation. The selector depends on the communicator and thus on
the communication context. It selects only messages with a fitting tag and having been sent
relative to the same communicator. This feature is very useful in building parallel libraries
since messages sent inside the library will not interfere with messages outside if a special
communicator is used in the library. The default communicator that includes all processes
of the application is MPI COMM WORLD.

3.3 MPI Collective Operations

Another important class of operations are collective operations. Collective operations are
executed by a process group identified via a communicator. All the processes in the group
have to perform the same operation. Typical examples for such operations are:

MPI Barrier synchronizes all processes. None of the processes can proceed beyond the
barrier until all the processes started execution of that routine.

MPI Bcast allows to distribute the same data from one process, the so-called root pro-
cess, to all other processes in the process group.

MPI Scatter also distributes data from a root process to a whole process group, but each
receiving process gets different data.

MPI Gather collects data from a group of processes at a root process.
MPI Reduce performs a global operation on the data of each process in the process

group. For example, the sum of all values of a distributed array can be computed
by first summing up all local values in each process and then summing up the local
sums to get a global sum. The latter step can be performed by the reduction operation
with the parameter MPI SUM. The result is delivered to a single target processor.

3.4 MPI IO

Data parallel applications make use of the IO subsystem to read and write big data sets.
These data sets result from replicated or distributed arrays. The reasons for IO are to read
input data, to pass information to other programs, e.g., for visualization, or to store the
state of the computation to be able to restart the computation in case of a system failure or
if the computation has to be split into multiple runs due to its resource requirements.

IO can be implemented in three ways:

Sequential IO A single node is responsible to perform the IO. It gathers information from
the other nodes and writes it to disk or reads information from disk and scatters it to
the appropriate nodes. Whereas this approach might be feasible for small amounts of
data, it bears serious scalability issues, as modern IO subsystems can only be utilized
efficiently with parallel data streams and aggregated waiting time increases rapidly at
larger scales.

Private IO Each node accesses its own files. The big advantage of this implementation is
that no synchronization among the nodes is required and very high performance can
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be obtained. The major disadvantage is that the user has to handle a large number of
files. For input the original data set has to be split according to the distribution of the
data structure and for output the process-specific files have to be merged into a global
file for post-processing.

Parallel IO In this implementation all the processes access the same file. They read and
write only those parts of the file with relevant data. The main advantages are that no
individual files need to be handled and that reasonable performance can be reached.
The parallel IO interface of MPI provides flexible and high-level means to implement
applications with parallel IO.

Files accessed via MPI IO routines have to be opened and closed by collective opera-
tions. The open routine allows to specify hints to optimize the performance such as whether
the application might profit from combining small IO requests from different nodes, what
size is recommended for the combined request, and how many nodes should be engaged in
merging the requests.

The central concept in accessing the files is the view. A view is defined for each process
and specifies a sequence of data elements to be ignored and data elements to be read or
written by the process. When reading or writing a distributed array the local information
can be described easily as such a repeating pattern. The IO operations read and write
a number of data elements on the basis of the defined view, i.e., they access the local
information only. Since the views are defined via runtime routines prior to the access, the
information can be exploited in the library to optimize IO.

MPI IO provides blocking as well as nonblocking operations. In contrast to blocking
operations, the nonblocking ones only start IO and terminate immediately. If the program
depends on the successful completion of the IO it has to check it via a test function. Besides
the collective IO routines which allow to combine individual requests, also non-collective
routines are available to access shared files.

3.5 MPI Remote Memory Access

Remote memory access (RMA) operations (also called one-sided communication) allow to
access the address space of other processes without participation of the other process. The
implementation of this concept can either be in hardware, such as in the CRAY T3E, or in
software via additional threads waiting for requests. The advantages of these operations
are that the protocol overhead is much lower than for normal send and receive operations
and that no polling or global communication is required for setting up communication.

In contrast to explicit message passing where synchronization happens implicitly, ac-
cesses via RMA operations need to be protected by explicit synchronization operations.

RMA communication in MPI is based on the window concept. Each process has to
execute a collective routine that defines a window, i.e., the part of its address space that can
be accessed by other processes.

The actual access is performed via put and get operations. The address is defined by the
target process number and the displacement relative to the starting address of the window
for that process.

MPI also provides special synchronization operations relative to a window. The
MPI Win fence operation synchronizes all processes that make some address ranges acces-
sible to other processes. It is a collective operation that ensures that all RMA operations
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started before the fence operation terminate before the target process executes the fence
operation and that all RMA operations of a process executed after the fence operation are
executed after the target process executed the fence operation. There are also more fine
grained synchronization methods available in the form of the General Active Target Syn-
chronization or via locks.

4 OpenMP

OpenMP13–15 is a directive-based programming interface for the shared memory program-
ming model. It consists of a set of directives and runtime routines for Fortran 77 (published
1997), for Fortran 90 (2000), and a corresponding set of pragmas for C and C++ (1998).
In 2005, a combined Fortran, C, and C++ standard (Version 2.5) was published, which was
updated in 2008 (Version 3.0) and 2011 (Version 3.1).

Directives are special comments that are interpreted by the compiler. Directives have
the advantage that the code is still a sequential code that can be executed on sequential
machines (by ignoring the directives/pragmas) and therefore there is no need to maintain
separate sequential and parallel versions.

Directives start and terminate parallel regions. When the master thread hits a parallel
region a team of threads is created or activated. The threads execute the code in parallel
and are synchronized at the beginning and the end of the computation. After the final
synchronization the master thread continues sequential execution after the parallel region.
The main directives are:

!$OMP PARALLEL DO specifies a loop that can be executed in parallel. The DO
loop’s iterations can be distributed among the set of threads according to vari-
ous scheduling strategies including STATIC(CHUNK), DYNAMIC(CHUNK), and
GUIDED(CHUNK). STATIC(CHUNK) distribution means that the set of iterations
are consecutively distributed among the threads in blocks of CHUNK size (resulting
in block and cyclic distributions). DYNAMIC(CHUNK) distribution implies that iter-
ations are distributed in blocks of CHUNK size to threads on a first-come-first-served
basis. GUIDED (CHUNK) means that blocks of exponentially decreasing size are as-
signed on a first-come-first-served basis. The size of the smallest block is determined
by CHUNK size.

!$OMP PARALLEL SECTIONS starts a set of sections that are each executed in par-
allel by a team of threads.

!$OMP PARALLEL introduces a code region that is executed redundantly by the
threads. It has to be used very carefully since assignments to global variables will
lead to conflicts among the threads and possibly to nondeterministic behavior.

!$OMP DO / FOR is a work sharing construct and may be used within a parallel region.
All the threads executing the parallel region have to cooperate in the execution of the
parallel loop. There is no implicit synchronization at the beginning of the loop but a
synchronization at the end. After the final synchronization all threads continue after
the loop in the replicated execution of the program code.
The main advantage of this approach is that the overhead for starting up the threads is
eliminated. The team of threads exists during the execution of the parallel region and
need not be built before each parallel loop.
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!$OMP SECTIONS is also a work sharing construct that allows the current team of
threads executing the surrounding parallel region to cooperate in the execution of
the parallel sections.

!$OMP TASK is only available with the new version 3.0 of the standard and greatly sim-
plifies the parallelization on non-loop constructs by allowing to dynamically specify
portions of the programs which can run independently.

Program data can either be shared or private. While threads do have their own copy of
private data, only one copy exists of shared data. This copy can be accessed by all threads.
To ensure program correctness, OpenMP provides special synchronization constructs. The
main constructs are barrier synchronization enforcing that all threads have reached this
synchronization operation before execution continues and critical sections. Critical sec-
tions ensure that only a single thread can enter the section and thus, data accesses in such a
section are protected from race conditions. For example, a common situation for a critical
section is the accumulation of values. Since an accumulation consists of a read and a write
operation unexpected results can occur if both operations are not surrounded by a critical
section. For a simple example of an OpenMP parallelization see the appendix.

5 Parallel Debugging

Debugging parallel programs is more difficult than debugging sequential programs not only
since multiple processes or threads need to be taken into account but also because program
behavior might not be deterministic and might not be reproducible. These problems are not
solved by current state-of-the-art commercial parallel debuggers. They only deal with the
first problem by providing menus, displays, and commands that allow to inspect individual
processes and execute commands on individual or all processes.

Two widely used debuggers are TotalView from Rogue Wave Software21 and DDT
from Allinea3. They provide breakpoint definition, single stepping, and variable inspec-
tion for parallel programs via an interactive interface. The programmer can execute those
operations for individual processes and groups of processes. They also provides some
means to summarize information such that equal information from multiple processes is
combined into a single information and not repeated redundantly. They also support MPI
and OpenMP programs on many platforms.

6 Parallel Performance Analysis

Performance analysis is an iterative subtask during program development. The goal is to
identify program regions that do not perform well. Performance analysis is structured into
three phases:

Measurement: Performance analysis is done based on information on runtime events
gathered during program execution. The basic events are, for example, cache misses,
termination of a floating point operation, start and stop of a subroutine or message
passing operation. The information on individual events can be summarized during
program execution (profiling) or individual trace records can be collected for each
event (tracing).

520



Analysis: During analysis the collected runtime data are inspected to detect performance
problems. Performance problems are based on performance properties, such as the
existence of message passing in a program region, which have a condition for identi-
fying it and a severity function that specifies its importance for program performance.
Current tools support the user in checking the conditions and the severity by a visu-
alization of the program behavior. Future tools might be able to automatically detect
performance properties based on a specification of possible properties. During analy-
sis the programmer applies a threshold. Only performance properties whose severity
exceeds this threshold are considered to be performance problems.

Ranking: During program analysis the severest performance problems need to be iden-
tified. This means that the problems need to be ranked according to the severity.
The most severe problem is called the program bottleneck. This is the problem the
programmer tries to resolve by applying appropriate program transformations.

Current techniques for performance data collection are profiling and tracing. Profiling
collects summary data only. This can be done via sampling. The program is regularly
interrupted, e.g., every 10 ms, and the information is added up for the source code location
which was executed in this moment. For example, the UNIX profiling tool prof applies this
technique to determine the fraction of the execution time spent in individual subroutines.

A more precise profiling technique is based on instrumentation, i.e., special calls to a
monitoring library are inserted into the program. This can either be done in the source
code by the compiler or specialized tools, or can be done in the object code. While the
first approach allows to instrument more types of regions, for example, loops and vector
statements, the latter allows to measure data for programs where no source code is avail-
able. The monitoring library collects the information and adds it to special counters for the
specific region.

Tracing is a technique that collects information for each event. This results, for exam-
ple, in very detailed information for each instance of a subroutine and for each message
sent to another process. The information is stored in specialized trace records for each
event type. For example, for each start of a send operation, the time stamp, the message
size and the target process can be recorded, while for the end of the operation, the time
stamp and bandwidth are stored.

The trace records are stored in the memory of each process and are written to a trace
file either when the buffer is filled up or when the program terminates. The individual trace
files of the processes are merged together into one trace file ordered according to the time
stamps of the events.

Profiling has the advantage to be of moderate size while trace information tends to
be very large. The disadvantage of profiling is that it is not fine grained; the behavior
of individual instances of subroutines can for example not be investigated since all the
information has been summed up.

Widely used performance tools include TAU19, 20 from the University of Oregon, Vam-
pir22, 23 from the Technical University of Dresden, HPCToolkit25 from Rice University, and
Scalasca17, 18 from the Jülich Supercomputing Centre.
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7 Summary

This article gave an overview of parallel programming models as well as programming
tools. Parallel programming will always be a challenge for programmers. Higher-level
programming models and appropriate programming tools only facilitate the process but do
not make it a simple task.

While programming in MPI offers the greatest potential performance, shared memory
programming with OpenMP is much more comfortable due to the global style of the re-
sulting program. The sequential control flow among the parallel loops and regions matches
much better with the sequential programming model all the programmers are trained for.

Although programming tools were developed over years, the current situation seems
not to be very satisfying. Program debugging is done per thread, a technique that does not
scale to larger numbers of processors. Performance analysis tools do also suffer scalability
limitations and, in addition, the tools are complicated to use. The programmers have to
be experts for performance analysis to understand potential performance problems, their
proof conditions, and their severity. In addition they have to be experts for powerful but
also complex user interfaces.

Future research in this area has to try to automate performance analysis tools, such
that frequently occurring performance problems can be identified automatically. First au-
tomatic tools are already available: ParaDyn7 from the University of Wisconsin-Madison,
Persicope6 from the Technical University Munich, and Scalasca17, 18 from the Jülich Su-
percomputing Centre.

A second important trend that will effect parallel programming in the future is the
move towards more heterogeneous architectures: more and more machines employ one or
more accelerators like GPUs in addition to the multi-core processors within a node of large
distributed-memory clusters. This introduces a 3-level parallelism hierarchy (machine -
node - accelerator) each requiring a different programming model, e.g. combining message
passing between the individual SMP nodes, shared memory programming within a node,
plus an accelerator-specific programming model like CUDA. This hybrid programming
model will lead to even more complex programs and program development tools have to
be enhanced to be able to help the user in developing these codes.

A promising approach to reduce complexity in parallel programming in the future are
so-called partitioned global address space (PGAS) languages16, such as Unified Parallel
C (UPC)24 or Co-array Fortran (CAF) which provide simple means to distribute data and
communicate implicitly via efficient one-sided communication. CAF is part of the latest
Fortran 2008 standard (ISO/IEC 1539-1:2010).
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Appendix

This appendix provides three versions of a simple example of a scientific computation. It
computes the value of π by numerical integration:

π =

∫ 1

0

f(x)dx with f(x) =
4

1 + x2

This integral can be approximated numerically by the midpoint rule:

π ≈ 1

n

∫ n

1

f(xi) with xi =
(i− 0.5)

n
for i = 1, . . . , n

Larger values of the parameter n will give us more accurate approximations of π. This
is not, in fact, a very good way to compute π, but it makes a good example because it has the
typical, complete structure of a numerical simulation program (initialization - loop-based
calculation - wrap-up), and the whole source code fits one one page or slide.

To parallelize the example, each process/thread computes and adds up the areas for a
different subset of the rectangles. At the end of the computation, all of the local sums are
combined into a global sum representing the value of π.

Sequential and OpenMP Version of Example Program

The following listing shows the corresponding implementation of the π integration exam-
ple using OpenMP. As OpenMP is based on directives (which are plain comments in a
non-OpenMP compilation mode), it is at the same time also a sequential implementation
of the example.

1 program pi omp
2 i m p l i c i t none
3 i n t e g e r : : i , n
4 double p r e c i s i o n : : f , x , sum , pi , h
5

6 open ( 1 , f i l e =” p i . d a t ” )
7 read ( 1 , ∗ ) n
8

9 h = 1 . 0 d0 / n
10 sum = 0 . 0 d0
11 ! $omp p a r a l l e l do p r i v a t e ( i , x ) r e d u c t i o n (+: sum )
12 do i = 1 , n
13 x = ( i − 0 . 5 d0 ) ∗ h
14 sum = sum + ( 4 . d0 / ( 1 . d0 + x∗x ) )
15 end do
16 p i = h ∗ sum
17

18 w r i t e (∗ , fmt=” (A, F16 . 1 2 ) ” ) ” Value o f p i i s ” , p i
19 end program
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The OpenMP directive in line 11 declares the following do-loop as parallel resulting in
a concurrent execution of loop iterations. As the variables i and x are used to store values
during the execution of the loop, they have to be declared private, so that each thread
executing iterations has its own copy. The variable h is only read, so it can be shared.
Finally, it is specified that there is a reduction (using addition) over the variable sum.

MPI Version of Example Program

The following listing shows a Fortran90 implementation of the π numerical integration
example parallelized with the help of MPI.

1 program p i m p i
2 i m p l i c i t none
3 i n c l u d e ’ mpif . h ’
4 i n t e g e r : : i , n , i e r r , myrank , numprocs
5 double p r e c i s i o n : : f , x , sum , pi , h , mypi
6

7 c a l l M P I I n i t ( i e r r )
8 c a l l MPI Comm rank (MPI COMM WORLD, myrank , i e r r )
9 c a l l MPI Comm size (MPI COMM WORLD, numprocs , i e r r )

10

11 i f ( myrank == 0 ) then
12 open ( 1 , f i l e =” p i . d a t ” )
13 read ( 1 , ∗ ) n
14 end i f
15

16 c a l l MPI Bcast ( n , 1 , MPI INTEGER , 0 , MPI COMM WORLD, i e r r )
17

18 h = 1 . 0 d0 / n
19 sum = 0 . 0 d0
20 do i = myrank +1 , n , numprocs
21 x = ( i − 0 . 5 d0 ) ∗ h
22 sum = sum + ( 4 . d0 / ( 1 . d0 + x∗x ) )
23 end do
24 mypi = h ∗ sum
25

26 c a l l MPI Reduce ( mypi , p i , 1 , MPI DOUBLE PRECISION , &
27 MPI SUM , 0 , MPI COMM WORLD, i e r r )
28

29 i f ( myrank == 0 ) then
30 w r i t e (∗ , fmt=” (A, F16 . 1 2 ) ” ) ” Value o f p i i s ” , p i
31 e n d i f
32

33 c a l l M P I F i n a l i z e ( i e r r )
34 end program
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First, the MPI system has to be initialized (lines 7 to 9) and terminated (line 33) with
the necessary MPI calls. Next, the input of parameters (line 11 to 14) and the output of
results (lines 29 to 31) has to be restricted so that it is only executed by one processor.
Then, the input has to be broadcasted to the other processors (line 16). The biggest (and
most complicated) change is to program the distribution of work and data. The do-loop in
line 20 has to be changed so that each processor only calculates and summarizes its part of
the distributed computations. Finally, the reduce call in lines 26/27 collects the local sums
and delivers the global sum to processor 0.

As one can see, because of the need to explicitly program all aspects of the paralleliza-
tion, the MPI version is almost twice as long as the OpenMP version. Although this is
clearly more work, it gives a programmer much more ways to express and control paral-
lelism. Also, the MPI version will run on all kinds of parallel computers, while OpenMP
is restricted to the shared memory architecture.
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The scalability of the application µϕ (MuPhi), a numerical solver for Richards’ equation, was
tested on the BlueGene/P type parallel computer JUGENE in Jülich at the Extreme Scaling
Workshop 20111. The arising linear equation systems were solved with DUNE-ISTL using a
BiCGStab solver in combination with an algebraic multigrid preconditioner. We present scaling
results for the computation as well as for file I/O up to 294’849 cores and 150 billion unknowns
and discuss implementation details for JUGENE.

1 Introduction

Richards’ equation is a second order partial differential equation (PDE) describing water
flow in partially water saturated porous media:

∂θ(ψm, ~x)

∂t
− ∇ · {K(θ, ~x) · [∇ψm − ρwg~ez]}+ rw = 0.

Here, ψm is the matrix potential, ρw the density of water, g gravitational acceleration, ~ez
the unity vector in the vertical and rw a source sink term. θ(ψm, ~x) is the volumetric water
content and K(θ, ~x) is the hydraulic conductivity function. Both are highly nonlinear,
spatially heterogeneous material functions of ψm.

For time dependent problems Richards’ equation is a non-linear (probably degenerated)
parabolic equation. For steady-state saturated porous media it is an elliptic PDE (θ and K
are then spatially variable constants).

Richards’ equation is solved using a cell-centred finite-volume scheme with full up-
winding in space and an implicit Euler scheme in time. Linearisation of the nonlinear
equations is done by an inexact Newton method with line search.

2 Algebraic Multigrid as Parallel Linear Solver

Most of the computation time is consumed by solving the sparse linear systems arising in
the Newton method. For this we use the biconjugate gradient stabilized method8 precon-
ditioned by a massively parallel algebraic multigrid solver based on aggregation2.

We decompose the unknowns between the processes such that each unknown is owned
by exactly one process. Each process stores whole rows of the matrix corresponding to
unknowns owned by the process. Additionally each process has to store all unknowns j
with aij 6= 0 for an unknown i it owns. All rows corresponding to rows not owned are set
to ajj = 1 and aij = 0 for j 6= i. Note that for the matrix-vector product we are able to
compute the unknowns owned by a process with a local matrix-vector product. For a more
detailed description see Ref. 3.
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During the setup phase each process computes the aggregates for the unknowns it owns.
After communicating this information it sets up the prolongation and coarse level matrix
locally. Once the number of unknowns is below a given threshold we agglomerate the
data onto fewer processes for a better ratio between communication and computation time.
As a side effect we thus facilitate aggregation across process boundaries. The new data
decomposition is computed by ParMETIS6 using the graph of the communication pattern
for the matrix-vector product. Unfortunately the parallel algorithm of ParMETIS cannot
handle our graph on the full machine. Therefore we have to use the recursive bisection
graph partitioning algorithm sequentially on one process. This procedure is repeated on
coarser levels until the whole linear system of the coarsest level is stored on one process
and is directly solved using SuperLU4. As a smoother we use hybrid Gauss-Seidel10.

3 Test Cases

We formulated two test cases for a groundwater flow problem and for a (time dependent)
unsaturated flow problem, respectively. For the test cases the material parameters were
either

• homogeneous (thus for the groundwater flow problem the Laplace equation was
solved), scenario homog

• heterogeneous with a heterogeneity which was the same on each node, scenario block

• heterogeneous with a structure which was much larger, scenario large

The heterogeneity was created as an equally weighted sum of two log-normal autocorre-
lated Gaussian random fields with different correlation length (100 voxel horizontally and
20 voxel vertically for the coarse scale and 2 voxel for the fine scale). The random num-
bers were generated with the Quantim image processing library9 and had a mean of 0 and
a variance of 1.5 for the groundwater test case and 1.0 for the unsaturated test case.

The hydraulic parameters were scaled with the exponential of these values according
to the principle of Miller similarity7. A van Genuchten/Mualem model was used for the
basic curve with the parameters of a medium sand:

Parameter θs θr Ks n α τ
Value 0.34 0.0 40.0 cm/h 2.0 5.0 0.5

For the groundwater test case Dirichlet boundary conditions were used at the west and
east boundary imposing an average pressure gradient of 1 m/m. The potential at the lower
edge of the east boundary was set to the size of the domain (thus the whole domain was
water saturated). No-flow boundary conditions were used at all other boundaries. Initial
condition was a full-saturation at hydraulic equilibrium. The size of one grid element was
0.1 m in all directions. We tested weak scalability in each step doubling the size of the
domain using 803 grid cells per process resulting in 147 billion unknowns on 287’496
processes.

For the unsaturated test case no-flow boundary conditions were used at all side bound-
aries, a constant potential of zero was given at the bottom and a constant flux of 2 mm/h
was applied at the top. Initial condition was hydraulic equilibrium with a potential of 0
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Figure 1. Total computation time without I/O for the different groundwater (left) and unsaturated (right) test
scenarios.

cm at the bottom. The size of a grid element was 0.01 × 0.01 × 0.01 m. One time step
of one hour was simulated. In the weak scalability test we used 64 × 64 × 128 grid cells
per process. The domain was only increased in the horizontal direction. Up to 294’849
processes were used.

4 Results

Besides performing simulations for the test cases we were able to speed up the data output
(by a factor of two) and to get rid of a long delay at the start of the program resulting
from dynamical linking of the system libraries. With static linking the delay vanished
completely.

The linear solver with an algebraic multigrid preconditioner has an expected complex-
ity of O(N logN), where N is the number of unknowns. The computation time (Fig. 1)
shows for the groundwater test case the expected linear rise in a logarithmic plot of total
computation time against the number of unknowns/processes. For the large scenario there
is a non-linear increase in the number of iterations needed at the beginning until the full
structure (which was periodic with a length of 10243) is resolved. Afterwards the compu-
tation time rises again linear, but with a higher slope.

For the unsaturated test case the total computation time is even constant for all scenarios
as soon as the structure is fully resolved. This is a consequence of the strict diagonal
dominance of the matrix due to the additional time derivative term.

In an analysis of the computation time per step of defect calculation, matrix assembly,
generation of the coarse grid hierarchy of the algebraic multigrid solver (coarsening) and
application of the linear solver, respectively, most components of the code scale perfectly
with a parallel efficiency close to one (Fig. 2). There is a decrease in the efficiency of the
linear solver per step for the unsaturated laplace scenario. However, the iteration time for
the laplace case is at the beginning smaller than for all other scenarios. With increasing
number of processes/unknowns the iteration time approaches the time needed in the other
scenarios.

For the groundwater test case the remaining unknowns are redistributed to fewer pro-
cesses if the number of unknowns becomes too small. Finally on the coarsest level the
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Figure 2. Efficiency per step of the different components of the code for the groundwater (left) and unsaturated
(right) test scenarios.

system was solved exactly with SuperLU on one processes. The efficiency of this redistri-
bution was difficult to achieve as ParMETIS could not be run in parallel (see above) and
thus a sequential complexity was introduced. However, after an initial steep decrease it
seems to scale perfectly well reaching an efficiency of 25 per cent at 287.496 processes.

For the unsaturated test case the redistribution was not necessary. The coarsening was
performed as long as possible and the remaining linear equation system was solved iter-
atively with a parallel BiCGStab solver. This resulted in a much better efficiency of the
coarsening but was only possible as the flow was mainly vertical with little horizontal cou-
pling and the unknowns in the vertical direction were always completely on one process.

The reading of structures with as many points as the unknowns in the computation (up
to 150 billion) was performed with parallel HDF5 (only for the block and large scenarios).
For the block scenarios the structure was read sequentially by one process and broadcasted
to the other processes, for the large scenario each process read its own hyperslab. For
the unsaturated large scenario this took 1559 seconds, which is not really satisfying. The
efficiency for block scenarios was better (Fig. 3). For the groundwater large scenario a
pre-partitioned structure data in the SIONlib5 format was used which reduced the time for
structure input to 93 seconds.

Output was also written with the SIONlib library. The output time increased strongly
with the number of processes. However, this was also due to the limited bandwidth of the
I/O subsystem. For the unsaturated large scenario with 294’849 cores for the output of the
potential 2.3 Terrabyte were written in 123 seconds, which corresponds to 19 GB/s which
is close to the system limit. For the groundwater large scenario with 287’496 cores 8.8
Terrabyte of data was written (additionally including the flux field, the RT0-coefficients of
the flux field and the volumetric water content) in 568 seconds (corresponding to 15 GB/s).

Crucial for the good scalability of our model and solver are

• a domain decomposition resulting in a communication pattern, which requires mostly
local communications with few neighbour processes

• accumulation of communication so that only few large messages are sent instead of
many small ones
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• the good scalability of the algebraic multigrid solver with the number of unknowns

• the use of IO libraries really exploiting the features of the parallel file system (GPFS)

A minor bottle neck remains the sequential computation of the new data decomposition
with ParMETIS as the parallel version needs too much memory.
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Current supercomputers are approaching a million cores and their compute power and amount
of memory enable us to solve linear systems with more than 1012 degrees of freedom. However,
this forces us to partition our problem into a large number of sub-problems that can be treated
in parallel. Parts of the algorithm that do not permit such high degrees of parallelism thus
easily become a bottleneck. Additionally, the performance analysis and debugging of programs
for such a high number of cores become challenging tasks in themselves. Our Hierarchical
Hybrid Grids framework is capable of solving elliptic partial differential equations discretized
with finite elements on a compromise between structured and unstructured grids by a geometric
multigrid method. It is designed to run highly parallel and was adapted within this project to
run on the JUGENE located in Jülich. We present scaling results and discuss the specifics of an
efficient implementation of our software on Blue Gene/P systems.

1 Introduction

A variety of applications have a high demand on algorithms which are able to provide
very high spatial resolutions finite element (FE). Large-scale example include seismic sea
wave and earthquake simulations or weather predictions. In much smaller scales, direct
numerical simulations provide insight to highly turbulent phenomena in fluid mechanics.
Here, it is only possible to calculate a domain of some cubic centimeters at very high
Reynold numbers. But there are also interesting issues at other scales, e.g. in acoustics:
An important design goal for concert halls is to acquire excellent room acoustics. A direct
approach to capture the acoustics in such buildings is to solve the pressure equation. If an
average concert hall is simulated at a reasonable resolution, we already can fill the complete
memory of today’s largest supercomputers.

A major aim of our report is to show that it is still possible to design a relatively flat,
but still efficient multigrid (MG) algorithm on current highly parallel supercomputers. Flat
means in this context, that we have a multigrid algorithm with up to seven grid levels and
thus a relatively large number of unknowns on the coarsest grid.

Our test machine is a Blue Gene/P cluster located in Jülich, which has 73 728 nodes.
Each node is equipped with four compute cores. Besides other software approaches e.g.1–3,
our framework Hierarchical Hybrid Grids (HHG) implements, a highly parallel, multigrid
variant for such machines.

We present the HHG approach on Blue Gene/P, which is different in terms of its ar-
chitecture and degree of parallelism. The next section introduces the problems with the
coarsest grids and ways to treat it. Furthermore, some parallel issues are discussed, which
arose in our implementations.

*Reprint from NIC Symposium 2012, NIC Series Volume 45, p. 323–330, ISBN 978-3-89336-758-0.
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Section three presents strong and weak scaling results. In the strong scaling, we try
to push our MG to its limits on the underlying computer architecture. We achieved a
speedup of 50 for a scaling from N to 96*N cores. The weak scaling shows a good parallel
efficiency up to 292 912 cores, while the overhead for calculations on the coarsest grid
stays reasonable.

1.1 Multigrid Algorithm

Discretizing a second-order differential equation with finite elements leads to a system of
equations. An important property of the system matrix is sparsity. The sparsity pattern
reduces the number of operations per iteration over the domain for iterative solvers to a
complexity of O(N) for N unknowns. However, an increasing number of iterations are
required for solvers like Gauss-Seidel (GS) or Conjugated Gradient (CG) with growing
problem size. MG is a strategy to change this behaviour, such that the number of operations
to solve a system is linearly dependent on the number of unknowns. This allows us to
solve large systems in reasonable time. In the following, we give a quick overview on the
multigrid method. For an introduction, we refer the reader to Ref. 4.

An observation for local acting iterative smoothers, like GS or Jacobi solvers, is that
they smooth high frequent errors very well. In contrast, low frequent errors are reduced
extremely slow. In order to resolve this shortcoming, MG uses a second effect: Let us
consider a function on a fine grid, which has low frequencies. When we transfer this
function to a coarser grid, the frequencies of the function increase with respect to the mesh
size. Thus, we have changed the frequency of a function by changing its discretization. In
MG this idea is applied to low frequencies of the error by transferring the error to coarser
grids.

For the linear case, we can use the error equation (1) to calculate the error ek on the
coarser grids, where Nk is the discretization matrix, rk the residual, fk the right hand side,
and vk the approximated solution. The subindex k denotes the level of the grid. For a
two-grid case k is the fine grid and k − 1 is the coarse grid. Afterwards the solution is
corrected by the error on the fine grid (see Fig. 1).

Nkek = rk = fk −Nkvk (1)

1.2 Hierarchical Hybrid Grids

The HHG framework5, 6 uses a hybrid discretization strategy by combining structured and
unstructured grids. A coarse input FE mesh is organized into the grid primitives vertices,
edges, faces, and volumes. This grid is unstructured and thus provides geometric flexibil-
ity. The primitives are then refined in a structured way, resulting in semi-structured meshes
(see Fig. 2). The generated structured regions are stored in a directly addressed way into
the memory to allow an efficient execution. Moreover, the regularity of the resulting grids
may be exploited in such a way that it is no longer necessary to explicitly assemble the
global discretization matrix. In particular, given an appropriate input grid, the discretiza-
tion matrix may be defined implicitly using stencils that are constant for each structured
patch. Hence, HHG is designed to have low memory consumption as well as hardware
efficient execution and a high degree of parallelism. This approach allows to solve elliptic
partial differential equations with a very high resolution. HHG supports different point-
and line-wise relaxation schemes for the smoothing procedure.
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Figure 1. Multigrid two-grid cycle.

inner points
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communication

Figure 2. Space partitioning in HHG primitives.

2 Grid Partitioning and the Coarsest Grids

From the theoretical point of view, MG has a linear complexity ofO(N) with respect to the
number of unknowns for sparse systems. For serial runs, this observation can also be made
in practical use. In parallel settings we are able to achieve this behaviour up to a certain
degree that seems to be limited by the increasing amount of communication cost for the
coarsest levels. Estimates for the decreasing volume to surface ratio for multigrid hierarchy
are given in7. As an example, let us assume we want to utilize 300, 000 cores, having one
process per core. With static grid partitioning the coarsest grid would consist of 300, 000
elements. At the latest at this stage there are two possibilities to treat this grid: Proceed
with the construction of new coarser grid levels by collocating elements on fewer number
of cores (agglomeration) or stop at this stage and apply any iterative or direct solver8.

In our MG algorithm, we decided to go for the second approach. This strategy is also
known as flat multigrid, truncated cycle, or U-cycle. For a regular tetrahedral grid it is too
drastic to end up with one element per process, like in our example. This would lead to up
to four local unknowns per process and at least 44 ghost points. HHG refines each input
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element twice to generate the coarsest multigrid level, so that the minimal size per process
is 64 elements (up to 35 local unknowns), which provide a reasonable volume to surface
ratio.

In the case of grid partitioning two rules have to be considered, when dealing with a
very high degree of parallelism. First, when constructing the grids in a setup phase, of-
ten global acting algorithms have to be used, e.g. to find communication neighbours or
to perform global numbering. Let us assume an operation between two input values costs
10 processor cycles and let nP be the number of processors. Algorithms of complexity
of O(nP ) and O(nP log2(nP )) would need 3 · 106 and 5.5 · 107 cycles for nP = 3 · 105,
respectively. A modern processor can perform these operations in far below one second.
However, while for an O(n2

P ) class it is often still possible with nP = 10 · 104 to treat
our example in 109 cycles (around one second), nP = 3 · 105 processors would require
1011 cycles. This is in the range of a minute on current hardware. It can be acceptable,
but our assumptions are quite optimistic. If there is more than one sub-grid per processor,
an operation is more expensive, or thinking about the next generations of supercomputers
a complexity of O(n2

P ) has to be avoided by choosing an other algorithm or paralleliza-
tion, if possible. In HHG we had to reduce the complexity for the mesh construction to
O(nP log2(nP )), since the setup times took much longer than the solving phase.

Second, we have to consider main memory requirements. Since we read in an unstruc-
tured input mesh to allow geometric flexibility, basic logical information of the mesh can
easily grow up to more than hundreds of MB. This is already the case for a few million
elements, which the coarsest grid might have when we use a flat multigrid algorithm. Thus
one should consider to hold the coarse grid structure in main memory of each processor
just in the setup phase, or to avoid that at all. Every instance of HHG only stores its own
part of the coarsest grid to avoid memory problems.

Another issue is, if the problem solution on the coarsest grid of a truncated cycle can
be approximated by a non-optimal solver in reasonable time. In this report, CG is used as
a solver for the coarsest grid. To give an estimation of the necessary number of CG steps,
we assume the following:

• The required number of CG steps is proportional to the diameter of the domain.
• We assume that high frequency error are eliminated by smoothing.
• One CG step for the diameter one with one coarse grid point is sufficient.

Consequently, our simple estimation for the required number of CG-steps nCG for l multi-
grid levels and d dimensions (here d = 3) is

nCG ≈
d
√
N

2l−1
. (2)

However, in practice this is only a rough estimation, multiplied by a constant (c ≈ 1)
because of the third assumption.

3 Scaling on JUGENE

Next we present weak and strong scaling results of our multigrid algorithm. Hereby push
HHG to the limits of current CPU parallelism. All our calculations in this report were
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performed on the super computer JUGENE in Jülich consisting of 73 728 compute nodes
or sockets. Each socket is equipped with IBM’s Blue Gene/P (BGP) quad-core processor.
The following results are measured by using VN (virtual node) mode on the JUGENE.
This means each node executes 4 tasks, sharing 2 GB of main memory.

∆u = f in Ω ,
u = 0 on ∂Ω

(3)

As a test problem we use Poisson’s equation (3) with a right hand side f . It is a hard test
problem from a performance and scalability point of view, since it has a low computation
to communication ratio compared to more complex PDEs.

3.1 Strong Scaling

To have smaller runtimes per time step, it is interesting not to utilize the full main memory.
Fixing the problem size, but increasing the number of processors is known as strong scal-
ing. For computational steering it can be useful to reduce the runtime of one time step to
the order of 0.05 seconds to achieve real-time behaviour. In an implicit time stepping, one
time step per frame would be feasible. In this section, we want to evaluate the potential of
a multigrid algorithm to reach this goal.

In our experimental setting, we solved 2.14 · 109 unknowns using 512 to 49 152 cores.
For the strong scaling experiment, we use the following multigrid components:

• V(3,3) row-wise red-black GS smoothing,
• 60 steps of a CG solver to approximate the coarsest grid,
• Five multigrid levels,
• Direct coarse grid approximation,
• Linear interpolation.

It can be shown by local fourier analysis9, that three pre- and post-smoothing steps are
necessary to achieve the “classical” multigrid convergence of 0.1 for tetrahedral grids.
Fig. 3 shows that HHG achieves a good strong scaling behaviour over a wide range of
cores.

Increasing the number of cores by a factor of 96 we are able to reduce the initial time
from 7.95 seconds per V-cycle to 0.16 seconds. A perfect strong scaling would result
in 0.08 seconds per V-cycle. Thus we can clearly observe that the communication over-
head impacts the performance. For the largest run, we have quite small memory arrays
of around 383 KB for each variable (right hand side, unknowns, residual) including ghost
points. In this data volume, the ghost points require 69 KB. Thus, the volume to surface
ratio is quite small. Furthermore, latency of the messages has a larger impact, since more
messages per time have to be sent. A significant part of the time (about 38%) is spent for
the approximation on the coarsest grid.

With a similar setup, but using V(1,1) cycles and 40 CG steps on the coarsest grid, one
cycle takes 0.07 seconds. For an implicit real-time application, additional time is required
for a visualization pipeline (post-processing) and the time stepping itself. However, it
should be possible to tune the solving further, by e.g. optimizing the coarsest grid solver
and the other multigrid components, having less unknowns per core, or utilizing stronger
processors. So, highly parallel real-time simulations with a multigrid algorithm seem to be
challenging but feasible on current hardware.
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Figure 3. Strong scaling behaviour of HHG on PowerPC 450 cores of a Blue Gene/P located at Jülich. This test
case was performed starting from 512 cores and solving a system of 2.14 · 109 unknowns.

3.2 Weak Scaling

This section discusses some effects of solving large linear systems by MG with up to
294 912 compute cores. The setup of the weak scaling experiments corresponds to the
strong scaling from the previous section except for:

• the number of CG steps depends on the size of the coarsest grid,
• we apply a constant numbers of MG levels:

- Six for up to 262 144 cores and seven for 294 912 cores,
• we have 12 structured regions per core for six MG levels and

we have 1 structured region per core for seven MG levels.

The parallel efficiency is reflected in Tab. 1 by the time per V-cycle. Utilizing the whole
machine, HHG achieved a parallel efficiency of 69.2%. In the limit HHG solved up to 1012

degrees of freedom (DoF).
When fixing the number of levels for V-cycles, the number of required CG steps on the

coarsest grid grows from 15 to 180 CG steps. However, for the largest runs the time on
the coarsest mesh is around 12.5% of the total time for one V-cycle only. A comparison
of the work done on the coarsest grid between two different MG cycles is given in Fig. 4.
Our prediction is calculated by Eq. 2. In our setup an F-cycle is very similar to the pre-
diction. An F-cycles is similar to a full-multigrid cycle and requires a better coarse grid
approximation than a V-cycle, i.e. for a V-cycle approximately only half of the CG-steps
are necessary. Moreover, we have to keep in mind that the number of CG-steps between
the restarts is different. Restart means that only the approximated solution of the previous
step is available, but no additional information like previous search directions. In our case,
there are five times more CG-restarts for the F-cycle than for the V-cycle. However, the
measured number of CG-steps is in the same order of magnitude as predicted. One reason
for deviations from the prediction in the measurements is the shape of the domain. At
many points in Fig. 4, the domain in one or two directions is twice as large as in the others.
Furthermore, we do not consider a spherically shaped domain.

The full machine run uses seven instead of six levels. In our semi-structured approach,
a structured region cannot be shared by multiple processors. Thus, we are not able to
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Cores Struct. Regions DoF (·106) CG Time (s)
128 1 536 535 15 5.64
256 3 072 1 071 20 5.66
512 6 144 2 142 25 5.69

1024 12 288 4 287 30 5.71
2048 24 576 8 577 45 5.75
4096 49 152 17 159 60 5.92
8192 98 304 34 326 70 5.86

16384 196 608 68 669 90 5.91
32768 393 216 137 355 105 6.17
65536 786 432 274 744 115 6.41

131072 1 572 864 549 555 145 6.42
262144 3 145 728 1 099 176 180 6.52
294912 294 912 824 365 110 3.80

Table 1. Weak scaling behaviour of HHG on PowerPC 450 cores of a Blue Gene/P at Jülich.

N
um

be
r 

of
 C

G
-s

te
ps

0

50

100

150

200

250

300

350

Number of Cores
100 1,000 10,000 100,000 1,000,0001,000,000

Prediction
V-cycle
F-cycle

Figure 4. Required number of CG-steps on the coarsest grid per cycle with increasing numbers of compute cores.

utilize full main memory. The additional level reduces the number of CG iterations. The
performance in terms of solved unknowns per second increases by 14% due to larger inner
loops for the finest grids. Here, the overall achieved performance using the full machine is
59.8 TFLOP/s in the solving phase.

4 Conclusions and Future Work

We presented scaling results for geometric multigrid within the HHG software on the JU-
GENE supercomputer located at Jülich. We addressed scalability problems and communi-
cation overhead created by the coarsest grid in the multigrid hierarchy. A careful imple-
mentation results in excellent scalability results, i.e. the coarse grids do not seriously effect
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the overall parallel performance. To this end we explored and analyzed the weak scaling
of numerical experiments with up to 1012 unknowns.

Next we plan to compare our results to another geometric multigrid framework on
different architectures. In this context hybrid parallelization and GPU acceleration could
be interesting issues. Apart from that we are extending HHG to treat the Poisson problem
occurring in vortex particle direct numerical simulations.
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Hierarchical Methods for Dynamics in Complex Molecular Systems 
Lecture Notes

edited by Johannes Grotendorst, Godehard Sutmann, Gerhard Gompper, Dominik Marx

The focus of this Winter School was on hierarchical methods for dynamical problems 
having primarily in mind systems described in terms of many atoms or molecules. 
One end of relevant time scales certainly is nonadiabatic quantum dynamics meth-
ods, which operate on the subfemtosecond time scale but influence dynamical 
events that are orders of magnitude slower. Examples for such phenomena might be 
photoinduced switching of individual molecules, which results into large-amplitude 
relaxation in liquids or photodriven phase transitions of liquid crystals. On the other 
end of the relevant time scales methods are important to investigate and understand 
the non-equilibrium dynamics of complex fluids, with typical time scales in the range 
from microseconds to seconds. Examples are the flow of polymer solutions, or the 
flow of blood through microvessels.

The Lecture Notes contain state-of-the-art information on methodological founda-
tions and methods coming from materials science, soft matter, life science and fluid 
dynamics. In addition to introducing discipline-specific methods, modern numerical 
algorithms and parallel programming techniques are presented in detail.

This publication was edited at the Jülich Supercomputing Centre (JSC) which is an 
integral part of the Institute for Advanced Simulation (IAS). The IAS combines the 
Jülich simulation sciences and the supercomputer facility in one organizational unit. 
It includes those parts of the scientific institutes at Forschungszentrum Jülich which 
use simulation on supercomputers as their main research methodology.




